WO2020017652A1 - Method for producing protein fiber - Google Patents

Method for producing protein fiber Download PDF

Info

Publication number
WO2020017652A1
WO2020017652A1 PCT/JP2019/028547 JP2019028547W WO2020017652A1 WO 2020017652 A1 WO2020017652 A1 WO 2020017652A1 JP 2019028547 W JP2019028547 W JP 2019028547W WO 2020017652 A1 WO2020017652 A1 WO 2020017652A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
solvent
mass
spinning
amino acid
Prior art date
Application number
PCT/JP2019/028547
Other languages
French (fr)
Japanese (ja)
Inventor
弘放 ▲遅▼
▲郁▼▲群▼ ▲荘▼
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Publication of WO2020017652A1 publication Critical patent/WO2020017652A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • D01F4/02Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Definitions

  • the present invention relates to a method for producing a protein fiber.
  • a wet spinning method and a dry-wet spinning method in which a spinning solution discharged from a nozzle is coagulated in a coagulation bath to form fibers are known.
  • the wet spinning method and the dry-wet spinning method are also used when producing protein fibers containing protein as a main component (for example, see Patent Document 1).
  • a protein solution in which a protein is dissolved in a solvent is used as a dope solution (spinning solution), and the dope solution is coagulated from a spinneret into a desolvation bath.
  • a protein fiber is obtained by extruding a solvent from a dope solution and forming a fiber to form an undrawn yarn (for example, see Patent Document 2).
  • undrawn yarn of synthetic fibers is thick, and its cross-sectional shape is easily broken.
  • Known solvents for dissolving proteins include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and formic acid.
  • lower alcohols such as methanol, ethanol, and 2-propanol are widely used as coagulation bath solutions in order to remove the solvent and form fibers.
  • unstretched yarns are not arranged in the order of the molecules constituting the fibers, and their strength and physical properties are unlikely to be constant. Therefore, it is possible to impart appropriate strength and performance to the yarn by performing drawing. For example, when drawing a protein fiber, the higher the drawing ratio, the higher the drawing stress.
  • an object of the present invention is to provide a method for producing a protein fiber having excellent spinning stability and drawing stability.
  • the present invention provides the following [1] to [21].
  • [1] Introducing a spinning solution containing the protein, the first solvent, the second solvent and optionally a solubilizer into a coagulation bath solution containing a third solvent and optionally a solubilizer to coagulate the protein,
  • the method for producing a protein fiber wherein the second solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  • the third solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  • the first solvent is at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, hexafluoroisopropanol, hexafluoroacetone, formic acid, and water; However, the method according to [1] or [2], wherein when the first solvent is water, the spinning dope further contains a dissolution accelerator. [4] The method according to any one of [1] to [3], wherein the lower alcohol is methanol or ethanol. [5] The method according to any one of [1] to [4], wherein the protein is a structural protein. [6] The method according to [5], wherein the structural protein is fibroin.
  • a method for producing a protein fiber comprising a step of introducing a stock spinning solution containing a protein and a first solvent into a coagulation bath solution containing a second solvent to coagulate the protein, wherein the protein has an average particle diameter of 4%.
  • a method for producing a protein fiber which is dispersed in a stock spinning solution in a particle shape of 1515 nm.
  • the second solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  • the third solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  • the first solvent is at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, hexafluoroisopropanol, hexafluoroacetone, formic acid, and water;
  • the method according to any one of [13] to [15], wherein when the first solvent is water, the spinning dope further contains a dissolution accelerator.
  • the structural protein is fibroin.
  • the method for producing protein fibers of the present invention has excellent fiber-forming ability (yarn-forming properties) for spider silk proteins.
  • the protein fiber production method of the present invention can secure a fiber-forming ability (yarn-forming property), and increases the maximum draw ratio that can be wound between a nozzle and a roller, as compared with the conventional spinning method. It is also possible to adopt various yarn-making conditions. According to the method for producing a protein fiber of the present invention, a protein fiber having excellent stress can be provided. Further, since the draw ratio can be increased, thinner and longer protein fibers can be produced.
  • excellent spinning stability means that when an undrawn protein fiber is obtained from a spinning dope, yarn breakage is unlikely to occur.
  • excellent stretching stability means that a yarn is not easily broken when unstretched protein fiber is stretched.
  • the method for producing a protein fiber includes a step of introducing a stock spinning solution containing a protein, a first solvent, and a second solvent into a coagulation bath to coagulate the protein.
  • the spinning dope may optionally further contain a dissolution accelerator.
  • the coagulation bath solution contains a third solvent, and may optionally contain a dissolution accelerator.
  • the spinning solution used in the present embodiment contains a protein which is a main raw material of the protein fiber, a first solvent, and a second solvent.
  • the protein is not particularly limited, and may be produced by a microorganism or the like by genetic recombination technology, may be chemically synthesized, or may be obtained by purifying a naturally occurring protein. It may be something.
  • the term “comprising as the main component” means that at least 50% by mass of the total mass of the protein fiber is protein.
  • the mass ratio of the protein in the protein fiber may be 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, and 90% by mass or more.
  • the protein may be, for example, a structural protein or an artificial protein derived from the structural protein.
  • a structural protein refers to a protein that forms or retains a structure, form, and the like in a living body. Examples of the structural protein include fibroin, keratin, collagen, elastin, resilin and the like. Preferred proteins are fibroin or artificial proteins derived from fibroin.
  • One of the above-mentioned structural proteins and artificial proteins derived from the structural proteins can be used alone or in combination of two or more.
  • the fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin.
  • the structural protein may be silk fibroin, spider silk fibroin or a combination thereof.
  • the proportion of silk fibroin may be, for example, 40 parts by weight or less, 30 parts by weight or less, or 10 parts by weight or less based on 100 parts by weight of spider silk fibroin.
  • Silk fibroin may be sericin-removed silk fibroin, sericin-unremoved silk fibroin, or a combination thereof. Sericin-removed silk fibroin is purified by removing sericin covering silk fibroin and other fats. The silk fibroin purified in this manner is preferably used as a lyophilized powder. Silk fibroin without sericin is unpurified silk fibroin from which sericin and the like have not been removed.
  • the spider silk fibroin may be a natural spider silk protein or an artificial protein derived from a natural spider silk protein.
  • Natural spider silk proteins include, for example, large spinal cord marker thread proteins, weft thread proteins, and small bottle gland proteins. Since the large spinal cord marker thread protein has a repetitive region consisting of a crystalline region and an amorphous region (also referred to as an amorphous region), it has both high stress and elasticity. On the other hand, the weft protein has a feature that it does not have a crystalline region but has a repeating region composed of an amorphous region. The weft protein has a lower stress but a higher elasticity than the large spinal canal thread protein.
  • the large spinal cord marker thread protein is produced in the large ampullate gland of spiders, and also has the characteristic of excellent toughness.
  • large spinal cord marker thread proteins include large ampullate gland spidroins MaSp1 and MaSp2 derived from the American spider (Nephila laclavipes), and ADF3 and ADF4 derived from Araneus diadematas.
  • ADF3 is one of the two major bookmarker thread proteins of the Japanese spider. Artificial proteins derived from natural spider silk proteins may be artificial proteins derived from these bookmarked silk proteins.
  • An artificial protein derived from ADF3 is relatively easy to synthesize and has excellent properties in terms of strength and elongation and toughness.
  • weft protein is produced in the flagellar gland of spiders.
  • a flagellated silk protein (flagelliform @ silk @ protein) derived from the American spider (Nephila @ clavipes) can be mentioned.
  • the artificial protein derived from the natural spider silk protein may be a recombinant spider silk protein.
  • the recombinant spider silk protein include a mutant, analog or derivative of a natural spider silk protein.
  • One suitable example of such an artificial protein is a recombinant spider silk protein of a large spinal canal silk protein.
  • recombinant spider silk proteins have been produced in several heterologous protein production systems, and their production methods use transgenic goats, transgenic silkworms, or recombinant plant or mammalian cells.
  • the recombinant spider silk protein can be obtained, for example, by deleting one or more of the sequences encoding the (A) n motif from the cloned natural fibroin gene sequence. Further, for example, it is obtained by designing an amino acid sequence corresponding to deletion of one or more (A) n motifs from the amino acid sequence of naturally occurring fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence. You can also. In any case, in addition to the modification corresponding to the deletion of the (A) n motif from the amino acid sequence of naturally occurring fibroin, one or more amino acid residues are further substituted, deleted, inserted and / or added. Amino acid sequence modification corresponding to the above may be performed.
  • Substitution, deletion, insertion and / or addition of amino acid residues can be performed by methods well known to those skilled in the art, such as partial specific mutagenesis. Specifically, Nucleic Acid Res. 10, 6487 (1982), and Methods in Enzymology, 100, 448 (1983).
  • Examples of the artificial spider silk protein derived from the silkworm silk protein and the silkworm silk protein derived from silkworm silk include a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m.
  • A represents an alanine residue
  • n represents 2 to 27, 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to It may be an integer of 16, 8 to 16, or 10 to 16.
  • the ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, and is 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more.
  • REP indicates an amino acid sequence composed of 2 to 200 amino acid residues.
  • m represents an integer of 2 to 300.
  • the total number of glycine (Gly), serine (Ser) and alanine (Ala) residues contained in the amino acid sequence represented by Formula 1 is preferably at least 40%, more preferably at least 60%, based on the total number of amino acid residues. Or it may be 70% or more.
  • the plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences.
  • a plurality of REPs may have the same amino acid sequence or different amino acid sequences.
  • Specific examples of the artificial protein derived from the large spinal cord marker thread include a protein containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2.
  • a protein containing a domain sequence represented by Formula 2: [REP2] o (wherein, REP2 is composed of Gly-Pro-Gly-Gly-X X represents an amino acid sequence, and X represents one amino acid selected from the group consisting of alanine (Ala), serine (Ser), tyrosine (Tyr) and valine (Val), and o represents an integer of 8 to 300.
  • Examples of the polypeptide derived from the weft protein include a polypeptide containing 10 or more, preferably 20 or more, more preferably 30 or more units of the amino acid sequence represented by the formula 2: REP2.
  • the molecular weight is preferably 500 kDa or less, more preferably 300 kDa or less, and still more preferably, from the viewpoint of productivity. Is 200 kDa or less.
  • Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 3.
  • the amino acid sequence represented by SEQ ID NO: 3 is obtained from the N-terminus corresponding to the repeat portion and the motif of the partial sequence of the flagellar silk protein of the American spider spider obtained from the NCBI database (NCBI accession number: AAF36090, GI: 7106224).
  • PR1 sequence The amino acid sequence from residues 1220 to 1659 (referred to as PR1 sequence) and the partial sequence of the flagellar silk protein of the American spider spider obtained from the NCBI database (NCBI accession number: AAC38847, GI: 2833649)
  • a C-terminal amino acid sequence from the 816th residue to the 907th residue from the C-terminus is joined, and the amino acid sequence represented by SEQ ID NO: 4 (tag sequence and hinge sequence) is added to the N-terminus of the joined sequence; is there.
  • a protein derived from collagen for example, a protein containing a domain sequence represented by Formula 3: [REP3] p (where p represents an integer of 5 to 300.
  • REP3 is Gly-X- An amino acid sequence composed of Y is shown, and X and Y each represent an arbitrary amino acid residue other than glycine (Gly).
  • a plurality of REP3s may have the same amino acid sequence or different amino acid sequences.) Can be mentioned. Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 5.
  • the amino acid sequence represented by SEQ ID NO: 5 corresponds to a repeat portion and a motif of a partial sequence of human collagen type 4 obtained from the NCBI database (Accession number of GenBank of NCBI: CAA56335.1, GI: 3702452).
  • the amino acid sequence represented by SEQ ID NO: 6 (tag sequence and hinge sequence) is added to the N-terminal of the amino acid sequence from residues 301 to 540.
  • REP4 As a protein derived from resilin, for example, a protein containing a domain sequence represented by Formula 4: [REP4] q (where, in Formula 4, q is an integer of 4 to 300.
  • REP4 is Ser-JJ) -Represents an amino acid sequence composed of -Tyr-Gly-U-Pro, wherein J represents an arbitrary amino acid residue, particularly an amino acid selected from the group consisting of aspartic acid (Asp), serine (Ser) and threonine (Thr)
  • U is an arbitrary amino acid residue, particularly an amino acid residue selected from the group consisting of proline (Pro), alanine (Ala), threonine (Thr) and serine (Ser).
  • a plurality of REP4s may have the same amino acid sequence or different amino acid sequences.
  • a protein containing the amino acid sequence represented by SEQ ID NO: 7 can be mentioned.
  • the amino acid sequence represented by SEQ ID NO: 7 replaces the threonine (Thr) at the 87th residue with serine (Ser) in the amino acid sequence of resilin (NCBI GenBank Accession No. NP 611157, Gl: 246654243), and
  • the amino acid sequence represented by SEQ ID NO: 13 (tag sequence) is located at the N-terminal of the amino acid sequence from the 19th residue to the 321st residue in the sequence obtained by replacing asparagine (Asn) at the 95th residue with aspartic acid (Asp). It has been added.
  • Proteins derived from elastin include, for example, NCBI GenBank accession numbers AAC98395 (human), I47076 (sheep), NP786966 (bovine) and other proteins having an amino acid sequence.
  • a protein containing the amino acid sequence represented by SEQ ID NO: 8 can be mentioned.
  • the amino acid sequence represented by SEQ ID NO: 8 corresponds to the amino acid sequence represented by SEQ ID NO: 6 (tag sequence) at the N-terminus of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank Accession No. AAC98395. And a hinge sequence).
  • Keratin-derived proteins include, for example, type I keratin of Capra hircus. Specific examples include a protein comprising the amino acid sequence represented by SEQ ID NO: 9 (the amino acid sequence of GenBank Accession No. ACY30466 of NCBI).
  • the protein contained in the protein fiber is, for example, a host transformed with an expression vector having a nucleic acid sequence encoding a desired protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing a nucleic acid.
  • the method for producing the nucleic acid encoding the desired protein is not particularly limited.
  • the nucleic acid can be produced by a method of amplifying and cloning by polymerase chain reaction (PCR) or the like using a gene encoding a natural structural protein, or a method of chemically synthesizing.
  • the method for chemically synthesizing nucleic acids is not particularly limited. For example, based on amino acid sequence information of structural proteins obtained from the NCBI web database or the like, AKTA ⁇ ⁇ ⁇ ⁇ oligopilotloplus 10/100 (GE Healthcare Japan)
  • the gene can be chemically synthesized by a method of linking the oligonucleotides automatically synthesized by the method such as PCR.
  • nucleic acid encoding a protein consisting of an amino acid sequence obtained by adding an initiation codon and an amino acid sequence consisting of a His10 tag to the N-terminus of the above amino acid sequence was synthesized. Is also good.
  • the regulatory sequence is a sequence that controls the expression of the recombinant protein in the host (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, and the like), and can be appropriately selected depending on the type of the host.
  • An inducible promoter that functions in a host cell and can induce the expression of a target protein may be used as the promoter.
  • An inducible promoter is a promoter that can control transcription by the presence of an inducer (expression inducer), the absence of a repressor molecule, or a physical factor such as an increase or decrease in temperature, osmotic pressure, or pH value.
  • the type of expression vector can be appropriately selected depending on the type of host, such as a plasmid vector, a virus vector, a cosmid vector, a fosmid vector, an artificial chromosome vector, and the like.
  • a plasmid vector a virus vector
  • a cosmid vector a fosmid vector
  • an artificial chromosome vector an artificial chromosome vector
  • those capable of autonomous replication in a host cell or integration into a host chromosome and containing a promoter at a position where a nucleic acid encoding a protein of interest can be transcribed are suitably used. .
  • any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells, and plant cells can be suitably used.
  • prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas.
  • microorganisms belonging to the genus Escherichia include, for example, Escherichia coli.
  • microorganisms belonging to the genus Brevibacillus include Brevibacillus agri.
  • Microorganisms belonging to the genus Serratia include, for example, Serratia requestifaciens and the like.
  • microorganisms belonging to the genus Bacillus include, for example, Bacillus subtilis.
  • Microorganisms belonging to the genus Microbacterium include, for example, Microbacterium ammonia phyllum.
  • Examples of microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatum.
  • Examples of the microorganism belonging to the genus Corynebacterium include Corynebacterium ammoniagenes.
  • Examples of microorganisms belonging to the genus Pseudomonas include Pseudomonas putida.
  • examples of a vector into which a nucleic acid encoding a target protein is introduced include, for example, pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSuex, pET22b, pCold, pUB110, pNCO2 (JP-A-2002-238569) and the like.
  • Examples of eukaryotic hosts include yeast and filamentous fungi (such as mold).
  • yeast include yeast belonging to the genus Saccharomyces, the genus Pichia, the genus Schizosaccharomyces, and the like.
  • filamentous fungi include filamentous fungi belonging to the genus Aspergillus, Penicillium, Trichoderma, and the like.
  • examples of a vector into which a nucleic acid encoding a desired protein is introduced include YEp13 (ATCC37115), YEp24 (ATCC37051), and the like.
  • a method for introducing the expression vector into the host cell any method can be used as long as it is a method for introducing DNA into the host cell.
  • a method using calcium ions [Proc. ⁇ Natl. ⁇ Acad. ⁇ Sci. USA, 69, 2110 (1972)], electroporation, spheroplast, protoplast, lithium acetate, competent, and the like.
  • a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, 2nd edition, and the like. .
  • the protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium.
  • the method of culturing the host in the culture medium can be performed according to a method usually used for culturing the host.
  • the desired recombinant protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium.
  • the method of culturing the host in the culture medium can be performed according to a method usually used for culturing the host.
  • the host is a prokaryote such as Escherichia coli or a eukaryote such as yeast, a culture medium containing a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the host, so that the host can be cultured efficiently. If so, either a natural medium or a synthetic medium may be used.
  • a prokaryote such as Escherichia coli or a eukaryote such as yeast
  • a culture medium containing a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the host, so that the host can be cultured efficiently. If so, either a natural medium or a synthetic medium may be used.
  • the carbon source may be any as long as the transformed microorganism can assimilate, for example, glucose, fructose, sucrose, and molasses containing these, carbohydrates such as starch and starch hydrolyzate, acetic acid and propionic acid, and the like. Organic acids and alcohols such as ethanol and propanol can be used.
  • the nitrogen source for example, ammonia, ammonium chloride, ammonium sulfate, ammonium salts of inorganic or organic acids such as ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
  • the inorganic salts for example, potassium (I) phosphate, potassium (II) phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate can be used.
  • ⁇ Cultivation of prokaryotes such as Escherichia coli or eukaryotes such as yeast can be performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is, for example, 15 to 40 ° C.
  • the culturing time is usually 16 hours to 7 days.
  • the pH of the culture medium during the culture is preferably maintained at 3.0 to 9.0.
  • the pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
  • antibiotics such as ampicillin and tetracycline may be added to the culture medium.
  • an inducer may be added to the medium as necessary.
  • lac promoter isopropyl- ⁇ -D-thiogalactopyranoside or the like is used.
  • indole acryl is used.
  • An acid or the like may be added to the medium.
  • the recombinant protein produced by the transformed host can be isolated and purified by a method usually used for isolating and purifying a protein. For example, when the protein is expressed in a dissolved state in the cells, after culturing, the host cells are collected by centrifugation, suspended in an aqueous buffer, and then sonicated with a sonicator, French press, and Manton Gaulin. The host cells are crushed with a homogenizer and a dynomill to obtain a cell-free extract.
  • a method commonly used for isolating and purifying proteins that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, an organic solvent Precipitation method, anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) -Sepharose, DIAION @ HPA-75 (manufactured by Mitsubishi Kasei), and cation using a resin such as S-Sepharose @ FF (manufactured by Pharmacia).
  • a resin such as diethylaminoethyl (DEAE) -Sepharose, DIAION @ HPA-75 (manufactured by Mitsubishi Kasei)
  • cation using a resin such as S-Sepharose @ FF (manufactured by Pharmacia).
  • Electrophoretic methods such as ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, isoelectric focusing, etc. Purification using methods such as alone or in combination It is possible to obtain the goods.
  • the host cell is similarly recovered, crushed, and centrifuged to collect the protein insoluble form as a precipitate fraction.
  • the insoluble form of the recovered protein can be solubilized with a protein denaturant.
  • a purified sample of the protein can be obtained by the same isolation and purification method as described above.
  • the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation, and a purified sample can be obtained from the culture supernatant by using the same isolation and purification method as described above.
  • the spinning solution can be prepared by mixing the protein, the first solvent, the second solvent and optionally a dissolution promoter. Specifically, it can be prepared by mixing a protein and a first solvent, optionally adding a dissolution promoter, and then adding a second solvent. If necessary, the mixture of the protein and the first solvent may be heated. The heating temperature can be adjusted according to the boiling point of the first solvent, for example, 35 to 90 ° C, 35 to 50 ° C, 35 to 45 ° C, 35 to 40 ° C, 50 to 90 ° C, 60 to 80 ° C. ° C, 80-90 ° C.
  • the addition of the second solvent can be adjusted according to the boiling point of the second solvent, for example, 10 to 90 ° C, 10 to 50 ° C, 50 to 90 ° C, 10 to 40 ° C, 60 to 80 ° C, 10 to It is preferable to carry out at 30 ° C., 15 to 30 ° C., or 20 to 30 ° C.
  • the protein exists in a state of being dissolved or dispersed in a mixed solvent of the first solvent and the second solvent in the spinning dope.
  • the protein fiber is obtained by spinning the above-mentioned protein, and contains the above-mentioned protein as a main component.
  • the content of the protein in the spinning dope may be 1 to 90% by mass based on the total weight of the spinning dope.
  • the protein content is 1% by mass or more, 2% by mass or more, 4% by mass or more, 7% by mass or more, 10% by mass or more, or 15% by mass or more based on the total mass of the spinning dope. It may be 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
  • the first solvent may be any solvent capable of dissolving the protein, such as dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), hexafluoroisopronol (HFIP), hexafluoroacetone (HFAc), and formic acid (FAC). ) And water.
  • DMSO dimethyl sulfoxide
  • DMF N, N-dimethylformamide
  • HFIP hexafluoroisopronol
  • HFAc hexafluoroacetone
  • FAC formic acid
  • the first solvent may be used alone or in a combination of two or more.
  • the content of the first solvent in the spinning dope may be 50 to 90 parts by mass based on 100 parts by mass of the spinning dope.
  • the content of the first solvent may be 50 parts by mass or more, 60 parts by mass or more, 70 parts by mass or more, or 80 parts by mass or more with respect to 100 parts by mass of the spinning dope, and 90 parts by mass or less. It may be 80 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less.
  • the content of the first solvent is preferably 60 to 90 parts by mass, more preferably 60 to 85 parts by mass, still more preferably 65 to 85 parts by mass, and still more preferably 70 to 80 parts by mass with respect to 100 parts by mass of the spinning dope. Parts by weight, even more preferably 70 to 75 parts by weight.
  • the second solvent may be any solvent that can coagulate (desolventize) the protein by removing the first solvent from the spinning dope.
  • the second solvent may be, for example, at least one selected from the group consisting of lower alcohols, ketones, and water.
  • the second solvent may be used alone or in a combination of two or more.
  • the lower alcohol means a linear or branched alcohol having 1 to 5 carbon atoms, and specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert- alcohol. Butanol, 1-pentanol, 2-pentanol, 3-pentanol, amyl alcohol, neopentyl alcohol and the like.
  • a preferred lower alcohol is methanol or ethanol, and a more preferred lower alcohol is ethanol.
  • Ketone is a compound represented by the formula (1): R 1 -C ((O) -R 2 .
  • R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Specific examples of such a ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone.
  • R 1 and R 2 may form a ring structure with each other via a single bond.
  • Specific examples of such a cyclic ketone include cyclopentanone and cyclohexanone.
  • Preferred ketones are acetone or methyl ethyl ketone.
  • the content of the second solvent in the spinning dope may be 1 to 90 parts by mass based on 100 parts by mass of the protein to be dissolved. Further, the content of the second solvent is 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, 40 parts by mass or more, based on 100 parts by mass of the protein to be dissolved.
  • the content of the second solvent is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass, still more preferably 5 to 40 parts by mass, and still more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the protein to be dissolved. It is 30 parts by mass, still more preferably 5 to 20 parts by mass.
  • the stress in this specification means the value (unit: g / D) obtained by dividing the maximum load until the protein fiber is broken by the tensile external force in the fiber axis direction by the mass per 9000 m of the protein fiber.
  • the spinning dope may further contain a dissolution accelerator.
  • the spinning dope contains the dissolution promoter, the protein can be dissolved more easily and in a larger amount.
  • the spinning dope contains a dissolution accelerator.
  • the dissolution promoter can be appropriately selected according to the type of the protein and the dissolution solvent.
  • the dissolution promoter may be, for example, an inorganic salt composed of the following Lewis acid and Lewis base.
  • the Lewis base include oxo acid ions (nitrate ions, perchlorate ions, etc.), metal oxo acid ions (permanganate ions, etc.), halide ions, thiocyanate ions, cyanate ions, and the like.
  • the Lewis acid include metal ions such as alkali metal ions and alkaline earth metal ions, polyatomic ions such as ammonium ions, and complex ions.
  • examples of the inorganic salt include lithium salts such as lithium chloride, lithium bromide, lithium iodide, lithium nitrate, lithium perchlorate, and lithium thiocyanate, calcium chloride, and calcium bromide.
  • Calcium salts such as calcium iodide, calcium nitrate, calcium perchlorate, and calcium thiocyanate; iron salts such as iron chloride, iron bromide, iron iodide, iron nitrate, iron perchlorate, and iron thiocyanate; Aluminum salts such as aluminum chloride, aluminum bromide, aluminum iodide, aluminum nitrate, aluminum perchlorate, and aluminum thiocyanate; potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium perchlorate, and thiocyanate Potassium salts such as potassium acid, sodium chloride, nato bromide Sodium salts such as sodium, sodium iodide, sodium nitrate, sodium perchlorate and sodium thiocyanate; zinc salts such as zinc chloride, zinc bromide, zinc iodide, zinc nitrate, zinc perchlorate and zinc thiocyanate Magnesium salts such as magnesium chloride,
  • inorganic salts are used as a promoter for dissolving a protein in a dissolution solvent.
  • the spinning dope contains a dissolution promoter (the above-mentioned inorganic salt)
  • the protein can be dissolved in the spinning dope at a high concentration.
  • the inorganic salt may be at least one selected from the group consisting of lithium chloride and calcium chloride.
  • the dissolution promoter may be used alone or in combination of two or more.
  • the content of the dissolution promoter is 0.1% by mass or more, 1% by mass or more, 4% by mass or more, 7% by mass or more, 10% by mass or more, or 15% by mass or more with respect to the total mass of the spinning dope. It may be 20% by mass or less, 16% by mass or less, 12% by mass or less, or 9% by mass or less.
  • the spinning dope may further contain various additives as necessary.
  • the additives include a plasticizer, a leveling agent, a crosslinking agent, a crystal nucleating agent, an antioxidant, an ultraviolet absorber, a coloring agent, a filler, and a synthetic resin.
  • the content of the additive may be 50 parts by mass or less based on 100 parts by mass of the total amount of the protein in the spinning dope.
  • the method for producing a protein fiber according to the present embodiment includes a step of introducing the above-described spinning solution into a coagulation bath solution containing a third solvent and optionally a dissolution promoter to coagulate the protein (spinning step).
  • the method for producing a protein fiber according to the present embodiment can be performed according to a known spinning method such as wet spinning and dry-wet spinning.
  • the spinning solution is brought into contact with a coagulation bath solution to coagulate the protein.
  • the method for producing a protein fiber of the present embodiment, including the spinning step, can be performed using, for example, the spinning apparatus shown in FIG.
  • FIG. 1 is an explanatory view schematically showing an example of a spinning device for producing protein fibers.
  • the spinning device 10 shown in FIG. 1 is an example of a spinning device for dry-wet spinning, and includes an extrusion device 1, a coagulation bath 20, a washing bath (drawing bath) 21, and a drying device 4 in this order from the upstream side. are doing.
  • the extrusion device 1 has a storage tank 7 in which a stock spinning solution (dope solution) 6 is stored.
  • the coagulation bath liquid 11 is stored in the coagulation bath 20.
  • the spinning dope 6 is obtained by dissolving the protein described above in a dissolving solvent.
  • the stock spinning solution 6 is pushed out of a nozzle 9 provided with an air gap 19 opened between the stock solution 7 and a coagulation bath solution 11 by a gear pump 8 attached to the lower end of the storage tank 7.
  • the extruded spinning solution 6 is supplied (introduced) into the coagulation bath solution 11 of the coagulation bath tank 20 via the air gap 19.
  • the solvent is removed from the spinning dope to coagulate the protein.
  • the coagulated protein is guided to the washing bath 21 and washed by the washing liquid 12 in the washing bath 21, and then sent to the drying device 4 by the first nip roller 13 and the second nip roller 14 installed in the washing bath 21.
  • the protein fiber stretched in the washing liquid 12 is separated from the inside of the washing bath 21, dried when passing through the drying device 4, and then wound up by a winder. In this way, the protein fiber is finally obtained by the spinning device 10 as the wound material 5 wound on a winder.
  • 18a to 18g are yarn guides.
  • the coagulation bath solution 11 contains a third solvent.
  • the third solvent the solvent defined in the second solvent can be used.
  • the second solvent and the third solvent may be the same or different from each other.
  • the coagulation bath liquid 11 may appropriately contain water.
  • the content of the third solvent is preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, based on the total mass of the coagulation bath liquid.
  • the content is even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the coagulation bath liquid 11 may be composed of only the second solvent.
  • the content of water is preferably 30% by mass or less based on the total mass of the coagulation bath liquid.
  • the water content may be 20% by mass or less, or 10% by mass or less, based on the total mass of the coagulation bath liquid.
  • the coagulation bath liquid 11 may further contain a dissolution accelerator.
  • the dissolution promoter in the coagulation bath may be used alone or in combination of two or more.
  • the temperature of the coagulation bath solution 11 is not particularly limited, but may be 40 ° C or lower, 30 ° C or lower, 25 ° C or lower, 20 ° C or lower, 10 ° C or lower, or 5 ° C or lower.
  • the temperature of the coagulation bath liquid 11 is not particularly limited, but may be ⁇ 30 ° C. or higher, ⁇ 20 ° C. or higher, or ⁇ 10 ° C. or higher, and may be 0 ° C. or higher from the viewpoint of workability, cooling cost, and the like. preferable.
  • the temperature of the coagulation bath liquid 11 is within the above range, the generation of voids is sufficiently suppressed, the stress of the protein fiber is further increased, and the desired protein fiber is easily supplied stably.
  • the temperature of the coagulation bath liquid 11 can be adjusted by using, for example, a spinning device 10 including a coagulation bath 20 having a heat exchanger therein and a cooling circulation device.
  • a spinning device 10 including a coagulation bath 20 having a heat exchanger therein and a cooling circulation device.
  • a medium cooled to a predetermined temperature by a cooling circulation device through a heat exchanger installed in the coagulation bath 20, the temperature is adjusted to the above range by heat exchange between the coagulation bath liquid 11 and the heat exchanger. can do.
  • a solvent for example, methanol
  • a plurality of coagulation bath tanks 20 in which the coagulation bath liquid 11 is stored may be provided.
  • the coagulation bath liquid (first coagulation bath liquid) in the coagulation bath tank 20 to which the spinning dope 6 extruded from the nozzle 9 is directly supplied (introduced) may contain the third solvent. That is, when a plurality of coagulation baths 20 for storing the coagulation bath 11 are provided, even if the coagulation bath other than the first coagulation bath (other coagulation bath) does not contain the third solvent. Good.
  • the temperature of the other coagulation bath solution may be 40 ° C. or less, 30 ° C. or less, 25 ° C. or less, 20 ° C. or less, 10 ° C.
  • the temperature of the coagulation bath liquid is preferably 0 ° C. or higher.
  • the temperature of the coagulation bath liquid 11 can be adjusted by using, for example, a spinning device 10 including a coagulation bath 20 having a heat exchanger therein and a cooling circulation device. For example, by flowing a medium cooled to a predetermined temperature by a cooling circulation device through a heat exchanger installed in the coagulation bath 20, the temperature is adjusted to the above range by heat exchange between the coagulation bath liquid 11 and the heat exchanger. can do. In this case, more efficient cooling is possible by circulating the solvent used for the coagulation bath liquid 11 as a medium.
  • the coagulated protein may be taken up by a winder after leaving the coagulation bath or the washing bath, or may be passed through a drying device, dried, and then wound up by a winder.
  • the distance at which the coagulated protein passes through the coagulation bath solution 11 is such that the solvent can be efficiently removed and the extrusion speed of the spinning solution from the nozzle 9 is good. (Discharge speed) or the like may be determined.
  • the take-up speed of the undrawn yarn is, for example, 1 to 100 m / min, 1 to 20 m / min, and preferably 1 to 3 m / min. When the take-up speed is 1 m / min or more, the productivity can be sufficiently increased. When the take-up speed is 100 m / min or less, it is possible to avoid the scattering of the solvent liquid.
  • the residence time of the coagulated protein (or spinning solution) in the coagulation bath solution 11 is determined according to the distance that the coagulated protein passes through the coagulation bath solution 11, the extrusion speed of the spinning solution 6 from the nozzle 9, and the like. It may be.
  • the residence time may be, for example, 0.01 to 3 minutes, preferably 0.05 to 0.15 minutes. Further, stretching (pre-stretching) may be performed in the coagulation bath liquid 11.
  • the method for producing a protein fiber of the present embodiment may further include a step of drawing the coagulated protein (drawing step).
  • the stretching step may be performed, for example, in the coagulation bath 20 or in the washing bath 21.
  • the stretching step can also be performed in air.
  • the stretching performed in the washing bath 21 may be so-called wet heat stretching performed in hot water, in a solution obtained by adding an organic solvent or the like to warm water, or the like.
  • the temperature for wet heat stretching is preferably from 50 to 90 ° C. When the temperature is 50 ° C. or higher, the pore diameter of the yarn can be stably reduced. When the temperature is 90 ° C. or lower, the temperature can be easily set and spinning stability is improved.
  • the temperature is more preferably from 75 to 85 ° C.
  • the final draw ratio of the undrawn yarn (or pre-drawn yarn) is preferably 5 times or more, 6 times or more, 7 times or more, 8 times or more, and 9 times or more of the undrawn yarn (or pre-drawn yarn).
  • the upper limit is preferably 40 times or less, 30 times or less, 20 times or less, 15 times or less, 14 times or less, 13 times or less, 12 times or less, 11 times or less, and 10 times or less.
  • the undrawn yarn after drying and / or solvent removal may be drawn in water or may be drawn in two or more stages.
  • the underwater stretching is preferably performed at a water temperature of 20 to 90 ° C.
  • the drawn yarn is preferably heat-set at a dry heat of 50 to 200 ° C. for 5 to 600 seconds. By this heat setting, dimensional stability at normal temperature is obtained.
  • the drawing performed in the washing bath 21 when obtaining the protein fiber may be so-called wet heat drawing performed in hot water, a solution obtained by adding an organic solvent or the like to hot water, or the like.
  • the temperature for the wet heat stretching may be, for example, 50 to 90 ° C., preferably 75 to 85 ° C.
  • the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times.
  • the wet heat stretching and the dry heat stretching may be performed individually, or may be performed in multiple stages or in combination. That is, as the stretching step, the first-stage stretching is performed by wet-heat stretching, the second-stage stretching is performed by dry-heat stretching, or the first-stage stretching is performed by wet-heat stretching, the second-stage stretching is performed by wet-heat stretching, and the third-stage stretching is further performed.
  • wet heat stretching and dry heat stretching can be performed in an appropriate combination such as dry heat stretching.
  • the lower limit of the final draw ratio of the filament after the drawing step is preferably 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, or more with respect to the undrawn yarn (or pre-drawn yarn). It may be any of seven times, eight times, or nine times.
  • the upper limit of the final draw ratio of the multifilament after the drawing step is preferably any of 40 times, 30 times, 20 times, 15 times, 14 times, 13 times, 12 times, 11 times, or 10 times. It may be.
  • the final stretching magnification may be 3 to 40 times, 3 to 30 times, 5 to 30 times, 5 to 20 times, or 5 to 15 times. And may be 5 to 13 times.
  • the present invention is a method for producing a protein fiber, comprising a step of introducing a spinning solution containing a protein and a first solvent into a coagulation bath solution containing a second solvent to coagulate the protein.
  • the present invention also has another aspect of a method for producing a protein fiber, wherein the average particle diameter of the protein contained in the stock solution is 4 to 15 nm.
  • the protein is dispersed with an average particle size of 4 to 15 nm.
  • the average particle size of the protein is preferably from 4 to 13 nm, more preferably from 4 to 10 nm, particularly preferably from 4 to 8 nm.
  • the stress of the protein fiber obtained by stretching after coagulation becomes higher, and the toughness is also improved.
  • As a means for adjusting the average particle diameter of the protein to be within the above range, for example, a method of adding a specific amount of a second solvent to the spinning dope is exemplified.
  • the definitions of the first solvent and the second solvent are as described above.
  • the average particle size of the protein in the spinning stock solution is the average value of the particle size distribution.
  • the particle diameter is, for example, calculated based on an amount measured using a physical law derived when assuming a specific particle shape and specific physical conditions, Good.
  • the particle diameter and particle size distribution may be obtained by analyzing the fluctuation of the scattered light obtained when the particles are irradiated with light by the photon correlation method.
  • the average particle size of the protein is measured by dynamic light scattering using a dynamic light scattering photometer DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.), and the average particle size based on the scattered light intensity is calculated. can do.
  • spider silk protein spike silk fibroin: PRT799
  • PRT799 modified fibroin having the amino acid sequence represented by SEQ ID NO: 12
  • the amino acid sequence represented by SEQ ID NO: 10 is obtained by substituting, inserting and deleting amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes, and its N-terminal.
  • the amino acid sequence represented by SEQ ID NO: 11 amino acid sequence including a tag sequence and a hinge sequence
  • the amino acid sequence represented by SEQ ID NO: 12 (PRT799) is obtained by adding an amino acid sequence represented by SEQ ID NO: 6 (an amino acid sequence including a His tag sequence and a hinge sequence) to the N-terminal of the amino acid sequence represented by SEQ ID NO: 10. is there.
  • the designed nucleic acid encoding PRT799 was synthesized. An NdeI site at the 5 'end and an EcoRI site downstream of the stop codon were added to the nucleic acid. The nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the nucleic acid was digested with NdeI and EcoRI and cut out, followed by recombination into a protein expression vector pET-22b (+) to obtain an expression vector.
  • Escherichia coli BLR (DE3) was transformed with the obtained pET22b (+) expression vector.
  • the transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours.
  • the culture solution was added to 100 mL of a seed culture medium containing ampicillin (Table 1) so that the OD 600 was 0.005.
  • the temperature of the culture was maintained at 30 ° C., and the flask was cultured for about 15 hours until the OD 600 reached 5, to obtain a seed culture.
  • the seed culture solution was added to a jar fermenter to which 500 ml of a production medium (Table 2) had been added so that the OD 600 was 0.05.
  • the temperature of the culture was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9.
  • the concentration of dissolved oxygen in the culture was maintained at 20% of the saturated concentration of dissolved oxygen.
  • a feed solution (455 g / 1 L of glucose, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min.
  • the temperature of the culture was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9. Culture was performed for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Thereafter, 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce PRT799 expression. Twenty hours after the addition of IPTG, the culture was centrifuged to collect the cells. SDS-PAGE was performed using cells prepared from the culture solution before and after the addition of IPTG, and the expression of PRT799 was confirmed by the appearance of a band having a size corresponding to PRT799 depending on the addition of IPTG.
  • IPTG isopropyl- ⁇ -thiogalactopyranoside
  • the precipitate after washing is suspended in an 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) so as to have a concentration of 100 mg / mL. For 30 minutes with a stirrer to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein (PRT799) obtained after dialysis was recovered by centrifugation. The water was removed from the collected aggregated protein using a freeze dryer to obtain a freeze-dried powder of PRT799.
  • 8 M guanidine buffer 8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
  • the average particle size of the protein (PRT799) dispersed in the obtained spinning stock solutions 1 to 3 was measured using a dynamic light scattering photometer DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.). Table 7 shows the average particle diameter in each spinning dope.
  • Extrusion device 1: Extrusion device, 2: undrawn yarn production device, 3: wet heat drawing device, 4: drying device, 6: spinning solution, 10: spinning device, 20: coagulation bath, 21: washing bath, 36: protein fiber.

Abstract

The present invention provides a method for producing a protein fiber, the method including a step for coagulating a protein by introducing a spinning dope solution, which contains a protein, a first solvent, a second solvent, and optionally a dissolution promoter, into a coagulation bath liquid which contains a third solvent and optionally a dissolution promoter, wherein the second solvent is at least one selected from the group consisting of a lower alcohol, a ketone, and water.

Description

タンパク質繊維の製造方法Method for producing protein fiber
 本発明は、タンパク質繊維の製造方法に関する。 The present invention relates to a method for producing a protein fiber.
 従来から、人造繊維の製造方法として、ノズルから吐出させた紡糸原液を凝固浴液中で凝固させて繊維を形成する湿式紡糸法及び乾湿式紡糸法が知られている。湿式紡糸法及び乾湿式紡糸法は、タンパク質を主成分として含むタンパク質繊維を製造する際にも利用されている(例えば、特許文献1参照)。 Conventionally, as a method for producing artificial fibers, a wet spinning method and a dry-wet spinning method in which a spinning solution discharged from a nozzle is coagulated in a coagulation bath to form fibers are known. The wet spinning method and the dry-wet spinning method are also used when producing protein fibers containing protein as a main component (for example, see Patent Document 1).
 湿式紡糸法及び乾湿式紡糸法等によってタンパク質繊維を製造する方法として、タンパク質を溶媒に溶解させたタンパク質溶液をドープ液(紡糸原液)として使用し、ドープ液を口金から脱溶媒槽の凝固浴液に押し出し、ドープ液から溶媒を脱離させるとともに繊維形成して未延伸糸とし、タンパク質繊維を得ることが知られている(例えば、特許文献2参照)。一般的に、合成繊維の未延伸糸は太く、その断面形状は崩れやすい。 As a method for producing protein fibers by a wet spinning method, a dry-wet spinning method, or the like, a protein solution in which a protein is dissolved in a solvent is used as a dope solution (spinning solution), and the dope solution is coagulated from a spinneret into a desolvation bath. It is known that a protein fiber is obtained by extruding a solvent from a dope solution and forming a fiber to form an undrawn yarn (for example, see Patent Document 2). In general, undrawn yarn of synthetic fibers is thick, and its cross-sectional shape is easily broken.
 タンパク質を溶解する溶媒としては、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びギ酸等が知られている。また、湿式紡糸法及び乾湿式紡糸法によるタンパク質繊維の製造の際、溶媒を除去し、繊維形成させるためにメタノール、エタノール、2-プロパノール等の低級アルコールが凝固浴液として汎用されている。 溶媒 Known solvents for dissolving proteins include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, and formic acid. In the production of protein fibers by the wet spinning method and the dry-wet spinning method, lower alcohols such as methanol, ethanol, and 2-propanol are widely used as coagulation bath solutions in order to remove the solvent and form fibers.
特許第5540154号公報Japanese Patent No. 5540154 国際公開第2013/065651号International Publication No. WO 2013/065651
 一般的に、未延伸糸は、繊維を構成する分子の配列が整っておらず、その強度及び物性が一定となりにくい。そこで、延伸を行うことにより、糸に適度な強度及び性能を付与することが可能である。例えば、タンパク質繊維を延伸する際、その延伸倍率がより高くなるほど、延伸応力はより大きくなる。 Generally, unstretched yarns are not arranged in the order of the molecules constituting the fibers, and their strength and physical properties are unlikely to be constant. Therefore, it is possible to impart appropriate strength and performance to the yarn by performing drawing. For example, when drawing a protein fiber, the higher the drawing ratio, the higher the drawing stress.
 しかし、延伸時の延伸応力が高くなると、延伸製糸時にタンパク質繊維が破断を生じやすくなる。そこで、本発明の目的は、紡糸安定性、延伸安定性に優れたタンパク質繊維の製造方法を提供することにある。 However, when the drawing stress at the time of drawing becomes high, the protein fiber tends to be broken at the time of drawing and spinning. Accordingly, an object of the present invention is to provide a method for producing a protein fiber having excellent spinning stability and drawing stability.
 本発明は、以下の[1]~[21]を提供する。
[1]
 タンパク質、第1溶媒、第2溶媒及び任意に溶解促進剤を含有する紡糸原液を、第3溶媒及び任意に溶解促進剤を含有する凝固浴液に導入して、タンパク質を凝固させる工程を含み、
 第2溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、タンパク質繊維の製造方法。
[2]
 第3溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、[1]に記載の方法。
[3]
 第1溶媒が、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ギ酸及び水からなる群より選択される少なくとも1種であり、
 ただし、第1溶媒が水であるとき、紡糸原液は溶解促進剤を更に含有する、[1]又は[2]に記載の方法。
[4]
 低級アルコールが、メタノール又はエタノールである、[1]~[3]のいずれかに記載の方法。
[5]
 タンパク質が、構造タンパク質である、[1]~[4]のいずれかに記載の方法。
[6]
 構造タンパク質が、フィブロインである、[5]に記載の方法。
[7]
 フィブロインが、クモ糸フィブロインである、[6]に記載の方法。
[8]
 第2溶媒の含有量が、タンパク質100質量部に対して35質量部以下である、[1]~[7]のいずれかに記載の方法。
[9]
 第2溶媒の含有量が、タンパク質100質量部に対して3質量部以上である、[1]~[8]のいずれかに記載の方法。
[10]
 第2溶媒が、メタノール、エタノール及びアセトンからなる群から選択される1種を含む、[1]~[9]のいずれかに記載の方法。
[11]
 第2溶媒が、第3溶媒と同一の溶媒である、[1]~[10]のいずれかに記載の方法。
[12]
 凝固させたタンパク質を延伸する工程を更に含む、[1]~[11]のいずれかに記載の方法。
[13]
 タンパク質及び第1溶媒を含有する紡糸原液を、第2溶媒を含有する凝固浴液に導入して、タンパク質を凝固させる工程を含む、タンパク質繊維の製造方法であって、タンパク質が、平均粒子径4~15nmの粒子形状で紡糸原液中に分散している、タンパク質繊維の製造方法。
[14]
 第2溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、[13]に記載の方法。
[15]
 第3溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、[13]又は[14]に記載の方法。
[16]
 第1溶媒が、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ギ酸及び水からなる群より選択される少なくとも1種であり、
 ただし、第1溶媒が水であるとき、紡糸原液は溶解促進剤を更に含有する、[13]~[15]のいずれかに記載の方法。
[17]
 タンパク質が、構造タンパク質である、[13]~[16]のいずれかに記載の方法。
[18]
 構造タンパク質が、フィブロインである、[17]に記載の方法。
[19]
 フィブロインが、クモ糸フィブロインである、[18]に記載の方法。
[20]
 凝固させたタンパク質を延伸する工程を更に含む、[13]~[19]のいずれかに記載の方法。
[21]
 タンパク質を含有する紡糸原液であって、タンパク質が平均粒子径4~15nmの粒子形状で紡糸原液中に分散している、紡糸原液。
The present invention provides the following [1] to [21].
[1]
Introducing a spinning solution containing the protein, the first solvent, the second solvent and optionally a solubilizer into a coagulation bath solution containing a third solvent and optionally a solubilizer to coagulate the protein,
The method for producing a protein fiber, wherein the second solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
[2]
The method according to [1], wherein the third solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
[3]
The first solvent is at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, hexafluoroisopropanol, hexafluoroacetone, formic acid, and water;
However, the method according to [1] or [2], wherein when the first solvent is water, the spinning dope further contains a dissolution accelerator.
[4]
The method according to any one of [1] to [3], wherein the lower alcohol is methanol or ethanol.
[5]
The method according to any one of [1] to [4], wherein the protein is a structural protein.
[6]
The method according to [5], wherein the structural protein is fibroin.
[7]
The method according to [6], wherein the fibroin is spider silk fibroin.
[8]
The method according to any one of [1] to [7], wherein the content of the second solvent is 35 parts by mass or less based on 100 parts by mass of the protein.
[9]
The method according to any one of [1] to [8], wherein the content of the second solvent is 3 parts by mass or more based on 100 parts by mass of the protein.
[10]
The method according to any one of [1] to [9], wherein the second solvent includes one selected from the group consisting of methanol, ethanol and acetone.
[11]
The method according to any one of [1] to [10], wherein the second solvent is the same solvent as the third solvent.
[12]
The method according to any one of [1] to [11], further comprising a step of stretching the coagulated protein.
[13]
A method for producing a protein fiber, comprising a step of introducing a stock spinning solution containing a protein and a first solvent into a coagulation bath solution containing a second solvent to coagulate the protein, wherein the protein has an average particle diameter of 4%. A method for producing a protein fiber, which is dispersed in a stock spinning solution in a particle shape of 1515 nm.
[14]
The method according to [13], wherein the second solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
[15]
The method according to [13] or [14], wherein the third solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
[16]
The first solvent is at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, hexafluoroisopropanol, hexafluoroacetone, formic acid, and water;
However, the method according to any one of [13] to [15], wherein when the first solvent is water, the spinning dope further contains a dissolution accelerator.
[17]
The method according to any one of [13] to [16], wherein the protein is a structural protein.
[18]
The method according to [17], wherein the structural protein is fibroin.
[19]
The method according to [18], wherein the fibroin is spider silk fibroin.
[20]
The method according to any one of [13] to [19], further comprising a step of stretching the coagulated protein.
[21]
An undiluted spinning solution containing a protein, wherein the protein is dispersed in the undiluted spinning solution in the form of particles having an average particle diameter of 4 to 15 nm.
 本発明のタンパク質繊維の製造方法は、クモ糸タンパク質に対して優れた繊維形成能(製糸性)を有する。加えて、本発明のタンパク質繊維の製造方法は、繊維形成能(製糸性)が確保でき、従来の紡糸法と比べて、ノズルとローラー間で巻き取り可能な最大延伸倍率が上がるため、より高速な製糸条件を採用することもできる。本発明のタンパク質繊維の製造方法により、応力に優れるタンパク質繊維を提供することができる。また、延伸倍率を高めることが可能なため、より細くて長いタンパク質繊維を製造し得る。 タ ン パ ク 質 The method for producing protein fibers of the present invention has excellent fiber-forming ability (yarn-forming properties) for spider silk proteins. In addition, the protein fiber production method of the present invention can secure a fiber-forming ability (yarn-forming property), and increases the maximum draw ratio that can be wound between a nozzle and a roller, as compared with the conventional spinning method. It is also possible to adopt various yarn-making conditions. According to the method for producing a protein fiber of the present invention, a protein fiber having excellent stress can be provided. Further, since the draw ratio can be increased, thinner and longer protein fibers can be produced.
タンパク質繊維を製造するための紡糸装置の一例を概略図である。It is a schematic diagram of an example of a spinning device for producing protein fibers.
 本発明の一実施形態に係るタンパク質繊維の製造方法について、以下に詳述する。 方法 The method for producing a protein fiber according to one embodiment of the present invention will be described in detail below.
 本明細書において、「優れた紡糸安定性」とは、紡糸原液から未延伸のタンパク質繊維を得る際に、糸切れが生じにくいことを意味する。 に お い て In the present specification, “excellent spinning stability” means that when an undrawn protein fiber is obtained from a spinning dope, yarn breakage is unlikely to occur.
 本明細書において、「優れた延伸安定性」とは、未延伸のタンパク質繊維を延伸する際に、糸が破断しにくいことを意味する。 に お い て In the present specification, “excellent stretching stability” means that a yarn is not easily broken when unstretched protein fiber is stretched.
 本実施形態に係るタンパク質繊維の製造方法では、タンパク質、第1溶媒、第2溶媒を含有する紡糸原液を、凝固浴液に導入して、タンパク質を凝固させる工程を含む。ここで、紡糸原液は、任意に溶解促進剤を更に含有してもよい。また、凝固浴液は、第3溶媒を含有し、任意に溶解促進剤を含有してもよい。 タ ン パ ク 質 The method for producing a protein fiber according to the present embodiment includes a step of introducing a stock spinning solution containing a protein, a first solvent, and a second solvent into a coagulation bath to coagulate the protein. Here, the spinning dope may optionally further contain a dissolution accelerator. The coagulation bath solution contains a third solvent, and may optionally contain a dissolution accelerator.
 本実施形態で使用する紡糸原液は、タンパク質繊維の主原料となるタンパク質と、第1溶媒と、第2溶媒と、を含有する。 原 The spinning solution used in the present embodiment contains a protein which is a main raw material of the protein fiber, a first solvent, and a second solvent.
<紡糸原液>
(タンパク質)
 タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等により製造されたものであってもよく、化学的に合成されたものであってもよく、また天然由来のタンパク質を精製したものであってもよい。
<Spinning solution>
(protein)
The protein is not particularly limited, and may be produced by a microorganism or the like by genetic recombination technology, may be chemically synthesized, or may be obtained by purifying a naturally occurring protein. It may be something.
 本明細書において、用語「主成分として含む」とは、タンパク質繊維の全質量の少なくとも50質量%がタンパク質であることを意味する。タンパク質繊維におけるタンパク質が占める質量割合は、60質量%以上、65質量%以上、70質量%以上、75質量%以上、80質量%以上、90質量%以上であってもよい。 用語 In the present specification, the term “comprising as the main component” means that at least 50% by mass of the total mass of the protein fiber is protein. The mass ratio of the protein in the protein fiber may be 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, 80% by mass or more, and 90% by mass or more.
 上記タンパク質は、例えば、構造タンパク質、又は当該構造タンパク質に由来する人造タンパク質であってもよい。構造タンパク質とは、生体内で構造、形態等を形成又は保持するタンパク質を意味する。構造タンパク質としては、例えば、フィブロイン、ケラチン、コラーゲン、エラスチン、レシリン等を挙げることができる。好ましいタンパク質は、フィブロイン、又はフィブロインに由来する人造タンパク質である。上述した構造タンパク質及び当該構造タンパク質に由来する人造タンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。 The protein may be, for example, a structural protein or an artificial protein derived from the structural protein. A structural protein refers to a protein that forms or retains a structure, form, and the like in a living body. Examples of the structural protein include fibroin, keratin, collagen, elastin, resilin and the like. Preferred proteins are fibroin or artificial proteins derived from fibroin. One of the above-mentioned structural proteins and artificial proteins derived from the structural proteins can be used alone or in combination of two or more.
 フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってよい。特に、構造タンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってよい。 The fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin. In particular, the structural protein may be silk fibroin, spider silk fibroin or a combination thereof. When silk fibroin and spider silk fibroin are used in combination, the proportion of silk fibroin may be, for example, 40 parts by weight or less, 30 parts by weight or less, or 10 parts by weight or less based on 100 parts by weight of spider silk fibroin.
 絹フィブロインとしては、セリシン除去絹フィブロイン、セリシン未除去絹フィブロイン、又はこれらの組み合わせであってもよい。セリシン除去絹フィブロインは、絹フィブロインを覆うセリシン、及びその他の脂肪分などを除去して精製したものである。このようにして精製した絹フィブロインは、好ましくは、凍結乾燥粉末として用いられる。セリシン未除去絹フィブロインは、セリシンなどが除去されていない未精製の絹フィブロインである。 Silk fibroin may be sericin-removed silk fibroin, sericin-unremoved silk fibroin, or a combination thereof. Sericin-removed silk fibroin is purified by removing sericin covering silk fibroin and other fats. The silk fibroin purified in this manner is preferably used as a lyophilized powder. Silk fibroin without sericin is unpurified silk fibroin from which sericin and the like have not been removed.
 クモ糸フィブロインは、天然クモ糸タンパク質、又は天然クモ糸タンパク質に由来する人造タンパク質であってもよい。 The spider silk fibroin may be a natural spider silk protein or an artificial protein derived from a natural spider silk protein.
 天然クモ糸タンパク質としては、例えば、大吐糸管しおり糸タンパク質、横糸タンパク質、及び小瓶状腺タンパク質が挙げられる。大吐糸管しおり糸タンパク質は、結晶領域と非晶領域(無定形領域とも言う。)からなる繰り返し領域を持つため、高い応力と伸縮性を併せ持つ。一方、横糸タンパク質は、結晶領域を持たず、非晶領域からなる繰り返し領域を持つという特徴を有する。横糸タンパク質は、大吐糸管しおり糸タンパク質と比べると応力は劣るが、高い伸縮性を持つ。 Natural spider silk proteins include, for example, large spinal cord marker thread proteins, weft thread proteins, and small bottle gland proteins. Since the large spinal cord marker thread protein has a repetitive region consisting of a crystalline region and an amorphous region (also referred to as an amorphous region), it has both high stress and elasticity. On the other hand, the weft protein has a feature that it does not have a crystalline region but has a repeating region composed of an amorphous region. The weft protein has a lower stress but a higher elasticity than the large spinal canal thread protein.
 大吐糸管しおり糸タンパク質は、クモの大瓶状腺で産生され、強靭性に優れるという特徴も有する。大吐糸管しおり糸タンパク質としては、例えば、アメリカジョロウグモ(Nephila clavipes)に由来する大瓶状腺スピドロインMaSp1及びMaSp2、並びにニワオニグモ(Araneus diadematus)に由来するADF3及びADF4が挙げられる。ADF3は、ニワオニグモの2つの主要なしおり糸タンパク質の一つである。天然クモ糸タンパク質に由来する人造タンパク質は、これらのしおり糸タンパク質に由来する人造タンパク質であってもよい。ADF3に由来する人造タンパク質は、比較的合成し易く、強伸度及びタフネスの点で優れた特性を有する。 The large spinal cord marker thread protein is produced in the large ampullate gland of spiders, and also has the characteristic of excellent toughness. Examples of large spinal cord marker thread proteins include large ampullate gland spidroins MaSp1 and MaSp2 derived from the American spider (Nephila laclavipes), and ADF3 and ADF4 derived from Araneus diadematas. ADF3 is one of the two major bookmarker thread proteins of the Japanese spider. Artificial proteins derived from natural spider silk proteins may be artificial proteins derived from these bookmarked silk proteins. An artificial protein derived from ADF3 is relatively easy to synthesize and has excellent properties in terms of strength and elongation and toughness.
 横糸タンパク質は、クモの鞭毛状腺(flagelliform gland)で産生される。横糸タンパク質としては、例えばアメリカジョロウグモ(Nephila clavipes)に由来する鞭毛状絹タンパク質(flagelliform silk protein)が挙げられる。 Weft protein is produced in the flagellar gland of spiders. As the weft protein, for example, a flagellated silk protein (flagelliform @ silk @ protein) derived from the American spider (Nephila @ clavipes) can be mentioned.
 天然クモ糸タンパク質に由来する人造タンパク質は、組換えクモ糸タンパク質であってよい。組換えクモ糸タンパク質としては、天然型クモ糸タンパク質の変異体、類似体又は誘導体等が挙げられる。このような人造タンパク質の好適な一例は、大吐糸管しおり糸タンパク質の組換えクモ糸タンパク質である。例えば、組換えクモ糸タンパク質は、いくつかの異種タンパク質生産系で産生されており、その製造方法として、トランスジェニック・ヤギ、トランスジェニック・カイコ、又は組換え植物若しくは哺乳類細胞が利用されている。 人 The artificial protein derived from the natural spider silk protein may be a recombinant spider silk protein. Examples of the recombinant spider silk protein include a mutant, analog or derivative of a natural spider silk protein. One suitable example of such an artificial protein is a recombinant spider silk protein of a large spinal canal silk protein. For example, recombinant spider silk proteins have been produced in several heterologous protein production systems, and their production methods use transgenic goats, transgenic silkworms, or recombinant plant or mammalian cells.
 組換えクモ糸タンパク質は、例えば、クローニングした天然由来のフィブロインの遺伝子配列から(A)モチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から1又は複数の(A)モチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)モチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。 The recombinant spider silk protein can be obtained, for example, by deleting one or more of the sequences encoding the (A) n motif from the cloned natural fibroin gene sequence. Further, for example, it is obtained by designing an amino acid sequence corresponding to deletion of one or more (A) n motifs from the amino acid sequence of naturally occurring fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence. You can also. In any case, in addition to the modification corresponding to the deletion of the (A) n motif from the amino acid sequence of naturally occurring fibroin, one or more amino acid residues are further substituted, deleted, inserted and / or added. Amino acid sequence modification corresponding to the above may be performed. Substitution, deletion, insertion and / or addition of amino acid residues can be performed by methods well known to those skilled in the art, such as partial specific mutagenesis. Specifically, Nucleic Acid Res. 10, 6487 (1982), and Methods in Enzymology, 100, 448 (1983).
 大吐糸管しおり糸タンパク質の組換えクモ糸タンパク質及びカイコシルクに由来する人造タンパク質としては、例えば、式1:[(A)モチーフ-REP]で表されるドメイン配列を含むタンパク質が挙げられる。ここで、式1中、(A)モチーフは、Aはアラニン残基を示し、nは2~27、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また(A)モチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。mは2~300の整数を示す。式1で表されるアミノ酸配列中に含まれるグリシン(Gly)、セリン(Ser)及びアラニン(Ala)の合計残基数がアミノ酸残基数全体に対して40%以上が好ましく、60%以上、又は70%以上であってよい。複数存在する(A)モチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。大吐糸管しおり糸に由来する人造タンパク質の具体例としては、配列番号1又は配列番号2で示されるアミノ酸配列を含むタンパク質を挙げることができる。 Examples of the artificial spider silk protein derived from the silkworm silk protein and the silkworm silk protein derived from silkworm silk include a protein containing a domain sequence represented by Formula 1: [(A) n motif-REP] m. Can be Here, in Formula 1, in the (A) n motif, A represents an alanine residue, and n represents 2 to 27, 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to It may be an integer of 16, 8 to 16, or 10 to 16. (A) The ratio of the number of alanine residues to the total number of amino acid residues in the n motif may be 40% or more, and is 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, 86% or more. % Or more, 90% or more, 95% or more, or 100% (meaning that it is composed of only alanine residues). REP indicates an amino acid sequence composed of 2 to 200 amino acid residues. m represents an integer of 2 to 300. The total number of glycine (Gly), serine (Ser) and alanine (Ala) residues contained in the amino acid sequence represented by Formula 1 is preferably at least 40%, more preferably at least 60%, based on the total number of amino acid residues. Or it may be 70% or more. The plurality of (A) n motifs may have the same amino acid sequence or different amino acid sequences. A plurality of REPs may have the same amino acid sequence or different amino acid sequences. Specific examples of the artificial protein derived from the large spinal cord marker thread include a protein containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2.
 横糸タンパク質に由来するタンパク質としては、例えば、式2:[REP2]で表されるドメイン配列を含むタンパク質(ここで、式2中、REP2はGly-Pro-Gly-Gly-Xから構成されるアミノ酸配列を示し、Xはアラニン(Ala)、セリン(Ser)、チロシン(Tyr)及びバリン(Val)からなる群から選ばれる一つのアミノ酸を示す。oは8~300の整数を示す。)を挙げることができる。横糸タンパク質に由来するポリペプチドとしては、式2:REP2で示されるアミノ酸配列の単位を10以上、好ましくは20以上、より好ましくは30以上含むポリペプチドが挙げられる。横糸タンパク質に由来するポリペプチドは、大腸菌等の微生物を宿主とした組み換えタンパク質生産を行う場合、生産性の観点から、分子量が500kDa以下であることが好ましく、より好ましくは300kDa以下であり、さらに好ましくは200kDa以下である。具体的には配列番号3で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号3で示されるアミノ酸配列は、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分的な配列(NCBIアクセッション番号:AAF36090、GI:7106224)のリピート部分及びモチーフに該当するN末端から1220残基目から1659残基目までのアミノ酸配列(PR1配列と記す。)と、NCBIデータベースから入手したアメリカジョロウグモの鞭毛状絹タンパク質の部分配列(NCBIアクセッション番号:AAC38847、GI:2833649)のC末端から816残基目から907残基目までのC末端アミノ酸配列を結合し、結合した配列のN末端に配列番号4で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 As the protein derived from the weft protein, for example, a protein containing a domain sequence represented by Formula 2: [REP2] o (wherein, REP2 is composed of Gly-Pro-Gly-Gly-X X represents an amino acid sequence, and X represents one amino acid selected from the group consisting of alanine (Ala), serine (Ser), tyrosine (Tyr) and valine (Val), and o represents an integer of 8 to 300. Can be mentioned. Examples of the polypeptide derived from the weft protein include a polypeptide containing 10 or more, preferably 20 or more, more preferably 30 or more units of the amino acid sequence represented by the formula 2: REP2. When a recombinant protein is produced from a weft protein using a microorganism such as Escherichia coli as a host, the molecular weight is preferably 500 kDa or less, more preferably 300 kDa or less, and still more preferably, from the viewpoint of productivity. Is 200 kDa or less. Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 3. The amino acid sequence represented by SEQ ID NO: 3 is obtained from the N-terminus corresponding to the repeat portion and the motif of the partial sequence of the flagellar silk protein of the American spider spider obtained from the NCBI database (NCBI accession number: AAF36090, GI: 7106224). The amino acid sequence from residues 1220 to 1659 (referred to as PR1 sequence) and the partial sequence of the flagellar silk protein of the American spider spider obtained from the NCBI database (NCBI accession number: AAC38847, GI: 2833649) A C-terminal amino acid sequence from the 816th residue to the 907th residue from the C-terminus is joined, and the amino acid sequence represented by SEQ ID NO: 4 (tag sequence and hinge sequence) is added to the N-terminus of the joined sequence; is there.
 コラーゲンに由来するタンパク質として、例えば、式3:[REP3]で表されるドメイン配列を含むタンパク質(ここで、式3中、pは5~300の整数を示す。REP3は、Gly-X-Yから構成されるアミノ酸配列を示し、X及びYはグリシン(Gly)以外の任意のアミノ酸残基を示す。複数存在するREP3は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号5で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号5で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号6で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 As a protein derived from collagen, for example, a protein containing a domain sequence represented by Formula 3: [REP3] p (where p represents an integer of 5 to 300. In Formula 3, REP3 is Gly-X- An amino acid sequence composed of Y is shown, and X and Y each represent an arbitrary amino acid residue other than glycine (Gly). A plurality of REP3s may have the same amino acid sequence or different amino acid sequences.) Can be mentioned. Specific examples include a protein containing the amino acid sequence represented by SEQ ID NO: 5. The amino acid sequence represented by SEQ ID NO: 5 corresponds to a repeat portion and a motif of a partial sequence of human collagen type 4 obtained from the NCBI database (Accession number of GenBank of NCBI: CAA56335.1, GI: 3702452). The amino acid sequence represented by SEQ ID NO: 6 (tag sequence and hinge sequence) is added to the N-terminal of the amino acid sequence from residues 301 to 540.
 レシリンに由来するタンパク質として、例えば、式4:[REP4]で表されるドメイン配列を含むタンパク質(ここで、式4中、qは4~300の整数を示す。REP4はSer-J-J-Tyr-Gly-U-Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にアスパラギン酸(Asp)、セリン(Ser)及びスレオニン(Thr)からなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にプロリン(Pro)、アラニン(Ala)、スレオニン(Thr)及びセリン(Ser)からなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号7で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号7で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のスレオニン(Thr)をセリン(Ser)に置換し、かつ95残基目のアスパラギン(Asn)をアスパラギン酸(Asp)に置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号13で示されるアミノ酸配列(タグ配列)が付加されたものである。 As a protein derived from resilin, for example, a protein containing a domain sequence represented by Formula 4: [REP4] q (where, in Formula 4, q is an integer of 4 to 300. REP4 is Ser-JJ) -Represents an amino acid sequence composed of -Tyr-Gly-U-Pro, wherein J represents an arbitrary amino acid residue, particularly an amino acid selected from the group consisting of aspartic acid (Asp), serine (Ser) and threonine (Thr) U is an arbitrary amino acid residue, particularly an amino acid residue selected from the group consisting of proline (Pro), alanine (Ala), threonine (Thr) and serine (Ser). A plurality of REP4s may have the same amino acid sequence or different amino acid sequences.) You. Specifically, a protein containing the amino acid sequence represented by SEQ ID NO: 7 can be mentioned. The amino acid sequence represented by SEQ ID NO: 7 replaces the threonine (Thr) at the 87th residue with serine (Ser) in the amino acid sequence of resilin (NCBI GenBank Accession No. NP 611157, Gl: 246654243), and The amino acid sequence represented by SEQ ID NO: 13 (tag sequence) is located at the N-terminal of the amino acid sequence from the 19th residue to the 321st residue in the sequence obtained by replacing asparagine (Asn) at the 95th residue with aspartic acid (Asp). It has been added.
 エラスチンに由来するタンパク質として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有するタンパク質を挙げることができる。具体的には、配列番号8で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号8で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号6で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。 @ Proteins derived from elastin include, for example, NCBI GenBank accession numbers AAC98395 (human), I47076 (sheep), NP786966 (bovine) and other proteins having an amino acid sequence. Specifically, a protein containing the amino acid sequence represented by SEQ ID NO: 8 can be mentioned. The amino acid sequence represented by SEQ ID NO: 8 corresponds to the amino acid sequence represented by SEQ ID NO: 6 (tag sequence) at the N-terminus of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank Accession No. AAC98395. And a hinge sequence).
 ケラチンに由来するタンパク質として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。具体的には、配列番号9で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含むタンパク質を挙げることができる。 タ ン パ ク 質 Keratin-derived proteins include, for example, type I keratin of Capra hircus. Specific examples include a protein comprising the amino acid sequence represented by SEQ ID NO: 9 (the amino acid sequence of GenBank Accession No. ACY30466 of NCBI).
(人造タンパク質の製造方法)
 タンパク質繊維に含まれるタンパク質は、例えば、所望のタンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
(Method for producing artificial protein)
The protein contained in the protein fiber is, for example, a host transformed with an expression vector having a nucleic acid sequence encoding a desired protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing a nucleic acid.
 所望のタンパク質をコードする核酸の製造方法は、特に制限されない。例えば、天然の構造タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した構造タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、タンパク質の精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質をコードする核酸を合成してもよい。 方法 The method for producing the nucleic acid encoding the desired protein is not particularly limited. For example, the nucleic acid can be produced by a method of amplifying and cloning by polymerase chain reaction (PCR) or the like using a gene encoding a natural structural protein, or a method of chemically synthesizing. The method for chemically synthesizing nucleic acids is not particularly limited. For example, based on amino acid sequence information of structural proteins obtained from the NCBI web database or the like, AKTA ア ミ ノ 酸 oligopilotloplus 10/100 (GE Healthcare Japan) The gene can be chemically synthesized by a method of linking the oligonucleotides automatically synthesized by the method such as PCR. At this time, in order to facilitate the purification and / or confirmation of the protein, a nucleic acid encoding a protein consisting of an amino acid sequence obtained by adding an initiation codon and an amino acid sequence consisting of a His10 tag to the N-terminus of the above amino acid sequence was synthesized. Is also good.
 調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするタンパク質を発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。 The regulatory sequence is a sequence that controls the expression of the recombinant protein in the host (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, and the like), and can be appropriately selected depending on the type of the host. An inducible promoter that functions in a host cell and can induce the expression of a target protein may be used as the promoter. An inducible promoter is a promoter that can control transcription by the presence of an inducer (expression inducer), the absence of a repressor molecule, or a physical factor such as an increase or decrease in temperature, osmotic pressure, or pH value.
 発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、目的とするタンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。 種類 The type of expression vector can be appropriately selected depending on the type of host, such as a plasmid vector, a virus vector, a cosmid vector, a fosmid vector, an artificial chromosome vector, and the like. As the expression vector, those capable of autonomous replication in a host cell or integration into a host chromosome and containing a promoter at a position where a nucleic acid encoding a protein of interest can be transcribed are suitably used. .
 宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。 As the host, any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells, and plant cells can be suitably used.
 原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。 好 ま し い Preferred examples of prokaryotic hosts include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas. Examples of microorganisms belonging to the genus Escherichia include, for example, Escherichia coli. Examples of microorganisms belonging to the genus Brevibacillus include Brevibacillus agri. Microorganisms belonging to the genus Serratia include, for example, Serratia requestifaciens and the like. Examples of microorganisms belonging to the genus Bacillus include, for example, Bacillus subtilis. Microorganisms belonging to the genus Microbacterium include, for example, Microbacterium ammonia phyllum. Examples of microorganisms belonging to the genus Brevibacterium include Brevibacterium divaricatum. Examples of the microorganism belonging to the genus Corynebacterium include Corynebacterium ammoniagenes. Examples of microorganisms belonging to the genus Pseudomonas include Pseudomonas putida.
 原核生物を宿主とする場合、目的タンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。 When a prokaryote is used as a host, examples of a vector into which a nucleic acid encoding a target protein is introduced include, for example, pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSuex, pET22b, pCold, pUB110, pNCO2 (JP-A-2002-238569) and the like.
 真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。 Examples of eukaryotic hosts include yeast and filamentous fungi (such as mold). Examples of the yeast include yeast belonging to the genus Saccharomyces, the genus Pichia, the genus Schizosaccharomyces, and the like. Examples of the filamentous fungi include filamentous fungi belonging to the genus Aspergillus, Penicillium, Trichoderma, and the like.
 真核生物を宿主とする場合、所望のタンパク質をコードする核酸を導入するベクターとしては、例えば、YEp13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。 (4) When a eukaryote is used as a host, examples of a vector into which a nucleic acid encoding a desired protein is introduced include YEp13 (ATCC37115), YEp24 (ATCC37051), and the like. As a method for introducing the expression vector into the host cell, any method can be used as long as it is a method for introducing DNA into the host cell. For example, a method using calcium ions [Proc. {Natl. {Acad. {Sci. USA, 69, 2110 (1972)], electroporation, spheroplast, protoplast, lithium acetate, competent, and the like.
 発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。 As a method for expressing a nucleic acid by a host transformed with an expression vector, in addition to direct expression, secretory production, fusion protein expression, and the like can be performed according to the method described in Molecular Cloning, 2nd edition, and the like. .
 タンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。 The protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium. The method of culturing the host in the culture medium can be performed according to a method usually used for culturing the host.
 所望の組換えタンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。 The desired recombinant protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium. The method of culturing the host in the culture medium can be performed according to a method usually used for culturing the host.
 宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。 When the host is a prokaryote such as Escherichia coli or a eukaryote such as yeast, a culture medium containing a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the host, so that the host can be cultured efficiently. If so, either a natural medium or a synthetic medium may be used.
 炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。 The carbon source may be any as long as the transformed microorganism can assimilate, for example, glucose, fructose, sucrose, and molasses containing these, carbohydrates such as starch and starch hydrolyzate, acetic acid and propionic acid, and the like. Organic acids and alcohols such as ethanol and propanol can be used. As the nitrogen source, for example, ammonia, ammonium chloride, ammonium sulfate, ammonium salts of inorganic or organic acids such as ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells and digests thereof can be used. As the inorganic salts, for example, potassium (I) phosphate, potassium (II) phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate can be used.
 大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。 培養 Cultivation of prokaryotes such as Escherichia coli or eukaryotes such as yeast can be performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is, for example, 15 to 40 ° C. The culturing time is usually 16 hours to 7 days. The pH of the culture medium during the culture is preferably maintained at 3.0 to 9.0. The pH of the culture medium can be adjusted using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia, or the like.
 また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。 抗 生 During the culture, if necessary, antibiotics such as ampicillin and tetracycline may be added to the culture medium. When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, when culturing a microorganism transformed with an expression vector using the lac promoter, isopropyl-β-D-thiogalactopyranoside or the like is used. When culturing a microorganism transformed with an expression vector using the trp promoter, indole acryl is used. An acid or the like may be added to the medium.
 形質転換された宿主により生産された組換えタンパク質は、タンパク質の単離精製に通常用いられている方法で単離及び精製することができる。例えば、当該タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。 組 換 え The recombinant protein produced by the transformed host can be isolated and purified by a method usually used for isolating and purifying a protein. For example, when the protein is expressed in a dissolved state in the cells, after culturing, the host cells are collected by centrifugation, suspended in an aqueous buffer, and then sonicated with a sonicator, French press, and Manton Gaulin. The host cells are crushed with a homogenizer and a dynomill to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a method commonly used for isolating and purifying proteins, that is, a solvent extraction method, a salting-out method using ammonium sulfate, a desalting method, an organic solvent Precipitation method, anion exchange chromatography using a resin such as diethylaminoethyl (DEAE) -Sepharose, DIAION @ HPA-75 (manufactured by Mitsubishi Kasei), and cation using a resin such as S-Sepharose @ FF (manufactured by Pharmacia). Electrophoretic methods such as ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose and phenyl sepharose, gel filtration using molecular sieves, affinity chromatography, chromatofocusing, isoelectric focusing, etc. Purification using methods such as alone or in combination It is possible to obtain the goods.
 上記クロマトグラフィーとしては、フェニル-トヨパール(東ソー)、DEAE-トヨパール(東ソー)、セファデックスG-150(ファルマシアバイオテク)を用いたカラムクロマトグラフィーが好ましく用いられる。 カ ラ ム As the above chromatography, column chromatography using phenyl-Toyopearl (Tosoh), DEAE-Toyopearl (Tosoh), and Sephadex G-150 (Pharmacia Biotech) is preferably used.
 また、タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分としてタンパク質の不溶体を回収する。回収したタンパク質の不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によりタンパク質の精製標品を得ることができる。当該タンパク質が細胞外に分泌された場合には、培養上清から当該タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。 If the protein is expressed as an insoluble form in the cell, the host cell is similarly recovered, crushed, and centrifuged to collect the protein insoluble form as a precipitate fraction. The insoluble form of the recovered protein can be solubilized with a protein denaturant. After this operation, a purified sample of the protein can be obtained by the same isolation and purification method as described above. When the protein is secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a method such as centrifugation, and a purified sample can be obtained from the culture supernatant by using the same isolation and purification method as described above.
(紡糸原液)
 紡糸原液は、タンパク質、第1溶媒、第2溶媒及び任意に溶解促進剤を混合して、調製することができる。具体的には、タンパク質及び第1溶媒を混合し、任意に溶解促進剤を更に添加した後、第2溶媒を添加して調製することができる。必要に応じて、タンパク質及び第1溶媒の混合液を加温してもよい。加温する温度は、第1溶媒の沸点に応じて調整することができ、例えば、35~90℃、35~50℃、35~45℃、35~40℃、50~90℃、60~80℃、80~90℃であってもよい。第2溶媒の添加は、第2溶媒の沸点に応じて調整することができ、例えば、10~90℃、10~50℃、50~90℃、10~40℃、60~80℃、10~30℃、15~30℃、又は20~30℃で行うことが好ましい。タンパク質は、紡糸原液中で第1溶媒及び第2溶媒の混合溶媒に溶解又は分散した状態で存在する。
(Spinning solution)
The spinning solution can be prepared by mixing the protein, the first solvent, the second solvent and optionally a dissolution promoter. Specifically, it can be prepared by mixing a protein and a first solvent, optionally adding a dissolution promoter, and then adding a second solvent. If necessary, the mixture of the protein and the first solvent may be heated. The heating temperature can be adjusted according to the boiling point of the first solvent, for example, 35 to 90 ° C, 35 to 50 ° C, 35 to 45 ° C, 35 to 40 ° C, 50 to 90 ° C, 60 to 80 ° C. ° C, 80-90 ° C. The addition of the second solvent can be adjusted according to the boiling point of the second solvent, for example, 10 to 90 ° C, 10 to 50 ° C, 50 to 90 ° C, 10 to 40 ° C, 60 to 80 ° C, 10 to It is preferable to carry out at 30 ° C., 15 to 30 ° C., or 20 to 30 ° C. The protein exists in a state of being dissolved or dispersed in a mixed solvent of the first solvent and the second solvent in the spinning dope.
 タンパク質繊維は、上述したタンパク質を紡糸したものであり、上述したタンパク質を主成分として含む。 The protein fiber is obtained by spinning the above-mentioned protein, and contains the above-mentioned protein as a main component.
 紡糸原液におけるタンパク質の含有量は、紡糸原液の全質量を基準として、1~90質量%であってもよい。また、タンパク質の含有量は、紡糸原液の全質量を基準して、1質量%以上、2質量%以上、4質量%以上、7質量%以上、10質量%以上、又は15質量%以上であってよく、40質量%以下、35質量%以下、30質量%以下、又は25質量%以下であってもよい。 タ ン パ ク 質 The content of the protein in the spinning dope may be 1 to 90% by mass based on the total weight of the spinning dope. The protein content is 1% by mass or more, 2% by mass or more, 4% by mass or more, 7% by mass or more, 10% by mass or more, or 15% by mass or more based on the total mass of the spinning dope. It may be 40% by mass or less, 35% by mass or less, 30% by mass or less, or 25% by mass or less.
 第1溶媒は、タンパク質を溶解し得る溶媒であればよく、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ヘキサフルオロイソプロノール(HFIP)、ヘキサフルオロアセトン(HFAc)、ギ酸(FA)及び水からなる群より選択される少なくとも1種であってもよい。第1溶媒は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The first solvent may be any solvent capable of dissolving the protein, such as dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), hexafluoroisopronol (HFIP), hexafluoroacetone (HFAc), and formic acid (FAC). ) And water. The first solvent may be used alone or in a combination of two or more.
 紡糸原液における第1溶媒の含有量は、紡糸原液100質量部に対して、50~90質量部であってもよい。また、第1溶媒の含有量は、紡糸原液100質量部に対して、50質量部以上、60質量部以上、70質量部以上、又は80質量部以上であってもよく、90質量部以下、80質量部以下、70質量部以下、60質量部以下、50質量部以下であってもよい。第1溶媒の含有量は、紡糸原液100質量部に対して、好ましくは60~90質量部、より好ましくは60~85質量部、更に好ましくは65~85質量部、更により好ましくは70~80質量部、更によりまた好ましくは70~75質量部である。 含有 The content of the first solvent in the spinning dope may be 50 to 90 parts by mass based on 100 parts by mass of the spinning dope. In addition, the content of the first solvent may be 50 parts by mass or more, 60 parts by mass or more, 70 parts by mass or more, or 80 parts by mass or more with respect to 100 parts by mass of the spinning dope, and 90 parts by mass or less. It may be 80 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less. The content of the first solvent is preferably 60 to 90 parts by mass, more preferably 60 to 85 parts by mass, still more preferably 65 to 85 parts by mass, and still more preferably 70 to 80 parts by mass with respect to 100 parts by mass of the spinning dope. Parts by weight, even more preferably 70 to 75 parts by weight.
 第2溶媒は、紡糸原液から第1溶媒を除去してタンパク質を凝固(脱溶媒)できる溶媒であればよい。第2溶媒は、例えば、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種であってもよい。第2溶媒は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The second solvent may be any solvent that can coagulate (desolventize) the protein by removing the first solvent from the spinning dope. The second solvent may be, for example, at least one selected from the group consisting of lower alcohols, ketones, and water. The second solvent may be used alone or in a combination of two or more.
 低級アルコールは、炭素原子数1~5の直鎖状又は分岐鎖状アルコールを意味し、具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、アミルアルコール、ネオペンチルアルコール等が挙げられる。好ましい低級アルコールはメタノール又はエタノールであり、より好ましい低級アルコールはエタノールである。 The lower alcohol means a linear or branched alcohol having 1 to 5 carbon atoms, and specifically, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert- alcohol. Butanol, 1-pentanol, 2-pentanol, 3-pentanol, amyl alcohol, neopentyl alcohol and the like. A preferred lower alcohol is methanol or ethanol, and a more preferred lower alcohol is ethanol.
 ケトンとは、式(1):R-C(=O)-Rで表される化合物である。式(1)中、R及びRは、それぞれ独立に炭素原子数1~6の直鎖状又は分岐鎖状アルキル基を示す。このようなケトンの具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンが挙げられる。また、R及びRは、互いに単結合を介して環構造を形成していてもよい。このような環状ケトンの具体例としては、シクロペンタノン、シクロヘキサノンが挙げられる。好ましいケトンは、アセトン又はメチルエチルケトンである。 Ketone is a compound represented by the formula (1): R 1 -C ((O) -R 2 . In the formula (1), R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples of such a ketone include acetone, methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone. Further, R 1 and R 2 may form a ring structure with each other via a single bond. Specific examples of such a cyclic ketone include cyclopentanone and cyclohexanone. Preferred ketones are acetone or methyl ethyl ketone.
 製造コストをより低減でき、かつ蒸留による回収のしやすさの観点から、アセトンを第2溶媒として使用することが好ましい。 ア セ ト ン It is preferable to use acetone as the second solvent from the viewpoint of further reducing the production cost and the ease of recovery by distillation.
 紡糸原液における第2溶媒の含有量は、溶解するタンパク質100質量部に対して、1~90質量部であってもよい。また、第2溶媒の含有量は、溶解するタンパク質100質量部に対して、1質量部以上、5質量部以上、10質量部以上、20質量部以上、30質量部以上、40質量部以上、50質量部以上、60質量部以上、70質量部以上、又は80質量部以上であってもよく、90質量部以下、80質量部以下、70質量部以下、60質量部以下、50質量部以下、40質量部以下、30質量部以下、20質量部以下、10質量部以下、又は5質量部以下であってもよい。第2溶媒の含有量は、溶解するタンパク質100質量部に対して、好ましくは1~50質量部、より好ましくは1~40質量部、更に好ましくは5~40質量部、更により好ましくは5~30質量部、更によりまた好ましくは5~20質量部である。第2溶媒の含有量が、上述の範囲内である場合、タンパク質繊維の応力がより一層大きくなり、延伸安定性がよりよくなる。なお、本明細書における応力とは、タンパク質繊維が繊維軸方向の引張外力により破断するまでの最大荷重を、タンパク質繊維の9000mあたりの質量で除した値(単位:g/D)を意味する。 含有 The content of the second solvent in the spinning dope may be 1 to 90 parts by mass based on 100 parts by mass of the protein to be dissolved. Further, the content of the second solvent is 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, 30 parts by mass or more, 40 parts by mass or more, based on 100 parts by mass of the protein to be dissolved. 50 parts by mass or more, 60 parts by mass or more, 70 parts by mass or more, or 80 parts by mass or more, 90 parts by mass or less, 80 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less , 40 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, 10 parts by mass or less, or 5 parts by mass or less. The content of the second solvent is preferably 1 to 50 parts by mass, more preferably 1 to 40 parts by mass, still more preferably 5 to 40 parts by mass, and still more preferably 5 to 100 parts by mass with respect to 100 parts by mass of the protein to be dissolved. It is 30 parts by mass, still more preferably 5 to 20 parts by mass. When the content of the second solvent is within the above range, the stress of the protein fiber is further increased, and the drawing stability is further improved. In addition, the stress in this specification means the value (unit: g / D) obtained by dividing the maximum load until the protein fiber is broken by the tensile external force in the fiber axis direction by the mass per 9000 m of the protein fiber.
 紡糸原液は、溶解促進剤を更に含有していてもよい。紡糸原液が溶解促進剤を含有することにより、タンパク質をより容易に、かつより多量に溶解させることができる。特に、第1溶媒が水である場合、紡糸原液は溶解促進剤を含有する。 原 The spinning dope may further contain a dissolution accelerator. When the spinning dope contains the dissolution promoter, the protein can be dissolved more easily and in a larger amount. In particular, when the first solvent is water, the spinning dope contains a dissolution accelerator.
 溶解促進剤は、タンパク質及び溶解溶媒の種類等に応じて、適宜選択することができる。溶解促進剤は、例えば、以下に示すルイス酸とルイス塩基とからなる無機塩であってよい。ルイス塩基としては、例えば、オキソ酸イオン(硝酸イオン、過塩素酸イオン等)、金属オキソ酸イオン(過マンガン酸イオン等)、ハロゲン化物イオン、チオシアン酸イオン、シアン酸イオン等が挙げられる。ルイス酸としては、例えば、アルカリ金属イオン、アルカリ土類金属イオン等の金属イオン、アンモニウムイオン等の多原子イオン、錯イオン等が挙げられる。溶解溶媒が有機溶媒である場合、無機塩としては、例えば、塩化リチウム、臭化リチウム、ヨウ化リチウム、硝酸リチウム、過塩素酸リチウム、及びチオシアン酸リチウム等のリチウム塩、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、硝酸カルシウム、過塩素酸カルシウム、及びチオシアン酸カルシウム等のカルシウム塩、塩化鉄、臭化鉄、ヨウ化鉄、硝酸鉄、過塩素酸鉄、及びチオシアン酸鉄等の鉄塩、並びに、塩化アルミニウム、臭化アルミニウム、ヨウ化アルミニウム、硝酸アルミニウム、過塩素酸アルミニウム、及びチオシアン酸アルミニウム等のアルミニウム塩、塩化カリウム、臭化カリウム、ヨウ化カリウム、硝酸カリウム、過塩素酸カリウム、及びチオシアン酸カリウム等のカリウム塩、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硝酸ナトリウム、過塩素酸ナトリウム、及びチオシアン酸ナトリウム等のナトリウム塩、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、硝酸亜鉛、過塩素酸亜鉛、及びチオシアン酸亜鉛等の亜鉛塩、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、硝酸マグネシウム、過塩素酸マグネシウム、及びチオシアン酸マグネシウム等のマグネシウム塩、塩化バリウム、臭化バリウム、ヨウ化バリウム、硝酸バリウム、過塩素酸バリウム、及びチオシアン酸バリウム等のバリウム塩、塩化ストロンチウム、臭化ストロンチウム、ヨウ化ストロンチウム、硝酸ストロンチウム、過塩素酸ストロンチウム、及びチオシアン酸ストロンチウム等のストロンチウム塩などが挙げられる。これらの無機塩は、溶解溶媒に対するタンパク質の溶解促進剤として用いられる。紡糸原液が溶解促進剤(上記の無機塩)を含有することにより、タンパク質が紡糸原液中に高い濃度で溶解可能となる。これにより、タンパク質繊維の生産効率がより一層向上し、かつタンパク質繊維の高品質化と応力等の物性の向上等が期待される。無機塩は、塩化リチウム及び塩化カルシウムからなる群より選択される少なくとも1種であってよい。溶解促進剤は、1種単独、又は2種以上を組み合わせて用いたものであってよい。 (4) The dissolution promoter can be appropriately selected according to the type of the protein and the dissolution solvent. The dissolution promoter may be, for example, an inorganic salt composed of the following Lewis acid and Lewis base. Examples of the Lewis base include oxo acid ions (nitrate ions, perchlorate ions, etc.), metal oxo acid ions (permanganate ions, etc.), halide ions, thiocyanate ions, cyanate ions, and the like. Examples of the Lewis acid include metal ions such as alkali metal ions and alkaline earth metal ions, polyatomic ions such as ammonium ions, and complex ions. When the dissolution solvent is an organic solvent, examples of the inorganic salt include lithium salts such as lithium chloride, lithium bromide, lithium iodide, lithium nitrate, lithium perchlorate, and lithium thiocyanate, calcium chloride, and calcium bromide. Calcium salts such as calcium iodide, calcium nitrate, calcium perchlorate, and calcium thiocyanate; iron salts such as iron chloride, iron bromide, iron iodide, iron nitrate, iron perchlorate, and iron thiocyanate; Aluminum salts such as aluminum chloride, aluminum bromide, aluminum iodide, aluminum nitrate, aluminum perchlorate, and aluminum thiocyanate; potassium chloride, potassium bromide, potassium iodide, potassium nitrate, potassium perchlorate, and thiocyanate Potassium salts such as potassium acid, sodium chloride, nato bromide Sodium salts such as sodium, sodium iodide, sodium nitrate, sodium perchlorate and sodium thiocyanate; zinc salts such as zinc chloride, zinc bromide, zinc iodide, zinc nitrate, zinc perchlorate and zinc thiocyanate Magnesium salts such as magnesium chloride, magnesium bromide, magnesium iodide, magnesium nitrate, magnesium perchlorate, and magnesium thiocyanate, barium chloride, barium bromide, barium iodide, barium nitrate, barium perchlorate, and thiocyanate And barium salts such as barium acid, and strontium salts such as strontium chloride, strontium bromide, strontium iodide, strontium nitrate, strontium perchlorate, and strontium thiocyanate. These inorganic salts are used as a promoter for dissolving a protein in a dissolution solvent. When the spinning dope contains a dissolution promoter (the above-mentioned inorganic salt), the protein can be dissolved in the spinning dope at a high concentration. As a result, it is expected that the production efficiency of the protein fiber is further improved, and that the quality of the protein fiber and the physical properties such as stress are improved. The inorganic salt may be at least one selected from the group consisting of lithium chloride and calcium chloride. The dissolution promoter may be used alone or in combination of two or more.
 溶解促進剤の含有量は、紡糸原液の全質量に対して、0.1質量%以上、1質量%以上、4質量%以上、7質量%以上、10質量%以上、又は15質量%以上であってよく、20質量%以下、16質量%以下、12質量%以下、又は9質量%以下であってよい。 The content of the dissolution promoter is 0.1% by mass or more, 1% by mass or more, 4% by mass or more, 7% by mass or more, 10% by mass or more, or 15% by mass or more with respect to the total mass of the spinning dope. It may be 20% by mass or less, 16% by mass or less, 12% by mass or less, or 9% by mass or less.
 紡糸原液は、必要に応じて、各種の添加剤を更に含有していてよい。添加剤としては、例えば、可塑剤、レベリング剤、架橋剤、結晶核剤、酸化防止剤、紫外線吸収剤、着色剤、フィラー、合成樹脂が挙げられる。添加剤の含有量は、紡糸原液中のタンパク質全量100質量部に対して、50質量部以下であってよい。 原 The spinning dope may further contain various additives as necessary. Examples of the additives include a plasticizer, a leveling agent, a crosslinking agent, a crystal nucleating agent, an antioxidant, an ultraviolet absorber, a coloring agent, a filler, and a synthetic resin. The content of the additive may be 50 parts by mass or less based on 100 parts by mass of the total amount of the protein in the spinning dope.
<タンパク質繊維の製造方法>
 本実施形態に係るタンパク質繊維の製造方法は、上述の紡糸原液を、第3溶媒及び任意に溶解促進剤を含有する凝固浴液に導入して、タンパク質を凝固させる工程(紡糸工程)を含む。本実施形態に係るタンパク質繊維の製造方法は、湿式紡糸、乾湿式紡糸等の公知の紡糸方法に準じて実施することができる。
<Method for producing protein fiber>
The method for producing a protein fiber according to the present embodiment includes a step of introducing the above-described spinning solution into a coagulation bath solution containing a third solvent and optionally a dissolution promoter to coagulate the protein (spinning step). The method for producing a protein fiber according to the present embodiment can be performed according to a known spinning method such as wet spinning and dry-wet spinning.
<紡糸工程>
 紡糸工程では、紡糸原液を凝固浴液に接触させ、タンパク質を凝固させる。紡糸工程を含め、本実施形態のタンパク質繊維の製造方法は、例えば、図1に示す紡糸装置を使用して実施することができる。
<Spinning process>
In the spinning step, the spinning solution is brought into contact with a coagulation bath solution to coagulate the protein. The method for producing a protein fiber of the present embodiment, including the spinning step, can be performed using, for example, the spinning apparatus shown in FIG.
 図1は、タンパク質繊維を製造するための紡糸装置の一例を概略的に示す説明図である。図1に示す紡糸装置10は、乾湿式紡糸用の紡糸装置の一例であり、押出し装置1と、凝固浴槽20と、洗浄浴槽(延伸浴槽)21と、乾燥装置4とを上流側から順に有している。 FIG. 1 is an explanatory view schematically showing an example of a spinning device for producing protein fibers. The spinning device 10 shown in FIG. 1 is an example of a spinning device for dry-wet spinning, and includes an extrusion device 1, a coagulation bath 20, a washing bath (drawing bath) 21, and a drying device 4 in this order from the upstream side. are doing.
 押出し装置1は貯槽7を有しており、ここに紡糸原液(ドープ液)6が貯留される。凝固浴槽20に凝固浴液11が貯留される。紡糸原液6は、上述したタンパク質を溶解溶媒に溶解させて得られる。紡糸原液6は、貯槽7の下端部に取り付けられたギアポンプ8により、凝固浴液11との間にエアギャップ19を開けて設けられたノズル9から押し出される。押し出された紡糸原液6は、エアギャップ19を経て、凝固浴槽20の凝固浴液11内に供給(導入)される。凝固浴液11内で紡糸原液から溶媒が除去されてタンパク質が凝固する。凝固したタンパク質は、洗浄浴槽21に導かれ、洗浄浴槽21内の洗浄液12により洗浄された後、洗浄浴槽21内に設置された第一ニップローラ13と第二ニップローラ14により、乾燥装置4へと送られる。このとき、例えば、第二ニップローラ14の回転速度を第一ニップローラ13の回転速度よりも速く設定すると、回転速度比に応じた倍率で延伸されたタンパク質繊維36が得られる。洗浄液12中で延伸されたタンパク質繊維は、洗浄浴槽21内を離脱してから、乾燥装置4内を通過する際に乾燥され、その後、ワインダーにて巻き取られる。このようにして、タンパク質繊維が、紡糸装置10により、最終的にワインダーに巻き取られた巻回物5として得られる。なお、18a~18gは糸ガイドである。 The extrusion device 1 has a storage tank 7 in which a stock spinning solution (dope solution) 6 is stored. The coagulation bath liquid 11 is stored in the coagulation bath 20. The spinning dope 6 is obtained by dissolving the protein described above in a dissolving solvent. The stock spinning solution 6 is pushed out of a nozzle 9 provided with an air gap 19 opened between the stock solution 7 and a coagulation bath solution 11 by a gear pump 8 attached to the lower end of the storage tank 7. The extruded spinning solution 6 is supplied (introduced) into the coagulation bath solution 11 of the coagulation bath tank 20 via the air gap 19. In the coagulation bath solution 11, the solvent is removed from the spinning dope to coagulate the protein. The coagulated protein is guided to the washing bath 21 and washed by the washing liquid 12 in the washing bath 21, and then sent to the drying device 4 by the first nip roller 13 and the second nip roller 14 installed in the washing bath 21. Can be At this time, for example, if the rotation speed of the second nip roller 14 is set higher than the rotation speed of the first nip roller 13, the protein fibers 36 drawn at a magnification corresponding to the rotation speed ratio are obtained. The protein fiber stretched in the washing liquid 12 is separated from the inside of the washing bath 21, dried when passing through the drying device 4, and then wound up by a winder. In this way, the protein fiber is finally obtained by the spinning device 10 as the wound material 5 wound on a winder. In addition, 18a to 18g are yarn guides.
 凝固浴液11は、第3溶媒を含有する。第3溶媒として、第2溶媒で定義した溶媒を使用できる。第2溶媒と第3溶媒は、互いに同じものであってもよく、異なっていてもよい。凝固浴液11は、適宜水を含んでいてもよい。 (4) The coagulation bath solution 11 contains a third solvent. As the third solvent, the solvent defined in the second solvent can be used. The second solvent and the third solvent may be the same or different from each other. The coagulation bath liquid 11 may appropriately contain water.
 第3溶媒の含有量は、凝固浴液の全質量に対して、60質量%以上であるのが好ましく、70質量%以上であるのがより好ましく、80質量%以上であるのが更に好ましく、90質量%以上であるのが更により好ましく、95質量%以上であるのが特に好ましい。凝固浴液11は、第2溶媒のみからなるものであってもよい。 The content of the third solvent is preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, based on the total mass of the coagulation bath liquid. The content is even more preferably 90% by mass or more, and particularly preferably 95% by mass or more. The coagulation bath liquid 11 may be composed of only the second solvent.
 凝固浴液11が水を含む場合、水の含有量は、凝固浴液の全質量に対して、30質量%以下であるのが好ましい。水の含有量は、凝固浴液の全質量に対して、20質量%以下であってもよく、10質量%以下であってもよい。 When the coagulation bath liquid 11 contains water, the content of water is preferably 30% by mass or less based on the total mass of the coagulation bath liquid. The water content may be 20% by mass or less, or 10% by mass or less, based on the total mass of the coagulation bath liquid.
 凝固浴液11は、溶解促進剤を更に含んでもよい。凝固浴液における溶解促進剤は、1種単独で、又は2種以上を組み合わせて用いたものであってもよい。 The coagulation bath liquid 11 may further contain a dissolution accelerator. The dissolution promoter in the coagulation bath may be used alone or in combination of two or more.
 凝固浴液11の温度は、特に限定されないが、40℃以下、30℃以下、25℃以下、20℃以下、10℃以下、又は5℃以下であってよい。凝固浴液11の温度は、特に限定されないが、-30℃以上、-20℃以上、又は-10℃以上であってよく、作業性、冷却コスト等の観点から、0℃以上であることが好ましい。凝固浴液11の温度が上記範囲内であれば、ボイドの発生が充分に抑制され、タンパク質繊維の応力がより増大し、かつ所望のタンパク質繊維を安定供給しやすくなる。なお、凝固浴液11の温度は、例えば、熱交換器を内部に備える凝固浴槽20と、冷却循環装置と、を有する紡糸装置10を用いることにより調整することができる。例えば、凝固浴槽20内に設置した熱交換器に冷却循環装置で所定の温度まで冷却した媒体を流すことにより、凝固浴液11と熱交換器間での熱交換により温度を上記範囲内に調整することができる。この場合、媒体として凝固浴液11に用いる溶媒(例えば、メタノール)を循環することでより効率的な冷却が可能となる。 温度 The temperature of the coagulation bath solution 11 is not particularly limited, but may be 40 ° C or lower, 30 ° C or lower, 25 ° C or lower, 20 ° C or lower, 10 ° C or lower, or 5 ° C or lower. The temperature of the coagulation bath liquid 11 is not particularly limited, but may be −30 ° C. or higher, −20 ° C. or higher, or −10 ° C. or higher, and may be 0 ° C. or higher from the viewpoint of workability, cooling cost, and the like. preferable. When the temperature of the coagulation bath liquid 11 is within the above range, the generation of voids is sufficiently suppressed, the stress of the protein fiber is further increased, and the desired protein fiber is easily supplied stably. In addition, the temperature of the coagulation bath liquid 11 can be adjusted by using, for example, a spinning device 10 including a coagulation bath 20 having a heat exchanger therein and a cooling circulation device. For example, by flowing a medium cooled to a predetermined temperature by a cooling circulation device through a heat exchanger installed in the coagulation bath 20, the temperature is adjusted to the above range by heat exchange between the coagulation bath liquid 11 and the heat exchanger. can do. In this case, by circulating a solvent (for example, methanol) used for the coagulation bath liquid 11 as a medium, more efficient cooling becomes possible.
 凝固浴液11が貯留される凝固浴槽20は複数設けられていてもよい。この場合、ノズル9から押し出された紡糸原液6が直接供給(導入)される凝固浴槽20の凝固浴液(第1凝固浴液)が、第3溶媒を含有していればよい。すなわち、凝固浴液11が貯留される凝固浴槽20は複数設けられている場合、第1凝固浴液以外の凝固浴液(他の凝固浴液)は、第3溶媒を含有していなくてもよい。他の凝固浴液の温度は、40℃以下、30℃以下、25℃以下、20℃以下、10℃以下、又は5℃以下であってもよく、0℃以上、又は40℃超であってもよい。作業性、冷却コスト等の観点から、凝固浴液の温度は0℃以上であることが好ましい。なお、凝固浴液11の温度は、例えば、熱交換器を内部に備える凝固浴槽20と、冷却循環装置と、を有する紡糸装置10を用いることにより調整することができる。例えば、凝固浴槽20内に設置した熱交換器に冷却循環装置で所定の温度まで冷却した媒体を流すことにより、凝固浴液11と熱交換器間での熱交換により温度を上記範囲内に調整することができる。この場合、媒体として凝固浴液11に用いる溶媒を循環することでより効率的な冷却が可能となる。 複数 A plurality of coagulation bath tanks 20 in which the coagulation bath liquid 11 is stored may be provided. In this case, the coagulation bath liquid (first coagulation bath liquid) in the coagulation bath tank 20 to which the spinning dope 6 extruded from the nozzle 9 is directly supplied (introduced) may contain the third solvent. That is, when a plurality of coagulation baths 20 for storing the coagulation bath 11 are provided, even if the coagulation bath other than the first coagulation bath (other coagulation bath) does not contain the third solvent. Good. The temperature of the other coagulation bath solution may be 40 ° C. or less, 30 ° C. or less, 25 ° C. or less, 20 ° C. or less, 10 ° C. or less, 5 ° C. or less, 0 ° C. or more, or more than 40 ° C. Is also good. From the viewpoints of workability, cooling cost, and the like, the temperature of the coagulation bath liquid is preferably 0 ° C. or higher. In addition, the temperature of the coagulation bath liquid 11 can be adjusted by using, for example, a spinning device 10 including a coagulation bath 20 having a heat exchanger therein and a cooling circulation device. For example, by flowing a medium cooled to a predetermined temperature by a cooling circulation device through a heat exchanger installed in the coagulation bath 20, the temperature is adjusted to the above range by heat exchange between the coagulation bath liquid 11 and the heat exchanger. can do. In this case, more efficient cooling is possible by circulating the solvent used for the coagulation bath liquid 11 as a medium.
 凝固したタンパク質は、凝固浴槽又は洗浄浴槽を離脱してから、そのままワインダーにて巻き取られてもよいし、乾燥装置を通過し、乾燥され、その後、ワインダーにて巻き取られてもよい。 (4) The coagulated protein may be taken up by a winder after leaving the coagulation bath or the washing bath, or may be passed through a drying device, dried, and then wound up by a winder.
 凝固したタンパク質が凝固浴液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行えるよく、ノズル9からの紡糸原液の押出速度(吐出速度)等に応じて決定されるものであってよい。未延伸糸の引き取り速度は、例えば、1~100m/分であってよく、1~20m/分であってよく、1~3m/分であることが好ましい。引き取り速度が1m/分以上であると、生産性を十分に高めることができる。引き取り速度が100m/分以下であると、溶媒の液体の飛び散りを回避することができる。凝固したタンパク質(又は紡糸原液)の凝固浴液11中での滞留時間は、凝固したタンパク質が凝固浴液11中を通過する距離、ノズル9からの紡糸原液6の押出速度等に応じて決定されるものであってよい。滞留時間は、例えば、0.01~3分であってよく、0.05~0.15分であることが好ましい。また、凝固浴液11中で延伸(前延伸)をしてもよい。 The distance at which the coagulated protein passes through the coagulation bath solution 11 (substantially, the distance from the yarn guide 18a to the yarn guide 18b) is such that the solvent can be efficiently removed and the extrusion speed of the spinning solution from the nozzle 9 is good. (Discharge speed) or the like may be determined. The take-up speed of the undrawn yarn is, for example, 1 to 100 m / min, 1 to 20 m / min, and preferably 1 to 3 m / min. When the take-up speed is 1 m / min or more, the productivity can be sufficiently increased. When the take-up speed is 100 m / min or less, it is possible to avoid the scattering of the solvent liquid. The residence time of the coagulated protein (or spinning solution) in the coagulation bath solution 11 is determined according to the distance that the coagulated protein passes through the coagulation bath solution 11, the extrusion speed of the spinning solution 6 from the nozzle 9, and the like. It may be. The residence time may be, for example, 0.01 to 3 minutes, preferably 0.05 to 0.15 minutes. Further, stretching (pre-stretching) may be performed in the coagulation bath liquid 11.
<延伸工程>
 本実施形態のタンパク質繊維の製造方法は、凝固させたタンパク質を延伸する工程(延伸工程)を更に含むものであってよい。延伸工程は、例えば、凝固浴槽20内で実施してもよく、洗浄浴槽21内で実施してもよい。延伸工程はまた、空気中で実施することもできる。
<Stretching process>
The method for producing a protein fiber of the present embodiment may further include a step of drawing the coagulated protein (drawing step). The stretching step may be performed, for example, in the coagulation bath 20 or in the washing bath 21. The stretching step can also be performed in air.
 洗浄浴槽21内で実施される延伸は、温水中、温水に有機溶剤等を加えた溶液中等で行う、いわゆる湿熱延伸であってもよい。湿熱延伸の温度は50~90℃であることが好ましい。該温度が50℃以上であると、糸の細孔径を安定的に小さくすることができる。また、温度が90℃以下であると、温度設定が容易であり紡糸安定性が向上する。温度は75~85℃がより好ましい。 The stretching performed in the washing bath 21 may be so-called wet heat stretching performed in hot water, in a solution obtained by adding an organic solvent or the like to warm water, or the like. The temperature for wet heat stretching is preferably from 50 to 90 ° C. When the temperature is 50 ° C. or higher, the pore diameter of the yarn can be stably reduced. When the temperature is 90 ° C. or lower, the temperature can be easily set and spinning stability is improved. The temperature is more preferably from 75 to 85 ° C.
 延伸工程における凝固させたタンパク質の延伸倍率が高いほど、槽内で走行する糸が弛まずに安定することから、隣接して走行する糸に干渉することなく工程通過性が向上する。なお、本実施形態のタンパク質繊維の製造方法では、最大延伸倍率を向上することができ、延伸倍率を制御する範囲が広げられるため、タンパク質繊維の繊維径を制御することができる。 (4) The higher the draw ratio of the coagulated protein in the drawing step, the more stable the yarn running in the tank is without loosening, so that the process passability is improved without interfering with the adjacent running yarn. In the method for producing a protein fiber of the present embodiment, the maximum draw ratio can be improved, and the range for controlling the draw ratio is widened, so that the fiber diameter of the protein fiber can be controlled.
 最終的な延伸倍率は、その下限値が、未延伸糸(又は前延伸糸)に対して、好ましくは、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上のうちのいずれかであり、上限値が、好ましくは40倍以下、30倍以下、20倍以下、15倍以下、14倍以下、13倍以下、12倍以下、11倍以下、10倍以下である。 The final draw ratio of the undrawn yarn (or pre-drawn yarn) is preferably 5 times or more, 6 times or more, 7 times or more, 8 times or more, and 9 times or more of the undrawn yarn (or pre-drawn yarn). The upper limit is preferably 40 times or less, 30 times or less, 20 times or less, 15 times or less, 14 times or less, 13 times or less, 12 times or less, 11 times or less, and 10 times or less.
 乾燥及び/又は脱溶媒後の未延伸糸は、水中で延伸をしてもよく、2段以上の多段延伸をしてもよい。水中延伸は、20~90℃の水温で行われることが好ましい。延伸後の糸は、50~200℃の乾熱で5~600秒間熱固定することが好ましい。この熱固定により、常温における寸法安定性が得られる。 未 The undrawn yarn after drying and / or solvent removal may be drawn in water or may be drawn in two or more stages. The underwater stretching is preferably performed at a water temperature of 20 to 90 ° C. The drawn yarn is preferably heat-set at a dry heat of 50 to 200 ° C. for 5 to 600 seconds. By this heat setting, dimensional stability at normal temperature is obtained.
 なお、タンパク質繊維を得る際に洗浄浴槽21内で実施される延伸は、温水中、温水に有機溶剤等を加えた溶液中等で行う、いわゆる湿熱延伸であってもよい。この湿熱延伸の温度としては、例えば、50~90℃であってよく、75~85℃が好ましい。湿熱延伸では、未延伸糸(又は前延伸糸)を、例えば、1~10倍延伸することができる。 The drawing performed in the washing bath 21 when obtaining the protein fiber may be so-called wet heat drawing performed in hot water, a solution obtained by adding an organic solvent or the like to hot water, or the like. The temperature for the wet heat stretching may be, for example, 50 to 90 ° C., preferably 75 to 85 ° C. In wet heat drawing, the undrawn yarn (or pre-drawn yarn) can be drawn, for example, 1 to 10 times.
 延伸工程は、湿熱延伸及び乾熱延伸を、それぞれ単独で行うものであってもよく、またこれらを多段で、又は組み合わせて行うものであってもよい。すなわち、延伸工程として、一段目延伸を湿熱延伸で行い、二段目延伸を乾熱延伸で行う、又は一段目延伸を湿熱延伸行い、二段目延伸を湿熱延伸行い、更に三段目延伸を乾熱延伸で行う等、湿熱延伸及び乾熱延伸を適宜組み合わせて行うことができる。 In the stretching step, the wet heat stretching and the dry heat stretching may be performed individually, or may be performed in multiple stages or in combination. That is, as the stretching step, the first-stage stretching is performed by wet-heat stretching, the second-stage stretching is performed by dry-heat stretching, or the first-stage stretching is performed by wet-heat stretching, the second-stage stretching is performed by wet-heat stretching, and the third-stage stretching is further performed. For example, wet heat stretching and dry heat stretching can be performed in an appropriate combination such as dry heat stretching.
 延伸工程を経たフィラメントの最終的な延伸倍率の下限値は、未延伸糸(又は前延伸糸)に対して、好ましくは、1倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、又は9倍のうちの何れかであってよい。延伸工程を経たマルチフィラメントの最終的な延伸倍率の上限値は、好ましくは40倍、30倍、20倍、15倍、14倍、13倍、12倍、11倍、又は10倍のうちの何れかであってよい。また、例えば、最終的な延伸倍率は3~40倍であってよく、3~30倍であってよく、5~30倍であってよく、5~20倍であってよく、5~15倍であってよく、5~13倍であってよい。 The lower limit of the final draw ratio of the filament after the drawing step is preferably 1 time, 2 times, 3 times, 4 times, 5 times, 6 times, or more with respect to the undrawn yarn (or pre-drawn yarn). It may be any of seven times, eight times, or nine times. The upper limit of the final draw ratio of the multifilament after the drawing step is preferably any of 40 times, 30 times, 20 times, 15 times, 14 times, 13 times, 12 times, 11 times, or 10 times. It may be. In addition, for example, the final stretching magnification may be 3 to 40 times, 3 to 30 times, 5 to 30 times, 5 to 20 times, or 5 to 15 times. And may be 5 to 13 times.
 また、本発明は、タンパク質及び第1溶媒を含有する紡糸原液を、第2溶媒を含有する凝固浴液に導入して、タンパク質を凝固させる工程を含む、タンパク質繊維の製造方法であって、紡糸原液に含まれるタンパク質の平均粒子径が4~15nmである、タンパク質繊維の製造方法という他の側面も備える。 Further, the present invention is a method for producing a protein fiber, comprising a step of introducing a spinning solution containing a protein and a first solvent into a coagulation bath solution containing a second solvent to coagulate the protein. The present invention also has another aspect of a method for producing a protein fiber, wherein the average particle diameter of the protein contained in the stock solution is 4 to 15 nm.
 紡糸原液において、タンパク質は、その平均粒子径が4~15nmの大きさで分散している。タンパク質の平均粒子径は、4~13nmであることが好ましく、4~10nmであることがより好ましく、4~8nmであることが特に好ましい。タンパク質の平均粒子径が上記範囲であると、凝固後、延伸させて得られるタンパク質繊維の応力がより高くなり、タフネスも向上する。 タ ン パ ク 質 In the spinning dope, the protein is dispersed with an average particle size of 4 to 15 nm. The average particle size of the protein is preferably from 4 to 13 nm, more preferably from 4 to 10 nm, particularly preferably from 4 to 8 nm. When the average particle size of the protein is in the above range, the stress of the protein fiber obtained by stretching after coagulation becomes higher, and the toughness is also improved.
 タンパク質の平均粒子径を上記範囲内となるように調整する手段としては、例えば、紡糸原液に特定の量の第2溶媒を添加する方法が挙げられる。第1溶媒、第2溶媒の各定義は、上述のとおりである。 手段 As a means for adjusting the average particle diameter of the protein to be within the above range, for example, a method of adding a specific amount of a second solvent to the spinning dope is exemplified. The definitions of the first solvent and the second solvent are as described above.
 紡糸原液中のタンパク質の平均粒子径は、粒度分布の平均値である。本発明において、粒子径は、例えば、特定の粒子形状と特定の物理的な条件を仮定したときに導かれる物理学的法則を用いて測定した量に基づいて、算出されたものであってもよい。例えば、動的光散乱(光子相関法)を用いて、粒子に光を照射した時に得られる散乱光が示す揺らぎを光子相関法で解析することにより、粒子径や粒度分布を求めてもよい。タンパク質の平均粒子径は、ダイナミック光散乱光度計DLS-8000(商品名、大塚電子株式会社製)を用いた動的光散乱によって粒子径分布を測定し、散乱光強度基準の平均粒子径を算出することができる。 平均 The average particle size of the protein in the spinning stock solution is the average value of the particle size distribution. In the present invention, the particle diameter is, for example, calculated based on an amount measured using a physical law derived when assuming a specific particle shape and specific physical conditions, Good. For example, by using dynamic light scattering (photon correlation method), the particle diameter and particle size distribution may be obtained by analyzing the fluctuation of the scattered light obtained when the particles are irradiated with light by the photon correlation method. The average particle size of the protein is measured by dynamic light scattering using a dynamic light scattering photometer DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.), and the average particle size based on the scattered light intensity is calculated. can do.
 以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
1.クモ糸タンパク質(クモ糸フィブロイン:PRT799)の製造
(1)クモ糸タンパク質をコードする遺伝子の合成、及び発現ベクターの構築
 ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号12で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT799」ともいう。)を設計した。
1. Production of spider silk protein (spider silk fibroin: PRT799) (1) Synthesis of gene encoding spider silk protein and construction of expression vector Fibroin (GenBank Accession No .: P468804.1) derived from Nephila clavipes Based on the nucleotide sequence and amino acid sequence of GI: 1174415), a modified fibroin having the amino acid sequence represented by SEQ ID NO: 12 (hereinafter, also referred to as “PRT799”) was designed.
 配列番号10で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列と、そのN末端に付加された配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列を含むアミノ酸配)とを有する。配列番号12で示されるアミノ酸配列(PRT799)は、配列番号10で示されるアミノ酸配列のN末端に配列番号6で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)を付加したものである。 The amino acid sequence represented by SEQ ID NO: 10 is obtained by substituting, inserting and deleting amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes, and its N-terminal. And the amino acid sequence represented by SEQ ID NO: 11 (amino acid sequence including a tag sequence and a hinge sequence). The amino acid sequence represented by SEQ ID NO: 12 (PRT799) is obtained by adding an amino acid sequence represented by SEQ ID NO: 6 (an amino acid sequence including a His tag sequence and a hinge sequence) to the N-terminal of the amino acid sequence represented by SEQ ID NO: 10. is there.
 設計したPRT799をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。 核酸 The designed nucleic acid encoding PRT799 was synthesized. An NdeI site at the 5 'end and an EcoRI site downstream of the stop codon were added to the nucleic acid. The nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the nucleic acid was digested with NdeI and EcoRI and cut out, followed by recombination into a protein expression vector pET-22b (+) to obtain an expression vector.
 得られたpET22b(+)発現ベクターによって、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表1)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまで約15時間、フラスコ培養を行って、シード培養液を得た。 Escherichia coli BLR (DE3) was transformed with the obtained pET22b (+) expression vector. The transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours. The culture solution was added to 100 mL of a seed culture medium containing ampicillin (Table 1) so that the OD 600 was 0.005. The temperature of the culture was maintained at 30 ° C., and the flask was cultured for about 15 hours until the OD 600 reached 5, to obtain a seed culture.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 当該シード培養液を500mlの生産培地(表2)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持した。 The seed culture solution was added to a jar fermenter to which 500 ml of a production medium (Table 2) had been added so that the OD 600 was 0.05. The temperature of the culture was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9. The concentration of dissolved oxygen in the culture was maintained at 20% of the saturated concentration of dissolved oxygen.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持しながら、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、PRT799を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存したPRT799に相当するサイズのバンドの出現により、PRT799の発現を確認した。 フ ィ ー ド Immediately after the glucose in the production medium was completely consumed, a feed solution (455 g / 1 L of glucose, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min. The temperature of the culture was maintained at 37 ° C., and the culture was performed at a constant pH of 6.9. Culture was performed for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Thereafter, 1 M isopropyl-β-thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce PRT799 expression. Twenty hours after the addition of IPTG, the culture was centrifuged to collect the cells. SDS-PAGE was performed using cells prepared from the culture solution before and after the addition of IPTG, and the expression of PRT799 was confirmed by the appearance of a band having a size corresponding to PRT799 depending on the addition of IPTG.
(2)クモ糸フィブロインの精製
 IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質(PRT799)を遠心分離により回収した。回収した凝集タンパク質から凍結乾燥機で水分を除き、PRT799の凍結乾燥粉末を得た。
(2) Purification of spider silk fibroin Two hours after the addition of IPTG, the recovered cells were washed with 20 mM Tris-HCl buffer (pH 7.4). The washed cells were suspended in a 20 mM Tris-HCl buffer (pH 7.4) containing about 1 mM PMSF, and the cells were disrupted with a high-pressure homogenizer (GEA Niro Soavi). The disrupted cells were centrifuged to obtain a precipitate. The obtained precipitate was washed with a 20 mM Tris-HCl buffer (pH 7.4) until it became highly pure. The precipitate after washing is suspended in an 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) so as to have a concentration of 100 mg / mL. For 30 minutes with a stirrer to dissolve. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Junyaku Co., Ltd.). The white aggregated protein (PRT799) obtained after dialysis was recovered by centrifugation. The water was removed from the collected aggregated protein using a freeze dryer to obtain a freeze-dried powder of PRT799.
2.タンパク質繊維の製造
(1)紡糸原液の調製
 改変フィブロイン(PRT799)の凍結乾燥粉末24質量%と、第1溶媒としての第1溶媒(ギ酸、純度98%)76質量%とを混合し、40℃のアルミブロックヒーターで12時間加温し、PRT799が溶解した溶液を得た。得られた溶液の温度が23℃になるまで冷ました後、下記の質量比となるように第2溶媒を溶液に添加した。使用した第2溶媒は各表に示す。
(a)PRT799:第2溶媒=100:5
(b)PRT799:第2溶媒=100:10
(c)PRT799:第2溶媒=100:20
 すなわち、紡糸原液における第2溶媒の含有量は、それぞれ(a)5w/w%、(b)10w/w%、(c)20w/w%である。
 10~12時間混合した後、目開き1μmの金属フィルターで濾過し、脱泡して、濃度の異なる3種類の紡糸原液(ドープ液)を調製した。
2. Production of protein fiber (1) Preparation of spinning stock solution 24% by mass of freeze-dried powder of modified fibroin (PRT799) and 76% by mass of a first solvent (formic acid, purity 98%) as a first solvent are mixed, and then mixed at 40 ° C. For 12 hours to obtain a solution in which PRT799 was dissolved. After cooling the temperature of the obtained solution to 23 ° C., a second solvent was added to the solution so as to have the following mass ratio. The second solvent used is shown in each table.
(A) PRT799: second solvent = 100: 5
(B) PRT799: second solvent = 100: 10
(C) PRT799: second solvent = 100: 20
That is, the content of the second solvent in the spinning solution is (a) 5 w / w%, (b) 10 w / w%, and (c) 20 w / w%, respectively.
After mixing for 10 to 12 hours, the mixture was filtered through a metal filter having a mesh size of 1 μm and defoamed to prepare three types of spinning stock solutions (dope solutions) having different concentrations.
(2)紡糸
 卓上の紡糸装置を用いて湿式紡糸を行なった。調製した紡糸原液をリザーブタンクに充填した。不活性ガス(窒素)を用いて、内径20μmの孔径のノズルから紡糸原液を吐出し、第3溶媒(100質量%エタノール)の凝固浴槽中へ吐出させた。タンパク質が凝固した後、凝固浴槽中で延伸を行った。ついで、メタノール洗浄浴、水洗浄浴で順次洗浄及び延伸した後、乾熱板を用いて乾燥させ、タンパク質繊維(原糸)を得て、これを巻き取った。
湿式紡糸の条件は以下のとおりである。
 吐出圧:0.5bar
 凝固浴延伸倍率:0倍
 水洗浄浴延伸倍率:7~10倍
 凝固浴液の温度:5℃
 乾燥温度:60℃
(2) Spinning Wet spinning was performed using a table spinning device. The prepared spinning dope was filled in a reserve tank. Using an inert gas (nitrogen), the spinning solution was discharged from a nozzle having an inner diameter of 20 μm and discharged into a coagulation bath of a third solvent (100% by mass ethanol). After the protein was coagulated, stretching was performed in a coagulation bath. Next, after successively washing and stretching with a methanol washing bath and a water washing bath, the resultant was dried using a hot plate to obtain a protein fiber (raw yarn), which was wound up.
The conditions of the wet spinning are as follows.
Discharge pressure: 0.5 bar
Coagulation bath stretching ratio: 0 times Water washing bath stretching ratio: 7 to 10 times Temperature of coagulation bath liquid: 5 ° C
Drying temperature: 60 ° C
(3)延伸と物性測定
 光学顕微鏡を用いて繊維の直径を求めた。
 温度:25℃、相対湿度:60%RHの雰囲気温度で、引張り試験機(島津社製小型卓上試験機EZ-S)を用いて、タンパク質繊維の応力を測定し、タフネスを算出した。サンプルは厚紙で型枠を作製したものに貼り付け、つかみ具間距離は20mm、引張り速度は10mm/minで行った。ロードセル容量1N、つかみ冶具はクリップ式とした。測定値はサンプル数n=5の平均値とした。
 タフネスは、以下の式に基づいて算出した。
[E/(r×π×L)×1000](単位:MJ/m
但し、
E 破壊エネルギー(単位:J)
r 繊維の半径(単位:mm)
π 円周率
L 引張り試験測定時のつかみ具間距離:20mm
(3) Drawing and Measurement of Physical Properties The diameter of the fiber was determined using an optical microscope.
At an ambient temperature of 25 ° C. and a relative humidity of 60% RH, the stress of the protein fiber was measured using a tensile tester (Shimadzu small desktop tester EZ-S) to calculate the toughness. The sample was affixed to a mold made of cardboard, the distance between the grippers was 20 mm, and the pulling speed was 10 mm / min. The load cell capacity was 1N, and the gripping jig was a clip type. The measured value was an average value of the number of samples n = 5.
Toughness was calculated based on the following equation.
[E / (r 2 × π × L) × 1000] (unit: MJ / m 3 )
However,
E Breaking energy (unit: J)
r Fiber radius (unit: mm)
π Pi ratio L Distance between grips during tensile test measurement: 20 mm
 得られた延伸後の各タンパク質繊維の応力(MPa)、タフネス(MJ/m)、巻き取り時間の評価結果を以下に示す。なお、表3~5中、「第2溶媒の含有量」は、紡糸原液に含まれるタンパク質を100質量部としたときの第2溶媒の含有量(質量部)を意味する。
Figure JPOXMLDOC01-appb-T000003
(第2溶媒:エタノール、第3溶媒:エタノール)
Evaluation results of the stress (MPa), toughness (MJ / m 3 ), and winding time of each obtained protein fiber after stretching are shown below. In Tables 3 to 5, the "content of the second solvent" means the content (parts by mass) of the second solvent when the protein contained in the spinning dope is regarded as 100 parts by mass.
Figure JPOXMLDOC01-appb-T000003
(Second solvent: ethanol, third solvent: ethanol)
 表3中、応力及びタフネスは、対応する比較例の数値を100%としたときの相対値で示す。また、比較例2及び3は延伸できなかったため、実施例2a、2b、3の応力及びタフネスは、比較例1の数値を100%としたときの相対値で示した。第2溶媒としてエタノールを用いて、第2溶媒を紡糸原液に添加した場合と添加しない場合について、3種類の延伸倍率の条件で延伸を行った。延伸倍率が7.8倍の場合では、実施例1で得られたタンパク質繊維は、比較例2で得られたタンパク質繊維に比べて、応力が大きく、巻き取り時間も長くなった。また、延伸倍率が8.2倍又は8.5倍の場合では、比較例2及び3では延伸ができなかった。これに対し、実施例2a、2b、3の方法では、高い応力及びタフネスを有するタンパク質繊維が得られた。 応 力 In Table 3, stress and toughness are shown as relative values when the corresponding numerical value of the comparative example is set to 100%. Since Comparative Examples 2 and 3 could not be stretched, the stress and toughness of Examples 2a, 2b, and 3 were shown as relative values when the numerical value of Comparative Example 1 was 100%. Using ethanol as the second solvent, stretching was performed under the conditions of three types of stretching ratios when the second solvent was added to the spinning dope and when it was not added. When the draw ratio was 7.8 times, the protein fiber obtained in Example 1 had a larger stress and a longer winding time than the protein fiber obtained in Comparative Example 2. Further, when the stretching ratio was 8.2 or 8.5 times, Comparative Examples 2 and 3 could not be stretched. In contrast, in the methods of Examples 2a, 2b, and 3, protein fibers having high stress and toughness were obtained.
Figure JPOXMLDOC01-appb-T000004
(第2溶媒:メタノール、第3溶媒:メタノール)
Figure JPOXMLDOC01-appb-T000004
(2nd solvent: methanol, 3rd solvent: methanol)
 表4中、応力及びタフネスは、対応する比較例の数値を100%としたときの相対値で示す。また、比較例5は延伸できなかったため、実施例4及び5の応力及びタフネスは、比較例4の数値を100%としたときの相対値で示した。第2溶媒としてメタノールを用いて、同様に延伸を行い、得られたタンパク質繊維の物性を評価した。実施例4で得られたタンパク質繊維は、比較例4で得られたタンパク質繊維と比べて、より細く、応力及びタフネスが優れていた。また、延伸倍率が9.0である条件では、比較例5では延伸ができなかった。一方、実施例5の方法では、高い応力及びタフネスを有するタンパク質繊維が得られた。 応 力 In Table 4, stress and toughness are shown as relative values when the numerical value of the corresponding comparative example is 100%. Since Comparative Example 5 could not be stretched, the stress and toughness of Examples 4 and 5 were shown as relative values when the numerical value of Comparative Example 4 was 100%. Stretching was performed in the same manner using methanol as the second solvent, and the physical properties of the obtained protein fibers were evaluated. The protein fiber obtained in Example 4 was finer, and had better stress and toughness than the protein fiber obtained in Comparative Example 4. Under the condition that the stretching ratio was 9.0, stretching was not performed in Comparative Example 5. On the other hand, in the method of Example 5, protein fibers having high stress and toughness were obtained.
Figure JPOXMLDOC01-appb-T000005
(第2溶媒:アセトン、第3溶媒:アセトン)
Figure JPOXMLDOC01-appb-T000005
(2nd solvent: acetone, 3rd solvent: acetone)
 表5中、応力及びタフネスは、対応する比較例の数値を100%としたときの相対値で示す。第2溶媒としてアセトンを用いて、同様に延伸を行い、得られたタンパク質繊維の物性を評価した。実施例6、7で得られたタンパク質繊維は、それぞれ比較例6、7で得られたタンパク質繊維と比べて、応力及びタフネスが優れていた。 応 力 In Table 5, stress and toughness are shown as relative values when the numerical value of the corresponding comparative example is 100%. Drawing was performed in the same manner using acetone as the second solvent, and the physical properties of the obtained protein fibers were evaluated. The protein fibers obtained in Examples 6 and 7 were excellent in stress and toughness as compared with the protein fibers obtained in Comparative Examples 6 and 7, respectively.
(4)紡糸原液中のタンパク質粒子の粒子径測定
 改変フィブロイン(PRT799)の凍結乾燥粉末24質量%と、第1溶媒(ギ酸)と、第2溶媒(エタノール)とを表6に記載の質量比で混合した後、40℃のアルミブロックヒーターで12時間加温し、PRT799が溶解した紡糸原液1~3を得た。
Figure JPOXMLDOC01-appb-T000006
(4) Measurement of Particle Size of Protein Particles in Spinning Stock Solution The mass ratio of the lyophilized powder of modified fibroin (PRT799), 24% by mass, the first solvent (formic acid), and the second solvent (ethanol) shown in Table 6 Then, the mixture was heated with an aluminum block heater at 40 ° C. for 12 hours to obtain spinning stock solutions 1 to 3 in which PRT799 was dissolved.
Figure JPOXMLDOC01-appb-T000006
 得られた紡糸原液1~3中に分散しているタンパク質(PRT799)の平均粒子径を、ダイナミック光散乱光度計DLS-8000(商品名、大塚電子株式会社製)を用いて測定した。各紡糸原液中の平均粒子径を表7に示す。
Figure JPOXMLDOC01-appb-T000007
The average particle size of the protein (PRT799) dispersed in the obtained spinning stock solutions 1 to 3 was measured using a dynamic light scattering photometer DLS-8000 (trade name, manufactured by Otsuka Electronics Co., Ltd.). Table 7 shows the average particle diameter in each spinning dope.
Figure JPOXMLDOC01-appb-T000007
 1…押出し装置、2…未延伸糸製造装置、3…湿熱延伸装置、4…乾燥装置、6…紡糸原液、10…紡糸装置、20…凝固浴槽、21…洗浄浴槽、36…タンパク質繊維。 1: Extrusion device, 2: undrawn yarn production device, 3: wet heat drawing device, 4: drying device, 6: spinning solution, 10: spinning device, 20: coagulation bath, 21: washing bath, 36: protein fiber.

Claims (6)

  1.  タンパク質、第1溶媒、第2溶媒及び任意に溶解促進剤を含有する紡糸原液を、第3溶媒及び任意に溶解促進剤を含有する凝固浴液に導入して、前記タンパク質を凝固させる工程を含み、
     前記第2溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、タンパク質繊維の製造方法。
    Introducing a spinning stock solution containing a protein, a first solvent, a second solvent and optionally a dissolution promoter into a coagulation bath solution containing a third solvent and optionally a dissolution promoter to coagulate the protein. ,
    The method for producing a protein fiber, wherein the second solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  2.  前記第3溶媒が、低級アルコール、ケトン及び水からなる群より選択される少なくとも1種である、請求項1に記載の方法。 The method according to claim 1, wherein the third solvent is at least one selected from the group consisting of lower alcohols, ketones and water.
  3.  前記第1溶媒が、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ヘキサフルオロイソプロパノール、ヘキサフルオロアセトン、ギ酸及び水からなる群より選択される少なくとも1種であり、
     ただし、前記第1溶媒が水であるとき、前記紡糸原液は前記溶解促進剤を含有する、請求項1又は2に記載の方法。
    The first solvent is at least one selected from the group consisting of dimethyl sulfoxide, N, N-dimethylformamide, hexafluoroisopropanol, hexafluoroacetone, formic acid, and water;
    However, the method according to claim 1 or 2, wherein when the first solvent is water, the spinning dope contains the dissolution promoter.
  4.  前記タンパク質が、構造タンパク質である、請求項1~3のいずれか一項に記載の方法。 方法 The method according to any one of claims 1 to 3, wherein the protein is a structural protein.
  5.  前記構造タンパク質が、フィブロインである、請求項4に記載の方法。 方法 The method according to claim 4, wherein the structural protein is fibroin.
  6.  前記フィブロインが、クモ糸フィブロインである、請求項5に記載の方法。 方法 The method according to claim 5, wherein the fibroin is spider silk fibroin.
PCT/JP2019/028547 2018-07-19 2019-07-19 Method for producing protein fiber WO2020017652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-135914 2018-07-19
JP2018135914A JP2022001669A (en) 2018-07-19 2018-07-19 Method of manufacturing protein fiber

Publications (1)

Publication Number Publication Date
WO2020017652A1 true WO2020017652A1 (en) 2020-01-23

Family

ID=69164726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028547 WO2020017652A1 (en) 2018-07-19 2019-07-19 Method for producing protein fiber

Country Status (2)

Country Link
JP (1) JP2022001669A (en)
WO (1) WO2020017652A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114699556A (en) * 2022-04-08 2022-07-05 深圳高性能医疗器械国家研究院有限公司 Preparation method of silk fibroin repair patch and silk fibroin repair patch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346314A (en) * 1993-06-02 1994-12-20 Toyobo Co Ltd Regenerated silk fibroin yarn and its production
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
JP2005163204A (en) * 2003-12-01 2005-06-23 Univ Kansai Gelatin fiber and its production method
WO2013065651A1 (en) * 2011-11-02 2013-05-10 スパイバー株式会社 Protein solution and production method for protein fiber using same
WO2013065650A1 (en) * 2011-11-02 2013-05-10 スパイバー株式会社 Polypeptide solution, artificial polypeptide fiber production method using same, and polypeptide refining method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346314A (en) * 1993-06-02 1994-12-20 Toyobo Co Ltd Regenerated silk fibroin yarn and its production
JPH07207520A (en) * 1994-01-14 1995-08-08 Kiyoichi Matsumoto Production of silk fibroin fiber
JP2005163204A (en) * 2003-12-01 2005-06-23 Univ Kansai Gelatin fiber and its production method
WO2013065651A1 (en) * 2011-11-02 2013-05-10 スパイバー株式会社 Protein solution and production method for protein fiber using same
WO2013065650A1 (en) * 2011-11-02 2013-05-10 スパイバー株式会社 Polypeptide solution, artificial polypeptide fiber production method using same, and polypeptide refining method

Also Published As

Publication number Publication date
JP2022001669A (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2017131196A1 (en) Molded article, production method for same, and method for improving toughness of molded article
JP7329206B2 (en) PROTEIN MOLDED PRODUCT AND METHOD FOR PRODUCING THE SAME, PROTEIN SOLUTION, AND PLASTICIZER FOR PROTEIN MOLDED BODY
EP3922763A1 (en) Method for manufacturing artificially-structured protein fiber
JP6713635B2 (en) Composite material and method of manufacturing composite material
EP3859056A1 (en) Protein fiber production method
JP2020097796A (en) Artificial fibroin fiber
WO2020022395A1 (en) Artificial hair fiber, method for manufacturing same, and artificial hair
JP7281139B2 (en) Method for producing protein fiber
JPWO2018159695A1 (en) Microbial growth inhibitor, method for suppressing microbial growth, ultraviolet light resistance improving agent, method for improving ultraviolet light resistance, artificial protein molded article and method for producing the same, artificial protein solution, and colorant
WO2019151429A1 (en) Method for manufacturing protein fiber
WO2019151424A1 (en) Fibroin composition, fibroin solution, and method for manufacturing fibroin fiber
WO2020017652A1 (en) Method for producing protein fiber
WO2019065735A1 (en) Method for producing fiber or fabric
WO2020027153A1 (en) Modified fibroin fibers and production method therefor
WO2021066040A1 (en) Fiber for artificial hair and method for producing same
EP3859076A1 (en) Modified fibroin fibers
WO2020067552A1 (en) Protein molded article and method for producing same, stock solution for molding and method for producing same, and coloring agent for protein molded article
WO2019151432A1 (en) Method for preparing oil adhesion protein crimped fiber
JP2020122248A (en) Method for producing fibroin fiber and fibroin solution
JP2020122237A (en) Method for producing protein fiber
JP2020122249A (en) Method for producing fibroin fiber and fibroin solution
JP2021055197A (en) Method for producing protein fiber
JP7356115B2 (en) Resin molded products and their manufacturing method
WO2020067573A1 (en) Production method for modified-cross-section protein fibers, and shape control method
JP2020056120A (en) Method of producing protein fiber, spinning nozzle, and production apparatus of protein fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP