WO2020017318A1 - Nonaqueous electrolyte solution and electricity storage device using same - Google Patents

Nonaqueous electrolyte solution and electricity storage device using same Download PDF

Info

Publication number
WO2020017318A1
WO2020017318A1 PCT/JP2019/026284 JP2019026284W WO2020017318A1 WO 2020017318 A1 WO2020017318 A1 WO 2020017318A1 JP 2019026284 W JP2019026284 W JP 2019026284W WO 2020017318 A1 WO2020017318 A1 WO 2020017318A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
fluorinated
formula
lithium
Prior art date
Application number
PCT/JP2019/026284
Other languages
French (fr)
Japanese (ja)
Inventor
良規 栗原
大希 木戸
雄一 古藤
宏行 瀬戸口
藤村 整
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2020531219A priority Critical patent/JP7344874B2/en
Publication of WO2020017318A1 publication Critical patent/WO2020017318A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte capable of suppressing electrochemical characteristics, particularly a decrease in battery capacity during high-temperature charge storage, and a power storage device using the same.
  • lithium batteries have been widely used as power sources for small electronic devices such as mobile phones and notebook computers, as power sources for electric vehicles and for power storage.
  • the term lithium battery is used as a concept including a so-called lithium ion secondary battery.
  • a lithium battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium ions, a lithium salt, and a non-aqueous electrolytic solution composed of a non-aqueous solvent.
  • the non-aqueous solvent include ethylene carbonate (EC), Carbonates such as propylene carbonate (PC) are used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • a negative electrode of a lithium battery a lithium metal, a metal compound capable of occluding and releasing lithium ions (a simple metal, a metal oxide, an alloy with lithium, and the like), a carbon material, and the like are known.
  • lithium batteries using carbon materials capable of occluding and releasing lithium ions such as coke and graphite (artificial graphite and natural graphite) have been widely put into practical use.
  • carbon materials such as coke and graphite store and release lithium ions and electrons at a very low potential equivalent to lithium metal
  • many solvents in non-aqueous electrolytes have the potential to undergo reductive decomposition. I have.
  • the solvent in the non-aqueous electrolyte is reductively decomposed on the negative electrode, deposition of decomposed products on the negative electrode surface and gas generation hinder smooth movement of lithium ions, lowering battery characteristics such as high-temperature storage characteristics. There's a problem.
  • the positive electrode of the lithium battery a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel, which can occlude and release lithium ions, is used.
  • heavy metals in the positive electrode active material may be eluted into the non-aqueous electrolyte during high temperature charge storage.
  • problems such as a decrease in battery capacity, an increase in the amount of gas generated due to decomposition of the non-aqueous electrolyte, and an increase in electric resistance occur.
  • Patent Literature 1 proposes a non-aqueous electrolyte containing an organic solvent, a lithium salt, and an internal salt having a cation and an anion in the molecule, and utilizes a dissolution and deposition reaction of lithium for the negative electrode. It is disclosed that in a lithium battery using an active material, charge / discharge cycle characteristics are improved in a 30-cycle test. However, in the lithium battery to which the non-aqueous electrolyte solution of Patent Document 1 is applied, although there is a description about improving charge / discharge cycle characteristics in a low-temperature cycle test, the effect of improving battery storage characteristics at high temperatures is described. Absent.
  • Patent Document 2 proposes a non-aqueous electrolyte containing an organic solvent, a lithium salt, and an internal salt containing anionic SO 3 or SO 4 and a cationic triazine in the same molecule. It is disclosed that the high-temperature storage characteristics of the secondary battery and the stability during overcharge are improved.
  • Patent Literature 3 proposes a non-aqueous electrolyte containing an organic solvent such as ethylene carbonate, a lithium salt, and a zwitterionic compound containing a nitrogen atom or a phosphorus atom, and has excellent electrochemical stability. It has been disclosed.
  • An object of the present invention is to provide a non-aqueous electrolyte capable of significantly improving the high-temperature charge storage characteristics of an electricity storage device, and an electricity storage device using the same.
  • the present invention further provides a non-aqueous electrolyte capable of improving the high-temperature charge storage characteristics of the power storage device and, in addition, significantly suppressing generated gas during storage, and a power storage device using the same.
  • the purpose is to do.
  • the present inventors have repeated studies to solve the above-mentioned problems, and a non-aqueous electrolyte containing zwitterions has an effect of suppressing a decrease in battery capacity during high-temperature charge storage and an effect of suppressing generated gas.
  • zwitterions improve solubility in organic solvents and further improve battery characteristics, and have completed the present invention.
  • a zwitterion in which the cationic group contains a phosphorus atom or a nitrogen atom having no heterocycloalkenyl group and the anionic group is —SO 4 — particularly improves battery performance.
  • the present invention provides the following (1) and (2).
  • Q + is a cationic group represented by the following formula (II) or (III).
  • L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group.
  • a - anionic group represented by is a sulfonate or carboxylato group.
  • R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, It represents a fluorinated alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms.
  • R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
  • a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to (1).
  • An electricity storage device characterized by the above-mentioned.
  • zwitterion means an inner salt having a positive charge (cationic group) and a negative charge (anionic group) in one molecule.
  • a non-aqueous electrolyte that can significantly suppress a decrease in battery capacity during high-temperature charge storage of an electricity storage device, and an electricity storage device such as a lithium battery using the same. Further, according to the present invention, there is provided a non-aqueous electrolyte capable of suppressing a decrease in battery capacity during high-temperature charge storage of a power storage device and a gas generated during high-temperature charge storage, and a power storage device such as a lithium battery using the same. be able to.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein at least one zwitterion represented by the general formula (I) is contained in the non-aqueous electrolyte. It is characterized by containing.
  • the reason why the non-aqueous electrolyte of the present invention improves the high-temperature charge storage characteristics of the power storage device is not necessarily clear, but is considered as follows.
  • One of the causes of a decrease in battery capacity when an electricity storage device is stored at high temperatures is that metals such as cobalt, nickel, and manganese elute from the positive electrode active material, are reduced on the negative electrode, and are unstable on the SEI (Solid Electrolyte). Interphase) forming a coating.
  • the zwitterion of the general formula (I) of the present invention specifically coordinates to the eluted metal. It is considered that a metal to which a zwitterion is coordinated forms a stable SEI film even when reduced on the negative electrode, and improves battery characteristics.
  • the cationic group in the general formula (I) is chemically more stable than a heterocycloalkenyl group such as triazine, the effect of a zwitterion is improved, and the cationic group is an anionic group.
  • the —SO 4 — group exhibits an effective electrode resistance reducing action. Therefore, it is considered that the zwitterion in the combination of the anionic group and the cationic group of the formula (I) promotes the improvement of the battery characteristics.
  • the zwitterion according to the present invention is represented by the following general formula (I).
  • Q + is a cationic group represented by the following formula (II) or (III).
  • L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group.
  • L 1 is preferably an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or an alkyleneoxy group having 1 to 4 carbon atoms.
  • a - anionic group represented by the sulfonate group is - - (group -COO) (-SO 3 group) or a carboxylato group.
  • R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, And represents a fluorinated alkenyl group having 3 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms.
  • R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or Up to 15 alkynyl groups are preferred.
  • R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
  • R 4 to R 6 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, a dimethylamino group, or a diethylamino group. * Indicates a binding site with L 1. That is, L 1 is bonded to a nitrogen atom or a phosphorus atom of Q + .
  • the zwitterion is preferably at least one selected from a compound represented by the following general formula (IV) and a compound represented by the following general formula (VII).
  • Q + is a cationic group represented by the following formula (V) or (VI).
  • L 2 represents a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or an alkyleneoxy group having 1 to 4 carbon atoms.
  • R 7 to R 9 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, A fluorinated alkynyl group having 3 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms.
  • R 10 to R 12 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
  • * Indicates a binding site of the L 2. That is, L 2 is bonded to a nitrogen atom or a phosphoric acid
  • L 3 represents an alkylene group having 1 to 5 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 to 2 carbon atoms, and still more preferably a methylene group.
  • R 13 to R 15 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or a fluorinated alkenyl having 2 to 15 carbon atoms A alkynyl group having 3 to 15 carbon atoms or a fluorinated alkynyl group having 3 to 15 carbon atoms.
  • R 13 to R 15 are preferably each independently an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms. However, at least one of R 13 to R 15 is an alkyl group having 3 to 15 carbon atoms.
  • the zwitterion represented by the general formula (IV) is more preferably a compound represented by the following general formula (VIII).
  • Q + is a cationic group represented by the following formula (IX) or (X).
  • L 4 represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, or a fluorinated alkenylene group having 2 to 5 carbon atoms.
  • L 4 is preferably an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, or an alkenylene group having 2 to 5 carbon atoms, and an alkylene group having 1 to 3 carbon atoms, Alternatively, an alkenylene group having 2 to 3 carbon atoms is more preferable, and an alkylene group having 2 to 3 carbon atoms is further preferable.
  • R 16 to R 18 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, A fluorinated alkynyl group having 3 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms.
  • R 16 to R 18 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or A fluorinated alkenyl group having 5 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable, and an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms are preferable. More preferred.
  • R 19 to R 21 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
  • R 19 to R 21 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, An alkenyl group, dimethylamino group or diethylamino group having 5 carbon atoms is preferable, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, dimethylamino group or diethylamino group is more preferable.
  • An alkyl group, an alkenyl group having 2 to 3 carbon atoms, a dimethylamino group, or a diethylamino group is more preferred, and an alkyl group having 1 to 3 carbon atoms is most preferred.
  • the zwitterion represented by the general formula (IV) or (VIII) is selected from a compound represented by the following general formula (XI) and a compound represented by the following general formula (XII) More preferably, it is at least one.
  • L 5 in the formula (XI) and L 6 in the formula (XII) represent an alkylene group having 2 or 3 carbon atoms.
  • R 16 to R 18 each independently represent an alkyl group having 1 to 3 carbon atoms.
  • R 19 to R 21 each independently represent an alkyl group having 1 to 3 carbon atoms or a dimethylamino group.
  • the zwitterion represented by the general formula (VII) is more preferably a compound represented by the following general formula (VII-I).
  • L 3 is a methylene group
  • R 13 to R 15 are each independently an alkyl group having 1 to 15 carbon atoms, and at least one of R 13 to R 15 has 3 carbon atoms. ⁇ 15 alkyl groups.
  • 2-butyldimethyl (carboxylatomethyl) ammonium structural formula 1
  • 2-butyldimethyl (carboxylatoethyl) ammonium structural formula 2
  • 2-butyldimethyl (carboxylatopropyl) ammonium Structural formula 3
  • 2-hexyldimethyl (carboxylatomethyl) ammonium structural formula 7
  • 2-hexyldimethyl (carboxylatoethyl) ammonium structural formula 8
  • 2-hexyldimethyl (carboxylatopropyl) ammonium structural formula 9
  • 2-octyldimethyl (carboxylatomethyl) ammonium structural formula 10
  • 2-octyldimethyl (carboxylatoethyl) ammonium structural formula 11
  • 2-octyldimethyl (carboxylatopropyl) ammonium structural formula 12
  • 2-butyldimethyl (carboxylatomethyl) ammonium structural formula 1
  • 2-hexyldimethyl (carboxylatomethyl) ammonium structural formula 7
  • 2-octyldimethyl (carboxylatomethyl) ammonium Structural formula 10
  • a lithium composite metal oxide containing manganese is used as the positive electrode active material
  • the active material it is preferable to use at least one selected from a carbon material capable of inserting and extracting lithium and a titanium composite metal oxide, and a manganese-containing spinel-type lithium composite containing manganese as the positive electrode active material. It is more preferable to use a metal oxide, particularly spinel-type lithium manganate (LiMn 2 O 4 ), and to use a titanium composite metal oxide, particularly Li 4 Ti 5 O 12 as a negative electrode active material.
  • the lithium composite metal oxide containing manganese is used as the positive electrode active material.
  • a manganese lithium composite metal oxide having a spinel structure is more preferable, and a spinel lithium manganate is further preferable.
  • the negative electrode active material it is preferable to use at least one selected from a carbon material capable of inserting and extracting lithium and a titanium composite metal oxide.
  • a lithium composite metal oxide containing manganese is preferable as the positive electrode active material, and a spinel type structure is used. Is more preferable, and spinel-type lithium manganate is more preferable.
  • the negative electrode active material it is preferable to use a carbon material capable of inserting and extracting lithium.
  • each of the compounds represented by the general formulas (I), (IV), (VII), (VII-1), (VIII), (XI) or (XII) is contained.
  • the amount is preferably 0.01% by mass or more and a saturated amount or less in the non-aqueous electrolyte in order to sufficiently exert the effect.
  • the lower limit is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more.
  • the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 5% by mass or less, and most preferably 2% by mass or less.
  • the total content of the compounds represented by the above general formulas is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.03% by mass or more and 8% by mass or less, and further preferably 0.05% by mass or less. It is from 5% by mass to 5% by mass, most preferably from 0.1% by mass to 2% by mass.
  • the compound represented by the general formula (I) is combined with a non-aqueous solvent, an electrolyte salt and other additives described below to reduce the battery capacity during high-temperature charge storage. And a unique effect that the effect of suppressing gas generation during high-temperature charge storage is synergistically improved.
  • the term "solvent” means a substance for dissolving a solute.
  • the non-aqueous solvent used in the non-aqueous electrolyte of the present invention one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferred. Since the electrochemical properties at high temperatures are synergistically improved, a chain ester is preferably contained, a chain carbonate is more preferably contained, and both a cyclic carbonate and a chain ester are more preferably contained. .
  • chain ester is used as a concept including a chain carbonate and a chain carboxylic acid ester.
  • chain carbonate is defined as a linear alkyl carbonate compound.
  • Cyclic carbonate As the cyclic carbonate, ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (both are collectively referred to as “DFEC”), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), preferably one or more selected from the group consisting of ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene Carbonate and 4-ethynyl-1,3-dioxolan-2-one (EE ) One or more members selected from the group consisting of is more preferable.
  • the content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more with respect to the total amount of the nonaqueous electrolyte, and the upper limit thereof is preferably 90 mass% or less, more preferably 70 mass% or less, still more preferably 50 mass% or less, and still more preferably 40 mass% or less.
  • the high-temperature charge storage characteristics can be further improved without impairing the Li ion permeability. Is improved, and gas generation can be suppressed.
  • a carbon-carbon double bond or a carbon-carbon triple bond unsaturated bond or a cyclic carbonate having a fluorine atom When at least one of a carbon-carbon double bond or a carbon-carbon triple bond unsaturated bond or a cyclic carbonate having a fluorine atom is used, high-temperature charge storage characteristics can be further improved, and gas generation can be further suppressed. It is more preferable to include both a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom.
  • a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond
  • VC, VEC or EEC is more preferable
  • FEC or DFEC is more preferable.
  • the content of the cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.05% by mass or more, more preferably 0.1% by mass, based on the total amount of the nonaqueous electrolyte. % Or more, more preferably 0.5% by mass or more, and the upper limit thereof is preferably 8% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. This is preferable because the high-temperature charge storage characteristics can be further improved without impairing the Li ion permeability, and gas generation can be suppressed.
  • the content of the cyclic carbonate having a fluorine atom is preferably 0.05% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more based on the total amount of the nonaqueous electrolyte. Is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and still more preferably 15% by mass or less. Within this range, the Li ion permeability is further reduced without impairing it. This is preferable because the high-temperature charge storage characteristics can be improved and gas generation can be suppressed.
  • One of these solvents may be used, and when two or more of them are used in combination, the high-temperature charge storage characteristics can be improved, and gas generation can be suppressed. It is more preferred to use.
  • Preferred combinations of these cyclic carbonates include combinations of EC and PC, combinations of EC and VC, combinations of PC and VC, combinations of VC and FEC, combinations of EC and FEC, combinations of PC and FEC, and combinations of FEC and DFEC.
  • a combination of EC and VC, a combination of EC and FEC, a combination of PC and FEC, a combination of EC and PC and VC, a combination of EC and PC and FEC, a combination of EC and VC and FEC, and a combination of EC and FEC One or more selected from the group consisting of a combination of VC and EEC, a combination of EC and EEC and FEC, a combination of PC and VC and FEC, and a combination of EC, PC, VC and FEC are more preferable.
  • Chain ester As the chain ester, one or two or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC) ), Dipropyl carbonate, and one or more symmetrical linear carbonates selected from the group consisting of dibutyl carbonate, pivalic acid esters such as methyl pivalate, ethyl pivalate and propyl pivalate, methyl propionate, and propionic acid
  • One or more linear carboxylic esters selected from the group consisting of ethyl, propyl propionate, methyl acetate and ethyl acetate are preferred.
  • chain esters high conductivity and low risk of deterioration of high-temperature charge storage characteristics due to decomposition of the solvent are low, so that methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), diethyl carbonate (DEC), A chain ester having a methyl group selected from the group consisting of methyl propyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate, and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable.
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • a chain ester having a methyl group selected from the group consisting of methyl propyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate, and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable.
  • the content of the chain ester in the non-aqueous solvent used in the non-aqueous electrolyte of the present invention is not particularly limited, but is preferably used in the range of 5 to 90% by mass based on the total amount of the non-aqueous electrolyte.
  • the content is 5% by mass or more, the viscosity of the non-aqueous electrolyte does not become too high, more preferably 10% by mass or more, further preferably 30% by mass or more, and further preferably 50% by mass or more. It is.
  • the content is 90% by mass or less, the electric conductivity of the non-aqueous electrolyte is reduced and the high-temperature charge storage characteristics are less likely to be reduced.
  • the ratio of the cyclic carbonate to the chain ester is preferably from 10:90 to 50:50, and more preferably from 30:70 to 40:60, from the viewpoint of improving the electrochemical properties at a high temperature. Is more preferred.
  • non-aqueous solvents In the non-aqueous electrolyte of the present invention, other non-aqueous solvents other than those described above can be used.
  • Other non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, and chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane.
  • One or more selected from the group consisting of ethers, amides such as dimethylformamide, sulfones such as sulfolane, and lactones such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone, and ⁇ -angelicalactone are preferably exemplified.
  • the above-mentioned other non-aqueous solvents are usually mixed and used to achieve appropriate physical properties.
  • the combination is preferably, for example, a combination of a cyclic carbonate, a chain ester, and a lactone, or a combination of a cyclic carbonate, a chain ester, and an ether, and more preferably a combination of a cyclic carbonate, a chain ester, and a lactone.
  • lactone it is more preferable to use ⁇ -butyrolactone (GBL).
  • the content of the other non-aqueous solvent is usually preferably 1% by mass or more, more preferably 2% by mass or more, and usually 40% by mass or less, more preferably 30% by mass, based on the total amount of the non-aqueous electrolyte. % By mass or less, more preferably 20% by mass or less.
  • concentration is within the above range, the electric conductivity is less likely to be reduced, and the high-temperature charge storage characteristics are less likely to be deteriorated due to the decomposition of the solvent.
  • additives For the purpose of further improving high-temperature charge storage characteristics and suppressing gas generation, it is preferable to further add other additives to the non-aqueous electrolyte.
  • other additives include the following compounds (A) to (J).
  • nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
  • an aromatic compound having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, or 1-fluoro-4-tert-butylbenzene, biphenyl, terphenyl (o-, m- , P-form), an aromatic compound such as fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate, or dipheny
  • (C) selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate
  • One or more isocyanate compounds selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate
  • the type of the cyclic acetal compound is not particularly limited as long as it has a “acetal group” in the molecule. Specific examples thereof include cyclic acetal compounds such as 1,3-dioxolan, 1,3-dioxane, and 1,3,5-trioxane.
  • Specific examples thereof include chain carboxylic anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-anhydride.
  • Cyclic acid anhydrides such as propionic anhydride;
  • nitriles one or more selected from the group consisting of succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
  • aromatic compounds one selected from the group consisting of biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene Alternatively, two or more are more preferable, and one or two or more selected from the group consisting of biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene is further preferable.
  • (C) isocyanate compounds one or more selected from the group consisting of hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
  • the content of the compounds (A) to (C) is preferably 0.01 to 7% by mass based on the total amount of the nonaqueous electrolyte. In this range, the film is sufficiently formed without being too thick, the high-temperature charge storage characteristics can be improved, and gas generation can be suppressed.
  • the content is more preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit is more preferably 5% by mass or less based on the total amount of the nonaqueous electrolyte. And more preferably 3% by mass or less.
  • (E) a compound having a cyclic or chain S O group selected from the group consisting of sultone, cyclic sulfite, sulfonic acid ester and vinyl sulfone
  • (F) a cyclic acetal compound It is preferable to include (G) a phosphorus-containing compound, (H) a cyclic acid anhydride, and (J) a cyclic phosphazene compound since the high-temperature charge storage characteristics can be improved and gas generation can be suppressed.
  • Examples of the triple bond-containing compound include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, di (2-propynyl) oxalate, and 2-butyne-1
  • 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, di (2-propynyl) oxalate, and 2-butyne-1 One or more selected from the group consisting of 2,4-diyldimethanesulfonate is more preferred.
  • a cyclic or chain-like S O group-containing compound selected from the group consisting of sultone, cyclic sulfite, cyclic sulfate, sulfonic acid ester, and vinyl sulfone (provided that a triple bond-containing compound and any of the above general formulas) Is not included).
  • chain-like S ⁇ O group-containing compound examples include butane-2,3-diyldimethanesulfonate, butane-1,4-diyldimethanesulfonate, dimethylmethanedisulfonate, pentafluorophenylmethanemethanesulfonate, divinylsulfone, And at least one member selected from the group consisting of and bis (2-vinylsulfonylethyl) ether.
  • cyclic or chain S ⁇ ⁇ O group-containing compounds 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl ⁇ acetate , Ethylene sulfate, pentafluorophenyl methanesulfonate, and divinyl sulfone.
  • the cyclic acetal compound is preferably at least one selected from 1,3-dioxolane and 1,3-dioxane, and more preferably 1,3-dioxane.
  • the phosphorus-containing compound one or more selected from ethyl ⁇ 2- (diethoxyphosphoryl) acetate and 2-propynyl ⁇ 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl ⁇ 2- (diethoxyphosphoryl) Acetate is more preferred.
  • the cyclic acid anhydride is preferably at least one selected from succinic anhydride, maleic anhydride, and 3-allyl succinic anhydride, and at least one selected from succinic anhydride and 3-allyl succinic anhydride. Is more preferred.
  • cyclic phosphazene compound one or more cyclic phosphazene compounds selected from methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, and phenoxypentafluorocyclotriphosphazene are preferable, and methoxypentafluorocyclotriphosphazene and One or more selected from ethoxypentafluorocyclotriphosphazene is more preferred.
  • each of the compounds (D) to (J) is preferably 0.001 to 5% by mass based on the total amount of the nonaqueous electrolyte.
  • the film is sufficiently formed without being too thick, and the high-temperature charge storage characteristics can be further improved, and gas generation can be suppressed.
  • the content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more based on the total amount of the nonaqueous electrolyte, and the upper limit is 3% by mass based on the total amount of the nonaqueous electrolyte. %, More preferably 2% by mass or less.
  • a lithium salt (I) having an oxalic acid structure, a lithium salt (II) having a phosphoric acid structure, and an SOO group are further added to the nonaqueous electrolyte. It preferably contains at least one kind of lithium salt selected from lithium salts (III). Specific examples of the lithium salt include lithium bis (oxalato) borate [LiBOB], lithium difluoro (oxalato) borate [LiDFOB], lithium tetrafluoro (oxalato) phosphate [LiTFOP], and lithium difluorobis (oxalato) phosphate [LiDFOP].
  • a lithium salt (I) having at least one oxalic acid structure selected from the group consisting of: a lithium salt (II) having a phosphoric acid structure such as LiPO 2 F 2 and Li 2 PO 3 F; and lithium trifluoro (( (Methanesulfonyl) oxy) borate [LiTFMSB], lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], lithium methyl sulfate [LMS], lithium ethyl sulfate [LES], Lithium salt (III) having at least one S O group selected from the group consisting of lithium 2,2,2-trifluoroethyl sulfate [LFES] and FSO 3 Li is preferable, and LiBOB, LiDFOB, It is more preferable to include a lithium salt selected from the group consisting of LiTFOP, LiDFOP, LiPO 2 F 2 , LiTFMSB, LMS, LES, LFES, and F
  • the proportion of each of the lithium salts in the nonaqueous electrolyte is preferably 0.01% by mass or more and 8% by mass or less based on the total amount of the nonaqueous electrolyte. Within this range, the high-temperature charge storage characteristics can be further improved, and gas generation can be suppressed. It is preferably at least 0.1% by mass, more preferably at least 0.3% by mass, even more preferably at least 0.4% by mass, based on the total amount of the nonaqueous electrolyte. The upper limit is preferably 6% by mass or less, more preferably 3% by mass or less, based on the total amount of the non-aqueous electrolyte.
  • Electrode salt As the electrolyte salt used in the present invention, at least one lithium salt selected from inorganic lithium salts, lithium salts containing an alkyl fluoride group, lithium imide salts having a fluorine atom, and lithium salts having an oxalic acid structure are preferred.
  • the inorganic lithium salt include LiPF 6 , LiBF 4 , and LiClO 4 .
  • the lithium salt containing a fluorinated alkyl group include LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , and LiPF 3 (CF 3 ).
  • lithium salts containing a linear alkyl fluoride group such as 3 , LiPF 3 (iso-C 3 F 7 ) 3 and LiPF 5 (iso-C 3 F 7 ).
  • the lithium imide salt having a fluorine atom include chains having a fluorine atom such as LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 [LiTFSI], and LiN (SO 2 C 2 F 5 ) 2.
  • Lithium imide salt, and a lithium imide salt having a cyclic fluorinated alkylene chain such as (CF 2 ) 2 (SO 2 ) 2 NLi and (CF 2 ) 3 (SO 2 ) 2 NLi.
  • lithium salt having an oxalic acid structure at least one selected from the group consisting of LiBOB, LiDFOB, LiTFOP, and LiDFOP is preferable, and lithium bis (oxalato) borate [LiBOB] is more preferable.
  • LiBOB lithium bis (oxalato) borate
  • LiBOB lithium bis (oxalato) borate
  • one or more inorganic lithium salts selected from LiPF 6 , LiBF 4 and the like, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and LiN (SO 2 F 2 ) Lithium imide salt having one or more fluorine atoms selected from [LiFSI] is preferable, and at least LiPF 6 is preferably used.
  • a preferable combination of these electrolyte salts includes LiPF 6 , and further includes at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI].
  • the salt is contained in the non-aqueous electrolyte, and more preferably, both LiPF 6 and LiFSI are used in combination.
  • the concentration and total concentration of each of the electrolyte salts are usually preferably 4% by mass or more, more preferably 9% by mass or more, and still more preferably 13% by mass or more, based on the total amount of the nonaqueous electrolyte.
  • the upper limit is preferably 28% by mass or less, more preferably 23% by mass or less, even more preferably 20% by mass or less based on the total amount of the nonaqueous electrolyte.
  • Lithium salts other than LiPF 6 are preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.46% by mass or more, and most preferably 0.1% by mass or more, based on the total amount of the nonaqueous electrolyte. It is at least 6% by mass, and the upper limit is preferably at most 13% by mass, more preferably at most 11% by mass, still more preferably at most 9% by mass, most preferably at most 6% by mass.
  • the non-aqueous electrolyte solution of the present invention is obtained by, for example, mixing the above-mentioned non-aqueous solvent, and adding the compound represented by the general formula (I) to the electrolyte salt and the non-aqueous electrolyte solution. Obtainable. At this time, it is preferable that the compound added to the non-aqueous solvent and the non-aqueous electrolyte used is one which has been purified in advance and has as few impurities as possible, as long as the productivity is not significantly reduced.
  • the non-aqueous electrolyte of the present invention can be used for the following first to fourth power storage devices.
  • As the non-aqueous electrolyte not only a liquid electrolyte but also a gelled electrolyte can be used. Further, the non-aqueous electrolyte of the present invention can be used for solid polymer electrolytes. Above all, it is preferable to use it for a first power storage device using a lithium salt as an electrolyte salt (that is, for a lithium battery) or for a fourth power storage device (that is, for a lithium ion capacitor), and to use it for a lithium battery. More preferably, it is most suitable to use for a lithium secondary battery.
  • the power storage device of the present invention is a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte is represented by the general formula (I). Characterized by containing a zwitterion.
  • a lithium battery is a general term for a lithium primary battery and a lithium secondary battery. Further, in this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
  • a lithium battery as a first power storage device according to the present invention includes a positive electrode, a negative electrode, and the nonaqueous electrolyte in which an electrolyte salt is dissolved in a nonaqueous solvent. Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
  • Positive electrode active material for a lithium secondary battery, a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used alone or in combination of two or more.
  • lithium composite metal oxide for example, LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from the group consisting of Cu, 0.001 ⁇ x ⁇ 0.05), LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4, LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 ⁇ x ⁇ 1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0 .1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.) , and LiNi 1/2 Mn 3/2 O
  • M is a transition metal such as Co, Ni, Mn, Fe, etc.
  • the lithium composite metal oxide containing manganese is not particularly limited, but preferably a manganese lithium composite metal oxide having a spinel-type structure, and more preferably a spinel-type lithium manganate suppresses a decrease in electrochemical characteristics. I do.
  • the positive electrode active material of the manganese lithium composite metal oxide include LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiNi 0.5
  • LiMn 2 O 4 LiMn 1.5 Ni 0.5 O 4
  • LiCo 1/3 Ni 1/3 Mn 1/3 O 2 LiCo 1/3 Ni 1/3 Mn 1/3 O 2
  • LiNi 0.5 One or more members selected from the group consisting of Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2, and the like are preferably mentioned, and in particular, LiMn having a spinel structure . 5 Ni 0.5 O 4, it is preferable to use a LiMn 2 O 4.
  • a part of the manganese site of the positive electrode active material may be replaced with a multi-element, and examples of the other element that replaces the manganese site include Sn, Ni, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Co, Li and the like.
  • a lithium-containing olivine-type phosphate may be used as the positive electrode active material.
  • a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like. Some of these lithium-containing olivine-type phosphates may be replaced with other elements, and some of iron, cobalt, nickel, and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb.
  • LiFePO 4 or LiMnPO 4 is preferred, and LiMnPO 4 is more preferred.
  • the lithium-containing olivine-type phosphate can be used, for example, in a mixture with the above-mentioned positive electrode active material.
  • the positive electrode active material for the lithium primary battery CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4 , CuS, CuSO 4 , TiO 2 , TiS 2 , SiO 2 , SnO, V 2 O 5 , V 6 O 12, VO x, Nb 2 O 5, Bi 2 O 3, Bi 2 Pb 2 O 5, Sb 2 O 3, CrO 3, Cr 2 O 3, MoO 3, WO 3, SeO 2, MnO 2, Mn 2 Oxides or chalcogen compounds of one or more metal elements selected from the group consisting of O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, etc.
  • sulfur compounds such as SOCl 2, the general formula (CF x) fluorocarbon (graphite fluoride) represented by n, and the like.
  • CF x fluorocarbon
  • MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
  • the conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change.
  • Examples include graphite such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used.
  • the amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, more preferably 2 to 5% by mass.
  • the positive electrode active material is a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), or a mixture of acrylonitrile and butadiene.
  • a positive electrode mixture is prepared by mixing with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer and the like, adding a high boiling solvent such as 1-methyl-2-pyrrolidone and kneading the mixture.
  • the positive electrode mixture is applied to an aluminum foil or a stainless steel lath plate of a current collector, dried and pressed, and then subjected to vacuum at about 50 ° C. to 250 ° C. for about 2 hours. Can be produced by heat treatment.
  • the density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the battery capacity, preferably 2 g / cm 3 or more, more preferably 3 g / cm 3 or more, more preferably Is 3.6 g / cm 3 or more.
  • the upper limit is preferably 4 g / cm 3 or less.
  • Examples of the negative electrode active material for a lithium secondary battery include lithium metal, a lithium alloy, and a carbon material capable of occluding and releasing lithium ions (e.g., graphitizable carbon and a (002) plane having a spacing of 0.37 nm ( Nanometer) or more, non-graphitizable carbon or graphite having a (002) plane spacing of 0.34 nm or less], tin (simple), tin compound, silicon (simple), silicon compound (SiOx: x ⁇ 2),
  • a silicon alloy Si-M alloy: M is at least one selected from the group consisting of Al, Ni, Cu, Fe, Ti and Mn
  • a metal compound, etc. alone or in combination of two or more Can be.
  • a plurality of flat graphitic fine particles are aggregated non-parallel to each other or artificial graphite particles having a massive structure combined with each other, for example, compressive force on flake-like natural graphite particles, mechanical force such as frictional force, shear force, etc.
  • the density of the part excluding the current collector of the negative electrode can be obtained from the X-ray diffraction measurement of the negative electrode sheet when the density is 1.5 g / cm 3 or more.
  • the ratio I (110) / I (004) of the peak intensity I (110) of the (110) plane and the peak intensity I (004) of the (004) plane of the graphite crystal becomes 0.01 or more, the more the positive electrode active material becomes, It is preferable because it improves the metal elution amount and the charge storage characteristics, and is more preferably 0.05 or more, and even more preferably 0.1 or more.
  • the upper limit of I (110) / I (004) is preferably 0.5 or less, more preferably 0.3 or less. preferable.
  • the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the core material, because the high-temperature charge storage characteristics are further improved.
  • the crystallinity of the carbon material of the coating can be confirmed by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Examples of the metal compound capable of inserting and extracting lithium ions as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Examples include compounds containing at least one metal element such as Cu, Zn, Ag, Mg, Sr, and Ba. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium. Is preferable because the capacity can be further increased. Among these, those containing at least one element selected from Si, Ge, and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be further increased.
  • a titanium composite metal oxide containing a titanium atom capable of occluding and releasing lithium ions as a negative electrode active material may be used. Since these titanium composite metal oxides have small expansion and contraction during charge and discharge and are flame-retardant, they are preferable from the viewpoint of enhancing battery safety.
  • the titanium composite metal oxide include at least one selected from a lithium titanium composite oxide and a niobium titanium composite oxide.
  • a lithium-titanium composite oxide a lithium-titanium composite oxide having a spinel-type crystal structure represented by a general formula Li 4 Ti 5-xM x O 12 is preferable.
  • M is an element substituted for a Ti site, and is at least one element selected from Mn, Fe, V, and Nb.
  • niobium titanium composite oxide examples include TiNb 2 O 7 , Ti 2 Nb 10 O 29 , TiNb 14 O 37 , and TiNb 24 O 62 , with TiNb 2 O 7 being preferred.
  • titanium composite metal oxides lithium titanate (Li 4 Ti 5 O 12 ) is preferable from the viewpoint of improving battery characteristics.
  • the negative electrode was kneaded using the same conductive agent, binder, and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and then applied this negative electrode mixture to a copper foil or the like of a current collector. After drying, pressing and molding, it can be produced by performing a heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
  • the density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and preferably 1.5 g / cm 3 or more, more preferably 1.7 g / cm 3 to further increase the battery capacity. cm 3 or more. Note that the upper limit is preferably 2 g / cm 3 or less.
  • spinel-type lithium manganate (LiMn 2 O 4 ) is used as the positive electrode active material and the negative electrode active material is used. It is preferable to use a titanium composite metal oxide, particularly Li 4 Ti 5 O 12 as the substance.
  • a lithium composite metal oxide containing manganese is preferable as the positive electrode active material.
  • a manganese lithium composite metal oxide having a spinel type structure is more preferable, and spinel type lithium manganate (LiMn 2 O 4 ) is further preferable.
  • a negative electrode active material a carbon material capable of inserting and extracting lithium, And at least one selected from titanium composite metal oxides.
  • a compound represented by the above general formula (VII) or (VII-1) is used as the zwitterion, a manganese lithium composite metal oxide having a spinel structure is preferable as the positive electrode active material.
  • Lithium oxide is more preferable, and as the negative electrode active material, a carbon material capable of inserting and extracting lithium is preferably used.
  • lithium metal or lithium alloy is given.
  • the structure of the lithium battery is not particularly limited, and a coin battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multiple-layer separator can be applied.
  • the battery separator is not particularly limited, and a single-layer or laminated microporous film, woven fabric, non-woven fabric, or the like of polyolefin such as polypropylene and polyethylene can be used.
  • the lithium secondary battery of the present invention has excellent high-temperature charge storage characteristics even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher, and has good characteristics even at 4.4 V or higher.
  • the discharge end voltage can be usually 2.8 V or more, and more preferably 2.5 V or more, but the lithium secondary battery of the present invention can be 2.0 V or more.
  • the current value is not particularly limited, but is usually used in the range of 0.1 to 30C.
  • the lithium battery of the present invention can be charged and discharged at -40 to 100 ° C, preferably at -10 to 80 ° C.
  • a method of providing a safety valve in the battery lid or making a cut in a member such as a battery can or a gasket can be adopted.
  • a current cutoff mechanism that detects the internal pressure of the battery and cuts off the current can be provided in the battery lid.
  • a second power storage device is a power storage device that includes the nonaqueous electrolytic solution of the present invention and stores energy by utilizing the electric double layer capacity of the electrolytic solution and the electrode interface.
  • One example of the present invention is an electric double layer capacitor.
  • the most typical electrode active material used for this electricity storage device is activated carbon.
  • the electric double layer capacity generally increases in proportion to the surface area.
  • a third power storage device is a power storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using a doping / dedoping reaction of an electrode.
  • the electrode active material used in the power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide, and copper oxide, and ⁇ -conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy due to the doping / dedoping reactions of the electrodes.
  • a fourth power storage device is a power storage device that includes the nonaqueous electrolyte solution of the present invention and stores energy by utilizing the intercalation of lithium ions into a carbon material such as graphite as a negative electrode. It is called a lithium ion capacitor (LIC).
  • the positive electrode include one using an electric double layer between an activated carbon electrode and an electrolyte, and one using a doping / dedoping reaction of a ⁇ -conjugated polymer electrode.
  • the electrolyte includes lithium salts such as at least LiPF 6.
  • Example 1 0.5% by mass of 2- (triethylammonio) ethyl sulfate (compound of the structural formula 4) was added as a zwitterion to a reference electrolyte solution, and the mixture was stirred for 12 hours or more. Filtration was performed using a 45 ⁇ m membrane filter to prepare a non-aqueous electrolyte.
  • Example 2 0.43% by mass of 2-dodecyldimethyl (carboxylatomethyl) ammonium was added as a zwitterion to the reference electrolyte, and the mixture was stirred for 12 hours or more, and then a 0.45 ⁇ m membrane filter was used. And filtered to prepare a non-aqueous electrolyte 1.
  • Tables 1 and 2 are values obtained by analyzing the prepared electrolyte solution using high performance liquid chromatography.
  • lithium titanate Li 4 Ti 5 O 12 : negative electrode active material
  • carbon-based conductive agent 2% by mass of a carbon-based conductive agent
  • polyvinylidene fluoride binder
  • the battery was discharged to a voltage of 2.7V.
  • a high-temperature preservation test is defined as a process from charging at a constant current of 0.2 C at 45 ° C. for one hour to standing at 60 ° C. and discharging at 45 ° C.
  • Tables 1 and 2 show the discharge capacity recovery rate, gas generation amount, and AC resistance value after high-temperature charge storage.
  • the discharge capacity recovery rate (%) was calculated by the following equation.
  • Discharge capacity recovery rate (%) (discharge capacity after high-temperature storage test / discharge capacity before high-temperature storage test) ⁇ 100
  • the discharge capacity in the above formula means that charge and discharge were performed at a constant current of 0.2 C and a constant voltage of 4.2 V and a discharge end voltage of 2.7 V in a constant temperature bath at 45 ° C. before and after a high-temperature storage test. It is the discharge capacity at the time.
  • the discharge capacity recovery rate (%) is an index indicating the degree of battery capacity reduction during high-temperature storage.
  • the gas generation amount is a relative value when the gas amount after the high-temperature storage test is measured by the Archimedes method and the gas amount generated in Comparative Example 1 is 100%.
  • the AC resistance value was obtained by measuring the resistance value of the real part of the AC impedance at 100 mHz in a constant temperature bath of 50% and 0 ° C. before and after the high-temperature storage test, and setting the value measured in Comparative Example 1 to 100%. It is a relative value.
  • Example 1 using the non-aqueous electrolyte of the present invention the decrease in battery capacity during high-temperature storage was smaller than that in Comparative Example 1, and as a result, the discharge capacity after high-temperature storage. It can be seen that the recovery rate is improved, and the amount of generated gas and AC resistance can be suppressed.
  • Example 2 using the non-aqueous electrolyte of the present invention, the decrease in battery capacity during high-temperature storage was smaller than in Comparative Examples 1 and 2, and as a result, high-temperature storage was achieved. It is understood that the discharge capacity recovery rate can be improved later.
  • Example 3 using the non-aqueous electrolyte of the present invention, the decrease in battery capacity during high-temperature storage was smaller than that in Comparative Example 3, and as a result, the discharge capacity after high-temperature storage. It can be seen that the recovery rate can be improved.
  • the power storage device using the non-aqueous electrolyte of the present invention can greatly improve high-temperature charge storage characteristics, and is useful as a power storage device such as a lithium secondary battery having excellent electrochemical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)

Abstract

The present invention provides: (1) a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent, wherein the nonaqueous electrolyte solution is characterized by containing a specific zwitterion; and (2) an electricity storage device comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent, wherein the electricity storage device is characterized in that the nonaqueous electrolyte solution contains a specific zwitterion. This electricity storage device is capable of greatly improving high-temperature charge preservation properties.

Description

非水電解液及びそれを用いた蓄電デバイスNon-aqueous electrolyte and power storage device using the same
 本発明は、電気化学特性、特に高温充電保存時における電池容量低下の抑制が可能な非水電解液及びそれを用いた蓄電デバイスに関する。 The present invention relates to a non-aqueous electrolyte capable of suppressing electrochemical characteristics, particularly a decrease in battery capacity during high-temperature charge storage, and a power storage device using the same.
 近年、蓄電デバイス、特にリチウム電池は、携帯電話やノート型パソコン等の小型電子機器の電源、電気自動車用や電力貯蔵用の電源として広く使用されている。なお、本明細書において、リチウム電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。 In recent years, power storage devices, especially lithium batteries, have been widely used as power sources for small electronic devices such as mobile phones and notebook computers, as power sources for electric vehicles and for power storage. In this specification, the term lithium battery is used as a concept including a so-called lithium ion secondary battery.
 リチウム電池は、主にリチウムイオンを吸蔵及び放出可能な材料を含む正極及び負極、リチウム塩、並びに非水溶媒からなる非水電解液から構成され、非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)等のカーボネート類が使用されている。
 リチウム電池の負極としては、リチウム金属、リチウムイオンを吸蔵及び放出可能な金属化合物(金属単体、金属酸化物、リチウムとの合金等)、炭素材料等が知られている。特に、炭素材料のうち、例えばコークス、黒鉛(人造黒鉛、天然黒鉛)等のリチウムイオンを吸蔵及び放出することが可能な炭素材料を用いたリチウム電池が広く実用化されている。
 コークスや黒鉛等の炭素材料はリチウム金属と同等の極めて卑な電位でリチウムイオンと電子を貯蔵及び放出するために、非水電解液中の多くの溶媒が還元分解を受ける可能性を有している。負極上で非水電解液中の溶媒が還元分解すると、負極表面への分解物の沈着や、ガス発生により、リチウムイオンのスムーズな移動が妨げられ、高温保存特性等の電池特性を低下させるという問題がある。
 一方、リチウム電池の正極としては、リチウムイオンを吸蔵及び放出可能な、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。ここで、正極活物質中の重金属は、高温充電保存時に非水電解液中に溶出する場合がある。溶出した金属が負極上に再析出すると、電池容量の低下や、非水電解液の分解による発生ガス量の増大及び電気抵抗の増大等の問題が生じる。
A lithium battery is mainly composed of a positive electrode and a negative electrode containing a material capable of occluding and releasing lithium ions, a lithium salt, and a non-aqueous electrolytic solution composed of a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), Carbonates such as propylene carbonate (PC) are used.
As a negative electrode of a lithium battery, a lithium metal, a metal compound capable of occluding and releasing lithium ions (a simple metal, a metal oxide, an alloy with lithium, and the like), a carbon material, and the like are known. In particular, among carbon materials, lithium batteries using carbon materials capable of occluding and releasing lithium ions such as coke and graphite (artificial graphite and natural graphite) have been widely put into practical use.
Since carbon materials such as coke and graphite store and release lithium ions and electrons at a very low potential equivalent to lithium metal, many solvents in non-aqueous electrolytes have the potential to undergo reductive decomposition. I have. When the solvent in the non-aqueous electrolyte is reductively decomposed on the negative electrode, deposition of decomposed products on the negative electrode surface and gas generation hinder smooth movement of lithium ions, lowering battery characteristics such as high-temperature storage characteristics. There's a problem.
On the other hand, as the positive electrode of the lithium battery, a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel, which can occlude and release lithium ions, is used. . Here, heavy metals in the positive electrode active material may be eluted into the non-aqueous electrolyte during high temperature charge storage. When the eluted metal is reprecipitated on the negative electrode, problems such as a decrease in battery capacity, an increase in the amount of gas generated due to decomposition of the non-aqueous electrolyte, and an increase in electric resistance occur.
 特許文献1には、有機溶媒、リチウム塩、及び分子内に陽イオンと陰イオンとを有する分子内塩を含有する非水電解液が提案されており、負極にリチウムの溶解析出反応を利用する活物質を用いた場合のリチウム電池において、30サイクル試験で充放電サイクル特性を向上させることが開示されている。しかしながら、特許文献1の非水電解液を適用したリチウム電池では、低温サイクル試験における充放電サイクル特性を向上させることについての記載はあるが、高温での電池保存特性の改善効果については記載されていない。加えて、特許文献1に記載の、分子内に陽イオンと陰イオンとを有する分子内塩の中にはリチウム塩が溶解した有機溶媒中に少量しか溶解せず、効果を発揮できないものが含まれている。
 特許文献2には、有機溶媒、リチウム塩、及びアニオン性のSO又はSOと、カチオン性のトリアジンを同一分子内に含む分子内塩を含有する非水電解液が提案されており、リチウム二次電池の高温保存特性と、過充電時の安定性が向上することが開示されている。
 特許文献3には、エチレンカーボネート等の有機溶媒、リチウム塩、及び窒素原子又はリン原子を含む双性イオン化合物を含有する非水電解液が提案されており、電気化学的安定性に優れることが開示されている。
Patent Literature 1 proposes a non-aqueous electrolyte containing an organic solvent, a lithium salt, and an internal salt having a cation and an anion in the molecule, and utilizes a dissolution and deposition reaction of lithium for the negative electrode. It is disclosed that in a lithium battery using an active material, charge / discharge cycle characteristics are improved in a 30-cycle test. However, in the lithium battery to which the non-aqueous electrolyte solution of Patent Document 1 is applied, although there is a description about improving charge / discharge cycle characteristics in a low-temperature cycle test, the effect of improving battery storage characteristics at high temperatures is described. Absent. In addition, among the intramolecular salts having a cation and an anion in the molecule described in Patent Document 1, there are those which are insoluble only in a small amount in an organic solvent in which a lithium salt is dissolved and cannot exert an effect. Have been.
Patent Document 2 proposes a non-aqueous electrolyte containing an organic solvent, a lithium salt, and an internal salt containing anionic SO 3 or SO 4 and a cationic triazine in the same molecule. It is disclosed that the high-temperature storage characteristics of the secondary battery and the stability during overcharge are improved.
Patent Literature 3 proposes a non-aqueous electrolyte containing an organic solvent such as ethylene carbonate, a lithium salt, and a zwitterionic compound containing a nitrogen atom or a phosphorus atom, and has excellent electrochemical stability. It has been disclosed.
特開2003-346897号JP-A-2003-346897 米国特許出願公開第2017/0125847号US Patent Application Publication No. 2017/0125847 国際公開第2016/027788号International Publication No. WO 2016/027788
 本発明は、蓄電デバイスの高温充電保存特性を大幅に向上させることが可能な非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。
 本発明は、さらに、蓄電デバイスの高温充電保存特性を向上させることができ、加えて保存時の発生ガスを大幅に抑制することが可能な非水電解液、及びそれを用いた蓄電デバイスを提供することを目的とする。
An object of the present invention is to provide a non-aqueous electrolyte capable of significantly improving the high-temperature charge storage characteristics of an electricity storage device, and an electricity storage device using the same.
The present invention further provides a non-aqueous electrolyte capable of improving the high-temperature charge storage characteristics of the power storage device and, in addition, significantly suppressing generated gas during storage, and a power storage device using the same. The purpose is to do.
 本発明者らは、前記課題を解決するために研究を重ね、双性イオンを含む非水電解液が高温充電保存時の電池容量の低下を抑制する効果、及び発生ガスを抑制する効果を有することを見出し、更に鋭意研究を重ねた結果、双性イオンが有機溶媒に対しての溶解性を改善し、電池特性を更に向上させることを見出し、本発明を完成した。
 さらに、双性イオンのカチオン性基がヘテロシクロアルケニル基を有しないリン原子又は窒素原子を含み、アニオン性基が-SO であるものが、特に電池性能を向上させることを見出し、本発明を完成した。
 すなわち、本発明は、下記(1)及び(2)を提供する。
The present inventors have repeated studies to solve the above-mentioned problems, and a non-aqueous electrolyte containing zwitterions has an effect of suppressing a decrease in battery capacity during high-temperature charge storage and an effect of suppressing generated gas. As a result of further intensive studies, they have found that zwitterions improve solubility in organic solvents and further improve battery characteristics, and have completed the present invention.
Furthermore, it has been found that a zwitterion in which the cationic group contains a phosphorus atom or a nitrogen atom having no heterocycloalkenyl group and the anionic group is —SO 4 particularly improves battery performance. Was completed.
That is, the present invention provides the following (1) and (2).
 (1)非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される双性イオンを含有することを特徴とする非水電解液。 (1) A non-aqueous electrolyte solution in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte solution contains a zwitterion represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(I)中、Qは、下記式(II)又は(III)で示されるカチオン性基である。
 Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
 Aで示されるアニオン性基は、スルホネート基又はカルボキシラト基である。)
(In the formula (I), Q + is a cationic group represented by the following formula (II) or (III).
L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group.
A - anionic group represented by is a sulfonate or carboxylato group. )
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(II)中、R~Rは、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。
 式(III)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
 *は、Lとの結合部位を示す。)
(In the formula (II), R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, It represents a fluorinated alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms.
In the formula (III), R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
* Indicates a binding site with L 1. )
(2)正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記(1)に記載の非水電解液であることを特徴とする蓄電デバイス。 (2) A power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to (1). An electricity storage device characterized by the above-mentioned.
 なお、本明細書において、「双性イオン」という用語は、一分子内に正電荷(カチオン性基)と負電荷(アニオン性基)とを有する分子内塩(inner salt)を意味する。 In the present specification, the term “zwitterion” means an inner salt having a positive charge (cationic group) and a negative charge (anionic group) in one molecule.
 本発明によれば、蓄電デバイスの高温充電保存時における電池容量低下を大幅に抑制できる非水電解液及び、それを用いたリチウム電池等の蓄電デバイスを提供することができる。
 また、本発明によれば、蓄電デバイスの高温充電保存時における電池容量低下と、高温充電保存時に発生するガスを抑制できる非水電解液及び、それを用いたリチウム電池等の蓄電デバイスを提供することができる。
Advantageous Effects of Invention According to the present invention, it is possible to provide a non-aqueous electrolyte that can significantly suppress a decrease in battery capacity during high-temperature charge storage of an electricity storage device, and an electricity storage device such as a lithium battery using the same.
Further, according to the present invention, there is provided a non-aqueous electrolyte capable of suppressing a decrease in battery capacity during high-temperature charge storage of a power storage device and a gas generated during high-temperature charge storage, and a power storage device such as a lithium battery using the same. be able to.
<非水電解液>
 本発明の非水電解液は、非水溶媒に電解質塩が溶解されている非水電解液において、前記一般式(I)で表される双性イオンのうち少なくとも一種以上を非水電解液中に含有することを特徴とする。
<Non-aqueous electrolyte>
The non-aqueous electrolyte of the present invention is a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein at least one zwitterion represented by the general formula (I) is contained in the non-aqueous electrolyte. It is characterized by containing.
 本発明の非水電解液が、蓄電デバイスの高温充電保存特性を向上させる理由は必ずしも明確ではないが、以下のように考えられる。
 高温で蓄電デバイスを保存した場合の電池容量低下の要因のひとつとして、正極活物質からコバルト、ニッケル、マンガン等を代表とする金属が溶出し、負極上で還元され、不安定なSEI(Solid Electrolyte Interphase)被膜を形成することが挙げられる。本発明の一般式(I)の双性イオンは、溶出した金属に特異的に配位する。双性イオンが配位した金属は、負極上で還元された場合でも安定なSEI被膜を形成し、電池特性を改善させると考えられる。加えて、前記一般式(I)中のカチオン性基はトリアジンのようなヘテロシクロアルケニル基と比較して化学的に安定であるため、双性イオンの効果を向上させ、かつアニオン性基である-SO 基は効果的な電極の抵抗低減作用を示す。従って、前記一般式(I)のアニオン性基とカチオン性基との組合せの双性イオンが特に電池特性の改善を促すと考えられる。
The reason why the non-aqueous electrolyte of the present invention improves the high-temperature charge storage characteristics of the power storage device is not necessarily clear, but is considered as follows.
One of the causes of a decrease in battery capacity when an electricity storage device is stored at high temperatures is that metals such as cobalt, nickel, and manganese elute from the positive electrode active material, are reduced on the negative electrode, and are unstable on the SEI (Solid Electrolyte). Interphase) forming a coating. The zwitterion of the general formula (I) of the present invention specifically coordinates to the eluted metal. It is considered that a metal to which a zwitterion is coordinated forms a stable SEI film even when reduced on the negative electrode, and improves battery characteristics. In addition, since the cationic group in the general formula (I) is chemically more stable than a heterocycloalkenyl group such as triazine, the effect of a zwitterion is improved, and the cationic group is an anionic group. The —SO 4 group exhibits an effective electrode resistance reducing action. Therefore, it is considered that the zwitterion in the combination of the anionic group and the cationic group of the formula (I) promotes the improvement of the battery characteristics.
〔双性イオン〕
 本発明に係る双性イオンは、下記一般式(I)で表される。
(Zwitterion)
The zwitterion according to the present invention is represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(I)中、Qは、下記式(II)又は(III)で示されるカチオン性基である。
 Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。これらの中では、Lは、炭素数1~3のアルキレン基、炭素数2~3のアルケニレン基、又は炭素数1~4のアルキレンオキシ基が好ましい。
 Aで表されるアニオン性基は、スルホネート基(-SO 基)又はカルボキシラト基(-COO基)である。
In the formula (I), Q + is a cationic group represented by the following formula (II) or (III).
L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group. Among them, L 1 is preferably an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or an alkyleneoxy group having 1 to 4 carbon atoms.
A - anionic group represented by the sulfonate group is - - (group -COO) (-SO 3 group) or a carboxylato group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(II)中、R~Rは、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。これらの中では、R~Rは、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、又は炭素数3~15のアルキニル基が好ましい。
 式(III)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。これらの中では、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数2~15のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が好ましい。
 *は、Lとの結合部位を示す。すなわち、Lは、Qの窒素原子又はリン原子と結合している。
In the formula (II), R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, And represents a fluorinated alkenyl group having 3 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms. Among these, R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or Up to 15 alkynyl groups are preferred.
In the formula (III), R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group. Among them, R 4 to R 6 are each independently preferably an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, a dimethylamino group, or a diethylamino group.
* Indicates a binding site with L 1. That is, L 1 is bonded to a nitrogen atom or a phosphorus atom of Q + .
 本発明において、双性イオンは、下記一般式(IV)で表される化合物、及び下記一般式(VII)で表される化合物から選ばれる一種以上であることが好ましい。 In the present invention, the zwitterion is preferably at least one selected from a compound represented by the following general formula (IV) and a compound represented by the following general formula (VII).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(IV)中、Qは、下記式(V)又は(VI)で示されるカチオン性基である。
 Lは、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
In the formula (IV), Q + is a cationic group represented by the following formula (V) or (VI).
L 2 represents a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or an alkyleneoxy group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(V)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
 式(VI)中、R10~R12は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
 *は、Lとの結合部位を示す。すなわち、Lは、Qの窒素原子又はリン原子と結合している。
In the formula (V), R 7 to R 9 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, A fluorinated alkynyl group having 3 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms.
In the formula (VI), R 10 to R 12 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
* Indicates a binding site of the L 2. That is, L 2 is bonded to a nitrogen atom or a phosphorus atom of Q + .
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(VII)中、Lは炭素数1~5のアルキレン基を示すが、炭素数1~3のアルキレン基が好ましく、炭素数1~2のアルキレン基がより好ましく、メチレン基が更に好ましい。
 R13~R15は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。これらの中では、R13~R15は、それぞれ独立して、炭素数1~15のアルキル基、又は炭素数2~15のアルケニル基が好ましい。
 但し、R13~R15の少なくとも1つは炭素数3~15のアルキル基である。
In the formula (VII), L 3 represents an alkylene group having 1 to 5 carbon atoms, preferably an alkylene group having 1 to 3 carbon atoms, more preferably an alkylene group having 1 to 2 carbon atoms, and still more preferably a methylene group.
R 13 to R 15 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or a fluorinated alkenyl having 2 to 15 carbon atoms A alkynyl group having 3 to 15 carbon atoms or a fluorinated alkynyl group having 3 to 15 carbon atoms. Among them, R 13 to R 15 are preferably each independently an alkyl group having 1 to 15 carbon atoms or an alkenyl group having 2 to 15 carbon atoms.
However, at least one of R 13 to R 15 is an alkyl group having 3 to 15 carbon atoms.
<一般式(IV)で表される双性イオン>
 前記一般式(IV)で表される双性イオンは、下記一般式(VIII)で表される化合物であることがより好ましい。
<Zwitterion represented by general formula (IV)>
The zwitterion represented by the general formula (IV) is more preferably a compound represented by the following general formula (VIII).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(VIII)中、Qは、下記式(IX)又は(X)で示されるカチオン性基である。
 Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、又は炭素数2~5のフッ素化アルケニレン基を示す。これらの中では、Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、又は炭素数2~5のアルケニレン基が好ましく、炭素数1~3のアルキレン基、又は炭素数2~3のアルケニレン基がより好ましく、炭素数2~3のアルキレン基が更に好ましい。
In the formula (VIII), Q + is a cationic group represented by the following formula (IX) or (X).
L 4 represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, or a fluorinated alkenylene group having 2 to 5 carbon atoms. Among them, L 4 is preferably an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, or an alkenylene group having 2 to 5 carbon atoms, and an alkylene group having 1 to 3 carbon atoms, Alternatively, an alkenylene group having 2 to 3 carbon atoms is more preferable, and an alkylene group having 2 to 3 carbon atoms is further preferable.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(IX)中、R16~R18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。これらの中では、R16~R18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のフッ素化アルケニル基が好ましく、炭素数1~5のアルキル基、炭素数2~5のアルケニル基がより好ましく、炭素数1~3のアルキル基、又は炭素数2~3のアルケニル基が更に好ましい。 In the formula (IX), R 16 to R 18 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, A fluorinated alkynyl group having 3 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms. Among them, R 16 to R 18 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or A fluorinated alkenyl group having 5 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms and an alkenyl group having 2 to 5 carbon atoms are more preferable, and an alkyl group having 1 to 3 carbon atoms and an alkenyl group having 2 to 3 carbon atoms are preferable. More preferred.
 式(X)中、R19~R21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。これらの中では、R19~R21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が好ましく、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基がより好ましく、炭素数1~3のアルキル基、炭素数2~3のアルケニル基、ジメチルアミノ基、又はジエチルアミノ基が更に好ましく、炭素数1~3のアルキル基が最も好ましい。
 *は、Lとの結合部位を示す。すなわち、Lは、Qの窒素原子又はリン原子と結合している。
In the formula (X), R 19 to R 21 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group. Among them, R 19 to R 21 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, An alkenyl group, dimethylamino group or diethylamino group having 5 carbon atoms is preferable, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, dimethylamino group or diethylamino group is more preferable. An alkyl group, an alkenyl group having 2 to 3 carbon atoms, a dimethylamino group, or a diethylamino group is more preferred, and an alkyl group having 1 to 3 carbon atoms is most preferred.
* Indicates a binding site of the L 4. That is, L 4 is bonded to a nitrogen atom or a phosphorus atom of Q + .
 本発明において、前記一般式(IV)又は(VIII)で表される双性イオンは、下記一般式(XI)で表される化合物、及び下記一般式(XII)で表される化合物から選ばれる一種以上であることが更に好ましい。 In the present invention, the zwitterion represented by the general formula (IV) or (VIII) is selected from a compound represented by the following general formula (XI) and a compound represented by the following general formula (XII) More preferably, it is at least one.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(XI)中のL及び式(XII)中のLは、炭素数2又は3のアルキレン基を示す。
 式(XI)中、R16~R18は、それぞれ独立して、炭素数1~3のアルキル基を示す。
 式(XII)中、R19~R21は、それぞれ独立して、炭素数1~3のアルキル基又はジメチルアミノ基を示す。)
L 5 in the formula (XI) and L 6 in the formula (XII) represent an alkylene group having 2 or 3 carbon atoms.
In the formula (XI), R 16 to R 18 each independently represent an alkyl group having 1 to 3 carbon atoms.
In the formula (XII), R 19 to R 21 each independently represent an alkyl group having 1 to 3 carbon atoms or a dimethylamino group. )
 一般式(IV)、(VIII)、(XI)又は(XII)で表される双性イオンとしては、具体的に以下の化合物が好適に挙げられる。 双 Specific examples of the zwitterion represented by the general formula (IV), (VIII), (XI) or (XII) include the following compounds.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記化合物の中でも、好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)、3-(トリメチルアンモニオ)プロピルサルフェート(構造式7)、3-(トリエチルアンモニオ)プロピルサルフェート(構造式10)、3-(トリプロピルアンモニオ)プロピルサルフェート(構造式11)、2-(トリブチルホスホニオ)エチルサルフェート(構造式15)、2-(トリスジメチルアミノホスホニオ)エチルサルフェート(構造式17)、及び3-(トリブチルホスホニオ)プロピルサルフェート(構造式20)からなる群より選ばれる一種以上である。 Among the above compounds, 2- (trimethylammonio) ethyl sulfate (structural formula 1), 2- (triethylammonio) ethyl sulfate (structural formula 4), and 2- (tripropylammonio) ethyl sulfate (structural formula) 5), 3- (trimethylammonio) propyl sulfate (structural formula 7), 3- (triethylammonio) propyl sulfate (structural formula 10), 3- (tripropylammonio) propyl sulfate (structural formula 11), 2 From the group consisting of-(tributylphosphonio) ethyl sulfate (structural formula 15), 2- (trisdimethylaminophosphonio) ethyl sulfate (structural formula 17), and 3- (tributylphosphonio) propyl sulfate (structural formula 20) More than one kind to be chosen.
 上記化合物の中でも、より好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)、2-(トリブチルホスホニオ)エチルサルフェート(構造式15)、及び2-(トリスジメチルアミノホスホニオ)エチルサルフェート(構造式17)からなる群より選ばれる一種以上であり、更に好ましくは2-(トリメチルアンモニオ)エチルサルフェート(構造式1)、2-(トリエチルアンモニオ)エチルサルフェート(構造式4)、及び2-(トリプロピルアンモニオ)エチルサルフェート(構造式5)からなる群より選ばれる一種以上である。 Among the above compounds, more preferably, 2- (trimethylammonio) ethyl sulfate (structural formula 1), 2- (triethylammonio) ethyl sulfate (structural formula 4), 2- (tripropylammonio) ethyl sulfate (structure At least one selected from the group consisting of formula 5), 2- (tributylphosphonio) ethyl sulfate (structural formula 15), and 2- (trisdimethylaminophosphonio) ethyl sulfate (structural formula 17), and more preferably From the group consisting of 2- (trimethylammonio) ethyl sulfate (structural formula 1), 2- (triethylammonio) ethyl sulfate (structural formula 4), and 2- (tripropylammonio) ethyl sulfate (structural formula 5) More than one kind to be chosen.
<一般式(VII)で表される双性イオン>
 前記一般式(VII)で表される双性イオンは、下記一般式(VII-I)で表される化合物であることがより好ましい。
<Zwitterion represented by general formula (VII)>
The zwitterion represented by the general formula (VII) is more preferably a compound represented by the following general formula (VII-I).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(VII-1)中、Lはメチレン基であり、R13~R15が、それぞれ独立して炭素数1~15のアルキル基であり、R13~R15の少なくとも1つが炭素数3~15のアルキル基である。 In the formula (VII-1), L 3 is a methylene group, R 13 to R 15 are each independently an alkyl group having 1 to 15 carbon atoms, and at least one of R 13 to R 15 has 3 carbon atoms. ~ 15 alkyl groups.
 一般式(VII)又は(VII-1)で表される双性イオンとしては、具体的に以下の化合物が好適に挙げられる。 双 Specific examples of the zwitterion represented by formula (VII) or (VII-1) include the following compounds.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記化合物の中でも、好ましくは2-ブチルジメチル(カルボキシラトメチル)アンモニウム(構造式1)、2-ブチルジメチル(カルボキシラトエチル)アンモニウム(構造式2)、2-ブチルジメチル(カルボキシラトプロピル)アンモニウム(構造式3)、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム(構造式7)、2-ヘキシルジメチル(カルボキシラトエチル)アンモニウム(構造式8)、2-ヘキシルジメチル(カルボキシラトプロピル)アンモニウム(構造式9)、2-オクチルジメチル(カルボキシラトメチル)アンモニウム(構造式10)、2-オクチルジメチル(カルボキシラトエチル)アンモニウム(構造式11)、2-オクチルジメチル(カルボキシラトプロピル)アンモニウム(構造式12)、2-デシルジメチル(カルボキシラトメチル)アンモニウム(構造式13)、2-デシルジメチル(カルボキシラトエチル)アンモニウム(構造式14)、2-デシルジメチル(カルボキシラトプロピル)アンモニウム(構造式15)、2-ドデシルジメチル(カルボキシラトメチル)アンモニウム(構造式16)、2-ドデシルジメチル(カルボキシラトエチル)アンモニウム(構造式17)及び2-ドデシルジメチル(カルボキシラトプロピル)アンモニウム(構造式18)からなる群より選ばれる一種以上である。 Among the above compounds, preferably, 2-butyldimethyl (carboxylatomethyl) ammonium (structural formula 1), 2-butyldimethyl (carboxylatoethyl) ammonium (structural formula 2), 2-butyldimethyl (carboxylatopropyl) ammonium ( Structural formula 3) 2-hexyldimethyl (carboxylatomethyl) ammonium (structural formula 7), 2-hexyldimethyl (carboxylatoethyl) ammonium (structural formula 8), 2-hexyldimethyl (carboxylatopropyl) ammonium (structural formula 9) 2-octyldimethyl (carboxylatomethyl) ammonium (structural formula 10), 2-octyldimethyl (carboxylatoethyl) ammonium (structural formula 11), 2-octyldimethyl (carboxylatopropyl) ammonium (structural formula 12) , 2-decyldi Methyl (carboxylatomethyl) ammonium (structural formula 13), 2-decyldimethyl (carboxylatoethyl) ammonium (structural formula 14), 2-decyldimethyl (carboxylatopropyl) ammonium (structural formula 15), 2-dodecyldimethyl ( At least one selected from the group consisting of carboxylatomethyl) ammonium (structure 16), 2-dodecyldimethyl (carboxylatoethyl) ammonium (structure 17) and 2-dodecyldimethyl (carboxylatopropyl) ammonium (structure 18) It is.
 上記化合物の中でも、より好ましくは2-ブチルジメチル(カルボキシラトメチル)アンモニウム(構造式1)、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム(構造式7)、2-オクチルジメチル(カルボキシラトメチル)アンモニウム(構造式10)、2-デシルジメチル(カルボキシラトメチル)アンモニウム(構造式13)及び2-ドデシルジメチル(カルボキシラトメチル)アンモニウム(構造式16)からなる群より選ばれる一種以上である。 Among the above compounds, more preferably, 2-butyldimethyl (carboxylatomethyl) ammonium (structural formula 1), 2-hexyldimethyl (carboxylatomethyl) ammonium (structural formula 7), 2-octyldimethyl (carboxylatomethyl) ammonium (Structural formula 10) It is at least one member selected from the group consisting of 2-decyldimethyl (carboxylatomethyl) ammonium (structural formula 13) and 2-dodecyldimethyl (carboxylatomethyl) ammonium (structural formula 16).
 また、双性イオンとしてトリエチル(スルホプロピル)アンモニウムや(トリブチルホスホニオ)プロピルスルホネート等を用いることもできるが、この場合は、正極活物質としてマンガンを含有するリチウム複合金属酸化物を使用し、負極活物質として、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましく、正極活物質として、マンガンを含有するスピネル型のリチウム複合金属酸化物、特にスピネル型マンガン酸リチウム(LiMn)を使用し、負極活物質として、チタン複合金属酸化物、特にLiTi12を使用することがより好ましい。 Further, triethyl (sulfopropyl) ammonium and (tributylphosphonio) propylsulfonate can be used as the zwitterion. In this case, a lithium composite metal oxide containing manganese is used as the positive electrode active material, As the active material, it is preferable to use at least one selected from a carbon material capable of inserting and extracting lithium and a titanium composite metal oxide, and a manganese-containing spinel-type lithium composite containing manganese as the positive electrode active material. It is more preferable to use a metal oxide, particularly spinel-type lithium manganate (LiMn 2 O 4 ), and to use a titanium composite metal oxide, particularly Li 4 Ti 5 O 12 as a negative electrode active material.
 一方、前記一般式(IV)、(VIII)、(XI)又は(XII)で表される化合物を用いる場合は、後述するように、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウムが更に好ましい。また、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましい。
 また、前記一般式(VII)又は(VII-1)で表される化合物を用いる場合は、後述するように、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウムが更に好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料を使用することが好ましい。
On the other hand, when the compound represented by the general formula (IV), (VIII), (XI) or (XII) is used, as described later, the lithium composite metal oxide containing manganese is used as the positive electrode active material. Is preferable, a manganese lithium composite metal oxide having a spinel structure is more preferable, and a spinel lithium manganate is further preferable. Further, as the negative electrode active material, it is preferable to use at least one selected from a carbon material capable of inserting and extracting lithium and a titanium composite metal oxide.
In addition, when the compound represented by the general formula (VII) or (VII-1) is used, as described later, a lithium composite metal oxide containing manganese is preferable as the positive electrode active material, and a spinel type structure is used. Is more preferable, and spinel-type lithium manganate is more preferable. As the negative electrode active material, it is preferable to use a carbon material capable of inserting and extracting lithium.
 本発明の非水電解液において、前記一般式(I)、(IV)、(VII)、(VII-1)、(VIII)、(XI)又は(XII)で表される化合物のそれぞれの含有量は、効果を十分に発揮させるため非水電解液中に0.01質量%以上飽和量以下が好ましい。また、工業的な製造を考慮するとその下限は、0.03質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましい。また、その上限は、10質量%以下が好ましく、8質量%以下がより好ましく、5質量%以下が更に好ましく、2質量%以下が最も好ましい。
 また、前記各一般式で表される化合物の合計含有量は、好ましくは0.01質量%以上10質量%以下、より好ましくは0.03質量%以上8質量%以下、更に好ましくは0.05質量%以上5質量%以下、最も好ましくは0.1質量%以上2質量%以下である。
In the non-aqueous electrolyte of the present invention, each of the compounds represented by the general formulas (I), (IV), (VII), (VII-1), (VIII), (XI) or (XII) is contained. The amount is preferably 0.01% by mass or more and a saturated amount or less in the non-aqueous electrolyte in order to sufficiently exert the effect. In consideration of industrial production, the lower limit is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more. Further, the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, still more preferably 5% by mass or less, and most preferably 2% by mass or less.
Further, the total content of the compounds represented by the above general formulas is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.03% by mass or more and 8% by mass or less, and further preferably 0.05% by mass or less. It is from 5% by mass to 5% by mass, most preferably from 0.1% by mass to 2% by mass.
 本発明の非水電解液において、前記一般式(I)で表される化合物を以下に述べる非水溶媒、電解質塩、更にその他の添加剤を組み合わせることにより、高温充電保存時における電池容量の低下、及び高温充電保存時のガス発生を抑制できる効果が相乗的に向上するという特異な効果を発現する。 In the non-aqueous electrolyte solution of the present invention, the compound represented by the general formula (I) is combined with a non-aqueous solvent, an electrolyte salt and other additives described below to reduce the battery capacity during high-temperature charge storage. And a unique effect that the effect of suppressing gas generation during high-temperature charge storage is synergistically improved.
〔非水溶媒〕
 まず本明細書において、「溶媒」とは溶質を溶解するための物質を意味する。
 本発明の非水電解液に使用される非水溶媒としては、環状カーボネート、鎖状エステル、ラクトン、エーテル、及びアミドから選ばれる1種又は2種以上が好適に挙げられる。高温での電気化学特性が相乗的に向上するため、鎖状エステルが含まれることが好ましく、鎖状カーボネートが含まれることがより好ましく、環状カーボネートと鎖状エステルの両方が含まれることが更に好ましい。
(Non-aqueous solvent)
First, in this specification, the term "solvent" means a substance for dissolving a solute.
As the non-aqueous solvent used in the non-aqueous electrolyte of the present invention, one or more selected from cyclic carbonates, chain esters, lactones, ethers, and amides are preferred. Since the electrochemical properties at high temperatures are synergistically improved, a chain ester is preferably contained, a chain carbonate is more preferably contained, and both a cyclic carbonate and a chain ester are more preferably contained. .
 なお、「鎖状エステル」なる用語は、鎖状カーボネート及び鎖状カルボン酸エステルを含む概念として用いる。
 更に、「鎖状カーボネート」とは炭酸直鎖アルキル化合物であるものと定義する。
In addition, the term "chain ester" is used as a concept including a chain carbonate and a chain carboxylic acid ester.
Further, "chain carbonate" is defined as a linear alkyl carbonate compound.
(環状カーボネート)
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス又はシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(以下、両者を総称して「DFEC」という)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上が好適に挙げられ、エチレンカーボネート、プロピレンカーボネート、4-フルオロ-1,3-ジオキソラン-2-オン、ビニレンカーボネート、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)からなる群より選ばれる1種又は2種以上がより好適である。
(Cyclic carbonate)
As the cyclic carbonate, ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 4-fluoro-1,3-dioxolan-2-one (FEC), trans or Cis-4,5-difluoro-1,3-dioxolan-2-one (both are collectively referred to as “DFEC”), vinylene carbonate (VC), vinylethylene carbonate (VEC), and 4-ethynyl-1 , 3-dioxolan-2-one (EEC), preferably one or more selected from the group consisting of ethylene carbonate, propylene carbonate, 4-fluoro-1,3-dioxolan-2-one, vinylene Carbonate and 4-ethynyl-1,3-dioxolan-2-one (EE ) One or more members selected from the group consisting of is more preferable.
 前記環状カーボネートの含有量は、非水電解液全量に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、また、その上限は、好ましくは90質量%以下、より好ましくは70質量%以下、更に好ましくは50質量%以下、更に好ましくは40質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。 The content of the cyclic carbonate is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more with respect to the total amount of the nonaqueous electrolyte, and the upper limit thereof is preferably 90 mass% or less, more preferably 70 mass% or less, still more preferably 50 mass% or less, and still more preferably 40 mass% or less. When it is in the range, the high-temperature charge storage characteristics can be further improved without impairing the Li ion permeability. Is improved, and gas generation can be suppressed.
 また、炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合又はフッ素原子を有する環状カーボネートのうち少なくとも1種を使用すると高温充電保存特性をより向上させることができ、ガス発生をより抑制できるので好ましく、炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を含む環状カーボネートとフッ素原子を有する環状カーボネートを両方含むことがより好ましい。炭素-炭素二重結合又は炭素-炭素三重結合等の不飽和結合を有する環状カーボネートとしては、VC、VEC、又はEECが更に好ましく、フッ素原子を有する環状カーボネートとしては、FEC又はDFECが更に好ましい。 When at least one of a carbon-carbon double bond or a carbon-carbon triple bond unsaturated bond or a cyclic carbonate having a fluorine atom is used, high-temperature charge storage characteristics can be further improved, and gas generation can be further suppressed. It is more preferable to include both a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond and a cyclic carbonate having a fluorine atom. As a cyclic carbonate having an unsaturated bond such as a carbon-carbon double bond or a carbon-carbon triple bond, VC, VEC or EEC is more preferable, and as a cyclic carbonate having a fluorine atom, FEC or DFEC is more preferable.
 炭素-炭素二重結合又は炭素-炭素三重結合の不飽和結合を有する環状カーボネートの含有量は、非水電解液全量に対して、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、また、その上限は、好ましくは8質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。 The content of the cyclic carbonate having a carbon-carbon double bond or a carbon-carbon triple bond is preferably 0.05% by mass or more, more preferably 0.1% by mass, based on the total amount of the nonaqueous electrolyte. % Or more, more preferably 0.5% by mass or more, and the upper limit thereof is preferably 8% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. This is preferable because the high-temperature charge storage characteristics can be further improved without impairing the Li ion permeability, and gas generation can be suppressed.
 フッ素原子を有する環状カーボネートの含有量は、非水電解液全量に対して好ましくは0.05質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上であり、また、その上限は、好ましくは40質量%以下、より好ましくは30質量%以下、更に20質量%以下であり、更に好ましくは15質量%以下であり、その範囲であると、Liイオン透過性を損なうことなく一段と高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。 The content of the cyclic carbonate having a fluorine atom is preferably 0.05% by mass or more, more preferably 1% by mass or more, and still more preferably 3% by mass or more based on the total amount of the nonaqueous electrolyte. Is preferably 40% by mass or less, more preferably 30% by mass or less, further preferably 20% by mass or less, and still more preferably 15% by mass or less. Within this range, the Li ion permeability is further reduced without impairing it. This is preferable because the high-temperature charge storage characteristics can be improved and gas generation can be suppressed.
 これらの溶媒は1種類で使用してもよく、また2種類以上を組み合わせて使用した場合は、高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましく、3種類以上を組み合わせて使用することが更に好ましい。これらの環状カーボネートの好適な組合せとしては、ECとPCの組合せ、ECとVCの組合せ、PCとVCの組合せ、VCとFECの組合せ、ECとFECの組合せ、PCとFECの組合せ、FECとDFECの組合せ、ECとDFECの組合せ、PCとDFECの組合せ、VCとDFECの組合せ、VECとDFECの組合せ、VCとEECの組合せ、ECとEECの組合せ、ECとPCとVCの組合せ、ECとPCとFECの組合せ、ECとVCとFECの組合せ、ECとVCとVECの組合せ、ECとVCとEECの組合せ、ECとEECとFECの組合せ、PCとVCとFECの組合せ、ECとVCとDFECの組合せ、PCとVCとDFECの組合せ、ECとPCとVCとFECの組合せ、及びECとPCとVCとDFECの組合せが好ましい。前記の組合せのうち、ECとVCの組合せ、ECとFECの組合せ、PCとFECの組合せ、ECとPCとVCの組合せ、ECとPCとFECの組合せ、ECとVCとFECの組合せ、ECとVCとEECの組合せ、ECとEECとFECの組合せ、PCとVCとFECの組合せ、及びECとPCとVCとFECの組合せからなる群より選ばれる1種以上がより好ましい。 One of these solvents may be used, and when two or more of them are used in combination, the high-temperature charge storage characteristics can be improved, and gas generation can be suppressed. It is more preferred to use. Preferred combinations of these cyclic carbonates include combinations of EC and PC, combinations of EC and VC, combinations of PC and VC, combinations of VC and FEC, combinations of EC and FEC, combinations of PC and FEC, and combinations of FEC and DFEC. Combination, EC and DFEC combination, PC and DFEC combination, VC and DFEC combination, VEC and DFEC combination, VC and EEC combination, EC and EEC combination, EC and PC and VC combination, EC and PC And FEC combination, EC and VC and FEC combination, EC and VC and VEC combination, EC and VC and EEC combination, EC and EEC and FEC combination, PC and VC and FEC combination, EC and VC and DFEC Combination, combination of PC, VC, and DFEC, combination of EC, PC, VC, and FEC, and combination of EC, PC, VC, and DFEC So it is preferable. Among the above combinations, a combination of EC and VC, a combination of EC and FEC, a combination of PC and FEC, a combination of EC and PC and VC, a combination of EC and PC and FEC, a combination of EC and VC and FEC, and a combination of EC and FEC One or more selected from the group consisting of a combination of VC and EEC, a combination of EC and EEC and FEC, a combination of PC and VC and FEC, and a combination of EC, PC, VC and FEC are more preferable.
(鎖状エステル)
 鎖状エステルとしては、メチルエチルカーボネート(MEC)、メチルプロピルカーボネート、メチルブチルカーボネート、及びエチルプロピルカーボネートから選ばれる1種又は2種以上の非対称鎖状カーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート、及びジブチルカーボネートからなる群より選ばれる1種又は2種以上の対称鎖状カーボネート、ピバリン酸メチル、ピバリン酸エチル、ピバリン酸プロピル等のピバリン酸エステル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酢酸メチル、及び酢酸エチルからなる群より選ばれる1種又は2種以上の鎖状カルボン酸エステルが好適に挙げられる。
(Chain ester)
As the chain ester, one or two or more asymmetric chain carbonates selected from methyl ethyl carbonate (MEC), methyl propyl carbonate, methyl butyl carbonate, and ethyl propyl carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC) ), Dipropyl carbonate, and one or more symmetrical linear carbonates selected from the group consisting of dibutyl carbonate, pivalic acid esters such as methyl pivalate, ethyl pivalate and propyl pivalate, methyl propionate, and propionic acid One or more linear carboxylic esters selected from the group consisting of ethyl, propyl propionate, methyl acetate and ethyl acetate are preferred.
 前記鎖状エステルの中でも、電気伝導度が高いことや、溶媒の分解による高温充電保存特性が低下するおそれが少ないため、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、プロピオン酸メチル、酢酸メチル、及び酢酸エチルからなる群より選ばれるメチル基を有する鎖状エステルが好ましく、特にメチル基を有する鎖状カーボネートが好ましい。 Among the above-mentioned chain esters, high conductivity and low risk of deterioration of high-temperature charge storage characteristics due to decomposition of the solvent are low, so that methyl ethyl carbonate (MEC), dimethyl carbonate (DMC), diethyl carbonate (DEC), A chain ester having a methyl group selected from the group consisting of methyl propyl carbonate, methyl butyl carbonate, methyl propionate, methyl acetate, and ethyl acetate is preferable, and a chain carbonate having a methyl group is particularly preferable.
 本発明の非水電解液に用いる非水溶媒における鎖状エステルの含有量は、特に制限されないが、非水電解液全量に対して、5~90質量%の範囲で用いるのが好ましい。該含有量が5質量%以上であれば非水電解液の粘度が高くなりすぎず、より好ましくは10質量%以上であり、更に好ましくは30質量%以上であり、更に好ましくは50質量%以上である。また、90質量%以下であれば非水電解液の電気伝導度が低下して高温充電保存特性が低下するおそれが少ないので上記範囲であることが好ましい。 鎖 The content of the chain ester in the non-aqueous solvent used in the non-aqueous electrolyte of the present invention is not particularly limited, but is preferably used in the range of 5 to 90% by mass based on the total amount of the non-aqueous electrolyte. When the content is 5% by mass or more, the viscosity of the non-aqueous electrolyte does not become too high, more preferably 10% by mass or more, further preferably 30% by mass or more, and further preferably 50% by mass or more. It is. When the content is 90% by mass or less, the electric conductivity of the non-aqueous electrolyte is reduced and the high-temperature charge storage characteristics are less likely to be reduced.
 環状カーボネートと鎖状エステルの割合は、高温下での電気化学特性向上の観点から、環状カーボネート:鎖状エステル(質量比)が10:90~50:50が好ましく、30:70~40:60が更に好ましい。 The ratio of the cyclic carbonate to the chain ester is preferably from 10:90 to 50:50, and more preferably from 30:70 to 40:60, from the viewpoint of improving the electrochemical properties at a high temperature. Is more preferred.
(その他の非水溶媒)
 本発明の非水電解液においては、上記以外のその他の非水溶媒を用いることができる。
 その他の非水溶媒としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン等の環状エーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等の鎖状エーテル、ジメチルホルムアミド等のアミド、スルホラン等のスルホン、及びγ-ブチロラクトン(GBL)、γ-バレロラクトン、α-アンゲリカラクトン等のラクトンからなる群より選ばれる1種又は2種以上が好適に挙げられる。
(Other non-aqueous solvents)
In the non-aqueous electrolyte of the present invention, other non-aqueous solvents other than those described above can be used.
Other non-aqueous solvents include cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and 1,4-dioxane, and chains such as 1,2-dimethoxyethane, 1,2-diethoxyethane and 1,2-dibutoxyethane. One or more selected from the group consisting of ethers, amides such as dimethylformamide, sulfones such as sulfolane, and lactones such as γ-butyrolactone (GBL), γ-valerolactone, and α-angelicalactone are preferably exemplified. Can be
 上記その他の非水溶媒は通常、適切な物性を達成するために、混合して使用される。その組合せは、例えば、環状カーボネートと鎖状エステルとラクトンとの組合せ又は環状カーボネートと鎖状エステルとエーテルとの組合せ等が好適に挙げられ、環状カーボネートと鎖状エステルとラクトンとの組合せがより好ましく、ラクトンの中でもγ-ブチロラクトン(GBL)を用いると更に好ましい。 The above-mentioned other non-aqueous solvents are usually mixed and used to achieve appropriate physical properties. The combination is preferably, for example, a combination of a cyclic carbonate, a chain ester, and a lactone, or a combination of a cyclic carbonate, a chain ester, and an ether, and more preferably a combination of a cyclic carbonate, a chain ester, and a lactone. And lactone, it is more preferable to use γ-butyrolactone (GBL).
 その他の非水溶媒の含有量は、非水電解液全量に対して、通常1質量%以上が好ましく、より好ましくは2質量%以上であり、また通常40質量%以下が好ましく、より好ましくは30質量%以下、更に好ましくは20質量%以下である。当該濃度範囲中であれば電気伝導度が低下することや、溶媒の分解による高温充電保存特性が低下するおそれが少ない。 The content of the other non-aqueous solvent is usually preferably 1% by mass or more, more preferably 2% by mass or more, and usually 40% by mass or less, more preferably 30% by mass, based on the total amount of the non-aqueous electrolyte. % By mass or less, more preferably 20% by mass or less. When the concentration is within the above range, the electric conductivity is less likely to be reduced, and the high-temperature charge storage characteristics are less likely to be deteriorated due to the decomposition of the solvent.
(その他の添加剤)
 一段と高温充電保存特性を向上させ、ガス発生を抑制する目的で、非水電解液中に更にその他の添加剤を加えることが好ましい。
 その他の添加剤の具体例としては、以下の(A)~(J)の化合物が挙げられる。
(Other additives)
For the purpose of further improving high-temperature charge storage characteristics and suppressing gas generation, it is preferable to further add other additives to the non-aqueous electrolyte.
Specific examples of other additives include the following compounds (A) to (J).
 (A)アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリルから選ばれる1種又は2種以上のニトリル。 (A) One or more nitriles selected from acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimeronitrile, suberonitrile, and sebaconitrile.
 (B)シクロヘキシルベンゼン、tert-ブチルベンゼン、tert-アミルベンゼン、又は1-フルオロ-4-tert-ブチルベンゼン等の分枝アルキル基を有する芳香族化合物や、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、メチルフェニルカーボネート、エチルフェニルカーボネート、又はジフェニルカーボネート等の芳香族化合物。 (B) an aromatic compound having a branched alkyl group such as cyclohexylbenzene, tert-butylbenzene, tert-amylbenzene, or 1-fluoro-4-tert-butylbenzene, biphenyl, terphenyl (o-, m- , P-form), an aromatic compound such as fluorobenzene, methylphenyl carbonate, ethylphenyl carbonate, or diphenyl carbonate.
 (C)メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートから選ばれる1種又は2種以上のイソシアネート化合物。 (C) selected from methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate One or more isocyanate compounds.
 (D)2-プロピニル メチル カーボネート、酢酸 2-プロピニル、ギ酸 2-プロピニル、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸2-プロピニル、ジ(2-プロピニル)オギザレート、2-ブチン-1,4-ジイル ジメタンスルホネート、及び2-ブチン-1,4-ジイル ジホルメートから選ばれる1種又は2種以上の三重結合含有化合物。 (D) 2-propynyl methyl carbonate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, 2- (methanesulfonyloxy) propionic acid 2- One or more triple bond-containing compounds selected from propynyl, di (2-propynyl) oxalate, 2-butyne-1,4-diyldimethanesulfonate, and 2-butyne-1,4-diyldiformate.
 (E)1,3-プロパンスルトン、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート等のスルトン、エチレンサルファイト等の環状サルファイト、エチレンサルフェート等の環状サルフェート、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、メチレンメタンジスルホネート等のスルホン酸エステル、及びジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、ビス(2-ビニルスルホニルエチル)エーテル等のビニルスルホン化合物から選ばれる1種又は2種以上のS=O基含有化合物。 (E) 1,3-propane sultone, 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propene sultone, 2,2-dioxide-1,2-oxathiolan-4-yl Sulfones such as acetate, cyclic sulfites such as ethylene sulfate, cyclic sulfates such as ethylene sulfate, butanes such as butane-2,3-diyldimethanesulfonate, butane-1,4-diyldimethanesulfonate, and methylenemethanedisulfonate Acid ester and one or more S 種 O group-containing compounds selected from vinylsulfone compounds such as divinylsulfone, 1,2-bis (vinylsulfonyl) ethane and bis (2-vinylsulfonylethyl) ether.
 (F)環状アセタール化合物としては、分子内に「アセタール基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、1,3-ジオキソラン、1,3-ジオキサン、又は1,3,5-トリオキサン等の環状アセタール化合物。 種類 (F) The type of the cyclic acetal compound is not particularly limited as long as it has a “acetal group” in the molecule. Specific examples thereof include cyclic acetal compounds such as 1,3-dioxolan, 1,3-dioxane, and 1,3,5-trioxane.
 (G)リン酸トリメチル、リン酸トリブチル、リン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種又は2種以上のリン含有化合物。 (G) trimethyl phosphate, tributyl phosphate, trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, ethyl {2- (diethoxyphosphoryl) acetate, and 2-propynyl} 2- (diethoxyphosphoryl) ) One or more phosphorus-containing compounds selected from acetate.
 (H)カルボン酸無水物としては、分子内に「C(=O)-O-C(=O)基」を有する化合物であれば特にその種類は限定されない。その具体例としては、無水酢酸、無水プロピオン酸等の鎖状のカルボン酸無水物、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、又は3-スルホ-プロピオン酸無水物等の環状酸無水物。 The type of (H) carboxylic anhydride is not particularly limited as long as it is a compound having a “C (= O) —OC (= O) group” in the molecule. Specific examples thereof include chain carboxylic anhydrides such as acetic anhydride and propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-anhydride. Cyclic acid anhydrides such as propionic anhydride;
 (J)ホスファゼン化合物としては、分子内に「N=P-N基」を有する化合物であれば、その種類は特に限定されない。その具体例としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、又はエトキシヘプタフルオロシクロテトラホスファゼン等の環状ホスファゼン化合物。 種類 The type of the (J) phosphazene compound is not particularly limited as long as it has a “N = PN group” in the molecule. Specific examples thereof include cyclic phosphazene compounds such as methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
 上記の中でも、(A)ニトリル、(B)芳香族化合物、及び(C)イソシアネート化合物からなる群より選ばれる少なくとも1種以上を含むと一段と高温での電気化学特性が向上するので好ましい。 中 で も Among the above, it is preferable to include at least one selected from the group consisting of (A) nitrile, (B) aromatic compound, and (C) isocyanate compound, because the electrochemical properties at higher temperatures are further improved.
 (A)ニトリルの中では、スクシノニトリル、グルタロニトリル、アジポニトリル、及びピメロニトリルからなる群より選ばれる1種又は2種以上がより好ましい。 (A) Among the nitriles, one or more selected from the group consisting of succinonitrile, glutaronitrile, adiponitrile, and pimeronitrile are more preferable.
 (B)芳香族化合物の中では、ビフェニル、ターフェニル(o-、m-、p-体)、フルオロベンゼン、シクロヘキシルベンゼン、tert-ブチルベンゼン、及びtert-アミルベンゼンからなる群より選ばれる1種又は2種以上がより好ましく、ビフェニル、o-ターフェニル、フルオロベンゼン、シクロヘキシルベンゼン、及びtert-アミルベンゼンからなる群より選ばれる1種又は2種以上が更に好ましい。 (B) Among the aromatic compounds, one selected from the group consisting of biphenyl, terphenyl (o-, m-, p-form), fluorobenzene, cyclohexylbenzene, tert-butylbenzene, and tert-amylbenzene Alternatively, two or more are more preferable, and one or two or more selected from the group consisting of biphenyl, o-terphenyl, fluorobenzene, cyclohexylbenzene, and tert-amylbenzene is further preferable.
 (C)イソシアネート化合物の中では、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、2-イソシアナトエチル アクリレート、及び2-イソシアナトエチル メタクリレートからなる群より選ばれる1種又は2種以上がより好ましい。 Among the (C) isocyanate compounds, one or more selected from the group consisting of hexamethylene diisocyanate, octamethylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl methacrylate are more preferable.
 前記(A)~(C)の化合物の含有量は、非水電解液全量に対して0.01~7質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.05質量%以上であることがより好ましく、0.1質量%以上が更に好ましく、その上限は、5質量%以下であることがより好ましく、3質量%以下が更に好ましい。 含有 The content of the compounds (A) to (C) is preferably 0.01 to 7% by mass based on the total amount of the nonaqueous electrolyte. In this range, the film is sufficiently formed without being too thick, the high-temperature charge storage characteristics can be improved, and gas generation can be suppressed. The content is more preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and the upper limit is more preferably 5% by mass or less based on the total amount of the nonaqueous electrolyte. And more preferably 3% by mass or less.
 また、(D)三重結合含有化合物、(E)スルトン、環状サルファイト、スルホン酸エステル、ビニルスルホンからなる群より選ばれる環状又は鎖状のS=O基含有化合物、(F)環状アセタール化合物、(G)リン含有化合物、(H)環状酸無水物、及び(J)環状ホスファゼン化合物を含むと高温充電保存特性を向上させることができ、ガス発生を抑制できるので好ましい。 (D) a compound having a triple bond, (E) a compound having a cyclic or chain S = O group selected from the group consisting of sultone, cyclic sulfite, sulfonic acid ester and vinyl sulfone, (F) a cyclic acetal compound, It is preferable to include (G) a phosphorus-containing compound, (H) a cyclic acid anhydride, and (J) a cyclic phosphazene compound since the high-temperature charge storage characteristics can be improved and gas generation can be suppressed.
 (D)三重結合含有化合物としては、2-プロピニル メチル カーボネート、メタクリル酸 2-プロピニル、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上が好ましく、メタンスルホン酸 2-プロピニル、ビニルスルホン酸 2-プロピニル、ジ(2-プロピニル)オギザレート、及び2-ブチン-1,4-ジイル ジメタンスルホネートからなる群より選ばれる1種又は2種以上がより好ましい。 (D) Examples of the triple bond-containing compound include 2-propynyl methyl carbonate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, di (2-propynyl) oxalate, and 2-butyne-1 One or more members selected from the group consisting of 2,4-diyl} dimethanesulfonate are preferred, and 2-propynyl methanesulfonate, 2-propynyl vinylsulfonate, di (2-propynyl) oxalate, and 2-butyne-1 One or more selected from the group consisting of 2,4-diyldimethanesulfonate is more preferred.
 (E)スルトン、環状サルファイト、環状サルフェート、スルホン酸エステル、及びビニルスルホンからなる群より選ばれる環状又は鎖状のS=O基含有化合物(但し、三重結合含有化合物、及び前記一般式のいずれかで表される特定の化合物は含まない)を用いることが好ましい。 (E) a cyclic or chain-like S = O group-containing compound selected from the group consisting of sultone, cyclic sulfite, cyclic sulfate, sulfonic acid ester, and vinyl sulfone (provided that a triple bond-containing compound and any of the above general formulas) Is not included).
 前記環状のS=O基含有化合物としては、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、メチレン メタンジスルホネート、エチレンサルファイト、及びエチレンサルフェートからなる群より選ばれる1種又は2種以上が好適に挙げられる。 Examples of the cyclic S = O group-containing compound include 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-propene sultone and 2,2-dioxide- One or more selected from the group consisting of 1,2-oxathiolan-4-yl} acetate, methylene} methanedisulfonate, ethylene sulfite, and ethylene sulfate are preferred.
 また、鎖状のS=O基含有化合物としては、ブタン-2,3-ジイル ジメタンスルホネート、ブタン-1,4-ジイル ジメタンスルホネート、ジメチル メタンジスルホネート、ペンタフルオロフェニル メタンスルホネート、ジビニルスルホン、及びビス(2-ビニルスルホニルエチル)エーテルからなる群より選ばれる1種又は2種以上が好適に挙げられる。 Examples of the chain-like S 基 O group-containing compound include butane-2,3-diyldimethanesulfonate, butane-1,4-diyldimethanesulfonate, dimethylmethanedisulfonate, pentafluorophenylmethanemethanesulfonate, divinylsulfone, And at least one member selected from the group consisting of and bis (2-vinylsulfonylethyl) ether.
 前記環状又は鎖状のS=O基含有化合物の中でも、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イル アセテート、エチレンサルフェート、ペンタフルオロフェニル メタンスルホネート、及びジビニルスルホンからなる群より選ばれる1種又は2種以上が更に好ましい。 Among the cyclic or chain S 又 は O group-containing compounds, 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 2,2-dioxide-1,2-oxathiolan-4-yl} acetate , Ethylene sulfate, pentafluorophenyl methanesulfonate, and divinyl sulfone.
 (F)環状アセタール化合物としては、1,3-ジオキソラン、及び1,3-ジオキサンから選ばれる1種以上が好ましく、1,3-ジオキサンがより好ましい。 (F) The cyclic acetal compound is preferably at least one selected from 1,3-dioxolane and 1,3-dioxane, and more preferably 1,3-dioxane.
 (G)リン含有化合物としては、エチル 2-(ジエトキシホスホリル)アセテート、及び2-プロピニル 2-(ジエトキシホスホリル)アセテートから選ばれる1種以上が好ましく、2-プロピニル 2-(ジエトキシホスホリル)アセテートがより好ましい。 (G) As the phosphorus-containing compound, one or more selected from ethyl {2- (diethoxyphosphoryl) acetate and 2-propynyl} 2- (diethoxyphosphoryl) acetate is preferable, and 2-propynyl} 2- (diethoxyphosphoryl) Acetate is more preferred.
 (H)環状酸無水物としては、無水コハク酸、無水マレイン酸、及び3-アリル無水コハク酸から選ばれる1種以上が好ましく、無水コハク酸及び3-アリル無水コハク酸から選ばれる1種以上がより好ましい。 (H) The cyclic acid anhydride is preferably at least one selected from succinic anhydride, maleic anhydride, and 3-allyl succinic anhydride, and at least one selected from succinic anhydride and 3-allyl succinic anhydride. Is more preferred.
 (J)環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、及びフェノキシペンタフルオロシクロトリホスファゼンから選ばれる1種以上の環状ホスファゼン化合物が好ましく、メトキシペンタフルオロシクロトリホスファゼン及びエトキシペンタフルオロシクロトリホスファゼンから選ばれる1種以上が更に好ましい。 (J) As the cyclic phosphazene compound, one or more cyclic phosphazene compounds selected from methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, and phenoxypentafluorocyclotriphosphazene are preferable, and methoxypentafluorocyclotriphosphazene and One or more selected from ethoxypentafluorocyclotriphosphazene is more preferred.
 前記(D)~(J)の化合物のそれぞれの含有量は、非水電解液全量に対して0.001~5質量%であることが好ましい。この範囲では、被膜が厚くなり過ぎずに十分に形成され、一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。該含有量は、非水電解液全量に対して0.01質量%以上であることがより好ましく、0.1質量%以上が更に好ましく、その上限は、非水電解液全量に対して3質量%以下であることがより好ましく、2質量%以下が更に好ましい。 含有 The content of each of the compounds (D) to (J) is preferably 0.001 to 5% by mass based on the total amount of the nonaqueous electrolyte. In this range, the film is sufficiently formed without being too thick, and the high-temperature charge storage characteristics can be further improved, and gas generation can be suppressed. The content is more preferably 0.01% by mass or more, more preferably 0.1% by mass or more based on the total amount of the nonaqueous electrolyte, and the upper limit is 3% by mass based on the total amount of the nonaqueous electrolyte. %, More preferably 2% by mass or less.
 また、一段と高温での電気化学特性を向上させる目的で、非水電解液中に更に、シュウ酸構造を有するリチウム塩(I)、リン酸構造を有するリチウム塩(II)及びS=O基を有するリチウム塩(III)の中から選ばれる1種以上のリチウム塩を含むことが好ましい。
 前記リチウム塩の具体例としては、リチウム ビス(オキサラト)ボレート〔LiBOB〕、リチウム ジフルオロ(オキサラト)ボレート〔LiDFOB〕、リチウム テトラフルオロ(オキサラト)ホスフェート〔LiTFOP〕、及びリチウム ジフルオロビス(オキサラト)ホスフェート〔LiDFOP〕からなる群より選ばれる少なくとも1種のシュウ酸構造を有するリチウム塩(I)、LiPOやLiPOF等のリン酸構造を有するリチウム塩(II)、リチウム トリフルオロ((メタンスルホニル)オキシ)ボレート〔LiTFMSB〕、リチウム ペンタフルオロ((メタンスルホニル)オキシ)ホスフェート〔LiPFMSP〕、リチウム メチルサルフェート〔LMS〕、リチウムエチルサルフェート〔LES〕、リチウム 2,2,2-トリフルオロエチルサルフェート〔LFES〕、及びFSOLiからなる群より選ばれる1種以上のS=O基を有するリチウム塩(III)が好適に挙げられ、LiBOB、LiDFOB、LiTFOP、LiDFOP、LiPO、LiTFMSB、LMS、LES、LFES、及びFSOLiからなる群より選ばれるリチウム塩を含むことがより好ましい。
Further, for the purpose of further improving the electrochemical properties at a higher temperature, a lithium salt (I) having an oxalic acid structure, a lithium salt (II) having a phosphoric acid structure, and an SOO group are further added to the nonaqueous electrolyte. It preferably contains at least one kind of lithium salt selected from lithium salts (III).
Specific examples of the lithium salt include lithium bis (oxalato) borate [LiBOB], lithium difluoro (oxalato) borate [LiDFOB], lithium tetrafluoro (oxalato) phosphate [LiTFOP], and lithium difluorobis (oxalato) phosphate [LiDFOP]. A lithium salt (I) having at least one oxalic acid structure selected from the group consisting of: a lithium salt (II) having a phosphoric acid structure such as LiPO 2 F 2 and Li 2 PO 3 F; and lithium trifluoro (( (Methanesulfonyl) oxy) borate [LiTFMSB], lithium pentafluoro ((methanesulfonyl) oxy) phosphate [LiPFMSP], lithium methyl sulfate [LMS], lithium ethyl sulfate [LES], Lithium salt (III) having at least one S = O group selected from the group consisting of lithium 2,2,2-trifluoroethyl sulfate [LFES] and FSO 3 Li is preferable, and LiBOB, LiDFOB, It is more preferable to include a lithium salt selected from the group consisting of LiTFOP, LiDFOP, LiPO 2 F 2 , LiTFMSB, LMS, LES, LFES, and FSO 3 Li.
 前記リチウム塩が非水電解液中に占めるそれぞれの割合は、非水電解液全量に対して0.01質量%以上8質量%以下である場合が好ましい。この範囲にあると一段と高温充電保存特性を向上させることができ、ガス発生を抑制できる。好ましくは非水電解液全量に対して0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上である。その上限は、非水電解液全量に対して好ましくは6質量%以下、より好ましくは3質量%以下である。 割 合 The proportion of each of the lithium salts in the nonaqueous electrolyte is preferably 0.01% by mass or more and 8% by mass or less based on the total amount of the nonaqueous electrolyte. Within this range, the high-temperature charge storage characteristics can be further improved, and gas generation can be suppressed. It is preferably at least 0.1% by mass, more preferably at least 0.3% by mass, even more preferably at least 0.4% by mass, based on the total amount of the nonaqueous electrolyte. The upper limit is preferably 6% by mass or less, more preferably 3% by mass or less, based on the total amount of the non-aqueous electrolyte.
(電解質塩)
 本発明に使用される電解質塩としては、無機リチウム塩、フッ化アルキル基を含有するリチウム塩、フッ素原子を有するリチウムイミド塩、及びシュウ酸構造を有するリチウム塩から選ばれる1種以上のリチウム塩が好適に挙げられる。
 無機リチウム塩としては、LiPF、LiBF、LiClO等が挙げられる。
 フッ化アルキル基を含有するリチウム塩としては、LiCFSO、LiC(SOCF、LiPF(CF、LiPF(C、LiPF(CF、LiPF(iso-C、LiPF(iso-C)等の鎖状のフッ化アルキル基を含有するリチウム塩が挙げられる。
 フッ素原子を有するリチウムイミド塩としては、LiN(SOF)〔LiFSI〕、LiN(SOCF〔LiTFSI〕、LiN(SO等のフッ素原子を有する鎖状のリチウムイミド塩、及び(CF(SONLi、(CF(SONLi等の環状のフッ化アルキレン鎖を有するリチウムイミド塩等が挙げられる。
 シュウ酸構造を有するリチウム塩としては、前記のLiBOB、LiDFOB、LiTFOP、及びLiDFOPからなる群より選ばれる1種以上が好ましく、リチウム ビス(オキサラト)ボレート〔LiBOB〕がより好ましい。
 上記リチウム塩は1種単独で又は2種以上を混合して使用することができる。
(Electrolyte salt)
As the electrolyte salt used in the present invention, at least one lithium salt selected from inorganic lithium salts, lithium salts containing an alkyl fluoride group, lithium imide salts having a fluorine atom, and lithium salts having an oxalic acid structure Are preferred.
Examples of the inorganic lithium salt include LiPF 6 , LiBF 4 , and LiClO 4 .
Examples of the lithium salt containing a fluorinated alkyl group include LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , and LiPF 3 (CF 3 ). And lithium salts containing a linear alkyl fluoride group, such as 3 , LiPF 3 (iso-C 3 F 7 ) 3 and LiPF 5 (iso-C 3 F 7 ).
Examples of the lithium imide salt having a fluorine atom include chains having a fluorine atom such as LiN (SO 2 F) 2 [LiFSI], LiN (SO 2 CF 3 ) 2 [LiTFSI], and LiN (SO 2 C 2 F 5 ) 2. Lithium imide salt, and a lithium imide salt having a cyclic fluorinated alkylene chain such as (CF 2 ) 2 (SO 2 ) 2 NLi and (CF 2 ) 3 (SO 2 ) 2 NLi.
As the lithium salt having an oxalic acid structure, at least one selected from the group consisting of LiBOB, LiDFOB, LiTFOP, and LiDFOP is preferable, and lithium bis (oxalato) borate [LiBOB] is more preferable.
The above lithium salts can be used alone or in combination of two or more.
 これらの中でも、LiPF、LiBF等から選ばれる1種又は2種以上の無機リチウム塩、LiN(SOCF、LiN(SO、及びLiN(SOF)〔LiFSI〕から選ばれる1種又は2種以上のフッ素原子を有するリチウムイミド塩が好ましく、少なくともLiPFを用いることが好ましい。
 また、これらの電解質塩の好適な組み合わせとしては、LiPFを含み、更にLiBF、LiN(SOCF、及びLiN(SOF)〔LiFSI〕から選ばれる少なくとも1種のリチウム塩が非水電解液中に含まれている場合が好ましく、LiPFとLiFSIの両者を併用することがより好ましい。
Among these, one or more inorganic lithium salts selected from LiPF 6 , LiBF 4 and the like, LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , and LiN (SO 2 F 2 ) Lithium imide salt having one or more fluorine atoms selected from [LiFSI] is preferable, and at least LiPF 6 is preferably used.
Further, a preferable combination of these electrolyte salts includes LiPF 6 , and further includes at least one lithium selected from LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 [LiFSI]. Preferably, the salt is contained in the non-aqueous electrolyte, and more preferably, both LiPF 6 and LiFSI are used in combination.
 電解質塩のそれぞれの濃度及び合計濃度は、前記の非水電解液全量に対して、通常4質量%以上であることが好ましく、9質量%以上がより好ましく、13質量%以上が更に好ましい。またその上限は、非水電解液全量に対して28質量%以下であることが好ましく、23質量%以下がより好ましく、20質量%以下が更に好ましい。
 LiPF以外のリチウム塩が非水電解液全量に占めるそれぞれの濃度及び合計濃度は、0.01質量%以上であると、高温充電保存特性性を向上させると共に、ガス発生の抑制効果も高まり、非水電解液全量に対して15質量%以下、好ましくは10質量%以下であると高温充電保存特性が低下する懸念が少ないので好ましい。LiPF以外のリチウム塩は、非水電解液全量に対して好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.46質量%以上、最も好ましくは0.6質量%以上であり、その上限は、好ましくは13質量%以下、より好ましくは11質量%以下、更に好ましくは9質量%以下、最も好ましくは6質量%以下である。
The concentration and total concentration of each of the electrolyte salts are usually preferably 4% by mass or more, more preferably 9% by mass or more, and still more preferably 13% by mass or more, based on the total amount of the nonaqueous electrolyte. The upper limit is preferably 28% by mass or less, more preferably 23% by mass or less, even more preferably 20% by mass or less based on the total amount of the nonaqueous electrolyte.
When the respective concentrations and the total concentration of lithium salts other than LiPF 6 in the total amount of the nonaqueous electrolyte are 0.01% by mass or more, the high-temperature charge storage characteristics are improved, and the effect of suppressing gas generation is also increased. It is preferable that the content is 15% by mass or less, preferably 10% by mass or less based on the total amount of the non-aqueous electrolyte, because there is little fear that the high-temperature charge storage characteristics are reduced. Lithium salts other than LiPF 6 are preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.46% by mass or more, and most preferably 0.1% by mass or more, based on the total amount of the nonaqueous electrolyte. It is at least 6% by mass, and the upper limit is preferably at most 13% by mass, more preferably at most 11% by mass, still more preferably at most 9% by mass, most preferably at most 6% by mass.
〔非水電解液の製造〕
 本発明の非水電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩及び該非水電解液に対して前記一般式(I)で表される化合物を添加することにより得ることができる。
 この際、用いる非水溶媒及び非水電解液に加える化合物は、生産性を著しく低下させない範囲内で、予め精製して、不純物が極力少ないものを用いることが好ましい。
(Production of non-aqueous electrolyte)
The non-aqueous electrolyte solution of the present invention is obtained by, for example, mixing the above-mentioned non-aqueous solvent, and adding the compound represented by the general formula (I) to the electrolyte salt and the non-aqueous electrolyte solution. Obtainable.
At this time, it is preferable that the compound added to the non-aqueous solvent and the non-aqueous electrolyte used is one which has been purified in advance and has as few impurities as possible, as long as the productivity is not significantly reduced.
 本発明の非水電解液は、下記の第1~第4の蓄電デバイスに使用することができ、非水電解質として、液体状のものだけでなくゲル化されているものも使用し得る。更に本発明の非水電解液は固体高分子電解質用としても使用できる。中でも電解質塩にリチウム塩を使用する第1の蓄電デバイス用(即ち、リチウム電池用)又は第4の蓄電デバイス用(即ち、リチウムイオンキャパシタ用)として用いることが好ましく、リチウム電池用として用いることが更に好ましく、リチウム二次電池用として用いることが最も適している。 非 The non-aqueous electrolyte of the present invention can be used for the following first to fourth power storage devices. As the non-aqueous electrolyte, not only a liquid electrolyte but also a gelled electrolyte can be used. Further, the non-aqueous electrolyte of the present invention can be used for solid polymer electrolytes. Above all, it is preferable to use it for a first power storage device using a lithium salt as an electrolyte salt (that is, for a lithium battery) or for a fourth power storage device (that is, for a lithium ion capacitor), and to use it for a lithium battery. More preferably, it is most suitable to use for a lithium secondary battery.
<蓄電デバイス>
 本発明の蓄電デバイスは、正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が前記一般式(I)で表される双性イオンを含有することを特徴とする。
<Power storage device>
The power storage device of the present invention is a power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte is represented by the general formula (I). Characterized by containing a zwitterion.
〔第1の蓄電デバイス(リチウム電池)〕
 本明細書においてリチウム電池とは、リチウム一次電池及びリチウム二次電池の総称である。また、本明細書において、リチウム二次電池という用語は、いわゆるリチウムイオン二次電池も含む概念として用いる。
 本発明に係る第1の蓄電デバイスであるリチウム電池は、正極、負極及び非水溶媒に電解質塩が溶解されている前記非水電解液からなる。非水電解液以外の正極、負極等の構成部材は特に制限なく使用できる。
[First power storage device (lithium battery)]
In this specification, a lithium battery is a general term for a lithium primary battery and a lithium secondary battery. Further, in this specification, the term lithium secondary battery is used as a concept including a so-called lithium ion secondary battery.
A lithium battery as a first power storage device according to the present invention includes a positive electrode, a negative electrode, and the nonaqueous electrolyte in which an electrolyte salt is dissolved in a nonaqueous solvent. Components other than the non-aqueous electrolyte, such as a positive electrode and a negative electrode, can be used without particular limitation.
(正極活物質)
 例えば、リチウム二次電池用正極活物質としては、コバルト、マンガン、及びニッケルからなる群より選ばれる1種又は2種以上を含有するリチウムとの複合金属酸化物が使用される。これらの正極活物質は、1種単独で用いるか又は2種以上を組み合わせて用いることができる。
 このようなリチウム複合金属酸化物としては、例えば、LiCoO、LiCo1-x(但し、MはSn、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、及びCuからなる群より選ばれる1種又は2種以上の元素、0.001≦x≦0.05)、LiMn、LiMn1.5Ni0.54、LiNiO、LiCo1-xNi(0.01<x<1)、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、LiNi0.8Mn0.1Co0.1、LiNi0.8Co0.15Al0.05、LiMnOとLiMO(Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体、及びLiNi1/2Mn3/2からなる群より選ばれる1種以上が好適に挙げられ、2種以上がより好適である。また、LiCoOとLiMn、LiCoOとLiNiO、LiMnとLiNiOのように併用してもよい。
(Positive electrode active material)
For example, as a positive electrode active material for a lithium secondary battery, a composite metal oxide with lithium containing one or more selected from the group consisting of cobalt, manganese, and nickel is used. These positive electrode active materials can be used alone or in combination of two or more.
As such a lithium composite metal oxide, for example, LiCoO 2 , LiCo 1-x M x O 2 (where M is Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, and One or more elements selected from the group consisting of Cu, 0.001 ≦ x ≦ 0.05), LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4, LiNiO 2 , LiCo 1-x Ni x O 2 (0.01 <x <1), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0 .1 Co 0.1 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , solid solution of Li 2 MnO 3 and LiMO 2 (M is a transition metal such as Co, Ni, Mn, Fe, etc.) , and LiNi 1/2 Mn 3/2 O One or more selected from the group consisting of is suitably mentioned, two or more is more preferable. Also, LiCoO 2 and LiMn 2 O 4 , LiCoO 2 and LiNiO 2 , and LiMn 2 O 4 and LiNiO 2 may be used in combination.
 マンガンを含有するリチウム複合金属酸化物を正極活物質として使用すると、一般的に、充電時の金属溶出量が大きくなり、高温充電保存特性がより低下しやすいが、本発明に係るリチウム二次電池ではこれらの電気化学特性の低下を特に抑制することができる。マンガンを含有するリチウム複合金属酸化物であれば特に限定はされないが、好ましくはスピネル型構造を有するマンガンリチウム複合金属酸化物、より好ましくはスピネル型マンガン酸リチウムであればより電気化学特性低下を抑制する。具体的なマンガンリチウム複合金属酸化物の正極活物質として例えばLiMn、LiMn1.5Ni0.54、LiCo1/3Ni1/3Mn1/3、LiNi0.5Mn0.3Co0.2、及びLiNi0.8Mn0.1Co0.1等からなる群より選ばれる1種以上が好適に挙げられ、特にスピネル型構造のLiMn1.5Ni0.54、LiMnを用いることが好ましい。
 また、前記正極活物質のマンガンサイトの一部が多元素で置換されていてもよく、マンガンサイトを置換する他元素としては、例えばSn、Ni、Mg、Fe、Ti、Al、Zr、Cr、V、Ga、Zn、Co、Li等が挙げられる。
When a lithium composite metal oxide containing manganese is used as a positive electrode active material, generally, the amount of metal eluted during charging is increased, and the high-temperature charge storage characteristics are more likely to be reduced, but the lithium secondary battery according to the present invention In this case, it is possible to particularly suppress the deterioration of these electrochemical characteristics. The lithium composite metal oxide containing manganese is not particularly limited, but preferably a manganese lithium composite metal oxide having a spinel-type structure, and more preferably a spinel-type lithium manganate suppresses a decrease in electrochemical characteristics. I do. Specific examples of the positive electrode active material of the manganese lithium composite metal oxide include LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiNi 0.5 One or more members selected from the group consisting of Mn 0.3 Co 0.2 O 2 , LiNi 0.8 Mn 0.1 Co 0.1 O 2, and the like are preferably mentioned, and in particular, LiMn having a spinel structure . 5 Ni 0.5 O 4, it is preferable to use a LiMn 2 O 4.
Further, a part of the manganese site of the positive electrode active material may be replaced with a multi-element, and examples of the other element that replaces the manganese site include Sn, Ni, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Co, Li and the like.
 更に、正極活物質として、リチウム含有オリビン型リン酸塩を用いることもできる。特に鉄、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種以上含むリチウム含有オリビン型リン酸塩が好ましい。その具体例としては、LiFePO、LiCoPO、LiNiPO、LiMnPO等が挙げられる。
 これらのリチウム含有オリビン型リン酸塩の一部は他元素で置換してもよく、鉄、コバルト、ニッケル、マンガンの一部をCo、Mn、Ni、Mg、Al、B、Ti、V、Nb、Cu、Zn、Mo、Ca、Sr、W及びZr等からなる群より選ばれる1種以上の元素での置換が可能であり、又はこれらの他元素を含有する化合物や炭素材料で被覆することもできる。これらの中では、LiFePO又はLiMnPOが好ましく、LiMnPOがより好ましい。
 また、リチウム含有オリビン型リン酸塩は、例えば前記の正極活物質と混合して用いることもできる。
Further, a lithium-containing olivine-type phosphate may be used as the positive electrode active material. Particularly, a lithium-containing olivine-type phosphate containing at least one selected from iron, cobalt, nickel and manganese is preferable. Specific examples thereof include LiFePO 4 , LiCoPO 4 , LiNiPO 4 , LiMnPO 4 and the like.
Some of these lithium-containing olivine-type phosphates may be replaced with other elements, and some of iron, cobalt, nickel, and manganese may be replaced with Co, Mn, Ni, Mg, Al, B, Ti, V, and Nb. , Cu, Zn, Mo, Ca, Sr, W, Zr, etc., which can be replaced by one or more elements selected from the group consisting of, or coated with a compound or carbon material containing these other elements. Can also. Among these, LiFePO 4 or LiMnPO 4 is preferred, and LiMnPO 4 is more preferred.
Further, the lithium-containing olivine-type phosphate can be used, for example, in a mixture with the above-mentioned positive electrode active material.
 また、リチウム一次電池用正極活物質としては、CuO、CuO、AgO、AgCrO、CuS、CuSO、TiO、TiS、SiO、SnO、V、V12、VO、Nb、Bi、BiPb、Sb、CrO、Cr、MoO、WO、SeO、MnO、Mn、Fe、FeO、Fe、Ni、NiO、CoO、CoO等からなる群より選ばれる1種又は2種以上の金属元素の酸化物又はカルコゲン化合物、SO、SOCl等の硫黄化合物、一般式(CFで表されるフッ化炭素(フッ化黒鉛)等が挙げられる。中でも、MnO、V、フッ化黒鉛等が好ましい。 Further, as the positive electrode active material for the lithium primary battery, CuO, Cu 2 O, Ag 2 O, Ag 2 CrO 4 , CuS, CuSO 4 , TiO 2 , TiS 2 , SiO 2 , SnO, V 2 O 5 , V 6 O 12, VO x, Nb 2 O 5, Bi 2 O 3, Bi 2 Pb 2 O 5, Sb 2 O 3, CrO 3, Cr 2 O 3, MoO 3, WO 3, SeO 2, MnO 2, Mn 2 Oxides or chalcogen compounds of one or more metal elements selected from the group consisting of O 3 , Fe 2 O 3 , FeO, Fe 3 O 4 , Ni 2 O 3 , NiO, CoO 3 , CoO, etc. 2, sulfur compounds such as SOCl 2, the general formula (CF x) fluorocarbon (graphite fluoride) represented by n, and the like. Among them, MnO 2 , V 2 O 5 , graphite fluoride and the like are preferable.
 正極の導電剤は、化学変化を起こさない電子伝導材料であれば特に制限はない。例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等が挙げられる。また、グラファイトとカーボンブラックを適宜混合して用いてもよい。導電剤の正極合剤への添加量は、1~10質量%が好ましく、2~5質量%がより好ましい。 導電 The conductive agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change. Examples include graphite such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black. Further, graphite and carbon black may be appropriately mixed and used. The amount of the conductive agent added to the positive electrode mixture is preferably 1 to 10% by mass, more preferably 2 to 5% by mass.
 正極は、前記の正極活物質をアセチレンブラック、カーボンブラック等の導電剤、及びポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンとブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、カルボキシメチルセルロース(CMC)、エチレンプロピレンジエンターポリマー等の結着剤と混合し、これに1-メチル-2-ピロリドン等の高沸点溶剤を加えて混練して正極合剤とした後、この正極合剤を集電体のアルミニウム箔やステンレス製のラス板等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で、2時間程度真空下で加熱処理することにより作製することができる。
 正極の集電体を除く部分の密度は、通常は1.5g/cm以上であり、電池容量を更に高めるため、好ましくは2g/cm以上、より好ましくは3g/cm以上、更に好ましくは3.6g/cm以上である。なお、上限は4g/cm以下が好ましい。
For the positive electrode, the positive electrode active material is a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), or a mixture of acrylonitrile and butadiene. A positive electrode mixture is prepared by mixing with a binder such as copolymer (NBR), carboxymethyl cellulose (CMC), ethylene propylene diene terpolymer and the like, adding a high boiling solvent such as 1-methyl-2-pyrrolidone and kneading the mixture. Then, the positive electrode mixture is applied to an aluminum foil or a stainless steel lath plate of a current collector, dried and pressed, and then subjected to vacuum at about 50 ° C. to 250 ° C. for about 2 hours. Can be produced by heat treatment.
The density of the part except the collector of the positive electrode is usually at 1.5 g / cm 3 or more, to further enhance the battery capacity, preferably 2 g / cm 3 or more, more preferably 3 g / cm 3 or more, more preferably Is 3.6 g / cm 3 or more. Note that the upper limit is preferably 4 g / cm 3 or less.
(負極活物質)
 リチウム二次電池用負極活物質としては、リチウム金属やリチウム合金、及びリチウムイオンを吸蔵及び放出することが可能な炭素材料〔易黒鉛化炭素や、(002)面の面間隔が0.37nm(ナノメータ)以上の難黒鉛化炭素や、(002)面の面間隔が0.34nm以下の黒鉛等〕、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物(SiOx:x<2)、ケイ素合金(Si-M合金:Mは、Al、Ni、Cu、Fe、Ti及びMnからなる群より選ばれる少なくとも1種)、金属化合物等を1種単独で又は2種以上を組み合わせて用いることができる。
 これらの中では、リチウムイオンの吸蔵及び放出能力において、人造黒鉛や天然黒鉛等の高結晶性の炭素材料、金属化合物を使用することが好ましい。
(Negative electrode active material)
Examples of the negative electrode active material for a lithium secondary battery include lithium metal, a lithium alloy, and a carbon material capable of occluding and releasing lithium ions (e.g., graphitizable carbon and a (002) plane having a spacing of 0.37 nm ( Nanometer) or more, non-graphitizable carbon or graphite having a (002) plane spacing of 0.34 nm or less], tin (simple), tin compound, silicon (simple), silicon compound (SiOx: x <2), Use of a silicon alloy (Si-M alloy: M is at least one selected from the group consisting of Al, Ni, Cu, Fe, Ti and Mn), a metal compound, etc., alone or in combination of two or more Can be.
Among these, it is preferable to use a highly crystalline carbon material or metal compound such as artificial graphite or natural graphite in terms of the ability to insert and extract lithium ions.
 高結晶性の炭素材料としては、格子面(002)の面間隔(d002)が0.340nm以下、特に0.335~0.337nmである黒鉛型結晶構造を有する炭素材料が好ましい。
 複数の扁平状の黒鉛質微粒子が互いに非平行に集合或いは結合した塊状構造を有する人造黒鉛粒子や、例えば鱗片状天然黒鉛粒子に圧縮力、摩擦力、剪断力等の機械的作用を繰り返し与え、球形化処理を施した黒鉛粒子を用いることにより、負極の集電体を除く部分の密度を1.5g/cm以上の密度に加圧成形したときの負極シートのX線回折測定から得られる黒鉛結晶の(110)面のピーク強度I(110)と(004)面のピーク強度I(004)の比I(110)/I(004)が0.01以上となると一段と正極活物質からの金属溶出量の改善と、充電保存特性が向上するので好ましく、0.05以上となることがより好ましく、0.1以上となることが更に好ましい。また、過度に処理し過ぎて結晶性が低下し電池の放電容量が低下する場合があるので、I(110)/I(004)の上限は0.5以下が好ましく、0.3以下がより好ましい。
 また、高結晶性の炭素材料(コア材)はコア材よりも低結晶性の炭素材料によって被膜されていると、高温充電保存特性が一段と良好となるので好ましい。被覆の炭素材料の結晶性は、透過電子顕微鏡(TEM)により確認することができる。
 高結晶性の炭素材料を使用すると、一般的に、充電時において非水電解液と反応し、界面抵抗の増加によって高温充電保存特性を低下させる傾向があるが、本発明に係るリチウム二次電池では高温充電保存特性が良好となる。
As the highly crystalline carbon material, a carbon material having a graphite-type crystal structure in which the plane spacing (d 002 ) of the lattice plane (002) is 0.340 nm or less, particularly 0.335 to 0.337 nm is preferable.
A plurality of flat graphitic fine particles are aggregated non-parallel to each other or artificial graphite particles having a massive structure combined with each other, for example, compressive force on flake-like natural graphite particles, mechanical force such as frictional force, shear force, etc. By using the graphite particles subjected to the spheroidizing treatment, the density of the part excluding the current collector of the negative electrode can be obtained from the X-ray diffraction measurement of the negative electrode sheet when the density is 1.5 g / cm 3 or more. When the ratio I (110) / I (004) of the peak intensity I (110) of the (110) plane and the peak intensity I (004) of the (004) plane of the graphite crystal becomes 0.01 or more, the more the positive electrode active material becomes, It is preferable because it improves the metal elution amount and the charge storage characteristics, and is more preferably 0.05 or more, and even more preferably 0.1 or more. Further, since excessive treatment may reduce the crystallinity and decrease the discharge capacity of the battery, the upper limit of I (110) / I (004) is preferably 0.5 or less, more preferably 0.3 or less. preferable.
Further, it is preferable that the highly crystalline carbon material (core material) is coated with a carbon material having lower crystallinity than the core material, because the high-temperature charge storage characteristics are further improved. The crystallinity of the carbon material of the coating can be confirmed by a transmission electron microscope (TEM).
When a highly crystalline carbon material is used, it generally reacts with a non-aqueous electrolyte during charging, and tends to decrease high-temperature charge storage characteristics due to an increase in interface resistance. In this case, the high-temperature charge storage characteristics are improved.
 また、負極活物質としてのリチウムイオンを吸蔵及び放出可能な金属化合物としては、Si、Ge、Sn、Pb、P、Sb、Bi、Al、Ga、In、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ag、Mg、Sr、Ba等の金属元素を少なくとも1種含有する化合物が挙げられる。これらの金属化合物は単体、合金、酸化物、窒化物、硫化物、硼化物、リチウムとの合金等、何れの形態で用いてもよいが、単体、合金、酸化物、リチウムとの合金が電池をより高容量化できるので好ましい。これらの中でも、Si、Ge及びSnから選ばれる少なくとも1種の元素を含有するものが好ましく、Si及びSnから選ばれる少なくとも1種の元素を含むものが電池をより高容量化できるので特に好ましい。 Examples of the metal compound capable of inserting and extracting lithium ions as the negative electrode active material include Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Examples include compounds containing at least one metal element such as Cu, Zn, Ag, Mg, Sr, and Ba. These metal compounds may be used in any form such as a simple substance, an alloy, an oxide, a nitride, a sulfide, a boride, and an alloy with lithium. Is preferable because the capacity can be further increased. Among these, those containing at least one element selected from Si, Ge, and Sn are preferable, and those containing at least one element selected from Si and Sn are particularly preferable because the capacity of the battery can be further increased.
 また、負極活物質としてのリチウムイオンを吸蔵及び放出可能なチタン原子を含有するチタン複合金属酸化物が挙げられる。これらのチタン複合金属酸化物は充放電時の膨張収縮が小さく、難燃性であるため、電池の安全性を高める面では好ましい。
 チタン複合金属酸化物としては、リチウムチタン複合酸化物、及びニオブチタン複合酸化物から選ばれる1種以上が挙げられる。
 リチウムチタン複合酸化物としては、一般式LiTi5-x12で表されるスピネル型の結晶構造を有するリチウムチタン複合酸化物が好ましい。ここで、Mは、Tiサイトに置換される元素であり、Mn、Fe、V、及びNbから選ばれる少なくとも1つの元素である。
 ニオブチタン複合酸化物としては、TiNb、TiNb1029、TiNb1437、TiNb2462等が挙げられるが、TiNbが好ましい。
 チタン複合金属酸化物の中では、電池特性を向上させる観点から、チタン酸リチウム(LiTi12)が好ましい。
Further, a titanium composite metal oxide containing a titanium atom capable of occluding and releasing lithium ions as a negative electrode active material may be used. Since these titanium composite metal oxides have small expansion and contraction during charge and discharge and are flame-retardant, they are preferable from the viewpoint of enhancing battery safety.
Examples of the titanium composite metal oxide include at least one selected from a lithium titanium composite oxide and a niobium titanium composite oxide.
As the lithium-titanium composite oxide, a lithium-titanium composite oxide having a spinel-type crystal structure represented by a general formula Li 4 Ti 5-xM x O 12 is preferable. Here, M is an element substituted for a Ti site, and is at least one element selected from Mn, Fe, V, and Nb.
Examples of the niobium titanium composite oxide include TiNb 2 O 7 , Ti 2 Nb 10 O 29 , TiNb 14 O 37 , and TiNb 24 O 62 , with TiNb 2 O 7 being preferred.
Among the titanium composite metal oxides, lithium titanate (Li 4 Ti 5 O 12 ) is preferable from the viewpoint of improving battery characteristics.
 負極は、上記の正極の作製と同様な導電剤、結着剤、高沸点溶剤を用いて混練して負極合剤とした後、この負極合剤を集電体の銅箔等に塗布して、乾燥、加圧成型した後、50℃~250℃程度の温度で2時間程度真空下加熱処理することにより作製することができる。
 負極の集電体を除く部分の密度は、通常は1.1g/cm以上であり、電池容量を更に高めるため、好ましくは1.5g/cm以上であり、より好ましくは1.7g/cm以上である。なお、上限は2g/cm以下が好ましい。
The negative electrode was kneaded using the same conductive agent, binder, and high boiling point solvent as in the preparation of the above positive electrode to form a negative electrode mixture, and then applied this negative electrode mixture to a copper foil or the like of a current collector. After drying, pressing and molding, it can be produced by performing a heat treatment under vacuum at a temperature of about 50 ° C. to 250 ° C. for about 2 hours.
The density of the portion of the negative electrode excluding the current collector is usually 1.1 g / cm 3 or more, and preferably 1.5 g / cm 3 or more, more preferably 1.7 g / cm 3 to further increase the battery capacity. cm 3 or more. Note that the upper limit is preferably 2 g / cm 3 or less.
 以上を纏めると、双性イオンとしてトリエチル(スルホプロピル)アンモニウムや(トリブチルホスホニオ)プロピルスルホネート等を用いる場合は、正極活物質としてスピネル型マンガン酸リチウム(LiMn)を使用し、負極活物質としてチタン複合金属酸化物、特にLiTi12を使用することが好ましい。
 双性イオンとして、前記一般式(IV)、(VIII)、(XI)又は(XII)で表される化合物を用いる場合は、正極活物質としては、マンガンを含有するリチウム複合金属酸化物が好ましく、スピネル型構造を有するマンガンリチウム複合金属酸化物がより好ましく、スピネル型マンガン酸リチウム(LiMn)が更に好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上を使用することが好ましい。
 双性イオンとして、前記一般式(VII)又は(VII-1)で表される化合物を用いる場合は、正極活物質としては、スピネル型構造を有するマンガンリチウム複合金属酸化物が好ましく、スピネル型マンガン酸リチウムがより好ましく、負極活物質としては、リチウムを吸蔵及び放出することが可能な炭素材料を使用することが好ましい。
In summary, when triethyl (sulfopropyl) ammonium or (tributylphosphonio) propylsulfonate is used as the zwitterion, spinel-type lithium manganate (LiMn 2 O 4 ) is used as the positive electrode active material and the negative electrode active material is used. It is preferable to use a titanium composite metal oxide, particularly Li 4 Ti 5 O 12 as the substance.
When a compound represented by the above general formula (IV), (VIII), (XI) or (XII) is used as the zwitterion, a lithium composite metal oxide containing manganese is preferable as the positive electrode active material. And a manganese lithium composite metal oxide having a spinel type structure is more preferable, and spinel type lithium manganate (LiMn 2 O 4 ) is further preferable. As a negative electrode active material, a carbon material capable of inserting and extracting lithium, And at least one selected from titanium composite metal oxides.
When a compound represented by the above general formula (VII) or (VII-1) is used as the zwitterion, a manganese lithium composite metal oxide having a spinel structure is preferable as the positive electrode active material. Lithium oxide is more preferable, and as the negative electrode active material, a carbon material capable of inserting and extracting lithium is preferably used.
 また、リチウム一次電池用の負極活物質としては、リチウム金属又はリチウム合金が挙げられる。 Further, as the negative electrode active material for the lithium primary battery, lithium metal or lithium alloy is given.
 リチウム電池の構造には特に限定はなく、単層又は複層のセパレータを有するコイン型電池、円筒型電池、角型電池、ラミネート電池等を適用できる。
 電池用セパレータとしては、特に制限はされないが、ポリプロピレン、ポリエチレン等のポリオレフィンの単層又は積層の微多孔性フィルム、織布、不織布等を使用できる。
The structure of the lithium battery is not particularly limited, and a coin battery, a cylindrical battery, a square battery, a laminated battery, or the like having a single-layer or multiple-layer separator can be applied.
The battery separator is not particularly limited, and a single-layer or laminated microporous film, woven fabric, non-woven fabric, or the like of polyolefin such as polypropylene and polyethylene can be used.
 本発明におけるリチウム二次電池は、充電終止電圧が4.2V以上、特に4.3V以上の場合にも高温充電保存特性に優れ、更に、4.4V以上においても特性は良好である。放電終止電圧は、通常2.8V以上、更には2.5V以上とすることができるが、本発明におけるリチウム二次電池は、2.0V以上とすることができる。電流値については特に限定されないが、通常0.1~30Cの範囲で使用される。また、本発明におけるリチウム電池は、-40~100℃、好ましくは-10~80℃で充放電することができる。 (4) The lithium secondary battery of the present invention has excellent high-temperature charge storage characteristics even when the end-of-charge voltage is 4.2 V or higher, particularly 4.3 V or higher, and has good characteristics even at 4.4 V or higher. The discharge end voltage can be usually 2.8 V or more, and more preferably 2.5 V or more, but the lithium secondary battery of the present invention can be 2.0 V or more. The current value is not particularly limited, but is usually used in the range of 0.1 to 30C. Further, the lithium battery of the present invention can be charged and discharged at -40 to 100 ° C, preferably at -10 to 80 ° C.
 本発明においては、リチウム電池の内圧上昇の対策として、電池蓋に安全弁を設けたり、電池缶やガスケット等の部材に切り込みを入れる方法も採用することができる。また、過充電防止の安全対策として、電池の内圧を感知して電流を遮断する電流遮断機構を電池蓋に設けることができる。 In the present invention, as a countermeasure against an increase in the internal pressure of the lithium battery, a method of providing a safety valve in the battery lid or making a cut in a member such as a battery can or a gasket can be adopted. Further, as a safety measure for preventing overcharge, a current cutoff mechanism that detects the internal pressure of the battery and cuts off the current can be provided in the battery lid.
〔第2の蓄電デバイス(電気二重層キャパシタ)〕
 本発明に係る第2の蓄電デバイスは、本発明の非水電解液を含み、電解液と電極界面の電気二重層容量を利用してエネルギーを貯蔵する蓄電デバイスである。本発明の一例は、電気二重層キャパシタである。この蓄電デバイスに用いられる最も典型的な電極活物質は、活性炭である。電気二重層容量は概ね表面積に比例して増加する。
[Second power storage device (electric double layer capacitor)]
A second power storage device according to the present invention is a power storage device that includes the nonaqueous electrolytic solution of the present invention and stores energy by utilizing the electric double layer capacity of the electrolytic solution and the electrode interface. One example of the present invention is an electric double layer capacitor. The most typical electrode active material used for this electricity storage device is activated carbon. The electric double layer capacity generally increases in proportion to the surface area.
〔第3の蓄電デバイス〕
 本発明に係る第3の蓄電デバイスは、本発明の非水電解液を含み、電極のドープ/脱ドープ反応を利用してエネルギーを貯蔵する蓄電デバイスである。この蓄電デバイスに用いられる電極活物質として、酸化ルテニウム、酸化イリジウム、酸化タングステン、酸化モリブデン、酸化銅等の金属酸化物や、ポリアセン、ポリチオフェン誘導体等のπ共役高分子が挙げられる。これらの電極活物質を用いたキャパシタは、電極のドープ/脱ドープ反応にともなうエネルギー貯蔵が可能である。
[Third power storage device]
A third power storage device according to the present invention is a power storage device that includes the non-aqueous electrolyte solution of the present invention and stores energy using a doping / dedoping reaction of an electrode. Examples of the electrode active material used in the power storage device include metal oxides such as ruthenium oxide, iridium oxide, tungsten oxide, molybdenum oxide, and copper oxide, and π-conjugated polymers such as polyacene and polythiophene derivatives. Capacitors using these electrode active materials can store energy due to the doping / dedoping reactions of the electrodes.
〔第4の蓄電デバイス(リチウムイオンキャパシタ)〕
 本発明に係る第4の蓄電デバイスは、本発明の非水電解液を含み、負極であるグラファイト等の炭素材料へのリチウムイオンのインターカレーションを利用してエネルギーを貯蔵する蓄電デバイスである。リチウムイオンキャパシタ(LIC)と呼ばれる。正極は、例えば活性炭電極と電解液との間の電気ニ重層を利用したものや、π共役高分子電極のドープ/脱ドープ反応を利用したもの等が挙げられる。電解液には少なくともLiPF等のリチウム塩が含まれる。
[Fourth power storage device (lithium ion capacitor)]
A fourth power storage device according to the present invention is a power storage device that includes the nonaqueous electrolyte solution of the present invention and stores energy by utilizing the intercalation of lithium ions into a carbon material such as graphite as a negative electrode. It is called a lithium ion capacitor (LIC). Examples of the positive electrode include one using an electric double layer between an activated carbon electrode and an electrolyte, and one using a doping / dedoping reaction of a π-conjugated polymer electrode. The electrolyte includes lithium salts such as at least LiPF 6.
〔リチウムイオン二次電池1の作製〕
(1)非水電解液1の調製
 各溶媒と電解質塩を所定量で混合し、表1及び2に記載の基準電解液を調製した。表1及び2に記載の電解質塩の濃度の単位Mはmol/Lを示す。
 基準電解液の組成はエチレンカーボネート(EC)が29.8質量%、メチルエチルカーボネート(MEC)が53.4質量%〔体積比でEC/MEC=3/7〕、ビニレンカーボネート(VC)が1.0質量%、LiPFが8.4質量%(0.7M)、LiN(SOF)(LiFSI)が7.4質量%(0.5M)となる。
 実施例1では、基準電解液に対して、双性イオンとして2-(トリエチルアンモニオ)エチルサルフェート(構造式4の化合物)0.5質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液を調製した。
 実施例2では、基準電解液に対して、双性イオンとして2-ドデシルジメチル(カルボキシラトメチル)アンモニウム0.43質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液1を調製した。
 表1及び2に記載の含有量は、前記調製した電解液を、高速液体クロマトグラフィーを用いて分析した値である。
[Production of lithium ion secondary battery 1]
(1) Preparation of Nonaqueous Electrolyte Solution 1 Each solvent and electrolyte salt were mixed in a predetermined amount to prepare reference electrolyte solutions shown in Tables 1 and 2. The unit M of the concentration of the electrolyte salt shown in Tables 1 and 2 indicates mol / L.
The composition of the reference electrolyte was 29.8% by mass of ethylene carbonate (EC), 53.4% by mass of methyl ethyl carbonate (MEC) [EC / MEC = 3/7 by volume ratio], and 1 of vinylene carbonate (VC). 0.0% by mass, LiPF 6 is 8.4% by mass (0.7M), and LiN (SO 2 F) 2 (LiFSI) is 7.4% by mass (0.5M).
In Example 1, 0.5% by mass of 2- (triethylammonio) ethyl sulfate (compound of the structural formula 4) was added as a zwitterion to a reference electrolyte solution, and the mixture was stirred for 12 hours or more. Filtration was performed using a 45 μm membrane filter to prepare a non-aqueous electrolyte.
In Example 2, 0.43% by mass of 2-dodecyldimethyl (carboxylatomethyl) ammonium was added as a zwitterion to the reference electrolyte, and the mixture was stirred for 12 hours or more, and then a 0.45 μm membrane filter was used. And filtered to prepare a non-aqueous electrolyte 1.
The contents described in Tables 1 and 2 are values obtained by analyzing the prepared electrolyte solution using high performance liquid chromatography.
(2)電池1の作製
 LiMn(正極活物質)90質量%、アセチレンブラック6質量%を混合し、予めポリフッ化ビニリデン(結着剤)4質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。
 また、天然黒鉛(負極活物質)98質量%と、カルボキシメチルセルロース(増粘剤)1質量%、スチレンブタジエンゴム(結着剤)1質量%を水に溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストを銅箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、前記(1)で調製した非水電解液を加えて、表1及び2に示すラミネート型電池1を作製した。
(2) Preparation of Battery 1 90% by mass of LiMn 2 O 4 (positive electrode active material) and 6% by mass of acetylene black were mixed, and 4% by mass of polyvinylidene fluoride (binder) was previously converted to 1-methyl-2-pyrrolidone. The mixture was added to the dissolved solution and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one surface of an aluminum foil (current collector), dried, pressurized, and cut into a predetermined size to produce a rectangular positive electrode sheet.
Further, 98% by mass of natural graphite (negative electrode active material), 1% by mass of carboxymethyl cellulose (thickener), and 1% by mass of styrene butadiene rubber (binder) were added to a solution dissolved in water and mixed. , To prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to one surface of a copper foil (current collector), dried, pressurized, and cut into a predetermined size to prepare a negative electrode sheet. Then, a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet were laminated in this order, and the nonaqueous electrolyte prepared in the above (1) was added to produce a laminated battery 1 shown in Tables 1 and 2.
〔リチウムイオン二次電池2の作製〕
(1)非水電解液2の調製
 各溶媒と電解質塩を一定量で混合し、表3に記載の基準電解液を調製した。
 基準電解液の質量比で示した組成はプロピレンカーボネート(PC)が32.2質量%、ジエチルカーボネート(DEC)が52.0質量%〔体積比でPC/DEC=1/2〕、LiPFが15.8質量%(1.3M)となる。
 基準電解液に対して、双性イオンとしてトリエチル(スルホプロピル)アンモニウム0.5質量%を加え、12時間以上攪拌させた後、0.45μmのメンブレンフィルターを用いてろ過して、非水電解液2を調製した。
[Production of lithium ion secondary battery 2]
(1) Preparation of Nonaqueous Electrolyte Solution 2 Each solvent and an electrolyte salt were mixed in a fixed amount to prepare a reference electrolyte solution shown in Table 3.
The composition indicated by the mass ratio of the reference electrolyte was 32.2 mass% of propylene carbonate (PC), 52.0 mass% of diethyl carbonate (DEC) [PC / DEC = 1/2 by volume ratio], and LiPF 6 It becomes 15.8 mass% (1.3M).
0.5 mass% of triethyl (sulfopropyl) ammonium was added as a zwitterion to the reference electrolyte, and the mixture was stirred for 12 hours or more, and then filtered using a 0.45 μm membrane filter to obtain a nonaqueous electrolyte. 2 was prepared.
(2)電池2の作製
 LiMn(正極活物質)90質量%、アセチレンブラック6質量%を混合し、予めポリフッ化ビニリデン(結着剤)4質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、正極合剤ペーストを調製した。この正極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、矩形の正極シートを作製した。
 また、チタン酸リチウム(LiTi12:負極活物質)95質量%と、炭素系導電剤2質量%を混合し、予めポリフッ化ビニリデン(結着剤)3質量%を1-メチル-2-ピロリドンに溶解させておいた溶液に加えて混合し、負極合剤ペーストを調製した。この負極合剤ペーストをアルミニウム箔(集電体)上の片面に塗布し、乾燥、加圧処理して所定の大きさに裁断し、負極シートを作製した。そして、正極シート、微多孔性ポリエチレンフィルム製セパレータ、負極シートの順に積層し、前記(1)で調製した非水電解液を加えて、表3に示すラミネート型電池2を作製した。
(2) Preparation of Battery 2 90% by mass of LiMn 2 O 4 (positive electrode active material) and 6% by mass of acetylene black were mixed, and 4% by mass of polyvinylidene fluoride (binder) was previously converted to 1-methyl-2-pyrrolidone. The mixture was added to the dissolved solution and mixed to prepare a positive electrode mixture paste. This positive electrode mixture paste was applied to one surface of an aluminum foil (current collector), dried, pressurized, and cut into a predetermined size to produce a rectangular positive electrode sheet.
Also, 95% by mass of lithium titanate (Li 4 Ti 5 O 12 : negative electrode active material) and 2% by mass of a carbon-based conductive agent are mixed, and 3% by mass of polyvinylidene fluoride (binder) is added to 1-methyl- The mixture was added to and mixed with the solution dissolved in 2-pyrrolidone to prepare a negative electrode mixture paste. This negative electrode mixture paste was applied to one surface of an aluminum foil (current collector), dried, pressurized, and cut into a predetermined size to prepare a negative electrode sheet. Then, a positive electrode sheet, a microporous polyethylene film separator, and a negative electrode sheet were laminated in this order, and the non-aqueous electrolyte prepared in the above (1) was added to produce a laminated battery 2 shown in Table 3.
〔高温充電保存後の放電容量回復率、ガス発生量、交流抵抗の評価〕
上記の方法で作製した電池を用いて45℃の恒温槽中、0.2Cの定電流及び定電圧で充電終止電圧4.2V、放電終止電圧2.7Vで3サイクル充放電を行った。前記3サイクルの充放電までを当明細書では前処理と定義する。45℃の恒温槽中、0.2Cの定電流値で1時間充電を行い、60℃の恒温槽中で20日間静置した後、45℃の恒温槽中で0.2Cの定電流下終止電圧2.7Vまで放電した。前記45℃条件下での0.2C定電流1時間充電から60℃での静置、45℃条件の放電までを当明細書では高温保存試験と定義する。高温充電保存後の放電容量回復率、ガス発生量、交流抵抗値を表1~表2に示す。
 放電容量回復率(%)は下記の式にて算出した。
 放電容量回復率(%)=(高温保存試験後の放電容量/高温保存試験前の放電容量)×100
 上記式での放電容量とは、高温保存試験前後に45℃の恒温槽中、0.2Cの定電流及び定電圧で充電終止電圧4.2V、放電終止電圧2.7Vで充放電を行なったときの放電容量である。放電容量回復率(%)は、高温保存時における電池容量低下の程度を示す指標となる。
 ガス発生量は、高温保存試験後のガス量をアルキメデス法で測定し、比較例1で発生したガス量を100%としたときの相対値である。
 交流抵抗値は、高温保存試験前後に充電率50%、0℃の恒温槽中で100mHzの交流インピーダンスの実部の抵抗値を測定し、比較例1で測定した値を100%としたときの相対値である。
(Evaluation of discharge capacity recovery rate, gas generation amount, AC resistance after storage at high temperature charge)
Using the battery prepared by the above method, charge / discharge was performed in a 45 ° C. constant temperature bath at a constant current and a constant voltage of 0.2 C at a charge end voltage of 4.2 V and at a discharge end voltage of 2.7 V for three cycles. In this specification, up to the three cycles of charging and discharging are defined as pretreatment. After charging for 1 hour at a constant current value of 0.2C in a constant temperature bath of 45 ° C, leaving it to stand in a constant temperature bath of 60 ° C for 20 days, terminating in a constant temperature bath of 45 ° C under a constant current of 0.2C. The battery was discharged to a voltage of 2.7V. In this specification, a high-temperature preservation test is defined as a process from charging at a constant current of 0.2 C at 45 ° C. for one hour to standing at 60 ° C. and discharging at 45 ° C. Tables 1 and 2 show the discharge capacity recovery rate, gas generation amount, and AC resistance value after high-temperature charge storage.
The discharge capacity recovery rate (%) was calculated by the following equation.
Discharge capacity recovery rate (%) = (discharge capacity after high-temperature storage test / discharge capacity before high-temperature storage test) × 100
The discharge capacity in the above formula means that charge and discharge were performed at a constant current of 0.2 C and a constant voltage of 4.2 V and a discharge end voltage of 2.7 V in a constant temperature bath at 45 ° C. before and after a high-temperature storage test. It is the discharge capacity at the time. The discharge capacity recovery rate (%) is an index indicating the degree of battery capacity reduction during high-temperature storage.
The gas generation amount is a relative value when the gas amount after the high-temperature storage test is measured by the Archimedes method and the gas amount generated in Comparative Example 1 is 100%.
The AC resistance value was obtained by measuring the resistance value of the real part of the AC impedance at 100 mHz in a constant temperature bath of 50% and 0 ° C. before and after the high-temperature storage test, and setting the value measured in Comparative Example 1 to 100%. It is a relative value.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1から明らかなように、本発明の非水電解液を用いた実施例1では、比較例1に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率が向上し、また、発生ガス量、交流抵抗を抑制することができることが分かる。 As is clear from Table 1, in Example 1 using the non-aqueous electrolyte of the present invention, the decrease in battery capacity during high-temperature storage was smaller than that in Comparative Example 1, and as a result, the discharge capacity after high-temperature storage. It can be seen that the recovery rate is improved, and the amount of generated gas and AC resistance can be suppressed.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2から明らかなように、本発明の非水電解液を用いた実施例2では、比較例1、比較例2に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率を向上させることができることが分かる。 As is clear from Table 2, in Example 2 using the non-aqueous electrolyte of the present invention, the decrease in battery capacity during high-temperature storage was smaller than in Comparative Examples 1 and 2, and as a result, high-temperature storage was achieved. It is understood that the discharge capacity recovery rate can be improved later.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表3から明らかなように、本発明の非水電解液を用いた実施例3では、比較例3に比べて、高温保存時において電池容量の低下が少なく、その結果、高温保存後の放電容量回復率を向上させることができることが分かる。 As is clear from Table 3, in Example 3 using the non-aqueous electrolyte of the present invention, the decrease in battery capacity during high-temperature storage was smaller than that in Comparative Example 3, and as a result, the discharge capacity after high-temperature storage. It can be seen that the recovery rate can be improved.
 本発明の非水電解液を用いた蓄電デバイスは、高温充電保存特性を大幅に向上させることができるため、電気化学特性に優れたリチウム二次電池等の蓄電デバイスとして有用である。 The power storage device using the non-aqueous electrolyte of the present invention can greatly improve high-temperature charge storage characteristics, and is useful as a power storage device such as a lithium secondary battery having excellent electrochemical characteristics.

Claims (14)

  1.  非水溶媒に電解質塩が溶解されている非水電解液であって、下記一般式(I)で表される双性イオンを含有することを特徴とする非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    (式(I)中、Qは、下記式(II)又は(III)で示されるカチオン性基である。
     Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
     Aで示されるアニオン性基は、スルホネート基又はカルボキシラト基である。)
    Figure JPOXMLDOC01-appb-C000002

    (式(II)中、R~Rは、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。
     式(III)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
     *は、Lとの結合部位を示す。)
    A non-aqueous electrolytic solution in which an electrolyte salt is dissolved in a non-aqueous solvent, comprising a zwitterion represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (I), Q + is a cationic group represented by the following formula (II) or (III).
    L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group.
    A - anionic group represented by is a sulfonate or carboxylato group. )
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (II), R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, It represents a fluorinated alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms.
    In the formula (III), R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
    * Indicates a binding site with L 1. )
  2.  双性イオンが、下記一般式(IV)で表される化合物、及び下記一般式(VII)で表される化合物から選ばれる一種以上である、請求項1に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000003

    (式(IV)中、Qは、下記式(V)又は(VI)で示されるカチオン性基である。
     Lは、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。)
    Figure JPOXMLDOC01-appb-C000004

    (式(V)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
     式(VI)中、R10~R12は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
     *は、Lとの結合部位を示す。)
    Figure JPOXMLDOC01-appb-C000005

    (式(VII)中、Lは炭素数1~5のアルキレン基を示す。
     R13~R15は、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。但し、R13~R15の少なくとも1つは炭素数3~15のアルキル基である。)
    The non-aqueous electrolyte according to claim 1, wherein the zwitterion is at least one selected from a compound represented by the following general formula (IV) and a compound represented by the following general formula (VII).
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (IV), Q + is a cationic group represented by the following formula (V) or (VI).
    L 2 represents a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or an alkyleneoxy group having 1 to 4 carbon atoms. )
    Figure JPOXMLDOC01-appb-C000004

    (In the formula (V), R 7 to R 9 are each independently an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, It represents a fluorinated alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms.
    In the formula (VI), R 10 to R 12 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
    * Indicates a binding site of the L 2. )
    Figure JPOXMLDOC01-appb-C000005

    (In the formula (VII), L 3 represents an alkylene group having 1 to 5 carbon atoms.
    R 13 to R 15 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, or a fluorinated alkenyl having 2 to 15 carbon atoms A alkynyl group having 3 to 15 carbon atoms or a fluorinated alkynyl group having 3 to 15 carbon atoms. However, at least one of R 13 to R 15 is an alkyl group having 3 to 15 carbon atoms. )
  3.  双性イオンが、下記一般式(VIII)で表される化合物である、請求項1又は2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000006

    (式(VIII)中、Qは、下記式(IX)又は(X)で示されるカチオン性基である。
     Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、又は炭素数2~5のフッ素化アルケニレン基を示す。)
    Figure JPOXMLDOC01-appb-C000007

    (式(IX)中、R16~R18は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のフッ素化アルキル基、炭素数2~5のアルケニル基、炭素数2~5のフッ素化アルケニル基、炭素数3~5のアルキニル基、又は炭素数3~5のフッ素化アルキニル基を示す。
     式(X)中、R19~R21は、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
     *は、Lとの結合部位を示す。)
    3. The non-aqueous electrolyte according to claim 1, wherein the zwitterion is a compound represented by the following general formula (VIII).
    Figure JPOXMLDOC01-appb-C000006

    (In the formula (VIII), Q + is a cationic group represented by the following formula (IX) or (X).
    L 4 represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, or a fluorinated alkenylene group having 2 to 5 carbon atoms. )
    Figure JPOXMLDOC01-appb-C000007

    (In the formula (IX), R 16 to R 18 each independently represent an alkyl group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, It represents a fluorinated alkenyl group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, or a fluorinated alkynyl group having 3 to 5 carbon atoms.
    In the formula (X), R 19 to R 21 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
    * Indicates a binding site of the L 4. )
  4.  双性イオンが、下記一般式(XI)で表される化合物、及び下記一般式(XII)で表される化合物から選ばれる一種以上である、請求項3に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000008

    (式(XI)中のL及び式(XII)中のLは、炭素数2又は3のアルキレン基を示す。
     式(XI)中、R16~R18は、それぞれ独立して、炭素数1~3のアルキル基を示す。
     式(XII)中、R19~R21は、それぞれ独立して、炭素数1~3のアルキル基又はジメチルアミノ基を示す。)
    The non-aqueous electrolyte according to claim 3, wherein the zwitterion is at least one selected from a compound represented by the following general formula (XI) and a compound represented by the following general formula (XII).
    Figure JPOXMLDOC01-appb-C000008

    (L 5 in the formula (XI) and L 6 in the formula (XII) represent an alkylene group having 2 or 3 carbon atoms.
    In the formula (XI), R 16 to R 18 each independently represent an alkyl group having 1 to 3 carbon atoms.
    In the formula (XII), R 19 to R 21 each independently represent an alkyl group having 1 to 3 carbon atoms or a dimethylamino group. )
  5.  双性イオンが、2-(トリメチルアンモニオ)エチルサルフェート、2-(トリエチルアンモニオ)エチルサルフェート、2-(トリプロピルアンモニオ)エチルサルフェート、3-(トリメチルアンモニオ)プロピルサルフェート、3-(トリエチルアンモニオ)プロピルサルフェート、3-(トリプロピルアンモニオ)プロピルサルフェート、2-(トリブチルホスホニオ)エチルサルフェート、2-(トリスジメチルアミノホスホニオ)エチルサルフェート、及び3-(トリブチルホスホニオ)プロピルサルフェートからなる群より選ばれる1種以上である、請求項3又は4に記載の非水電解液。 The zwitterions are 2- (trimethylammonio) ethyl sulfate, 2- (triethylammonio) ethyl sulfate, 2- (tripropylammonio) ethyl sulfate, 3- (trimethylammonio) propyl sulfate, 3- (triethyl) From (ammonio) propyl sulfate, 3- (tripropylammonio) propyl sulfate, 2- (tributylphosphonio) ethyl sulfate, 2- (trisdimethylaminophosphonio) ethyl sulfate, and 3- (tributylphosphonio) propyl sulfate The non-aqueous electrolyte according to claim 3, wherein the non-aqueous electrolyte is at least one selected from the group consisting of:
  6.  双性イオンが、下記一般式(VII-1)で表される化合物である、請求項1又は2に記載の非水電解液。
    Figure JPOXMLDOC01-appb-C000009

    (式(VII-1)中、Lはメチレン基であり、R13~R15が、それぞれ独立して炭素数1~15のアルキル基であり、R13~R15の少なくとも1つが炭素数3~15のアルキル基である。)
    3. The non-aqueous electrolyte according to claim 1, wherein the zwitterion is a compound represented by the following general formula (VII-1).
    Figure JPOXMLDOC01-appb-C000009

    (In the formula (VII-1), L 3 is a methylene group, R 13 to R 15 are each independently an alkyl group having 1 to 15 carbon atoms, and at least one of R 13 to R 15 is a carbon atom group. 3 to 15 alkyl groups.)
  7.  前記一般式(VII-1)で表される双性イオンが、2-ブチルジメチル(カルボキシラトメチル)アンモニウム、2-ヘキシルジメチル(カルボキシラトメチル)アンモニウム、2-オクチルジメチル(カルボキシラトメチル)アンモニウム、2-デシルジメチル(カルボキシラトメチル)アンモニウム、及び2-ドデシルジメチル(カルボキシラトメチル)アンモニウムからなる群より選ばれる1種以上である、請求項6に記載の非水電解液。 A zwitterion represented by the general formula (VII-1), 2-butyldimethyl (carboxylatomethyl) ammonium, 2-hexyldimethyl (carboxylatomethyl) ammonium, 2-octyldimethyl (carboxylatomethyl) ammonium, 7. The non-aqueous electrolyte according to claim 6, wherein the non-aqueous electrolyte is at least one selected from the group consisting of 2-decyldimethyl (carboxylatomethyl) ammonium and 2-dodecyldimethyl (carboxylatomethyl) ammonium.
  8.  非水溶媒が、環状カーボネートと鎖状エステルを含む、請求項1~7のいずれかに記載の非水電解液。 8. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous solvent contains a cyclic carbonate and a chain ester.
  9.  非水電解液が、無機リチウム塩、フッ化アルキル基を含有するリチウム塩、フッ素原子を有するリチウムイミド塩、及びシュウ酸構造を有するリチウム塩から選ばれる1種以上のリチウム塩を含む、請求項1~8のいずれかに記載の非水電解液。 The non-aqueous electrolyte contains at least one lithium salt selected from an inorganic lithium salt, a lithium salt having a fluorinated alkyl group, a lithium imide salt having a fluorine atom, and a lithium salt having an oxalic acid structure. 9. The non-aqueous electrolyte according to any one of 1 to 8.
  10.  非水電解液が、無機リチウム塩及びフッ素原子を有するリチウムイミド塩を含む、請求項1~9のいずれかに記載の非水電解液。 10. The non-aqueous electrolyte according to any one of claims 1 to 9, wherein the non-aqueous electrolyte contains an inorganic lithium salt and a lithium imide salt having a fluorine atom.
  11.  正極、負極、及び非水溶媒に電解質塩が溶解されている非水電解液を備えた蓄電デバイスであって、該非水電解液が下記一般式(I)で表される双性イオンを含有することを特徴とする蓄電デバイス。
    Figure JPOXMLDOC01-appb-C000010

    (式(I)中、Qは、下記式(II)又は(III)で示されるカチオン性基である。
     Lは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、炭素数2~5のアルケニレン基、炭素数2~5のフッ素化アルケニレン基、又は炭素数1~4のアルキレンオキシ基を示す。
     Aで表されるアニオン性基は、スルホネート基又はカルボキシラト基である。)
    Figure JPOXMLDOC01-appb-C000011

    (式(II)中、R~Rは、それぞれ独立して、炭素数1~15のアルキル基、炭素数1~15のフッ素化アルキル基、炭素数2~15のアルケニル基、炭素数2~15のフッ素化アルケニル基、炭素数3~15のアルキニル基、又は炭素数3~15のフッ素化アルキニル基を示す。
     式(III)中、R~Rは、それぞれ独立して、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、炭素数1~5のフッ素化アルキル基、炭素数1~5のフッ素化アルコキシ基、炭素数2~5のアルケニル基、炭素数2~5のアルケニルオキシ基、炭素数2~5のフッ素化アルケニルオキシ基、炭素数3~5のアルキニル基、炭素数3~5のアルキニルオキシ基、炭素数3~5のフッ素化アルキニル基、炭素数3~5のフッ素化アルキニルオキシ基、ジメチルアミノ基、又はジエチルアミノ基を示す。
     *は、Lとの結合部位を示す。)
    A power storage device including a positive electrode, a negative electrode, and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent, wherein the non-aqueous electrolyte contains a zwitterion represented by the following general formula (I). An electricity storage device characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000010

    (In the formula (I), Q + is a cationic group represented by the following formula (II) or (III).
    L 1 is an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms, a fluorinated alkenylene group having 2 to 5 carbon atoms, or 1 to 4 carbon atoms. Represents an alkyleneoxy group.
    A - anionic group represented by is a sulfonate or carboxylato group. )
    Figure JPOXMLDOC01-appb-C000011

    (In the formula (II), R 1 to R 3 each independently represent an alkyl group having 1 to 15 carbon atoms, a fluorinated alkyl group having 1 to 15 carbon atoms, an alkenyl group having 2 to 15 carbon atoms, It represents a fluorinated alkenyl group having 2 to 15 carbon atoms, an alkynyl group having 3 to 15 carbon atoms, or a fluorinated alkynyl group having 3 to 15 carbon atoms.
    In the formula (III), R 4 to R 6 each independently represent an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a fluorinated alkyl group having 1 to 5 carbon atoms, A fluorinated alkoxy group having 2 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, an alkenyloxy group having 2 to 5 carbon atoms, a fluorinated alkenyloxy group having 2 to 5 carbon atoms, an alkynyl group having 3 to 5 carbon atoms, It represents an alkynyloxy group having 3 to 5, a fluorinated alkynyl group having 3 to 5 carbon atoms, a fluorinated alkynyloxy group having 3 to 5 carbon atoms, a dimethylamino group, or a diethylamino group.
    * Indicates a binding site with L 1. )
  12.  正極の活物質が、リチウム複合金属酸化物を含む、請求項11に記載の蓄電デバイス。 The power storage device according to claim 11, wherein the active material of the positive electrode includes a lithium composite metal oxide.
  13.  正極の活物質が、マンガンを含有するリチウム複合金属酸化物であり、
     負極の活物質が、リチウムを吸蔵及び放出することが可能な炭素材料、及びチタン複合金属酸化物から選ばれる1種以上である、請求項11又は12に記載の蓄電デバイス。
    The active material of the positive electrode is a lithium composite metal oxide containing manganese,
    The power storage device according to claim 11 or 12, wherein the negative electrode active material is at least one selected from a carbon material capable of inserting and extracting lithium and a titanium composite metal oxide.
  14.  正極の活物質が、スピネル型構造を有するマンガンリチウム複合金属酸化物であり、負極の活物質がチタン複合金属酸化物である、請求項13に記載の蓄電デバイス。
     
    14. The power storage device according to claim 13, wherein the active material of the positive electrode is a manganese lithium composite metal oxide having a spinel structure, and the active material of the negative electrode is a titanium composite metal oxide.
PCT/JP2019/026284 2018-07-17 2019-07-02 Nonaqueous electrolyte solution and electricity storage device using same WO2020017318A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020531219A JP7344874B2 (en) 2018-07-17 2019-07-02 Non-aqueous electrolyte and power storage device using it

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-134203 2018-07-17
JP2018134203 2018-07-17
JP2019022001 2019-02-08
JP2019-022001 2019-09-30

Publications (1)

Publication Number Publication Date
WO2020017318A1 true WO2020017318A1 (en) 2020-01-23

Family

ID=69164024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026284 WO2020017318A1 (en) 2018-07-17 2019-07-02 Nonaqueous electrolyte solution and electricity storage device using same

Country Status (2)

Country Link
JP (2) JP7344874B2 (en)
WO (1) WO2020017318A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187625A1 (en) 2020-03-19 2021-09-23 三菱ケミカル株式会社 Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution
CN114245947A (en) * 2021-03-17 2022-03-25 宁德新能源科技有限公司 Electrolyte and electrochemical device comprising the same
JP7408223B2 (en) 2021-03-31 2024-01-05 エルジー エナジー ソリューション リミテッド Electrolyte additive for secondary batteries, non-aqueous electrolyte for lithium secondary batteries containing the same, and lithium secondary batteries
JP7504740B2 (en) 2020-09-25 2024-06-24 Muアイオニックソリューションズ株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, power storage device and triazine compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346897A (en) * 2002-05-30 2003-12-05 Sony Corp Battery
WO2016027788A1 (en) * 2014-08-22 2016-02-25 リンテック株式会社 Electrolyte composition, secondary battery, and method for using secondary battery
JP2019083154A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery, lithium ion secondary battery, and capacity recovering agent for lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210787A (en) * 2016-05-25 2017-11-30 公益財団法人鉄道総合技術研究所 Aseismatic structure of cut-and-cover tunnel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346897A (en) * 2002-05-30 2003-12-05 Sony Corp Battery
WO2016027788A1 (en) * 2014-08-22 2016-02-25 リンテック株式会社 Electrolyte composition, secondary battery, and method for using secondary battery
JP2019083154A (en) * 2017-10-31 2019-05-30 トヨタ自動車株式会社 Manufacturing method of lithium ion secondary battery, lithium ion secondary battery, and capacity recovering agent for lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187625A1 (en) 2020-03-19 2021-09-23 三菱ケミカル株式会社 Nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution
JP7504740B2 (en) 2020-09-25 2024-06-24 Muアイオニックソリューションズ株式会社 Additive for non-aqueous electrolyte, non-aqueous electrolyte, power storage device and triazine compound
CN114245947A (en) * 2021-03-17 2022-03-25 宁德新能源科技有限公司 Electrolyte and electrochemical device comprising the same
WO2022193179A1 (en) * 2021-03-17 2022-09-22 宁德新能源科技有限公司 Electrolyte and electrochemical device comprising same
JP7408223B2 (en) 2021-03-31 2024-01-05 エルジー エナジー ソリューション リミテッド Electrolyte additive for secondary batteries, non-aqueous electrolyte for lithium secondary batteries containing the same, and lithium secondary batteries

Also Published As

Publication number Publication date
JP7344874B2 (en) 2023-09-14
JPWO2020017318A1 (en) 2021-08-12
JP2023099207A (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6866183B2 (en) Non-aqueous electrolyte and storage device using it
JP6614146B2 (en) Non-aqueous electrolyte and power storage device using the same
JP5610052B2 (en) Nonaqueous electrolyte for lithium battery and lithium battery using the same
JP6222106B2 (en) Non-aqueous electrolyte and power storage device using the same
JP5392259B2 (en) Nonaqueous electrolyte and lithium battery using the same
US20140377668A1 (en) Nonaqueous electrolytic solution and energy storage device using same
JP7344874B2 (en) Non-aqueous electrolyte and power storage device using it
JP6229453B2 (en) Non-aqueous electrolyte and power storage device using the same
JP6737280B2 (en) Non-aqueous electrolyte for power storage device and power storage device using the same
JP7051422B2 (en) Non-aqueous electrolyte and storage device using it
US11462771B2 (en) Nonaqueous electrolyte solution and electricity storage device using same
JP6229452B2 (en) Non-aqueous electrolyte and power storage device using the same
JP7105077B2 (en) NONAQUEOUS ELECTROLYTE AND POWER STORAGE DEVICE USING THE SAME
JP6710804B1 (en) Non-aqueous electrolyte and power storage device using the same
JP6252200B2 (en) Non-aqueous electrolyte and power storage device using the same
JP7292237B2 (en) Storage device and non-aqueous electrolyte used therefor
JP7181115B2 (en) NONAQUEOUS ELECTROLYTE AND ELECTRICAL STORAGE DEVICE USING THE SAME
WO2020241506A1 (en) Non-aqueous electrolyte solution and power storage device using same
JP2022063588A (en) Nonaqueous electrolyte and power storage device using the same
JP2022024391A (en) Nonaqueous electrolyte solution, and power storage device arranged by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838678

Country of ref document: EP

Kind code of ref document: A1