WO2020019367A1 - 井下岩屑提取系统及其控制方法 - Google Patents

井下岩屑提取系统及其控制方法 Download PDF

Info

Publication number
WO2020019367A1
WO2020019367A1 PCT/CN2018/098529 CN2018098529W WO2020019367A1 WO 2020019367 A1 WO2020019367 A1 WO 2020019367A1 CN 2018098529 W CN2018098529 W CN 2018098529W WO 2020019367 A1 WO2020019367 A1 WO 2020019367A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
cuttings
control module
downhole
module
Prior art date
Application number
PCT/CN2018/098529
Other languages
English (en)
French (fr)
Inventor
宋祥
魏兵
孙立立
Original Assignee
东营派克赛斯石油装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东营派克赛斯石油装备有限公司 filed Critical 东营派克赛斯石油装备有限公司
Priority to US16/973,440 priority Critical patent/US11603755B2/en
Priority to JP2020571679A priority patent/JP6895593B1/ja
Publication of WO2020019367A1 publication Critical patent/WO2020019367A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/01Arrangements for handling drilling fluids or cuttings outside the borehole, e.g. mud boxes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/002Survey of boreholes or wells by visual inspection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present application relates to the technical field of underground rock sample sampling, and in particular, to an underground rock cuttings extraction system and a control method thereof.
  • rock cutting logging the process of continuously collecting and observing rock cuttings and recovering the underground geological profile according to a certain sampling interval and late arrival time. This method is high-efficiency, simple and easy to implement, but extremely imprecise.
  • Coring of the borehole wall is a method of using a logging cable to run the core into the well, using explosives to drive the cortex into the borehole, and removing small pieces of rock to understand the properties of the rock and its fluid.
  • the main purpose of this application is to provide a downhole rock cuttings extraction system and a control method thereof, so as to solve the problems existing in the related technologies.
  • a downhole rock cutting extraction system is provided.
  • the downhole cuttings extraction system includes:
  • the downhole marking module is provided at a position near the drill bit in the downhole or near the drill bit, and is used to mark the rock fragments obtained by spraying different types of markers in real time when the bit is being digged;
  • the ground detection and extraction module is used to detect the type of markers on the rock cuttings
  • the surface control module is used to control the downhole marking module for marking, and the ground detection and extraction module is used to determine the type of the marker on the cuttings.
  • the downhole mark module includes: a mark, a mark ejector, a storage unit, and a control connection unit; the mark is stored inside the storage unit; the mark The ejector is connected to the storage unit, and is configured to eject a marker inside the storage unit from the marker ejector, so that the marker adheres to the cuttings; the control connection unit is respectively connected with The marker injector is connected to a ground control module, and is configured to cause the marker injector to spray according to the control of the ground control module.
  • the ground detection and extraction module includes: a detector, a sampler, and a sample holder; the detector is used to perform the marking on the excavated rock cuttings. Detection; the sampler is electrically connected to the ground control module for grasping the rock cuttings; and the sample storage is used for storing the rock cuttings according to depth.
  • a control method of a downhole cuttings extraction system includes:
  • the surface control module determines the first correspondence between the well depth information and time in real time
  • the surface control module sends the marker injection information to the downhole marker module; wherein the downhole marker module sprays different kinds of markers according to different marker injection information;
  • the downhole marking module sprays the marker on the cuttings generated by the excavation bit according to the marker ejection information
  • the ground control module determines a second correspondence relationship between the time when the marker is sprayed and the kind of the marker in real time;
  • the ground control module controls the ground detection and extraction module to perform detection on the mined rock cuttings to obtain a detection result, and determine the type of the mark;
  • the ground control module determines the original depth information corresponding to the cuttings based on the detection result, the first correspondence, and the second correspondence; wherein the original depth information is used to characterize the position before the cuttings are mined.
  • the information about the vertical distance from the production wellhead, and the depth information of the well where the cuttings are mined is consistent with the original depth information of the cuttings.
  • the surface control module acquiring the first correspondence between the depth information of the well and the time in real time includes:
  • the ground control module determines the time in real time through a time submodule
  • the surface control module obtains the current depth information of the drill bit and the current time through the well depth measurement sub-module;
  • the surface control module determines a first correspondence relationship between the well depth information and time.
  • the surface control module sending the marker injection information to the downhole marking module includes:
  • the ground control module generates the marker injection information that cyclically sprays a plurality of different kinds of markers with a fixed injection frequency and a cycle period;
  • the surface control module sends the marker injection information to the downhole marker module.
  • the second correspondence between the time when the marker is ejected and the type of the marker is determined in real-time by the ground control module, further including:
  • the ground control module determines the time in real time through a time submodule
  • the surface control module determines a type of a marker injected by the downhole marking module and a time of the injection
  • the ground control module determines a second correspondence between the type of the marker and time
  • the ground control module stores the time when the marker is sprayed and the type of the marker in the database according to the second correspondence.
  • the ground control module determines the original depth information corresponding to the rock cuttings according to the detection result, a first correspondence relationship, and a second correspondence relationship; including:
  • the ground control module determines the type of the marker in the detection result of the rock cuttings according to the detection result
  • the original depth information corresponding to the cuttings is determined according to the first correspondence.
  • the ground control module controls the ground detection and extraction module to perform a detection on the rock cuttings that have been mined, obtain a detection result, and determine the kind; includes:
  • the ground control module control and detection instrument acquires image information of the rock cuttings
  • the ground control module determines the color of the marker on the rock cuttings through image recognition after acquiring the image information
  • the ground control module determines the type of the marker according to the color of the marker.
  • control method of the underground cuttings extraction system as described above further comprising:
  • the ground control module sorts all the cuttings in the order of the original depth according to the original depth information of each of the cuttings, and obtains sequence information
  • the ground control module controls the sampler to sequentially grab the rock cuttings according to the sequence information, and stores the rock cuttings in a sample storage device; wherein the sampler is the ground detection and extraction module A device for grasping the cuttings in the rock; the sample storage device is a device for storing the cuttings by depth in the ground detection and extraction module.
  • the method of marking downhole cuttings by using markers to improve sampling accuracy is used to determine the first correspondence between the depth information of the well depth and time in real time through the surface control module; the surface control module issues a mark The injection information is sent to the downhole marking module; the downhole marking module injects the markings on the cuttings generated by the digging bit according to the marking injection information; and the ground control module determines the time and time of the marking injection in real time.
  • the ground control module controls the ground detection and extraction module to perform a marker detection on the mined rock cuttings to obtain a detection result and determine the type of the markers;
  • the ground control module determines the original depth information corresponding to the cuttings according to the detection result, the first correspondence relationship and the second correspondence relationship; it can effectively meet the requirements of high timeliness and simple operation of extraction of downhole rock cuttings, At the same time, this method can achieve the purpose of accurate sampling, low sampling cost, and high volume. To solve the technical problems related art sampling inaccuracies or high cost and low volume of completed.
  • FIG. 1 is a schematic diagram of a system device module connection according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for controlling the system shown in FIG. 1 according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of module connection of a functional module of a ground control module according to an embodiment of the present application.
  • install should be interpreted broadly.
  • it can be a fixed connection, a detachable connection, or a monolithic structure; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, or it can be two devices, components, or components. Internal connectivity.
  • install can be a fixed connection, a detachable connection, or a monolithic structure; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, or it can be two devices, components, or components. Internal connectivity.
  • a downhole cuttings extraction system is provided.
  • the downhole cuttings extraction system includes:
  • the downhole marking module 1 is located at a position near the drill bit in the underground or near the drill bit, and is used to mark the cuttings that are obtained in real time by spraying different kinds of markers 13 when the drill bit is dug;
  • the ground detection and extraction module 3 is used to detect the types of markers on the cuttings
  • the surface control module 2 is configured to control the downhole marking module 1 to perform marking, and to control the surface detection and extraction module 3 to determine the type of the marker on the cuttings.
  • the downhole marking module 1 includes: a marker 13, a marker ejector 11, a storage unit 14, and a control connection unit; the marker 13 is stored in the Inside the storage unit 14; the marker ejector 11 is connected to the storage unit 14 and is configured to eject the marker 13 inside the storage unit 14 from the marker ejector 11 so that the marker 13 adheres to rock cuttings; the control connection unit is respectively connected to the marker ejector 11 and the ground control module 2 for causing the marker ejector 11 to spray according to the control of the ground control module 2 .
  • the marker 13 is insoluble in drilling fluid and has the characteristics of being easy to adhere to solid substances and easy to detect.
  • the marker The object ejector 11 is a liquid ejecting device for ejecting the marker 13 in the storage unit, and the ejector may adopt a fluid ejector or a steam ejector according to the type of the marker 13; the storage unit is used for storing the marker 13.
  • the storage unit 14 is generally a solid sealed storage cavity made of a solid material, and the material used in the storage unit 14 has corrosion resistance. It does not chemically react with the marker 13 and is resistant to spraying.
  • the control connection unit is an information transmission device for the ground control module 2 to perform wired or wireless communication, so that the marker ejector 11 can be sprayed as required under the control of the ground control module 2 .
  • the surface detection and extraction module 3 includes: a detector 31, a sampler 32, and a sample holder 33; the detector 31 is used to dig the excavated rock The marker 13 on the cuttings is detected; the sampler 32 is electrically connected to the ground control module 2 for grasping the cuttings; the sample storage 33 is used to store the cuttings according to depth .
  • a control method for implementing the above-mentioned downhole rock cuttings extraction system is also provided for obtaining the original depth information of the rock cuttings; as shown in FIG. 2, the method includes steps S1 to Step S4:
  • the surface control module determines the first correspondence between well depth information and time in real time
  • the surface control module sends the marker injection information to the downhole marker module; wherein the downhole marker module sprays different kinds of markers according to different marker injection information;
  • the downhole marking module sprays a marker on the cuttings generated by the digging bit according to the marker spraying information
  • the ground control module determines a second correspondence between the time when the marker is sprayed and the type of the marker in real time;
  • the ground control module controls the ground detection and extraction module to perform a marker detection on the mined rock cuttings, obtain a detection result, and determine a type of the marker;
  • the ground control module determines the original depth information corresponding to the cuttings according to the detection result, the first correspondence, and the second correspondence; wherein the original depth information is used to characterize the cuttings before mining.
  • the information about the vertical distance between the position of the rock and the production wellhead, and the depth information of the well where the cuttings are mined is consistent with the original depth information of the cuttings.
  • the ground control module may be an electronic device including hardware, software, embedded logic components, or a combination of two or more such components, and is capable of performing suitable functions implemented or supported by a user terminal. It has not only strong data processing capability but also the corresponding functional software capable of realizing the control method of the present application; in the present invention, the ground control module can also send or receive signals by including wired and wireless networks.
  • the ground control module may include a display screen; a compact keyboard that may include physical keys, touch keys overlaid on the display screen, or a combination thereof; a user identification module card; and may include ROM, RAM, flash memory, or any combination thereof Memory devices; Wi-Fi and / or Bluetooth interfaces; wireless telephone interfaces; power management circuits with associated batteries; USB interfaces and connectors; audio management systems with associated microphones, speakers, and headphone jack; and various Optional accessories such as digital cameras, global positioning systems, accelerators, etc.
  • the user can input the corresponding marker injection information in real time through an input device connected to the ground control module or automatically generate the marker injection information according to a software system, and issue the marker injection information through the ground control module.
  • the downhole marking module interprets the marker ejection information and generates a corresponding instruction to cause the marker ejector to eject the marker, preferably, if a large piece of rock cuttings can also pass Different numbers are sprayed to mark, so as to distinguish the order of the marks or the well depth information generated by the cuttings; and the injection of the markers is performed with the excavation process of the excavating bit, and the cuttings generated by the excavation can be used during the excavation process.
  • the ground detection and extraction module has an image recognition function and can be provided with a corresponding image acquisition device , It is possible to first collect image information of the markers on different cuttings surfaces, and then recognize the image information through a processing unit to obtain the final detection result, and the detection result can be automatically imported into the storage device. Storage; preferably, the well depth information can be collected at the same time when the marker ejection is performed; and then the original depth information of the rock cuttings is determined according to the monitoring result and the well depth information.
  • the surface control module obtaining the first correspondence between the depth information of the well and the time in real time includes:
  • the ground control module determines the time in real time through a time submodule
  • the surface control module obtains the current depth information of the drill bit and the current time through the well depth measurement sub-module;
  • the surface control module determines a first correspondence between the well depth information and time
  • a general digging bit will measure the current depth of the well and the current time in real time, so the first correspondence between the accurate time and the depth of the well can be obtained. Therefore, in this case, the time submodule is the The timing module on the digging bit, and the well depth measurement sub-module is the travel distance measurement module on the digging bit.
  • the downhole marking module can detect the distance by digging the digging bit, or detect its distance by infrared laser, etc. The distance of the wellhead determines its current depth information of the well.
  • the step S2. sends the marker injection information to the downhole marking module, including:
  • the ground control module generates the marker spraying information that sprays a plurality of different kinds of markers in a cyclic sequence in advance; specifically, in order to spray different kinds of markers, the storage unit needs Multiple markers or multiple independent marker storage spaces are provided in the same storage unit; and the marker ejector is respectively connected with each storage unit or marker storage space, and there is a corresponding selection control unit for In order to enable the marker ejector to suck different markers and spray them according to different marker spray information; preferably, the type of the markers can be set to 10 or more; here the spray frequency is The time interval between two adjacent injections is preferably 3s, and in general, the injection frequency is fixed; the information on the injection of the markers that sprays a plurality of different kinds of markers in a cyclic order is, in particular, according to A fixed sequence is used to spray different types of markers, and after one round of spraying, the fixed sequence Sequential spraying is performed until all sampling is completed.
  • the cuttings excavated by the drill bit are returned to the ground in real time and detected, it will not cause the same kind of markers to return to the ground at the same time in different cycles; further, There may be other options for the type of marker, such as mechanical adsorption and wrapping.
  • the surface control module sends the marker injection information to the downhole marker module.
  • the second control relationship between the time when the marker is ejected and the type of the marker is determined in real-time in the ground control module, further including :
  • the ground control module determines the time in real time through a time submodule
  • the surface control module determines a type of a marker injected by the downhole marking module and a time of the injection
  • the ground control module determines a second correspondence between the type of the marker and time
  • the ground control module stores the time when the marker is sprayed and the type of the marker in the database according to the second correspondence.
  • a complete execution process is taken as an example: after the marker ejector of the downhole marking module marks rock cuttings, the ground control module confirms the type and time of the currently emitted mark in real time, and
  • the first correspondence relationship is established by establishing the well depth information and the type of the ejected marker, and stored in a database.
  • the well depth information and the type of the ejected marker are stored in chronological order.
  • the types of markers are limited, so the types of markers will be cyclically sprayed. When the period is different, you can distinguish the different periods in the database, and after the comparison of the detector is completed, the comparison will be completed.
  • the data is distinguished by means of labeling or deletion, so as not to cause confusion, etc .; preferably, the second correspondence relationship can be written and stored in the form of a data table.
  • the step S4. determines a corresponding value of the rock cuttings according to the detection result, a first correspondence relationship, and a second correspondence relationship.
  • Raw depth information includes:
  • the ground control module determines the type of the marker in the detection result of the rock cuttings according to the detection result
  • the original depth information corresponding to the cuttings is determined according to the first correspondence.
  • the ground control module needs to match and obtain the type of the marker as a yellow marker in all the second correspondences.
  • the specific second correspondence relationship after the specific second correspondence relationship is obtained, the time information displayed in the second correspondence relationship is obtained, for example, 13:30:30, and then determined according to the first correspondence relationship
  • Adopting this method can avoid manual repeated repeated comparison and identification, improve work efficiency, effectively reduce the difficulty of manual operations, and the probability of causing errors.
  • the ground control module controls the ground detection and extraction module to perform a mark detection on the mined rock cuttings, obtain a detection result, and determine Type of marker; includes:
  • the ground control module control and detection instrument acquires image information of the rock cuttings
  • the ground control module determines the color of the marker on the rock cuttings through image recognition after acquiring the image information
  • the ground control module determines the type of the marker according to the color of the marker.
  • an image recognition method is used to identify the type of the marker. Since current image recognition, especially color recognition, is a relatively mature technology, it can obtain extremely high accuracy and fast processing. , More suitable for a large number of identification processing tasks.
  • the aforementioned method for controlling a downhole cuttings extraction system further includes:
  • the ground control module sorts all the cuttings in the order of the original depth according to the original depth information of each of the cuttings, and obtains sequence information
  • the ground control module controls the sampler to sequentially grab the rock cuttings according to the sequence information, and stores the rock cuttings in a sample storage device; wherein the sampler is the ground detection and extraction module A device for grasping the cuttings in the rock; the sample storage device is a device for storing the cuttings by depth in the ground detection and extraction module.
  • This process can re-establish the depth and depth relationship information between the original depths of the various cuttings before the underground mining.
  • the deepest cuttings can be placed at the lowest end of the sampler, and then according to each cutting The original depth information is gradually reduced and placed, so the original geological structure of the underground can be completely restored.
  • This method can avoid manual identification and improve work efficiency; meanwhile, the rock cuttings are not required to be uploaded in real time, which effectively reduces the downhole operation. Installation of equipment and difficulty in construction excavation.
  • a device for implementing the control method of the above-mentioned underground cuttings extraction system is also provided. As shown in FIG. 3, the device is applied to a ground control module and includes:
  • a first correspondence relationship determining unit 41 configured to determine a first correspondence relationship between well depth information and time in real time through a surface control module
  • An information issuing unit 42 is configured to cause the surface control module to send the marker injection information to the downhole marking module; wherein the downhole marking module ejects different kinds of markers according to different marker injection information; and The downhole marking module sprays the marker on the cuttings generated by the digging bit according to the marker spraying information;
  • a second correspondence relationship determining unit 43 configured to determine, in real time, the second correspondence relationship between the time when the marker is sprayed and the type of the marker through the ground control module;
  • a marker type determination unit 44 is configured to control the ground detection and extraction module to perform a marker detection on the mined rock cuttings through the ground control module to obtain a detection result and determine a type of the marker;
  • the depth information determining unit 45 is configured to determine, by the ground control module, the original depth information corresponding to the rock cuttings according to the detection result, the first correspondence relationship, and the second correspondence relationship, wherein the original depth information is used for Information characterizing the vertical distance between the position before the cuttings are mined and the production wellhead.
  • the depth information of the wells from which the cuttings are mined is consistent with the original depth information of the cuttings.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device or distributed on a network composed of multiple computing devices.
  • they can be implemented with program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, or they can be separately made into individual integrated circuit modules, or they can be stored in Multiple modules or steps are made into a single integrated circuit module for implementation.
  • the invention is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Earth Drilling (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

公开了一种井下岩屑提取系统。其中,井下岩屑提取系统包括井下标记模块(1)、地面控制模块(2)和地面检测及提取模块(3);井下标记模块和地面检测及提取模块分别与地面控制模块电连接;井下标记模块设于井下挖掘钻头处或钻头附近位置,并用于在钻头挖掘时实时对开采得到的岩屑通过喷射不同种类的标记物进行标记;地面检测及提取模块用于对岩屑进行标记物的种类的检测;地面控制模块用于管控井下标记模块进行标记,并管控地面检测及提取模块确定岩屑的上的标记物的种类。还公开了一种井下岩屑提取系统的控制方法。该系统和方法能够有效满足井下岩屑提取的检测时效高,且简单易行的要求,同时能够实现取样精确,取样成本低廉,且完成量高的目的。

Description

井下岩屑提取系统及其控制方法 技术领域
本申请涉及井下岩样取样技术领域,具体而言,涉及一种井下岩屑提取系统及其控制方法。
背景技术
在进行各种钻井地下勘探过程中,需要对井下返出的物质进行取样,以便进行分析研究。实时提取井下物质是及时认识地层岩性和油气层的直观材料。井下物质取样是从上返的泥浆中获取的,传统方法为获取与深度相对应的井下物质,需要通过理论计算法、实物测定法或特殊岩性法计算物质从井底上返至井口的时间。这些方法是存在严重问题的,物质的上返受井内液体的流速、井筒的大小及人为因素的影响较大,并且由于钻井环境的复杂,不同深度的上返的物质极易混杂在一起,因此当前领域中,所采集的井下岩屑是不精确的,不能真实的反映出所钻地层的真实信息。所以,钻井过程中需要一种能够实时提取井下物质的设备。
现有提取井下岩样的方式:1、地下的岩石被钻头破碎后,随钻井液到达地面,这些岩石碎块就叫岩屑,又常称为“砂样”。在钻井过程中,地质人员按照一定的取样间距和迟到时间,连续收集和观察岩屑并恢复地下地质剖面的过程,称为岩屑录井。该方法时效高,简单,易行,但极不精确。2、井壁取心,是使用测井电缆将取心器下入井中,用炸药将取心器打入井壁,取下小块岩石以了解岩石及其中流体性质的方法。该方法较取样精确,但费用极高,不易操作,且完成量较少。3、钻井取芯,该方案应用取芯钻头获取岩芯,但是,应用该项技术所带来的安全风险较大,造作工艺较为负责,切严重影响钻进速度,费事费力。
针对相关技术中存在的问题,目前尚未提出有效的解决方案。
发明内容
本申请的主要目的在于提供一种井下岩屑提取系统及其控制方法,以解决相关技术中存在的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种井下岩屑提取系统。
根据本申请的井下岩屑提取系统包括:
井下标记模块、地面控制模块和地面检测及提取模块;所述井下标记模块和地面检测及提取模块分别与所述地面控制模块电连接;
所述井下标记模块设于井下挖掘钻头处或钻头附近位置,并用于在所述钻头挖掘时实时对开采得到的岩屑通过喷射不同种类的标记物进行标记;
所述地面检测及提取模块用于对岩屑进行标记物的种类的检测;
所述地面控制模块用于管控所述井下标记模块进行标记,并管控地面检测及提取模块确定岩屑的上的标记物的种类。
进一步的,如前述的井下岩屑提取系统,所述井下标记模块包括:标记物、标记物喷射器、存储单元和控制连接单元;所述标记物存储于所述存储单元内部;所述标记物喷射器与所述存储单元连接,用于将所述存储单元内部的标记物从所述标记物喷射器中喷出,使所述标记物粘附与岩屑上;所述控制连接单元分别与所述标记物喷射器及地面控制模块连接,用于根据所述地面控制模块的管控使所述标记物喷射器进行喷射。
进一步的,如前述的井下岩屑提取系统,所述地面检测及提取模块包括:检测仪,取样器和存样器;所述检测仪用于对挖掘出的岩屑上的所述标记物进行检测;所述取样器与所述地面控制模块电连接,用于对所述岩屑进行抓取;存样器用于按深度储存所述岩屑。
为了实现上述目的,根据本申请的另一方面,提供了一种对上述井下岩屑提取系统的控制方法。
根据本申请的井下岩屑提取系统的控制方法包括:
地面控制模块实时确定井深深度信息与时间之间的第一对应关系;
所述地面控制模块下发标记物喷射信息至井下标记模块;其中,所述井下标记模块根据不同的所述标记物喷射信息喷射不同种类的标记物;
所述井下标记模块根据所述标记物喷射信息将标记物喷射在挖掘钻头挖掘产生的岩屑上;
所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系;
所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定所述标记物的种类;
所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;其中,所述原始深度信息为用于表征所述岩屑开采前的位置与开采井口之间垂直距离的信息,所述开采出所述岩屑的井深深度信息与所述岩屑的原始深度信息一致。
进一步的,如前述的井下岩屑提取系统的控制方法,所述地面控制模块实时获取井深深度信息与时间之间的第一对应关系,包括:
所述地面控制模块通过时间子模块实时确定时间;
所述地面控制模块通过井深距离测定子模块获取挖掘钻头的当前的井深深度信息以及当前的时间;
所述地面控制模块确定所述井深深度信息与时间之间的第一对应关系。
进一步的,如前述的井下岩屑提取系统的控制方法,所述地面控制模块下发标记物喷射信息至井下标记模块,包括:
所述地面控制模块预先生成以固定喷射频率以及循环周期将多种不同种类的标记物进行循环喷射的所述标记物喷射信息;
所述地面控制模块将所述标记物喷射信息下发至所述井下标记模块。
进一步的,如前述的井下岩屑提取系统的控制方法,在所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系,还包括:
所述地面控制模块通过时间子模块实时确定时间;
所述地面控制模块确定所述井下标记模块每次喷射的标记物的种类以及喷射的时间;
所述地面控制模块确定所述标记物的种类与时间之间的第二对应关系;
所述地面控制模块将所述标记物喷射的时间与所述标记物的种类按照所述第二对应关系存储在数据库中。
进一步的,如前述的井下岩屑提取系统的控制方法,所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;包括:
所述地面控制模块根据所述检测结果确定所述岩屑的检测结果中标记物的种类;
根据所述第二对应关系在所述数据库中匹配得到所述岩屑的标记物的种类;
根据所述第一对应关系确定所述岩屑对应的原始深度信息。
进一步的,如前述的井下岩屑提取系统的控制方法,所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定标记物的种类;包括:
所述地面控制模块管控检测仪获取所述岩屑的图像信息;
所述地面控制模块获取所述图像信息后通过图像识别确定所述岩屑上标记物的颜色;
所述地面控制模块通过所述标记物的颜色确定所述标记物的种类。
进一步的,如前述的井下岩屑提取系统的控制方法,还包括:
所述地面控制模块根据每个所述岩屑的原始深度信息对所有所述岩屑按照原始深度次序进行排序,并得到序列信息;
所述地面控制模块管控取样器按照所述序列信息依次对所述岩屑进行抓取,并将所述岩屑存放于存样器中;其中,所述取样器为所述地面检测及提取模块中用于对所述岩屑进行抓取的装置;所述存样器为所述地面检测及提取模块中用于按深度储存所述岩屑的装置。
在本申请实施例中,采用通过标记物进行井下岩屑标记进而提高取样精度的方式,通过地面控制模块实时确定井深深度信息与时间之间的第一对应关系;所述地面控制模块下发标记物喷射信息至井下标记模块;所述井下标记模块根据所述标记物喷射信息将标记物喷射在挖掘钻头挖掘产生的岩屑上;所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系;所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定标记物的种类;所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;能够有效满足井下岩屑提取的检测时效高,且简单易行的要求,同时该方法能够实现取样精确,取样成本低廉,且完成量高的目的,进而解决了相关技术中取样不精确或者费用高且完成量较低的技术问题。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请一种实施例的系统装置模块连接示意图;
图2是根据本申请一种实施例中对如图1所示系统进行控制的方法流程示意图;以及
图3是根据本申请一种实施例中地面控制模块的功能模块的模块连接示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”、“套接”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
为了实现上述目的,根据本申请的一个方面,如图1所示,提供了一种井下岩屑提取系统。
根据本申请的井下岩屑提取系统包括:
井下标记模块1、地面控制模块2和地面检测及提取模块3;所述井下标记模块1和地面检测及提取模块3分别与所述地面控制模块2电连接;
所述井下标记模块1设于井下挖掘钻头处或钻头附近位置,并用于在所述钻头挖掘时实时对开采得到的岩屑通过喷射不同种类的标记物13进行标记;
所述地面检测及提取模块3用于对岩屑进行标记物的种类的检测;
所述地面控制模块2用于管控所述井下标记模块1进行标记,并管控地面检测及提取模块3确定岩屑的上的标记物的种类。
在一些实施例中,如前述的井下岩屑提取系统,所述井下标记模块1包括:标记物13、标记物喷射器11、存储单元14和控制连接单元;所述标记物13存储于所述存储单元14内部;所述标记物喷射器11与所述存储单元14连接,用于将所述存储单元14内部的标记物13从所述标记物喷射器11中喷出,使所述标记物13粘附与岩屑上;所述控制连接单元分别与所述标记物喷射器11及地面控制模块2连接,用于根据所述地面控制模块2的管控使所述标记物喷射器11进行喷射。一般的,所述标记物13具有不溶于钻井液,且具有极易粘附于固体物质,易于检测的特性,优选的,可以采用不溶于钻井液的带颜色胶体或化学吸附物;所述标记物喷射器11为液体喷射装置,用于喷射储存单元 中的标记物13,所述喷射器可以根据所述标记物13的种类采用流体喷射器或蒸汽喷射器;储存单元用于储存所述标记物13,所述存储单元14一般为坚固材质制成的密封性良好的存储腔体,且存储单元14采用的材质具有耐腐蚀性,与所述标记物13不会进行化学反应,并且与喷射器连接;控制连接单元为一种信息传输装置,用于地面控制模块2进行有线或无线通讯,进而使所述标记物喷射器11的能够在所述地面控制模块2的管控下按照要求进行喷射。
在一些实施例中,如前述的井下岩屑提取系统,所述地面检测及提取模块3包括:检测仪31,取样器32和存样器33;所述检测仪31用于对挖掘出的岩屑上的所述标记物13进行检测;所述取样器32与所述地面控制模块2电连接,用于对所述岩屑进行抓取;存样器33用于按深度储存所述岩屑。
根据本发明实施例,还提供了一种用于实施上述井下岩屑提取系统的控制方法,用于得到岩屑的原始深度信息;如图2所示,该方法包括如下所示的步骤S1至步骤S4:
S1.地面控制模块实时确定井深深度信息与时间之间的第一对应关系;
S2.所述地面控制模块下发标记物喷射信息至井下标记模块;其中,所述井下标记模块根据不同的所述标记物喷射信息喷射不同种类的标记物;
S3.所述井下标记模块根据所述标记物喷射信息将标记物喷射在挖掘钻头挖掘产生的岩屑上;
S4.所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系;
S5.所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定所述标记物的种类;
S6.所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;其中,所述原始深度信息为用于表征所述岩屑开采前的位置与开采井口之间垂直距离的信息,所述开采出所述岩屑的井深深度信息与所述岩屑的原始深度信息一致。
在具体应用中,所述地面控制模块可以是包括硬件、软件、内嵌逻辑组件或者两个或多个此类组件的组合的电子装置,并能够执行由用户终端实施或支持的合适的功能。使其既具有较强的数据处理能力又有能够实现本申请控制方法相应的功能软件;在本发明中,地面控制模块还可以通过包括有线及无线网络等方式发送或接收信号。此外,所述地面控制模块可以包括示屏;可包含物理键、覆盖在显示屏上的触摸键或它们的组合的袖珍键盘;用户识别模块卡;可以包含ROM、RAM、闪存或它们的任意组合的存储器装置;Wi-Fi和/或蓝牙接口;无线电话接口;带有关联电池的电源管理电路;USB接口和连接器;带有关联麦克风、扬声器和耳机插孔的音频管理系统;以及各种诸如数字照相机、全球定位系统、加速器等的可选择的附属部件。最后,还可以安装或运行一个或多个操作系统,诸如,Windows Server、Mac OS X、Unix、Linux、FreeBSD,等等。
用户可以通过与所述地面控制模块相连的输入设备实时输入相应的标记物喷射信息或根据软件系统自动配置生成的标记物喷射信息,并通过所述地面控制模块将所述标记物喷射信息下发至所述井下标记模块,并且所述井下标记模块对所述标记物喷射信息进行解读后生成相应的指令使标记物喷射器喷射所述标记物,优选的,若是大块的岩屑还可以通过喷射不同的数字等方式进行标记,以区分标记的先后顺序或者岩屑产生的井深信息;并且标记物的喷射随着所述挖掘钻头挖掘过程而进行,并且挖掘产生的岩屑可以在挖掘过程中实时传送到地面上,更利于后期检测的有序性;在所述岩屑传送到地面上后,所述地面控制模块管控所述地面检测及提取模块对所述岩屑进行检测,一般的,所述地面检测及提取模块具有图像识别功能,并可设有相应的图像采集装置,可以先对不同的岩屑表面的所述标记物进行图像信息采集,然后通过处理单元对所述图像信息进行识别,进而得到最后的检测结果,并能将所述检测结果自动导入存储装置中进行存储;优选的,在进行标记物喷射的时候可以同时采集井深信息;进而根据所述监测结果及井深信息确定所述岩屑的原始深度信息。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,所述地面控制模块实时获取井深深度信息与时间之间的第一对应关系,包括:
所述地面控制模块通过时间子模块实时确定时间;
所述地面控制模块通过井深距离测定子模块获取挖掘钻头的当前的井深深度信息以及当前的时间;
所述地面控制模块确定所述井深深度信息与时间之间的第一对应关系;
优选的,一般的挖掘钻头都会实时测量当前的井深深度以及当前的时间,因此能够得到准确的时间与井深深度信息之间的第一对应关系,因此在该情况下所述时间子模块为所述挖掘钻头上的计时模块,井深距离测定子模块为所述挖掘钻头上的行进距离测定模块;此外,所述井下标记模块可以通过获取所述挖掘钻头挖掘的深度或者通过红外激光等方式检测其距离井口的距离的方式确定其当前的所述井深深度信息。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,所述步骤S2.地面控制模块下发标记物喷射信息至井下标记模块,包括:
所述地面控制模块预先生成以固定喷射频率以及将多种不同种类的标记物按序循环进行喷射的所述标记物喷射信息;具体的,为了实现喷射不同种类的标记物,所述储存单元需要设置多个,或者同一所述存储单元中设置多个相互独立的标记物存放空间;且所述标记物喷射器与各个存储单元或标记物存放空间分别贯通,且有相应的选择管控单元,用于使所述标记物喷射器能够根据不同的所述标记物喷射信息吸取不同的所述标记物并进行喷射;优选的,所述标记物的种类可以设置10种及以上;此处喷射频率为相邻两次喷射的时间间隔,优选为3s,且一般的,喷射频率为固定设置;所述将多种不同种类的标记物按序循环进行喷射的所述标记物喷射信息,具体为,按照一固定顺序将各个不同种类的标记物进行喷射,并且在喷射完一轮之后,重新按照该固定顺序进行喷射,直至完成所有采样为止,由于一般钻头挖下的岩屑都是实时返回地面的并进行检测,因此不会造成不同周期中相同的种类的标记物同时返回地面的情况;进一步的,标记物的种类可能会有其他选项,如采用机械吸附、包裹的方式。
所述地面控制模块将所述标记物喷射信息下发至所述井下标记模块。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,在所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系,还包括:
所述地面控制模块通过时间子模块实时确定时间;
所述地面控制模块确定所述井下标记模块每次喷射的标记物的种类以及喷射的时间;
所述地面控制模块确定所述标记物的种类与时间之间的第二对应关系;
所述地面控制模块将所述标记物喷射的时间与所述标记物的种类按照所述第二对应关系存储在数据库中。
具体的,以一次完整的执行过程为例:当所述井下标记模块的标记物喷射器对岩屑进行标记后,所述地面控制模块实时确认当前的喷出的标记物的种类以及时间,同时将所述井深深度信息以及喷射的所述标记物的种类建立得到第一对应关系存储在数据库中,优选的,所述井深深度信息以及喷射的所述标记物的种类按照时间顺序进行存储,由于标记物的种类有限,因此标记物的种类会周期性循环喷射,当不同的周期时,可以通过在数据库中对不同的周期进行区分,并且在检测仪比对完成比对之后,将已经完成比对的数据通过标注或者删除等方式进行区分,以免造成比对混淆等情况;优选的,所述第二对应关系可以为数据表的形式进行写入及存储。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,所述步骤S4.所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;包括:
所述地面控制模块根据所述检测结果确定所述岩屑的检测结果中标记物的种类;
根据所述第二对应关系在所述数据库中匹配得到所述岩屑的标记物的种类;
根据所述第一对应关系确定所述岩屑对应的原始深度信息。
具体的,当在一检测结果中显示岩屑A对应的标记物的种类信息为黄色标记物时;所述地面控制模块需要在所有的第二对应关系中匹配得到标记物的种类为黄色标记物的具体所述第二对应关系;在匹配得到具体的所述第二对应关系后,获得该第二对应关系中显示的时间信息,例如为13:30:30,然后再根据第一对应关系确定13:30:30对应的井深深度信息;便能够完成所述岩屑A的完整匹配对应过程。
采用此方法可以免去人工多次反复对比识别,提高工作效率;有效降低人工作业的难度,以及造成错误的概率。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定标记物的种类;包括:
所述地面控制模块管控检测仪获取所述岩屑的图像信息;
所述地面控制模块获取所述图像信息后通过图像识别确定所述岩屑上标记物的颜色;
所述地面控制模块通过所述标记物的颜色确定所述标记物的种类。
具体的,在该实施例中,采用图像识别的方法对标记物的种类进行识别,由于目前图像识别,特别是颜色识别是一个较为成熟的技术,因而能够得到极高的准确度,且处理快速,更适用于大量的识别处理任务。
在一些实施例中,如前述的井下岩屑提取系统的控制方法,还包括:
所述地面控制模块根据每个所述岩屑的原始深度信息对所有所述岩屑按照原始深度次序进行排序,并得到序列信息;
所述地面控制模块管控取样器按照所述序列信息依次对所述岩屑进行抓取,并将所述岩屑存放于存样器中;其中,所述取样器为所述地面检测及提取模块中用于对所述岩屑进行抓取的装置;所述存样器为所述地面检测及提取模块中用于按深度储存所述岩屑的装置。
此过程能够重新建立起各个岩屑之间的在地下开采前原本的原始深度上 的深浅关系信息,一般的可以将最深的岩屑置于所处存样器的最低端,然后依照各个岩屑的原始深度信息依次递减进行放置,因此能够完整还原地下原本的地质结构;采用此方法可以免去人工识别,并提高工作效率;同时允许所述岩屑不需实时进行上传,有效降低井下作业的装置的投入以及施工挖掘难度。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
根据本发明实施例,还提供了一种用于实现上述井下岩屑提取系统的控制方法的装置;如图3所示,该装置应用于地面控制模块,包括:
第一对应关系确定单元41,用于通过地面控制模块实时确定井深深度信息与时间之间的第一对应关系;
信息下发单元42,用于使所述地面控制模块下发标记物喷射信息至井下标记模块;其中,所述井下标记模块根据不同的所述标记物喷射信息喷射不同种类的标记物;并且所述井下标记模块根据所述标记物喷射信息将标记物喷射在挖掘钻头挖掘产生的岩屑上;
第二对应关系确定单元43,用于通过所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系;
标记物的种类确定单元44,用于通过所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定标记物的种类;
深度信息确定单元45,用于通过所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;其中,所述原始深度信息为用于表征所述岩屑开采前的位置与开采井口之间垂直距离的信息,所述开采出所述岩屑的井深深度信息与所述岩屑的原始深度信息一致。
具体的,本发明实施例的装置中各模块实现其功能的具体过程可参见方法实施例中的相关描述,此处不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种井下岩屑提取系统,其特征在于,包括:井下标记模块、地面控制模块和地面检测及提取模块;所述井下标记模块和地面检测及提取模块分别与所述地面控制模块电连接;
    所述井下标记模块设于井下挖掘钻头处或钻头附近位置,并用于在所述钻头挖掘时实时对开采得到的岩屑通过喷射不同种类的标记物进行标记;
    所述地面检测及提取模块用于对岩屑进行标记物的种类的检测;
    所述地面控制模块用于管控所述井下标记模块进行标记,并管控地面检测及提取模块确定岩屑的上的标记物的种类。
  2. 根据权利要求1所述的井下岩屑提取系统,其特征在于,所述井下标记模块包括:标记物、标记物喷射器、存储单元和控制连接单元;所述标记物存储于所述存储单元内部;所述标记物喷射器与所述存储单元连接,用于将所述存储单元内部的标记物从所述标记物喷射器中喷出,使所述标记物粘附与岩屑上;所述控制连接单元分别与所述标记物喷射器及地面控制模块连接,用于根据所述地面控制模块的管控使所述标记物喷射器进行喷射。
  3. 根据权利要求2所述的井下岩屑提取系统,其特征在于,所述地面检测及提取模块包括:检测仪,取样器和存样器;所述检测仪用于对挖掘出的岩屑上的所述标记物进行检测;所述取样器与所述地面控制模块电连接,用于对所述岩屑进行抓取;存样器用于按深度储存所述岩屑。
  4. 一种井下岩屑提取系统的控制方法,其特征在于,包括:
    地面控制模块实时确定井深深度信息与时间之间的第一对应关系;
    所述地面控制模块下发标记物喷射信息至井下标记模块;其中,所述井下标记模块根据不同的所述标记物喷射信息喷射不同种类的标记物;
    所述井下标记模块根据所述标记物喷射信息将对应种类的所述标记物喷射在挖掘钻头挖掘产生的岩屑上;
    所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类 之间的第二对应关系;
    所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定所述标记物的种类;
    所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;其中,所述原始深度信息为用于表征所述岩屑开采前的位置与开采井口之间垂直距离的信息,所述开采出所述岩屑的井深深度信息与所述岩屑的原始深度信息一致。
  5. 根据权利要求4所述的井下岩屑提取系统的控制方法,其特征在于,所述地面控制模块实时获取井深深度信息与时间之间的第一对应关系,包括:
    所述地面控制模块通过时间子模块实时确定时间;
    所述地面控制模块通过井深距离测定子模块获取挖掘钻头的当前的井深深度信息以及当前的时间;
    所述地面控制模块确定所述井深深度信息与时间之间的第一对应关系。
  6. 根据权利要求4所述的井下岩屑提取系统的控制方法,其特征在于,所述地面控制模块下发标记物喷射信息至井下标记模块,包括:
    所述地面控制模块预先生成以固定喷射频率将多种不同种类的标记物按序循环进行喷射的所述标记物喷射信息;
    所述地面控制模块将所述标记物喷射信息下发至所述井下标记模块。
  7. 根据权利要求6所述的井下岩屑提取系统的控制方法,其特征在于,在所述地面控制模块实时确定所述标记物喷射的时间与所述标记物的种类之间的第二对应关系,还包括:
    所述地面控制模块通过时间子模块实时确定时间;
    所述地面控制模块确定所述井下标记模块每次喷射的标记物的种类以及喷射的时间;
    所述地面控制模块确定所述标记物的种类与时间之间的第二对应关系;
    所述地面控制模块将所述标记物喷射的时间与所述标记物的种类按照所述第二对应关系存储在数据库中。
  8. 根据权利要求7所述的井下岩屑提取系统的控制方法,其特征在于,所述地面控制模块根据所述检测结果、第一对应关系以及第二对应关系确定所述岩屑对应的原始深度信息;包括:
    所述地面控制模块根据所述检测结果确定所述岩屑的检测结果中标记物的种类;
    根据所述第二对应关系在所述数据库中匹配得到所述岩屑的标记物的种类;
    根据所述第一对应关系确定所述岩屑对应的原始深度信息。
  9. 根据权利要求4所述的井下岩屑提取系统的控制方法,其特征在于,所述地面控制模块管控所述地面检测及提取模块对开采出的所述岩屑进行标记物检测,得到检测结果,并确定标记物的种类;包括:
    所述地面控制模块管控检测仪获取所述岩屑的图像信息;
    所述地面控制模块获取所述图像信息后通过图像识别确定所述岩屑上标记物的颜色;
    所述地面控制模块通过所述标记物的颜色确定所述标记物的种类。
  10. 根据权利要求4所述的井下岩屑提取系统的控制方法,其特征在于,还包括:
    所述地面控制模块根据每个所述岩屑的原始深度信息对所有所述岩屑按照原始深度次序进行排序,并得到序列信息;
    所述地面控制模块管控取样器按照所述序列信息依次对所述岩屑进行抓取,并将所述岩屑存放于存样器中;其中,所述取样器为所述地面检测及提取模块中用于对所述岩屑进行抓取的装置;所述存样器为所述地面检测及提取模 块中用于按深度储存所述岩屑的装置。
PCT/CN2018/098529 2018-07-27 2018-08-03 井下岩屑提取系统及其控制方法 WO2020019367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/973,440 US11603755B2 (en) 2018-07-27 2018-08-03 Downhole rock debris extraction system and control method for downhole rock debris extraction system
JP2020571679A JP6895593B1 (ja) 2018-07-27 2018-08-03 坑井内岩屑採取システム及びその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810841754.8 2018-07-27
CN201810841754.8A CN108930535B (zh) 2018-07-27 2018-07-27 井下岩屑提取系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2020019367A1 true WO2020019367A1 (zh) 2020-01-30

Family

ID=64444940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098529 WO2020019367A1 (zh) 2018-07-27 2018-08-03 井下岩屑提取系统及其控制方法

Country Status (4)

Country Link
US (1) US11603755B2 (zh)
JP (1) JP6895593B1 (zh)
CN (1) CN108930535B (zh)
WO (1) WO2020019367A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211659A1 (en) * 2021-04-01 2022-10-06 Saudi Arabian Oil Company Control systems and methods for rock cuttings identification
US11846179B1 (en) 2022-09-21 2023-12-19 Saudi Arabian Oil Company Covalent organic frameworks as tracers for fluorescent upstream imaging

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773715B2 (en) 2020-09-03 2023-10-03 Saudi Arabian Oil Company Injecting multiple tracer tag fluids into a wellbore
US11719092B2 (en) * 2020-10-13 2023-08-08 Saudi Arabian Oil Company Systems and methods for drilling a wellbore using taggant analysis
US11237295B1 (en) * 2020-10-13 2022-02-01 Saudi Arabian Oil Company Method for intelligent automatic rock fragments depth determination while drilling
CN112943217B (zh) * 2021-02-22 2022-07-12 中海石油(中国)有限公司海南分公司 一种远程智能录井分析方法及系统
CN114592405B (zh) * 2022-03-30 2024-03-01 山西中交汇通建材有限公司 一种道路用石油沥青生产混合沥青的设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056553A (zh) * 1990-04-27 1991-11-27 H·B·寇莱特 用于钻探和取样的方法和装置
US5358057A (en) * 1993-11-10 1994-10-25 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Modular device for collecting multiple fluid samples from soil using a cone penetrometer
CN1789656A (zh) * 2004-12-16 2006-06-21 普拉德研究及开发股份有限公司 作标记的系统和方法
CN201090210Y (zh) * 2007-08-07 2008-07-23 四川石油管理局地质勘探开发研究院 一种气体钻井岩屑自动取样装置
WO2012078204A1 (en) * 2010-12-07 2012-06-14 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
CN103927547A (zh) * 2014-03-31 2014-07-16 中国海洋石油总公司 一种用于对岩屑荧光图像进行快速分析方法
US20170074080A1 (en) * 2014-05-08 2017-03-16 Unico, Inc. Subterranean Pump With Pump Cleaning Mode

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642624A1 (en) * 1993-03-26 1995-03-15 Western Atlas International, Inc. Method and apparatus for determining depth of drill cuttings
CA2289333C (en) * 1999-11-12 2009-11-10 Konstandinos S. Zamfes Cuttings sample catcher and method of use
CA2402163C (en) * 2000-03-02 2009-10-20 George Leo Stegemeier Tracer injection in a production well
US7464771B2 (en) * 2006-06-30 2008-12-16 Baker Hughes Incorporated Downhole abrading tool having taggants for indicating excessive wear
US7424910B2 (en) * 2006-06-30 2008-09-16 Baker Hughes Incorporated Downhole abrading tools having a hydrostatic chamber and uses therefor
US8172007B2 (en) * 2007-12-13 2012-05-08 Intelliserv, LLC. System and method of monitoring flow in a wellbore
US20090151939A1 (en) * 2007-12-13 2009-06-18 Schlumberger Technology Corporation Surface tagging system with wired tubulars
US20110297371A1 (en) * 2010-06-08 2011-12-08 Nathan Church Downhole markers
US8627902B2 (en) * 2011-06-23 2014-01-14 Baker Hughes Incorporated Estimating drill cutting origination depth using marking agents
CA2918014C (en) * 2013-08-28 2019-01-08 Halliburton Energy Services, Inc. System for tracking and sampling wellbore cuttings using rfid tags
WO2015152943A1 (en) * 2014-04-04 2015-10-08 Halliburton Energy Services, Inc. Isotopic analysis from a controlled extractor in communication to a fluid system on a drilling rig
US9920623B1 (en) * 2014-11-21 2018-03-20 Solid Automated Geological Solutions, LLC Systems and methods for collecting cutting samples during oil and gas drilling operations
JP6692206B2 (ja) * 2016-04-27 2020-05-13 大成建設株式会社 岩盤評価方法
CN208885269U (zh) * 2018-07-27 2019-05-21 东营派克赛斯石油装备有限公司 井下岩屑实时提取系统
US10808529B2 (en) * 2018-10-15 2020-10-20 Saudi Arabian Oil Company Surface logging wells using depth-tagging of cuttings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056553A (zh) * 1990-04-27 1991-11-27 H·B·寇莱特 用于钻探和取样的方法和装置
US5358057A (en) * 1993-11-10 1994-10-25 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Modular device for collecting multiple fluid samples from soil using a cone penetrometer
CN1789656A (zh) * 2004-12-16 2006-06-21 普拉德研究及开发股份有限公司 作标记的系统和方法
CN201090210Y (zh) * 2007-08-07 2008-07-23 四川石油管理局地质勘探开发研究院 一种气体钻井岩屑自动取样装置
WO2012078204A1 (en) * 2010-12-07 2012-06-14 Halliburton Energy Services, Inc. Gas generator for pressurizing downhole samples
CN103927547A (zh) * 2014-03-31 2014-07-16 中国海洋石油总公司 一种用于对岩屑荧光图像进行快速分析方法
US20170074080A1 (en) * 2014-05-08 2017-03-16 Unico, Inc. Subterranean Pump With Pump Cleaning Mode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211659A1 (en) * 2021-04-01 2022-10-06 Saudi Arabian Oil Company Control systems and methods for rock cuttings identification
US11846179B1 (en) 2022-09-21 2023-12-19 Saudi Arabian Oil Company Covalent organic frameworks as tracers for fluorescent upstream imaging

Also Published As

Publication number Publication date
CN108930535B (zh) 2024-01-30
JP6895593B1 (ja) 2021-06-30
US20210254449A1 (en) 2021-08-19
JP2021522433A (ja) 2021-08-30
US11603755B2 (en) 2023-03-14
CN108930535A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2020019367A1 (zh) 井下岩屑提取系统及其控制方法
CN105339579B (zh) 用于控制冲击式钻凿过程的布置
US9045967B2 (en) System and method for controlling and monitoring a drilling operation using refined solutions from a panistic inversion
CN105697023B (zh) 一种隧道地质勘探方法、系统及微型掘进机
EA010524B1 (ru) Система и способ для объединенного микросейсмического анализа и анализа наклономера
CN106125147B (zh) 基于网络并行电法技术的方位电测井装置及其测量方法
CN104948176B (zh) 一种基于渗透增大率识别碳酸盐岩储层裂缝的方法
US11512573B2 (en) Stimulation using fiber-derived information and fracturing modeling
AU2013286817A1 (en) A method of, and a system for, drilling to a position relative to a geological boundary
US20140188892A1 (en) Social network resource integration
WO2017031615A1 (zh) 一种构建双溶腔盐穴储库地面沉降预测模型的方法
CN104879163A (zh) 一种井下小型超前定向探放水装置及方法
CN106246222A (zh) 一种采煤工作面顶板裂隙带演化特征的可视化观测方法
CN111192359B (zh) 利用地质剖面钻孔空间轨迹形态提取钻孔岩性数据的方法
CN104727815A (zh) 一种实时钻井地层修正预测方法及装置
TW201907367A (zh) 井下岩層特徵立體成像的系統及方法
CA2979330C (en) Draw-down pressure apparatus, systems, and methods
EP3274552A1 (en) Formation pressure determination
CN105204066A (zh) 一种基于谱分解的煤层火成岩侵入位置直接指示方法
CN208885269U (zh) 井下岩屑实时提取系统
CN114820969B (zh) 一种三维地质模型构建方法
US20140089317A1 (en) Associating operations information and communications information
CN113742962B (zh) 一种基于水平井的页岩储层属性三维建模方法
CN104912544A (zh) 一种油气井井下温度压力参数探测系统及方法
NO20131613A1 (no) Sammenknytting av driftsinformasjon og kommunikasjonsinformasjon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927525

Country of ref document: EP

Kind code of ref document: A1