WO2020018049A2 - Lipid nanoparticles loaded with ceranib-2 as anticancer agents - Google Patents

Lipid nanoparticles loaded with ceranib-2 as anticancer agents Download PDF

Info

Publication number
WO2020018049A2
WO2020018049A2 PCT/TR2019/050338 TR2019050338W WO2020018049A2 WO 2020018049 A2 WO2020018049 A2 WO 2020018049A2 TR 2019050338 W TR2019050338 W TR 2019050338W WO 2020018049 A2 WO2020018049 A2 WO 2020018049A2
Authority
WO
WIPO (PCT)
Prior art keywords
lipid nanoparticles
lipid
ceranib
cancer
use according
Prior art date
Application number
PCT/TR2019/050338
Other languages
French (fr)
Other versions
WO2020018049A3 (en
Inventor
Mehtap KUTLU
Gökhan KUS
Engin ULUKAYA
Original Assignee
Anadolu Universitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anadolu Universitesi filed Critical Anadolu Universitesi
Priority to EP19812871.2A priority Critical patent/EP3806831A2/en
Publication of WO2020018049A2 publication Critical patent/WO2020018049A2/en
Publication of WO2020018049A3 publication Critical patent/WO2020018049A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47042-Quinolinones, e.g. carbostyril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to ceranib-2 formulations for use in treatment of cancer. More particularly, the present invention pertains to lipid nanoparticles comprising ceranib-2 as a medicament for treatment of cancer, such as breast cancer, lung cancer and colon cancer.
  • Acid ceramidase is an enzyme and bioactive lipid which is responsible for the degradation of ceramide into sphingosine and free fatly acids within lysosomes. It mediates cell proliferation differentiation, apoptosis, adhesion and migration.
  • Acid ceramidase inhibitors in general, are proposed for treatment of various diseases including neurodegenarative diseases, endometriosis, Parkinson's disease, obesity, diabetes and cancer. Recently, anticancer activity of the acid ceramidase inhibitors has attracted particular attention of the researchers.
  • WO 03/005965 A2 discloses inhibitors of mitochondrial ceramidase for the prevention and treatment of diseases associated with cell overproliferation and sphingolipid signal transduction including cancer, cardiovascular diseases, and inflammation.
  • WO 2013/178576 A1 discloses different acid ceramidase inhibitors for treatment of cancer.
  • Ceranib-2 is an acid ceramidase inhibitor known with the chemical name of 3-[3-(4-methoxyphenyl)-l-oxo-2-propen-l-yl]-4-phenyl-2(lH)-quinolinone having the general Formula (!]:
  • Chemoterapeutic agents particularly have considerable damages to healthy cells and tissues of cancer patients.
  • Ceranib-2 having the general formula above is noted to be effective for inhibiting proliferation of cancer cells in the course of ceramide dependent apoptosis. Therefore, Ceranib-2 has been advantageously selected as an anticancer agent, and it is basically aimed to improve its bioavailibility at lower doses. This objective is currently achieved by providing lipid nanoparticles of Ceranib-2 for use in treatment of cancer.
  • the present invention provides ceranib-2 containing lipid nanoparticles for use in treatment of cancer.
  • the inventors discovered that ceranib-2 as formulated with lipid nanoparticles are advantageous in several aspects.
  • lipid nanoparticles as mentioned above enhance the penetration through the membrane of cancer cells and therefore bioavailability of the drug increases to the satisfactory level. This in turn provides the advantage that lower doses of ceranib-2, being less toxic, can be used for obtaining the desired anticancer activity.
  • ceranib-2 being less toxic
  • the molecule entrapped in lipid nanoparticles would be more stable and safe because of the lipid coating which is biodegradable.
  • the lipid material as used in the current invention can be selected from the group consisting of triglycerides, fatty acids, waxes and steroids.
  • the lipid as mentioned herein comprises a mixture of triglycerides and fatly acids. More particularly, the lipid material comprises Compritol 888 ATO which is a blend of esters of behenic acid with glycerol.
  • the lipid nanoparticles comprising ceranib-2 according to the present invention can be prepared by a suitable homogenization method that may provide a lipid coating on Ceranib-2 particles.
  • the lipid nanoparticles according to the present invention can be prepared by way of a homogenization method such as high shear homogenization, hot homogenization and cold homogenization.
  • Ceranib-2 is noted to be less lipophilic such that it forms colloids in lipid with inferior homogeneity. Therefore, the inventors have noted that a specific hot homogenization method would be preferable in order to obtain the desired homogeneity.
  • the present invention provides a method for preparing lipid nanoparticles as identified above comprising the steps of; preparing a pre-emulsion by melting a lipid material, adding an emulsifier and dispersing Ceranib-2 therein,
  • homogenization is carried out in a high pressure homogenizer.
  • the temperature of the homogenization can be set at 5-10 °C above the melting point of the lipid material.
  • the particle size of the lipid nanoparticles according to the present invention may typically range from 10 to 1000 nm.
  • the particle size can be arranged by modifying certain parameters such as temperature, pressure and rotation speed and duration of the homogenizer, and also the particular type of the emulsifying agent.
  • Human A549 lung adenocarcinoma cells were inoculated on a 96-well cell culture plate such that 5x10 3 cells were provided in each well. The cells inoculated to the plate were incubated at 37°C in a 5% carbon dioxide media. A549 cells were incubated with ceranib-2 lipid nanoparticles for 24 hours with ceranib-2 concentrations of 1-65 mM. At the end of the procedure 20 pL of MTT dye (5 mg/mL] was added into each well and further incubated at 37°C for 2 hours. After the incubation, the liquid phase in each well was discharged and 200 pL of DMSO was added in order to dissolve the formazan salts produced by the cells followed by leaving the media for 10 minutes.
  • MTT dye 5 mg/mL
  • ceranib-2 lipid nanoparticles were effective for inhibiting of cell proliferation of both groups. Cytotoxicity tests have revealed that inhibition of cell proliferation was observed starting from the lowermost dose of ceranib-2. This was more prominent on MCF-7 cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to ceranib-2 formulations for use in treatment of cancer. More particularly, the present invention pertains to lipid nanoparticles comprising ceranib-2 as a medicament for treatment of cancer, such as breast cancer, lung cancer and colon cancer.

Description

LIPID NANOPARTICLES LOADED WITH CERANIB-2 AS ANTICANCER AGENTS
Technical Field
The present invention relates to ceranib-2 formulations for use in treatment of cancer. More particularly, the present invention pertains to lipid nanoparticles comprising ceranib-2 as a medicament for treatment of cancer, such as breast cancer, lung cancer and colon cancer.
Background of the Invention
Acid ceramidase is an enzyme and bioactive lipid which is responsable for the degradation of ceramide into sphingosine and free fatly acids within lysosomes. It mediates cell proliferation differentiation, apoptosis, adhesion and migration.
Acid ceramidase inhibitors, in general, are proposed for treatment of various diseases including neurodegenarative diseases, endometriosis, Parkinson's disease, obesity, diabetes and cancer. Recently, anticancer activity of the acid ceramidase inhibitors has attracted particular attention of the researchers.
WO 03/005965 A2, for instance, discloses inhibitors of mitochondrial ceramidase for the prevention and treatment of diseases associated with cell overproliferation and sphingolipid signal transduction including cancer, cardiovascular diseases, and inflammation. Likewise, WO 2013/178576 A1 discloses different acid ceramidase inhibitors for treatment of cancer.
The inventors, however, noted that there is still a need in prior art for acid ceramidase inhibitors formulated in a specific media that provide easy penetration through the cell membrane and increase bioavailibility, which in turn, require less amount of medicament for the achievement of the desired effect in treatment of cancer.
For this purpose, the present invention provides ceranib-2 molecules incorporated into lipid nanoparticles for treatment of cancer. Ceranib-2 is an acid ceramidase inhibitor known with the chemical name of 3-[3-(4-methoxyphenyl)-l-oxo-2-propen-l-yl]-4-phenyl-2(lH)-quinolinone having the general Formula (!]:
Figure imgf000003_0001
Formula (I)
Conventional anticancer agents generally act systemically and cause cell death besides tumours. Chemoterapeutic agents particularly have considerable damages to healthy cells and tissues of cancer patients.
Ceranib-2, having the general formula above is noted to be effective for inhibiting proliferation of cancer cells in the course of ceramide dependent apoptosis. Therefore, Ceranib-2 has been advantageously selected as an anticancer agent, and it is basically aimed to improve its bioavailibility at lower doses. This objective is currently achieved by providing lipid nanoparticles of Ceranib-2 for use in treatment of cancer.
Detailed Description of the Invention In one aspect, the present invention provides ceranib-2 containing lipid nanoparticles for use in treatment of cancer. The inventors discovered that ceranib-2 as formulated with lipid nanoparticles are advantageous in several aspects.
It is noted that lipid nanoparticles as mentioned above enhance the penetration through the membrane of cancer cells and therefore bioavailability of the drug increases to the satisfactory level. This in turn provides the advantage that lower doses of ceranib-2, being less toxic, can be used for obtaining the desired anticancer activity. Those skilled in the art would appreciate that the molecule entrapped in lipid nanoparticles would be more stable and safe because of the lipid coating which is biodegradable.
The lipid material as used in the current invention can be selected from the group consisting of triglycerides, fatty acids, waxes and steroids. In one embodiment, the lipid as mentioned herein comprises a mixture of triglycerides and fatly acids. More particularly, the lipid material comprises Compritol 888 ATO which is a blend of esters of behenic acid with glycerol.
The lipid nanoparticles comprising ceranib-2 according to the present invention can be prepared by a suitable homogenization method that may provide a lipid coating on Ceranib-2 particles. The lipid nanoparticles according to the present invention can be prepared by way of a homogenization method such as high shear homogenization, hot homogenization and cold homogenization. Ceranib-2 is noted to be less lipophilic such that it forms colloids in lipid with inferior homogeneity. Therefore, the inventors have noted that a specific hot homogenization method would be preferable in order to obtain the desired homogeneity.
Accordingly, in another aspect, the present invention provides a method for preparing lipid nanoparticles as identified above comprising the steps of; preparing a pre-emulsion by melting a lipid material, adding an emulsifier and dispersing Ceranib-2 therein,
homogenization of the pre-emulsion at a temperature above the melting point of the lipid material,
recrystallizing the nanoemulsion and obtaining the lipid nanoparticles loaded with Ceranib-2.
In preferred embodiments, homogenization is carried out in a high pressure homogenizer. The temperature of the homogenization can be set at 5-10 °C above the melting point of the lipid material.
The particle size of the lipid nanoparticles according to the present invention may typically range from 10 to 1000 nm. The particle size can be arranged by modifying certain parameters such as temperature, pressure and rotation speed and duration of the homogenizer, and also the particular type of the emulsifying agent.
Example 1
Human A549 lung adenocarcinoma cells were inoculated on a 96-well cell culture plate such that 5x103 cells were provided in each well. The cells inoculated to the plate were incubated at 37°C in a 5% carbon dioxide media. A549 cells were incubated with ceranib-2 lipid nanoparticles for 24 hours with ceranib-2 concentrations of 1-65 mM. At the end of the procedure 20 pL of MTT dye (5 mg/mL] was added into each well and further incubated at 37°C for 2 hours. After the incubation, the liquid phase in each well was discharged and 200 pL of DMSO was added in order to dissolve the formazan salts produced by the cells followed by leaving the media for 10 minutes. The color change was evaluated in HTX Synergy (Bio-Tek, USA] plate reader at a wavelength of 570 nm. The experiment was repeated three times. Viability values for each dose were calculated based on the control group from the absorbances obtained from MTT results and given as percentages.
Example 2
The same protocol of the experiment was repeated by using MCF-7 and colon cancer cell lines. Results
It was observed that ceranib-2 lipid nanoparticles were effective for inhibiting of cell proliferation of both groups. Cytotoxicity tests have revealed that inhibition of cell proliferation was observed starting from the lowermost dose of ceranib-2. This was more prominent on MCF-7 cells.

Claims

1. Lipid nanoparticles loaded with therapeutically effective amount of ceranib-2 for use in treatment of cancer.
2. Lipid nanoparticles for use according to claim 1 wherein the lipid material is selected from the group consisting of triglycerides, fatty acids, waxes and steroids.
3. Lipid nanoparticles for use according to claim 2 wherein the lipid material comprises Compritol 888 ATO which is a blend of esters of behenic acid with glycerol.
4. Lipid nanoparticles for use according to claim 1 wherein the particle size of the nanoparticles ranges from 10 to 1000 nm.
5. Lipid nanoparticles for use according to claim 1 wherein the cancer is breast cancer, lung cancer or colon cancer.
6. Lipid nanoparticles for use according to claim 1 wherein the cancer is breast cancer.
7. Lipid nanoparticles for use according to claim 1 wherein the lipid nanoparticles are produced with a method comprising the steps of: preparing a pre-emulsion by melting a lipid material, adding an emulsifier and dispersing Ceranib-2 therein,
homogenization of the pre-emulsion at a temperature above the melting point of the lipid material,
recrystallizing the nanoemulsion and obtaining the lipid nanoparticles loaded with Ceranib-2.
8. Lipid nanoparticles for use according to claim 7 wherein the homogenization is carried out in a high pressure homogenizer.
9. Lipid nanoparticles for use according to claim 7 wherein the temperature of the homogenization is set at 5-10°C above the melting point of the lipid material.
10. Lipid nanoparticles for use according to claim 7 wherein the emulsifier is Tween 80.
11. A pharmaceutical composition comprising lipid nanoparticles loaded with therapeutically effective amount of ceranib-2 for use in treatment of cancer.
PCT/TR2019/050338 2018-06-18 2019-05-16 Lipid nanoparticles loaded with ceranib-2 as anticancer agents WO2020018049A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19812871.2A EP3806831A2 (en) 2018-06-18 2019-05-16 Lipid nanoparticles loaded with ceranib-2 as anticancer agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR201808578 2018-06-18
TR2018/08578 2018-06-18

Publications (2)

Publication Number Publication Date
WO2020018049A2 true WO2020018049A2 (en) 2020-01-23
WO2020018049A3 WO2020018049A3 (en) 2020-02-27

Family

ID=68732033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2019/050338 WO2020018049A2 (en) 2018-06-18 2019-05-16 Lipid nanoparticles loaded with ceranib-2 as anticancer agents

Country Status (2)

Country Link
EP (1) EP3806831A2 (en)
WO (1) WO2020018049A2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005965A2 (en) 2001-07-11 2003-01-23 Musc Foundation For Research Development Modulators of ceramidase and methods of use based thereon
WO2013178576A1 (en) 2012-05-28 2013-12-05 Fondazione Istituto Italiano Di Tecnologia Acid ceramidase inhibitors and their use as medicaments

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180369211A1 (en) * 2015-06-25 2018-12-27 Lysosomal Therapeutics Inc. Methods and compositions for treating neurodegenerative disorders
TR201702500A2 (en) * 2017-02-20 2017-07-21 Anadolu Ueniversitesi THE USE OF SERANIB-2 IN THE TREATMENT OF LUNG CANCER AND BREAST CANCER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005965A2 (en) 2001-07-11 2003-01-23 Musc Foundation For Research Development Modulators of ceramidase and methods of use based thereon
WO2013178576A1 (en) 2012-05-28 2013-12-05 Fondazione Istituto Italiano Di Tecnologia Acid ceramidase inhibitors and their use as medicaments

Also Published As

Publication number Publication date
WO2020018049A3 (en) 2020-02-27
EP3806831A2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
Vemuri et al. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies
Soni et al. Dual drug-loaded paclitaxel–thymoquinone nanoparticles for effective breast cancer therapy
Zu et al. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes
Ng et al. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa)
Badrzadeh et al. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells
CN101360422A (en) Oncogenic ras-specific cytotoxic compound and methods of usethereof
TW200942233A (en) Compositions of hydrophobic taxane derivatives and uses thereof
Shin et al. Nanoemulsion vehicles as carriers for follicular delivery of luteolin
Eid et al. Development of Coriandrum sativum oil nanoemulgel and evaluation of its antimicrobial and anticancer activity
Sheta et al. Cardioprotective efficacy of silymarin liquisolid in isoproterenol prompted myocardial infarction in rats
CN108484559A (en) Functionalized benzopyran compounds and application thereof
Silva et al. Improved in vitro antileukemic activity of all-trans retinoic acid loaded in cholesteryl butyrate solid lipid nanoparticles
Uziel et al. Full-spectrum cannabis extract microdepots support controlled release of multiple phytocannabinoids for extended therapeutic effect
Shikanov et al. Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant
Pandey et al. Ethosomes-a novelize vesicular drug delivery system
JP2019526590A (en) Compositions containing triterpenoids and their use for the treatment of optic neuropathy
Lu et al. The therapeutic roles of cinnamaldehyde against cardiovascular diseases
Geronimo et al. Development of S 75: R 25 bupivacaine‐loaded lipid nanoparticles functionalized with essential oils for treating melanoma
WO2020018049A2 (en) Lipid nanoparticles loaded with ceranib-2 as anticancer agents
CN101712671B (en) Daizeol aliphatic ester derivatives, preparing method and medical application thereof
Shi et al. Realgar nanoparticle-based microcapsules: preparation and in-vitro/in-vivo characterizations
CN105012234B (en) A kind of 1,7-bis(3,4-dimethoxyphenyl)-1,6-heptadiene-3,5-dione polymer micelle and preparation method thereof and medical usage
WO2020062951A1 (en) Compound and use thereof
Ismail et al. Design, Synthesis, and Biological Activity of Coniferyl Aldehyde Derivatives as Potential Anticancer and Antioxidant Agents
TWI593411B (en) Use of composition for manufacture of medicament for suppressing androgen receptor related function and treatment of androgen receptor related disease

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019812871

Country of ref document: EP

Effective date: 20210118

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812871

Country of ref document: EP

Kind code of ref document: A2