WO2020015488A1 - 一种高速铁路无砟轨道复杂环境模拟试验系统 - Google Patents

一种高速铁路无砟轨道复杂环境模拟试验系统 Download PDF

Info

Publication number
WO2020015488A1
WO2020015488A1 PCT/CN2019/091195 CN2019091195W WO2020015488A1 WO 2020015488 A1 WO2020015488 A1 WO 2020015488A1 CN 2019091195 W CN2019091195 W CN 2019091195W WO 2020015488 A1 WO2020015488 A1 WO 2020015488A1
Authority
WO
WIPO (PCT)
Prior art keywords
ballastless track
test
test platform
speed railway
complex environment
Prior art date
Application number
PCT/CN2019/091195
Other languages
English (en)
French (fr)
Inventor
高亮
蔡小培
钟阳龙
何宁
罗必成
Original Assignee
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京交通大学 filed Critical 北京交通大学
Publication of WO2020015488A1 publication Critical patent/WO2020015488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes

Definitions

  • the invention relates to the technical field of railway maintenance, in particular to a high-speed railway ballastless track complex environment simulation test system.
  • High-speed railways are mainly ballastless tracks with better stability, reliability and smoothness.
  • China's high-speed rail mileage had exceeded 29,000 kilometers, ranking first in the world.
  • China's high-speed rail has developed at a fast pace, with a large scale, outstanding results, and extensive benefits.
  • the world's high-speed rail has become a bright business card for China to go to the world and stand in the center of the world stage.
  • ballastless tracks on high-speed railways in China will be even larger.
  • comprehensive test and detection facilities for ballastless tracks on high-speed railways with complex climatic conditions will need to be constructed. Based on the construction of such facilities, the scientificity and rationality of the newly developed high-speed railway ballastless track type design can be simulated and verified under real-world conditions, and optimization suggestions can be proposed.
  • the existing high-speed railway ballastless track is in service Research on mechanical properties, damage mechanisms, deterioration mechanisms and fatigue characteristics, and introduce innovative scientific maintenance theories to test and verify the feasibility and use effect of new materials for high-speed railway ballastless tracks in the future in order to better serve
  • the development of China's high-speed rail is necessary to comprehensively improve the core competitiveness of China's high-speed railway ballastless track project.
  • the existing technology is used for comprehensive tests or inspections of ballastless tracks on high-speed railways.
  • it is mainly related to the strength and dynamic performance of track structural components, which lacks complex weather conditions such as high and low temperature cycles, extremes Real considerations in high and low temperature, continuous high temperature, rainfall at high temperature, and surface icing at low temperature, as well as consideration of the influence of the coupling effect of complex temperature environment and train load on the track structure, it is difficult to meet China's vast and high-speed rail operating conditions with large climate differences National needs.
  • the purpose of the present invention is to provide a high-speed railway ballastless track complex environment simulation test system to solve the above problems.
  • a high-speed railway ballastless track complex environment simulation test system includes a test platform storage body (1), a temperature and humidity control system (2), a slab ballastless track structure (3), and a mobile prototype fatigue test loader system (4) ;
  • the experimental platform library body (1) includes a library body surrounded by multiple library body surfaces, a gate (7) and an observation window (8) provided on the side of the library body, and a bottom of the library body Test platform base (9);
  • the temperature and humidity control system (2) is disposed at a side wall of the test platform library body (1); the temperature and humidity control system (2) is used to implement the air inside the test platform library body (1) Heating control operation, cooling control operation and humidification control operation;
  • the slab ballastless track structure (3) is arranged inside the test platform library body (1);
  • the mobile prototype fatigue test loader system (4) includes a fatigue test loader and a mobile afterburner; the mobile afterburner is arranged outside the test platform library body (1), and the fatigue test A loader is provided on the upper part of the slab ballastless track structure (3) in the test platform library body (1); the mobile afterburner is used to connect the fatigue test loader to the slab type The upper part of the ballastless track structure (3).
  • the library body surface of the test platform library body (1) includes an inner lining layer, an intermediate sandwich layer, and an outer biliary structure layer which are sequentially arranged from the inside to the outside;
  • the inner bladder layer is a stainless steel plate; the outer bladder layer is a color steel plate; the middle interlayer is a polyurethane rigid foam filling layer; the gate is a color steel plate door; an observation window is installed on the gate.
  • the test platform base (9) includes a mesh frame welded from a plurality of channel steels and a base plate provided on the surface of the mesh frame; the base plate includes a color steel plate and a stainless steel plate;
  • the width of the test platform base (9) is greater than the width of the test platform base (1); the width of the test platform base (9) is reserved on both sides for the mobile afterburner to move through And a drainage channel is reserved on the test platform base (9).
  • the slab ballastless track structure (3) includes a steel rail, an elastic fastener, a prefabricated track slab, a cement emulsified asphalt mortar adjustment layer, and a support layer.
  • the fatigue test loader includes a servo drive
  • the mobile afterburner includes one reaction beam crossbeam, two reaction frame uprights, two self-balancing reaction force beams, and eight distribution beams.
  • the reaction force frame columns are respectively disposed on both sides of the test platform library body 1, the reaction force frame beams are disposed between the tops of the two reaction force frame columns, and the self-balanced reaction force beams It is arranged between the middle parts of the two reaction force frame uprights.
  • the temperature and humidity control system (2) includes a refrigeration system (21), a humidification system (22), a heating system (23), a ventilation system (24), a PID control system (25), and a temperature and humidity color liquid crystal touch Display screen
  • the refrigeration system (21) includes a refrigeration unit (211), a water pump (212), and a pool (213); the refrigeration unit (211) communicates with the pool (213) through the water pump (212); the The refrigerating unit (211) is used for generating and outputting chilled water by using environmentally-friendly refrigerant, so as to realize the cooling operation of air inside the test platform storage body (1);
  • the heating system (23) includes a steam heating device; the steam heating device includes an evaporator, a titanium tube electric heater, a fan, a fan turbine, and a controlled heating circuit; the evaporator is connected to the titanium tube electric heater And the controlled heating circuit is electrically connected to a PID control system (25) and a titanium tube electric heater, respectively; the fan and the fan turbine are arranged on a supply air system; the PID control system (25) is used for Controlling the on and off of the controlled heating circuit;
  • the air supply system (24) includes a circulating air supply system composed of an upper air supply duct and a lower return air duct; the heating system (23) communicates with the air supply system (24); the air supply system ( 24) It is used to send the air in the interior of the room into the test room of the test platform storage body (1) through the air conditioning cavity after being heated by the air supply and return air;
  • the temperature and humidity color liquid crystal touch display is used for cooling system (21), humidification system (22), heating system (23), air supply system (24) and the mobile prototype fatigue test loader system (4). Electrical connection.
  • the high-speed railway ballastless track complex environment simulation test system further includes an air-conditioning cabinet (10); the air-conditioning cabinet (10) is disposed at a side of the test platform storage body (1); the The air conditioning cabinet (10) is provided with a steam heating device composed of an evaporator, a titanium tube electric heater, a fan, a fan turbine and a controlled heating circuit.
  • a steam heating device composed of an evaporator, a titanium tube electric heater, a fan, a fan turbine and a controlled heating circuit.
  • a liquid spraying device is arranged above the slab ballastless track structure (3).
  • the high-speed railway ballastless track complex environment simulation test system further includes a sensor monitoring detection system (5) and an auxiliary setting and equipment support system (6);
  • the sensor monitoring detection system (5) includes a plurality of temperature, stress and strain, displacement sensors, a dynamic tester, a single-chip microcomputer and a data receiving device;
  • the auxiliary setting and equipment guarantee system (6) is provided with multiple safety protection devices; the auxiliary setting and equipment guarantee system (6) includes a buzzer, an indicator light for providing an audible and visual alarm, a ground protection device, and a heater Short circuit protection device, blower motor overload protection, independent over-temperature protection system, earth leakage circuit breaker, indoor emergency stop button control switch, emergency light and fire fighting equipment.
  • the high-speed railway ballastless track complex environment simulation test system further includes a computer device (11); the computer device (11) is arranged outside the test platform library body (1); the computer device (11) ) Are electrically connected to the temperature and humidity control system (2), the mobile prototype fatigue test loader system (4), and the sensor monitoring and detection system (5), respectively.
  • the high-speed railway ballastless track complex environment simulation test system can be used to simulate real and complex climatic environmental conditions, and is not limited to the track structure system. It can not only analyze external factors such as complex temperature cycles, rain, freeze-thaw, train loads.
  • the impact on the ballastless track structure, the lower foundation of the high-speed railway, and the service status of the track structure can also be applied to a variety of structures, components, and equipment related tests and tests in bridges, subgrades, pavements, materials and other fields, with a wide range of uses It has good economic and social benefits.
  • FIG. 1 is a schematic diagram of the overall external structure of a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an internal overall structure of a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the internal overall structure of a high-speed railway ballastless track complex environment simulation test system provided with an embodiment of the present invention after a complete slab ballastless track structure is installed;
  • FIG. 4 is a schematic diagram of a part of a control principle of a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a movable stiffener in a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention
  • FIG. 6 is a structural schematic diagram of a fatigue test loader in a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention
  • FIG. 7 is a schematic plan view of a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention.
  • Test platform library body 1
  • Temperature and humidity control system 2 refrigeration system 21; humidification system 22; heating system 23; air supply system 24; PID control system 25; refrigeration unit 211; water pump 212; pool 213;
  • Air conditioning cabinet 10 Air conditioning cabinet 10;
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal connection of two elements.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal connection of two elements.
  • FIG. 1 A schematic diagram of the overall external structure of a high-speed railway ballastless track complex environment simulation test system provided by an embodiment of the present invention is shown in FIG. 1 and the internal overall structure is shown in FIG. 2. After the system is installed with a complete slab ballastless track structure, The schematic diagram of the internal overall structure is shown in Figure 3.
  • a high-speed railway ballastless track complex environment simulation test system mainly includes a test platform library body 1, a temperature and humidity control system 2, a slab ballastless track structure 3, and a mobile prototype.
  • Fatigue test loader system 4 sensor monitoring and detection system 5 (that is, sensor monitoring and detection system with multi-method integration) and auxiliary setting and equipment support system 6.
  • test platform library body 1 includes a library body surrounded by a plurality of library body surfaces, a gate 7 and an observation window 8 provided on the side of the library body, and a ventilation device and a test provided on the bottom of the library body.
  • the temperature and humidity control system 2 is disposed at a side wall of the test platform storage body 1; the temperature and humidity control system 2 is configured to perform a temperature control operation, a temperature control operation, and a temperature control operation on the air inside the test platform storage body 1 and Humidification control operation;
  • the slab ballastless track structure 3 is disposed inside the test platform library body 1;
  • the structure of a mobile booster 42 in a high-speed railway ballastless track complex environment simulation test system provided by an embodiment of the present invention is shown in FIG. 5, and the structure of the fatigue test loader 41 is shown in FIG. 6.
  • the mobile prototype fatigue test loader system 4 includes a fatigue test loader 41 and a mobile afterburner 42; the mobile afterburner 42 is disposed outside the test platform library 1 and the fatigue test loader 41 provided on the upper part of the slab ballastless track structure 3 in the test platform library body 1; the mobile booster 42 is used to connect the fatigue test loader 41 to the slab ballastless track structure The upper part of 3.
  • the temperature and humidity control system 2 is equipped with a high-precision intelligent temperature and humidity adjustment and display integrated control system, including a refrigeration system 21, a humidification system 22, a heating system 23, an air supply system 24, a PID control system 25, and a temperature and humidity color A liquid crystal touch display screen; the temperature and humidity control system 2 is disposed at a side wall of the test platform library body 1; the temperature and humidity control system 2 is configured to perform a temperature control operation on the air inside the test platform library body 1 , Cooling control operation and humidification control operation humidification control operation.
  • the test platform library 1 is the main shell structure, which provides protection and test sites for the internal slab ballastless track structure 3, which ensures that a variety of display test scenarios can be simulated;
  • the concrete track structure 3 adopts a real slab ballastless track system and is arranged inside the test platform storage body 1;
  • the temperature and humidity control system 2 is used to perform temperature control operations and cool down the air inside the test platform storage body 1 Control operation and humidification control operation (simulating complex application scenarios such as temperature rise and fall, complex temperature cycles, temperature gradients, rainwater, etc.); at the same time, a mobile afterburner 42 is used to connect the fatigue test loader 41 to a plate type ⁇ On the upper part of the track structure 3, the mobile prototype fatigue test loader system 4 performs load loading work on the slab ballastless track structure 3, thereby simulating a train load action scenario.
  • the library body surface of the test platform library body 1 includes an inner liner layer, an intermediate sandwich layer, and an outer bile structure layer which are sequentially arranged from the inside to the outside.
  • the inner bladder layer is made of high-quality stainless steel plate;
  • the outer bladder layer is made of high-quality color steel plate,
  • the middle sandwich is a polyurethane rigid foam filling layer;
  • the gate is a color steel plate door, and the door is provided with an observation window.
  • the depot of the test platform library body 1 adopts a three-layer structure design of an inner bladder layer, an intermediate sandwich layer and an outer bladder structure layer; the inner bladder layer is made of high-quality stainless steel plate, and the outer bladder layer is made of high-quality color steel plate
  • the middle sandwich is filled with thermal insulation medium, and the material is rigid polyurethane foam. Therefore, the above-mentioned storage surfaces are all made of materials with strong heat insulation performance, light weight, resistance to impact and rust, to achieve the functions of thermal insulation, thermal insulation and anticorrosion of the storage body.
  • the door material is also made of color steel plate, the door handle is open inside and outside, and the door and the side are equipped with observation windows.
  • test platform library body 1 has externally designed gates (such as double-open and single-open doors), observation windows, computer devices, power distribution equipment, ventilation devices, temperature and humidity regulators, fire protection Equipment and other components.
  • gates such as double-open and single-open doors
  • observation windows computer devices
  • power distribution equipment ventilation devices
  • temperature and humidity regulators fire protection Equipment and other components.
  • the overall external and internal schematic diagrams of the test platform are shown in Figures 1 and 2.
  • the overall dimensions of the test platform library body 1 are designed to be 24.6m in length, 5.6m in width, and 3.15m in height; the interior of the test platform library 1
  • the dimensions are designed as follows: the length dimension is 23.5m, the width dimension is 4.5m, the height dimension is 2.5m, and the volume is 265 cubic meters; of which the size of the single door, the width of the door body is 0.8m, and the height of the door is 2.0m;
  • the overall width of the door is 4.5m and the height is 2.6m.
  • the side observation window has a window width of 3.0m and a height of 0.9m.
  • the test platform base 9 includes a mesh frame welded from a plurality of channel steels and a base plate provided on the surface of the mesh frame; the base The plate includes a color steel plate and a stainless steel plate; the width of the test platform base 9 is greater than the width of the test platform base body 1; and two sides of the width of the test platform base 9 are reserved for the mobile afterburner A passage through which 42 passes, and a drainage ditch is reserved on the test platform base 9.
  • the base of the test platform structure is welded with 8 # channel steel to form a mesh frame, so that it can bear the weight of the platform and personnel test pieces under horizontal conditions, and the bottom surface does not produce unevenness and cracking.
  • the surface of the above base plate is made of thick 1.2mm color steel plate and SUS203 # stainless steel plate for reinforcement and wear resistance.
  • a certain width of aisles are reserved on both sides of the test platform base to facilitate the operation during the test preparation process and the movement of the mobile booster frame 42, and a drainage ditch of a certain width is reserved to prevent water accumulation.
  • FIG. 7 is a schematic plan view of a high-speed railway ballastless track complex environment simulation test system according to an embodiment of the present invention, as shown in FIG. 3 and FIG. 7.
  • the structure of the slab ballastless track structure 3 can be clearly seen from a perspective view of the structure; in the specific structure of the slab ballastless track structure 3; the slab ballastless track structure 3 is composed of steel rails, elastic fasteners, prefabricated track plates, Cement emulsified asphalt mortar adjustment layer and support layer.
  • the size of various types of track slabs is comprehensively considered, and 3 CRTS II slab ballastless track slabs are used as an example for testing.
  • the laying is performed according to the actual track structure. Including steel rails, elastic fasteners, prefabricated track slabs, cement emulsified asphalt mortar (CA mortar) adjustment layer and support layer (base), the track structure height is 779mm.
  • the track plates are factory-prefabricated and are closely connected with each other by longitudinally rolled threaded steel bars. Each track plate is 6450mm in length, 2550mm in width and 200mm in thickness.
  • the support layer is set on the base surface of the test platform and the width of the top surface is 2950mm.
  • the ground width is 3250mm and the thickness is 300mm.
  • the surface of the outer support layer of the track is surface treated with emulsified asphalt; the thickness of the CA mortar adjustment layer is 30mm; the rails are 60kg / m rails; the fasteners are WJ-8C fasteners.
  • the fatigue test loader 41 is a 50-ton servo drive.
  • the mobile booster frame 42 includes one reaction beam crossbeam, two reaction force post, two self-balancing reaction force beams, and eight distribution beams.
  • the two reaction force frame columns are respectively disposed on both sides of the test platform library body 1, the reaction force frame beams are disposed between the tops of the two reaction force frame columns, and the self-balanced reaction force The beam is disposed between the middle portions of the two reaction force frame columns.
  • the customized 50t fatigue test loader 41 is arranged on the upper part of the track structure through a mobile booster frame 42.
  • the cross-sectional view is shown in Figure 6.
  • the load is 500kN.
  • a partial control principle diagram of a high-speed railway ballastless track complex environment simulation test system provided by an embodiment of the present invention is shown in FIG. 4, and the temperature and humidity control system 2 includes a refrigeration system 21 Humidification system 22, heating system 23, air supply system 24 and PID control system 25 and temperature and humidity color LCD touch screen;
  • the refrigeration system 21 includes a refrigeration unit 211 (ie, an environmentally friendly refrigerant refrigerator), a water pump 212, and a pool 213; the refrigeration unit 211 is connected to the pool 213 through the water pump 212; and the refrigeration unit 211 is used to use environmental protection
  • the refrigerant generates and outputs chilled water to realize the cooling operation of the air inside the test platform reservoir 1; it should be noted that the refrigeration unit 211 is connected to the pool through a water pump, uses environmentally friendly refrigerant to generate chilled water, and passes the refrigerator to the internal air. The temperature is reduced to ensure the reliability of the test effect.
  • the above-mentioned refrigeration system adopts a binary low-temperature circuit system design, and its automatic control device can automatically select the operation of the refrigeration circuit according to the set value of the temperature, and uses different compressors to work in different temperature regions to make the equipment have a longer service life.
  • the heating system 23 includes a steam heating device; the steam heating device includes an evaporator and a titanium tube electric heater, a fan, a fan turbine, and a controlled heating circuit; the evaporator is connected to the titanium tube electric heater, and The controlled heating circuit is electrically connected to a PID (proportional, integral and differential) control system 25 and a titanium tube electric heater, respectively; the fan and the fan turbine are arranged on the air supply system; the PID control system 25 is used for The controlled heating circuit is switched on and off; the air conditioning cabinet 10 is provided with a steam heating device composed of an evaporator, a titanium tube electric heater, a fan, a fan turbine, and a controlled heating circuit.
  • a steam heating device composed of an evaporator, a titanium tube electric heater, a fan, a fan turbine, and a controlled heating circuit.
  • an air-conditioning cabinet is set on the side of the test platform library body, the thickness of the air-conditioning cabinet is 450mm, and equipment such as an evaporator, a titanium tube electric heater, a fan, and a fan scroll are installed in the air-conditioning chamber. All components are treated for anti-corrosion;
  • the air supply system 24 includes a circulating air supply system composed of an upper air supply duct and a lower return air duct; the heating system 23 is in communication with the air supply system 24; and the air supply system 24 is configured to pass the upper air supply
  • the air in the room is sent to the test room of the test platform storage body 1 through the air conditioning chamber after being heated by the down-winding method.
  • the heating system 25 uses an up-air and a down-air air supply system. The air inside the room is heated into the air conditioning chamber and then sent to the test room to achieve a cycle to realize the simulation of temperature rise in the test room.
  • the air supply system mainly uses a multi-wing air blower to achieve a strong air circulation, avoid any dead angle, and make the temperature and humidity distribution in the test area uniform.
  • the air circuit is designed to circulate air and return air.
  • the wind pressure and wind speed meet the test standards, and the temperature and humidity can be stabilized quickly when the door is opened.
  • Completely independent heating, cooling, and humidifying systems can improve efficiency, reduce test costs, increase life, and reduce failure rates.
  • a liquid spraying device is arranged above the slab ballastless track structure 3 to simulate rainwater scouring, freeze-thaw cycles and other environments.
  • the sensor monitoring detection system 5 includes a plurality of temperature, stress and strain, displacement sensors, dynamic testers and single-chip data receiving devices, which can be based on fiber gratings, modified stress-strain, video, etc.
  • the monitoring technology performs real-time and long-term monitoring of the temperature in the test chamber and the stress, strain, and displacement of the track structure or other test objects under the load.
  • the auxiliary setting and equipment support system 6 is equipped with multiple safety protection devices, such as buzzer, indicator light and sound and light alarm, independent over-temperature protection system, indoor emergency stop button control switch, etc., and is equipped with emergency lights and fire protection equipment to Ensure equipment safety.
  • safety protection devices such as buzzer, indicator light and sound and light alarm, independent over-temperature protection system, indoor emergency stop button control switch, etc.
  • the auxiliary setting and equipment guarantee system 6 includes a leakage circuit breaker, an indoor emergency stop button control switch, equipment safety protection, a safe and reliable ground protection device, a heater short circuit protection, a blower motor overload protection, and a refrigerator overheating.
  • Pressure overload protection, buzzer, independent over-temperature protection system, etc. can effectively ensure the safety of the equipment, while equipped with emergency lights, fire equipment, etc., to ensure fire safety.
  • the high-speed railway ballastless track complex environment simulation test system further includes a computer device 11; the computer device 11 is disposed outside the test platform library body 1; the computer device 11 It is electrically connected to the temperature and humidity control system 2, the mobile prototype fatigue test loader system 4, and the sensor monitoring and detection system 5, respectively.
  • the above-mentioned sensor monitoring detection system 5 is used to perform test monitoring data in real time and sends the monitoring data to a computer device 11; the computer device 11 is used for storing and monitoring data; the temperature and humidity color liquid crystal touch display The screen is used to adjust temperature and humidity through control. The temperature and humidity color liquid crystal touch screen is also used to control the loading force by the mobile prototype fatigue test loader system 4.
  • the test platform library is the main shell structure, which provides protection and test sites for the internal slab ballastless track structure, ensuring that a variety of display test scenarios can be simulated; the above-mentioned slab ballastless track
  • the structure adopts a real slab ballastless track system and is set inside the test platform library body; the temperature and humidity control system is used to perform heating control operation, temperature control operation and humidification control operation on the air inside the test platform library body (Simulation of complex application scenarios such as temperature rise and fall, complex temperature cycles, temperature gradients, rainwater, etc.);
  • a mobile afterburner is used to connect the fatigue test loader to the upper part of the slab ballastless track structure.
  • the mobile prototype fatigue test loader system performs load loading on the slab ballastless track structure, thereby simulating the train load scenario.
  • the high-speed railway ballastless track complex environment simulation test system can be used to simulate real and complex climatic environmental conditions and is not limited to the track structure system. It can not only analyze complex temperature cycles, rain, freeze-thaw, The impact of external factors such as train loads on the ballastless track structure and lower foundation of high-speed railways, as well as the service status of track structures, etc., can also be applied to various structures, components, and equipment related tests in bridges, subgrades, pavements, materials, and other fields. Testing, widely used, with good economic and social benefits;
  • the high-speed railway ballastless track complex environment simulation test system provided by the present invention has a reasonable structural arrangement, can meet the long-term, stable, safe, and reliable test needs, can meet users' requirements for long-term use, and is convenient to use, operate and maintain. Good user interface makes operation and monitoring easier and more intuitive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开了一种高速铁路无砟轨道复杂环境模拟试验系统,包括试验平台库体、温湿度控制系统、板式无砟轨道结构、移动式原型疲劳试验加载机系统、传感监测检测系统和辅助设置及设备保障系统。试验平台库体包括由多个库体面围成的库体本体、大门、观测窗和试验平台底座;温湿度控制系统设置在试验平台库体的侧壁处;板式无砟轨道结构设置在试验平台库体的内部,板式无砟轨道包括轨道与设置在上方的液体喷淋装置;移动式原型疲劳试验加载机系统包括疲劳试验加载机和移动式加力架。本发明能分析复杂温度循环、雨水、冻融、列车荷载等外界因素对高速铁路无砟轨道结构、下部基础的影响,使用范围广泛,具有良好的经济效益和社会效益。

Description

一种高速铁路无砟轨道复杂环境模拟试验系统 技术领域
本发明涉及铁路维护技术领域,尤其涉及一种高速铁路无砟轨道复杂环境模拟试验系统。
背景技术
随着交通和运输业的快速发展,中国高速铁路技术迅速发展,高速铁路以稳定性、可靠性和平顺性更好的无砟轨道为主。
截止2018年底,中国高铁里程已突破2.9万公里,位居世界之首。我国高铁发展速度之快,规模之大,成果之突出,效益之广泛,举世瞩目,高铁已成为中国走向世界、站在世界舞台中央的亮丽名片。
随着高速铁路无砟轨道线路运营里程的增多,如何对其进行科学的养护维修管理成为亟待解决的问题,备受国内外相关学者的关注。
然而由于我国地域广阔、气候条件差异大、高铁工程建设周期短、建造规模大、早期技术积累和运营经验不足,高速铁路无砟轨道作为置于自然环境中的混凝土结构工程,经受各种复杂气候条件变化和往复列车荷载等多因素耦合的影响,统计表明国内几乎所有高铁都出现了不同程度、不同类型的无砟轨道病害,病害的出现破坏了轨道的完整性,引发无砟轨道结构破坏及失效,影响了无砟轨道的正常服役性能,有的地段甚至已经危及行车安全,导致列车不得不进行限速。病害的频繁发生同时带来了繁重的无砟轨道养护维修作业,部分区域维修耗时较长而不得不中断线路正常运营,长此以往将阻碍我国高速铁路的健康发展。
未来,我国高速铁路无砟轨道的体量将会更加庞大,为满足高铁发展需求,需要建设复杂气候条件高速铁路无砟轨道综合试验与检测设施。基于这类设施的建设,可对新研发高速铁路无砟轨道型式设计的科学性、合理性等进行模拟真实环境下的试验验证并提出优化建议,对既有高速铁路无砟轨道在服役过程中的力学性能、损伤机理、劣化机制和疲劳特性等进行研究并推出创新的科学维护理论,对未来高速铁路无砟轨道的新型材料应用进行可行性、使用效 果等检测认证,以期更好地服务于我国高铁的发展,全面提升我国高速铁路无砟轨道工程的核心竞争力,势在必行。
目前,现有技术针对高速铁路无砟轨道的综合试验或检测,无论是室内平台还是室外试验线,主要是轨道结构部件强度、动力性能等相关测试,缺少对复杂气候条件如高低温循环、极端高低温、持续高温,高温下降雨、低温下表面结冰等环境下的真实考虑,以及复杂温度环境与列车荷载耦合作用对轨道结构影响的考虑,难以满足我国幅员辽阔、高铁运营条件气候差异大的国情需求。
因此,克服现有高速铁路综合试验平台的不足和技术缺陷是本领域技术人员急需解决的技术问题。
发明内容
本发明的目的在于提供一种高速铁路无砟轨道复杂环境模拟试验系统,以解决上述问题。
为了达到上述目的,本发明的技术方案是这样实现的:
一种高速铁路无砟轨道复杂环境模拟试验系统,包括试验平台库体(1)、温湿度控制系统(2)、板式无砟轨道结构(3)和移动式原型疲劳试验加载机系统(4);
其中:所述试验平台库体(1)包括由多个库体面围成的库体本体、设置在库体本体侧面的大门(7)和观测窗(8)以及设置在所述库体本体底部的试验平台底座(9);
所述温湿度控制系统(2)设置在所述试验平台库体(1)的侧壁处;所述温湿度控制系统(2)用于对所述试验平台库体(1)内部的空气实施升温控制操作、降温控制操作以及加湿控制操作;
所述板式无砟轨道结构(3)设置在所述试验平台库体(1)的内部;
所述移动式原型疲劳试验加载机系统(4)包括疲劳试验加载机和移动式加力架;所述移动式加力架设置在所述试验平台库体(1)的外部,所述疲劳试验加载机设置在所述试验平台库体(1)中的所述板式无砟轨道结构(3)的上部;所述移动式加力架用于将所述疲劳试验加载机连接布置在所述板式无砟轨道结构(3)的上部。
优选地,所述试验平台库体(1)的所述库体面包括由内至外依次设置的内胆层、中间夹层和外胆结构层;
所述内胆层采用不锈钢板;所述外胆层采用彩钢板,所述中间夹层为聚氨脂硬质发泡填充层;所述大门为彩钢板门,所述大门上装有观测窗。
优选地,所述试验平台底座(9)包括由多根槽钢焊接而成的网式框架和设置在网式框架表面上的底座板;所述底座板包括彩钢板和不锈钢板;
所述试验平台底座(9)的宽度大于所述试验平台库体(1)的宽度;在所述试验平台底座(9)的宽度上两侧预留有用于所述移动式加力架移动通过的通道,且所述试验平台底座(9)上还预留有排水沟。
优选地,板式无砟轨道结构(3)包括钢轨、弹性扣件、预制轨道板、水泥乳化沥青砂浆调整层和支承层。
优选地,所述疲劳试验加载机包括伺服驱动机,所述移动式加力架包括反力架横梁1根、反力架立柱2根、自平衡反力梁2根和分配梁8根,两根所述反力架立柱分别设置在所述试验平台库体1的两侧,所述反力架横梁设置在两根所述反力架立柱的顶部之间,且所述自平衡反力梁设置在两根所述反力架立柱的中部之间。
优选地,所述温湿度控制系统(2)包括制冷系统(21)、加湿系统(22)、加热系统(23)、送风系统(24)、PID控制系统(25)和温湿度彩色液晶触摸显示屏;
所述制冷系统(21)包括制冷机组(211)、水泵(212)和水池(213);所述制冷机组(211)通过所述水泵(212)与所述水池(213)相连通;所述制冷机组(211)用于使用环保冷媒产生并输出冷冻水,实现所述试验平台库体(1)内部的空气降温操作;
所述加热系统(23)包括蒸汽加热装置;所述蒸汽加热装置包括蒸发器、钛管电加热器、风机、风机涡轮和被控加热电路;所述蒸发器和所述钛管电加热器连接,且所述被控加热电路分别与PID控制系统(25)以及钛管电加热器电连接;所述风机和所述风机涡轮设置在送风系统上;所述PID控制系统(25)用于控制实现被控加热电路的接通和断开;
所述送风系统(24)包括由上送风管道和下回风管道构成的循环送风系统;所述加热系统(23)与所述送风系统(24)连通;所述送风系统(24)用 于通过上送风和下回风方式将室内部的空气经过空气调节腔加热处理后送入所述试验平台库体(1)的试验室内;
所述温湿度彩色液晶触摸显示屏用于与制冷系统(21)、加湿系统(22)、加热系统(23)、送风系统(24)以及所述移动式原型疲劳试验加载机系统(4)电连接。
优选地,所述高速铁路无砟轨道复杂环境模拟试验系统还包括空气调节柜(10);所述空气调节柜(10)设置在所述试验平台库体(1)的边侧处;所述空气调节柜(10)内设置有由蒸发器、钛管电加热器、风机、风机涡轮和被控加热电路构成的蒸汽加热装置。
优选地,所述板式无砟轨道结构(3)上方设置有液体喷淋装置。
优选地,所述高速铁路无砟轨道复杂环境模拟试验系统还包括传感监测检测系统(5)和辅助设置及设备保障系统(6);
其中,所述传感监测检测系统(5)包括多个温度、应力应变、位移传感器、动态测试仪、单片机和数据接收装置;
所述辅助设置及设备保障系统(6)设置有多重安全保护装置;所述辅助设置及设备保障系统(6)包括蜂鸣器、用于提供声光报警的指示灯、接地保护装置、加热器短路保护装置、鼓风电机超载保护、独立超温保护系统、漏电断路器、室内急停按钮控制开关、应急灯和消防设备。
优选地,所述高速铁路无砟轨道复杂环境模拟试验系统还包括计算机装置(11);所述计算机装置(11)设置在所述试验平台库体(1)的外部;所述计算机装置(11)分别与所述温湿度控制系统(2)、所述移动式原型疲劳试验加载机系统(4)和所述传感监测检测系统(5)电连接。
本发明提供的高速铁路无砟轨道复杂环境模拟试验系统,可用于模拟真实复杂气候环境条件,且不局限于轨道结构系统方面,不仅能分析复杂温度循环、雨水、冻融、列车荷载等外界因素对高速铁路无砟轨道结构、下部基础的影响以及轨道结构服役状态等,还可应用于桥梁、路基、路面、材料等其他领域的多种结构、部件、设备的相关试验与测试,使用范围广泛,具有良好的经济效益和社会效益。
附图说明
图1为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的外部整体结构示意图;
图2为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的内部整体结构示意图;
图3为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的安装有完整板式无砟轨道结构后的内部整体结构示意图;
图4为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的部分控制原理示意图;
图5为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统中的移动式加力架结构示意图;
图6为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统中的疲劳试验加载机结构示意图;
图7为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的俯视透视结构示意图。
标号:
试验平台库体1;
温湿度控制系统2;制冷系统21;加湿系统22;加热系统23;送风系统24;PID控制系统25;制冷机组211;水泵212;水池213;
板式无砟轨道结构3;
移动式原型疲劳试验加载机系统4;疲劳试验加载机41;移动式加力架42;
传感监测检测系统5;
辅助设置及设备保障系统6;
大门7;
观测窗8;
试验平台底座9;
空气调节柜10;
计算机装置11;
温度、应力应变、位移传感器12。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,某些指示的方位或位置关系的词语,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面通过具体的实施例子并结合附图对本发明做进一步的详细描述。
本发明实施例提供的一种高速铁路无砟轨道复杂环境模拟试验系统的外部整体结构示意图如图1所示,内部整体结构示意图如图2所示,该系统安装有完整板式无砟轨道结构后的内部整体结构示意图如图3所示。
参见图1以及图2、图3,本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统主要包括试验平台库体1、温湿度控制系统2、板式无砟轨道结构3、移动式原型疲劳试验加载机系统4、传感监测检测系统5(即多手段融合的传感监测检测系统)和辅助设置及设备保障系统6。
其中:所述试验平台库体1包括由多个库体面围成的库体本体、设置在库体本体侧面的大门7和观测窗8以及设置在所述库体本体底部的换气装置和试验平台底座9。
所述温湿度控制系统2设置在所述试验平台库体1的侧壁处;所述温湿度控制系统2用于对所述试验平台库体1内部的空气实施升温控制操作、降温控制操作以及加湿控制操作;
所述板式无砟轨道结构3设置在所述试验平台库体1的内部;
本发明实施例提供的一种高速铁路无砟轨道复杂环境模拟试验系统中的移动式加力架42的结构如图5所示,疲劳试验加载机41的结构如图6所示。移动式原型疲劳试验加载机系统4包括疲劳试验加载机41和移动式加力架42;所述移动式加力架42设置在所述试验平台库体1的外部,且所述疲劳试验加载机41设置在所述试验平台库体1中的所述板式无砟轨道结构3上部;所述移动式加力架42用于将所述疲劳试验加载机41连接布置在所述板式无砟轨道结构3的上部。
所述温湿度控制系统2装备有高精度智能化的温、湿度调节显示一体化控制系统,包括制冷系统21、加湿系统22、加热系统23、送风系统24、PID控制系统25和温湿度彩色液晶触摸显示屏;所述温湿度控制系统2设置在所述试验平台库体1的侧壁处;所述温湿度控制系统2用于对所述试验平台库体1内部的空气实施升温控制操作、降温控制操作以及加湿控制操作加湿控制操作。
在整个试验方法过程中,试验平台库体1是主要的壳体结构,其为内部的板式无砟轨道结构3提供了保护以及试验场所,保证了可以模拟出多种显示试验场景;上述板式无砟轨道结构3采用真实的板式无砟轨道系统,并设置在所述试验平台库体1的内部;温湿度控制系统2用于对所述试验平台库体1内部的空气实施升温控制操作、降温控制操作以及加湿控制操作(模拟出升降温、复杂温度循环、温度梯度、雨水等复杂的应用场景);同时移动式加力架42用于将所述疲劳试验加载机41连接布置在板式无砟轨道结构3的上部,该移动式原型疲劳试验加载机系统4则对板式无砟轨道结构3实施载荷加载工作,从而模拟列车荷载作用场景。
下面对本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的具体结构以及具体技术效果做一下详细说明:
优选的,作为一种可实施方案;如图1和图2所示,所述试验平台库体1的所述库体面包括由内至外依次设置的内胆层、中间夹层和外胆结构层;所述内胆层采用优质不锈钢板;所述外胆层采用优质彩钢板,所述中间夹层为聚氨脂硬质发泡填充层;所述大门为彩钢板门,所述大门上装有观测窗。
需要说明的是,所述试验平台库体1的所述库体面采用内胆层、中间夹层和外胆结构层三层结构设计;内胆层采用优质不锈钢板,外胆层采用优质彩钢板,中间夹层填充保温介质,材料为聚氨脂硬质发泡;因此说上述库体面均采用隔热性能强、质轻耐抗击、防锈蚀的材料,实现库体的保温、隔热以及防腐等功能。另外大门材料同样采用彩钢板,大门拉手为内外开启式,大门以及侧面装有观测窗。
关于试验平台库体1的主要结构构造:试验平台库体1外部设计了大门(例如双开式及单开式大门)、观测窗、计算机装置、配电设备、通风装置、温湿度调节器、消防设备等部件。试验平台外部与内部整体示意图如图1、图2所示,试验平台库体1的外形尺寸设计为长度尺寸24.6m,宽度尺寸为5.6m,高度尺寸为3.15m;试验平台库体1的内部尺寸设计为:长度尺寸为23.5m,宽度尺寸为4.5m,高度尺寸为2.5m,体积为265立方米;其中单开门尺寸,门体宽度尺寸为0.8m,高度尺寸为2.0m;双开门尺寸,门整体宽度尺寸为4.5m,高度尺寸为2.6m;侧面观测窗其窗体宽度为3.0m,高度尺寸为0.9m。
优选的,作为一种可实施方案;如图2所示,所述试验平台底座9包括由多根槽钢焊接而成的网式框架和设置在网式框架表面上的底座板;所述底座板包括彩钢板和不锈钢板;所述试验平台底座9的宽度大于所述试验平台库体1的宽度;在所述试验平台底座9的宽度上两侧预留有用于所述移动式加力架42移动通过的通道,且所述试验平台底座9上还预留有排水沟。
需要说明的是,试验平台结构底座采用8#槽钢焊接成网式框架,以便于在水平条件下能承受平台及人员试件的重量,而底面不产生凹凸不平及开裂等现象。上述底座板表面采用加厚1.2mm彩钢板外加SUS203#不锈钢板补强耐磨损。同时试验平台底座两侧预留一定宽度的通道,以方便试验准备过程中的操作以及移动式加力架42的移动,并预留一定宽度的排水沟防止积水。
优选的,作为一种可实施方案;图7为本发明实施例提供的高速铁路无砟轨道复杂环境模拟试验系统的俯视透视结构示意图,如图3以及图7所示,通过图7所示意的俯视透视结构可以清楚看到板式无砟轨道结构3的结构构造;在所述板式无砟轨道结构3的具体结构中;所述板式无砟轨道结构3由钢轨、弹性扣件、预制轨道板、水泥乳化沥青砂浆调整层以及支承层组成。
需要说明的是,在板式无砟轨道结构3的具体结构中,综合考虑各种型号轨道板尺寸,以3块CRTSⅡ型板式无砟轨道板为例进行试验,铺设时按照实际轨道结构进行铺设,包括钢轨、弹性扣件、预制轨道板、水泥乳化沥青砂浆(CA砂浆)调整层及支承层(底座),轨道结构高度为779mm。轨道板采用工厂化预制,相互之间通过纵向精轧螺纹钢筋紧密连接,每块轨道板长度为6450mm,宽度为2550mm,厚度为200mm;支承层在试验平台底座表面上设置,顶面宽度为2950mm,地面宽度为3250mm,厚度为300mm,轨道外侧支承层表面采用乳化沥青进行表面处理;CA砂浆调整层厚度为30mm;钢轨采用60kg/m钢轨;扣件选用WJ-8C型扣件。
优选的,作为一种可实施方案;如图5以及图6所示,在所述移动式原型疲劳试验加载机系统4的具体结构中;所述疲劳试验加载机41具体为50吨级伺服驱动机;所述移动式加力架42包括反力架横梁1根、反力架立柱2根、自平衡反力梁2根和分配梁8根。两根所述反力架立柱分别设置在所述试验平台库体1的两侧,所述反力架横梁设置在两根所述反力架立柱的顶部之间,且所述自平衡反力梁设置在两根所述反力架立柱的中部之间。
将定制的50t疲劳试验加载机41通过移动式加力架42布置在轨道结构的上部,其剖面图如图6所示,试验中可以对板端处、板中位置分别实现加载,疲劳(动力)荷载为500kN。
优选的,作为一种可实施方案;本发明实施例提供的一种高速铁路无砟轨道复杂环境模拟试验系统的部分控制原理示意图如图4所示,所述温湿度控制系统2包括制冷系统21、加湿系统22、加热系统23、送风系统24和PID控制系统25和温湿度彩色液晶触摸显示屏;
所述制冷系统21包括制冷机组211(即环保冷媒冷冻机)、水泵212和水池213;所述制冷机组211通过所述水泵212与所述水池213相连通;所述制冷机组211用于使用环保冷媒产生并输出冷冻水,实现所述试验平台库体1内部的空气降温操作;需要说明的是;制冷机组211通过水泵与水池相连,使用环保冷媒产生冷冻水,并经过制冷器来对内部空气实现降温,从而保证试验效果的可靠性。同时上述制冷系统采用二元式低温回路系统设计,其自控装置能随温度的设定值自动选择运转制冷回路,并于不同温域采用不同压缩机工作使设备使用寿命更长。
所述加热系统23包括蒸汽加热装置;所述蒸汽加热装置包括蒸发器和钛管电加热器、风机、风机涡轮和被控加热电路;所述蒸发器和所述钛管电加热器连接,且所述被控加热电路分别与PID(比例、积分和微分)控制系统25以及钛管电加热器电连接;所述风机和所述风机涡轮设置在送风系统上;所述PID控制系统25用于控制对实现被控加热电路的接通和断开;所述空气调节柜10内设置有由蒸发器、钛管电加热器、风机、风机涡轮和被控加热电路构成的蒸汽加热装置。需要说明的是;在试验平台库体侧设置一个空气调节柜,该空气调节柜的厚度为450mm,在其中安装蒸发器、钛管电加热器、风机、风机蜗管等设备,空气调节腔内的所有元件均作反腐处理;
所述送风系统24包括由上送风管道和下回风管道构成的循环送风系统;所述加热系统23与所述送风系统24连通;所述送风系统24用于通过上送风和下回风方式将室内部的空气经过空气调节腔加热处理后送入所述试验平台库体1的试验室内;需要说明的是;加热系统25采用上送风、下回风的送风系统,使室内部的空气经过空气调节腔加热处理后送入试验室内,达成一个循环,实现试验室的升温模拟。同时在送风系统中;其主要采用多翼式送风机实现强力送风循环,避免任何死角,可使测试区域内温湿度分布均匀。风路循环出风回风设计,风压、风速均符合测试标准,并可使开门瞬间温湿度回稳时间快。升温、降温、加湿系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。
优选的,作为一种可实施方案;所述板式无砟轨道结构3上方设置有液体喷淋装置,以模拟雨水冲刷,冻融循环等环境。
优选的,作为一种可实施方案;所述传感监测检测系统5包括多个温度、应力应变、位移传感器、动态测试仪和单片机数据接收装置,可基于光纤光栅、修正应力-应变、视频等监测技术对试验室内温度以及轨道结构或其他试验对象在荷载作用下的应力、应变、位移等进行实时和长期监测。
所述辅助设置及设备保障系统6配备多重安全保护装置,如蜂鸣器、指示灯提供声光报警、独立超温保护系统、室内急停按钮控制开关等,并配备应急灯和消防设备,以保障设备安全。
需要说明的是;该辅助设置及设备保障系统6包括漏电断路器、室内急停按钮控制开关、设备安全防护、安全可靠的接地保护装置、加热器短路保护、 鼓风电机超载保护、制冷机超压超载保护、蜂鸣器、独立超温保护系统等,能有效保障设备安全,同时配备应急灯,消防设备等,保证消防安全。
优选的,作为一种可实施方案;所述高速铁路无砟轨道复杂环境模拟试验系统还包括计算机装置11;所述计算机装置11设置在所述试验平台库体1的外部;所述计算机装置11分别与所述温湿度控制系统2、所述移动式原型疲劳试验加载机系统4和传感监测检测系统5电连接。需要说明的是;上述传感监测检测系统5用于实时进行试验监测数据,并将监测数据发送至计算机装置11;所述计算机装置11用于存储以及监测数据;所述温湿度彩色液晶触摸显示屏用于通过控制来实现调节温湿度,所述温湿度彩色液晶触摸显示屏还用于通过所述移动式原型疲劳试验加载机系统4控制加载力的控制。
在整个试验方法过程中,试验平台库体是主要的壳体结构,其为内部的板式无砟轨道结构提供了保护以及试验场所,保证了可以模拟出多种显示试验场景;上述板式无砟轨道结构采用真实的板式无砟轨道系统,并设置在所述试验平台库体的内部;温湿度控制系统用于对所述试验平台库体内部的空气实施升温控制操作、降温控制操作以及加湿控制操作(模拟出升降温、复杂温度循环、温度梯度、雨水等复杂的应用场景);同时移动式加力架用于将所述疲劳试验加载机连接布置在所述板式无砟轨道结构的上部,该移动式原型疲劳试验加载机系统则对板式无砟轨道结构实施载荷加载工作,从而模拟列车荷载作用场景。
综上所述,本发明提供的高速铁路无砟轨道复杂环境模拟试验系统,可用于模拟真实复杂气候环境条件,且不局限于轨道结构系统方面,不仅能分析复杂温度循环、雨水、冻融、列车荷载等外界因素对高速铁路无砟轨道结构、下部基础的影响以及轨道结构服役状态等,还可应用于桥梁、路基、路面、材料等其他领域的多种结构、部件、设备的相关试验与测试,使用范围广泛,具有良好的经济效益和社会效益;
本发明提供的高速铁路无砟轨道复杂环境模拟试验系统,其结构布置合理,能够适应长期、稳定、安全、可靠的试验需要,能够满足用户从事长期使用要求,且使用、操作、维修方便,有良好的用户界面,使得操作和监测都更加简单和直观。

Claims (10)

  1. 一种高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,包括试验平台库体(1)、温湿度控制系统(2)、板式无砟轨道结构(3)和移动式原型疲劳试验加载机系统(4);
    其中:所述试验平台库体(1)包括由多个库体面围成的库体本体、设置在库体本体侧面的大门(7)和观测窗(8)以及设置在所述库体本体底部的试验平台底座(9);
    所述温湿度控制系统(2)设置在所述试验平台库体(1)的侧壁处;所述温湿度控制系统(2)用于对所述试验平台库体(1)内部的空气实施升温控制操作、降温控制操作以及加湿控制操作;
    所述板式无砟轨道结构(3)设置在所述试验平台库体(1)的内部;
    所述移动式原型疲劳试验加载机系统(4)包括疲劳试验加载机和移动式加力架;所述移动式加力架设置在所述试验平台库体(1)的外部,所述疲劳试验加载机设置在所述试验平台库体(1)中的所述板式无砟轨道结构(3)的上部;所述移动式加力架用于将所述疲劳试验加载机连接布置在所述板式无砟轨道结构(3)的上部。
  2. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述试验平台库体(1)的所述库体面包括由内至外依次设置的内胆层、中间夹层和外胆结构层;
    所述内胆层采用不锈钢板;所述外胆层采用彩钢板,所述中间夹层为聚氨脂硬质发泡填充层;所述大门为彩钢板门,所述大门上装有观测窗。
  3. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述试验平台底座(9)包括由多根槽钢焊接而成的网式框架和设置在网式框架表面上的底座板;所述底座板包括彩钢板和不锈钢板;
    所述试验平台底座(9)的宽度大于所述试验平台库体(1)的宽度;在所述试验平台底座(9)的宽度上两侧预留有用于所述移动式加力架移动通过的通道,且所述试验平台底座(9)上还预留有排水沟。
  4. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,板式无砟轨道结构(3)包括钢轨、弹性扣件、预制轨道板、水泥乳化沥青砂浆调整层和支承层。
  5. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述疲劳试验加载机包括伺服驱动机,所述移动式加力架包括反力架横梁1根、反力架立柱2根、自平衡反力梁2根和分配梁8根,两根所述反力架立柱分别设置在所述试验平台库体(1)的两侧,所述反力架横梁设置在两根所述反力架立柱的顶部之间,且所述自平衡反力梁设置在两根所述反力架立柱的中部之间。
  6. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述温湿度控制系统(2)包括制冷系统(21)、加湿系统(22)、加热系统(23)、送风系统(24)、PID控制系统(25)和温湿度彩色液晶触摸显示屏;
    所述制冷系统(21)包括制冷机组(211)、水泵(212)和水池(213);所述制冷机组(211)通过所述水泵(212)与所述水池(213)相连通;所述制冷机组(211)用于使用环保冷媒产生并输出冷冻水,实现所述试验平台库体(1)内部的空气降温操作;
    所述加热系统(23)包括蒸汽加热装置;所述蒸汽加热装置包括蒸发器、钛管电加热器、风机、风机涡轮和被控加热电路;所述蒸发器和所述钛管电加热器连接,且所述被控加热电路分别与PID控制系统(25)以及钛管电加热器电连接;所述风机和所述风机涡轮设置在送风系统上;所述PID控制系统(25)用于控制实现被控加热电路的接通和断开;
    所述送风系统(24)包括由上送风管道和下回风管道构成的循环送风系统;所述加热系统(23)与所述送风系统(24)连通;所述送风系统(24)用于通过上送风和下回风方式将室内部的空气经过空气调节腔加热处理后送入所述试验平台库体(1)的试验室内;
    所述温湿度彩色液晶触摸显示屏用于与制冷系统(21)、加湿系统(22)、加热系统(23)、送风系统(24)以及所述移动式原型疲劳试验加载机系统(4)电连接。
  7. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述高速铁路无砟轨道复杂环境模拟试验系统还包括空气调节柜(10);所述空气调节柜(10)设置在所述试验平台库体(1)的边侧处;所述空气调节柜(10)内设置有由蒸发器、钛管电加热器、风机、风机涡轮和被控加热电路构成的蒸汽加热装置。
  8. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述板式无砟轨道结构(3)上方设置有液体喷淋装置。
  9. 如权利要求1所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述高速铁路无砟轨道复杂环境模拟试验系统还包括传感监测检测系统(5)和辅助设置及设备保障系统(6);
    其中,所述传感监测检测系统(5)包括多个温度、应力应变、位移传感器、动态测试仪、单片机和数据接收装置;
    所述辅助设置及设备保障系统(6)设置有多重安全保护装置;所述辅助设置及设备保障系统(6)包括蜂鸣器、用于提供声光报警的指示灯、接地保护装置、加热器短路保护装置、鼓风电机超载保护、独立超温保护系统、漏电断路器、室内急停按钮控制开关、应急灯和消防设备。
  10. 如权利要求9所述的高速铁路无砟轨道复杂环境模拟试验系统,其特征在于,所述高速铁路无砟轨道复杂环境模拟试验系统还包括计算机装置(11);所述计算机装置(11)设置在所述试验平台库体(1)的外部;所述计算机装置(11)分别与所述温湿度控制系统(2)、所述移动式原型疲劳试验加载机系统(4)和所述传感监测检测系统(5)电连接。
PCT/CN2019/091195 2018-07-16 2019-07-09 一种高速铁路无砟轨道复杂环境模拟试验系统 WO2020015488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810777804.0 2018-07-16
CN201810777804.0A CN109030049A (zh) 2018-07-16 2018-07-16 一种高速铁路无砟轨道复杂环境模拟试验系统

Publications (1)

Publication Number Publication Date
WO2020015488A1 true WO2020015488A1 (zh) 2020-01-23

Family

ID=64642518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091195 WO2020015488A1 (zh) 2018-07-16 2019-07-09 一种高速铁路无砟轨道复杂环境模拟试验系统

Country Status (2)

Country Link
CN (1) CN109030049A (zh)
WO (1) WO2020015488A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030049A (zh) * 2018-07-16 2018-12-18 北京交通大学 一种高速铁路无砟轨道复杂环境模拟试验系统
CN110108434A (zh) * 2019-05-30 2019-08-09 上海工程技术大学 一种轨道系统落锤冲击试验机
CN111611635B (zh) * 2020-04-15 2023-12-01 北京交通大学 高速铁路无砟轨道高低温试验平台的设计方法
CN111982656B (zh) * 2020-07-21 2023-04-07 深圳大学 环境荷载耦合作用下工程结构模型试验系统
CN111678771B (zh) * 2020-07-21 2023-07-18 深圳大学 环境荷载耦合作用下轨道结构模型试验系统及方法
CN113203648B (zh) * 2021-04-20 2022-10-25 华南理工大学 复杂环境下结构疲劳/耐久性实验系统及方法
CN113218793B (zh) * 2021-04-20 2022-09-20 华南理工大学 复杂环境下结构疲劳/耐久性实验系统的加载装置及方法
CN113237481B (zh) * 2021-05-08 2022-01-28 西南交通大学 一种模拟高速铁路无砟轨道温度梯度疲劳作用装置及方法
CN114778322A (zh) * 2022-06-24 2022-07-22 中国铁道科学研究院集团有限公司铁道建筑研究所 一种无砟轨道层间压力试验装置与试验方法
CN116380663B (zh) * 2023-04-14 2024-03-15 同济大学 一种轨道板疲劳损伤研究试验装置与评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346027A (zh) * 2011-09-23 2012-02-08 西南交通大学 一种高速铁路crts-ⅱ型板式无砟轨道桥台水平位移测试方法
KR20150079201A (ko) * 2013-12-31 2015-07-08 노틸러스효성 주식회사 레일 내구성 시험기
CN207570690U (zh) * 2017-12-21 2018-07-03 上海工程技术大学 一种无砟轨道板温度场及其变形模拟装置
CN109030049A (zh) * 2018-07-16 2018-12-18 北京交通大学 一种高速铁路无砟轨道复杂环境模拟试验系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201060157Y (zh) * 2007-07-13 2008-05-14 浙江大学 一种多功能步入式人工环境复合模拟耐久性试验装置
CN102162781B (zh) * 2010-12-22 2013-04-17 浙江工业大学 高速铁路板式无砟轨道ca砂浆的抗疲劳试验装置
CN102288630B (zh) * 2011-05-12 2012-11-21 江苏博特新材料有限公司 板式无砟轨道用ca砂浆拌合物耐温性能试验检测方法
CN102345258A (zh) * 2011-06-17 2012-02-08 西南交通大学 高速铁路实尺轨道结构的动态特性试验台
CN202700511U (zh) * 2012-08-04 2013-01-30 无锡科隆试验设备有限公司 一种模拟环境试验箱
CN103207117A (zh) * 2013-03-07 2013-07-17 大连理工大学 一种高速铁路钢轨静态载荷模拟实验系统
CN103674598B (zh) * 2013-12-18 2016-08-17 西南交通大学 模拟移动荷载的轨道结构疲劳试验方法及装置
CN204495483U (zh) * 2015-01-26 2015-07-22 中南大学 高速铁路箱梁及无砟轨道温度监测装置
CN105352876B (zh) * 2015-09-09 2019-04-30 中国水利水电科学研究院 基于真实环境的混凝土开裂全过程试验装置和方法
CN205164751U (zh) * 2015-10-22 2016-04-20 上海热策电子科技有限公司 一种高低温交变湿热试验箱
CN206515161U (zh) * 2016-11-21 2017-09-22 中南大学 一种crtsⅲ板式无砟轨道粘结性能测试装置
CN206650778U (zh) * 2017-03-29 2017-11-17 北京宏祥通达科技有限公司 车载铁道线路环境和轨道检测设备的状态监测装置
CN107101674B (zh) * 2017-06-19 2023-08-04 中铁六局集团有限公司 模拟无砟轨道温度应力作用的实尺试验平台及施工方法
CN208621340U (zh) * 2018-07-16 2019-03-19 北京交通大学 一种高速铁路无砟轨道复杂环境模拟试验系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102346027A (zh) * 2011-09-23 2012-02-08 西南交通大学 一种高速铁路crts-ⅱ型板式无砟轨道桥台水平位移测试方法
KR20150079201A (ko) * 2013-12-31 2015-07-08 노틸러스효성 주식회사 레일 내구성 시험기
CN207570690U (zh) * 2017-12-21 2018-07-03 上海工程技术大学 一种无砟轨道板温度场及其变形模拟装置
CN109030049A (zh) * 2018-07-16 2018-12-18 北京交通大学 一种高速铁路无砟轨道复杂环境模拟试验系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANG, . XIONG: "Orbiting Laboratory Test", RAILWAY TESTING AND EVALUATION, 31 August 2012 (2012-08-31), pages 65, 75, 78, 79, 84, 85 *

Also Published As

Publication number Publication date
CN109030049A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020015488A1 (zh) 一种高速铁路无砟轨道复杂环境模拟试验系统
CN208621340U (zh) 一种高速铁路无砟轨道复杂环境模拟试验系统
Santos et al. Thermal transmittance of lightweight steel framed walls: Experimental versus numerical and analytical approaches
CN206320877U (zh) 一种可移动式集成冷冻站
CN103823043B (zh) 一种多功能冻土挡土墙模型试验箱
Hajdukiewicz et al. Real-time monitoring framework to investigate the environmental and structural performance of buildings
Wang et al. A fire test on continuous reinforced concrete slabs in a full-scale multi-story steel-framed building
CN104897721A (zh) 建筑墙体相变保温隔热效果测试系统及其使用方法
Al-Rashed et al. Usefulness of loading PCM into envelopes in arid climate based on Köppen–Geiger classification-Annual assessment of energy saving and GHG emission reduction
CN101477109A (zh) 柱支承足尺钢筋混凝土双向板抗火试验装置及其实现方法
Brambilla et al. Life cycle efficiency ratio: A new performance indicator for a life cycle driven approach to evaluate the potential of ventilative cooling and thermal inertia
CN115963244A (zh) 一种模拟环境因素耦合作用诱发灾害链试验装置及方法
CN112146912A (zh) 一种隧道多灾变综合模拟试验系统
CN112947626B (zh) 用于大坝温控的可变拓扑网格及其控制方法
Kirby British steel technical European fire test programme design, construction and results
CN101892706B (zh) 一种既有建筑改造外增式节能阳台结构体系
CN111611635A (zh) 高速铁路无砟轨道高低温试验平台的设计方法
Liu et al. A new demountable light-gauge steel framed wall: Flexural behavior, thermal performance and life cycle assessment
Jin et al. Testing and modeling of underfloor air supply plenums
Wang et al. Study on the performance of the new composite thermal insulation lining for the railway operational tunnel in cold regions
CN203798804U (zh) 一种多功能冻土挡土墙模型试验箱
CN109540463A (zh) 长距离引水渠道循环水流冻结模型试验装置及试验方法
CN116086939A (zh) 模拟寒区隧道洞口三维应力场和循环冻融环境的试验系统
CN213336822U (zh) 一种隧道多灾变综合模拟试验系统
CN207992205U (zh) 一种冻土路基试验直观装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837714

Country of ref document: EP

Kind code of ref document: A1