WO2020019552A1 - 一种虚拟现实触觉反馈交互系统 - Google Patents
一种虚拟现实触觉反馈交互系统 Download PDFInfo
- Publication number
- WO2020019552A1 WO2020019552A1 PCT/CN2018/112414 CN2018112414W WO2020019552A1 WO 2020019552 A1 WO2020019552 A1 WO 2020019552A1 CN 2018112414 W CN2018112414 W CN 2018112414W WO 2020019552 A1 WO2020019552 A1 WO 2020019552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrical stimulation
- different
- electrode array
- virtual reality
- haptic feedback
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/012—Head tracking input arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/014—Hand-worn input/output arrangements, e.g. data gloves
Definitions
- the invention relates to virtual reality interaction technology, and in particular, to a virtual reality haptic feedback interaction system based on a flexible electrode array and percutaneous electrical nerve stimulation.
- Virtual reality technology is an advanced human-computer interaction technology that effectively simulates human behaviors such as watching, hearing, and moving in the natural environment.
- Virtual reality technology constructs a virtual environment through computer graphics, with the help of corresponding hardware means, such as data gloves, helmet displays, or stereo glasses, to provide sensory stimuli such as sight, hearing, touch, smell, etc., which can immerse users in the virtual environment , Produce a sense of presence in person.
- Electric tactile feedback interaction technology is a way of tactile perception of virtual reality technology.
- VR devices at home and abroad have the following three shortcomings in the realization of force feedback interaction:
- the interactive feedback technology that integrates visual and auditory processing has developed more maturely, but it is visual, force, and even visual
- the interactive feedback technology of fusion of hearing, force, and tactile sensation needs to be improved urgently; then, the form of haptic feedback is mostly realized by sensors vibrating the body surface or pressure stimulation. It is not easy to effectively restrain the user during human-computer interaction. Greatly reduces the immersion of virtual scenes; electrical haptics have great advantages over other haptic feedback methods. Electrical stimulation is simple, easy, lightweight, convenient, energy-efficient, easy to focus, and high-resolution.
- the earth enhances the immersiveness of the virtual scene; finally, the traditional force feedback interactive device modules for the whole body or upper body are large, inconvenient to wear and costly, and are not suitable for promotion and application.
- human tactile sensation is caused by low-threshold mechanical stimulation receptors in the skin and soft tissues, which are evoked by external stimuli (such as contact, compression, etc.), and are transmitted and compiled by the central nervous system to form various Sensory impressions consisting of sensory attributes, including roughness, softness, and adhesion.
- the present invention proposes a new tactile feedback interactive system based on the aforementioned physiological principle of somatosensory stimulation of the human body.
- the present invention proposes a virtual reality haptic feedback interaction system.
- the system is based on a flexible electrode array and percutaneous electrical nerve stimulation, and uses virtual reality and different skin tactile sensors to have different response frequencies.
- the skin tactile sensor performs different pulse electrical stimuli to make it respond respectively, thereby generating the tactile feedback effect corresponding to the virtual reality scene, which enhances the user's experience effect in the virtual reality scene.
- the structure and material of the electrode array are adjusted.
- Related improvements have enriched the way of electrical stimulation, improved the accuracy of electrical stimulation, and further increased the immersion of the virtual scene.
- a virtual reality haptic feedback interaction system includes:
- HMD module used to provide a tactile interactive environment in a virtual scene
- Storage module Connected to the headset module to store the corresponding relationship between different haptic interaction environments and different haptic feedback parameters; the storage module includes corresponding driving circuits for generating electrical signals that characterize the current virtual scene parameters; different haptic interactions The corresponding relationship between the environment and different haptic feedback parameters is the corresponding relationship between different electrical signals and different haptic feedback parameters;
- Electrical stimulation device with multiple electrical stimulation channels connected to the storage module, used to control the frequency pulse width parameters of the current pulses output by each electrical stimulation channel according to the received different electrical signals, and output the current pulses to time-division multiplexing Circuit
- Time-division multiplexing circuit It is connected to the electrical stimulation device and is used to receive the corresponding current pulses output by the electrical stimulation device. By selecting and controlling different output channels, the optimal stimulation paradigm of different tactile receptors is obtained; Pulse width and frequency combination in space and output to flexible electrode array;
- Flexible electrode array It is connected with a time division multiplexing circuit for outputting corresponding electrical stimulation pulses.
- the flexible electrode array includes a substrate and a plurality of contact electrodes arranged on the substrate, and each contact electrode is connected to a corresponding electrical stimulation channel; each electrical stimulation channel is controlled by an electrical stimulation device.
- each electrical stimulation channel is controlled by an electrical stimulation device.
- the electrical stimulation device controls each electrical stimulation channel to output a corresponding multi-channel current pulse based on different electrical signals, wherein each electrical stimulation channel uses a current pulse frequency to change its pulse width or change its current pulse.
- Current pulses are output with a fixed pulse width.
- the current pulse can be a bipolar positive pulse or a bipolar negative pulse.
- the virtual reality haptic feedback interaction system provides a way for virtual reality interactive devices to implement haptic feedback; compared with the prior art, the present invention has a variety of stimulation modes and precise stimulation locations.
- the tactile feedback is more realistic.
- the tactile feedback interactive system of the present invention is based on a flexible electrode array and percutaneous electrical nerve stimulation, and can be applied to wearable devices. It has the advantages of lightness, comfort, low cost and easy preparation.
- FIG. 1 is a block diagram of a virtual reality haptic feedback interaction system according to the present invention
- FIG. 2 is a schematic structural diagram of a flexible electrode array when the electrodes of the present invention are equal in size
- FIG. 3 is a schematic structural diagram of a flexible electrode array when the electrodes of the present invention have different sizes
- FIG. 4 is a principle block diagram of a time division multiplexing circuit according to the present invention.
- FIG. 5 is a flowchart of a virtual reality haptic feedback interaction implementation of the present invention.
- the virtual reality haptic feedback interaction system of the present invention includes a head-mounted display module, a storage module, an electrical stimulation device, a time-division multiplexing circuit, and a flexible electrode array, which are connected in sequence; wherein the head-mounted display module is used to provide haptic interaction in a virtual scene.
- the storage module and the headset module are connected in a wired manner to convert different tactile interaction environments into corresponding different electrical signal parameters;
- the electrical stimulation device is provided with multiple electrical stimulation channels, according to The received different electrical signal parameters control the frequency and pulse width parameters of the current pulses output by each electrical stimulation channel, and output the current pulses to the time division multiplexing circuit to select the optimal stimulation paradigm for different skin receptors;
- the time division multiplexing circuit sends the corresponding current
- the pulse width-frequency combination in the time-space of pulses outputs corresponding electrical stimulation pulses to the fingertips and the like through flexible electrode arrays, which stimulates different tactile receptors in the skin to generate nerve impulses, so that the human body corresponds to that in the virtual scene. Haptic, complete virtual haptic feedback.
- the flexible array electrode includes a substrate and a plurality of flexible dry contact electrodes.
- the base of the flexible electrode array is made of cloth, and a number of flexible dry contact electrodes are attached to the surface of the cloth.
- the flexible dry contact electrodes are made of a flexible conductive fabric material and are evenly distributed on the entire substrate.
- Each contact electrode is connected to a corresponding electrical stimulation channel.
- Each electrical stimulation channel can be controlled by an electrical stimulation device. By applying different polar currents to different contact electrodes, an ideal electrical tactile stimulation effect is achieved. . That is, each contact electrode is connected to an electric stimulator (ie, an electric stimulation device) through a time-division multiplexing circuit through a wire to output an electric stimulation pulse.
- an electric stimulator ie, an electric stimulation device
- the surface of the electrode array is covered with a flexible insulating material with electrode perforations.
- the insulating material should have a certain thickness (not less than 0.5mm).
- the flexible electrode array can be arranged in an equal interval of a square or a circular structure, and is used to contact the skin such as a finger and output corresponding electrical stimulation pulses.
- the electrical stimulation equipment is time-multiplexed.
- the flexible electrode array can adapt to the change of the stimulus center position and find the ideal stimulus center position again.
- the implementation process of the flexible electrode adapting to the change in the position of the stimulation center is specifically: gating the electrical stimulation channel by controlling the keys to activate different contact electrodes, and forming different shapes of stimulation electric fields on the substrate of the flexible electrode array.
- different shapes of stimulation regions are generated on the flexible electrode array. As shown in FIG.
- the electrical stimulation device is controlled to gate one of the electrical stimulation channels, and the stimulation pulse is input to the first contact electrode and the second contact electrode to generate an irregular first stimulation region 01.
- the other electrical stimulation channel is gated.
- the stimulation signal is input to the fourth contact electrode and the fifth contact electrode to generate an irregular second stimulation area 02; thus, two stimulation areas are formed on the substrate, and the first stimulation area 01 and the second stimulation area 02 are formed. There is no stimulus signal in the middle part, and some contact electrodes outside the area will not be stimulated, thus forming two virtual stimulation electrodes of different shapes on the flexible electrode array.
- the stimulation pulse of one or more electrical stimulation channels changes the activated contact electrode, changes the position and size of the virtual electrode (that is, the stimulation area), and realizes dynamic adjustment of the stimulation position and stimulation range. In this way, even when the posture of the stimulation part is changed during the exercise training, the optimal electrical stimulation position can be found, and the accuracy of the electrical stimulation is improved.
- the sizes of several contact electrodes of the flexible electrode array may be equal in size or different in size. As shown in Figure 2, when the size of the contact electrodes is equal, it is suitable for the tactile feedback interaction of the fingers.
- the size of the electrodes ranges from (1-3mm) * (8-12mm).
- the contact electrode arrangement mode uses an equal spacing arrangement, and the electrode spacing is 0.2-1.2mm; at this time, the electrode can work in three modes, which are:
- Mode 1 The electric stimulator outputs a positive current constant current pulse (that is, a current pulse) to the flexible electrode array, and only a single contact electrode outputs an electric stimulation pulse to stimulate a single skin sensor.
- a positive current constant current pulse that is, a current pulse
- Mode 2 The electric stimulator outputs multiple positive current constant current pulses (ie, multiple current pulses) to the flexible electrode array, and multiple contact electrodes simultaneously output electrical stimulation pulses to stimulate different skin receptors.
- Mode 2 is the optimal stimulus paradigm for stress.
- Mode 3 The electric stimulator outputs a positive current constant current pulse to adjust the direction of the current through the isolator, and changes the current weight of the contact electrodes of the flexible electrode array (keep the number of positive and negative current electrodes uncertain, and the sum of the currents on the positive and negative current electrodes is equal Principle) to stimulate different skin receptors.
- Mode 3 is the optimal stimulus paradigm for vibration perception.
- the contact electrode arrangement mode adopts the arrangement of large and small contact electrodes that are arranged at equal intervals, and the electrode spacing is 2-6mm.
- the stimulation pulse is input to the first contact electrode and the second contact electrode to generate an irregular first stimulation area 01;
- the stimulation signal is input to the fourth contact electrode and the fifth contact electrode to generate an irregular second stimulation area 02;
- Two stimulus areas are formed on the substrate, and there is no stimulus signal between the first stimulus area 01 and the second stimulus area 02, and some contact electrodes outside the stimulus area are not stimulated, so the stimulus is well improved. accuracy.
- the third stimulation region 03 (simple 15th contact electrode) and the fourth stimulation region 04 (the entire flexible electrode array) are also formed by the same stimulation method.
- the time division multiplexing circuit includes a TDM multiplexer and a TDM demultiplexer connected to each other.
- the TDM multiplexer includes a synchronous rotary switch that rotates at a certain sampling frequency and sequentially samples the input signal.
- the electric stimulator outputs the current pulses in three modes, namely mode 1, mode 2, and mode 3; the time division multiplexing circuit divides the time of current pulse transmission in the three modes, so that the current pulses in different modes are at different times. Transmission within the segment, and then get the optimal vibration and pressure stimulation paradigm for different skin feeling.
- the electrical stimulation device outputs corresponding multi-channel currents based on the different electrical signal parameters.
- Pulses such as bipolar positive pulses or bipolar negative pulses; wherein each electrical stimulation channel can output current pulses by changing the current pulse frequency to fix its pulse width or changing the current pulse pulse width to fix its frequency, and then time-division multiplexed.
- Circuit select the best paradigm of vibration and pressure feeling, and generate corresponding vibration and pressure feeling respectively.
- the electric current pulse generated by the electric stimulation device selects the optimal paradigm of vibration and pressure through a time-division multiplexing circuit, so as to obtain the best tactile feedback effect, and then realize the virtual scene by combining time-space vibration and pressure-sensitive stimulation. Tactile reproduction such as slippery feeling and rough feeling.
- the working process of the present invention will be described in detail by taking virtual slip feedback as an example.
- the working process of the present invention includes the following steps:
- the various modules of the virtual reality haptic feedback interactive system of the present invention are connected, a flexible electrode array is fixed to the middle finger end, and another flexible electrode array is pasted on the back of the hand, which are respectively used as the positive and negative electrodes of electrical stimulation pulse input.
- the haptic interactive environment in the virtual scene is generated through the head display module; the storage module receives the corresponding haptic scene and is processed by the driving circuit and converted into a corresponding electrical signal to transmit an electrical stimulation pulse signal to the electrical stimulator.
- the electrical stimulator After receiving the electrical stimulation pulse signal, the electrical stimulator outputs a corresponding electrical stimulation pulse with a fixed pulse width, a pulse frequency increasing at a fixed step or a fixed pulse frequency, and a pulse width increasing at a fixed step to a time division multiplexing circuit.
- the time division multiplexing circuit is connected with the flexible electrode array, and transmits electrical stimulation pulses to the skin through the contact electrodes in the flexible electrode array.
- the electrical stimulation device outputs three modes of current pulses.
- the time-division multiplexing circuit divides the current pulse transmission time of the three modes separately, so that the current pulses of the three modes are transmitted in different time periods, and then the interruption of the synchronous rotary switch in time is controlled, thereby achieving In the process of tactile stimulation, three different modes of current pulse stimulation are controlled and selected accordingly to obtain the optimal vibration and pressure sensory stimulation paradigm required for different tactile sensations.
- sensation of the skin after the skin sensor receives the optimal electrical stimulus response, we can arrange different vibration pulses in the time series by keeping the same space, that is, by controlling the synchronous rotary switch of the time division multiplexing circuit to follow
- the electrical stimulation pulse mode sampling is selected at a certain sampling frequency, so that the skin is always in the optimal stimulus paradigm of vibration sensation; at the same time, the cyclic stimulation is sequentially performed on the electrode position, so that the experimenter can generate the corresponding corresponding to the virtual scene Slippery feeling and pressure in different directions.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Electrotherapy Devices (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
一种虚拟现实触觉反馈交互系统,包括依次连接的头显模块、存储模块、电刺激设备、时分复用电路和柔性电极阵列,存储模块接收虚拟场景交互事件中对应的触觉反馈参数,并通过其驱动电路将对应的触觉反馈参数转换为相应的电信号;电刺激设备根据接收到的电信号,控制各个电刺激通道输出脉冲参数,再经时分复用电路选择各个触觉感受的最优刺激范式,并输出相应的脉冲至柔性电极阵列。该方法可增强虚拟现实场景中的体验效果,同时通过对电极阵列的结构和材质进行了相关改进,丰富了电刺激的方式,提高了电刺激的准确度,进而增加了虚拟场景的沉浸感。
Description
本发明涉及虚拟现实交互技术,具体地,涉及一种基于柔性电极阵列及经皮神经电刺激的虚拟现实触觉反馈交互系统。
随着科学技术的发展,虚拟现实(Virtual Reality)技术得到了广泛的应用,特别是在游戏、影视、教育、遥操作、医疗等方面VR技术有着广阔的前景。虚拟现实技术是一种有效的模拟人在自然环境中视、听、动等行为的高级人机交互技术。虚拟现实技术通过计算机图形构造虚拟环境,借助相应的硬件手段的帮助,如数据手套、头盔显示器或立体眼镜等设备,提供视、听、触、嗅觉等感官刺激,可以使用户沉浸在虚拟环境中,产生亲临其境的临场感。电触觉反馈交互技术,是虚拟现实技术的触觉感知的一种途径。
目前,国内外的VR设备在实现力反馈交互方面,主要存在以下三方面的不足:首先,在视觉、听觉上融合处理的交互反馈技术发展得已经比较成熟,但是在视觉、力触觉,甚至视、听、力触觉融合处理的交互反馈技术亟待提高;然后,触觉反馈的形式大多是通过传感器震动体表或压力刺激的方式来实现,在人机交互时不容易对使用者产生有效的约束,极大地降低了虚拟场景的沉浸感;电触觉相对于其他的触觉反馈方式有着很大的优势,电刺激有着简单易行、轻巧方便、能量的转换效率高、易于集中而且分辨率高,因而极大地增强了虚拟场景的沉浸感;最后,传统的面向全身或上半身的力反馈交互设备模块较大,穿戴不便且成本较高,不适合于推广应用。
实际上,人体触觉的产生是由于在皮肤软组织中,低阈值的机械刺激感受器在外界刺激(如接触、压迫等)的诱发下发出动作电位,并且经过中枢神经的传输与编译,从而形成各种感知属性组成的感觉印象,包括粗糙度、柔软度以及粘附性等感觉。本发明基于前述人体的体感刺激生理学原理,提出新的触觉反馈交互系统。
发明内容
为了解决现有技术所存在的问题,本发明提出一种虚拟现实触觉反馈交互系统,该系统基于柔性电极阵列及经皮神经电刺激,利用虚拟现实和不同皮肤触觉感受器拥有不同的响应频率,对皮肤触觉感受器进行不同脉冲电刺激使其分别产生响应,从而产生与虚拟现实场景相对应的触觉反馈效果,增强了用户在虚拟现实场景中的体验效果,同时通过对电极阵列的结构和材质进行了相关改进,丰富了电刺激的方式,提高了电刺激的准确度,进而增加了虚拟场景的沉浸感。
本发明采用如下技术方案来实现:一种虚拟现实触觉反馈交互系统,包括:
头显模块:用于提供虚拟场景下的触觉交互环境;
存储模块:与头显模块连接,用于存储不同触觉交互环境与不同触觉反馈参数之间的对应关系;存储模块包括相应的驱动电路,用于产生表征当前虚拟场景参数的电信号;不同触觉交互环境与不同触觉反馈参数之间的对应关系为不同电信号与不同触觉反馈参数之间的对应关系;
设有多个电刺激通道的电刺激设备:与存储模块连接,用于根据接收到的不同电信号,控制各个电刺激通道输出电流脉冲的频率脉宽参数,并将电流脉冲输出至时分复用电路;
时分复用电路:与电刺激设备连接,用于接收电刺激设备输出的相应电流脉冲,并通过选择控制不同的输出通道,得到不同触觉感受器的最优刺激范式;将相应的电流脉冲进行时-空间上的脉宽频率组合,并输出至柔性电极阵列;
柔性电极阵列:与时分复用电路连接,用于输出相应的电刺激脉冲。
在一个优选实施例中,所述柔性电极阵列包括基底和布设于基底上的若干触点电极,每个触点电极与一路相应的电刺激通道连接;每个电刺激通道由电刺激设备控制通断,实现对不同的触点电极施加不同极性的电流;对电刺激通道进行选通设置,以激活不同的触点电极,在柔性电极阵列的基底形成不同形状的刺激电场,从而在柔性电极阵列上产生不同形状的刺激区域。
在一个优选实施例中,所述电刺激设备基于不同的电信号,控制各个电刺激通道输出相应的多通道电流脉冲,其中每个电刺激通道采用改变电流脉冲频率固定其脉宽或改变电流脉冲脉宽固定其频率的方式输出电流脉冲。而电流脉冲可以是双极正脉冲,也可以是双极负脉冲。
从以上技术方案可知,本发明提供的虚拟现实触觉反馈交互系统,为虚拟现实交互设备提供了一种实现触觉反馈的途径;与现有技术相比,本发明具有刺激模式多样化,刺激位置精准,触觉反馈更为逼真;此外,本发明触觉反馈交互系统基于柔性电极阵列及经皮神经电刺激,可应用到可穿戴设备中,具有轻便、舒适、成本较低、易于制备的优点。
图1为本发明虚拟现实触觉反馈交互系统的方框图;
图2为本发明电极大小相等时柔性电极阵列的结构示意图;
图3为本发明电极大小不等时柔性电极阵列的结构示意图;
图4为本发明时分复用电路的原理框图;
图5为本发明虚拟现实触觉反馈交互实现的流程图。
以下结合附图和具体实施例对本发明进行详细说明。应当理解,描述这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的保护范围。
如图1,本发明虚拟现实触觉反馈交互系统包括依次连接的头显模块、存储模块、电刺激设备、时分复用电路以及柔性电极阵列;其中,头显模块用于提供虚拟场景下的触觉交互环境,使触觉交互事件被触发;存储模块与头显模块以有线的方式连接,用于将不同的触觉交互环境转换为相应的不同电信号参数;电刺激设备设有多个电刺激通道,根据接收到的不同电信号参数,控制各个电刺激通道输出电流脉冲的频率脉宽参数,并将电流脉冲输出至时分复用电路选择不同皮肤感受器的最优刺激范式;时分复用电路将相应的电流脉冲进行时-空间上的脉宽频率组合,经柔性电极阵列对手指指端等输出相应的电刺激脉冲,刺激皮肤中不同的触觉感受器使其产生神经冲动,使人体得到与虚拟场景中所对应的触觉,完成虚拟触觉反馈。
如图2、图3,柔性阵列电极包括一块基底和多个柔性干式触点电极。柔性电极阵列的基底由布料制成,布料表面附有若干个柔性干式触点电极,柔性干式触点电极采用柔性导电织物材料并均匀分布于整个基底。每个触点电极与一路相应的电刺激通道连接,每个电刺激通道都可由电刺激设备控制通断,通过对不同的触点电极施加不同极性的电流,从而达到理想的电触觉刺激效果。也就是说,每个触点电极通过导线经时分复用电路与电刺激器(即电刺激设备)连接,用以输出电刺激脉冲。此外,电极阵列表面覆盖一带电极穿孔的柔性绝缘材料,绝缘材料应具有一定的厚度(不小于0.5mm),绝缘材料上设有电极穿孔,且电极穿孔应比触点电极根部的面积略微小一点,以隔离电极的电荷集中部位与皮肤接触。
柔性电极阵列可采用方形或圆形结构等间距排列方式,用于与手指等皮肤接触并输出相应的电刺激脉冲;电刺激时,随着刺激部位姿态的改变,在电刺激设备与时分复用器的配合下,柔性电极阵列能够适应刺激中心位置的变化,重新找到理想的刺激中心位置。在本实施例中,柔性电极适应刺激中心位置变化的实现过程具体为:通过控制按键对电刺激通道进行选通设置,以激活不同触点电极,在柔性电极阵列的基底形成不同形状的刺激电场,从而在柔性电极阵列上产生不同形状的刺激区域。如图3,控制电刺激设备选通其中一个电刺激通道,将刺激脉冲输入至第1触点电极、第2触点电极,产生不规则第一刺激区域01;选通另一电刺激通道,将刺激信号输入至第4触点电极、第5触点电极,产生不规则第二刺激区域02;从而在基底上形成了2块刺激区域,而第一刺激区域01、第二刺激区域02之间的部分没有刺激信号,不会刺激区域之外的部分触点电极,从而在柔性电极阵列上形成两个不同形 状的虚拟刺激电极;同时,在上述适应过程中,我们也可以通过增加或减少一个或多个电刺激通道的刺激脉冲,从而改变激活的触点电极,使虚拟电极(即刺激区域)的位置和尺寸发生变化,实现刺激位置以及刺激范围的动态调整。这样即使在运动训练过程中随着刺激部位姿态的改变,也能找到最佳的电刺激位置,提高了电刺激的准确度。
在本实施例中,柔性电极阵列的若干触点电极,尺寸可以是大小相等的,也可以是大小不等的。如图2,触点电极大小相等时,适用于手指的触觉反馈交互,电极的尺寸范围为(1-3mm)*(8-12mm),触点电极排列模式采用等间距排列方式,电极间距为0.2-1.2mm;此时,电极可以工作在三种模式下,分别为:
模式1:电刺激器输出一路正电流恒流脉冲(即一路电流脉冲)给柔性电极阵列,仅单个触点电极输出电刺激脉冲,对单个皮肤感受器进行刺激。
模式2:电刺激器输出多路正电流恒流脉冲(即多路电流脉冲)给柔性电极阵列,多个触点电极同时输出电刺激脉冲,对不同的皮肤感受器进行刺激。模式2是对压力感觉的最优刺激范式。
模式3:电刺激器输出正电流恒流脉冲经隔离器调节电流大小方向,改变柔性电极阵列的触点电极的电流权重(保持正负电流电极数量不定,正负电流电极上电流大小的总和相等的原则),对不同的皮肤感受器进行刺激。模式3是对振动感觉的最优刺激范式。
如图3,触点电极大小不等时,适用于手臂的触觉反馈交互,大电极尺寸为(12-14mm)*(12-14mm),小电极尺寸为(7-9mm)*(7-9mm),触点电极排列模式采用大小触点电极交叉等间距排列方式,电极间距为2-6mm。刺激脉冲输入至第1触点电极、第2触点电极,产生不规则第一刺激区域01;刺激信号输入至第4触点电极、第5触点电极,产生不规则第二刺激区域02;在基底上形成了2块刺激区域,而第一刺激区域01、第二刺激区域02之间的部分没有刺激信号,不会刺激区域之外的部分触点电极,因此很好地提高了刺激的准确性。同理,第三刺激区域03(单纯第15触点电极)、第四刺激区域04(整个柔性电极阵列)也是通过相同的刺激方式来形成。
如图4,时分复用电路包括相连接的TDM复用器和TDM解复器;其中,TDM复用器中包括一个同步旋转开关,同步旋转开关按一定抽样频率旋转,依次对输入信号抽样。电刺激器分别输出上述模式1、模式2、模式3共三种模式的电流脉冲;时分复用电路分别对三种模式的电流脉冲传输的时间进行分割,使不同模式的电流脉冲在不同的时间段内传输,进而得到不同皮肤感受的最优振动、压力刺激范式。
如图5,当实验者在虚拟场景中触摸不同的物体后,经存储模块将不同的触觉反馈参数转换为不同的电信号参数,电刺激设备基于不同的电信号参数,输出相应的多通道电流脉冲, 如双极正脉冲或双极负脉冲;其中,每个电刺激通道可以采用改变电流脉冲频率固定其脉宽或改变电流脉冲脉宽固定其频率的方式输出电流脉冲,再经过时分复用电路,选择振动、压力感觉的最佳范式,分别产生相应的振动和压力感觉。电刺激设备产生的电流脉冲经时分复用电路选择振动、压力感觉的最优范式,以便于得到最好的触觉反馈效果,进而通过时-空间上的组合振动和压感刺激实现虚拟场景中的滑觉、粗糙感等触觉再现。
下面以虚拟滑觉反馈为例,对本发明的工作过程进行详细说明。本发明的工作过程包括以下步骤:
1.将本发明虚拟现实触觉反馈交互系统的各个模块相连接,将一片柔性电极阵列与中指指端固定,将另一片柔性电极阵列贴于手背,分别作为电刺激脉冲输入的正极和负极。
2.通过头显模块产生虚拟场景下的触觉交互环境;存储模块接收到相应的触觉场景,经驱动电路处理转换为与之对应的电信号向电刺激器传输电刺激脉冲信号。
3.电刺激器接收到电刺激脉冲信号后,输出相应脉宽固定、脉冲频率以固定步长增长或者脉冲频率固定、脉宽以固定步长增长的电刺激脉冲至时分复用电路。
4.时分复用电路与柔性电极阵列相连接,并经柔性电极阵列中的触点电极向皮肤传输电刺激脉冲。电刺激设备输出三种模式的电流脉冲。经时分复用电路分别对三种模式的电流脉冲传输时间进行分割,使三种模式的电流脉冲在不同的时间段内进行传输,进而通过控制时间上同步旋转开关的中断,从而实现在一次电触觉刺激过程中对三种不同模式的电流脉冲刺激进行相应的控制选择,以得到不同触觉所需要的最优振动、压力感觉刺激范式。
例如滑觉,皮肤感受器受到最优电刺激得到响应后,我们可以通过保持在空间不变的情况下,在时间序列上安排不同的振动脉冲刺激,即通过控制时分复用电路的同步旋转开关按照一定的抽样频率进行电刺激脉冲模式的抽样选择,使皮肤一直处于振动感觉的最优刺激范式下;同时,在电极位置上依次进行循环刺激,从而让实验者能够产生与虚拟场景中相对应的滑觉以及不同方向的压力感。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种虚拟现实触觉反馈交互系统,其特征在于,包括:头显模块:用于提供虚拟场景下的触觉交互环境;存储模块:与头显模块连接,用于存储不同触觉交互环境与不同触觉反馈参数之间的对应关系;存储模块包括相应的驱动电路,用于产生表征当前虚拟场景参数的电信号;不同触觉交互环境与不同触觉反馈参数之间的对应关系为不同电信号与不同触觉反馈参数之间的对应关系;设有多个电刺激通道的电刺激设备:与存储模块连接,用于根据接收到的不同电信号,控制各个电刺激通道输出电流脉冲的频率脉宽参数,并将电流脉冲输出至时分复用电路;时分复用电路:与电刺激设备连接,用于接收电刺激设备输出的相应电流脉冲,并通过选择控制不同的输出通道,得到不同触觉感受器的最优刺激范式;将相应的电流脉冲进行时-空间上的脉宽频率组合,并输出至柔性电极阵列;柔性电极阵列:与时分复用电路连接,用于输出相应的电刺激脉冲。
- 根据权利要求1所述的虚拟现实触觉反馈交互系统,其特征在于,所述柔性电极阵列包括基底和布设于基底上的若干触点电极,每个触点电极与一路相应的电刺激通道连接;每个电刺激通道由电刺激设备控制通断,实现对不同的触点电极施加不同极性的电流;对电刺激通道进行选通设置,以激活不同的触点电极,在柔性电极阵列的基底形成不同形状的刺激电场,从而在柔性电极阵列上产生不同形状的刺激区域。
- 根据权利要求1所述的虚拟现实触觉反馈交互系统,其特征在于,所述柔性电极阵列包括一由布料制成的基底,布料表面附有若干个柔性干式触点电极,柔性干式触点电极采用柔性导电织物材料并均匀分布于整个基底。
- 根据权利要求2或3所述的虚拟现实触觉反馈交互系统,其特征在于,柔性电极阵列的触点电极大小相等,触点电极采用等间距方式排列。
- 根据权利要求2或3所述的虚拟现实触觉反馈交互系统,其特征在于,柔性电极阵列的触点电极大小不等,触点电极采用大小触点电极交叉等间距方式排列。
- 根据权利要求2或3所述的虚拟现实触觉反馈交互系统,其特征在于,柔性电极阵列的表面覆盖一带电极穿孔的柔性绝缘材料,柔性绝缘材料的厚度不小于0.5mm,柔性绝缘材料上设有电极穿孔,且电极穿孔比触点电极根部的面积小。
- 根据权利要求2或3所述的虚拟现实触觉反馈交互系统,其特征在于,柔性电极阵列的工作模式包括:模式1:电刺激设备输出一路正电流恒流脉冲给柔性电极阵列,仅单个触点电极输出电刺激脉冲,对单个皮肤感受器进行刺激;模式2:电刺激设备输出多路正电流恒流脉冲给柔性电极阵列,多个触点电极同时输出电刺激脉冲,对不同的皮肤感受器进行刺激;模式3:电刺激设备输出正电流恒流脉冲经隔离器调节电流大小方向,改变柔性电极阵列的触点电极的电流权重,保持正负电流电极数量不定但正负电流电极上电流大小的总和相等的原则,对不同的皮肤感受器进行刺激。
- 根据权利要求1所述的虚拟现实触觉反馈交互系统,其特征在于,所述时分复用电路包括相连接的TDM复用器和TDM解复器;TDM复用器中包括一个同步旋转开关,同步旋转开关按一定抽样频率旋转,依次对输入信号抽样。
- 根据权利要求1所述的虚拟现实触觉反馈交互系统,其特征在于,所述电刺激设备基于不同的电信号,控制各个电刺激通道输出相应的多通道电流脉冲,其中每个电刺激通道采用改变电流脉冲频率固定其脉宽或改变电流脉冲脉宽固定其频率的方式输出电流脉冲。
- 根据权利要求9所述的虚拟现实触觉反馈交互系统,其特征在于,所述电流脉冲为双极正脉冲或双极负脉冲。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/263,348 US11520407B2 (en) | 2018-07-27 | 2018-10-29 | Virtual reality haptic feedback interaction system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810852405.6A CN108874150B (zh) | 2018-07-27 | 2018-07-27 | 一种虚拟现实触觉反馈交互系统 |
CN201810852405.6 | 2018-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020019552A1 true WO2020019552A1 (zh) | 2020-01-30 |
Family
ID=64306404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/112414 WO2020019552A1 (zh) | 2018-07-27 | 2018-10-29 | 一种虚拟现实触觉反馈交互系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11520407B2 (zh) |
CN (1) | CN108874150B (zh) |
WO (1) | WO2020019552A1 (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109550148A (zh) * | 2018-11-28 | 2019-04-02 | 华东交通大学 | 一种柔性多功能电刺激装置及其制备方法 |
CN109782950B (zh) * | 2019-01-04 | 2022-05-17 | Oppo(重庆)智能科技有限公司 | 触摸电极控制方法、装置、存储介质及电子设备 |
CN109498994A (zh) * | 2019-01-21 | 2019-03-22 | 玉林师范学院 | 一种具有旋转效应的混沌电按摩仪 |
CN109637098B (zh) * | 2019-01-28 | 2021-03-23 | Oppo广东移动通信有限公司 | 可穿戴设备及其控制方法 |
CN110045833B (zh) * | 2019-05-07 | 2024-09-10 | 中国空间技术研究院 | 一种触觉反馈结构、触觉反馈系统及穿戴设备 |
CN110096158A (zh) * | 2019-06-04 | 2019-08-06 | 江苏第二师范学院(江苏省教育科学研究院) | 一种电触觉适宜刺激控制装置 |
CN111399645B (zh) * | 2020-03-13 | 2023-07-25 | Oppo广东移动通信有限公司 | 可穿戴设备及触觉反馈方法、装置、存储介质 |
CN113391537A (zh) * | 2020-03-13 | 2021-09-14 | 邵玉忠 | 智能手表 |
CN113384816A (zh) * | 2020-03-13 | 2021-09-14 | 邵玉忠 | 触感模拟装置、自慰器、脸部按摩器和脸部按摩系统 |
CN112947745B (zh) * | 2021-01-29 | 2023-01-17 | 中国科学院软件研究所 | 一种基于化学反应的痛觉反馈柔性可穿戴设备及方法 |
CN114063788A (zh) * | 2021-11-24 | 2022-02-18 | 宁波高新区阶梯科技有限公司 | 混合现实操作手套 |
CN114625254A (zh) * | 2022-03-17 | 2022-06-14 | 天津大学 | 一种基于stm32与柔性阵列式电刺激装置的触觉显示平台 |
CN114661157B (zh) * | 2022-03-28 | 2024-04-09 | 北京工商大学 | 一种基于内容检测的vr视频体感触觉反馈方法 |
CN115097932A (zh) * | 2022-05-30 | 2022-09-23 | 南昌威爱信息科技有限公司 | 一种vr体感感触器及其反馈系统 |
CN117666778B (zh) * | 2023-10-26 | 2024-07-05 | 华南理工大学 | 动触觉混合渲染的电刺激触觉反馈穿戴系统 |
CN117742484A (zh) * | 2023-11-28 | 2024-03-22 | 华南理工大学 | 面向虚拟仿真训练平台的多模态触觉反馈控制装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105498091A (zh) * | 2016-01-12 | 2016-04-20 | 上海交通大学 | 佩戴式多功能触觉电刺激腕带 |
US20160260251A1 (en) * | 2015-03-06 | 2016-09-08 | Sony Computer Entertainment Inc. | Tracking System for Head Mounted Display |
CN106371574A (zh) * | 2015-12-04 | 2017-02-01 | 北京智谷睿拓技术服务有限公司 | 触觉反馈的方法、装置和虚拟现实交互系统 |
CN107221223A (zh) * | 2017-06-01 | 2017-09-29 | 北京航空航天大学 | 一种带有力/触觉反馈的虚拟现实飞机座舱系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4926879A (en) * | 1988-06-13 | 1990-05-22 | Sevrain-Tech, Inc. | Electro-tactile stimulator |
US6930590B2 (en) * | 2002-06-10 | 2005-08-16 | Ownway Biotronics, Inc. | Modular electrotactile system and method |
CN102805900B (zh) * | 2012-08-30 | 2015-08-19 | 上海交通大学 | 用于产生人工电触觉的电刺激系统 |
CN107530540A (zh) * | 2015-02-18 | 2018-01-02 | 维拉布尔生命科学股份有限公司 | 用于控制刺激脉冲的系统 |
GB201709199D0 (en) * | 2017-06-09 | 2017-07-26 | Delamont Dean Lindsay | IR mixed reality and augmented reality gaming system |
WO2019060209A1 (en) * | 2017-09-20 | 2019-03-28 | Facebook Technologies, Llc | MULTILAYER PROJECTOR FOR VISIOCASQUE |
US10930188B2 (en) * | 2017-11-23 | 2021-02-23 | Facebook Technologies, Llc | Feedback circuit for calibrating a current mode display |
US11238661B2 (en) * | 2018-02-19 | 2022-02-01 | Apple Inc. | Method and devices for presenting and manipulating conditionally dependent synthesized reality content threads |
WO2019231893A1 (en) * | 2018-06-01 | 2019-12-05 | Dakiana Research Llc | Method and devices for switching between viewing vectors in a synthesized reality setting |
CN208848165U (zh) * | 2018-07-27 | 2019-05-10 | 华南理工大学 | 一种虚拟现实触觉反馈交互系统 |
WO2020068741A1 (en) * | 2018-09-28 | 2020-04-02 | Dakiana Research Llc | Computationally efficient model selection |
-
2018
- 2018-07-27 CN CN201810852405.6A patent/CN108874150B/zh active Active
- 2018-10-29 US US17/263,348 patent/US11520407B2/en active Active
- 2018-10-29 WO PCT/CN2018/112414 patent/WO2020019552A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160260251A1 (en) * | 2015-03-06 | 2016-09-08 | Sony Computer Entertainment Inc. | Tracking System for Head Mounted Display |
CN106371574A (zh) * | 2015-12-04 | 2017-02-01 | 北京智谷睿拓技术服务有限公司 | 触觉反馈的方法、装置和虚拟现实交互系统 |
CN105498091A (zh) * | 2016-01-12 | 2016-04-20 | 上海交通大学 | 佩戴式多功能触觉电刺激腕带 |
CN107221223A (zh) * | 2017-06-01 | 2017-09-29 | 北京航空航天大学 | 一种带有力/触觉反馈的虚拟现实飞机座舱系统 |
Also Published As
Publication number | Publication date |
---|---|
US20210149495A1 (en) | 2021-05-20 |
CN108874150B (zh) | 2024-08-20 |
US11520407B2 (en) | 2022-12-06 |
CN108874150A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020019552A1 (zh) | 一种虚拟现实触觉反馈交互系统 | |
US10761608B2 (en) | Method and wearable apparatus for synchronizing a user with a virtual environment | |
JP3433236B2 (ja) | 触知通信装置及び方法 | |
US11592902B2 (en) | Wearable electronic haptic feedback system for VR/AR and gaming | |
US10437335B2 (en) | Wearable electronic, multi-sensory, human/machine, human/human interfaces | |
Ranasinghe et al. | Tongue mounted interface for digitally actuating the sense of taste | |
US8952888B2 (en) | Method and system for conveying an emotion | |
CN109637098B (zh) | 可穿戴设备及其控制方法 | |
US11809629B1 (en) | Wearable electronic device for inducing transient sensory events as user feedback | |
CN102805900A (zh) | 用于产生人工电触觉的电刺激系统 | |
US20200334963A1 (en) | Information processing apparatus, information processing method, and program | |
CN208848165U (zh) | 一种虚拟现实触觉反馈交互系统 | |
CN117666778B (zh) | 动触觉混合渲染的电刺激触觉反馈穿戴系统 | |
CA2722025A1 (en) | Apparatus for generating sensations of movement and for physical rehabilitation | |
US20240310918A1 (en) | Multi-pad electrode and system for providing electrotactile stimulation | |
CN107844193A (zh) | 一种可穿戴设备的交互方法及交互系统 | |
JP2002328596A (ja) | 触覚提示方法及び触覚提示装置 | |
US20230400923A1 (en) | Wearable Electronic Device for Inducing Transient Sensory Events as User Feedback | |
JP6714135B2 (ja) | 生体電気刺激提示方法および電気刺激装置 | |
CN117398604A (zh) | 一种为截肢者反馈假肢肘关节运动的多通道振动刺激系统 | |
EA042779B1 (ru) | Способ интерактивной физиологической и технологической синхронизации пользователя с виртуальной средой и носимое приспособление для его осуществления (варианты) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927651 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927651 Country of ref document: EP Kind code of ref document: A1 |