WO2020019544A1 - 一种测量铝电解槽阳极电流的系统及方法 - Google Patents

一种测量铝电解槽阳极电流的系统及方法 Download PDF

Info

Publication number
WO2020019544A1
WO2020019544A1 PCT/CN2018/111315 CN2018111315W WO2020019544A1 WO 2020019544 A1 WO2020019544 A1 WO 2020019544A1 CN 2018111315 W CN2018111315 W CN 2018111315W WO 2020019544 A1 WO2020019544 A1 WO 2020019544A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
row
current
anode guide
judgment result
Prior art date
Application number
PCT/CN2018/111315
Other languages
English (en)
French (fr)
Inventor
铁军
赵仁涛
张志芳
郑文堂
Original Assignee
北方工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北方工业大学 filed Critical 北方工业大学
Publication of WO2020019544A1 publication Critical patent/WO2020019544A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of current measurement, in particular to a system and method for measuring anode current of an aluminum electrolytic cell.
  • the electrolytic cell control system determines the electrolyte pseudo-resistance change according to the anode current, and then controls the thermal balance and cell stability. Especially in the electrolytic cell, the magnitude of the anode current on each anode directly determines the amount of alumina participating in the reaction in the anode area, that is, the amount of alumina consumed. Therefore, how to accurately measure the anode current has become a top priority in this field.
  • independent anode current measurement mainly adopts two methods: equidistant voltage drop method and Hall magnetic effect measurement method.
  • the former is estimated based on the voltage drop caused by the current passing through the horizontal bus bar or the anode guide bar. Because the horizontal bus bar and the anode guide bar have a large geometric size, the distribution of the current on the cross section has uncertainty and non-uniformity. And the difference in conductor temperature, it is only possible to measure the trend of change and it is difficult to give an accurate current value; the latter has a very complicated background magnetic field due to the staggered arrangement of the conductors on the electrolytic cell, and it is difficult to measure and obtain an accurate current value .
  • the purpose of the present invention is to provide a system and method for measuring anode current of an aluminum electrolytic cell, so as to achieve accurate measurement of each anode current.
  • the present invention provides a system for measuring anode current of an aluminum electrolytic cell, the system includes: a plurality of electrolytic cell units;
  • the electrolytic cell unit includes: one column bus, two horizontal buses, m anodes, m anode guide rods, one or one pair of jumper buses, and multiple optical fiber current sensors;
  • the m anode guides and the m anodes are evenly divided into two rows of A and B.
  • One end of the anode guides of each row is respectively overlapped with each horizontal bus.
  • the anode guides of each row are The other end is respectively connected to the anodes of each row, and each of the anodes and each anode guide rod are arranged one by one, and the jumper bus bar is disposed on one side or both sides of the feeding port, and two of the horizontal bus bars are provided.
  • the jumper bus Connected by the jumper bus, one end of the pillar bus is connected to the first horizontal bus;
  • one optical fiber current sensor is provided on the horizontal bus bar between the two anode guide rods;
  • one of the anode guide bars and the pillar bus bar or jumper bus bar is provided with one of the horizontal bus bars.
  • system further includes:
  • An optical fiber protection tube is used to transmit the current information detected by each optical fiber current sensor to a measurement box for analysis and processing through a polarization maintaining fiber concentrated in the optical fiber protection tube.
  • the invention also provides a method for measuring the anode current of an aluminum electrolytic cell, the method comprising:
  • the current of the j-th anode in the i-th row is or among them, Is the current detected by the fiber-optic current sensor between the column bus bar or jumper bus bar and the i-th row and j-th anode guide rod, Is the current detected by the fiber-optic current sensor between the j-1th anode guide in the i-th row and the j-th anode guide in the i-th row, The current detected by the fiber-optic current sensor between the i-th row of the j-th anode guide rod and the i-th row of the j + 1-th anode guide rod;
  • the current of the j-th anode in the i-th row is or
  • the current of the i-th and j-th anodes is or These include:
  • the third judgment result has an anode guide rod at the other end of the j-th anode guide rod in the i-th row, it is judged whether its number is the j-1th row in the i-th row and a fourth judgment result is obtained;
  • the fourth judgment result is on the other end of the j-th anode guide in the i-th row, the number of the anode guide is i-th in the i-th row, the current of the j-th anode in the i-th row is
  • the fourth judgment result is on the other end of the j-th anode rod in the i-th row, the anode rod number is not the j-1th in the i-th row, the current of the j-th anode in the i-th row is
  • the current of the i-th and j-th anodes is or These include:
  • the fifth judgment result is that the number of the anode guide rod is the j-1th row of the i-th row, the current of the jth anode of the i-th row is
  • the current value flowing in the direction of the anode guide is positive, and the current value leaving the direction of the anode guide is negative.
  • the present invention discloses the following technical effects:
  • an optical fiber current sensor is installed between two adjacent anode guide rods and between the anode guide rod and the column bus bar or the jumper bus bar to measure the current, and the anode current can be accurately measured with a measurement error within 1%. It can realize the on-demand addition of the regional alumina feed amount, diagnose the anode status of the electrolytic cell, realize stable and efficient production of the electrolytic cell, significantly improve the current efficiency, reduce energy consumption, and realize further energy saving and emission reduction of the aluminum electrolytic cell.
  • FIG. 1 is a structural diagram of an electrolytic cell unit according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for measuring anode current of an aluminum electrolytic cell according to an embodiment of the present invention
  • the object of the present invention is to provide a system and method for measuring anode current of an aluminum electrolytic cell, so as to realize accurate measurement of each anode current.
  • the invention provides a system for measuring anode current of an aluminum electrolytic cell, the system includes: a plurality of electrolytic cell units;
  • the electrolytic cell unit includes: one column bus bar 1, two horizontal bus bars 4, m anodes 2, m anode guide bars 3, one or one pair of jumper bus bars 6, and a plurality of optical fiber current sensors 5;
  • the m anode guides 3 and the m anodes 2 are evenly divided into two rows of A and B. One end of the anode guides 3 of each row is respectively overlapped with each of the horizontal bus bars 4. The other end of the anode guide rod 3 is respectively connected to the anodes 2 of each row.
  • Each of the anodes 2 and the anode guide rods 3 are arranged one-to-one correspondingly, and the jumper bus 6 is disposed on one side or two sides of the feed inlet.
  • two horizontal bus bars 4 are connected through the jumper bus bar 6, and one end of the column bus bar 1 is connected to the first horizontal bus bar 4; the current is supplied by the column bus bar 1 and the jumper bus bar. It is delivered to each of the horizontal busbars 4 and then passes through each of the horizontal busbars 4 to transmit the current to the corresponding anodes 2 through the anode guide rods 3 overlapped with the horizontal busbars 4.
  • one optical fiber current sensor 5 is provided on the horizontal bus bar 4 between the two anode guide rods 3. ;
  • system according to the present invention further includes:
  • An optical fiber protection tube is used to transmit the current information detected by each optical fiber current sensor 5 to a measurement box for analysis and processing through a polarization maintaining fiber concentrated in the optical fiber protection tube.
  • the present invention divides m of the anode guide rods 3 and m of the anodes 2 into two rows, A and B, on average.
  • the current value flowing in the direction of the anode guide rod 3 is positive, and the current value leaving the anode guide rod 3 is negative.
  • the electrolytic cell unit includes: 1 column bus bar 1, 2 horizontal bus bars 4, 10 Anodes 2, 10 anode guides 3, 1 pair of jumper busbars 6, 12 fiber-optic current sensors 5;
  • the 10 anode rods 3 and 10 the anode 2 are evenly divided into 2 rows, namely A and B rows, the first anode 2 in the first row is represented by A1, and the first in the second row Each anode 2 is represented by B1, and other similar reasons will not be discussed one by one here.
  • One end of the anode guide rods 3 in each row is overlapped with each of the horizontal bus bars 4, and the anode guide rods 3 in each row.
  • each anode 2 and each anode guide rod 3 are arranged one-to-one correspondingly, and the jumper busbars 6 are respectively disposed on both sides of the inlet, two
  • the horizontal busbars 4 are connected through the jumper busbars 6, and one end of the column busbars 1 is connected to the first horizontal busbar 4.
  • the current is transmitted from the column bus 1 to the horizontal bus 4 connected to the column bus 1, and is transmitted to the horizontal bus 4 on the B side through the jumper bus 6, and then the current is passed through the horizontal bus 4
  • the anode guide rods 3 overlapped with the horizontal bus bar 4 are conveyed to the corresponding anodes 2.
  • the optical fiber current sensor 5 uses the Faraday magneto-optical effect principle that light can deflect in a magnetic field, and uses a closed-loop optical path method to effectively overcome the interference of the background magnetic field and contact, and has high measurement accuracy.
  • the optical fiber current sensor 5 transmits an optical signal
  • the conductive medium is an optical fiber. Natural electrical insulation is safe, reliable, flexible, and easy to install.
  • the present invention can install a fiber-optic current sensor 5 between two adjacent anode guides 3 and between the anode guide 3 and the column bus 1 or the jumper bus 6 to measure the current. Accurately measure the current of each anode, and the measurement error is within 1%. It can realize the on-demand addition of regional alumina feeding amount, diagnose the anode state of the electrolytic cell, realize stable and efficient production of the electrolytic cell, significantly improve the current efficiency and reduce Energy consumption, to achieve further energy saving and emission reduction of aluminum electrolytic cells.
  • the present invention can add the amount of alumina according to needs, thereby avoiding imbalance in anode current distribution and imbalance in alumina demand caused by the conventional pole changing operation.
  • the status information of each anode and each feeding point area can be obtained, including alumina concentration, local pole distance and local fault.
  • Accurate detection of independent anode current can predict the trend and failure of local conditions, and then realize the health management of the entire electrolytic cell.
  • Accurate detection of independent anode current to obtain higher current efficiency, and electrolysis can be performed at lower voltages.
  • Accurate detection of independent anode currents can predict and diagnose faults that occur on each anode / area.
  • Accurate detection of independent anode current can judge and process local effects in time, thereby eliminating anode effects and reducing greenhouse gas emissions.
  • FIG. 2 is a flowchart of a method for measuring anode current in an aluminum electrolytic cell according to an embodiment of the present invention. As shown in FIG. 2, the present invention also provides a method for measuring anode current in an aluminum electrolytic cell. The method includes:
  • Step S1 Determine the i-th row of the j-th anode 2 and the i-th row of the j-th anode guide rod 3 corresponding to the i-th row of the j-th anode 2; where i is equal to A or B, and j is A positive integer greater than or equal to 2 and less than or equal to m / 2.
  • Step S2 It is determined whether there is a column bus bar 1 or a jumper bus bar 6 at both ends of the i-th and j-th anode guide bars 3 to obtain a first judgment result.
  • Step S3 If there is a pillar bus 1 or a jump bus 6 in the first judgment result, the current of the i-th and j-th anode 2 is or among them, Is the current detected by the optical fiber current sensor 5 between the column bus 1 or the jump bus 6 and the i-th j-th anode guide rod 3, Is the current detected by the fiber-optic current sensor 5 between the i-th row of the j-1th anode guide rod 3 and the i-th row of the j-th anode guide rod 3, The current detected by the optical fiber current sensor 5 between the i-th row of the j-th anode guide rod 3 and the i-th row of the j + 1-th anode guide rod 3.
  • Step S4 if there is no pillar busbar 1 or jumper busbar 6 in the first judgment result, it is judged whether the anode guide rods 3 exist at both ends of the i-th row and the j-th anode guide rod 3, and a second judgment result is obtained.
  • Step S5 If the anode guide rod 3 exists in the second judgment result, the current of the i-th and j-th anode 2 is For example, the current on the anode 2A4 is measured by the optical fiber current sensor 5 between A3 and A4. Current measured by fiber-optic current sensor 5 between A4 and A5 Size and direction are determined together.
  • the current of the anode 2A4 when with When flowing to the anode guide 3 corresponding to the anode 2A4, the direction is positive, and when leaving the anode guide 3 corresponding to the anode 2A4, the direction is negative. Therefore, the current of the anode 2A4 is
  • Step S6 If there is only one anode guide rod 3 in the second judgment result, the current of the i-th row and the j-th anode 2 is or
  • Step S3 if there is a pillar bus 1 or a jumper bus 6 in the first judgment result, the current of the i-th and j-th anode 2 is or This includes:
  • Step S31 If the pillar bus 1 or the jump bus 6 is present in the first judgment result, it is judged whether the anode guide 3 exists in the other end of the i-th row and the j-th anode guide 3, and a third judgment result is obtained.
  • Step S32 If the third judgment result does not exist on the other end of the j-th anode guide rod 3 in the i-th row, the current of the j-th anode electrode 2 in the i-th row is
  • Step S33 If the third judgment result exists in the anode guide rod 3 at the other end of the j-th anode guide rod 3 in the i-th row, it is judged whether its number is the j-1th member in the i-th row and a fourth judgment result is obtained.
  • Step S34 If the fourth judgment result is that the anode rod 3 on the other end of the i-th row of the j-th anode guide rod 3 is the i-th row of the j-1th anode, the current of the i-th row of the j-th anode 2
  • the current on the anode 2B2 is measured by the optical fiber current sensor 5 between B1 and B2.
  • Current measured by fiber-optic current sensor 5 between B2 and jumper bus 6 Size and direction are determined together.
  • Step S35 If the fourth judgment result is that the anode rod 3 on the other end of the i-th row of the j-th anode guide rod 3 is not the i-th row of the j-1th anode, the current of the i-th row of the j-th anode 2 is For example, the current on the anode 2B3 is measured by the optical fiber current sensor 5 between B3 and B4. Current measured by fiber-optic current sensor 5 between B3 and jumper bus 6 Size and direction are determined together.
  • Step S6 if there is only one anode guide rod 3 in the second judgment result, the current of the i-th and j-th anode 2 is or These include:
  • Step S61 if there is only one anode guide rod 3 in the second judgment result, it is judged whether the number of the anode guide rod 3 is the j-1th row in the i-th row, and a fifth judgment result is obtained.
  • Step S62 If the fifth judgment result is that the number of the anode guide rod 3 is the i-1th row and the j-1th row, the current of the ith row and the jth anode 2 is For example, the current on the anode 2A5 is measured by the optical fiber current sensor 5 between A4 and A5. Size and direction are determined together. When calculating the current of anode 2A5, when When flowing to the anode guide rod 3 corresponding to the anode 2A5, the direction is positive, and when leaving the anode guide rod 3 corresponding to the anode 2A5, the direction is negative. Therefore, the current of the anode 2A5 is
  • Step S63 If the result of the fifth judgment is that the number of the anode guide rod 3 is not the j-1th row of the i-th row, the current of the jth anode 2 of the i-th row is For example, the current on the anode 2A1 is measured by the optical fiber current sensor 5 between A1 and A2. Size and direction are determined together. When calculating the current of anode 2A1, when When flowing to the anode guide rod 3 corresponding to the anode 2A1, the direction is positive, and when leaving the anode guide rod 3 corresponding to the anode 2A1, the direction is negative. Therefore, the current of the anode 2A1 is

Abstract

本发明公开一种测量铝电解槽阳极电流的系统及方法,所述系统包括:多个电解槽单元;所述电解槽单元包括:1个立柱母线、2个水平母线、m个阳极、m个阳极导杆、1个或1对跨接母线和多个光纤电流传感器;当所述阳极导杆的一侧与另一个所述阳极导杆相邻时,则在两个所述阳极导杆之间的所述水平母线上设置一个所述光纤电流传感器;当所述阳极导杆的任意一侧相邻所述立柱母线或跨接母线时,则在所述阳极导杆与所述立柱母线或跨接母线之间的所述水平母线上设置一个所述光纤电流传感器。本发明在相邻的两个阳极导杆之间和阳极导杆与立柱母线或跨接母线之间安装光纤电流传感器进行电流的测量,能够准确测出各阳极电流,测量误差在1%以内。

Description

一种测量铝电解槽阳极电流的系统及方法
本申请要求于2018年7月25日提交中国专利局、申请号为201810823925.4、发明名称为“一种测量铝电解槽阳极电流的系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电流测量技术领域,特别是涉及一种测量铝电解槽阳极电流的系统及方法。
背景技术
随着电解槽的容量大幅增加,电解槽尺寸增大,阳极数量增加,当前最大电解槽阳极数量接近60根。而电解槽控制系统根据阳极电流确定电解质伪电阻变化,进而实现对热平衡和槽稳定性进行控制。特别是在电解槽中,每根阳极上阳极电流的大小直接决定了该阳极区域参与反应的氧化铝量,也就是消耗的氧化铝量,因此如何准确测量阳极电流成为本领域重中之重。
当前,独立的阳极电流测量主要采用等距压降方法、霍尔磁效应测量方法两种。前者基于电流在水平母线或者阳极导杆上通过时产生的电压降来进行估计,由于水平母线与阳极导杆具有较大的几何尺寸,电流在截面上的分布具有不确定性、非均匀性,以及导体温度差异等,只能测量出变化的趋势而难以给出准确的电流值;后者则由于电解槽上导电体交错配置,形成了非常复杂的背景磁场,也难以测量得到准确的电流数值。
发明内容
本发明的目的是提供一种测量铝电解槽阳极电流的系统及方法,以实现各阳极电流准确测量。
为实现上述目的,本发明提供了一种测量铝电解槽阳极电流的系统,所述系统包括:多个电解槽单元;
所述电解槽单元包括:1个立柱母线、2个水平母线、m个阳极、m个阳极导杆、1个或1对跨接母线和多个光纤电流传感器;
将m个所述阳极导杆以及m个所述阳极平均分成A、B两排,各排 的所述阳极导杆的一端分别搭接在各水平母线上,各排的所述阳极导杆的另一端分别连接各排的所述阳极上,各所述阳极与各阳极导杆一一对应设置,所述跨接母线设置在进料口的一侧或两侧,两个所述水平母线之间通过所述跨接母线连接,所述立柱母线的一端连接到第一个水平母线上;
当所述阳极导杆的一侧与另一个所述阳极导杆相邻时,则在两个所述阳极导杆之间的所述水平母线上设置一个所述光纤电流传感器;
当所述阳极导杆的任意一侧相邻所述立柱母线或跨接母线时,则在所述阳极导杆与所述立柱母线或跨接母线之间的所述水平母线上设置一个所述光纤电流传感器;
当所述阳极导杆的任意一侧既没有与所述阳极导杆相邻,也没有与所述立柱母线或跨接母线相邻时,则在该侧的所述水平母线上无需设置所述光纤电流传感器。
可选的,所述系统还包括:
光纤保护管,用于将各光纤电流传感器检测的电流信息通过集中在光纤保护管内的保偏光纤传递到测量盒中进行分析处理。
本发明还提供一种测量铝电解槽阳极电流的方法,所述方法包括:
确定待检测电流的第i排第j个阳极,以及与第i排第j个阳极对应的第i排第j个阳极导杆;其中,i等于A或B,j为大于等于2小于等于m/2的正整数;
判断第i排第j个阳极导杆的两端是否存在立柱母线或跨接母线,获得第一判断结果;
如果第一判断结果存在立柱母线或跨接母线,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000001
Figure PCTCN2018111315-appb-000002
其中,
Figure PCTCN2018111315-appb-000003
为立柱母线或跨接母线与第i排第j个阳极导杆之间的光纤电流传感器检测的电流,
Figure PCTCN2018111315-appb-000004
为第i排第j-1个阳极导杆与第i排第j个阳极导杆之间的光纤电流传感器检测的电流,
Figure PCTCN2018111315-appb-000005
为第i排第j个阳极导杆与第i排第j+1个阳极导杆之间的光纤电流 传感器检测的电流;
如果第一判断结果不存在立柱母线或跨接母线,则判断第i排第j个阳极导杆的两端是否均存在阳极导杆,获得第二判断结果;
如果第二判断结果均存在阳极导杆,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000006
如果第二判断结果仅存在一个阳极导杆,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000007
Figure PCTCN2018111315-appb-000008
可选的,所述如果第一判断结果存在立柱母线或跨接母线,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000009
Figure PCTCN2018111315-appb-000010
具体包括:
如果第一判断结果存在立柱母线或跨接母线,则判断第i排第j个阳极导杆的另一端是否存在阳极导杆,获得第三判断结果;
如果第三判断结果在第i排第j个阳极导杆的的另一端不存在阳极导杆,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000011
如果第三判断结果在第i排第j个阳极导杆的另一端存在阳极导杆,则判断其编号是否为第i排第j-1个,获得第四判断结果;
如果第四判断结果在第i排第j个阳极导杆的另一端阳极导杆的编号是第i排第j-1个,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000012
如果第四判断结果在第i排第j个阳极导杆的另一端阳极导杆的编号不是第i排第j-1个,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000013
可选的,所述如果第二判断结果仅存在一个阳极导杆,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000014
Figure PCTCN2018111315-appb-000015
具体包括:
如果第二判断结果仅存在一个阳极导杆,则判断阳极导杆的编号是否 是第i排第j-1个,获得第五判断结果;
如果第五判断结果为阳极导杆的编号是第i排第j-1个,则第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000016
如果第五判断结果为阳极导杆的编号不是第i排第j-1个,第i排第j个阳极的电流为
Figure PCTCN2018111315-appb-000017
可选的,对于第i排第j个阳极导杆,流向该阳极导杆方向的电流值为正,离开该阳极导杆方向的电流值为负。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明在相邻的两个阳极导杆之间和阳极导杆与立柱母线或跨接母线之间安装光纤电流传感器进行电流的测量,能够准确测出各阳极电流,测量误差在1%以内,能够实现对区域氧化铝加料量进行按需添加,对电解槽阳极状态进行诊断,实现电解槽的稳定、高效生产,显著提高电流效率,降低能耗,实现铝电解槽的进一步节能减排。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例电解槽单元结构图;
图2为本发明实施例测量铝电解槽阳极电流的方法流程图;
1、立柱母线,2、阳极,3、阳极导杆,4、水平母线,5、光纤电流传感器,6、跨接母线,7、光线保护管。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种测量铝电解槽阳极电流的系统及方法,以实现准确测量各阳极电流。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明提供一种测量铝电解槽阳极电流的系统,所述系统包括:多个电解槽单元;
所述电解槽单元包括:1个立柱母线1、2个水平母线4、m个阳极2、m个阳极导杆3、1个或1对跨接母线6和多个光纤电流传感器5;
将m个所述阳极导杆3以及m个所述阳极2平均分成A、B两排,各排的所述阳极导杆3的一端分别搭接在各水平母线4上,各排的所述阳极导杆3的另一端分别连接各排的所述阳极2上,各所述阳极2与各阳极导杆3一一对应设置,所述跨接母线6设置在进料口的一侧或两侧,两个所述水平母线4之间通过所述跨接母线6连接,所述立柱母线1的一端连接到第一个水平母线4上;电流由所述立柱母线1和所述跨接母线输送到与各所述水平母线4上,再经过各所述水平母线4将电流通过与水平母线4搭接的各所述阳极导杆3输送到对应的各所述阳极2上。
当所述阳极导杆3的一侧与另一个所述阳极导杆3相邻时,则在两个所述阳极导杆3之间的所述水平母线4上设置一个所述光纤电流传感器5;
当所述阳极导杆3的任意一侧相邻所述立柱母线1或跨接母线6时,则在所述阳极导杆3与所述立柱母线1或跨接母线6之间的所述水平母线4上设置一个所述光纤电流传感器5;
当所述阳极导杆3的任意一侧既没有与所述阳极导杆3相邻,也没有与所述立柱母线1或跨接母线6相邻时,则在该侧的所述水平母线4上无需设置所述光纤电流传感器5。
作为一种实施方式,本发明所述系统还包括:
光纤保护管,用于将各光纤电流传感器5检测的电流信息通过集中在光纤保护管内的保偏光纤传递到测量盒中进行分析处理。
作为一种实施方式,本发明将m个所述阳极导杆3以及m个所述阳极2平均平均分成A、B两排。
作为一种实施方式,本发明对于第i排第j个阳极导杆3,流向该阳极导杆3方向的电流值为正,离开该阳极导杆3方向的电流值为负。
为了能够更好理解本发明中的技术方案,本发明给出一个具体实施例,具体如图1所示,本发明所述电解槽单元包括:1个立柱母线1、2个水平母线4、10个阳极2、10个阳极导杆3、1对跨接母线6、12个光纤电流传感器5;
将10个所述阳极导杆3以及10个所述阳极2平均分成2排,分别为A排和B排,第1排中的第1个阳极2用A1表示,第2排中的第1个阳极2用B1表示,其他的同理,在此不再逐一进行论述,各排的所述阳极导杆3的一端分别搭接在各水平母线4上,各排的所述阳极导杆3的另一端分别连接在各排的所述阳极2上,各所述阳极2与各阳极导杆3一一对应设置,所述跨接母线6分别设置在进料口两侧,2个所述水平母线4之间通过所述跨接母线6连接,所述立柱母线1的一端连接到第一个水平母线4上。电流由所述立柱母线1输送到与立柱母线1连接的所述水平母线4上,经过所述跨接母线6输送到B侧的所述水平母线4上,再经过所述水平母线4将电流通过与所述水平母线4搭接的所述阳极导杆3输送到对应的各所述阳极2上。
光纤电流传感器5利用光在磁场中能够发生偏转的法拉第磁光效应原理,利用闭环的光路方法,有效克服了背景磁场和接触的干扰,测量精度高。另外,光纤电流传感器5传递的是光信号,传导介质是光纤,天然的电绝缘,安全可靠,柔性好,易安装。
鉴于存在频繁的阳极2更换操作,本发明在相邻的两个阳极导杆3 之间和阳极导杆3与立柱母线1或跨接母线6之间安装光纤电流传感器5进行电流的测量,能够准确测出各阳极电流,测量误差在1%以内,能够实现对区域氧化铝加料量进行按需添加,对电解槽阳极状态进行诊断,实现电解槽的稳定、高效生产,显著提高电流效率,降低能耗,实现铝电解槽的进一步节能减排。
本发明通过对独立的阳极电流进行精确检测,可以根据需要添加氧化铝量,避免因常规的换极操作引起的阳极电流分布不平衡、氧化铝需求不平衡。通过对独立的阳极电流进行精确检测,可以获得每根阳极、每个加料点区域的状态信息,包括氧化铝浓度、局部极距和局部故障。对独立的阳极电流进行精确检测,可以对局部状况的变化趋势和故障进行预测,进而实现电解槽整槽的健康管理。对独立的阳极电流进行精确检测,获得更高的电流效率,可以在较低的电压下进行电解。对独立的阳极电流进行精确检测,可以对每个阳极/区域上发生的故障进行预测和诊断。对独立的阳极电流进行精确检测,可以及时判断局部效应并进行处理,进而消除阳极效应,减少温室气体的排放量。
图2为本发明实施例测量铝电解槽阳极电流的方法流程图,如图2所示,本发明还提供一种测量铝电解槽阳极电流的方法,所述方法包括:
步骤S1:确定待检测电流的第i排第j个阳极2,以及与第i排第j个阳极2对应的第i排第j个阳极导杆3;其中,i等于A或B,j为大于等于2小于等于m/2的正整数。
步骤S2:判断第i排第j个阳极导杆3的两端是否存在立柱母线1或跨接母线6,获得第一判断结果。
步骤S3:如果第一判断结果存在立柱母线1或跨接母线6,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000018
Figure PCTCN2018111315-appb-000019
其中,
Figure PCTCN2018111315-appb-000020
为立柱母线1或跨接母线6与第i排第j个阳极导杆3之间的光纤电流传感器5检测的电流,
Figure PCTCN2018111315-appb-000021
为第i排第j-1个阳极导杆3与第i排第j个阳极导杆3之间的 光纤电流传感器5检测的电流,
Figure PCTCN2018111315-appb-000022
为第i排第j个阳极导杆3与第i排第j+1个阳极导杆3之间的光纤电流传感器5检测的电流。
步骤S4:如果第一判断结果不存在立柱母线1或跨接母线6,则判断第i排第j个阳极导杆3的两端是否均存在阳极导杆3,获得第二判断结果。
步骤S5:如果第二判断结果均存在阳极导杆3,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000023
如阳极2A4上的电流,其大小由A3、A4之间的光纤电流传感器5测量的电流值
Figure PCTCN2018111315-appb-000024
与A4和A5之间的光纤电流传感器5测量的电流
Figure PCTCN2018111315-appb-000025
大小和方向共同决定。在计算A4的电流时,当
Figure PCTCN2018111315-appb-000026
Figure PCTCN2018111315-appb-000027
流向阳极2A4对应的阳极导杆3时,方向为正,离开阳极2A4对应的阳极导杆3时方向为负。所以,阳极2A4的电流大小为
Figure PCTCN2018111315-appb-000028
步骤S6:如果第二判断结果仅存在一个阳极导杆3,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000029
Figure PCTCN2018111315-appb-000030
下面对各个步骤进行详细论述:
步骤S3:所述如果第一判断结果存在立柱母线1或跨接母线6,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000031
Figure PCTCN2018111315-appb-000032
具体包括:
步骤S31:如果第一判断结果存在立柱母线1或跨接母线6,则判断第i排第j个阳极导杆3的另一端是否存在阳极导杆3,获得第三判断结果。
步骤S32:如果第三判断结果在第i排第j个阳极导杆3的的另一端不存在阳极导杆3,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000033
步骤S33:如果第三判断结果在第i排第j个阳极导杆3的另一端存 在阳极导杆3,则判断其编号是否为第i排第j-1个,获得第四判断结果。
步骤S34:如果第四判断结果在第i排第j个阳极导杆3的另一端阳极导杆3的编号是第i排第j-1个,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000034
如阳极2B2上的电流,其大小由B1、B2之间的光纤电流传感器5测量的电流值
Figure PCTCN2018111315-appb-000035
与B2和跨接母线6之间的光纤电流传感器5测量的电流
Figure PCTCN2018111315-appb-000036
大小和方向共同决定。在计算阳极2B2的电流时,当
Figure PCTCN2018111315-appb-000037
Figure PCTCN2018111315-appb-000038
流向阳极2B2对应的阳极导杆3时,方向为正,离开阳极2B2对应的阳极导杆3时方向为负。所以,阳极2B2的电流大小为
Figure PCTCN2018111315-appb-000039
步骤S35:如果第四判断结果在第i排第j个阳极导杆3的另一端阳极导杆3的编号不是第i排第j-1个,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000040
如阳极2B3上的电流,其大小由B3、B4之间的光纤电流传感器5测量的电流值
Figure PCTCN2018111315-appb-000041
与B3和跨接母线6之间的光纤电流传感器5测量的电流
Figure PCTCN2018111315-appb-000042
大小和方向共同决定。在计算阳极2B3的电流时,当
Figure PCTCN2018111315-appb-000043
Figure PCTCN2018111315-appb-000044
流向阳极2B3对应的阳极导杆3时,方向为正,离开阳极2B3对应的阳极导杆3时方向为负。所以,阳极2B3的电流大小为
Figure PCTCN2018111315-appb-000045
步骤S6:所述如果第二判断结果仅存在一个阳极导杆3,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000046
Figure PCTCN2018111315-appb-000047
具体包括:
步骤S61:如果第二判断结果仅存在一个阳极导杆3,则判断阳极导杆3的编号是否是第i排第j-1个,获得第五判断结果。
步骤S62:如果第五判断结果为阳极导杆3的编号是第i排第j-1个,则第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000048
如阳极2A5上的电流,其大小由A4、A5之间的光纤电流传感器5测量的电流值
Figure PCTCN2018111315-appb-000049
大小和方向共同决定。 在计算阳极2A5的电流时,当
Figure PCTCN2018111315-appb-000050
流向阳极2A5对应的阳极导杆3时,方向为正,离开阳极2A5对应的阳极导杆3时方向为负。所以,阳极2A5的电流大小为
Figure PCTCN2018111315-appb-000051
步骤S63:如果第五判断结果为阳极导杆3的编号不是第i排第j-1个,第i排第j个阳极2的电流为
Figure PCTCN2018111315-appb-000052
如阳极2A1上的电流,其大小由A1、A2之间的光纤电流传感器5测量的电流值
Figure PCTCN2018111315-appb-000053
大小和方向共同决定。在计算阳极2A1的电流时,当
Figure PCTCN2018111315-appb-000054
流向阳极2A1对应的阳极导杆3时,方向为正,离开阳极2A1对应的阳极导杆3时方向为负。所以,阳极2A1的电流大小为
Figure PCTCN2018111315-appb-000055
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

  1. 一种测量铝电解槽阳极电流的系统,其特征在于,所述系统包括:多个电解槽单元;
    所述电解槽单元包括:1个立柱母线、2个水平母线、m个阳极、m个阳极导杆、1个或1对跨接母线和多个光纤电流传感器;
    将m个所述阳极导杆以及m个所述阳极平均分成A、B两排,各排的所述阳极导杆的一端分别搭接在各水平母线上,各排的所述阳极导杆的另一端分别连接各排的所述阳极上,各所述阳极与各阳极导杆一一对应设置,所述跨接母线设置在进料口的一侧或两侧,两个所述水平母线之间通过所述跨接母线连接,所述立柱母线的一端连接到第一个水平母线上;
    当所述阳极导杆的一侧与另一个所述阳极导杆相邻时,则在两个所述阳极导杆之间的所述水平母线上设置一个所述光纤电流传感器;
    当所述阳极导杆的任意一侧相邻所述立柱母线或跨接母线时,则在所述阳极导杆与所述立柱母线或跨接母线之间的所述水平母线上设置一个所述光纤电流传感器;
    当所述阳极导杆的任意一侧既没有与所述阳极导杆相邻,也没有与所述立柱母线或跨接母线相邻时,则在该侧的所述水平母线上无需设置所述光纤电流传感器。
  2. 根据权利要求1所述的系统,其特征在于,所述系统还包括:
    光纤保护管,用于将各光纤电流传感器检测的电流信息通过集中在光纤保护管内的保偏光纤传递到测量盒中进行分析处理。
  3. 一种测量铝电解槽阳极电流的方法,其特征在于,所述方法应用于根据权利要求1至权利要求2任一项所述的系统,所述方法包括:
    确定待检测电流的第i排第j个阳极,以及与第i排第j个阳极对应的第i排第j个阳极导杆;其中,i等于A或B,j为大于等于2小于等于m/2的正整数;
    判断第i排第j个阳极导杆的两端是否存在立柱母线或跨接母线,获 得第一判断结果;
    如果第一判断结果存在立柱母线或跨接母线,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100001
    Figure PCTCN2018111315-appb-100002
    其中,
    Figure PCTCN2018111315-appb-100003
    为立柱母线或跨接母线与第i排第j个阳极导杆之间的光纤电流传感器检测的电流,
    Figure PCTCN2018111315-appb-100004
    为第i排第j-1个阳极导杆与第i排第j个阳极导杆之间的光纤电流传感器检测的电流,
    Figure PCTCN2018111315-appb-100005
    为第i排第j个阳极导杆与第i排第j+1个阳极导杆之间的光纤电流传感器检测的电流;
    如果第一判断结果不存在立柱母线或跨接母线,则判断第i排第j个阳极导杆的两端是否均存在阳极导杆,获得第二判断结果;
    如果第二判断结果均存在阳极导杆,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100006
    如果第二判断结果仅存在一个阳极导杆,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100007
    Figure PCTCN2018111315-appb-100008
  4. 根据权利要求3所述的方法,其特征在于,所述如果第一判断结果存在立柱母线或跨接母线,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100009
    Figure PCTCN2018111315-appb-100010
    具体包括:
    如果第一判断结果存在立柱母线或跨接母线,则判断第i排第j个阳极导杆的另一端是否存在阳极导杆,获得第三判断结果;
    如果第三判断结果在第i排第j个阳极导杆的的另一端不存在阳极导杆,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100011
    如果第三判断结果在第i排第j个阳极导杆的另一端存在阳极导杆,则判断其编号是否为第i排第j-1个,获得第四判断结果;
    如果第四判断结果在第i排第j个阳极导杆的另一端阳极导杆的编号是第i排第j-1个,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100012
    如果第四判断结果在第i排第j个阳极导杆的另一端阳极导杆的编号不是第i排第j-1个,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100013
  5. 根据权利要求3所述的方法,其特征在于,所述如果第二判断结果仅存在一个阳极导杆,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100014
    Figure PCTCN2018111315-appb-100015
    具体包括:
    如果第二判断结果仅存在一个阳极导杆,则判断阳极导杆的编号是否是第i排第j-1个,获得第五判断结果;
    如果第五判断结果为阳极导杆的编号是第i排第j-1个,则第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100016
    如果第五判断结果为阳极导杆的编号不是第i排第j-1个,第i排第j个阳极的电流为
    Figure PCTCN2018111315-appb-100017
  6. 根据权利要求3所述的方法,其特征在于,对于第i排第j个阳极导杆,流向该阳极导杆方向的电流值为正,离开该阳极导杆方向的电流值为负。
PCT/CN2018/111315 2018-07-25 2018-10-23 一种测量铝电解槽阳极电流的系统及方法 WO2020019544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810823925.4A CN108998813A (zh) 2018-07-25 2018-07-25 一种测量铝电解槽阳极电流的系统及方法
CN201810823925.4 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020019544A1 true WO2020019544A1 (zh) 2020-01-30

Family

ID=64597447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111315 WO2020019544A1 (zh) 2018-07-25 2018-10-23 一种测量铝电解槽阳极电流的系统及方法

Country Status (4)

Country Link
US (1) US20200032408A1 (zh)
CN (1) CN108998813A (zh)
AU (1) AU2019208191A1 (zh)
WO (1) WO2020019544A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782480A (zh) * 2020-12-04 2021-05-11 阳光电源股份有限公司 一种电解槽阻抗监测方法、控制器及供电电源
CN112725840B (zh) * 2020-12-29 2021-11-30 北方工业大学 一种铝电解槽数字孪生控制系统
CN116752193B (zh) * 2023-06-09 2024-02-02 北京世维通光智能科技有限公司 一种测量铝电解槽区域阳极电流的系统及方法、电子设备
CN116660613B (zh) * 2023-07-31 2023-10-31 北京世维通光智能科技有限公司 基于单光纤环的区域阳极电流测量系统及电解槽测量系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270993A (en) * 1979-04-02 1981-06-02 Mitsubishi Light Metal Industries, Limited Method of stabilizing an aluminum metal layer in an aluminum electrolytic cell
CN201809453U (zh) * 2010-06-23 2011-04-27 邢勇卫 铝电解阳极和阴极电流分布在线智能测量装置
CN104278295A (zh) * 2013-07-04 2015-01-14 贵阳铝镁设计研究院有限公司 一种铝电解槽阳极电流分布测量系统及其测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270993A (en) * 1979-04-02 1981-06-02 Mitsubishi Light Metal Industries, Limited Method of stabilizing an aluminum metal layer in an aluminum electrolytic cell
CN201809453U (zh) * 2010-06-23 2011-04-27 邢勇卫 铝电解阳极和阴极电流分布在线智能测量装置
CN104278295A (zh) * 2013-07-04 2015-01-14 贵阳铝镁设计研究院有限公司 一种铝电解槽阳极电流分布测量系统及其测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TIE, JUN ET AL: "Accurate Measurement and Its Application of Anodic Current in Aluminium Electrolysis (end)", METALLURGICAL INDUSTRY AUTOMATION, vol. 42, no. 1, 31 January 2018 (2018-01-31), pages 49 - 53 *
TIE, JUN ET AL: "Accurate Measurement and Its Application of Anodic Current in Aluminium Electrolysis (to be Continued)", METALLURGICAL INDUSTRY AUTOMATION, vol. 41, no. 6, 30 November 2017 (2017-11-30), pages 49, - 54, 81 *
WANG, YONGLIANG: "Testing and Characterization of Anode Current in Aluminum Reduction Cells", METALLURGICAL AND MATERIALS TRANSACTIONS B, vol. 47, no. 3, 29 February 2016 (2016-02-29), pages 1986 - 1998, XP035944707, ISSN: 1073-5615 *

Also Published As

Publication number Publication date
AU2019208191A1 (en) 2020-02-13
US20200032408A1 (en) 2020-01-30
CN108998813A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2020019544A1 (zh) 一种测量铝电解槽阳极电流的系统及方法
CN104120455B (zh) 一种铝电解槽的阳极电流在线测量方法与装置
JP6138283B2 (ja) 電気分解システムにおける個別電極の電流測定
WO2022142126A1 (zh) 一种铝电解槽数字孪生控制系统
BRPI0515877B1 (pt) método para operar células de eletrólise de alta intensidade do tipo hall-héroult, e, sistema para uma conexão elétrica e compensação magnética em uma ou mais séries de células de eletrólise de alta intensidade do tipo hall-héroult
CN101220489A (zh) 铝电解槽阳极电流分布在线检测方法及其监测的装置
CN108287320A (zh) 一种电池电量检测优化方法
CN106164682A (zh) 校正系统、太阳能发电用监视系统及校正方法
CN104278295B (zh) 一种铝电解槽阳极电流分布测量系统及其测量方法
CN108411339B (zh) 一种测量阴极电流的系统
CN203474921U (zh) 一种铝电解槽阳极电流分布测量系统
CN108254611A (zh) 一种电极电流测量方法及系统
JP6381555B2 (ja) 相互接続された電解セル内の電流分布を監視する装置
CN108196192A (zh) 蓄电池组内阻在线测量方法
CN116752193B (zh) 一种测量铝电解槽区域阳极电流的系统及方法、电子设备
CN116660613B (zh) 基于单光纤环的区域阳极电流测量系统及电解槽测量系统
CN111349947B (zh) 一种铝电解槽内阳极电流在线测量装置及测量方法
CN207765546U (zh) 一种用于燃料电池的缺气检测装置
CN213866447U (zh) 一种应用于电解槽上的采样检测装置
CN106149001A (zh) 在阳极大母线上在线测量阳极电流分布的测量方法
CN101663422B (zh) 与串联连接的电解槽相关的改进及其操作方法
CN110632515B (zh) 一种功角实时确定方法及系统
CN109633359B (zh) 一种三母线中单母线接地绝缘监测方法和监测装置
CN109633358B (zh) 一种三母线中部分母线接地绝缘监测方法和监测装置
CN109541370A (zh) 一种根据电压降检测阴极短路的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928144

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18928144

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 02/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928144

Country of ref document: EP

Kind code of ref document: A1