WO2020017226A1 - Noise-tolerant voice recognition device and method, and computer program - Google Patents

Noise-tolerant voice recognition device and method, and computer program Download PDF

Info

Publication number
WO2020017226A1
WO2020017226A1 PCT/JP2019/024279 JP2019024279W WO2020017226A1 WO 2020017226 A1 WO2020017226 A1 WO 2020017226A1 JP 2019024279 W JP2019024279 W JP 2019024279W WO 2020017226 A1 WO2020017226 A1 WO 2020017226A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
speech
voice
speech recognition
feature
Prior art date
Application number
PCT/JP2019/024279
Other languages
French (fr)
Japanese (ja)
Inventor
雅清 藤本
恒 河井
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2020017226A1 publication Critical patent/WO2020017226A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/16Speech classification or search using artificial neural networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech

Definitions

  • the present invention relates to speech recognition, and more particularly, to a noise-tolerant speech recognition apparatus and method, and a computer program that enable highly accurate speech recognition even for speech collected by a single microphone.
  • Speech enhancement noise removal
  • Speech enhancement is a technology for improving the accuracy of speech recognition by removing noise from a speech signal to be subjected to speech recognition.
  • voice recognition processing is performed after voice enhancement is performed on a voice signal from a microphone.
  • Conventional speech enhancement techniques include a spectral subtraction method described in Non-Patent Document 1 and an MMSE-STSA estimation method (minimum mean square error) described in Non-Patent Document 2. short-time spectral amplitude estimator), a method using Vector Taylor series described in Non-Patent Document 3, and a denoising autoencoder described in Non-Patent Document 4. .
  • All of these methods are methods for emphasizing speech as preprocessing of speech recognition for acoustic signals obtained from a single microphone.
  • FIG. 1 shows a schematic configuration of a conventional speech recognition apparatus 100.
  • a speech recognition apparatus 100 receives a speech signal 112, which is a noise-superimposed speech represented by a waveform 110 and output from a microphone (not shown), and performs speech enhancement by any of the above-described methods.
  • a voice emphasis unit 114 for outputting a emphasized voice signal 116, a feature extraction unit 118 for extracting a predetermined feature amount from the emphasized voice signal 116, and performing speech recognition on the feature amount to display a waveform 110.
  • a voice recognition unit 120 for outputting a text 122 corresponding to the voice to be reproduced.
  • the voice recognition unit 120 for example, the one disclosed in Patent Document 1 can be used.
  • the speech recognition apparatus 100 further includes an acoustic model 124, a pronunciation dictionary 126, and a language model 128 used when the speech recognition unit 120 performs speech recognition.
  • the acoustic model 124 is for estimating a corresponding phoneme based on the feature amount input from the feature extraction unit 118.
  • the pronunciation dictionary 126 is used to obtain a word corresponding to the phoneme sequence estimated by the acoustic model 124.
  • the language model 128 is used when calculating the probability of each of the utterance sentence candidates of the recognition result formed by the word string estimated using the pronunciation dictionary 126.
  • FIG. 2 shows a schematic configuration of the acoustic model 124.
  • the acoustic model 124 is formed of a so-called deep neural network, and has an input layer 150 for receiving a feature, an output layer 162 for outputting information specifying a phoneme estimated from the feature, and an input layer 162. It includes a plurality of hidden layers 152, hidden layers 154, hidden layers 156, hidden layers 158, and hidden layers 160 provided in order between the hidden layer 152 and the output layer 162. Since the configuration and learning method of acoustic model 124 are well known, details thereof will not be repeated here. For learning of the acoustic model 124, clean speech containing no noise is used.
  • the information for specifying the estimated phoneme may be, for example, a form of a probability vector for each element of a set of phonemes.
  • outputting information for specifying a phoneme is simply referred to as “outputting a phoneme”.
  • the noise-added learning is a method of improving the speech recognition accuracy for speech containing noise by learning an acoustic model using a deep neural network using speech signals containing noise as learning data. In this case, no preprocessing is performed on the voice signal, but the target of voice recognition is still a single voice signal.
  • multi-channel voice enhancement obtained from microphones of multiple channels has been widely used as preprocessing for voice recognition, instead of voice enhancement for audio signals obtained from microphones of a single channel.
  • a good example is a smart speaker. Smart speakers have been developed and sold by various companies, and are rapidly spreading especially in the United States and the like.
  • noise can be removed using the spatial information of the sound source, so that speech enhancement can be performed with high accuracy and low distortion.
  • any one of the above-described voice emphasizing processes is applied to a smartphone, but in this case, a large increase in voice distortion is observed, and there is a problem that voice recognition accuracy is significantly deteriorated.
  • an object of the present invention is to provide an acoustic model and a speech recognition device capable of improving the accuracy of speech recognition even when only a single-channel speech signal is available, and a computer program therefor.
  • a noise-tolerant speech recognition device includes a speech enhancement circuit that receives an audio signal in which a noise signal is superimposed on a speech signal as a target signal, and outputs an enhanced speech signal in which the speech signal is enhanced. And a voice recognition unit that receives the emphasized voice signal and the acoustic signal and converts the uttered content of the voice signal into text.
  • the audio enhancement circuit performs a first type of audio enhancement processing on the audio signal and outputs a first enhanced audio signal, and a first audio enhancement unit for the audio signal.
  • a second voice enhancement unit that performs a second type of voice enhancement process different from the above and outputs a second enhanced voice signal.
  • the speech recognition unit includes a first and a second enhanced voice signal, and a sound signal. Then, the speech content of the voice signal is converted to text.
  • the speech recognition unit includes a first feature extraction unit that extracts a first feature amount from the audio signal, a second feature extraction unit that extracts a second feature amount from the enhanced speech signal, Feature selecting means for selecting each of the feature quantities according to the first feature quantity and the second feature quantity, and utterance of an audio signal using the second feature quantity selected by the feature selecting means.
  • Voice recognition means for converting the contents into text.
  • the noise-tolerant speech recognition apparatus further includes acoustic model storage means for storing an acoustic model used for speech recognition by the speech recognition means, wherein the acoustic model is a deep neural network having a plurality of hidden layers,
  • the model includes a first sub-network receiving a first feature as an input, a second sub-network receiving a second feature as an input, an output of the first sub-network, and an output of the second sub-network.
  • a third sub-network for outputting phonemes estimated from the first feature amount and the second feature amount.
  • a noise-tolerant speech recognition method is characterized in that a computer receives, as an input, a single-channel acoustic signal in which a noise signal is superimposed on a speech signal as a target signal, and an enhanced speech signal in which the speech signal is emphasized. And a voice recognition step in which the computer receives the emphasized voice signal and the acoustic signal and converts the uttered content of the voice signal into text.
  • a computer program causes a computer to function as any of the noise-tolerant speech recognition devices described above.
  • FIG. 1 is a block diagram showing a schematic configuration of a speech recognition device that performs preprocessing on a single-channel speech signal by a conventional speech enhancement method to perform speech recognition.
  • FIG. 2 is a block diagram showing a configuration of an acoustic model based on a deep neural network used in the speech recognition device shown in FIG.
  • FIG. 3 is a block diagram showing a schematic configuration of the speech recognition device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic block diagram showing a configuration of an acoustic model used in the speech recognition device shown in FIG.
  • FIG. 5 is a block diagram illustrating a configuration of an acoustic model used in the speech recognition device according to the second embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a speech recognition device that performs preprocessing on a single-channel speech signal by a conventional speech enhancement method to perform speech recognition.
  • FIG. 2 is a block diagram showing a configuration of an acous
  • FIG. 6 is a block diagram showing a schematic configuration of the speech recognition device according to the third embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of an acoustic model used in the speech recognition device shown in FIG.
  • FIG. 8 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the fourth embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the fifth embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the sixth embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the sixth embodiment of the present invention.
  • FIG. 11 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the seventh embodiment of the present invention.
  • FIG. 12 is a block diagram showing a schematic configuration of an acoustic model used in the speech recognition device according to the eighth embodiment of the present invention.
  • FIG. 13 is a diagram for explaining the function of the gate layer included in the acoustic model according to the fifth to eighth embodiments of the present invention.
  • FIG. 14 is a diagram showing, in a table form, a comparison between the word error rates of the conventional art and the speech recognition apparatuses according to the first to eighth embodiments of the present invention.
  • FIG. 15 is a hardware block diagram of a typical computer for realizing the speech recognition device according to the present invention.
  • FIG. 3 is a block diagram illustrating a schematic configuration of the speech recognition device 180 according to the first embodiment of the present invention.
  • speech recognition apparatus 180 performs speech enhancement processing on existing speech signal 112 that is noise-superimposed speech, and outputs enhanced speech signal 203.
  • An extended feature extraction unit 200 that receives both audio signals 203 as input and extracts feature amounts 210 and 212 of the expanded speech, and receives the feature amounts 210 and 212 output by the enlarged feature extraction unit 200 as input and performs speech recognition.
  • a speech recognition unit 204 that outputs the recognized text 208.
  • the audio signal 112 is an acoustic signal output from a microphone in which a noise signal is superimposed on a signal representing the audio represented by the waveform 110.
  • the voice recognition unit 204 the same one as the voice recognition unit 120 shown in FIG. 1 can be used. However, the feature amounts used are different from those of the related art, as described later.
  • the speech recognition device 180 further includes an acoustic model 206 having a configuration different from the conventional one shown in FIG. 2 and a pronunciation dictionary 126 and a language model respectively identical to those shown in FIG. 128.
  • These acoustic model 206, pronunciation dictionary 126, and language model 128 are all stored in a storage device such as a hard disk described later.
  • the enlarged feature extraction unit 200 receives the input of the audio signal 112 that is a noise-superimposed audio, and outputs a feature amount 210.
  • the feature extraction unit 118 similar to that illustrated in FIG. 1 and the enhancement output from the audio enhancement unit 202.
  • a feature extraction unit 220 that extracts the feature amount 212 from the audio signal 203 and has the same function as the feature extraction unit 118 is included.
  • the feature extractor 118 and the feature extractor 220 have the same configuration, and the feature 210 and the feature 212 have the same meaning.
  • the values of the feature quantities 210 and 212 are different from each other because the two inputs are different.
  • an acoustic model 206 shown in FIG. 3 has an input in which both a feature amount 210 obtained from a voice on which noise is superimposed and a feature amount 212 obtained from an enhanced voice signal 203 are input. It includes a layer 240, an output layer 256 for outputting estimated phonemes, and a plurality of hidden layers 242 to 254 provided in order between the input layer 240 and the output layer 256. In the present embodiment, the number of hidden layers is seven.
  • the input layer 240 shown in FIG. 4 receives as many inputs as the sum of the number of elements of the feature quantities 210 and 212, both of which are vectors.
  • the feature extraction units 118 and 220 that output these feature amounts 210 and 212 have the same configuration in the present embodiment as the conventional feature extraction unit 118 shown in FIG. Therefore, the number of features received by the acoustic model 206 is twice as large as that of the conventional model shown in FIG. Of these, half are features obtained from the noise-superimposed speech, and the other half are features obtained from the emphasized speech.
  • the operation of the speech recognition unit 204 uses the acoustic model 206 instead of the acoustic model 124 shown in FIG. 1, and the acoustic features to be processed include those of the noise-superimposed speech in addition to those from the emphasized speech. Except for this point, it is the same as the speech recognition device 100 shown in FIG. Therefore, the detailed description will not be repeated here.
  • the voice recognition device 180 By employing the acoustic model 206 having such a configuration, as described later with reference to FIG. 14, the voice recognition device 180 according to the present embodiment is higher than the conventional one shown in FIG. 1. Accurate speech recognition could be performed.
  • the learning of the acoustic model 206 can be performed by an error back propagation method similar to that of a normal deep neural network by preparing training data including a noise-superimposed voice and a text represented by the voice in advance. The same applies to learning in each of the embodiments described below.
  • FIG. 5 shows a configuration of an acoustic model 280 according to the second embodiment of the present invention.
  • the speech recognition apparatus according to the second embodiment is the same as the speech recognition apparatus 180 according to the first embodiment except that an acoustic model 280 shown in FIG. 5 is used instead of the acoustic model 206 shown in FIG. is there.
  • the acoustic model 280 includes a sub-network 300 for noise-superimposed speech that receives the feature amount 210 of the noise-superimposed speech, a sub-network 302 for the emphasized voice that receives the feature amount 212 of the emphasized voice, and a sub-network 302 for the noise-superimposed speech.
  • An output sub-network 304 that receives the output of the network 300 and the output of the sub-network 302 for emphasized voice, and an output layer 306 that receives the output of the output sub-network 304 and outputs phonemes.
  • the sub-network 300 for the noise-superimposed speech is connected in order between the input layer 320 connected to receive the feature amount 210 of the noise-superimposed speech, and the input between the input layer 320 and the input of the output-side sub-network 304. It includes a plurality (three in this embodiment) of hidden layers 322, 324 and 326.
  • the sub-network 302 for the emphasized voice includes an input layer 330 connected to receive the feature amount 212 of the emphasized voice, and a plurality of sub-networks sequentially connected between the input layer 330 and the input of the output side sub-network 304. (Three in this embodiment) hidden layers 332, 334 and 336.
  • the output side sub-network 304 includes a hidden layer 350 connected to receive the outputs of the sub-network 300 for the noise-superimposed speech and the sub-network 302 for the emphasized speech, and a signal between the hidden layer 350 and the output layer 306. And hidden layers 352, 354 and 356 connected in sequence.
  • the acoustic model 280 shown in FIG. 5 differs from the acoustic model 206 of the first embodiment in the following points. That is, in the acoustic model 206, the input layer 240 receives both the feature amount 210 of the noise-superimposed speech and the feature amount 212 of the emphasized speech, and information from both is propagated to all of the hidden layers 242 to 254 thereafter. On the other hand, in the acoustic model 280, only the information from the feature 210 of the noise-superimposed speech propagates to the input layer 320 and the hidden layers 322 to 326 configuring the sub-network 300 for the noise-superimposed speech.
  • the configuration of the speech recognition device employing the acoustic model 280 is the same as that of the speech recognition device 180 of the first embodiment.
  • the speech recognition device using the acoustic model 280 according to the second embodiment also achieved higher accuracy than the prior art, as shown in FIG.
  • FIG. 6 shows a block diagram of a voice recognition device 380 according to the third embodiment of the present invention.
  • the voice recognition device 380 performs existing first to fourth voice enhancement processing on the voice signal 112 output from the microphone with respect to the voice represented by the waveform 110, and performs voice enhancement signals 203, 393, and 395, respectively.
  • Speech enhancement units 202, 392, 394, and 396 that output 397, and the audio signal 112 and the emphasized audio signals 203, 393, 395, and 397 as inputs, and feature amounts 210, 212, 430, 432, and 434 of the expanded audio.
  • a speech recognition unit that receives as input the feature amounts 210, 212, 430, 432, and 434 output by the expanded feature extraction unit 390, performs speech recognition, and outputs a recognized text 400.
  • the speech recognition device 380 further includes an acoustic model 398 used by the speech recognition unit 402 for speech recognition, and the same pronunciation dictionary 126 and language model 128 as those shown in FIG.
  • the enlarged feature extraction unit 390 receives the voice signal 112 on which noise is superimposed, extracts a feature amount 210, and receives the enhanced voice signal 203 from the voice enhancement unit 202, and receives the first emphasized voice.
  • a feature extraction unit 412 that receives the audio signal 395 and outputs a feature amount 432 of the third emphasized voice, and a feature extraction that receives the enhanced voice signal 397 from the speech enhancement unit 396 and outputs a fourth feature amount 434 of the enhanced voice Unit 414.
  • the voice enhancement unit 202 performs voice enhancement by the method disclosed in Non-Patent Document 1.
  • the voice enhancement unit 392 performs voice enhancement by the method disclosed in Non-Patent Document 2.
  • the voice enhancement unit 394 performs voice enhancement by the method disclosed in Non-Patent Document 3.
  • the voice enhancement unit 396 performs voice enhancement by the method disclosed in Non-Patent Document 4.
  • FIG. 7 is a block diagram showing the configuration of the deep neural network forming the acoustic model 398.
  • the acoustic model 398 is obtained by expanding the acoustic model 206 according to the first embodiment shown in FIG. 4 so as to use feature amounts extracted from four emphasized voices.
  • the acoustic model 398 includes the feature 210 of the noise-superimposed speech, the feature 212 of the first emphasized speech, the feature 430 of the second emphasized speech, the feature 432 of the third emphasized speech, and the feature of the fourth emphasized speech.
  • An input layer 450 receiving the quantity 434, an output layer 454 for outputting phonemes estimated by the acoustic model 398, and an intermediate layer 452 composed of a plurality of hidden layers connected between the input layer 450 and the output layer 454. .
  • the middle layer 452 includes a hidden layer 470 having inputs connected to the outputs of the input layer 450, and hidden layers 472, 474, 476, 478, 480 and 482, each having an input connected to the output of the previous layer. Including. The output of the hidden layer 482 is connected to the input of the output layer 454.
  • the speech recognition device 380 according to the third embodiment is obtained by expanding the speech recognition device 180 according to the second embodiment to use four speech enhancements.
  • the operation is basically the same as that of the first embodiment.
  • the accuracy of voice recognition can be increased as compared with the related art.
  • the feature amount 210 of the noise-superimposed voice and the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices are all input to the input layer 450. This information is propagated to all the constituent hidden layers.
  • the present invention is not limited to such an embodiment.
  • the speech recognition apparatus has basically the same configuration as the speech recognition apparatus 380 shown in FIG. The difference is that an acoustic model 500 having the configuration shown in FIG. 8 is used instead of the acoustic model 398 used by the speech recognition device 380.
  • this acoustic model 500 includes a first sub-network 540 that receives a feature 210 of a voice signal 112 that is a noise-superimposed voice, and a second sub-network that receives a feature 212 of a first emphasized voice.
  • a fifth sub-network 548 that receives 434 and a first sub-network 540, a second sub-network 542, a third sub-network 544, a fourth sub-network 546, and a fifth sub-network 548.
  • the first sub-network 540 includes an input layer 570 having an input for receiving the feature amount 210 of the noise-superimposed speech, a hidden layer 572, and a hidden layer 572 connected in sequence between the input layer 570 and the input of the intermediate sub-network 550. 574 and a hidden layer 576.
  • the second sub-network 542 includes an input layer 580 having an input for receiving the feature amount 212 of the first emphasized voice, and a hidden layer 582 connected in order between the input layer 580 and the input of the intermediate sub-network 550. And a hidden layer 584 and a hidden layer 586.
  • the third sub-network 544 includes an input layer 590 having an input for receiving the feature amount 430 of the second emphasized voice, a hidden layer 592 sequentially connected between the input layer 590 and an input of the intermediate sub-network 550, and a hidden layer 592. A layer 594 and a hidden layer 596.
  • the fourth sub-network 546 includes an input layer 600 having an input for receiving the feature amount 432 of the third emphasized voice, a hidden layer 602 sequentially connected between the input layer 600 and an input of the intermediate sub-network 550, and a hidden layer 602. A layer 604 and a hidden layer 606.
  • the fifth sub-network 548 includes an input layer 610 having an input for receiving the feature amount 434 of the fourth emphasized voice, a hidden layer 612 sequentially connected between the input layer 610 and the input of the intermediate sub-network 550, and a hidden layer 612. Including a layer 614 and a hidden layer 616.
  • the intermediate sub-network 550 is connected to a hidden layer 620 connected to receive the outputs of the first to fifth sub-networks 540, 542, 544, 546 and 548, and is connected in order from the hidden layer 620 to the output layer 552.
  • Hidden layer 622, hidden layer 624, and hidden layer 626 are connected to receive the outputs of the first to fifth sub-networks 540, 542, 544, 546 and 548, and is connected in order from the hidden layer 620 to the output layer 552.
  • the configuration of the speech recognition apparatus according to this embodiment is also the same as that shown in FIG. 6, except that an acoustic model 500 shown in FIG. 8 is used instead of acoustic model 398 in FIG.
  • all the hidden layers propagate the feature amount 210 of the noise-superimposed voice and the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices.
  • the feature 210 of the noise-superimposed speech is input to the hidden layer 620 after propagating inside the first sub-network 540.
  • the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices propagate through only the second to fifth sub-networks 542, 544, 546, and 548, respectively. Is entered. Inside the intermediate sub-network 550 starting from the hidden layer 620, all the feature amounts are integrated, propagated through the hidden layer in order, and finally the phoneme estimation result is output from the output layer 552.
  • the speech recognition device using the acoustic model 500 according to the fourth embodiment was also able to perform speech recognition with higher accuracy than the conventional speech recognition device.
  • FIG. 9 shows a schematic configuration of an acoustic model 650 used in the speech recognition device according to the fifth embodiment. As can be seen from FIG. 9, this acoustic model 650 also consists of a deep neural network.
  • the acoustic model 650 shown in FIG. 9 is different from the acoustic model 206 shown in FIG. 4 in that the first emphasis speech is obtained before the input layer 240 receiving both the feature 210 of the noise-superimposed speech and the feature 212 of the first emphasized speech.
  • a gate layer 682 is provided, which receives the voice feature 212 and multiplies it by the weight of the section [0, 1] and inputs the result to the input layer 240. Thereafter, as in the case shown in FIG. 4, all of the information from these feature amounts is propagated in common from the hidden layer 242 to the output layer 256.
  • W is an M ⁇ M-dimensional weight matrix
  • b is an M-dimensional bias vector
  • ⁇ ( ⁇ ) is an arbitrary activation function in the range of the interval [0, 1], Respectively.
  • Each element of the gate weight is a value in the section [0, 1] as described above.
  • Each of the elements of the weight matrix W and the bias vector b is a learning target. At the time of learning, learning of each element of the weight matrix W and the bias vector b can be performed using the same method as that of a normal deep neural network, except that the above-described restrictions on the section are obeyed.
  • each layer called a gate layer has the same function as the gate layer 1100 in FIG. 13, and all parameters can be learned in the same manner as other parameters under the constraint of the section [0, 1] described above. .
  • this gate layer separately gates each element of the input vector. Therefore, it is possible to perform a gating process for each feature amount of the emphasized speech as to whether or not to use the feature during speech recognition.
  • each element of the input vector composed of each feature selection is made according to the weight for that element. This selection is performed based on the weight matrix W, the bias vector b, and the value of each element included in each input vector. That is, each element is selected according to the value of the input feature amount and used for speech recognition.
  • the speech recognition device using the acoustic model 650 according to the fifth embodiment also achieved higher accuracy than the conventional technology.
  • FIG. 10 shows a schematic configuration of an acoustic model 750 used in the speech recognition device according to the sixth embodiment of the present invention.
  • the configuration of the voice recognition device itself according to this embodiment is the same as that shown in FIG. However, the difference is that an acoustic model 750 is used instead of the acoustic model 206 in FIG.
  • the acoustic model 750 constitutes one deep neural network as a whole.
  • the acoustic model 750 includes a first sub-network 770 that receives an input of the feature 210 of the noise-superimposed speech, a second sub-network 772 that receives the input of the feature 212 of the first emphasized speech, and a first sub-network.
  • a third sub-network 774 which is part of the deep neural network, connected to receive the output of the second sub-network 770 and the output of the second sub-network 772; And an output layer 776 for specifying phonemes estimated by the model 750.
  • the first sub-network 770 includes an input layer 800 that receives the feature amount 210 of the noise-superimposed speech, and a hidden layer 802, a hidden layer 804, and a hidden layer 802 that are sequentially connected from the input layer 800 to the input of the third sub-network 774. And a hidden layer 806.
  • the second sub-network 772 includes an input layer 810 that receives the feature amount 212 of the first emphasized voice, a hidden layer 812, a hidden layer 814, a hidden layer 816 connected in order after the input layer 810, and a hidden layer 816.
  • a gate layer 818 connected to receive an output and having the same function as the gate layer 682 of the fifth embodiment is included.
  • the third sub-network 774 includes a hidden layer 830 receiving the output of the first sub-network 770 and the output of the second sub-network 772, and a hidden layer connected in order between the hidden layer 830 and the output layer 776. 832, a hidden layer 834 and a hidden layer 836.
  • the acoustic model 750 is different from the acoustic model shown in FIG. 9 in that the feature 210 of the noise-superimposed speech and the feature 212 of the first emphasized speech include the first subnetwork 770 and the second subnetwork 770 in the first half of the acoustic model 750. It is separated into a network 772 and propagated inside each. The output of the first sub-network 770 is directly input to the third sub-network 774. However, in the second sub-network 772, after the gate processing in the gate layer 818 is performed on the output of the last hidden layer 816, the result is input to the hidden layer 830.
  • the feature amount 212 of the first emphasized voice is effectively used.
  • the output of the second sub-network 772 has a small value, and as a result, is not used for speech recognition.
  • FIG. 11 shows a schematic configuration of an acoustic model 850 used in the speech recognition device according to the seventh embodiment. As can be seen from FIG. 11, this acoustic model 850 is also composed of a deep neural network.
  • the speech recognition device according to the seventh embodiment has the same configuration as the speech recognition device 380 shown in FIG. The difference is that an acoustic model 850 is used instead of the acoustic model 398 in FIG.
  • this acoustic model 850 receives the feature amount 212 of the first emphasized speech before the input layer 450 in addition to the components of the acoustic model 398 shown in FIG. 1], and a gate layer 902 that receives the feature amount 430 of the second emphasized voice and multiplies it by the weight of the section [0, 1] and inputs the same to the input layer 450. And a gate layer 912 that receives the feature amount 432 of the third emphasized voice and multiplies it by the weight of the section [0, 1] and inputs the same to the input layer 450, and a section [434] that receives the feature amount 434 of the fourth emphasized voice. 0, 1] and input to the input layer 450.
  • the acoustic model 850 is the same as the acoustic model 398 shown in FIG.
  • the functions of the gate layers 892, 902, 912, and 922 are advantageous for any of the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices, so that they are advantageous during voice recognition. Effective feature amounts can be used effectively, and other feature amounts can be prevented from being used. As a result, the accuracy can be improved even in speech recognition using the acoustic model 850.
  • the speech recognition apparatus using the acoustic model 850 according to the present embodiment was able to perform speech recognition with higher accuracy than the conventional technique.
  • FIG. 12 shows a schematic configuration of an acoustic model 950 used in the speech recognition device according to the eighth embodiment of the present invention.
  • the acoustic model 950 also includes a deep neural network, like the acoustic model according to the other embodiments.
  • the acoustic model 950 includes a first input sub-network 960 that receives the feature 210 of the noise-superimposed speech, a second input sub-network 962 that receives the feature 212 of the first emphasized speech, and a feature of the second emphasized speech.
  • a third input sub-network 964 receiving the quantity 430
  • a fourth input sub-network 966 receiving the third emphasized speech feature 432
  • a fifth input sub-network receiving the fourth emphasized speech feature 434.
  • an intermediate sub-network 970 that receives the outputs of the first to fifth input sub-networks 960, 962, 964, 966, and 968, and receives the output of the intermediate sub-network 970 and outputs the phonemes estimated by the acoustic model 950.
  • the first input subnetwork 960 includes an input layer 980 that receives the feature amount 210 of the noise-superimposed speech, and a hidden layer 982, a hidden layer 984, and a hidden layer 986 that are sequentially connected from the input layer 980 to the intermediate subnetwork 970. And
  • the second input sub-network 962 includes an input layer 990 that receives the feature value 212 of the first emphasized voice, a hidden layer 992, a hidden layer 994, a hidden layer 996, and a hidden layer 996 that are sequentially connected after the input layer 990. And the gate layer 998 inserted between the input of the intermediate sub-network 970.
  • the third input sub-network 964 includes an input layer 1000 receiving the feature amount 430 of the second emphasized voice, a hidden layer 1002, a hidden layer 1004, a hidden layer 1006, and a hidden layer 1006 connected in order after the input layer 1000. And a gate layer 1008 inserted between the input of the intermediate sub-network 970.
  • the fourth input sub-network 966 includes an input layer 1010 that receives the feature amount 432 of the third emphasized voice, a hidden layer 1012, a hidden layer 1014, a hidden layer 1016, and a hidden layer 1016 that are sequentially connected after the input layer 1010. And a gate layer 1018 inserted between the output of the intermediate sub-network 970.
  • the fifth input sub-network 968 includes an input layer 1020 that receives the feature amount 434 of the fourth emphasized voice, a hidden layer 1022, a hidden layer 1024, a hidden layer 1026, and a hidden layer 1026 that are sequentially connected after the input layer 1020. , And a gate layer 1028 inserted between the inputs of the intermediate sub-network 970.
  • the intermediate sub-network 970 includes a hidden layer 1030 that receives the outputs of the first input sub-network 960 and the second to fifth input sub-networks 962, 964, 966, and 968, and a layer between the hidden layer 1030 and the output layer 972. It includes a hidden layer 1032, a hidden layer 1034, and a hidden layer 1036 connected in order.
  • the operation of the speech recognition device using this acoustic model 950 is the same as that of the speech recognition device 380 shown in FIG. 6 except that the acoustic model 950 is used as the acoustic model.
  • the phoneme can be estimated by weighting each element of the feature amount obtained by the first to fourth speech enhancements with a coefficient having a value in the section [0, 1]. For each voice emphasis and for each feature amount, it is possible to effectively use features that are advantageous for speech recognition and not to use disadvantageous features. As a result, the accuracy of voice recognition can be increased.
  • FIG. 14 shows, in the form of a table, the results of experiments (word error rates) performed on the above embodiments.
  • CHiME3 voice recorded outdoors using a tablet
  • Non-Patent Document 5 was used as a recognition target.
  • the speech emphasis processing used in this experiment is as follows.
  • Speech enhancement 1 Technology disclosed in Non-Patent Document 1
  • Speech enhancement 2 Technology disclosed in Non-Patent Document 2
  • Speech enhancement 3 Technology disclosed in Non-Patent Document 3
  • Speech enhancement 4 Non-Patent Document
  • the speech recognition accuracy was measured by using the acoustic model of the third embodiment, and in the experiments regarding the third, fourth, seventh and eighth embodiments, the speech emphasizing units 202, 392, 394 and 396 shown in FIG. Emphasis 1 to 4 were respectively adopted, and the speech recognition accuracy was measured using the acoustic model of each embodiment.
  • the word error rate when speech recognition was performed on the same data without speech enhancement using a conventional speech recognition device was 22.64%.
  • the word error rate was lower than in the case of using the conventional speech enhancement. That is, the accuracy of voice recognition was high. In most cases, the accuracy was higher than in conventional speech recognition without speech enhancement. In particular, in the second embodiment, high accuracy was realized by using any of the voice enhancements. In the fourth embodiment and the eighth embodiment, the accuracy is very high. In the eighth embodiment, in particular, higher accuracy can be realized as compared with the other embodiments.
  • Each functional unit of the speech recognition device is realized by computer hardware and a program executed by a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit) on the hardware. it can.
  • FIG. 15 shows computer hardware for realizing each of the above speech recognition devices.
  • the GPU is usually used for performing image processing, and such a technique of using the GPU for normal arithmetic processing instead of image processing is called GPGPU (General-purpose computing on graphics processing units).
  • the GPU can execute a plurality of operations of the same type simultaneously and in parallel.
  • a large amount of computation is required, especially at the time of learning.
  • a computer equipped with a GPU is suitable for training and inference of a speech recognizer and a neural network constituting an acoustic model used in the speech recognizer.
  • a computer having a sufficiently high-speed CPU need not necessarily be equipped with a GPU.
  • the computer system 1130 includes a computer 1140 having a memory port 1152 and a DVD (Digital Versatile Disk) drive 1150, a keyboard 1146, a mouse 1148, and a monitor 1142.
  • a computer 1140 having a memory port 1152 and a DVD (Digital Versatile Disk) drive 1150, a keyboard 1146, a mouse 1148, and a monitor 1142.
  • DVD Digital Versatile Disk
  • the computer 1140 is further connected to a CPU 1156 and a GPU 1158, a bus 1166 connected to these, a memory port 1152 and a DVD drive 1150, a ROM 1160 which is a read-only memory for storing a boot program and the like, and connected to a bus 1166, It includes a random access memory (RAM) 1162 which is a computer readable storage medium for storing a system program, work data, and the like, and a hard disk 1154 which is a computer readable nonvolatile storage medium.
  • the computer 1140 further includes a network interface (I / F) 1144 which is connected to the bus 1166 and provides a connection to the network 1168, and an audio I / F 1170 for inputting and outputting audio signals to and from the outside. .
  • I / F network interface
  • a program for causing the computer system 1130 to function as a storage unit of each of the functional units and acoustic models of each of the speech recognition apparatuses according to the above-described embodiments is mounted on the DVD drive 1150 or the memory port 1152, and both are computer-readable. It is stored in the DVD 1172 or the removable memory 1164, which is a suitable storage medium, and further transferred to the hard disk 1154. Alternatively, the program may be transmitted to computer 1140 via network 1168 and stored on hard disk 1154. The program is loaded into the RAM 1162 at the time of execution. The program may be loaded from the DVD 1172, from the removable memory 1164, or directly to the RAM 1162 via the network 1168.
  • Data required for the above processing is stored at a predetermined address such as a register in the hard disk 1154, the RAM 1162, the CPU 1156, or the GPU 1158, processed by the CPU 1156 or the GPU 1158, and stored at an address designated by the program.
  • the parameters of the acoustic model finally trained are stored, for example, on the hard disk 1154 together with a program for realizing the acoustic model training and inference algorithm, or stored on the DVD 1172 or the removable memory 1164 via the DVD drive 1150 and the memory port 1152, respectively. Or stored. Alternatively, it is transmitted to another computer or storage device connected via the network I / F 1144.
  • This program includes an instruction sequence including a plurality of instructions for causing the computer 1140 to function as each device and system according to the above embodiment. Numerical processing in each of the above devices and systems is performed using the CPU 1156 and the GPU 1158. Although only the CPU 1156 may be used, using the GPU 1158 is faster. Some of the basic functions required to cause the computer 1140 to perform this operation include an operating system or third party program running on the computer 1140 or various dynamically linkable programming toolkits or programs installed on the computer 1140. Provided by the library. Therefore, the program itself does not necessarily need to include all the functions necessary to realize the speech recognition device of this embodiment.
  • the program described above may be implemented by dynamically calling, at run time, the appropriate functions or appropriate programs in a programming toolkit or program library in a controlled manner to obtain the desired result of the instructions, It is only necessary to include only instructions for realizing the functions of the device or the method.
  • the above-described speech recognition apparatus may be realized by loading a program incorporating all necessary functions into a computer by a static link.
  • the hidden layers of the deep neural network constituting the acoustic model are seven layers in total, and in the third, fourth, seventh and eighth embodiments, the former half of the deep neural network is used. Three hidden layers and four hidden layers in the latter half.
  • the number of hidden layers may be six or less, or eight or more.
  • the number of hidden layers in the first half and the second half does not need to be three and four, respectively.
  • the present invention is applied to a single-channel audio signal.
  • the present invention is not limited to such an embodiment, and is applicable to audio signals of a plurality of channels.
  • the present invention can be used for improving an interface with a user in a computer, a home appliance, an industrial product, and the like, and can easily operate these devices with a natural language voice issued by the user.
  • Speech recognition device 110 Waveform 112 Speech signal 114, 202, 392, 394, 396 Speech enhancement unit 116, 203, 393, 395, 397 Speech enhancement signal 118, 220, 410, 412, 414 Feature extraction unit 120 , 204, 402 Speech recognition units 122, 208, 400 Text 124, 206, 280, 398, 500, 650, 750, 850, 950 Acoustic model 126 Pronunciation dictionary 128 Language model 200, 390 Enlarged feature extraction unit 210 Features 212 Features of first emphasized speech 300 Subnetwork 302 for noise superimposed speech Subnetwork 304 for emphasized speech Output subnetwork 430 Features of second emphasized speech 432 Features of third emphasized speech Quantity 434 Feature quantity 4 of fourth emphasized voice 2 Intermediate layers 540, 770 First sub-networks 542, 772 Second sub-networks 544, 774 Third sub-network 546 Fourth sub-network 548 Fifth sub-network 550, 970 Intermediate sub-networks 6

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Machine Translation (AREA)
  • Image Analysis (AREA)

Abstract

This noise-tolerant voice recognition device 180, which has a high voice recognition accuracy even when only a single channel voice signal is available, includes: a voice emphasis unit 202 which receives, as an input, a voice signal 112 that is a signal in which a noise signal overlaps a voice signal that is a target signal, and outputs an emphasis voice signal 112 obtained by emphasizing the voice signal with a prescribed voice emphasis method; an extended feature extraction unit 200 which receives, as inputs, the emphasis voice signal 203 and the voice signal 112, and extracts respective feature amounts; and a voice recognition unit 204 which converts utterance content of the voice signal into text by using the feature amounts and an acoustic model 206 for the same.

Description

耐雑音音声認識装置及び方法、並びにコンピュータプログラムNoise-tolerant speech recognition apparatus and method, and computer program
 この発明は音声認識に関し、特に単一のマイクにより集音された音声に対しても高精度の音声認識を可能にする耐雑音音声認識装置及び方法、並びにコンピュータプログラムに関する。 The present invention relates to speech recognition, and more particularly, to a noise-tolerant speech recognition apparatus and method, and a computer program that enable highly accurate speech recognition even for speech collected by a single microphone.
 近年、コンピュータの計算能力の高度化及びコンピュータサイエンスの発展に伴い、音声認識アプリケーションの利用範囲が大きく拡大している。従前から音声認識が用いられていた分野とは別に、いわゆる家電製品にも音声認識が取り入れられ、さらにスマートスピーカ等、音声認識を用いて従来にはなかった機能を提供する製品も利用者が急激に増大している。これに伴い、音声認識が利用されるシーンも多様になっている。 In recent years, with the advancement of computer computing power and the development of computer science, the range of use of speech recognition applications has expanded significantly. Apart from the fields in which speech recognition has been used in the past, speech recognition has also been introduced into so-called home appliances, and users, such as smart speakers, have rapidly increased the use of speech recognition in products that provide functions that were not previously available. Has increased. Along with this, scenes in which voice recognition is used have also become diverse.
 一方、音声認識にとって本質的に重要なのはその精度である。音声認識が利用されるシーンが多様になると、雑音が多く、またその種類も多様になり、音声認識の精度を常に高く保つのは困難になる。そこで、雑音に対しても精度を高く保つ音声認識(耐雑音音声認識)が重要性を増している。 On the other hand, what is essential for speech recognition is its accuracy. When the scenes in which the speech recognition is used are diverse, there are many noises and various types, and it is difficult to always keep the accuracy of the speech recognition high. Therefore, speech recognition (noise-tolerant speech recognition) that maintains high accuracy even for noise has become increasingly important.
 耐雑音音声認識には、従来は大きく分けて2種類の手法が用いられてきた。すなわち以下の2つである。 雑 音 Conventionally, two types of techniques have been used for noise-tolerant speech recognition. That is, there are the following two.
 ・音声強調(雑音除去)
 ・雑音付加学習
 音声強調とは、音声認識の対象となる音声信号から雑音を除去することによって音声認識の精度を高める技術である。典型的には、マイクロホンからの音声信号に対して音声強調を行ってから音声認識の処理を行う。
・ Speech enhancement (noise removal)
-Noise-added learning Speech enhancement is a technology for improving the accuracy of speech recognition by removing noise from a speech signal to be subjected to speech recognition. Typically, voice recognition processing is performed after voice enhancement is performed on a voice signal from a microphone.
 従来の音声強調技術として、後掲の非特許文献1に記載されたスペクトラル・サブトラクション法、非特許文献2に記載されたMMSE-STSA推定法(minimum mean square error
short-time spectral amplitude estimator)、非特許文献3に記載されたベクトル・テイラー級数展開(Vector Taylor series)を用いた手法、及び非特許文献4に記載されたデノイジング・オートエンコーダ(denoising autoencoder)がある。
Conventional speech enhancement techniques include a spectral subtraction method described in Non-Patent Document 1 and an MMSE-STSA estimation method (minimum mean square error) described in Non-Patent Document 2.
short-time spectral amplitude estimator), a method using Vector Taylor series described in Non-Patent Document 3, and a denoising autoencoder described in Non-Patent Document 4. .
 これら手法は、いずれも単一のマイクロホンから得られた音響信号について音声認識の前処理として音声強調を行う手法である。 All of these methods are methods for emphasizing speech as preprocessing of speech recognition for acoustic signals obtained from a single microphone.
 図1に、従来の音声認識装置100の概略構成を示す。図1を参照して、この音声認識装置100は、図示しないマイクロホンが出力した、波形110により表される、雑音重畳音声である音声信号112を受けて上記したいずれかの手法により音声強調を行って強調音声信号116を出力するための音声強調部114と、この強調音声信号116から所定の特徴量を抽出するための特徴抽出部118と、この特徴量に対する音声認識を行って波形110により表される音声に対応するテキスト122を出力するための音声認識部120とを含む。音声認識部120としては、例えば特許文献1に開示されたものを使用できる。 FIG. 1 shows a schematic configuration of a conventional speech recognition apparatus 100. Referring to FIG. 1, a speech recognition apparatus 100 receives a speech signal 112, which is a noise-superimposed speech represented by a waveform 110 and output from a microphone (not shown), and performs speech enhancement by any of the above-described methods. A voice emphasis unit 114 for outputting a emphasized voice signal 116, a feature extraction unit 118 for extracting a predetermined feature amount from the emphasized voice signal 116, and performing speech recognition on the feature amount to display a waveform 110. And a voice recognition unit 120 for outputting a text 122 corresponding to the voice to be reproduced. As the voice recognition unit 120, for example, the one disclosed in Patent Document 1 can be used.
 音声認識装置100はさらに、音声認識部120が音声認識を行う際に用いる音響モデル124、発音辞書126及び言語モデル128とを含む。音響モデル124は、特徴抽出部118から入力された特徴量に基づいて、対応する音素を推定するためのものである。発音辞書126は、音響モデル124により推定された音素列に対応する単語を得るために用いられる。言語モデル128は、発音辞書126を用いて推定された単語列により構成される認識結果の発話文の候補の各々についてその確率を算出する際に使用される。 The speech recognition apparatus 100 further includes an acoustic model 124, a pronunciation dictionary 126, and a language model 128 used when the speech recognition unit 120 performs speech recognition. The acoustic model 124 is for estimating a corresponding phoneme based on the feature amount input from the feature extraction unit 118. The pronunciation dictionary 126 is used to obtain a word corresponding to the phoneme sequence estimated by the acoustic model 124. The language model 128 is used when calculating the probability of each of the utterance sentence candidates of the recognition result formed by the word string estimated using the pronunciation dictionary 126.
 図2には、音響モデル124の概略構成を示す。図2から分かるように、この音響モデル124はいわゆる深層ニューラル・ネットワークからなり、特徴量を受ける入力層150及びこの特徴量から推定された音素を特定する情報を出力する出力層162と、入力層150及び出力層162の間に順番に設けられた複数の隠れ層152、隠れ層154、隠れ層156、隠れ層158、及び隠れ層160とを含む。音響モデル124の構成及び学習方法はよく知られているのでここではその詳細は繰返さない。音響モデル124の学習には雑音を含まないクリーン音声が用いられる。なお、推定された音素を特定する情報としては、例えば音素の集合の各要素についての確率ベクトルという形が考えられる。以下、本明細書では、記載を簡潔にするために、音素を特定する情報を出力することを単に「音素を出力する」という。 FIG. 2 shows a schematic configuration of the acoustic model 124. As can be seen from FIG. 2, the acoustic model 124 is formed of a so-called deep neural network, and has an input layer 150 for receiving a feature, an output layer 162 for outputting information specifying a phoneme estimated from the feature, and an input layer 162. It includes a plurality of hidden layers 152, hidden layers 154, hidden layers 156, hidden layers 158, and hidden layers 160 provided in order between the hidden layer 152 and the output layer 162. Since the configuration and learning method of acoustic model 124 are well known, details thereof will not be repeated here. For learning of the acoustic model 124, clean speech containing no noise is used. Note that the information for specifying the estimated phoneme may be, for example, a form of a probability vector for each element of a set of phonemes. Hereinafter, in this specification, to simplify the description, outputting information for specifying a phoneme is simply referred to as “outputting a phoneme”.
 一方、雑音付加学習は、雑音を含む音声信号を学習データとして、深層ニューラル・ネットワークによる音響モデルを学習することにより、雑音を含む音声に対する音声認識精度を高めようとする手法である。この場合は、音声信号に対する前処理は行わないが、音声認識の対象はやはり単一の音声信号である。 On the other hand, the noise-added learning is a method of improving the speech recognition accuracy for speech containing noise by learning an acoustic model using a deep neural network using speech signals containing noise as learning data. In this case, no preprocessing is performed on the voice signal, but the target of voice recognition is still a single voice signal.
 近年では、単一チャネルのマイクロホンから得た音声信号に対する音声強調ではなく、複数チャネルのマイクロホン(マイクロホンアレイ)から得た多チャネル音声強調が音声認識の前処理とし幅広く利用されている。その好例がスマートスピーカである。スマートスピーカは、様々な企業により開発及び販売され、特に米国等で急速に普及している。 In recent years, multi-channel voice enhancement obtained from microphones of multiple channels (microphone array) has been widely used as preprocessing for voice recognition, instead of voice enhancement for audio signals obtained from microphones of a single channel. A good example is a smart speaker. Smart speakers have been developed and sold by various companies, and are rapidly spreading especially in the United States and the like.
 マイクロホンアレイを用いることにより、音源の空間情報も用いて雑音除去ができるため、高精度かつ低歪で音声強調が行える。 雑 音 By using a microphone array, noise can be removed using the spatial information of the sound source, so that speech enhancement can be performed with high accuracy and low distortion.
特開2017-219769JP 2017-219769
 しかし、多チャネルの音声信号を用いる場合、そのためのマイクロホンアレイ及び多チャネルマイクアンプという特殊なデバイスが必要となる。また音声信号に対する処理量及び転送量が増大する。こうした問題のため、例えばいわゆるスマートホンのようにマイクロホンが1つしかなく、処理量にも限界があるデバイスには他チャンネルの音声信号による音声認識は適用できないという問題がある。 However, when using multi-channel audio signals, special devices such as a microphone array and a multi-channel microphone amplifier are required. Further, the processing amount and the transfer amount for the audio signal increase. Due to such a problem, for example, there is a problem that voice recognition using a voice signal of another channel cannot be applied to a device having only one microphone such as a so-called smartphone and having a limited processing amount.
 このため、スマートホンでは前記した音声強調処理のいずれかが適用されるが、この場合には大幅な音声歪の増大が見られ、音声認識精度が著しく劣化してしまうという問題がある。 Therefore, any one of the above-described voice emphasizing processes is applied to a smartphone, but in this case, a large increase in voice distortion is observed, and there is a problem that voice recognition accuracy is significantly deteriorated.
 それ故に本発明の目的は、単一チャネルの音声信号しか利用可能でなくても音声認識精度を高くできる音響モデル及び音声認識装置、並びにそのためのコンピュータプログラムを提供することである。 Therefore, an object of the present invention is to provide an acoustic model and a speech recognition device capable of improving the accuracy of speech recognition even when only a single-channel speech signal is available, and a computer program therefor.
 本発明の第1の局面に係る耐雑音音声認識装置は、目的信号である音声信号に雑音信号が重畳した音響信号を入力とし、音声信号が強調された強調音声信号を出力する音声強調回路と、強調音声信号と、音響信号とを受け、音声信号の発話内容をテキスト化する音声認識部とを含む。 A noise-tolerant speech recognition device according to a first aspect of the present invention includes a speech enhancement circuit that receives an audio signal in which a noise signal is superimposed on a speech signal as a target signal, and outputs an enhanced speech signal in which the speech signal is enhanced. And a voice recognition unit that receives the emphasized voice signal and the acoustic signal and converts the uttered content of the voice signal into text.
 好ましくは、音声強調回路は、音響信号に対して第1の種類の音声強調処理を行って第1の強調音声信号を出力する第1の音声強調部と、音響信号に対して第1の種類と異なる第2の種類の音声強調処理を行って第2の強調音声信号を出力する第2の音声強調部とを含み、音声認識部は、第1及び第2の強調音声信号と、音響信号とを受け、音声信号の発話内容をテキスト化する。 Preferably, the audio enhancement circuit performs a first type of audio enhancement processing on the audio signal and outputs a first enhanced audio signal, and a first audio enhancement unit for the audio signal. A second voice enhancement unit that performs a second type of voice enhancement process different from the above and outputs a second enhanced voice signal. The speech recognition unit includes a first and a second enhanced voice signal, and a sound signal. Then, the speech content of the voice signal is converted to text.
 より好ましくは、音声認識部は、音響信号から第1の特徴量を抽出する第1の特徴抽出手段と、強調音声信号から第2の特徴量を抽出する第2の特徴抽出手段と、第2の特徴量の各々について、第1の特徴量と、第2の特徴量とに応じて取捨選択する特徴選択手段と、特徴選択手段により選択された第2の特徴量を用いて音声信号の発話内容をテキスト化する音声認識手段とを含む。 More preferably, the speech recognition unit includes a first feature extraction unit that extracts a first feature amount from the audio signal, a second feature extraction unit that extracts a second feature amount from the enhanced speech signal, Feature selecting means for selecting each of the feature quantities according to the first feature quantity and the second feature quantity, and utterance of an audio signal using the second feature quantity selected by the feature selecting means. Voice recognition means for converting the contents into text.
 さらに好ましくは、耐雑音音声認識装置は、音声認識手段が音声認識に用いる音響モデルを記憶する音響モデル記憶手段をさらに含み、当該音響モデルは複数の隠れ層を持つ深層ニューラル・ネットワークであり、音響モデルは、第1の特徴量を入力として受ける第1のサブネットワークと、第2の特徴量を入力として受ける第2のサブネットワークと、第1のサブネットワークの出力と第2のサブネットワークの出力とを受け、第1の特徴量及び第2の特徴量から推定される音素を出力する第3のサブネットワークとを含む。 More preferably, the noise-tolerant speech recognition apparatus further includes acoustic model storage means for storing an acoustic model used for speech recognition by the speech recognition means, wherein the acoustic model is a deep neural network having a plurality of hidden layers, The model includes a first sub-network receiving a first feature as an input, a second sub-network receiving a second feature as an input, an output of the first sub-network, and an output of the second sub-network. And a third sub-network for outputting phonemes estimated from the first feature amount and the second feature amount.
 本発明の第2の局面に係る耐雑音音声認識方法は、コンピュータが、目的信号である音声信号に雑音信号が重畳した単一チャネルの音響信号を入力として、音声信号が強調された強調音声信号を出力するステップと、コンピュータが、強調音声信号と、音響信号とを受け、音声信号の発話内容をテキスト化する音声認識ステップとを含む。 A noise-tolerant speech recognition method according to a second aspect of the present invention is characterized in that a computer receives, as an input, a single-channel acoustic signal in which a noise signal is superimposed on a speech signal as a target signal, and an enhanced speech signal in which the speech signal is emphasized. And a voice recognition step in which the computer receives the emphasized voice signal and the acoustic signal and converts the uttered content of the voice signal into text.
 本発明の第3の局面に係るコンピュータプログラムは、コンピュータを、上記したいずれかの耐雑音音声認識装置として機能させる。 コ ン ピ ュ ー タ A computer program according to a third aspect of the present invention causes a computer to function as any of the noise-tolerant speech recognition devices described above.
 本発明の解決した課題、本発明の構成及びその有利な効果は、添付の図面を参照しながら実施の形態の詳細な説明を読むことにより一層明らかとなる。 The problems solved by the present invention, the configuration of the present invention, and advantageous effects thereof will become more apparent by reading the detailed description of the embodiments with reference to the accompanying drawings.
図1は、単一チャネルの音声信号に対して従来の音声強調手法による前処理を行って音声認識を行う音声認識装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a speech recognition device that performs preprocessing on a single-channel speech signal by a conventional speech enhancement method to perform speech recognition. 図2は、図1に示す音声認識装置で利用される深層ニューラル・ネットワークによる音響モデルの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of an acoustic model based on a deep neural network used in the speech recognition device shown in FIG. 図3は、本発明の第1の実施の形態に係る音声認識装置の概略構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of the speech recognition device according to the first embodiment of the present invention. 図4は、図3に示す音声認識装置で用いられる音響モデルの構成を示す概略ブロック図である。FIG. 4 is a schematic block diagram showing a configuration of an acoustic model used in the speech recognition device shown in FIG. 図5は、本発明の第2の実施の形態に係る音声認識装置で用いられる音響モデルの構成を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration of an acoustic model used in the speech recognition device according to the second embodiment of the present invention. 図6は、本発明の第3の実施の形態に係る音声認識装置の概略構成を示すブロック図である。FIG. 6 is a block diagram showing a schematic configuration of the speech recognition device according to the third embodiment of the present invention. 図7は、図6に示す音声認識装置で用いられる音響モデルの構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of an acoustic model used in the speech recognition device shown in FIG. 図8は、本発明の第4の実施の形態に係る音声認識装置で用いられる音響モデルの概略構成を示すブロック図である。FIG. 8 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the fourth embodiment of the present invention. 図9は、本発明の第5の実施の形態に係る音声認識装置で用いられる音響モデルの概略構成を示すブロック図である。FIG. 9 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the fifth embodiment of the present invention. 図10は、本発明の第6の実施の形態に係る音声認識装置で用いられる音響モデルの概略構成を示すブロック図である。FIG. 10 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the sixth embodiment of the present invention. 図11は、本発明の第7の実施の形態に係る音声認識装置で用いられる音響モデルの概略構成を示すブロック図である。FIG. 11 is a block diagram illustrating a schematic configuration of an acoustic model used in the speech recognition device according to the seventh embodiment of the present invention. 図12は、本発明の第8の実施の形態に係る音声認識装置で用いられる音響モデルの概略構成を示すブロック図である。FIG. 12 is a block diagram showing a schematic configuration of an acoustic model used in the speech recognition device according to the eighth embodiment of the present invention. 図13は、本発明の第5の実施の形態~第8の実施の形態に係る音響モデルが有するゲート層の機能を説明する図である。FIG. 13 is a diagram for explaining the function of the gate layer included in the acoustic model according to the fifth to eighth embodiments of the present invention. 図14は、従来技術と本発明の第1~第8の実施の形態に係る音声認識装置による単語誤り率を対比して表形式で示す図である。FIG. 14 is a diagram showing, in a table form, a comparison between the word error rates of the conventional art and the speech recognition apparatuses according to the first to eighth embodiments of the present invention. 図15は、本発明に係る音声認識装置を実現する典型的なコンピュータのハードウェアブロック図である。FIG. 15 is a hardware block diagram of a typical computer for realizing the speech recognition device according to the present invention.
 以下の説明及び図面では、同一の部品には同一の参照番号を付してある。したがって、それらについての詳細な説明は繰返さない。 で は In the following description and drawings, the same components are denoted by the same reference numerals. Therefore, detailed description thereof will not be repeated.
 [第1の実施の形態」
 図3は、本発明の第1の実施の形態に係る音声認識装置180の概略構成を示すブロック図である。図3を参照して、音声認識装置180は、雑音重畳音声である音声信号112に対し、既存の音声強調処理を行って強調音声信号203を出力する音声強調部202と、音声信号112及び強調音声信号203の双方を入力として、拡大された音声の特徴量210及び212を抽出する拡大特徴抽出部200と、拡大特徴抽出部200が出力する特徴量210及び212を入力として受けて音声認識を行って認識後のテキスト208を出力する音声認識部204とを含む。音声信号112は、波形110により表される音声を表す信号に雑音信号が重畳された、マイクロホンが出力する音響信号である。音声認識部204としては、図1に示す音声認識部120と同様のものを用いることができる。ただし、使用する特徴量については後述するように従来のものとは異なっている。
[First Embodiment]
FIG. 3 is a block diagram illustrating a schematic configuration of the speech recognition device 180 according to the first embodiment of the present invention. Referring to FIG. 3, speech recognition apparatus 180 performs speech enhancement processing on existing speech signal 112 that is noise-superimposed speech, and outputs enhanced speech signal 203. An extended feature extraction unit 200 that receives both audio signals 203 as input and extracts feature amounts 210 and 212 of the expanded speech, and receives the feature amounts 210 and 212 output by the enlarged feature extraction unit 200 as input and performs speech recognition. And a speech recognition unit 204 that outputs the recognized text 208. The audio signal 112 is an acoustic signal output from a microphone in which a noise signal is superimposed on a signal representing the audio represented by the waveform 110. As the voice recognition unit 204, the same one as the voice recognition unit 120 shown in FIG. 1 can be used. However, the feature amounts used are different from those of the related art, as described later.
 音声認識装置180はさらに、音声認識部204が音声認識の際に用いる、図2に示す従来のものとは異なる構成の音響モデル206と、図1に示すものとそれぞれ同じ発音辞書126及び言語モデル128とを含む。これら音響モデル206、発音辞書126及び言語モデル128はいずれも後述するハードディスク等の記憶装置に記憶される。 The speech recognition device 180 further includes an acoustic model 206 having a configuration different from the conventional one shown in FIG. 2 and a pronunciation dictionary 126 and a language model respectively identical to those shown in FIG. 128. These acoustic model 206, pronunciation dictionary 126, and language model 128 are all stored in a storage device such as a hard disk described later.
 拡大特徴抽出部200は、雑音重畳音声である音声信号112の入力を受けて特徴量210を出力する、図1に示すものと同様の特徴抽出部118と、音声強調部202から出力される強調音声信号203から特徴量212を抽出する、特徴抽出部118と同様の機能を持つ特徴抽出部220とを含む。本実施の形態では、特徴抽出部118と特徴抽出部220とは同じ構成を持ち、特徴量210と特徴量212とは同じ意味を持つ特徴量である。しかし、一般的には両者の入力が異なるために特徴量210及び212の値は互いに異なる。 The enlarged feature extraction unit 200 receives the input of the audio signal 112 that is a noise-superimposed audio, and outputs a feature amount 210. The feature extraction unit 118 similar to that illustrated in FIG. 1 and the enhancement output from the audio enhancement unit 202. A feature extraction unit 220 that extracts the feature amount 212 from the audio signal 203 and has the same function as the feature extraction unit 118 is included. In the present embodiment, the feature extractor 118 and the feature extractor 220 have the same configuration, and the feature 210 and the feature 212 have the same meaning. However, generally, the values of the feature quantities 210 and 212 are different from each other because the two inputs are different.
 図4を参照して、図3に示す音響モデル206は、雑音が重畳された音声から得られた特徴量210と、強調音声信号203から得られた特徴量212との双方を入力とする入力層240と、推定された音素を出力する出力層256と、これら入力層240及び出力層256の間に順番に設けられた複数の隠れ層242~254とを含む。本実施の形態では、隠れ層の数は7層である。 Referring to FIG. 4, an acoustic model 206 shown in FIG. 3 has an input in which both a feature amount 210 obtained from a voice on which noise is superimposed and a feature amount 212 obtained from an enhanced voice signal 203 are input. It includes a layer 240, an output layer 256 for outputting estimated phonemes, and a plurality of hidden layers 242 to 254 provided in order between the input layer 240 and the output layer 256. In the present embodiment, the number of hidden layers is seven.
 図4に示す入力層240は、いずれもベクトルである特徴量210及び212の要素数の和だけの数の入力を受ける。これら特徴量210及び212を出力する特徴抽出部118及び220は、本実施の形態では図1に示す従来の特徴抽出部118と同じ構成である。したがって、音響モデル206が受ける特徴量の数は図1に示す従来のものと比較して2倍になる。そのうち半数は雑音重畳音声から得られた特徴量であり、残りの半数は強調音声から得られた特徴量である。 4 The input layer 240 shown in FIG. 4 receives as many inputs as the sum of the number of elements of the feature quantities 210 and 212, both of which are vectors. The feature extraction units 118 and 220 that output these feature amounts 210 and 212 have the same configuration in the present embodiment as the conventional feature extraction unit 118 shown in FIG. Therefore, the number of features received by the acoustic model 206 is twice as large as that of the conventional model shown in FIG. Of these, half are features obtained from the noise-superimposed speech, and the other half are features obtained from the emphasized speech.
 音声認識部204の動作は、図1に示す音響モデル124に代えて音響モデル206を用いること、及び処理対象となる音響特徴量が強調音声からのものに加えて雑音重畳音声の特徴量も含むことを除き、図1に示す音声認識装置100と同じである。したがってここではその詳細な説明は繰返さない。 The operation of the speech recognition unit 204 uses the acoustic model 206 instead of the acoustic model 124 shown in FIG. 1, and the acoustic features to be processed include those of the noise-superimposed speech in addition to those from the emphasized speech. Except for this point, it is the same as the speech recognition device 100 shown in FIG. Therefore, the detailed description will not be repeated here.
 このような構成の音響モデル206を採用することにより、図14を参照して後述するように、本実施の形態に係る音声認識装置180では、図1に示す従来のものと比較してより高い精度の音声認識を行うことができた。 By employing the acoustic model 206 having such a configuration, as described later with reference to FIG. 14, the voice recognition device 180 according to the present embodiment is higher than the conventional one shown in FIG. 1. Accurate speech recognition could be performed.
 なお、音響モデル206の学習は、予め雑音重畳音声と、その音声が表すテキストからなる学習データを準備することにより、通常の深層ニューラル・ネットワークと同様の誤差逆伝搬法により行うことができる。これは以下に述べる各実施の形態における学習でも同様である。 Note that the learning of the acoustic model 206 can be performed by an error back propagation method similar to that of a normal deep neural network by preparing training data including a noise-superimposed voice and a text represented by the voice in advance. The same applies to learning in each of the embodiments described below.
 [第2の実施の形態]
 図5に、本発明の第2の実施の形態に係る音響モデル280の構成を示す。第2の実施の形態に係る音声認識装置は、図3に示す音響モデル206に代えて図5に示す音響モデル280を用いる点を除き第1の実施の形態に係る音声認識装置180と同じである。
[Second embodiment]
FIG. 5 shows a configuration of an acoustic model 280 according to the second embodiment of the present invention. The speech recognition apparatus according to the second embodiment is the same as the speech recognition apparatus 180 according to the first embodiment except that an acoustic model 280 shown in FIG. 5 is used instead of the acoustic model 206 shown in FIG. is there.
 音響モデル280は、雑音重畳音声の特徴量210を受ける雑音重畳音声のためのサブネットワーク300と、強調音声の特徴量212を受ける強調音声のためのサブネットワーク302と、雑音重畳音声のためのサブネットワーク300の出力及び強調音声のためのサブネットワーク302の出力を受ける出力側サブネットワーク304と、出力側サブネットワーク304の出力を受けて音素を出力する出力層306とを含む。 The acoustic model 280 includes a sub-network 300 for noise-superimposed speech that receives the feature amount 210 of the noise-superimposed speech, a sub-network 302 for the emphasized voice that receives the feature amount 212 of the emphasized voice, and a sub-network 302 for the noise-superimposed speech. An output sub-network 304 that receives the output of the network 300 and the output of the sub-network 302 for emphasized voice, and an output layer 306 that receives the output of the output sub-network 304 and outputs phonemes.
 雑音重畳音声のためのサブネットワーク300は、雑音重畳音声の特徴量210を受けるように接続された入力層320と、入力層320と出力側サブネットワーク304の入力との間に順番に接続された複数個(本実施の形態では3個)の隠れ層322、324及び326とを含む。 The sub-network 300 for the noise-superimposed speech is connected in order between the input layer 320 connected to receive the feature amount 210 of the noise-superimposed speech, and the input between the input layer 320 and the input of the output-side sub-network 304. It includes a plurality (three in this embodiment) of hidden layers 322, 324 and 326.
 強調音声のためのサブネットワーク302は、強調音声の特徴量212を受けるように接続された入力層330と、入力層330と出力側サブネットワーク304の入力との間に順番に接続された複数個(本実施の形態では3個)の隠れ層332、334及び336とを含む。 The sub-network 302 for the emphasized voice includes an input layer 330 connected to receive the feature amount 212 of the emphasized voice, and a plurality of sub-networks sequentially connected between the input layer 330 and the input of the output side sub-network 304. (Three in this embodiment) hidden layers 332, 334 and 336.
 出力側サブネットワーク304は、雑音重畳音声のためのサブネットワーク300及び強調音声のためのサブネットワーク302の出力を受けるように接続された隠れ層350と、この隠れ層350と出力層306との間に順に接続された隠れ層352、354及び356とを含む。 The output side sub-network 304 includes a hidden layer 350 connected to receive the outputs of the sub-network 300 for the noise-superimposed speech and the sub-network 302 for the emphasized speech, and a signal between the hidden layer 350 and the output layer 306. And hidden layers 352, 354 and 356 connected in sequence.
 図5に示す音響モデル280が第1の実施の形態の音響モデル206と異なるのは以下の点である。すなわち、音響モデル206では入力層240が雑音重畳音声の特徴量210と強調音声の特徴量212の双方を受け、それ以後の隠れ層242~254の全てに双方からの情報が伝搬されていく。それに対し、音響モデル280では、雑音重畳音声のためのサブネットワーク300を構成する入力層320及び隠れ層322~326には雑音重畳音声の特徴量210からの情報のみが伝搬する。強調音声のためのサブネットワーク302の入力層330及び隠れ層332~336には強調音声の特徴量212からの情報のみが伝搬する。両者の情報は、隠れ層350で初めて統合され、以後、隠れ層352~356及び出力層306に伝搬する。 The acoustic model 280 shown in FIG. 5 differs from the acoustic model 206 of the first embodiment in the following points. That is, in the acoustic model 206, the input layer 240 receives both the feature amount 210 of the noise-superimposed speech and the feature amount 212 of the emphasized speech, and information from both is propagated to all of the hidden layers 242 to 254 thereafter. On the other hand, in the acoustic model 280, only the information from the feature 210 of the noise-superimposed speech propagates to the input layer 320 and the hidden layers 322 to 326 configuring the sub-network 300 for the noise-superimposed speech. Only the information from the feature 212 of the emphasized speech propagates to the input layer 330 and the hidden layers 332 to 336 of the subnetwork 302 for the emphasized speech. Both pieces of information are integrated for the first time in the hidden layer 350, and thereafter propagate to the hidden layers 352 to 356 and the output layer 306.
 音響モデル280を採用した音声認識装置の構成は第1の実施の形態の音声認識装置180と同様である。 構成 The configuration of the speech recognition device employing the acoustic model 280 is the same as that of the speech recognition device 180 of the first embodiment.
 この第2の実施の形態に係る音響モデル280を用いた音声認識装置でも、図14に示すように従来技術より高い精度を達成できた。 音 声 The speech recognition device using the acoustic model 280 according to the second embodiment also achieved higher accuracy than the prior art, as shown in FIG.
 [第3の実施の形態]
 図6に、本発明の第3の実施の形態に係る音声認識装置380のブロック図を示す。この音声認識装置380は、波形110により表される音声についてマイクロホンが出力する音声信号112に対し、それぞれ既存の第1~第4の音声強調処理を行ってそれぞれ強調音声信号203、393、395及び397を出力する音声強調部202、392、394及び396と、音声信号112及び強調音声信号203、393、395及び397を入力として、拡大された音声の特徴量210、212、430、432及び434を抽出する拡大特徴抽出部390と、拡大特徴抽出部390が出力する特徴量210、212、430、432及び434を入力として受けて音声認識を行って認識後のテキスト400を出力する音声認識部402とを含む。
[Third Embodiment]
FIG. 6 shows a block diagram of a voice recognition device 380 according to the third embodiment of the present invention. The voice recognition device 380 performs existing first to fourth voice enhancement processing on the voice signal 112 output from the microphone with respect to the voice represented by the waveform 110, and performs voice enhancement signals 203, 393, and 395, respectively. Speech enhancement units 202, 392, 394, and 396 that output 397, and the audio signal 112 and the emphasized audio signals 203, 393, 395, and 397 as inputs, and feature amounts 210, 212, 430, 432, and 434 of the expanded audio. And a speech recognition unit that receives as input the feature amounts 210, 212, 430, 432, and 434 output by the expanded feature extraction unit 390, performs speech recognition, and outputs a recognized text 400. 402.
 音声認識装置380はさらに、音声認識部402が音声認識の際に用いる音響モデル398と、図1に示すものとそれぞれ同じ発音辞書126及び言語モデル128とを含む。 The speech recognition device 380 further includes an acoustic model 398 used by the speech recognition unit 402 for speech recognition, and the same pronunciation dictionary 126 and language model 128 as those shown in FIG.
 拡大特徴抽出部390は、雑音が重畳された音声信号112を受けて特徴量210を抽出するための特徴抽出部118と、音声強調部202から強調音声信号203を受けて第1の強調音声の特徴量212を抽出するための特徴抽出部220と、音声強調部392から強調音声信号393を受けて第2の強調音声の特徴量430を出力する特徴抽出部410と、音声強調部394から強調音声信号395を受けて第3の強調音声の特徴量432を出力する特徴抽出部412と、音声強調部396から強調音声信号397を受けて第4の強調音声の特徴量434を出力する特徴抽出部414とを含む。 The enlarged feature extraction unit 390 receives the voice signal 112 on which noise is superimposed, extracts a feature amount 210, and receives the enhanced voice signal 203 from the voice enhancement unit 202, and receives the first emphasized voice. A feature extraction unit 220 for extracting the feature amount 212, a feature extraction unit 410 that receives the enhanced voice signal 393 from the voice enhancement unit 392, and outputs a feature amount 430 of the second enhanced voice, and a voice enhancement unit 394. A feature extraction unit 412 that receives the audio signal 395 and outputs a feature amount 432 of the third emphasized voice, and a feature extraction that receives the enhanced voice signal 397 from the speech enhancement unit 396 and outputs a fourth feature amount 434 of the enhanced voice Unit 414.
 音声強調部202は非特許文献1に開示された手法により音声強調を行う。音声強調部392は非特許文献2に開示された手法により音声強調を行う。音声強調部394は非特許文献3に開示された手法により音声強調を行う。音声強調部396は非特許文献4に開示された手法により音声強調を行う。 (4) The voice enhancement unit 202 performs voice enhancement by the method disclosed in Non-Patent Document 1. The voice enhancement unit 392 performs voice enhancement by the method disclosed in Non-Patent Document 2. The voice enhancement unit 394 performs voice enhancement by the method disclosed in Non-Patent Document 3. The voice enhancement unit 396 performs voice enhancement by the method disclosed in Non-Patent Document 4.
 図7に音響モデル398を形成する深層ニューラル・ネットワークの構成をブロック図形式で示す。図7を参照して、この音響モデル398は、図4に示す第1の実施の形態に係る音響モデル206を、4つの強調音声から抽出された特徴量を用いるよう拡張したものである。 FIG. 7 is a block diagram showing the configuration of the deep neural network forming the acoustic model 398. Referring to FIG. 7, the acoustic model 398 is obtained by expanding the acoustic model 206 according to the first embodiment shown in FIG. 4 so as to use feature amounts extracted from four emphasized voices.
 音響モデル398は、雑音重畳音声の特徴量210、第1の強調音声の特徴量212、第2の強調音声の特徴量430、第3の強調音声の特徴量432及び第4の強調音声の特徴量434を受ける入力層450と、音響モデル398が推定した音素を出力する出力層454と、入力層450と出力層454との間に接続された複数の隠れ層からなる中間層452とを含む。 The acoustic model 398 includes the feature 210 of the noise-superimposed speech, the feature 212 of the first emphasized speech, the feature 430 of the second emphasized speech, the feature 432 of the third emphasized speech, and the feature of the fourth emphasized speech. An input layer 450 receiving the quantity 434, an output layer 454 for outputting phonemes estimated by the acoustic model 398, and an intermediate layer 452 composed of a plurality of hidden layers connected between the input layer 450 and the output layer 454. .
 中間層452は、入力層450の出力に接続された入力を持つ隠れ層470と、それぞれの入力が前の層の出力に接続された隠れ層472、474、476、478、480及び482とを含む。隠れ層482の出力は出力層454の入力に接続されている。 The middle layer 452 includes a hidden layer 470 having inputs connected to the outputs of the input layer 450, and hidden layers 472, 474, 476, 478, 480 and 482, each having an input connected to the output of the previous layer. Including. The output of the hidden layer 482 is connected to the input of the output layer 454.
 この第3の実施の形態に係る音声認識装置380は、第2の実施の形態に係る音声認識装置180を4つの音声強調を使用するように拡張したものである。その動作も第1の実施の形態のものと基本的には同一である。 The speech recognition device 380 according to the third embodiment is obtained by expanding the speech recognition device 180 according to the second embodiment to use four speech enhancements. The operation is basically the same as that of the first embodiment.
 この第3の実施の形態でも、従来技術と比較して音声認識の精度を高くすることができた。 で も Also in the third embodiment, the accuracy of voice recognition can be increased as compared with the related art.
 [第4の実施の形態]
 第3の実施の形態では、雑音重畳音声の特徴量210及び第1~第4の強調音声の特徴量212、430、432及び434がいずれも入力層450に入力されており、中間層452を構成する全ての隠れ層にこの情報が伝搬されている。しかし本発明はそのような実施の形態には限定されない。
[Fourth Embodiment]
In the third embodiment, the feature amount 210 of the noise-superimposed voice and the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices are all input to the input layer 450. This information is propagated to all the constituent hidden layers. However, the present invention is not limited to such an embodiment.
 この第4の実施の形態に係る音声認識装置は基本的に図6に示す音声認識装置380の構成と同様である。異なる点は、音声認識装置380が使用していた音響モデル398に代えて図8に示すような構成の音響モデル500を用いている点である。 The speech recognition apparatus according to the fourth embodiment has basically the same configuration as the speech recognition apparatus 380 shown in FIG. The difference is that an acoustic model 500 having the configuration shown in FIG. 8 is used instead of the acoustic model 398 used by the speech recognition device 380.
 図8を参照して、この音響モデル500は、雑音重畳音声である音声信号112の特徴量210を受ける第1のサブネットワーク540と、第1の強調音声の特徴量212を受ける第2のサブネットワーク542と、第2の強調音声の特徴量430を受ける第3のサブネットワーク544と、第3の強調音声の特徴量432を受ける第4のサブネットワーク546と、第4の強調音声の特徴量434を受ける第5のサブネットワーク548と、第1のサブネットワーク540、第2のサブネットワーク542、第3のサブネットワーク544、第4のサブネットワーク546及び第5のサブネットワーク548の出力を受けるように接続された中間サブネットワーク550と、中間サブネットワーク550の出力に接続された入力を持ち、音響モデル500の出力である音素の推定結果を出力する出力層552とを含む。 Referring to FIG. 8, this acoustic model 500 includes a first sub-network 540 that receives a feature 210 of a voice signal 112 that is a noise-superimposed voice, and a second sub-network that receives a feature 212 of a first emphasized voice. A network 542, a third sub-network 544 receiving the second emphasized voice feature 430, a fourth sub-network 546 receiving the third emphasized voice feature 432, and a fourth emphasized voice feature A fifth sub-network 548 that receives 434 and a first sub-network 540, a second sub-network 542, a third sub-network 544, a fourth sub-network 546, and a fifth sub-network 548. And an input connected to the output of the intermediate sub-network 550, And an output layer 552 outputs the estimation result of the phoneme which is the output of the sound model 500.
 第1のサブネットワーク540は、雑音重畳音声の特徴量210を受ける入力を持つ入力層570と、入力層570と中間サブネットワーク550の入力との間に順番に接続された隠れ層572、隠れ層574及び隠れ層576とを含む。 The first sub-network 540 includes an input layer 570 having an input for receiving the feature amount 210 of the noise-superimposed speech, a hidden layer 572, and a hidden layer 572 connected in sequence between the input layer 570 and the input of the intermediate sub-network 550. 574 and a hidden layer 576.
 第2のサブネットワーク542は、第1の強調音声の特徴量212を受ける入力を持つ入力層580と、入力層580と中間サブネットワーク550の入力との間に順番に接続された隠れ層582、隠れ層584及び隠れ層586とを含む。 The second sub-network 542 includes an input layer 580 having an input for receiving the feature amount 212 of the first emphasized voice, and a hidden layer 582 connected in order between the input layer 580 and the input of the intermediate sub-network 550. And a hidden layer 584 and a hidden layer 586.
 第3のサブネットワーク544は、第2の強調音声の特徴量430を受ける入力を持つ入力層590と、入力層590と中間サブネットワーク550の入力との間に順に接続された隠れ層592、隠れ層594及び隠れ層596とを含む。 The third sub-network 544 includes an input layer 590 having an input for receiving the feature amount 430 of the second emphasized voice, a hidden layer 592 sequentially connected between the input layer 590 and an input of the intermediate sub-network 550, and a hidden layer 592. A layer 594 and a hidden layer 596.
 第4のサブネットワーク546は、第3の強調音声の特徴量432を受ける入力を持つ入力層600と、入力層600と中間サブネットワーク550の入力との間に順に接続された隠れ層602、隠れ層604及び隠れ層606とを含む。 The fourth sub-network 546 includes an input layer 600 having an input for receiving the feature amount 432 of the third emphasized voice, a hidden layer 602 sequentially connected between the input layer 600 and an input of the intermediate sub-network 550, and a hidden layer 602. A layer 604 and a hidden layer 606.
 第5のサブネットワーク548は、第4の強調音声の特徴量434を受ける入力を持つ入力層610と、入力層610と中間サブネットワーク550の入力との間に順に接続された隠れ層612、隠れ層614及び隠れ層616とを含む。 The fifth sub-network 548 includes an input layer 610 having an input for receiving the feature amount 434 of the fourth emphasized voice, a hidden layer 612 sequentially connected between the input layer 610 and the input of the intermediate sub-network 550, and a hidden layer 612. Including a layer 614 and a hidden layer 616.
 中間サブネットワーク550は、第1~第5のサブネットワーク540、542、544、546及び548の出力を受けるように接続された隠れ層620と、隠れ層620から出力層552までの間に順に接続された隠れ層622、隠れ層624及び隠れ層626とを含む。 The intermediate sub-network 550 is connected to a hidden layer 620 connected to receive the outputs of the first to fifth sub-networks 540, 542, 544, 546 and 548, and is connected in order from the hidden layer 620 to the output layer 552. Hidden layer 622, hidden layer 624, and hidden layer 626.
 この実施の形態に係る音声認識装置の構成も図6に示すものと同様で、図6の音響モデル398に代えて図8に示す音響モデル500を用いる点のみが異なる。 The configuration of the speech recognition apparatus according to this embodiment is also the same as that shown in FIG. 6, except that an acoustic model 500 shown in FIG. 8 is used instead of acoustic model 398 in FIG.
 第3の実施の形態では、全ての隠れ層が、雑音重畳音声の特徴量210、第1~第4の強調音声の特徴量212、430、432及び434を伝搬している。しかし本実施の形態では、雑音重畳音声の特徴量210は第1のサブネットワーク540の内部を伝搬した後隠れ層620に入力される。同様に、第1~第4の強調音声の特徴量212、430、432及び434はそれぞれ第2~第5のサブネットワーク542、544、546及び548のみの中を伝搬した後、隠れ層620に入力される。隠れ層620から始まる中間サブネットワーク550の内部では、全ての特徴量が統合されて順に隠れ層を伝搬し最終的に出力層552から音素の推定結果が出力される。 In the third embodiment, all the hidden layers propagate the feature amount 210 of the noise-superimposed voice and the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices. However, in the present embodiment, the feature 210 of the noise-superimposed speech is input to the hidden layer 620 after propagating inside the first sub-network 540. Similarly, the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices propagate through only the second to fifth sub-networks 542, 544, 546, and 548, respectively. Is entered. Inside the intermediate sub-network 550 starting from the hidden layer 620, all the feature amounts are integrated, propagated through the hidden layer in order, and finally the phoneme estimation result is output from the output layer 552.
 この第4の実施の形態に係る音響モデル500を用いた音声認識装置でも、従来の音声認識装置より高い精度で音声認識を行うことができた。 音 声 The speech recognition device using the acoustic model 500 according to the fourth embodiment was also able to perform speech recognition with higher accuracy than the conventional speech recognition device.
 [第5の実施の形態]
 図9に、第5の実施の形態に係る音声認識装置で使用される音響モデル650の概略構成を示す。図9から分かるように、この音響モデル650も深層ニューラル・ネットワークからなる。
[Fifth Embodiment]
FIG. 9 shows a schematic configuration of an acoustic model 650 used in the speech recognition device according to the fifth embodiment. As can be seen from FIG. 9, this acoustic model 650 also consists of a deep neural network.
 図9に示す音響モデル650は、図4に示す音響モデル206において、雑音重畳音声の特徴量210と第1の強調音声の特徴量212の双方を受ける入力層240の前に、第1の強調音声の特徴量212を受け、区間[0,1]の重みを乗じて入力層240に入力するゲート層682を設けたものである。以後、図4に示すものと同様、隠れ層242から出力層256まで、これら特徴量からの情報はいずれも共通して伝搬される。 The acoustic model 650 shown in FIG. 9 is different from the acoustic model 206 shown in FIG. 4 in that the first emphasis speech is obtained before the input layer 240 receiving both the feature 210 of the noise-superimposed speech and the feature 212 of the first emphasized speech. A gate layer 682 is provided, which receives the voice feature 212 and multiplies it by the weight of the section [0, 1] and inputs the result to the input layer 240. Thereafter, as in the case shown in FIG. 4, all of the information from these feature amounts is propagated in common from the hidden layer 242 to the output layer 256.
 ゲート層682も一種の隠れ層ということができるが、その機能は通常の隠れ層と異なる。すなわち、図13を参照して、ゲート層682を一般的にゲート層1100として表現すると、ゲート層1100は入力ベクトルxの各要素に対してゲート重みg=σ(Wx+b)を要素ごとに乗じて出力ベクトルyを出力するゲート機能を持つ。ここでベクトルxをM次元とすると、WはM×M次元の重み行列、bはM次元のバイアスベクトル、σ(・)は区間[0,1]の値域である任意の活性化関数、をそれぞれ表す。ゲート重みの各要素は前述したとおり区間[0,1]内の値である。これら重み行列W及びバイアスベクトルbの各要素はいずれも学習の対象である。学習時には、上記した区間の制約に従うことを除き、重み行列W及びバイアスベクトルbの各要素の学習は通常の深層ニューラル・ネットワークと同じ手法を用いて学習できる。以後の説明でも、ゲート層と呼ばれる層はいずれも図13のゲート層1100と同じ機能を持ち、いずれのパラメータも上記した区間[0、1]という制約の下、他のパラメータと同様に学習できる。 The gate layer 682 can also be referred to as a kind of hidden layer, but its function is different from that of a normal hidden layer. That is, referring to FIG. 13, if gate layer 682 is generally expressed as gate layer 1100, gate layer 1100 has a gate weight g t = σ (Wx t + b) for each element of input vector x t. It has an output to gate function output vector y t by multiplying each. Here, when the vector xt is M-dimensional, W is an M × M-dimensional weight matrix, b is an M-dimensional bias vector, σ (·) is an arbitrary activation function in the range of the interval [0, 1], Respectively. Each element of the gate weight is a value in the section [0, 1] as described above. Each of the elements of the weight matrix W and the bias vector b is a learning target. At the time of learning, learning of each element of the weight matrix W and the bias vector b can be performed using the same method as that of a normal deep neural network, except that the above-described restrictions on the section are obeyed. Also in the following description, each layer called a gate layer has the same function as the gate layer 1100 in FIG. 13, and all parameters can be learned in the same manner as other parameters under the constraint of the section [0, 1] described above. .
 なおこのゲート層は、入力ベクトルの各要素に対して別々にゲート処理を行うことに注意する必要がある。したがって、強調音声の特徴量ごとに、音声認識時に利用するか否かをゲート処理できる。 It should be noted that this gate layer separately gates each element of the input vector. Therefore, it is possible to perform a gating process for each feature amount of the emphasized speech as to whether or not to use the feature during speech recognition.
 この結果、各特徴量からなる入力ベクトルの要素ごとに、その要素に対する重みに応じて取捨選択がされる。この取捨選択は重み行列Wとバイアスベクトルbと、各入力ベクトルに含まれる各要素の値とにより行われる。すなわち、入力される特徴量の値に応じて各要素が取捨選択され、音声認識に使用される。 結果 As a result, for each element of the input vector composed of each feature, selection is made according to the weight for that element. This selection is performed based on the weight matrix W, the bias vector b, and the value of each element included in each input vector. That is, each element is selected according to the value of the input feature amount and used for speech recognition.
 この第5の実施の形態に係る音響モデル650を用いた音声認識装置でも、従来技術と比較して高い精度を達成できた。 音 声 The speech recognition device using the acoustic model 650 according to the fifth embodiment also achieved higher accuracy than the conventional technology.
 [第6の実施の形態]
 図10に、本発明の第6の実施の形態に係る音声認識装置で使用される音響モデル750の概略構成を示す。この実施の形態に係る音声認識装置自体の構成は図3に示すものと同様である。ただし、図3の音響モデル206に代えて音響モデル750を用いる点が異なる。
[Sixth Embodiment]
FIG. 10 shows a schematic configuration of an acoustic model 750 used in the speech recognition device according to the sixth embodiment of the present invention. The configuration of the voice recognition device itself according to this embodiment is the same as that shown in FIG. However, the difference is that an acoustic model 750 is used instead of the acoustic model 206 in FIG.
 音響モデル750は、全体として1つの深層ニューラル・ネットワークを構成する。音響モデル750は、雑音重畳音声の特徴量210の入力を受ける第1のサブネットワーク770と、第1の強調音声の特徴量212の入力を受ける第2のサブネットワーク772と、第1のサブネットワーク770の出力と第2のサブネットワーク772の出力とを受けるように接続された、深層ニューラル・ネットワークの一部である第3のサブネットワーク774と、第3のサブネットワーク774の出力を受けて音響モデル750により推定された音素を特定する出力層776とを含む。 The acoustic model 750 constitutes one deep neural network as a whole. The acoustic model 750 includes a first sub-network 770 that receives an input of the feature 210 of the noise-superimposed speech, a second sub-network 772 that receives the input of the feature 212 of the first emphasized speech, and a first sub-network. A third sub-network 774, which is part of the deep neural network, connected to receive the output of the second sub-network 770 and the output of the second sub-network 772; And an output layer 776 for specifying phonemes estimated by the model 750.
 第1のサブネットワーク770は、雑音重畳音声の特徴量210を受ける入力層800と、入力層800から第3のサブネットワーク774の入力までの間に順に接続された隠れ層802、隠れ層804及び隠れ層806とを含む。 The first sub-network 770 includes an input layer 800 that receives the feature amount 210 of the noise-superimposed speech, and a hidden layer 802, a hidden layer 804, and a hidden layer 802 that are sequentially connected from the input layer 800 to the input of the third sub-network 774. And a hidden layer 806.
 第2のサブネットワーク772は、第1の強調音声の特徴量212を受ける入力層810と、入力層810の後に順に接続された隠れ層812、隠れ層814及び隠れ層816と、隠れ層816の出力を受けるように接続され、第5の実施の形態のゲート層682と同様の機能を持つゲート層818とを含む。 The second sub-network 772 includes an input layer 810 that receives the feature amount 212 of the first emphasized voice, a hidden layer 812, a hidden layer 814, a hidden layer 816 connected in order after the input layer 810, and a hidden layer 816. A gate layer 818 connected to receive an output and having the same function as the gate layer 682 of the fifth embodiment is included.
 第3のサブネットワーク774は、第1のサブネットワーク770の出力及び第2のサブネットワーク772の出力を受ける隠れ層830と、隠れ層830以後、出力層776までの間に順に接続された隠れ層832、隠れ層834及び隠れ層836とを含む。 The third sub-network 774 includes a hidden layer 830 receiving the output of the first sub-network 770 and the output of the second sub-network 772, and a hidden layer connected in order between the hidden layer 830 and the output layer 776. 832, a hidden layer 834 and a hidden layer 836.
 この音響モデル750は、図9に示すものと異なり、雑音重畳音声の特徴量210及び第1の強調音声の特徴量212は、音響モデル750の前半では第1のサブネットワーク770と第2のサブネットワーク772とに分離されてそれぞれの内部で伝搬される。第1のサブネットワーク770の出力はそのまま第3のサブネットワーク774に入力される。しかし、第2のサブネットワーク772では、最後の隠れ層816の出力に対してゲート層818でのゲート処理が実行された後、その結果が隠れ層830に入力される。 The acoustic model 750 is different from the acoustic model shown in FIG. 9 in that the feature 210 of the noise-superimposed speech and the feature 212 of the first emphasized speech include the first subnetwork 770 and the second subnetwork 770 in the first half of the acoustic model 750. It is separated into a network 772 and propagated inside each. The output of the first sub-network 770 is directly input to the third sub-network 774. However, in the second sub-network 772, after the gate processing in the gate layer 818 is performed on the output of the last hidden layer 816, the result is input to the hidden layer 830.
 こうした構成により、第1の強調音声の特徴量212を利用した方が有利なときには第1の強調音声の特徴量212が有効に利用される。第1の強調音声の特徴量212を利用すると不利になるときには第2のサブネットワーク772の出力は小さな値となり、結果として音声認識には利用されない。 With this configuration, when it is more advantageous to use the feature amount 212 of the first emphasized voice, the feature amount 212 of the first emphasized voice is effectively used. When the use of the feature amount 212 of the first emphasized speech is disadvantageous, the output of the second sub-network 772 has a small value, and as a result, is not used for speech recognition.
 この第6の実施の形態に係る音響モデル750を用いても、従来技術と比較して高い精度で音声認識できた。 (4) Even with the use of the acoustic model 750 according to the sixth embodiment, speech recognition could be performed with higher accuracy than in the related art.
 [第7の実施の形態]
 図11は第7の実施の形態に係る音声認識装置で使用される音響モデル850の概略構成を示す。図11からも分かるようにこの音響モデル850も深層ニューラル・ネットワークからなる。この第7の実親形態に係る音声認識装置は、図6に示す音声認識装置380と同様である。ただし、図7の音響モデル398に代えて音響モデル850を使用する点が異なる。
[Seventh Embodiment]
FIG. 11 shows a schematic configuration of an acoustic model 850 used in the speech recognition device according to the seventh embodiment. As can be seen from FIG. 11, this acoustic model 850 is also composed of a deep neural network. The speech recognition device according to the seventh embodiment has the same configuration as the speech recognition device 380 shown in FIG. The difference is that an acoustic model 850 is used instead of the acoustic model 398 in FIG.
 図11を参照して、この音響モデル850は、図7に示す音響モデル398の構成要素に加えて、入力層450の前に、第1の強調音声の特徴量212を受けて区間[0,1]の重みを乗じて入力層450に入力するゲート層892と、第2の強調音声の特徴量430を受けて区間[0,1]の重みを乗じて入力層450に入力するゲート層902と、第3の強調音声の特徴量432を受けて区間[0,1]の重みを乗じて入力層450に入力するゲート層912と、第4の強調音声の特徴量434を受けて区間[0,1]の重みを乗じて入力層450に入力するゲート層922とを含む。その他の点ではこの音響モデル850は、図7に示す音響モデル398と同一である。 Referring to FIG. 11, this acoustic model 850 receives the feature amount 212 of the first emphasized speech before the input layer 450 in addition to the components of the acoustic model 398 shown in FIG. 1], and a gate layer 902 that receives the feature amount 430 of the second emphasized voice and multiplies it by the weight of the section [0, 1] and inputs the same to the input layer 450. And a gate layer 912 that receives the feature amount 432 of the third emphasized voice and multiplies it by the weight of the section [0, 1] and inputs the same to the input layer 450, and a section [434] that receives the feature amount 434 of the fourth emphasized voice. 0, 1] and input to the input layer 450. In other respects, the acoustic model 850 is the same as the acoustic model 398 shown in FIG.
 この音響モデル850では、第1~第4の強調音声の特徴量212、430、432及び434のいずれに対してもゲート層892、902、912及び922の機能により、音声認識時に有利となるような特徴量については有効に利用し、そうでない特徴量については利用しないようにできる。その結果、この音響モデル850を用いた音声認識でも精度を高くできる。 In the acoustic model 850, the functions of the gate layers 892, 902, 912, and 922 are advantageous for any of the feature amounts 212, 430, 432, and 434 of the first to fourth emphasized voices, so that they are advantageous during voice recognition. Effective feature amounts can be used effectively, and other feature amounts can be prevented from being used. As a result, the accuracy can be improved even in speech recognition using the acoustic model 850.
 実際、後述するようにこの実施の形態の音響モデル850を用いた音声認識装置では、従来の技術よりも高い精度で音声認識を行うことができた。 In fact, as described later, the speech recognition apparatus using the acoustic model 850 according to the present embodiment was able to perform speech recognition with higher accuracy than the conventional technique.
 [第8の実施の形態]
 図12に、本発明の第8の実施の形態に係る音声認識装置で使用される音響モデル950の概略構成を示す。音響モデル950もまた他の実施の形態に係る音響モデルと同様、深層ニューラル・ネットワークからなる。
[Eighth Embodiment]
FIG. 12 shows a schematic configuration of an acoustic model 950 used in the speech recognition device according to the eighth embodiment of the present invention. The acoustic model 950 also includes a deep neural network, like the acoustic model according to the other embodiments.
 音響モデル950は、雑音重畳音声の特徴量210を受ける第1の入力サブネットワーク960と、第1の強調音声の特徴量212を受ける第2の入力サブネットワーク962と、第2の強調音声の特徴量430を受ける第3の入力サブネットワーク964と、第3の強調音声の特徴量432を受ける第4の入力サブネットワーク966と、第4の強調音声の特徴量434を受ける第5の入力サブネットワーク968と、第1~第5の入力サブネットワーク960、962、964、966及び968の出力を受ける中間サブネットワーク970と、中間サブネットワーク970の出力を受けて音響モデル950が推定する音素を出力する出力層972とを含む。 The acoustic model 950 includes a first input sub-network 960 that receives the feature 210 of the noise-superimposed speech, a second input sub-network 962 that receives the feature 212 of the first emphasized speech, and a feature of the second emphasized speech. A third input sub-network 964 receiving the quantity 430, a fourth input sub-network 966 receiving the third emphasized speech feature 432, and a fifth input sub-network receiving the fourth emphasized speech feature 434. 968, an intermediate sub-network 970 that receives the outputs of the first to fifth input sub-networks 960, 962, 964, 966, and 968, and receives the output of the intermediate sub-network 970 and outputs the phonemes estimated by the acoustic model 950. And an output layer 972.
 第1の入力サブネットワーク960は、雑音重畳音声の特徴量210を受ける入力層980と、入力層980から中間サブネットワーク970までの間に順に接続された隠れ層982、隠れ層984及び隠れ層986とを含む。 The first input subnetwork 960 includes an input layer 980 that receives the feature amount 210 of the noise-superimposed speech, and a hidden layer 982, a hidden layer 984, and a hidden layer 986 that are sequentially connected from the input layer 980 to the intermediate subnetwork 970. And
 第2の入力サブネットワーク962は、第1の強調音声の特徴量212を受ける入力層990と、入力層990の後に順に接続される隠れ層992、隠れ層994及び隠れ層996と、隠れ層996の出力と中間サブネットワーク970の入力との間に挿入されたゲート層998とを含む。 The second input sub-network 962 includes an input layer 990 that receives the feature value 212 of the first emphasized voice, a hidden layer 992, a hidden layer 994, a hidden layer 996, and a hidden layer 996 that are sequentially connected after the input layer 990. And the gate layer 998 inserted between the input of the intermediate sub-network 970.
 第3の入力サブネットワーク964は、第2の強調音声の特徴量430を受ける入力層1000と、入力層1000の後に順に接続された隠れ層1002、隠れ層1004及び隠れ層1006と、隠れ層1006の出力と中間サブネットワーク970の入力との間に挿入されたゲート層1008とを含む。 The third input sub-network 964 includes an input layer 1000 receiving the feature amount 430 of the second emphasized voice, a hidden layer 1002, a hidden layer 1004, a hidden layer 1006, and a hidden layer 1006 connected in order after the input layer 1000. And a gate layer 1008 inserted between the input of the intermediate sub-network 970.
 第4の入力サブネットワーク966は、第3の強調音声の特徴量432を受ける入力層1010と、入力層1010の後に順に接続された隠れ層1012、隠れ層1014及び隠れ層1016と、隠れ層1016の出力と中間サブネットワーク970の入力との間に挿入されたゲート層1018とを含む。 The fourth input sub-network 966 includes an input layer 1010 that receives the feature amount 432 of the third emphasized voice, a hidden layer 1012, a hidden layer 1014, a hidden layer 1016, and a hidden layer 1016 that are sequentially connected after the input layer 1010. And a gate layer 1018 inserted between the output of the intermediate sub-network 970.
 第5の入力サブネットワーク968は、第4の強調音声の特徴量434を受ける入力層1020と、入力層1020の後に順に接続された隠れ層1022、隠れ層1024及び隠れ層1026と、隠れ層1026の出力と中間サブネットワーク970の入力との間に挿入されたゲート層1028とを含む。 The fifth input sub-network 968 includes an input layer 1020 that receives the feature amount 434 of the fourth emphasized voice, a hidden layer 1022, a hidden layer 1024, a hidden layer 1026, and a hidden layer 1026 that are sequentially connected after the input layer 1020. , And a gate layer 1028 inserted between the inputs of the intermediate sub-network 970.
 中間サブネットワーク970は、第1の入力サブネットワーク960並びに第2~第5の入力サブネットワーク962、964、966及び968の出力を受ける隠れ層1030と、隠れ層1030と出力層972との間に順に接続された隠れ層1032、隠れ層1034及び隠れ層1036とを含む。 The intermediate sub-network 970 includes a hidden layer 1030 that receives the outputs of the first input sub-network 960 and the second to fifth input sub-networks 962, 964, 966, and 968, and a layer between the hidden layer 1030 and the output layer 972. It includes a hidden layer 1032, a hidden layer 1034, and a hidden layer 1036 connected in order.
 この音響モデル950を用いた音声認識装置の動作も、音響モデルとして音響モデル950を使用することを除き、図6に示す音声認識装置380と同様である。 The operation of the speech recognition device using this acoustic model 950 is the same as that of the speech recognition device 380 shown in FIG. 6 except that the acoustic model 950 is used as the acoustic model.
 この実施の形態では、第1~第4の音声強調により得られた特徴量の各要素の各々について、区間[0、1]の値をとる係数で重み付けをして音素を推定できる。音声強調ごとに、かつその特徴量ごとに、音声認識に有利な特徴については有効に利用し、不利な特徴については使用しないようにできる。その結果、音声認識の精度を高くできる。 In this embodiment, the phoneme can be estimated by weighting each element of the feature amount obtained by the first to fourth speech enhancements with a coefficient having a value in the section [0, 1]. For each voice emphasis and for each feature amount, it is possible to effectively use features that are advantageous for speech recognition and not to use disadvantageous features. As a result, the accuracy of voice recognition can be increased.
 後述のように、この実施の形態では、従来技術での精度はもちろん、上記した第1~第7の実施の形態のいずれよりも高い精度を実現することができた。 As described later, in this embodiment, it is possible to realize not only the accuracy of the conventional technique but also higher accuracy than any of the above-described first to seventh embodiments.
 [実験結果]
 図14に、上記各実施の形態について行った実験結果(単語誤り率)を表形式で示す。この実験では、非特許文献5に記載されたCHiME3(タブレットを用いた屋外で収録した音声)を認識対象として使用した。この実験で使用した音声強調処理は以下のとおりである。
[Experimental result]
FIG. 14 shows, in the form of a table, the results of experiments (word error rates) performed on the above embodiments. In this experiment, CHiME3 (voice recorded outdoors using a tablet) described in Non-Patent Document 5 was used as a recognition target. The speech emphasis processing used in this experiment is as follows.
 ・音声強調1:非特許文献1に開示された技術
 ・音声強調2:非特許文献2に開示された技術
 ・音声強調3:非特許文献3に開示された技術
 ・音声強調4:非特許文献4に開示された技術
 第1、第2、第5及び第6の実施の形態に関する実験では、例えば図3に示す音声強調部202として上記音声強調1~4をそれぞれ採用して各実施の形態の音響モデルを使用して音声認識精度を測定し、第3、第4、第7及び第8の実施の形態に関する実験では、図6に示す音声強調部202、392、394及び396として上記音声強調1~4をそれぞれ採用し、各実施の形態の音響モデルを使用して音声認識精度を測定した。
・ Speech enhancement 1: Technology disclosed in Non-Patent Document 1 ・ Speech enhancement 2: Technology disclosed in Non-Patent Document 2 ・ Speech enhancement 3: Technology disclosed in Non-Patent Document 3 ・ Speech enhancement 4: Non-Patent Document In experiments relating to the first, second, fifth, and sixth embodiments, for example, the above-described voice emphasis 1 to 4 are respectively adopted as the voice emphasis unit 202 shown in FIG. The speech recognition accuracy was measured by using the acoustic model of the third embodiment, and in the experiments regarding the third, fourth, seventh and eighth embodiments, the speech emphasizing units 202, 392, 394 and 396 shown in FIG. Emphasis 1 to 4 were respectively adopted, and the speech recognition accuracy was measured using the acoustic model of each embodiment.
 なお、図14には示していないが、従来の音声認識装置で音声強調なしで同じデータに対する音声認識を行った場合の単語誤り率は22.64%であった。 Although not shown in FIG. 14, the word error rate when speech recognition was performed on the same data without speech enhancement using a conventional speech recognition device was 22.64%.
 図14から明らかなように、本発明の第1~第8の実施の形態によれば、従来技術の音声強調を用いた場合よりも単語誤り率が低かった。すなわち音声認識の精度は高かった。従来の音声認識で音声強調なしの場合と比較しても、大部分の場合で精度はより高かった。特に第2の実施の形態ではいずれの音声強調を使用しても高い精度を実現できた。また第4の実施の形態及び第8の実施の形態では精度は非常に高く、特に第8の実施の形態では他の実施の形態と比較しても一段と高い精度を実現できた。 As is clear from FIG. 14, according to the first to eighth embodiments of the present invention, the word error rate was lower than in the case of using the conventional speech enhancement. That is, the accuracy of voice recognition was high. In most cases, the accuracy was higher than in conventional speech recognition without speech enhancement. In particular, in the second embodiment, high accuracy was realized by using any of the voice enhancements. In the fourth embodiment and the eighth embodiment, the accuracy is very high. In the eighth embodiment, in particular, higher accuracy can be realized as compared with the other embodiments.
 [コンピュータによる実現]
 上記した各実施の形態に係る音声認識装置の各機能部は、それぞれコンピュータハードウェアと、そのハードウェア上でCPU(中央演算処理装置)及びGPU(Graphics Processing Unit)により実行されるプログラムとにより実現できる。図15に上記各音声認識装置を実現するコンピュータハードウェアを示す。GPUは通常は画像処理を行うために使用されるが、このようにGPUを画像処理ではなく通常の演算処理に使用する技術をGPGPU(General-purpose computing on graphics processing units)と呼ぶ。GPUは同種の複数の演算を同時並列的に実行できる。一方、ニューラル・ネットワークの場合、特に学習時には演算が大量に必要になるが、それらは同時に超並列的に実行可能である。したがって、音声認識装置とそこに用いられる音響モデルを構成するニューラル・ネットワークの訓練と推論にはGPUを備えたコンピュータが適している。なお、学習が終わった音響モデルを用いて音声認識を行う場合、十分高速なCPUを搭載したコンピュータであれば、必ずしもGPUを搭載していなくてもよい。
[Realization by computer]
Each functional unit of the speech recognition device according to each of the embodiments described above is realized by computer hardware and a program executed by a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit) on the hardware. it can. FIG. 15 shows computer hardware for realizing each of the above speech recognition devices. The GPU is usually used for performing image processing, and such a technique of using the GPU for normal arithmetic processing instead of image processing is called GPGPU (General-purpose computing on graphics processing units). The GPU can execute a plurality of operations of the same type simultaneously and in parallel. On the other hand, in the case of a neural network, a large amount of computation is required, especially at the time of learning. Therefore, a computer equipped with a GPU is suitable for training and inference of a speech recognizer and a neural network constituting an acoustic model used in the speech recognizer. When speech recognition is performed using an acoustic model for which learning has been completed, a computer having a sufficiently high-speed CPU need not necessarily be equipped with a GPU.
 図15を参照して、このコンピュータシステム1130は、メモリポート1152及びDVD(Digital Versatile Disk)ドライブ1150を有するコンピュータ1140と、キーボード1146と、マウス1148と、モニタ1142とを含む。 Referring to FIG. 15, the computer system 1130 includes a computer 1140 having a memory port 1152 and a DVD (Digital Versatile Disk) drive 1150, a keyboard 1146, a mouse 1148, and a monitor 1142.
 コンピュータ1140はさらに、CPU1156及びGPU1158と、これら並びにメモリポート1152及びDVDドライブ1150に接続されたバス1166と、ブートプログラム等を記憶する読出専用メモリであるROM1160と、バス1166に接続され、プログラム命令、システムプログラム及び作業データ等を記憶するコンピュータ読出可能な記憶媒体であるランダムアクセスメモリ(RAM)1162と、コンピュータ読出可能な不揮発性記憶媒体であるハードディスク1154を含む。コンピュータ1140はさらに、いずれもバス1166に接続され、ネットワーク1168への接続を提供するネットワークインターフェイス(I/F)1144と、外部との音声信号の入出力を行うための音声I/F1170とを含む。 The computer 1140 is further connected to a CPU 1156 and a GPU 1158, a bus 1166 connected to these, a memory port 1152 and a DVD drive 1150, a ROM 1160 which is a read-only memory for storing a boot program and the like, and connected to a bus 1166, It includes a random access memory (RAM) 1162 which is a computer readable storage medium for storing a system program, work data, and the like, and a hard disk 1154 which is a computer readable nonvolatile storage medium. The computer 1140 further includes a network interface (I / F) 1144 which is connected to the bus 1166 and provides a connection to the network 1168, and an audio I / F 1170 for inputting and outputting audio signals to and from the outside. .
 コンピュータシステム1130を上記した実施の形態に係る各音声認識装置の各機能部及び音響モデルの記憶装置として機能させるためのプログラムは、DVDドライブ1150又はメモリポート1152に装着される、いずれもコンピュータ読出可能な記憶媒体であるDVD1172又はリムーバブルメモリ1164に記憶され、さらにハードディスク1154に転送される。又は、プログラムはネットワーク1168を通じてコンピュータ1140に送信されハードディスク1154に記憶されてもよい。プログラムは実行の際にRAM1162にロードされる。DVD1172から、リムーバブルメモリ1164から、又はネットワーク1168を介して、直接にRAM1162にプログラムをロードしてもよい。また、上記処理に必要なデータは、ハードディスク1154、RAM1162、CPU1156又はGPU1158内のレジスタ等の所定のアドレスに記憶され、CPU1156又はGPU1158により処理され、プログラムにより指定されるアドレスに格納される。最終的に訓練が終了した音響モデルのパラメータは、音響モデルの訓練及び推論アルゴリズムを実現するプログラムとともに例えばハードディスク1154に格納されたり、DVDドライブ1150及びメモリポート1152をそれぞれ介してDVD1172又はリムーバブルメモリ1164に格納されたりする。又は、ネットワークI/F1144を介して接続された他のコンピュータ又は記憶装置に送信される。 A program for causing the computer system 1130 to function as a storage unit of each of the functional units and acoustic models of each of the speech recognition apparatuses according to the above-described embodiments is mounted on the DVD drive 1150 or the memory port 1152, and both are computer-readable. It is stored in the DVD 1172 or the removable memory 1164, which is a suitable storage medium, and further transferred to the hard disk 1154. Alternatively, the program may be transmitted to computer 1140 via network 1168 and stored on hard disk 1154. The program is loaded into the RAM 1162 at the time of execution. The program may be loaded from the DVD 1172, from the removable memory 1164, or directly to the RAM 1162 via the network 1168. Data required for the above processing is stored at a predetermined address such as a register in the hard disk 1154, the RAM 1162, the CPU 1156, or the GPU 1158, processed by the CPU 1156 or the GPU 1158, and stored at an address designated by the program. The parameters of the acoustic model finally trained are stored, for example, on the hard disk 1154 together with a program for realizing the acoustic model training and inference algorithm, or stored on the DVD 1172 or the removable memory 1164 via the DVD drive 1150 and the memory port 1152, respectively. Or stored. Alternatively, it is transmitted to another computer or storage device connected via the network I / F 1144.
 このプログラムは、コンピュータ1140を、上記実施の形態に係る各装置及びシステムとして機能させるための複数の命令からなる命令列を含む。上記各装置及びシステムにおける数値演算処理は、CPU1156及びGPU1158を用いて行う。CPU1156のみを用いてもよいがGPU1158を用いる方が高速である。コンピュータ1140にこの動作を行わせるのに必要な基本的機能のいくつかはコンピュータ1140上で動作するオペレーティングシステム若しくはサードパーティのプログラム又はコンピュータ1140にインストールされる、ダイナミックリンク可能な各種プログラミングツールキット又はプログラムライブラリにより提供される。したがって、このプログラム自体はこの実施の形態の音声認識装置を実現するのに必要な機能全てを必ずしも含まなくてよい。このプログラムは、命令のうち、所望の結果が得られるように制御されたやり方で適切な機能又はプログラミングツールキット又はプログラムライブラリ内の適切なプログラムを実行時に動的に呼出すことにより、上記したシステム、装置又は方法としての機能を実現する命令のみを含んでいればよい。もちろん、静的リンクにより必要な機能を全て組込んだプログラムをコンピュータにロードすることによって上記した音声認識装置を実現してもよい。 This program includes an instruction sequence including a plurality of instructions for causing the computer 1140 to function as each device and system according to the above embodiment. Numerical processing in each of the above devices and systems is performed using the CPU 1156 and the GPU 1158. Although only the CPU 1156 may be used, using the GPU 1158 is faster. Some of the basic functions required to cause the computer 1140 to perform this operation include an operating system or third party program running on the computer 1140 or various dynamically linkable programming toolkits or programs installed on the computer 1140. Provided by the library. Therefore, the program itself does not necessarily need to include all the functions necessary to realize the speech recognition device of this embodiment. The program described above may be implemented by dynamically calling, at run time, the appropriate functions or appropriate programs in a programming toolkit or program library in a controlled manner to obtain the desired result of the instructions, It is only necessary to include only instructions for realizing the functions of the device or the method. Of course, the above-described speech recognition apparatus may be realized by loading a program incorporating all necessary functions into a computer by a static link.
 [変形例]
 上記第3、第4、第7及び第8の実施の形態では、4種類の音声強調処理を用いている。しかし本発明はそのような実施の形態には限定されない。2種類、3種類、又は5種類以上の音声強調処理を用いるようにしてもよい。
[Modification]
In the third, fourth, seventh, and eighth embodiments, four types of voice enhancement processing are used. However, the present invention is not limited to such an embodiment. Two, three, or five or more types of voice enhancement processing may be used.
 また上記実施の形態では、音響モデルを構成する深層ニューラル・ネットワークの隠れ層は全部で7層であり、第3、第4、第7及び第8の実施の形態では、深層ニューラル・ネットワークの前半に3層、後半に4層の隠れ層を用いている。しかし本発明はそのような実施の形態に限定されるわけではない。隠れ層の層数が6層以下でも、8層以上でもよい。また第3、第4、第7及び第8の実施の形態にしたがって音響モデルを構築する際には、前半と後半の隠れ層の数をそれぞれ3層及び4層とする必要は全くない。ただし、上記実験では、前半に3層、後半に4層としたときに最もよい結果が得られたことは事実である。 Further, in the above embodiment, the hidden layers of the deep neural network constituting the acoustic model are seven layers in total, and in the third, fourth, seventh and eighth embodiments, the former half of the deep neural network is used. Three hidden layers and four hidden layers in the latter half. However, the present invention is not limited to such an embodiment. The number of hidden layers may be six or less, or eight or more. When constructing an acoustic model according to the third, fourth, seventh and eighth embodiments, the number of hidden layers in the first half and the second half does not need to be three and four, respectively. However, in the above experiment, it is true that the best results were obtained when three layers were used in the first half and four layers were used in the second half.
 なお、上記実施の形態では単一チャネルの音声信号に対して本発明を適用した。しかし本発明はそうした実施の形態には限定されず、複数チャネルの音声信号に対しても適用は可能である。 In the above embodiment, the present invention is applied to a single-channel audio signal. However, the present invention is not limited to such an embodiment, and is applicable to audio signals of a plurality of channels.
 今回開示された実施の形態は単に例示であって、本発明が上記した実施の形態のみに制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した上で、請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味及び範囲内での全ての変更を含む。 The embodiments disclosed this time are merely examples, and the present invention is not limited to the above embodiments. The scope of the present invention is shown by each claim in the claims, taking into account the description of the detailed description of the invention, and includes meanings equivalent to the words described therein and all changes within the scope. .
 この発明は、コンピュータ、家電製品、工業製品等におけるユーザとのインターフェイスの改善に利用でき、ユーザが発する自然言語の音声でこれら装置を容易に操作できるようにする。 The present invention can be used for improving an interface with a user in a computer, a home appliance, an industrial product, and the like, and can easily operate these devices with a natural language voice issued by the user.
100、180、380 音声認識装置
110 波形
112 音声信号
114、202、392、394、396 音声強調部
116、203、393、395、397 強調音声信号
118、220、410、412、414 特徴抽出部
120、204、402 音声認識部
122、208、400 テキスト
124、206、280、398、500、650、750、850、950 音響モデル
126 発音辞書
128 言語モデル
200、390 拡大特徴抽出部
210 雑音重畳音声の特徴量
212 第1の強調音声の特徴量
300 雑音重畳音声のためのサブネットワーク
302 強調音声のためのサブネットワーク
304 出力側サブネットワーク
430 第2の強調音声の特徴量
432 第3の強調音声の特徴量
434 第4の強調音声の特徴量
452 中間層
540、770 第1のサブネットワーク
542、772 第2のサブネットワーク
544、774 第3のサブネットワーク
546 第4のサブネットワーク
548 第5のサブネットワーク
550、970 中間サブネットワーク
682、818、892、902、912、922、998、1008、1018、1028、1100 ゲート層
960 第1の入力サブネットワーク
962 第2の入力サブネットワーク
964 第3の入力サブネットワーク
966 第4の入力サブネットワーク
968 第5の入力サブネットワーク
1130 コンピュータシステム
100, 180, 380 Speech recognition device 110 Waveform 112 Speech signal 114, 202, 392, 394, 396 Speech enhancement unit 116, 203, 393, 395, 397 Speech enhancement signal 118, 220, 410, 412, 414 Feature extraction unit 120 , 204, 402 Speech recognition units 122, 208, 400 Text 124, 206, 280, 398, 500, 650, 750, 850, 950 Acoustic model 126 Pronunciation dictionary 128 Language model 200, 390 Enlarged feature extraction unit 210 Features 212 Features of first emphasized speech 300 Subnetwork 302 for noise superimposed speech Subnetwork 304 for emphasized speech Output subnetwork 430 Features of second emphasized speech 432 Features of third emphasized speech Quantity 434 Feature quantity 4 of fourth emphasized voice 2 Intermediate layers 540, 770 First sub-networks 542, 772 Second sub-networks 544, 774 Third sub-network 546 Fourth sub-network 548 Fifth sub-network 550, 970 Intermediate sub-networks 682, 818, 892 , 902, 912, 922, 998, 1008, 1018, 1028, 1100 Gate layer 960 First input sub-network 962 Second input sub-network 964 Third input sub-network 966 Fourth input sub-network 968 Fifth Input subnetwork 1130 Computer system

Claims (6)

  1. 目的信号である音声信号に雑音信号が重畳した音響信号を入力とし、前記音声信号が強調された強調音声信号を出力する音声強調回路と、
     前記強調音声信号と、前記音響信号とを受け、前記音声信号の発話内容をテキスト化する音声認識部とを含む、耐雑音音声認識装置。
    An audio enhancement circuit that receives an audio signal in which a noise signal is superimposed on an audio signal that is a target signal and outputs an enhanced audio signal in which the audio signal is enhanced,
    A noise-tolerant speech recognition device, comprising: a speech recognition unit that receives the emphasized speech signal and the acoustic signal and converts the uttered content of the speech signal into text.
  2. 前記音声強調回路は、
     前記音響信号に対して第1の種類の音声強調処理を行って第1の強調音声信号を出力する第1の音声強調部と、
     前記音響信号に対して前記第1の種類と異なる第2の種類の音声強調処理を行って第2の強調音声信号を出力する第2の音声強調部とを含み、
     前記音声認識部は、前記第1及び第2の強調音声信号と、前記音響信号とを受け、前記音声信号の発話内容をテキスト化する、請求項1に記載の耐雑音音声認識装置。
    The voice emphasis circuit,
    A first voice enhancement unit that performs a first type of voice enhancement process on the audio signal and outputs a first enhanced voice signal;
    A second voice enhancement unit that performs a second type of voice enhancement process different from the first type on the audio signal and outputs a second enhanced audio signal,
    The noise-tolerant speech recognition device according to claim 1, wherein the speech recognition unit receives the first and second emphasized speech signals and the acoustic signal, and converts the utterance content of the speech signal into text.
  3. 前記音声認識部は、
     前記音響信号から第1の特徴量を抽出する第1の特徴抽出手段と、
     前記強調音声信号から第2の特徴量を抽出する第2の特徴抽出手段と、
     前記第2の特徴量の各々について、前記第1の特徴量と、前記第2の特徴量とに応じて取捨選択する特徴選択手段と、
     前記特徴選択手段により選択された前記第2の特徴量を用いて前記音声信号の発話内容をテキスト化する音声認識手段とを含む、請求項1に記載の耐雑音音声認識装置。
    The voice recognition unit,
    First feature extraction means for extracting a first feature amount from the audio signal;
    Second feature extraction means for extracting a second feature amount from the emphasized audio signal;
    Feature selecting means for selecting each of the second feature values according to the first feature value and the second feature value;
    2. The noise-tolerant speech recognition apparatus according to claim 1, further comprising: speech recognition means for converting the utterance content of the speech signal into text using the second feature amount selected by the feature selection means.
  4. 前記音声認識手段が音声認識に用いる音響モデルを記憶する音響モデル記憶手段をさらに含み、
     当該音響モデルは複数の隠れ層を持つ深層ニューラル・ネットワークであり、
     前記音響モデルは、
     前記第1の特徴量を入力として受ける第1のサブネットワークと、
     前記第2の特徴量を入力として受ける第2のサブネットワークと、
     前記第1のサブネットワークの出力と前記第2のサブネットワークの出力とを受け、前記第1の特徴量及び前記第2の特徴量から推定される音素を出力する第3のサブネットワークとを含む、請求項3に記載の耐雑音音声認識装置。
    The speech recognition unit further includes an acoustic model storage unit that stores an acoustic model used for speech recognition,
    The acoustic model is a deep neural network with multiple hidden layers,
    The acoustic model is
    A first sub-network receiving as input the first feature value;
    A second sub-network receiving as input the second feature value;
    A third sub-network receiving the output of the first sub-network and the output of the second sub-network, and outputting a phoneme estimated from the first feature and the second feature; The noise-tolerant speech recognition device according to claim 3.
  5. コンピュータが、目的信号である音声信号に雑音信号が重畳した単一チャネルの音響信号を入力として、前記音声信号が強調された強調音声信号を出力するステップと、
     コンピュータが、前記強調音声信号と、前記音響信号とを受け、前記音声信号の発話内容をテキスト化する音声認識ステップとを含む、耐雑音音声認識方法。
    Computer, as an input a single-channel sound signal in which a noise signal is superimposed on a sound signal as a target signal, and outputting an emphasized sound signal in which the sound signal is emphasized,
    A noise-tolerant speech recognition method, comprising: a computer receiving the emphasized speech signal and the acoustic signal, and a speech recognition step of converting a speech content of the speech signal into text.
  6. コンピュータを、請求項1~請求項4のいずれかに記載の耐雑音装置として機能させる、コンピュータプログラム。 A computer program that causes a computer to function as the noise-resistant device according to any one of claims 1 to 4.
PCT/JP2019/024279 2018-07-17 2019-06-19 Noise-tolerant voice recognition device and method, and computer program WO2020017226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133977A JP7231181B2 (en) 2018-07-17 2018-07-17 NOISE-RESISTANT SPEECH RECOGNITION APPARATUS AND METHOD, AND COMPUTER PROGRAM
JP2018-133977 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017226A1 true WO2020017226A1 (en) 2020-01-23

Family

ID=69164003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024279 WO2020017226A1 (en) 2018-07-17 2019-06-19 Noise-tolerant voice recognition device and method, and computer program

Country Status (2)

Country Link
JP (1) JP7231181B2 (en)
WO (1) WO2020017226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508475A (en) * 2020-04-16 2020-08-07 五邑大学 Robot awakening voice keyword recognition method and device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092491A (en) * 1999-09-01 2001-04-06 Trw Inc System and method for reducing noise by using single microphone
JP2015102806A (en) * 2013-11-27 2015-06-04 国立研究開発法人情報通信研究機構 Statistical acoustic model adaptation method, acoustic model learning method suited for statistical acoustic model adaptation, storage medium storing parameters for constructing deep neural network, and computer program for statistical acoustic model adaptation
WO2017135148A1 (en) * 2016-02-02 2017-08-10 日本電信電話株式会社 Acoustic model learning method, voice recognition method, acoustic model learning device, voice recognition device, acoustic model learning program, and voice recognition program
US20170256254A1 (en) * 2016-03-04 2017-09-07 Microsoft Technology Licensing, Llc Modular deep learning model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243858B2 (en) * 2015-02-05 2017-12-06 日本電信電話株式会社 Speech model learning method, noise suppression method, speech model learning device, noise suppression device, speech model learning program, and noise suppression program
JP6464005B2 (en) * 2015-03-24 2019-02-06 日本放送協会 Noise suppression speech recognition apparatus and program thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001092491A (en) * 1999-09-01 2001-04-06 Trw Inc System and method for reducing noise by using single microphone
JP2015102806A (en) * 2013-11-27 2015-06-04 国立研究開発法人情報通信研究機構 Statistical acoustic model adaptation method, acoustic model learning method suited for statistical acoustic model adaptation, storage medium storing parameters for constructing deep neural network, and computer program for statistical acoustic model adaptation
WO2017135148A1 (en) * 2016-02-02 2017-08-10 日本電信電話株式会社 Acoustic model learning method, voice recognition method, acoustic model learning device, voice recognition device, acoustic model learning program, and voice recognition program
US20170256254A1 (en) * 2016-03-04 2017-09-07 Microsoft Technology Licensing, Llc Modular deep learning model

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111508475A (en) * 2020-04-16 2020-08-07 五邑大学 Robot awakening voice keyword recognition method and device and storage medium
CN111508475B (en) * 2020-04-16 2022-08-09 五邑大学 Robot awakening voice keyword recognition method and device and storage medium

Also Published As

Publication number Publication date
JP2020012928A (en) 2020-01-23
JP7231181B2 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP7023934B2 (en) Speech recognition method and equipment
CN106688034B (en) Text-to-speech conversion with emotional content
Erdogan et al. Deep recurrent networks for separation and recognition of single-channel speech in nonstationary background audio
JP4774100B2 (en) Reverberation removal apparatus, dereverberation removal method, dereverberation removal program, and recording medium
Lokesh et al. Speech recognition system using enhanced mel frequency cepstral coefficient with windowing and framing method
Ravanelli et al. Realistic multi-microphone data simulation for distant speech recognition
Wang et al. Recurrent deep stacking networks for supervised speech separation
CN113436643A (en) Method, device, equipment and storage medium for training and applying speech enhancement model
Saito et al. Voice conversion using input-to-output highway networks
Yuliani et al. Speech enhancement using deep learning methods: A review
Barker et al. The CHiME challenges: Robust speech recognition in everyday environments
JP2022031196A (en) Noise removal method and device
JP2017003622A (en) Vocal quality conversion method and vocal quality conversion device
JP6348427B2 (en) Noise removal apparatus and noise removal program
Grais et al. Discriminative enhancement for single channel audio source separation using deep neural networks
Saleem et al. Multi-objective long-short term memory recurrent neural networks for speech enhancement
Saleem et al. Unsupervised speech enhancement in low SNR environments via sparseness and temporal gradient regularization
EP3392882A1 (en) Method for processing an input audio signal and corresponding electronic device, non-transitory computer readable program product and computer readable storage medium
CN113327594B (en) Speech recognition model training method, device, equipment and storage medium
KR20200028852A (en) Method, apparatus for blind signal seperating and electronic device
Liu et al. Using bidirectional associative memories for joint spectral envelope modeling in voice conversion
WO2020017226A1 (en) Noise-tolerant voice recognition device and method, and computer program
Duong et al. Gaussian modeling-based multichannel audio source separation exploiting generic source spectral model
Shukla et al. A subspace projection approach for analysis of speech under stressed condition
Li et al. A fast convolutional self-attention based speech dereverberation method for robust speech recognition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837658

Country of ref document: EP

Kind code of ref document: A1