WO2020017426A1 - Control system, method for controlling control system, and control system program - Google Patents

Control system, method for controlling control system, and control system program Download PDF

Info

Publication number
WO2020017426A1
WO2020017426A1 PCT/JP2019/027516 JP2019027516W WO2020017426A1 WO 2020017426 A1 WO2020017426 A1 WO 2020017426A1 JP 2019027516 W JP2019027516 W JP 2019027516W WO 2020017426 A1 WO2020017426 A1 WO 2020017426A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
robot
control system
moving mechanism
control device
Prior art date
Application number
PCT/JP2019/027516
Other languages
French (fr)
Japanese (ja)
Inventor
嵩史 大倉
賢瑩 呉
大谷 拓
純児 島村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020017426A1 publication Critical patent/WO2020017426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present invention relates to a control system for controlling a robot or the like that assembles electronic components or the like with a control device, a control method of the control system, and a program for the control system.
  • Patent Literature 1 there has been proposed an apparatus that teaches an assembling position using a template and performs assembling.
  • the positioning error of a component is statically measured and corrected in advance, and the assembly is executed, and the positioning error due to vibration, deflection, or the like during operation of the robot cannot be corrected.
  • a vertical articulated robot vibrates when it is moved at a high speed, and the positioning accuracy of the hand is not obtained, and assembling cannot be realized.
  • the link bends due to its own weight or the weight of the object held by the hand, causing an error in hand positioning.
  • an object of the present invention is to provide a control system, a control method for a control system, and a control system that compensates for the accuracy of the hand of a vertical articulated robot and enables high-speed, high-accuracy and assembling of electronic components and the like corresponding to multi-directional insertion. It is to provide a control system program.
  • the control system includes: A robot for holding the first work, A support for supporting the second work; A moving mechanism for moving the support, A measuring unit for measuring the position of the robot and the position of the support table, A central control device for controlling the robot and the moving mechanism,
  • the central control device includes: Positioning adjustment for moving the support base by the moving mechanism based on the positions of the robot and the support base measured by the measurement unit, and adjusting the relative positioning of the first work with respect to the second work. It has a unit.
  • the central control device when assembling such as inserting the first work gripped by the robot into the second work supported by the support table, moves the robot to a predetermined position. Move.
  • the positioning adjustment unit moves the support table by a moving mechanism based on the positions of the robot and the support table measured by the measurement unit, Adjust the relative positioning of the second work to the work.
  • the control system of one embodiment includes: The robot and the moving mechanism are communicably connected to the central control device via an industrial network, and are controlled by a predetermined control cycle,
  • the positioning adjustment unit performs the positioning adjustment, calculates the trajectory of the first work for inserting the first work into the second work, and performs the trajectory calculation for each control cycle based on the trajectory calculation. This is performed by setting the next target position for each control cycle of the moving mechanism so as to correct the difference between the target position of the robot and the current position.
  • the robot and the moving mechanism are communicably connected to the central control device via an industrial network, and are controlled at a predetermined control cycle.
  • the positioning adjustment unit calculates the trajectory of the first work for inserting the first work into the second work. Then, the difference between the target position and the current position of the robot for each control cycle based on the trajectory calculation is measured, and the next target position for each control cycle of the moving mechanism is set so as to correct the difference. In this way, the positioning is adjusted.
  • the measurement unit includes an encoder provided in the robot and the moving mechanism, or a camera that photographs the first work or the second work.
  • the positioning can be dynamically adjusted. As a result, even if a positioning error of the vertical articulated robot occurs due to vibration, deflection, etc., the accuracy of the hand of the vertical articulated robot is compensated, and electronic parts etc. that can be inserted at high speed and with high accuracy and in multiple directions are assembled. It can be carried out.
  • a control method of the control system includes: A control method of a control system that controls a robot that grips a first work and a moving mechanism of a support table that supports the second work, Measuring the position of the robot, and the position of the support table by a measuring unit, Based on the positions of the robot and the support base measured by the measurement unit, the support mechanism is moved by the moving mechanism, and the relative positioning of the first work with respect to the second work is determined by a central control device. Adjusting by a positioning adjustment unit.
  • the control method of the control system of the present disclosure even when a positioning error of the vertical articulated robot occurs due to vibration, deflection, or the like, the accuracy of the hand of the vertical articulated robot is compensated, and high-speed, high-accuracy, and multidirectional insertion is performed.
  • the accuracy of the hand of the vertical articulated robot is compensated, and high-speed, high-accuracy, and multidirectional insertion is performed.
  • electronic components and the like corresponding to the above.
  • a program of a control system is a program for causing a computer to execute the control method of the control system.
  • control method of the control system can be implemented.
  • control system of the present disclosure it is possible to compensate for the accuracy of the hand of the vertical articulated robot, and to assemble electronic components and the like that are compatible with high-speed, high-accuracy, and multidirectional insertion.
  • FIG. 4 is a diagram for describing a flow of overall processing in the control system.
  • FIG. 4 is a diagram for describing a flow of overall processing in the control system.
  • FIG. 4 is a diagram for describing a flow of overall processing in the control system.
  • FIG. 4 is a diagram for describing a flow of overall processing in the control system.
  • It is a flowchart which shows the detail of a process of a control system. It is a flowchart which shows the detail of a process of a control system.
  • FIG. 1 is a diagram illustrating a schematic configuration of a control system 1 according to the first embodiment.
  • the control system 1 includes a vertical articulated robot 10, a camera 20, a stage 30 as a support, and an XYZ robot 40 as a moving mechanism.
  • the vertical articulated robot 10 is, for example, a 6-axis vertical articulated robot, and rotates and bends the rotating joints 11 to 13 and the bending joints 14 to 16 to fix various positions with the position of the robot tip fixed. You can take a posture.
  • the vertical articulated robot 10 includes, for example, a servomotor, and an encoder 10a (see FIG. 2) as a measuring unit for detecting a rotation amount of each servomotor and the like is provided near each servomotor. Have been.
  • a hand 17 is attached to the tip of the vertical articulated robot 10, and the hand 17 is driven by a servo motor in the hand 17.
  • the hand 17 has a function of holding the first work 50.
  • the stage 30 is a plate-shaped member and functions as a support for supporting the second work 51.
  • the stage 30 is attached to a Z bar 43 of an XYZ robot 40 as a moving mechanism.
  • the XYZ robot 40 includes an X bar 41, a Y bar 42, and a Z bar 43.
  • the X bar 41, the Y bar 42, and the Z bar 43 are respectively driven by servo motors 93, 94, and 95 (see FIG. 2). , X, Y, and Z directions.
  • servo motors 93, 94, 95 see FIG. 2 of the XYZ robot 40, encoders 93a, 94a, 95a (see FIG. 2) for detecting the amount of rotation of each servo motor and the like are provided.
  • the camera 20 is mounted at an arbitrary position above the stage 30 so that the second work 51 on the stage 30 can be photographed.
  • the first work 50 is, for example, an electronic component, and has terminals for insertion into a printed circuit board or the like.
  • the second work 51 is, for example, a printed circuit board, and has a component 52 into which the terminal of the first work 50 is inserted.
  • FIG. 2 is a functional block diagram of the control system 1. As shown in FIG. 2, the control system 1 includes a central control device 60, a robot amplifier 70, a hand driver 80, servo motor drivers 90, 91, 92, and an image processing device 100.
  • the central control device 60 is, for example, a PLC (Programmable Logic Controller), a robot control program for controlling the operation of the vertical articulated robot 10, the operation of the hand 17 attached to the vertical articulated robot 10, and the XYZ robot 40. And executes a sequence control program for controlling the operation of the above, and outputs a control signal.
  • PLC Programmable Logic Controller
  • the central controller 60 determines the positions of the vertical articulated robot 10 and the stage 30 measured by the encoder 10a of the vertical articulated robot 10 and the encoders 93a, 94a, 95a of the servo motors 93, 94, 95 of the XYZ robot 40.
  • the XYZ robot 40 has a function of a positioning adjustment unit 61 that moves the stage 30 and adjusts the relative positioning of the first work 50 with respect to the second work 51.
  • the robot amplifier 70 drives the servo motor of the vertical articulated robot 10 based on a control signal from the central control device 60. Further, the counter value of the encoder 10 a of the vertical articulated robot 10 is transmitted to the central control device 60.
  • the hand driver 80 drives the hand 17 based on a control signal from the central control device 60.
  • the servo motor drivers 90, 91, 92 drive the servo motors 93, 94, 95 of the XYZ robot 40 based on the control signal from the central control device 60. Further, the servo motor drivers 90, 91, 92 transmit the counter values of the encoders 93a, 94a, 95a to the central controller 60.
  • the image processing apparatus 100 is connected to the camera 20.
  • the camera 20 photographs the second work 51 on the stage 30, and the image processing device 100 transmits the photographed image to the central control device 60.
  • the central control device 60 is connected to the robot amplifier 70, the hand driver 80, the servo motor drivers 90, 91, 92, and the image processing device 100 by EtherCAT (registered trademark) which is an industrial network.
  • EtherCAT registered trademark
  • the central control device 60 transmits control signals to the robot amplifier 70, the hand driver 80, and the servo motor drivers 90, 91, and 92 at a control cycle of 1 ms, for example, and transmits the control signals from the encoders 10a, 93a, 94a, and 95a at a control cycle of 1 ms. Signal is being received. That is, the vertical articulated robot 10, the hand 17, and the XYZ robot 40 operate synchronously at a cycle of 1 ms.
  • the central control device 60 can receive a signal from the image processing device 100 at a desired timing.
  • FIG. 3 is a flowchart showing the flow of the overall processing in the control system 1.
  • 4 to 7 are diagrams for explaining the flow of the overall processing in the control system 1.
  • FIG. 3 is a flowchart showing the flow of the overall processing in the control system 1.
  • the central control device 60 takes an image of the second work 51 on the stage 30 using the camera 20, receives this image from the image processing device 100, and receives the image of the second work 51 on the stage 30.
  • the position is calculated (S10).
  • markers 53 and 54 are provided on the second work 51, and the markers 53 and 54 are attached to the camera 20. And a method of shooting.
  • the central controller 60 calculates a trajectory for inserting the first work 50 into the second work 51 (S20).
  • FIG. 5 shows an example of the trajectory S.
  • Steps S30 to S75 form a control loop.
  • the control loop ends.
  • the central controller 60 moves the first work 50 to a target position in each cycle using the vertical articulated robot 10 (S40).
  • the central controller 60 acquires encoder information of each axis of the vertical articulated robot 10 and the XYZ robot 40 (S50).
  • the central controller 60 calculates the position of the hand from the encoder value of the vertical articulated robot 10 and calculates the actual position of the first work 50 (S60).
  • the central controller 60 calculates the torque applied to each link of the vertical articulated robot 10 from the encoder value of the vertical articulated robot 10, and calculates the amount of deflection of the vertical articulated robot 10 (S70).
  • the central controller 60 calculates the actual position of the first workpiece 50 due to the deflection of the vertical articulated robot 10 (S71).
  • the central controller 60 calculates the final actual position of the first work 50 (S72).
  • Central controller 60 determines whether there is an error between the target position of first work 50 and the actual position (S73).
  • step S73 If there is an error between the target position and the actual position of the first work 50 (S73: NO), the central controller 60 moves the XYZ table 40 by the error and corrects it (S74). On the other hand, when there is no error between the target position and the actual position of the first work 50 (S73: YES), the central controller 60 performs the processing from step S40 to step S73 until the control loop ends. repeat.
  • FIG. 8 is a flowchart showing details of the processing of the control system 1.
  • the central control device 60 photographs the markers 53 and 54 of the second workpiece 51 with the camera 20 fixed at an arbitrary position, receives the photographed image from the image processing device 100, and
  • the current position P W2 (0) at time 0 is calculated as the initial position of the work 51 (S100).
  • the current position of the second work 51 at time t is represented by P W2 (t).
  • the central control device 60 determines the current position P W1 (0) at time 0 as the initial position of the first work 50 and the current position P W2 (0) at time 0 as the calculated initial position of the second work 51. ) Is used to calculate the trajectory for inserting the first work 50 into the second work 51 (S110).
  • the current position of the first work 50 at time t is represented by P W1 (t).
  • the central controller 60 sets the initial position target R d (0) of the vertical articulated robot 10 at time 0 as the current position R (0) of the vertical articulated robot 10 at time 0 (S120).
  • the initial position target of the vertical articulated robot 10 at time t is represented by R d (t)
  • the current position of the vertical articulated robot 10 at time t is represented by R (t).
  • control loop is performed from step S130 to step S200, and the control loop ends when the assembly of the first work 50 and the second work 51 is completed.
  • the central control device 60 acquires the encoder value E R (t) of the vertical articulated robot 10 at time t and the encoder value E S (t) of the XYZ robot 40 at time t. . Then, based on these encoder values E R (t) and E S (t), the central controller 60 calculates the current position R (t) of the vertical articulated robot 10 at time t and the time t of the XYZ robot 40 at time t. Is calculated (S140).
  • the central controller 60 calculates the current position P W1 (t) of the first work 50 at time t based on the current position R (t) of the vertical articulated robot 10 at time t (S150). .
  • the central controller 60 determines the correction amount ⁇ V (t) of the first work 50 due to the vibration of the vertical articulated robot 10 as the target position P dW1 (t) of the first work 50 at time t as follows. And the current position P W1 (t) of the first work 50 at time t (S160).
  • the central controller 60 calculates the torque ⁇ (t) of each joint from the current angle of the joint of the vertical articulated robot 10 as follows (S170).
  • the central controller 60 calculates the amount of deflection ⁇ (t) of each link from the calculated torque ⁇ (t) of each joint (S180).
  • the central controller 60 calculates a correction amount ⁇ f (t) of the first work 50 due to the deflection amount ⁇ (t) of each link (S190).
  • the central controller 60 determines the next target position of the XYZ robot 40, that is, the target position S d (t + 1) at the time t + 1, by the current position S (t) at the time t of the XYZ robot 40 and the vibration.
  • the calculation is performed based on the correction amount ⁇ V (t) of the first work 50 and the correction amount ⁇ f (t) of the first work 50 caused by the deflection amount ⁇ (t) (S200). That is, the target position S d (t + 1) at the time t + 1 which is the next target position of the XYZ robot 40 is as follows.
  • the central controller 60 calculates the next target position of the first work 50, that is, the target position P dW1 (time t + 1) from the trajectory for inserting the first work 50 into the second work 51 calculated as described above. t + 1), and the next target position of the vertical articulated robot 10, that is, the target position R d (t + 1) at the time t + 1 is calculated from the target position P dW1 (t + 1) of the first work 50 at the time t + 1 ( S210).
  • the central controller 60 moves the vertical articulated robot 10 and the XYZ robot 40 to their respective next target positions, that is, the target positions R d (t + 1) and S d (t + 1) at time t + 1 (S220).
  • the central control device 60 When the time t reaches the next cycle time t + 1 (S230), the central control device 60 performs a control loop from step S130 to step S240 until the assembly of the first work 50 and the second work 51 is completed. repeat.
  • the central control device 60 ends the control loop and ends the processing.
  • the vertical articulated robot 10 and the XYZ robot 40 are connected and controlled by the central control device 60 and EtherCAT, which is an industrial network, to operate at high speed. become.
  • EtherCAT which is an industrial network
  • the positioning of the vertical articulated robot 10 is shifted due to vibration or the like.
  • the link bends due to its own weight or the weight of the object held by the hand, and an error occurs in the positioning of the hand.
  • the positioning adjustment unit 61 of the central control device 60 calculates the trajectory of the first work 50 in order to insert the first work 50 into the second work 51, and performs the control cycle based on the trajectory calculation. The difference between the target position of the vertical articulated robot 10 and the current position caused by vibration or deflection is determined. Then, the positioning adjustment unit 61 sets the next target position for each control cycle of the XYZ robot 40 so as to correct this difference. In this way, the positioning of the vertical articulated robot 10 is adjusted.
  • the XYZ robot 40 can operate with high accuracy even when operated at high speed, so that the above positioning adjustment can be performed.
  • the central control device 60 controls the two synchronously so that the positioning error of the vertical articulated robot 10 is compensated by the XYZ robot 40, thereby achieving high-speed and high-precision electronic control. Assembly work of parts and the like can be performed.
  • the positioning error of the vertical articulated robot 10 is dynamically compensated during the operation of the vertical articulated robot 10, a highly accurate positioning error can be obtained compared to the conventional method in which only static compensation is performed. Compensation is possible.
  • the mode in which the encoders 10a, 93a, 94a, and 95a are used as the measurement units that measure the position of the vertical articulated robot 10 and the position of the stage 30 has been described.
  • the present invention is not limited to such an embodiment, and a camera can be used as the measuring unit.

Abstract

The present invention enables assembly of electronic components and the like, supporting insertion from multiple directions at high speed and with a high degree of accuracy, by compensating for the accuracy of the tip of a hand of a vertical articulated robot. This control system is provided with a robot 10 for gripping a first workpiece 50, a supporting base 30 for supporting a second workpiece 51, a movement mechanism 40 for moving the supporting base 30, a measuring unit 10a, 93a, 94a, 95a for measuring the position of the robot 10 and the position of the supporting base 30, and a central control device 60 for controlling the robot 10 and the movement mechanism 40, wherein the central control device 60 is provided with a positioning adjustment unit 61 which causes the supporting base 30 to be moved by means of the movement mechanism 40 to adjust the relative positioning of the first workpiece 50 with respect to the second workpiece 51, on the basis of the positions of the robot 10 and the supporting base 30 measured by the measuring unit.

Description

制御システム、制御システムの制御方法、および制御システムのプログラムControl system, control system control method, and control system program
 この発明は、電子部品等の組み立てを行うロボット等を制御装置により制御する制御システム、制御システムの制御方法、および制御システムのプログラムに関する。 The present invention relates to a control system for controlling a robot or the like that assembles electronic components or the like with a control device, a control method of the control system, and a program for the control system.
 電子部品の組み立てでは、基板に対して垂直方向だけではなく、水平方向および斜め方向からの部品の挿入が必要となる。このような多方向の部品挿入に対応するためには、垂直多関節ロボットが必要になる。 In assembling electronic components, it is necessary to insert components not only vertically but also horizontally and obliquely to the board. To cope with such multi-directional component insertion, a vertical articulated robot is required.
 例えば特許文献1のように、組み付け位置をテンプレートを用いて教示し、組み立てを行う装置が提案されている。 装置 For example, as in Patent Literature 1, there has been proposed an apparatus that teaches an assembling position using a template and performs assembling.
特開2001-36295号公報JP-A-2001-36295
 しかしながら、特許文献1の手法では、部品の位置決め誤差を予め静的に計測して修正し、組み立てを実行するものであり、ロボットの動作中における振動やたわみ等による位置決め誤差を修正することはできない。特に、垂直多関節ロボットは、高速で動かすと振動し、手先の位置決め精度が出ず、組み付けが実現できない。また、垂直多関節ロボットには、自重や手先の把持物体の重さにより、リンクにたわみが発生し、手先の位置決めに誤差が生じる。 However, in the method of Patent Document 1, the positioning error of a component is statically measured and corrected in advance, and the assembly is executed, and the positioning error due to vibration, deflection, or the like during operation of the robot cannot be corrected. . In particular, a vertical articulated robot vibrates when it is moved at a high speed, and the positioning accuracy of the hand is not obtained, and assembling cannot be realized. Also, in the vertical articulated robot, the link bends due to its own weight or the weight of the object held by the hand, causing an error in hand positioning.
 そこで、この発明の課題は、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを可能とする制御システム、制御システムの制御方法、および制御システムのプログラムを提供することにある。 Therefore, an object of the present invention is to provide a control system, a control method for a control system, and a control system that compensates for the accuracy of the hand of a vertical articulated robot and enables high-speed, high-accuracy and assembling of electronic components and the like corresponding to multi-directional insertion. It is to provide a control system program.
 上記課題を解決するため、この開示の制御システムは、
 第1のワークを把持するロボットと、
 第2のワークを支持する支持台と、
 前記支持台を移動させる移動機構と、
 前記ロボットの位置および前記支持台の位置を計測する計測部と、
 前記ロボットおよび前記移動機構を制御する中央制御装置と、を備え、
 前記中央制御装置は、
 前記計測部により計測した前記ロボットおよび前記支持台の位置に基づいて、前記移動機構により前記支持台を移動させ、前記第1のワークの前記第2のワークに対する相対的な位置決めを調整する位置決め調整部を備える。
In order to solve the above-described problems, the control system according to the present disclosure includes:
A robot for holding the first work,
A support for supporting the second work;
A moving mechanism for moving the support,
A measuring unit for measuring the position of the robot and the position of the support table,
A central control device for controlling the robot and the moving mechanism,
The central control device includes:
Positioning adjustment for moving the support base by the moving mechanism based on the positions of the robot and the support base measured by the measurement unit, and adjusting the relative positioning of the first work with respect to the second work. It has a unit.
 上述の制御システムでは、支持台に支持される第2のワークに、ロボットに把持される第1のワークを挿入する等の組み立てを行う場合には、中央制御装置は、ロボットを所定の位置に移動させる。振動等によりロボットに位置決め誤差が生じた場合には、位置決め調整部は、計測部により計測したロボットおよび支持台の位置に基づいて、移動機構により前記支持台を移動させ、第1のワークの第2のワークに対する相対的な位置決めを調整する。 In the above control system, when assembling such as inserting the first work gripped by the robot into the second work supported by the support table, the central control device moves the robot to a predetermined position. Move. When a positioning error occurs in the robot due to vibration or the like, the positioning adjustment unit moves the support table by a moving mechanism based on the positions of the robot and the support table measured by the measurement unit, Adjust the relative positioning of the second work to the work.
 上述の制御システムによれば、振動やたわみ等により垂直多関節ロボットの位置決め誤差が生じた場合でも、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを行うことができる。 According to the above-described control system, even when a positioning error of the vertical articulated robot occurs due to vibration, deflection, or the like, the accuracy of the hand of the vertical articulated robot is compensated, and an electronic device capable of high-speed, high-accuracy, and multi-directional insertion is provided. Parts and the like can be assembled.
 一実施形態の制御システムは、
 前記ロボットおよび前記移動機構は、前記中央制御装置と産業用ネットワークにより通信可能に接続され、所定の制御周期により制御されており、
 前記位置決め調整部は、前記位置決めの調整を、前記第2のワークに前記第1のワークを挿入するための前記第1のワークの軌道計算を行い、当該軌道計算に基づく前記制御周期ごとの前記ロボットの目標位置と現在位置との差を修正するように、前記移動機構の前記制御周期ごとの次の目標位置を設定することにより行う。
The control system of one embodiment includes:
The robot and the moving mechanism are communicably connected to the central control device via an industrial network, and are controlled by a predetermined control cycle,
The positioning adjustment unit performs the positioning adjustment, calculates the trajectory of the first work for inserting the first work into the second work, and performs the trajectory calculation for each control cycle based on the trajectory calculation. This is performed by setting the next target position for each control cycle of the moving mechanism so as to correct the difference between the target position of the robot and the current position.
 この一実施形態の制御システムでは、ロボットおよび移動機構は、中央制御装置と産業用ネットワークにより通信可能に接続され、所定の制御周期により制御されている。位置決め調整部は、第2のワークに第1のワークを挿入するための第1のワークの軌道計算を行う。そして、この軌道計算に基づく制御周期ごとのロボットの目標位置と現在位置との差を計測し、その差を修正するように、移動機構の前記制御周期ごとの次の目標位置を設定する。このようにして、位置決めの調整を行う。したがって、位置決めの調整が動的に行われるので、振動やたわみ等により垂直多関節ロボットの位置決め誤差が生じた場合でも、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを行うことができる。 In the control system of this embodiment, the robot and the moving mechanism are communicably connected to the central control device via an industrial network, and are controlled at a predetermined control cycle. The positioning adjustment unit calculates the trajectory of the first work for inserting the first work into the second work. Then, the difference between the target position and the current position of the robot for each control cycle based on the trajectory calculation is measured, and the next target position for each control cycle of the moving mechanism is set so as to correct the difference. In this way, the positioning is adjusted. Therefore, since positioning adjustment is performed dynamically, even if a positioning error of the vertical articulated robot occurs due to vibration or deflection, the accuracy of the hand of the vertical articulated robot is compensated, and high-speed, high-precision and multi-directional It is possible to assemble electronic components or the like corresponding to insertion.
 一実施形態の制御システムは、計測部は、ロボットおよび移動機構に備えられたエンコーダ、または、第1のワークあるいは第2のワークを撮影するカメラを備える。 In the control system according to one embodiment, the measurement unit includes an encoder provided in the robot and the moving mechanism, or a camera that photographs the first work or the second work.
 この一実施形態の制御システムでは、エンコーダまたはカメラによりロボットおよび支持台の位置を計測するので、位置決めの調整が動的に行うことができる。その結果、振動やたわみ等により垂直多関節ロボットの位置決め誤差が生じた場合でも、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを行うことができる。 In the control system of this embodiment, since the positions of the robot and the support table are measured by the encoder or the camera, the positioning can be dynamically adjusted. As a result, even if a positioning error of the vertical articulated robot occurs due to vibration, deflection, etc., the accuracy of the hand of the vertical articulated robot is compensated, and electronic parts etc. that can be inserted at high speed and with high accuracy and in multiple directions are assembled. It can be carried out.
 上記課題を解決するため、この開示の制御システムの制御方法は、
 第1のワークを把持するロボットと、第2のワークを支持する支持台の移動機構とを制御する制御システムの制御方法であって、
 前記ロボットの位置、および前記支持台の位置を計測部により計測するステップと、
 前記計測部により計測した前記ロボットおよび前記支持台の位置に基づいて、前記移動機構により前記支持台を移動させ、前記第1のワークの前記第2のワークに対する相対的な位置決めを中央制御装置の位置決め調整部により調整するステップと、を備える。
In order to solve the above problems, a control method of the control system according to the present disclosure includes:
A control method of a control system that controls a robot that grips a first work and a moving mechanism of a support table that supports the second work,
Measuring the position of the robot, and the position of the support table by a measuring unit,
Based on the positions of the robot and the support base measured by the measurement unit, the support mechanism is moved by the moving mechanism, and the relative positioning of the first work with respect to the second work is determined by a central control device. Adjusting by a positioning adjustment unit.
 この開示の制御システムの制御方法によれば、振動やたわみ等により垂直多関節ロボットの位置決め誤差が生じた場合でも、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを行うことができる。 According to the control method of the control system of the present disclosure, even when a positioning error of the vertical articulated robot occurs due to vibration, deflection, or the like, the accuracy of the hand of the vertical articulated robot is compensated, and high-speed, high-accuracy, and multidirectional insertion is performed. Of electronic components and the like corresponding to the above.
 上記課題を解決するため、この開示の制御システムのプログラムは、上記制御システムの制御方法をコンピュータに実行させるためのプログラムである。 た め In order to solve the above problems, a program of a control system according to the present disclosure is a program for causing a computer to execute the control method of the control system.
 この開示のプログラムをコンピュータに実行させることによって、上記制御システムの制御方法を実施することができる。 さ せ る By causing a computer to execute the program of the present disclosure, the control method of the control system can be implemented.
 以上より明らかなように、この開示の制御システムによれば、垂直多関節ロボットの手先の精度を補償し、高速高精度かつ多方向の挿入に対応した電子部品等の組み付けを行うことができる。 As is clear from the above, according to the control system of the present disclosure, it is possible to compensate for the accuracy of the hand of the vertical articulated robot, and to assemble electronic components and the like that are compatible with high-speed, high-accuracy, and multidirectional insertion.
第1実施形態における制御システムの概略構成を示す図である。It is a figure showing the schematic structure of the control system in a 1st embodiment. 制御システムの機能ブロック図である。It is a functional block diagram of a control system. 制御システムにおける全体処理の流れを示すフローチャートである。5 is a flowchart illustrating a flow of overall processing in the control system. 制御システムにおける全体処理の流れを説明するための図である。FIG. 4 is a diagram for describing a flow of overall processing in the control system. 制御システムにおける全体処理の流れを説明するための図である。FIG. 4 is a diagram for describing a flow of overall processing in the control system. 制御システムにおける全体処理の流れを説明するための図である。FIG. 4 is a diagram for describing a flow of overall processing in the control system. 制御システムにおける全体処理の流れを説明するための図である。FIG. 4 is a diagram for describing a flow of overall processing in the control system. 制御システムの処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of a process of a control system. 制御システムの処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of a process of a control system.
 以下、この発明の実施の形態を、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態における制御システム1の概略構成を示す図である。図1に示すように、制御システム1は、垂直多関節ロボット10と、カメラ20と、支持台としてのステージ30と、移動機構としてのXYZロボット40とを備えている。
(1st Embodiment)
FIG. 1 is a diagram illustrating a schematic configuration of a control system 1 according to the first embodiment. As shown in FIG. 1, the control system 1 includes a vertical articulated robot 10, a camera 20, a stage 30 as a support, and an XYZ robot 40 as a moving mechanism.
 垂直多関節ロボット10は、一例として、6軸の垂直多関節ロボットであり、回転関節11~13および屈曲関節14~16を回転・屈曲させることにより、ロボット先端の位置を固定した状態で色々な姿勢をとることができる。垂直多関節ロボット10は、一例として、サーボモータを備えており、各サーボモータの近傍には、各サーボモータの回転量等を検出するための計測部としてのエンコーダ10a(図2参照)が備えられている。 The vertical articulated robot 10 is, for example, a 6-axis vertical articulated robot, and rotates and bends the rotating joints 11 to 13 and the bending joints 14 to 16 to fix various positions with the position of the robot tip fixed. You can take a posture. The vertical articulated robot 10 includes, for example, a servomotor, and an encoder 10a (see FIG. 2) as a measuring unit for detecting a rotation amount of each servomotor and the like is provided near each servomotor. Have been.
 垂直多関節ロボット10の先端部には、ハンド17が取り付けられており、ハンド17は、ハンド17内のサーボモータにより駆動される。ハンド17は、第1のワーク50を把持する機能を備えている。 ハ ン ド A hand 17 is attached to the tip of the vertical articulated robot 10, and the hand 17 is driven by a servo motor in the hand 17. The hand 17 has a function of holding the first work 50.
 ステージ30は、平板状の部材であり、第2のワーク51を支持する支持台として機能する。ステージ30は、移動機構としてのXYZロボット40のZバー43に取り付けられている。 The stage 30 is a plate-shaped member and functions as a support for supporting the second work 51. The stage 30 is attached to a Z bar 43 of an XYZ robot 40 as a moving mechanism.
 XYZロボット40は、Xバー41、Yバー42、およびZバー43を備えており、Xバー41、Yバー42、およびZバー43は、それぞれサーボモータ93,94,95(図2参照)によって、X,Y,Z方向に自在に移動可能となっている。XYZロボット40の各サーボモータ93,94,95(図2参照)近傍には、各サーボモータの回転量等を検出するためのエンコーダ93a,94a,95a(図2参照)が備えられている。 The XYZ robot 40 includes an X bar 41, a Y bar 42, and a Z bar 43. The X bar 41, the Y bar 42, and the Z bar 43 are respectively driven by servo motors 93, 94, and 95 (see FIG. 2). , X, Y, and Z directions. Near the servo motors 93, 94, 95 (see FIG. 2) of the XYZ robot 40, encoders 93a, 94a, 95a (see FIG. 2) for detecting the amount of rotation of each servo motor and the like are provided.
 カメラ20は、ステージ30の上方における任意の位置に取り付けられ、ステージ30上の第2のワーク51を撮影可能となっている。 The camera 20 is mounted at an arbitrary position above the stage 30 so that the second work 51 on the stage 30 can be photographed.
 第1のワーク50は、例えば、電子部品であり、プリント基板等に挿入するための端子を有している。 The first work 50 is, for example, an electronic component, and has terminals for insertion into a printed circuit board or the like.
 第2のワーク51は、例えば、プリント基板であり、第1のワーク50の端子が挿入される部品52が取り付けられている。 The second work 51 is, for example, a printed circuit board, and has a component 52 into which the terminal of the first work 50 is inserted.
 図2は、制御システム1の機能ブロック図である。図2に示すように、制御システム1は、中央制御装置60と、ロボットアンプ70と、ハンドドライバ80と、サーボモータドライバ90,91,92と、画像処理装置100とを備えている。 FIG. 2 is a functional block diagram of the control system 1. As shown in FIG. 2, the control system 1 includes a central control device 60, a robot amplifier 70, a hand driver 80, servo motor drivers 90, 91, 92, and an image processing device 100.
 中央制御装置60は、一例として、PLC(Programmable Logic Controller)であり、垂直多関節ロボット10の動作を制御するロボット制御プログラムと、垂直多関節ロボット10に取り付けられたハンド17の動作およびXYZロボット40の動作を制御するシーケンス制御プログラムとを実行し、制御信号を出力する。 The central control device 60 is, for example, a PLC (Programmable Logic Controller), a robot control program for controlling the operation of the vertical articulated robot 10, the operation of the hand 17 attached to the vertical articulated robot 10, and the XYZ robot 40. And executes a sequence control program for controlling the operation of the above, and outputs a control signal.
 中央制御装置60は、垂直多関節ロボット10のエンコーダ10a、XYZロボット40のサーボモータ93,94,95のエンコーダ93a,94a,95aにより計測した垂直多関節ロボット10およびステージ30の位置に基づいて、XYZロボット40によりステージ30を移動させ、第1のワーク50の第2のワーク51に対する相対的な位置決めを調整する位置決め調整部61の機能を有する。 The central controller 60 determines the positions of the vertical articulated robot 10 and the stage 30 measured by the encoder 10a of the vertical articulated robot 10 and the encoders 93a, 94a, 95a of the servo motors 93, 94, 95 of the XYZ robot 40. The XYZ robot 40 has a function of a positioning adjustment unit 61 that moves the stage 30 and adjusts the relative positioning of the first work 50 with respect to the second work 51.
 ロボットアンプ70は、中央制御装置60からの制御信号に基づいて、垂直多関節ロボット10のサーボモータを駆動する。また、垂直多関節ロボット10のエンコーダ10aのカウンタ値を中央制御装置60に送信する。 The robot amplifier 70 drives the servo motor of the vertical articulated robot 10 based on a control signal from the central control device 60. Further, the counter value of the encoder 10 a of the vertical articulated robot 10 is transmitted to the central control device 60.
 ハンドドライバ80は、中央制御装置60からの制御信号に基づいて、ハンド17を駆動する。 The hand driver 80 drives the hand 17 based on a control signal from the central control device 60.
 サーボモータドライバ90,91,92は、中央制御装置60からの制御信号に基づいて、XYZロボット40のサーボモータ93,94,95を駆動する。また、サーボモータドライバ90,91,92は、エンコーダ93a,94a,95aのカウンタ値を中央制御装置60に送信する。 The servo motor drivers 90, 91, 92 drive the servo motors 93, 94, 95 of the XYZ robot 40 based on the control signal from the central control device 60. Further, the servo motor drivers 90, 91, 92 transmit the counter values of the encoders 93a, 94a, 95a to the central controller 60.
 画像処理装置100は、カメラ20と接続されている。カメラ20は、ステージ30上の第2のワーク51を撮影し、画像処理装置100は、撮影された画像を中央制御装置60に送信する。 The image processing apparatus 100 is connected to the camera 20. The camera 20 photographs the second work 51 on the stage 30, and the image processing device 100 transmits the photographed image to the central control device 60.
 中央制御装置60は、産業用ネットワークであるEtherCAT(登録商標)により、ロボットアンプ70、ハンドドライバ80、サーボモータドライバ90,91,92、および画像処理装置100と接続されている。 The central control device 60 is connected to the robot amplifier 70, the hand driver 80, the servo motor drivers 90, 91, 92, and the image processing device 100 by EtherCAT (registered trademark) which is an industrial network.
 中央制御装置60は、例えば1msの制御周期でロボットアンプ70、ハンドドライバ80、サーボモータドライバ90,91,92に制御信号を送信し、1msの制御周期でエンコーダ10a,93a,94a,95aからの信号を受信している。つまり、垂直多関節ロボット10、ハンド17、およびXYZロボット40は、1msの周期で同期して動作している。なお、中央制御装置60は、画像処理装置100からの信号を所望のタイミングで受信することができる。 The central control device 60 transmits control signals to the robot amplifier 70, the hand driver 80, and the servo motor drivers 90, 91, and 92 at a control cycle of 1 ms, for example, and transmits the control signals from the encoders 10a, 93a, 94a, and 95a at a control cycle of 1 ms. Signal is being received. That is, the vertical articulated robot 10, the hand 17, and the XYZ robot 40 operate synchronously at a cycle of 1 ms. The central control device 60 can receive a signal from the image processing device 100 at a desired timing.
(全体処理の流れ)
 次に、本実施形態の制御システム1における全体処理の流れを図3から図7を参照しつつ説明する。図3は、制御システム1における全体処理の流れを示すフローチャートである。図4から図7は、制御システム1における全体処理の流れを説明するための図である。
(Overall processing flow)
Next, the flow of the overall processing in the control system 1 of the present embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing the flow of the overall processing in the control system 1. 4 to 7 are diagrams for explaining the flow of the overall processing in the control system 1. FIG.
 まず、中央制御装置60は、カメラ20を用いてステージ30上における第2のワーク51の画像を撮影し、画像処理装置100からこの画像を受信して、第2のワーク51のステージ30上の位置を計算する(S10)。 First, the central control device 60 takes an image of the second work 51 on the stage 30 using the camera 20, receives this image from the image processing device 100, and receives the image of the second work 51 on the stage 30. The position is calculated (S10).
 第2のワーク51のステージ30上の位置を画像から計算する方法としては、例えば、図4に示すように、第2のワーク51上にマーカ53,54を設け、マーカ53,54をカメラ20により撮影する方法が挙げられる。 As a method of calculating the position of the second work 51 on the stage 30 from the image, for example, as shown in FIG. 4, markers 53 and 54 are provided on the second work 51, and the markers 53 and 54 are attached to the camera 20. And a method of shooting.
 次に、中央制御装置60は、第1のワーク50を第2のワーク51に挿入する軌道を計算する(S20)。図5に軌道Sの一例を示す。 Next, the central controller 60 calculates a trajectory for inserting the first work 50 into the second work 51 (S20). FIG. 5 shows an example of the trajectory S.
 ステップS30からステップS75までは、制御ループとなり、第1のワーク50と第2のワーク51の組み立てが完了したら、この制御ループを終了する。 Steps S30 to S75 form a control loop. When the assembly of the first work 50 and the second work 51 is completed, the control loop ends.
 まず、中央制御装置60は、図6に示すように、第1のワーク50を周期毎の目標位置へ垂直多関節ロボット10を用いて移動させる(S40)。 First, as shown in FIG. 6, the central controller 60 moves the first work 50 to a target position in each cycle using the vertical articulated robot 10 (S40).
 次に、中央制御装置60は、垂直多関節ロボット10、およびXYZロボット40の各軸のエンコーダ情報を取得する(S50)。 Next, the central controller 60 acquires encoder information of each axis of the vertical articulated robot 10 and the XYZ robot 40 (S50).
 中央制御装置60は、垂直多関節ロボット10のエンコーダ値から、手先の位置を計算し、第1のワーク50の実際の位置を計算する(S60)。 The central controller 60 calculates the position of the hand from the encoder value of the vertical articulated robot 10 and calculates the actual position of the first work 50 (S60).
 中央制御装置60は、垂直多関節ロボット10のエンコーダ値から、垂直多関節ロボット10の各リンクにかかるトルクを計算し、垂直多関節ロボット10のたわみ量を計算する(S70)。 The central controller 60 calculates the torque applied to each link of the vertical articulated robot 10 from the encoder value of the vertical articulated robot 10, and calculates the amount of deflection of the vertical articulated robot 10 (S70).
 中央制御装置60は、垂直多関節ロボット10のたわみによる第1のワーク50の実際の位置を計算する(S71)。 The central controller 60 calculates the actual position of the first workpiece 50 due to the deflection of the vertical articulated robot 10 (S71).
 中央制御装置60は、最終的な第1のワーク50の実際の位置を計算する(S72)。 The central controller 60 calculates the final actual position of the first work 50 (S72).
 中央制御装置60は、第1のワーク50の目標位置と実際の位置とに誤差がないかどうかを判断する(S73)。 Central controller 60 determines whether there is an error between the target position of first work 50 and the actual position (S73).
 中央制御装置60は、第1のワーク50の目標位置と実際の位置とに誤差がある場合には(S73:NO)、XYZテーブル40を誤差分移動し、修正する(S74)。一方、中央制御装置60は、第1のワーク50の目標位置と実際の位置とに誤差がない場合には(S73:YES)、制御ループが終了するまで、ステップと40からステップS73までの処理を繰り返す。 (4) If there is an error between the target position and the actual position of the first work 50 (S73: NO), the central controller 60 moves the XYZ table 40 by the error and corrects it (S74). On the other hand, when there is no error between the target position and the actual position of the first work 50 (S73: YES), the central controller 60 performs the processing from step S40 to step S73 until the control loop ends. repeat.
 そして、図7に示すように、第1のワーク50が第2のワーク51に挿入され、組み付けが完了すると、制御ループが終了する。 Then, as shown in FIG. 7, when the first work 50 is inserted into the second work 51 and the assembling is completed, the control loop ends.
(処理の詳細)
 次に、図8を参照しつつ、制御システム1の処理の詳細について説明する。図8は、制御システム1の処理の詳細を示すフローチャートである。
(Details of processing)
Next, details of the processing of the control system 1 will be described with reference to FIG. FIG. 8 is a flowchart showing details of the processing of the control system 1.
 まず、中央制御装置60は、任意の位置に固定されたカメラ20で第2のワーク51のマーカ53,54を撮影し、画像処理装置100から撮影画像を受信して、ステージ30上の第2のワーク51の初期位置として時刻0における現在位置PW2(0)を計算する(S100)。ここで、第2のワーク51の時刻tにおける現在位置はPW2(t)で表される。 First, the central control device 60 photographs the markers 53 and 54 of the second workpiece 51 with the camera 20 fixed at an arbitrary position, receives the photographed image from the image processing device 100, and The current position P W2 (0) at time 0 is calculated as the initial position of the work 51 (S100). Here, the current position of the second work 51 at time t is represented by P W2 (t).
 次に、中央制御装置60は、第1のワーク50の初期位置として時刻0における現在位置PW1(0)と、計算した第2のワーク51の初期位置として時刻0における現在位置PW2(0)を用いて第1のワーク50を第2のワーク51に挿入する軌道を計算する(S110)。ここで、第1のワーク50の時刻tにおける現在位置はPW1(t)で表される。 Next, the central control device 60 determines the current position P W1 (0) at time 0 as the initial position of the first work 50 and the current position P W2 (0) at time 0 as the calculated initial position of the second work 51. ) Is used to calculate the trajectory for inserting the first work 50 into the second work 51 (S110). Here, the current position of the first work 50 at time t is represented by P W1 (t).
 中央制御装置60は、垂直多関節ロボット10の時刻0における初期位置目標R(0)を、垂直多関節ロボット10の時刻0における現在位置R(0)とする(S120)。ここで、垂直多関節ロボット10の時刻tにおける初期位置目標はR(t)で表され、垂直多関節ロボット10の時刻tにおける現在位置はR(t)で表される。 The central controller 60 sets the initial position target R d (0) of the vertical articulated robot 10 at time 0 as the current position R (0) of the vertical articulated robot 10 at time 0 (S120). Here, the initial position target of the vertical articulated robot 10 at time t is represented by R d (t), and the current position of the vertical articulated robot 10 at time t is represented by R (t).
 ステップS130からステップS200までは、制御ループとなっており、第1のワーク50と第2のワーク51との組み立てが完了すると制御ループは終了する。 制 御 A control loop is performed from step S130 to step S200, and the control loop ends when the assembly of the first work 50 and the second work 51 is completed.
 制御ループが開始されると、中央制御装置60は、垂直多関節ロボット10の時刻tにおけるエンコーダ値E(t)と、XYZロボット40の時刻tにおけるエンコーダ値E(t)とを取得する。そして、中央制御装置60は、これらのエンコーダ値E(t),E(t)に基づいて、垂直多関節ロボット10の時刻tにおける現在位置R(t)と、XYZロボット40の時刻tにおける現在位置S(t)とを計算する(S140)。 When the control loop is started, the central control device 60 acquires the encoder value E R (t) of the vertical articulated robot 10 at time t and the encoder value E S (t) of the XYZ robot 40 at time t. . Then, based on these encoder values E R (t) and E S (t), the central controller 60 calculates the current position R (t) of the vertical articulated robot 10 at time t and the time t of the XYZ robot 40 at time t. Is calculated (S140).
 次に、中央制御装置60は、垂直多関節ロボット10の時刻tにおける現在位置R(t)に基づいて、第1のワーク50の時刻tにおける現在位置PW1(t)を計算する(S150)。 Next, the central controller 60 calculates the current position P W1 (t) of the first work 50 at time t based on the current position R (t) of the vertical articulated robot 10 at time t (S150). .
 中央制御装置60は、垂直多関節ロボット10の振動に起因する第1のワーク50の補正量σV(t)を以下のように時刻tにおける第1のワーク50の目標位置PdW1(t)と、第1のワーク50の時刻tにおける現在位置PW1(t)とから計算する(S160)。 The central controller 60 determines the correction amount σ V (t) of the first work 50 due to the vibration of the vertical articulated robot 10 as the target position P dW1 (t) of the first work 50 at time t as follows. And the current position P W1 (t) of the first work 50 at time t (S160).
σV(t)=Pdw1(t)-PW1(t) σ V (t) = P dw1 (t) −P W1 (t)
 中央制御装置60は、垂直多関節ロボット10の関節の現在角度より各関節のトルクτ(t)を以下のように計算する(S170)。 The central controller 60 calculates the torque τ (t) of each joint from the current angle of the joint of the vertical articulated robot 10 as follows (S170).
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 中央制御装置60は、計算した各関節のトルクτ(t)から各リンクのたわみ量δ(t)を計算する(S180)。 The central controller 60 calculates the amount of deflection δ (t) of each link from the calculated torque τ (t) of each joint (S180).
 中央制御装置60は、各リンクのたわみ量δ(t)に起因する第1のワーク50の補正量σ(t)を計算する(S190)。 The central controller 60 calculates a correction amount σ f (t) of the first work 50 due to the deflection amount δ (t) of each link (S190).
 次に、中央制御装置60は、XYZロボット40の次の目標位置、つまり、時刻t+1における目標位置S(t+1)を、XYZロボット40の時刻tにおける現在位置S(t)と、振動に起因する第1のワーク50の補正量σV(t)と、たわみ量δ(t)に起因する第1のワーク50の補正量σ(t)とに基づいて計算する(S200)。つまり、XYZロボット40の次の目標位置である時刻t+1における目標位置S(t+1)は以下のようになる。 Next, the central controller 60 determines the next target position of the XYZ robot 40, that is, the target position S d (t + 1) at the time t + 1, by the current position S (t) at the time t of the XYZ robot 40 and the vibration. The calculation is performed based on the correction amount σ V (t) of the first work 50 and the correction amount σ f (t) of the first work 50 caused by the deflection amount δ (t) (S200). That is, the target position S d (t + 1) at the time t + 1 which is the next target position of the XYZ robot 40 is as follows.
(t+1)=S(t)+σV(t)+σ(t) S d (t + 1) = S (t) + σ V (t) + σ f (t)
 中央制御装置60は、上述のようにして計算した第1のワーク50を第2のワーク51に挿入する軌道から、第1のワーク50の次の目標位置、つまり時刻t+1における目標位置PdW1(t+1)を求め、この第1のワーク50の時刻t+1における目標位置PdW1(t+1)から、垂直多関節ロボット10の次の目標位置、つまり時刻t+1における目標位置R(t+1)を計算する(S210)。 The central controller 60 calculates the next target position of the first work 50, that is, the target position P dW1 (time t + 1) from the trajectory for inserting the first work 50 into the second work 51 calculated as described above. t + 1), and the next target position of the vertical articulated robot 10, that is, the target position R d (t + 1) at the time t + 1 is calculated from the target position P dW1 (t + 1) of the first work 50 at the time t + 1 ( S210).
 中央制御装置60は、垂直多関節ロボット10、およびXYZロボット40を、それぞれの次の目標位置、つまり時刻t+1における目標位置R(t+1),S(t+1)に移動させる(S220)。 The central controller 60 moves the vertical articulated robot 10 and the XYZ robot 40 to their respective next target positions, that is, the target positions R d (t + 1) and S d (t + 1) at time t + 1 (S220).
 中央制御装置60は、時刻tが次の周期である時刻t+1になると(S230)、第1のワーク50と第2のワーク51との組み立てが完了するまで、ステップS130からステップS240までの制御ループを繰り返す。 When the time t reaches the next cycle time t + 1 (S230), the central control device 60 performs a control loop from step S130 to step S240 until the assembly of the first work 50 and the second work 51 is completed. repeat.
 そして、中央制御装置60は、第1のワーク50と第2のワーク51との組み立てが完了すると、制御ループを終了し、処理を終了する。 Then, when the assembly of the first work 50 and the second work 51 is completed, the central control device 60 ends the control loop and ends the processing.
 以上のように、本実施形態の制御システム1は、垂直多関節ロボット10およびXYZロボット40は、中央制御装置60と産業用ネットワークであるEtherCATにより通信可能に接続されて制御され、高速で動くことになる。このように高速で動いた場合には、振動等により垂直多関節ロボット10の位置決めにずれが生じる。また、垂直多関節ロボット10には、自重や手先の把持物体の重さにより、リンクにたわみが発生し、手先の位置決めに誤差が生じる。 As described above, in the control system 1 according to the present embodiment, the vertical articulated robot 10 and the XYZ robot 40 are connected and controlled by the central control device 60 and EtherCAT, which is an industrial network, to operate at high speed. become. When moving at such a high speed, the positioning of the vertical articulated robot 10 is shifted due to vibration or the like. Further, in the vertical articulated robot 10, the link bends due to its own weight or the weight of the object held by the hand, and an error occurs in the positioning of the hand.
 しかしながら、中央制御装置60の位置決め調整部61は、第2のワーク51に第1のワーク50を挿入するために、第1のワーク50の軌道計算を行い、この軌道計算に基づいて、制御周期ごとの垂直多関節ロボット10の目標位置と、振動やたわみに起因する現在位置との差を求める。そして、位置決め調整部61は、この差を修正するように、XYZロボット40の制御周期ごとの次の目標位置を設定する。このようにして、垂直多関節ロボット10の位置決めの調整を行っている。 However, the positioning adjustment unit 61 of the central control device 60 calculates the trajectory of the first work 50 in order to insert the first work 50 into the second work 51, and performs the control cycle based on the trajectory calculation. The difference between the target position of the vertical articulated robot 10 and the current position caused by vibration or deflection is determined. Then, the positioning adjustment unit 61 sets the next target position for each control cycle of the XYZ robot 40 so as to correct this difference. In this way, the positioning of the vertical articulated robot 10 is adjusted.
 XYZロボット40は、高速で動作させても高精度で動作可能なため、以上のような位置決めの調整が可能となっている。 The XYZ robot 40 can operate with high accuracy even when operated at high speed, so that the above positioning adjustment can be performed.
 したがって、本実施形態によれば、中央制御装置60により、垂直多関節ロボット10の位置決め誤差を、XYZロボット40で補償するように、両者を同期させて制御することで、高速かつ高精度の電子部品等の組み立て作業を行うことができる。 Therefore, according to the present embodiment, the central control device 60 controls the two synchronously so that the positioning error of the vertical articulated robot 10 is compensated by the XYZ robot 40, thereby achieving high-speed and high-precision electronic control. Assembly work of parts and the like can be performed.
 また、垂直多関節ロボット10の位置決め誤差の補償を、垂直多関節ロボット10の動作中に動的に行うため、静的な補償しかしていなかった従来の方法に比べて、高精度な位置決め誤差の補償が可能である。 Further, since the positioning error of the vertical articulated robot 10 is dynamically compensated during the operation of the vertical articulated robot 10, a highly accurate positioning error can be obtained compared to the conventional method in which only static compensation is performed. Compensation is possible.
 (変形例)
 上述した実施形態においては、ステージ30およびXYZロボット40を用いた態様について説明したが、ステージ30およびXYZロボット40の代わりに、UVWステージと、Z軸駆動機構を用いてもよい。
(Modification)
In the embodiment described above, the aspect using the stage 30 and the XYZ robot 40 has been described. However, instead of the stage 30 and the XYZ robot 40, a UVW stage and a Z-axis drive mechanism may be used.
 上述した実施形態においては、垂直多関節ロボット10の位置、およびステージ30の位置を計測する計測部として、エンコーダ10a,93a,94a,95aを用いた態様について説明した。しかし、本発明は、このような態様に限定される訳ではなく、計測部としてカメラを用いることも可能である。 In the above-described embodiment, the mode in which the encoders 10a, 93a, 94a, and 95a are used as the measurement units that measure the position of the vertical articulated robot 10 and the position of the stage 30 has been described. However, the present invention is not limited to such an embodiment, and a camera can be used as the measuring unit.
 上述した実施形態においては、一例として、電子部品の組み立てを行う場合の制御について説明した。しかし、本発明は、このような態様に限定される訳ではなく、あらゆる部品の組み立て作業全般に適用可能である。 In the above-described embodiment, as an example, the control when assembling electronic components has been described. However, the present invention is not limited to such an embodiment, and is applicable to the assembling work of all parts in general.
 以上の実施形態は例示であり、この発明の範囲から離れることなく様々な変形が可能である。上述した複数の実施の形態は、それぞれ単独で成立し得るものであるが、実施の形態同士の組みあわせも可能である。また、異なる実施の形態の中の種々の特徴も、それぞれ単独で成立し得るものであるが、異なる実施の形態の中の特徴同士の組みあわせも可能である。 The above embodiments are merely examples, and various modifications can be made without departing from the scope of the present invention. Each of the above-described embodiments can be realized independently, but combinations of the embodiments are also possible. In addition, various features in different embodiments can also be independently realized, but combinations of features in different embodiments are also possible.
 1   制御システム
 10  垂直多関節ロボット
 17  ハンド
 20  カメラ
 30  ステージ
 40  XYZロボット
 50  第1のワーク
 51  第2のワーク
 60  中央制御装置
 100 画像処理装置
Reference Signs List 1 control system 10 vertical articulated robot 17 hand 20 camera 30 stage 40 XYZ robot 50 first work 51 second work 60 central control device 100 image processing device

Claims (5)

  1.  第1のワークを把持するロボットと、
     第2のワークを支持する支持台と、
     前記支持台を移動させる移動機構と、
     前記ロボットの位置および前記支持台の位置を計測する計測部と、
     前記ロボットおよび前記移動機構を制御する中央制御装置と、を備え、
     前記中央制御装置は、
     前記計測部により計測した前記ロボットおよび前記支持台の位置に基づいて、前記移動機構により前記支持台を移動させ、前記第1のワークの前記第2のワークに対する相対的な位置決めを調整する位置決め調整部を備える、
     制御システム。
    A robot for holding the first work,
    A support for supporting the second work;
    A moving mechanism for moving the support,
    A measuring unit for measuring the position of the robot and the position of the support table,
    A central control device for controlling the robot and the moving mechanism,
    The central control device includes:
    Positioning adjustment for moving the support base by the moving mechanism based on the positions of the robot and the support base measured by the measurement unit, and adjusting the relative positioning of the first work with respect to the second work. Part,
    Control system.
  2.  前記ロボットおよび前記移動機構は、前記中央制御装置と産業用ネットワークにより通信可能に接続され、所定の制御周期により制御されており、
     前記位置決め調整部は、前記位置決めの調整を、前記第2のワークに前記第1のワークを挿入するための前記第1のワークの軌道計算を行い、当該軌道計算に基づく前記制御周期ごとの前記ロボットの目標位置と現在位置との差を修正するように、前記移動機構の前記制御周期ごとの次の目標位置を設定することにより行う、
    請求項1に記載の制御システム。
    The robot and the moving mechanism are communicably connected to the central control device via an industrial network, and are controlled by a predetermined control cycle,
    The positioning adjustment unit performs the positioning adjustment, calculates the trajectory of the first work for inserting the first work into the second work, and performs the trajectory calculation for each control cycle based on the trajectory calculation. Performing by setting a next target position for each control cycle of the moving mechanism so as to correct a difference between the target position and the current position of the robot,
    The control system according to claim 1.
  3.  前記計測部は、前記ロボットおよび前記移動機構に備えられたエンコーダ、または、前記第1のワークあるいは前記第2のワークを撮影するカメラを備える、
    請求項1または請求項2に記載の制御システム。
    The measuring unit includes an encoder provided in the robot and the moving mechanism, or a camera that photographs the first work or the second work.
    The control system according to claim 1 or 2.
  4.  第1のワークを把持するロボットと、第2のワークを支持する支持台の移動機構とを制御する制御システムの制御方法であって、
     前記ロボットの位置、および前記支持台の位置を計測部により計測するステップと、
     前記計測部により計測した前記ロボットおよび前記支持台の位置に基づいて、前記移動機構により前記支持台を移動させ、前記第1のワークの前記第2のワークに対する相対的な位置決めを中央制御装置の位置決め調整部により調整するステップと、を備える、
    制御システムの制御方法。
    A control method of a control system that controls a robot that grips a first work and a moving mechanism of a support table that supports the second work,
    Measuring the position of the robot, and the position of the support table by a measuring unit,
    Based on the positions of the robot and the support base measured by the measurement unit, the support mechanism is moved by the moving mechanism, and the relative positioning of the first work with respect to the second work is determined by a central control device. Adjusting by a positioning adjustment unit.
    Control system control method.
  5.  第1のワークを把持するロボットと、第2のワークを支持する支持台の移動機構とを制御する制御システムのプログラムであって、コンピュータに、
     前記ロボットの位置、および前記支持台の位置を計測部により計測するステップと、
     前記計測部により計測した前記ロボットおよび前記支持台の位置に基づいて、前記移動機構により前記支持台を移動させ、前記第1のワークの前記第2のワークに対する相対的な位置決めを中央制御装置の位置決め調整部により調整するステップと、を実行させる、
    制御システムのプログラム。
    A program for a control system that controls a robot that grips a first work and a moving mechanism of a support table that supports the second work.
    Measuring the position of the robot, and the position of the support table by a measuring unit,
    Based on the positions of the robot and the support base measured by the measurement unit, the support mechanism is moved by the moving mechanism, and the relative positioning of the first work with respect to the second work is determined by a central control device. Adjusting by a positioning adjustment unit; and
    Control system program.
PCT/JP2019/027516 2018-07-20 2019-07-11 Control system, method for controlling control system, and control system program WO2020017426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018137011A JP7131162B2 (en) 2018-07-20 2018-07-20 Control system, control system control method, and control system program
JP2018-137011 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017426A1 true WO2020017426A1 (en) 2020-01-23

Family

ID=69164020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027516 WO2020017426A1 (en) 2018-07-20 2019-07-11 Control system, method for controlling control system, and control system program

Country Status (2)

Country Link
JP (1) JP7131162B2 (en)
WO (1) WO2020017426A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261024A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program and control method
WO2021261023A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program, and control method
WO2021261025A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program, and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6937444B1 (en) * 2021-03-15 2021-09-22 Dmg森精機株式会社 Robot system positioning accuracy measurement method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208209A (en) * 2008-03-05 2009-09-17 Ihi Corp Robot production system
JP2011011318A (en) * 2009-07-06 2011-01-20 Seiko Epson Corp Position controlling method, robot
JP2014006566A (en) * 2012-06-21 2014-01-16 Institute Of National Colleges Of Technology Japan Built-in intelligence controller, control system, control program, recording medium, and control method
JP2014034075A (en) * 2012-08-08 2014-02-24 Canon Inc Robot device
JP2014140941A (en) * 2013-01-25 2014-08-07 Seiko Epson Corp Robot control system, robot, robot control method, and program
JP2014151427A (en) * 2013-02-14 2014-08-25 Canon Inc Robot system and control method therefor
JP2017102825A (en) * 2015-12-04 2017-06-08 ファナック株式会社 Composite system equipped with machine tool and robot
US9919427B1 (en) * 2015-07-25 2018-03-20 X Development Llc Visualizing robot trajectory points in augmented reality

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468366B2 (en) 2009-11-24 2014-04-09 Idec株式会社 Robot control system and robot control method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208209A (en) * 2008-03-05 2009-09-17 Ihi Corp Robot production system
JP2011011318A (en) * 2009-07-06 2011-01-20 Seiko Epson Corp Position controlling method, robot
JP2014006566A (en) * 2012-06-21 2014-01-16 Institute Of National Colleges Of Technology Japan Built-in intelligence controller, control system, control program, recording medium, and control method
JP2014034075A (en) * 2012-08-08 2014-02-24 Canon Inc Robot device
JP2014140941A (en) * 2013-01-25 2014-08-07 Seiko Epson Corp Robot control system, robot, robot control method, and program
JP2014151427A (en) * 2013-02-14 2014-08-25 Canon Inc Robot system and control method therefor
US9919427B1 (en) * 2015-07-25 2018-03-20 X Development Llc Visualizing robot trajectory points in augmented reality
JP2017102825A (en) * 2015-12-04 2017-06-08 ファナック株式会社 Composite system equipped with machine tool and robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261024A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program and control method
WO2021261023A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program, and control method
WO2021261025A1 (en) * 2020-06-25 2021-12-30 オムロン株式会社 Robot control system, control program, and control method
JP7392590B2 (en) 2020-06-25 2023-12-06 オムロン株式会社 Robot control system, control program and control method

Also Published As

Publication number Publication date
JP2020011360A (en) 2020-01-23
JP7131162B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2020017426A1 (en) Control system, method for controlling control system, and control system program
JP3733364B2 (en) Teaching position correction method
CN108994876B (en) Teaching position correction device and teaching position correction method
JP4202365B2 (en) Force control device
JP6661028B2 (en) Work position correction method
US9563601B2 (en) Force sensor correcting method
JP3644991B2 (en) Coordinate system coupling method in robot-sensor system
WO2015111298A1 (en) Motor control device
CN112720458B (en) System and method for online real-time correction of robot tool coordinate system
JP2010058256A (en) Arm position regulating method and apparatus and robot system
JP2012101306A (en) Apparatus and method for calibration of robot
KR102225139B1 (en) Method for restoring positional information of robot
JP2019055469A (en) Robot control device for calibration, measuring system, and calibration method
JP5378908B2 (en) Robot accuracy adjustment method and robot
JP2006293624A (en) Multiaxis controller
WO2021172271A1 (en) Robot system
CN111844017B (en) Display method
JP5856837B2 (en) Robot teaching point creation method and robot system
US20220134570A1 (en) Control device and alignment device
CN113905859B (en) Robot control system and robot control method
WO2021261023A1 (en) Robot control system, control program, and control method
WO2021261024A1 (en) Robot control system, control program and control method
US20230031819A1 (en) Positioning method and positioning device
JP7392590B2 (en) Robot control system, control program and control method
WO2022091241A1 (en) Offset value setting method and robot control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838562

Country of ref document: EP

Kind code of ref document: A1