WO2020017988A1 - Аугмент для имплантации - Google Patents

Аугмент для имплантации Download PDF

Info

Publication number
WO2020017988A1
WO2020017988A1 PCT/RU2018/000482 RU2018000482W WO2020017988A1 WO 2020017988 A1 WO2020017988 A1 WO 2020017988A1 RU 2018000482 W RU2018000482 W RU 2018000482W WO 2020017988 A1 WO2020017988 A1 WO 2020017988A1
Authority
WO
WIPO (PCT)
Prior art keywords
augment
titanium
rectangular prism
implantation
zones
Prior art date
Application number
PCT/RU2018/000482
Other languages
English (en)
French (fr)
Inventor
Юрий Николаевич ЛОГИНОВ
Антон Игоревич ГОЛОДНОВ
Степан Игоревич СТЕПАНОВ
Сергей Владимирович БЕЛИКОВ
Артемий Александрович ПОПОВ
Original Assignee
Акционерное Общество "Наука И Инновации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Наука И Инновации" filed Critical Акционерное Общество "Наука И Инновации"
Priority to EA201992257A priority Critical patent/EA201992257A1/ru
Priority to PCT/RU2018/000482 priority patent/WO2020017988A1/ru
Priority to RU2018147569A priority patent/RU2018147569A/ru
Publication of WO2020017988A1 publication Critical patent/WO2020017988A1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones

Definitions

  • the proposed object relates to the field of traumatology and orthopedics, and more specifically to the field of creating designs of implants, preferably from titanium alloys made by additive technology.
  • implants used in traumatology and orthopedics which are rod systems and made of titanium or titanium alloys by casting or rolling. They are used mainly for prosthetics of the knee joints.
  • the structure of titanium casting or rolling is a solid (non-porous) metal obtained by casting in vacuum arc remelting furnaces and subsequent pressure treatment, including pressing, forging and rolling, and, if necessary, hot stamping.
  • the disadvantage of these implant structures is the absence of pores that can perform several functions. Firstly, the presence of pores reduces the mass of the implant, bringing it closer to the mass of bone material. Secondly, the specific architecture of the location of the pores allows for improved compatibility with bone due to the growth of bone tissue in the pore space. Thirdly, porous structures provide a more acceptable level of physical and mechanical properties for implants: elasticity, damped TM, etc.
  • the patents US2017252165 and RU2576610 proposed a group of inventions in which the porous structure of the implant contains a number of branches, each branch having a first end, a second end and a continuous elongated body between said first and second ends, said body having a thickness and length; and contains a number of nodes, moreover each node contains the intersection of one of the ends of the first branch with the body of the second branch, while in each node no more than two branches intersect.
  • An implant of this design thereby has open porosity, i.e. all its pores communicate with the external environment either by themselves or through neighboring pores.
  • Patents provide for the creation of a surgical implant that provides improved bone compatibility and / or wear resistance.
  • the implant consists of surface and central areas. Moreover, the proportion of pore volume within the porous surface region is from 20 to 50%.
  • the pores are interconnected and substantially uniformly distributed within the porous surface region. At least some of the pores have a size in the range from 100 to about 750 microns.
  • the porous surface region has a thickness of at least about 1 mm, and preferably from about 2 to about 5 mm.
  • the core region has a density of 0.7 to 1.0 of the theoretical density.
  • the core region and / or porous surface region are made of titanium, commercial grade titanium, stainless steel, titanium-based alloys, titanium-aluminum-vanadium alloys, titanium-aluminum-niobium alloys, or cobalt-chromium alloys.
  • the core region and / or porous surface region are made of alloys Ti-6A1-4V, Ti-6Al-7Nb, Stellite 211 or stainless steel 316L.
  • a porous biocompatible metal part (orthopedic implant) contains a metal matrix with pores with other material to be extracted. Recoverable material is removed before sintering the first powder metal.
  • the porosity is from 50% to 90%.
  • the disadvantage of this analogue is the irregular appearance of pores and unevenly distributed porosity.
  • the implant has a porous part, which is determined by the set of solid areas where the material is present, and the remaining set of pore areas where the material is absent, the location of at least most of the multiplicity of solid areas is determined by one or more mathematical functions.
  • the nature of the porous part can be systematically changed by changing one or more constants in the mathematical functions, and the part is performed by the process of manufacturing solid free forms.
  • the implant can be represented as a cellular body, the nodes of which are part of stereographic polygons that repeat crystal lattices, for example, diamond.
  • Known bone augment according to patent RU174437, which includes curved and flat surfaces, while the flat surfaces are made porous, and the curved is polished, and two through holes for mounting screws are made so that the screw caps are flush with the polished surface.
  • the result of using augment is to increase the survival rate of the prosthesis element by eliminating rejection and additional trauma to surrounding tissues.
  • the curved augment surface forming the articular surface is polished, which ensures good sliding of the friction pair in the joint.
  • augment is a direct substitute for the joint, and not an implant to replace a bone defect.
  • the closest analogue to the claimed object is the object described in the source. It is an augment for implantation, made in the form of a rectangular prism, bounded by faces and edges, and having an internal structure in the form of a volumetric lattice with the arrangement of nodes at the vertices of elementary geometric shapes, for example, a cube.
  • a volumetric lattice with the arrangement of nodes at the vertices of elementary geometric figures allows to reduce the elastic modulus of the implant and create conditions for the growth of bone tissue through the through channels formed by the lattice cells.
  • FIG. 1 shows the structure of augment by the closest analogue. It can be seen from the figure that thin branches of the lattice extend onto the surface of the faces, which can easily be broken even with a small force.
  • the objective is to increase the strength properties of the implant.
  • the proposed augment for implantation is made in the form of a rectangular prism, limited by faces and edges. It has an internal structure in the form of a volumetric lattice with the arrangement of nodes at the vertices of elementary geometric shapes.
  • the augment is characterized in that along the edges of the rectangular prism connecting the faces of the rectangular prism, zones of solid material are made.
  • zones of solid material make it possible to increase the strength of the implant structure as a whole, since solid material has a clearly higher strength than cellular, made in the form of a spatial lattice.
  • this design allows you to save the conditions for the germination of bone tissue through the internal structure of the spatial lattice.
  • the zones of solid material are in the form of a rod of square cross-section. This shape allows you to save the configuration of the ribs of the implant as a rectangular prism.
  • Augment differs in that it is made of titanium or a titanium alloy. This allows it to be made of material recommended by the standards for implantation purposes. By changing the parameters of the spatial lattice, it is possible to reduce the elastic modulus of the material in the range of 4 ... 30 GPa, which brings the object closer to the parameters of the human bone in terms of elastic properties.
  • Figure 1 shows the structure of augment, made according to the recommendations of the closest analogue.
  • Fig.2 shows a General view of the augment of the proposed design
  • Fig. Figure 3 shows the same augment deployed to show the channels created by the lattice structure in the light.
  • FIG. 4 shows the augment of the proposed design, made by the additive method of 3D printing from titanium powder.
  • the augment for implantation is made in the form of a rectangular prism 1 (Fig. 2), limited by faces 2 and ribs 3. It has an internal structure in the form of a volumetric lattice 4 (Fig. 3) with the arrangement of nodes at the vertices of elementary geometric figures, in this case, a cube . The presence of the lattice ensures the existence of channels 5 for germination of bone tissue.
  • zones of solid material 6 are made (Fig. 2).
  • the presence of zones of solid material makes it possible to increase the strength of the implant structure as a whole, since solid material has a clearly higher strength than cellular, made in the form of a spatial lattice.
  • this design allows you to save the conditions for the germination of bone tissue through the internal structure of the spatial lattice.
  • the zones of solid material are in the form of a rod of square cross-section.
  • FIG. 4 is a photograph of augment, it was obtained by the additive method of 3D - printing of titanium powder.
  • the implant augment can be made of titanium or a titanium alloy. In the latter case, it is possible to obtain higher strength properties.
  • Structural strength can change significantly, since the non-porous design of the rods has a significantly higher temporary resistance than a spatial lattice.
  • s B -p 200 MPa [17].
  • a nominal pore size of 500 ⁇ m 500 ⁇ m
  • P 0 s B o * a * b, where a b are the sides of the rectangular prism.
  • the tensile strength of the titanium alloy for medical use Ti- 6A1-4V ELI (extra low interstitials) compared with the tensile strength of titanium Grade 1 ELI will be higher, but its ductility will be lower. Depending on the requirements, you can make a choice material. But in both cases, the strength will be higher when using an implant of the claimed design.
  • the technical result when applying the proposed augment design is to increase the strength of the implant.

Abstract

Предлагаемый объект относится к области создания конструкций имплантатов, предпочтительно, из титановых сплавов, изготавливаемых методами аддитивных технологий. Аугмент для имплантации выполнен в виде прямоугольной призмы, ограниченной гранями и ребрами, и имеющей внутреннюю структуру в виде объемной решетки с расположением узлов в вершинах элементарных геометрических фигур. Вдоль ребер прямоугольной призмы, соединяющих грани прямоугольной призмы, выполнены зоны сплошного материала. Зоны сплошного материала имеют форму стержней квадратного поперечного сечения. Аугмент для имплантации выполнен из титана или титанового сплава.

Description

АУГМЕНТ ДЛЯ ИМПЛАНТАЦИИ
Предлагаемый объект относится к области травматологии и ортопедии, а точнее к области создания конструкций имплантатов, предпочтительно, из титановых сплавов, изготавливаемых методами аддитивных технологий.
Известны конструкции имплантатов, применяемых в травматологии и ортопедии, представляющие собой стержневые системы и изготовленные из титана или титановых сплавов методом литья или прокатки. Они применяются, в основном, для протезирования коленных суставов. Структура титанового литья или проката представляет собой сплошной (беспористый) металл, получаемый методом отливки в печах вакуумно- дугового переплава и последующей обработкой давлением, включая прессование, ковку и прокатку, а при необходимости и горячую объемную штамповку.
Недостатком упомянутых структур имплантатов является отсутствие пор, которые могут выполнять несколько функций. Во-первых, наличие пор снижает массу имплантата, приближая ее к массе костного материала. Во- вторых, определенная архитектура расположения пор позволяет обеспечить улучшение совместимости с костью за счет прорастания костной ткани в поровое пространство. В-третьих, пористые структуры обеспечивают более приемлемый для имплантатов уровень физико-механических свойств: упругости, демпфируемое™ и т.д..
Такой недостаток устранен в других технических объектах, которые представляют собой пористые структуры, создаваемые тем или иным способом [6].
Например, патентами US2017252165 и RU2576610 предложена группа изобретений, в которой пористая структура имплантата содержит ряд ветвей, причем каждая ветвь имеет первый конец, второй конец и непрерывное удлиненное тело между указанными первым и вторым концами, причем указанное тело имеет толщину и длину; и содержит ряд узлов, причем каждый узел содержит пересечение одного из концов первой ветви с телом второй ветви, при этом в каждом узле пересекаются не более двух ветвей.
Имплантат такой конструкции имеет тем самым открытую пористость, т.е. все его поры сообщаются с внешней средой либо сами по себе, либо через соседние поры.
Пористые структуры имплантатов неоднократно усложнялись различными методами. Патентами предусмотрено создание хирургического имплантата, обеспечивающего улучшение совместимости с костью и/или устойчивости к износу. Имплантат состоит из поверхностной и центральной областей. При этом доля объема пор в пределах пористой поверхностной области составляет от 20 до 50%. Поры взаимно соединены и, по существу, равномерно распределены в пределах пористой поверхностной области. По меньшей мере некоторые из пор имеют размер в диапазоне от 100 до примерно 750 мкм. Пористая поверхностная область имеет толщину по меньшей мере примерно 1 мм, а предпочтительно - от примерно 2 до примерно 5 мм. Различные области в пределах пористой поверхностной области имеют различное распределение размеров пор и/или различную долю объема пор, так что в пределах пористой поверхностной области существует градиент размеров пор и/или доли объема пор. Область сердцевины имеет плотность от 0,7 до 1,0 от теоретической плотности. Область сердцевины и/или пористая поверхностная область выполнены из титана, титана коммерческой чистоты, нержавеющей стали, сплавов на основе титана, титан-алюминий-ванадиевых сплавов, титан-алюминий- ниобиевых сплавов или сплавов на основе кобальта-хрома. Область сердцевины и/или пористая поверхностная область выполнены из сплавов Ti- 6A1-4V, Ti-6Al-7Nb, Stellite 211 или нержавеющей стали 316L.
В соответствии с патентом US7674426 пористая биосовместимая металлическая деталь (ортопедический имплантат) содержит металлическую матрицу с порами с извлекаемым другим материалом. Извлекаемый материал удаляют перед спеканием первого порошкового металла. В конечном варианте изготовления пористость составляет от 50% до 90%. Недостатком аналога является нерегулярный вид пор и неравномерно распределенная пористость.
По патенту US2011125284 имплантат имеет пористую часть, которая определяется множеством твердых областей, где присутствует материал, и оставшейся множественностью областей пор, где материал отсутствует, местоположения, по меньшей мере, большей части множественности твердых областей определяется одной или несколькими математическими функциями. Характер пористой части может быть систематически изменен путем изменения одной или нескольких констант в математических функциях, а часть выполняется процессом изготовления твердых свободных форм. С помощью упомянутых математических функций имплантат может быть представлен как ячеистое тело, узлы которого входят в состав стереографических многоугольников, повторяющих кристаллические решетки, например, алмаза.
Исследователи из голландских организаций (Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology (TU Delft), Department of Orthopedics and Department of Rheumatology, University Medical Center Utrecht, Department of Metallurgy and Materials Engineering, KU Leuven) опубликовали результаты изучения аддитивно изготовленных пористых биоматериалов с открытой пористостью и порами, изготовленными из шести типов ячеек и определили их механические и морфологические свойства. Эти типы ячеек: усеченный куб, усеченный кубооктаэдр, ромбокубооктаэдр и ромбический додекаэдр. Изменение формы элементарной ячейки позволяет регулировать уровень физико-механических характеристик, в том числе, модуля упругости. Таким образом, разработка новых структур пористых имплантатов ведется по пути изменения конфигурации ячеистого строения. Недостатком известных технических решений является создание такой архитектуры ячеек, для которых характерна открытая пористость. Из-за этого упругость имплантата зависит только от упругости системы ячеек и от упругости материала, из которого они изготовлены.
Известен аугмент костной ткани по патенту RU174437, который включает криволинейную и плоские поверхности, при этом плоские поверхности выполнены пористыми, а криволинейная - полированной, и два сквозных отверстия для крепежных винтов, выполненных таким образом, что шляпки винтов располагаются заподлицо с полированной поверхностью. Результатом применения аугмента является повышение приживаемости элемента протеза за счет исключения отторжения и дополнительного травмирования окружающих тканей. Криволинейная поверхность аугмента, образующая суставную поверхность, выполнена полированной, что обеспечивает хорошее скольжение пары трения в суставе. Таким образом, в данном случае аугмент является непосредственным заменителем сустава, а не имплантатом для замещения дефекта кости.
Метод замещения дефекта кости имплантатом на основе никель титанового сплава описан в патенте RU2161457. В нем же описан аугмент в виде цилиндрического пористого имплантата из титан-никелида марки ТН- 1П. Однако во многих случаях возникает необходимость применять не цилиндрические имплантаты, а призматические.
Наиболее близким аналогом к заявляемому объекту является объект, описанный в источнике. Он представляет собой аугмент для имплантации, выполненный в виде прямоугольной призмы, ограниченной гранями и ребрами, и имеющей внутреннюю структуру в виде объемной решетки с расположением узлов в вершинах элементарных геометрических фигур, например, куба. Наличие объемной решетки с расположением узлов в вершинах элементарных геометрических фигур позволяет снизить модуль упругости имплантата и создать условия для прорастания костных тканей через сквозные каналы, образованные ячейками решетки. Однако при выполнении призмы, имеющей внутреннюю структуру в виде объемной решетки, сама структура получается слишком пористой, в результате снижается прочность конструкции в целом, что является недостатком наиболее близкого аналога. На фиг. 1 показана структура аугмента по ближайшему аналогу. Из рисунка видно, что на поверхность граней выходят тонкие ветви решетки, которые легко могут быть сломаны при даже небольшом силовом воздействии.
Задачей является повышение прочностных свойств имплантата.
Предлагаемый аугмент для имплантации выполнен в виде прямоугольной призмы, ограниченной гранями и ребрами. Он имеет внутреннюю структуру в виде объемной решетки с расположением узлов в вершинах элементарных геометрических фигур.
Аугмент отличается тем, что вдоль ребер прямоугольной призмы, соединяющих грани прямоугольной призмы, выполнены зоны сплошного материала. Наличие зон сплошного материала позволяет повысить прочность конструкции имплантата в целом, поскольку сплошной материал имеет заведомо более высокую прочность, чем ячеистый, выполненный в виде пространственной решетки. Вместе с тем, такая конструкция позволяет сохранить условия для прорастания костных тканей через внутреннюю структуру пространственной решетки.
Зоны сплошного материала имеют форму стержня квадратного поперечного сечения. Такая форма позволяет сохранить конфигурацию ребер имплантата как прямоугольной призмы.
Аугмент отличается тем, что он выполнен из титана или титанового сплава. Это позволяет изготовить его из материала, рекомендованного стандартами для целей имплантации. Изменяя параметры пространственной решетки, можно добиться снижения модуля упругости материала в интервале 4...30 ГПа, что приближает по упругим свойствам объект к параметрам кости человека.
На фиг.1 показана структура аугмента, выполненная по рекомендациям наиболее близкого аналога. На фиг.2 приведен общий вид аугмента предлагаемой конструкции, на фиг. 3 показан тот же аугмент, развернутый для показа каналов, созданных структурой решетки, на просвет.
На фиг. 4 показан аугмент предлагаемой конструкции, выполненный аддитивным методом 3D - печати из титанового порошка.
Аугмент для имплантации выполнен в виде прямоугольной призмы 1 (фиг. 2), ограниченной гранями 2 и ребрами 3. Он имеет внутреннюю структуру в виде объемной решетки 4 (фиг. 3) с расположением узлов в вершинах элементарных геометрических фигур, в данном случае, куба. Наличие решетки обеспечивает существование каналов 5 для прорастания костных тканей.
Вдоль ребер прямоугольной призмы, соединяющих грани прямоугольной призмы, выполнены зоны сплошного материала 6 (фиг. 2). Наличие зон сплошного материала позволяет повысить прочность конструкции имплантата в целом, поскольку сплошной материал имеет заведомо более высокую прочность, чем ячеистый, выполненный в виде пространственной решетки. Вместе с тем, такая конструкция позволяет сохранить условия для прорастания костных тканей через внутреннюю структуру пространственной решетки.
Зоны сплошного материала имеют форму стержня квадратного поперечного сечения. Такая конструкция показана на фиг. 4, здесь приведена фотография аугмента, он получен аддитивным методом 3D - печати из титанового порошка.
Аугмент для имплантации может быть выполнен из титана или титанового сплава. В последнем случае можно добиться получения более высоких прочностных свойств.
Практика имплантации в области ортопедии показывает, что размеры прямоугольной призмы должны находиться в интервале 10...20 мм. При этом, если структура пространственной решетки будет ограничена размерами на 10% меньше, чем при отсутствии зон сплошного материала, то площадь б сечения, через которую должна прорастать костная ткань, ощутимо не изменится.
С учетом парности стержней квадратного поперечного сечения толщина зон сплошного материала может составлять 0,1*(10...20)/2 = (0,5...1) мм. Прочность конструкции может измениться ощутимо, так как беспористая конструкция стержней обладает значительно более высоким временным сопротивлением, чем пространственная решетка.
Это доказывается следующим расчетом. Предел прочности титана марки Grade 1 ELI (для медицинского применения) равен sB-p = 200 МПа [17]. При изготовлении из него аугмента с применением пространственной решетки Ti с диаметром перемычек решетки 120 мкм, номинальным размером пор 500 мкм и при достижении пористости 85 % предел прочности будет снижен до sBo = 13 МПа [18]. При испытании на сжатие, принятым в практике аттестации ячеистых структур [19] часть нагрузки будет воспринята пространственной решеткой. Усилие разрушения такой конструкции составит Р0 = sBo *a*b, где а b - стороны прямоугольной призмы.
При выполнении зон сплошного материала по контуру объемной решетки, усилие разрушения в первом приближении будет складываться из Ро и усилия разрушения контура Р\ = 0,1 *4*sBtΐ *a*b. Увеличение усилия разрушения составит величину ( 0 + Pi) / Ро = 1 + Pi / 0 = 1 + 0,1*4*авТ1 /s„o = 1 + 0,1 *4*200 /13 = 6,15. Здесь показано, что несмотря на малую площадь усиленного контура имплантата, повышение прочности становится ощутимо, поскольку прочность сплошного титана значительно, в 200/13 = 15 раз, больше прочности пространственной решетки.
Предел прочности титанового сплава для медицинского применения Ti- 6A1-4V ELI (extra low interstitials) по сравнению с пределом прочности титана Grade 1 ELI окажется выше, но пластичность его окажется ниже. В зависимости от предъявляемых требований можно осуществить выбор материала. Но в том и другом случаях прочность окажется выше при применении имплантата заявляемой конструкции.
Техническим результатом при применении предлагаемой конструкции аугмента является повышение прочности имплантата.

Claims

Формула изобретения
1. Аугмент для имплантации, выполненный в виде прямоугольной призмы, ограниченной гранями и ребрами, и имеющей внутреннюю структуру в виде объемной решетки с расположением узлов в вершинах элементарных геометрических фигур, отличающийся тем, что вдоль ребер прямоугольной призмы, соединяющих грани прямоугольной призмы, выполнены зоны сплошного материала.
2. Аугмент для имплантации по п.1, отличающийся тем, что зоны сплошного материала имеют форму стержней квадратного поперечного сечения.
3. Аугмент для имплантации по п.1, отличающийся тем, что он выполнен из титана или титанового сплава.
PCT/RU2018/000482 2018-07-19 2018-07-19 Аугмент для имплантации WO2020017988A1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EA201992257A EA201992257A1 (ru) 2018-07-19 2018-07-19 Аугмент для имплантации
PCT/RU2018/000482 WO2020017988A1 (ru) 2018-07-19 2018-07-19 Аугмент для имплантации
RU2018147569A RU2018147569A (ru) 2018-07-19 2018-07-19 Аугмент для имплантации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2018/000482 WO2020017988A1 (ru) 2018-07-19 2018-07-19 Аугмент для имплантации

Publications (1)

Publication Number Publication Date
WO2020017988A1 true WO2020017988A1 (ru) 2020-01-23

Family

ID=69164564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000482 WO2020017988A1 (ru) 2018-07-19 2018-07-19 Аугмент для имплантации

Country Status (3)

Country Link
EA (1) EA201992257A1 (ru)
RU (1) RU2018147569A (ru)
WO (1) WO2020017988A1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206924B1 (en) * 1999-10-20 2001-03-27 Interpore Cross Internat Three-dimensional geometric bio-compatible porous engineered structure for use as a bone mass replacement or fusion augmentation device
WO2001028461A2 (en) * 1999-10-20 2001-04-26 Sdgi Holdings, Inc. Impacted orthopedic bone support implant
US20060241776A1 (en) * 2005-04-21 2006-10-26 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US20060271201A1 (en) * 2005-05-25 2006-11-30 Biomet Manufacturing Corp. Porous ceramic structure containing biologics
US8444699B2 (en) * 2010-02-18 2013-05-21 Biomet Manufacturing Corp. Method and apparatus for augmenting bone defects
US20130218282A1 (en) * 2012-02-08 2013-08-22 Jessee Hunt Prosthetic implant for ball and socket joints and method of use

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206924B1 (en) * 1999-10-20 2001-03-27 Interpore Cross Internat Three-dimensional geometric bio-compatible porous engineered structure for use as a bone mass replacement or fusion augmentation device
WO2001028461A2 (en) * 1999-10-20 2001-04-26 Sdgi Holdings, Inc. Impacted orthopedic bone support implant
US20060241776A1 (en) * 2005-04-21 2006-10-26 Biomet Manufacturing Corp. Method and apparatus for use of porous implants
US20060271201A1 (en) * 2005-05-25 2006-11-30 Biomet Manufacturing Corp. Porous ceramic structure containing biologics
US8444699B2 (en) * 2010-02-18 2013-05-21 Biomet Manufacturing Corp. Method and apparatus for augmenting bone defects
US20130218282A1 (en) * 2012-02-08 2013-08-22 Jessee Hunt Prosthetic implant for ball and socket joints and method of use

Also Published As

Publication number Publication date
EA201992257A1 (ru) 2021-01-29
RU2018147569A (ru) 2020-06-29
RU2018147569A3 (ru) 2020-06-29

Similar Documents

Publication Publication Date Title
Murr Open-cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting
Shayesteh Moghaddam et al. Metals for bone implants: Safety, design, and efficacy
Pei et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study
US20200046512A1 (en) Interbody Implants and Optimization Features Thereof
Matassi et al. Porous metal for orthopedics implants
US9205176B2 (en) Anisotropic porous scaffolds
JP2023112051A (ja) 多孔質脊椎固定インプラント
US20040049270A1 (en) Bone graft device
US20080288083A1 (en) Osseointegration Implant
CN204581484U (zh) 一种具有三维贯通多孔结构的3d打印骨螺钉
CN108514465B (zh) 填充有人工骨的椎间融合器
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
Shen et al. A numerical investigation of porous titanium as orthopedic implant material
EP3481571A1 (en) Porous metal devices
Zhao et al. Ti-6Al-4V lattice structures fabricated by electron beam melting for biomedical applications
Yaqoob et al. Novel method for the production of titanium foams to reduce stress shielding in implants
US11786376B2 (en) Particulate biomaterial containing particles having geodesic forms, method of making the same and using for filling or bone tissue substitution
WO2020017988A1 (ru) Аугмент для имплантации
Frank et al. Modern porous coatings in orthopaedic applications
RU2689794C1 (ru) Пористая структура для медицинских имплантатов
RU209141U1 (ru) Аугмент для имплантации
CN107569306B (zh) 一种脊柱植入体
Chen et al. Fabrication methods of porous tantalum metal implants for use as biomaterials
RU210802U1 (ru) Эндопротез вертлужного компонента тазобедренного сустава
RU2708871C1 (ru) Ячеистая структура имплантатов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926907

Country of ref document: EP

Kind code of ref document: A1