WO2020013345A1 - Spheroid production method utilizing difference in hydrophilicity - Google Patents

Spheroid production method utilizing difference in hydrophilicity Download PDF

Info

Publication number
WO2020013345A1
WO2020013345A1 PCT/JP2019/028377 JP2019028377W WO2020013345A1 WO 2020013345 A1 WO2020013345 A1 WO 2020013345A1 JP 2019028377 W JP2019028377 W JP 2019028377W WO 2020013345 A1 WO2020013345 A1 WO 2020013345A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
spheroids
spheroid
culture
derived
Prior art date
Application number
PCT/JP2019/028377
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 各務
憲起 李
Original Assignee
学校法人松本歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人松本歯科大学 filed Critical 学校法人松本歯科大学
Priority to JP2020530293A priority Critical patent/JP7398114B2/en
Publication of WO2020013345A1 publication Critical patent/WO2020013345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present invention relates to a method for producing spheroids utilizing a difference in hydrophilicity.
  • stem cell-based cell therapy (cell therapy) and regenerative medicine have become increasingly attractive because they are widely used in various medical and dental fields (1-5).
  • somatic stem cells are still limited.
  • One reason that somatic stem cells are difficult to understand is that they have characteristic changes between the in vivo and in vitro environments.
  • niches exist that support the maintenance of somatic stem cells in vivo, but are lost in the cell extraction and culture environment (in vitro).
  • Most cell cultures utilize two-dimensional cultures on culture plates, which not only cannot mimic the complex interactions between stem cells and the environment (6), but also the natural phenotype of stem cells. Is also changed (7-9).
  • Spheroid culture is one of three-dimensional (3D) culture methods, and was known as early as the 1940s (10). Compared to conventional two-dimensional (2D) cultures, spheroid cultures are expected to grow more closely in vivo (10, 11). More recently, spheroid culture has received much attention as a novel selective culture method for neural stem cells (12). This culture technique has since proven to be effective in the selective culture of many other types of somatic stem cells, including skin (13), salivary glands (14), and mesenchymal stem cells (15). Most of the studies have shown that spheroid cultures are a potent selective culture of somatic stem cells, which can enhance the therapeutic potential of stem cells (11).
  • somatic stem cell spheroids are widely used, there is no consensus on how to make spheroids. In addition, the basic mechanisms that affect spheroid formation are not well understood. Broadly, there are three main methods for producing somatic stem cell spheroids. The most traditional approach is to combine single cells dissociated from tissue in a serum-free environment with several key factors such as basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27 (16). This is a method of culturing. This method is for selecting cells that can survive without adhering to the dish and that can proliferate and form cell aggregates. Although this approach seems reasonable for selecting stem cell populations, it has usually been very inefficient since most of the cells attach to the dish or do not grow without attaching to the dish.
  • bFGF basic fibroblast growth factor
  • EGF epidermal growth factor
  • B27 16
  • the second method is based on a dynamic cell culture method, in which cells are cultured in a rotating flask or the medium is agitated to avoid cell attachment to the flask using a mechanical method.
  • the third method is a culture method in which spheroids are formed in a hanging drop culture using gravity using a non-adhesive inverted conical culture well or a gel coat dish (18).
  • the second and third culturing methods theoretically simply form cell aggregates without selection.
  • these two different types of spheroids are defined as spontaneously formed spheroids and mechanically formed spheroids.
  • a substrate for adhesive cell culture having an albumin adsorption amount on a cell culture surface or a static water contact angle within a predetermined amount or within a range is known (JP-A-2017-077240).
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2007-077241
  • the base material has been subjected to surface coating, and it is unknown whether spheroids are formed using the base material.
  • Immunophenotype ⁇ of ⁇ human ⁇ adipose-derived ⁇ cells temporal ⁇ changes ⁇ in ⁇ stromally-associated ⁇ and ⁇ stem ⁇ cell-associated @ markers.
  • Stem Cells 24,376,2006 [PubMed] Weaver @ VM, Petersen @ OW, Wang @ F, Larabell @ CA, Briand @ P, Damsky @ C, Bissell @ MJ.
  • An object of the present invention is to provide a high-performance method for forming spheroids of stem cells.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, found that spheroid formation occurs efficiently and spontaneously by keeping the hydrophobicity of the culture plate constant, thereby completing the present invention. Reached.
  • the present invention is as follows.
  • (1) A method for forming spheroids, wherein spheroids are formed by culturing stem cells using a culture vessel having a surface processed or treated so that cell adhesion is inhibited.
  • (2) The method according to (1), wherein the culture vessel whose surface is processed or treated so as to inhibit cell adhesion has hydrophobicity.
  • (3) The method according to (2), wherein the culture vessel having hydrophobicity has a roughness of a culture bottom so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
  • (4) The method according to (3), wherein the contact angle is from 89 ° to 91 °.
  • the culture vessel whose surface is processed or treated so as to inhibit cell adhesion is made of polystyrene or glass, and the bottom surface is not coated with a fluorine-containing polymer.
  • (1) to (4) The method according to any one of claims 1 to 4.
  • (6) The culture vessel whose surface has been processed or treated so as to inhibit cell adhesion has a root-mean-square surface roughness of 2.400 nm to 2.500 nm, (1) to (5).
  • (7) The method according to any one of (1) to (6), wherein the stem cells are somatic stem cells, embryonic stem cells, mesenchymal stem cells, or cancer stem cells or tumor-derived cells.
  • a method for producing spheroids comprising recovering spheroids formed by the method according to any one of (1) to (7).
  • a culture vessel having a bottom surface of a culture so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
  • a regenerative medical material comprising the spheroid according to any one of (13) to (15).
  • the material according to (15), wherein the regenerative medicine is a regenerative medicine for treating a nerve disease or a bone disease.
  • a regenerative medicine kit comprising the spheroid according to any one of (13) to (15).
  • the kit according to (18), wherein the regenerative medicine is a regenerative medicine for treating a nerve disease or a bone disease.
  • a method for forming a spheroid and a method for producing the same are provided. According to the present invention, it has become possible to selectively produce high-performance spheroids of stem cells without requiring a special medium as well as a special medium.
  • FIG. 3 shows the effect of surface hydrophobicity on spheroid formation from mouse skin-derived cells.
  • B) Average contact angle of a 1 ⁇ L water droplet on the dish. Data are shown as mean ⁇ standard deviation (n 5-10), *** p ⁇ 0.0001.
  • Scale bars represent 100 ⁇ m (black) and 500 ⁇ m (red). It is a figure which shows the expression of a stem cell marker in spheroids from mouse skin-derived cells.
  • FIG. 2 is a diagram showing spheroid-forming ability in different types of cells. ⁇ Spheroid formation of skin-derived cells (A), oral mucosa-derived cells (D), cortical bone-derived cells (E), and NIH3T3 cells (F). Immunofluorescent staining of SSEA1 (B) and Sox2 (C) on spheroids of skin-derived cells. Scale bars represent 500 ⁇ m (white) and 100 ⁇ m (black). It is a figure which shows the spontaneous spheroid formation process by the skin origin cell (taken every 3 hours).
  • (C) Number of spheroids derived from oral mucosa and skin-derived cells. Significant differences were observed only at 120 hours; n 10.
  • (D) Effect of additives on spheroid size. Spheroid size was significantly larger in media containing bFGF, EGF and B27 supplements than in media without these additives. n 20.
  • caspase 7 expression was significantly higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells.
  • Scale bar 50 ⁇ m.
  • DAPI 4 ', 6-diamidino-2phenylindole. Data are shown as mean ⁇ SEM.
  • n 3. *, P ⁇ 0.05; **, p ⁇ 0.01; ***, p ⁇ 0.001. Effect of bFGF, EGF and B27 supplements on stem cell marker expression in spheroids of oral mucosal and skin-derived cells.
  • DAPI 4 ', 6-diamidino-2-phenylindole.
  • A Spontaneous spheroid formation from skin-derived cells at the second passage.
  • B Spontaneous spheroid formation from skin-derived cells at the third passage.
  • C Spontaneous spheroid formation from skin-derived cells at passage 4.
  • D Spontaneous spheroid formation from skin-derived cells at the fifth passage. Bone forming ability of spheroids.
  • Monolayer cultured CBDC and spheroid-derived cells were incubated for 7 days in an osteogenic induction medium.
  • ALP assay data showed that the induced spheroid-derived cells had significantly increased ALP activity compared to the induced monolayer cells (a).
  • the qRT-PCR data showed that the derived spheroid-derived cells expressed bone formation-related genes, such as Osterix, BSP, and DMP1, at statistically significant levels (bd). Data are expressed as mean ⁇ SEM.
  • the present invention relates to a method for forming spheroids, which comprises forming spheroids by culturing stem cells using a culture vessel having a surface processed or treated so that cell adhesion is inhibited. Further, the present invention is a culture container having a roughness of a culture bottom surface so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °, wherein stem cells are cultured using the culture container. , A method of forming spheroids.
  • the present inventors paid attention to the adhesiveness (adhesiveness) of cells to a culture vessel during spheroid formation. It is well known that hydrophobicity affects cell adhesion. However, factors that affect cell adhesion include various factors such as surface shape in addition to hydrophobicity. Therefore, the present invention is characterized in that spheroids are formed by controlling cell adhesion using conditions that affect cell adhesion, not limited to hydrophobic conditions.
  • Conditions that affect cell adhesion can be set by processing or treating the surface of the culture vessel so that the adhesion of the cells to the culture vessel is inhibited.
  • “Adhesion is inhibited” means that all or a part of the cells is prevented from attaching to the culture vessel, and includes both physical treatment and chemical treatment. For example, focusing on the contact angle of water (water repellency or hydrophobicity), the degree of cell adhesion obtained by water repellency or hydrophobicity is the most important factor for spontaneous spheroid formation. That is, if the surface of the culture vessel is hydrophobic, it becomes non-adhesive, and the degree of cell adhesion changes depending on the degree. Therefore, the degree of cell adhesion determines good formation conditions for spontaneous spheroid formation. By culturing stem cells using a culture vessel whose surface has been processed or treated so as to inhibit cell adhesion, spheroids can be formed.
  • the obtained spontaneous spheroids have high differentiation ability.
  • bone-derived mesenchymal stem cells have excellent bone and nerve differentiation ability
  • skin and oral mucosa-derived stem cells have excellent nerve differentiation ability. It has been shown.
  • the skin and oral mucosal stem cells produced by the method of the present invention are better than existing cells (spheroids) formed without using the method of the present invention, for example, off-the-shelf bone marrow-derived mesenchymal stem cells (eg, stemilac). It has much higher tissue differentiation ability (eg, bone differentiation ability and nerve regeneration ability). Therefore, the method of the present invention is an excellent method for preparing stem cells for regenerative medicine, and the spontaneous spheroid of the present invention is a cell source useful for regenerative medicine, particularly nerve regeneration and bone regeneration.
  • examples of a culture vessel whose surface is processed or treated so as to inhibit cell adhesion include those having hydrophobicity.
  • one aspect of the present invention focuses on the surface properties of the culture vessel, especially on hydrophobicity.
  • Primary culture cells were prepared from mouse skin by conventional two-dimensional culture, and the cells were transferred to culture plates with different hydrophobicity, which were confirmed at different contact angles.
  • the size of the contact angle defines the hydrophilicity and hydrophobicity of the culture surface. Yes, in the range of 85 ° to 95 °. Further, the contact angle is preferably 89 ° to 91 °, more preferably 90 °. Only cell culture plates with the above contact angles were able to successfully achieve spheroid formation.
  • spheroid formation was spontaneous, efficient, and stable. Since spheroid formation was achieved in a medium ( ⁇ MEM supplemented with 10% FBS) containing no additives (factors) such as EGF, bFGF and B27, it can be said that the spheroid production process does not depend on the above factors.
  • ES cell markers such as SSEA-1, SOX-2, OCT4, and nanog was shown, and the selective properties of a strong stem cell population according to the method of the present invention were confirmed. confirmed.
  • This phenomenon was reproducible and applicable not only to skin-derived stem cells, but also to oral mucosa-derived stem cells, mesenchymal stem cells and 3T3 cells. Therefore, the method of the present invention shows the robustness of the above phenomenon.
  • the culture vessel (sometimes referred to as a culture plate or dish) used in the present invention has a contact angle in the range of 85 ° to 95 °, for example, 85 °, 86 °. , 87 °, 88 °, 89 °, 90 °, 91 °, 92 °, 93 °, 94 °, or 95 °, preferably 89 ° to 91 ° (eg, 89 °, 90 ° or 91 °), More preferably, it is 90 °.
  • Contact angle refers to the angle between the liquid surface and the solid surface where the free surface of the stationary liquid contacts the solid wall.
  • the contact angle is used as an index indicating wettability and can be measured by various methods.
  • a ⁇ / 2 method, a tangent method, a curve fitting method and the like can be mentioned. Methods for measuring these contact angles are well known.
  • the form of the culture vessel used in the present invention is not particularly limited, and may be any form such as a flask, a multiwell plate, and a petri dish (dish).
  • the material of the culture vessel used in the present invention is not limited, and is made of, for example, polystyrene or glass.
  • Various coatings are applied to ordinary culture vessels in order to impart cell adhesion and the like, but the culture vessels used in the present invention do not require such coatings.
  • a culture vessel in which the bottom surface (culture surface) is not coated with a fluorine-containing polymer is used.
  • it is sufficient that the culture surface has a surface roughness (line roughness) such that the contact angle satisfies the above range.
  • the surface roughness can be a roughness represented by JIS standards such as JIS B 0601 and JIS B 0651 as parameters, and the arithmetic average roughness (Ra), the maximum height (Rz), There is a root mean square surface roughness (Rms), but is not limited thereto.
  • these parameters can be used alone or in an appropriate combination.
  • Rms on the culture surface of the culture vessel used in the present invention is 2.400 nm to 2.500 nm.
  • stem cells are cultured using the culture plate.
  • the method for obtaining stem cells is not particularly limited, and can be collected from any tissue.
  • it can be collected from adipose tissue, bone marrow, skin, oral mucosa, salivary gland, periodontal ligament, dental pulp, cartilage, umbilical cord, placenta, and the like.
  • stem cells include somatic stem cells, embryonic stem cells, mesenchymal stem cells, cancer stem cells or tumor-derived cells, and the like.
  • the stem cells used in the present invention may be derived from any animal species including human.
  • the stem cells are cultured in animal cell culture medium containing fetal bovine serum (eg, MEM medium, DMEM medium, RPMI-1640 medium, etc.) under conditions used for normal animal cell culture, for example, at 37 ° C., 5% CO 2 , and 95% air. Cultivate underneath to form spheroids.
  • fetal bovine serum eg, MEM medium, DMEM medium, RPMI-1640 medium, etc.
  • the cells start to aggregate before they become confluent and spontaneously form clumps. Thereafter, the formed spheroids may be collected.
  • the spheroid thus produced is referred to herein as “spontaneous spheroid”.
  • the spheroid of the present invention does not involve cells other than stem cells when forming spheroids. That is, the spheroids of the present invention are characterized by being substantially constituted only by stem cells and containing almost no cells having no spheroid-forming ability.
  • the proportion of stem cells in spheroids obtained by the method of the present invention is, for example, 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5 or more. % Or 99.9% or more.
  • Spheroids produced by the conventional hanging drop method and the like are, in addition to stem cells, a mixture containing differentiated cells, etc., the spheroids of the present invention have a high purity of the cells constituting them and have high functions as stem cells. Become.
  • a gene or gene product that is uniquely expressed in spheroids can be used as a marker.
  • SSEA1 also known as Fut4
  • SOX2, OCT4, Nanog, Nestin, etc. are used alone or in an appropriate combination.
  • the spheroid of the present invention has, for example, the following properties.
  • the ability to differentiate into tissues is higher than spheroids formed without using the method of the present invention. It expresses stem cell markers such as Sox2, SSEA1, Oct4, Nanog and Nestin. It has the ability to differentiate into nerve and Schwann cells after inducing differentiation into neural cells. It has the ability to differentiate into dopamine-producing cells after induction of neural differentiation.
  • the spontaneous spheroids of the present invention have an excellent ability to differentiate into tissues. Accordingly, the present invention provides a regenerative medicine material or composition comprising spontaneous spheroids.
  • the tissue to be subjected to regenerative medicine is not particularly limited, and may be any tissue, such as nerves and bones.
  • the spheroid can be transplanted to a site where the spheroid is needed (for example, a central nerve such as brain or spinal cord, or a peripheral nerve).
  • the cells can be cultured in the presence of a nerve growth factor, a neurotrophic factor, or the like, and differentiated into nerves for use.
  • the spheroid is required to be used in a site that requires it (for example, atrophy of alveolar bone, tumor, removal of cyst, defective site after resection, intractable disease).
  • the cells can be cultured in the presence of a bone differentiation inducing factor (dexamethasone, ⁇ -glycerophosphate, ascorbic acid, BMP, etc.) and differentiated into osteoblasts before use.
  • a bone differentiation inducing factor diexamethasone, ⁇ -glycerophosphate, ascorbic acid, BMP, etc.
  • Other tissues other than nerves and bones can be treated in the same manner as described above.
  • Kit The present invention provides a regenerative medicine kit containing the spontaneous spheroid.
  • the amount of the spontaneous spheroids per unit kit may be arbitrary and can be appropriately prepared.
  • the target of regenerative medicine is the same as described above.
  • the kit of the present invention can include a culture container, a differentiation factor, a buffer, a culture solution, instructions for use, and the like.
  • Dish1 adhesion-dependent cell culture dishes
  • Dish2 suspension culture dishes
  • Dish3 Low attachment surface cell culture plate
  • the contact angle of a 1 ⁇ l ultrapure water droplet on the culture surface was determined as hydrophilicity (the surface wettability of the culture plate) by a surface contact angle measurement device (portable contact angle meter PCA-1, Kyowa Interface Science Co., Ltd.). It was measured. Since the hydrophobicity mainly depends on the surface roughness, the surface roughness was examined with a scanning probe microscope (SPM) (SPM-9500J3, Shimadzu) having a diameter of 2.5 ⁇ 2.5 ⁇ m.
  • SPM scanning probe microscope
  • mice Female, 3 weeks old mice were purchased from Japan SLC, Inc. (Hamamatsu, Japan) and maintained at a laboratory animal facility at Matsumoto Dental University High Tech Center. The mice were maintained under controlled temperature (25 ⁇ 2 ° C.) and lighting (12 hour light / dark cycle). After the animals had been acclimated in the new environment for about one week, they were used in the following experiments.
  • SDC Skin-derived cells
  • OMDC oral mucosa-derived cells
  • Mice were killed by overdose of anesthesia and hair was removed with a hair clipper. After sterilization with 70% alcohol, dorsal skin and buccal and palatal mucosa were collected. Primary cultures were obtained using conventional explant culture techniques. Briefly, tissue sections were washed twice with phosphate buffered saline (PBS, Cat No: 166-23555, Wako, Osaka, Japan) and cut into fragments approximately 4 mm in size. The tissues were dispensed onto the well surface in a 6-well tissue culture plate (Falcon, Product No. 353046) and placed in a humidified incubator at 37 ° C., 5% CO 2 .
  • PBS phosphate buffered saline
  • tissue adhered to the plate After the tissue adhered to the plate, it was supplemented with 10% fetal bovine serum (FBS, BioWest, Nuail, France) and 1% penicillin-streptomycin-amphotericin B (Biological Industries USA, Inc., Cromwell, CT, USA).
  • FBS fetal bovine serum
  • penicillin-streptomycin-amphotericin B Biological Industries USA, Inc., Cromwell, CT, USA.
  • ⁇ MEM Wi-, Osaka, Japan
  • the medium was changed every three days. On the 10th day from the start of the culture, the cells were dissociated with 0.25% Trypsin-EDTA (Life Technologies Japan Ltd., Cat No: 2520056, Tokyo, Japan) at 37 ° C for 2 to 3 minutes.
  • the dissociated cells were filtered with a 40 ⁇ m cell strainer (Corning, Inc., NY, USA), washed twice with ⁇ MEM containing 10% FBS, and centrifuged at 300 g for 5 minutes at 4 ° C. Finally, 2 ⁇ 10 5 cells were plated in 60 mm diameter cell culture dishes (Falcon, product number 353002) containing ⁇ MEM supplemented with 10% FBS, 1% penicillin-streptomycin-amphotericin B, and 5% CO 2. 2. Cultured in a humidified incubator with 95% air. The medium was changed every two days. When the cells reached 80-90% confluence, the cells were detached. Cells at passages 2-3 were used in this example.
  • CBDC Compact bone-derived cells
  • the cell pellet was collected and gently resuspended in ⁇ MEM supplemented with 10% FBS, 1% penicillin-streptomycin-amphotericin B, and 10 ng / ml bFGF (PeproTech, Rocky Hill, USA).
  • the cell suspension was seeded on a 35 mm cell culture dish (Falcon, # 353001) and cultured at 37 ° C. in a 5% CO 2 , 95% humidified incubator. The medium was changed every three days. On day 7, the cells were subcultured at a density of 2.5 ⁇ 10 5 cells / cm 2 in a new culture dish. Cells from the third passage were used for subsequent experiments.
  • NIH 3T3 cells NIH3T3 (cell number JCRB0615; Health Science Research Resources Bank, Osaka, Japan) cells were cultured in ⁇ MEM supplemented with 10% FBS and 1% penicillin-streptomycin-amphotericin B. Cultures were maintained at 37 ° C. in a water-saturated atmosphere of 95% air and 5% CO 2. Cells were routinely passaged every 3-4 days, and cells at passages 8-10 were used for experiments.
  • Spheroid-forming ability test The above SDC, OMDC, CBDC and NIH3T3 were seeded on the three different plates, and ⁇ MEM supplemented with the same concentration of 10% FBS, 1% penicillin-streptomycin-amphotericin B (1. 5 ⁇ 10 4 cells / cm 2 ). According to other research reports (21, 22), when a cell aggregate having a diameter of 50 ⁇ m or more was formed, it was regarded as a spheroid in this example. After 3 days of culture, fresh medium was added (however, aspiration of the medium was avoided). Spheroid formation was observed and counted on days 1, 3, 5, and 7 in each plate. Primary spheroids formed between 3-5 days were used for gene and protein expression studies.
  • AP activity was tested on day 3 after plating on culture plates. Cells were fixed with 4% paraformaldehyde phosphate buffer (Wako, 163-12014) at 4 ° C for 15 minutes. Fixed cells were washed twice in distilled water and stained with Blue-Color AP Staining Kit (SBI, https://www.systembio.com/, CA, USA) according to the manufacturer's instructions. The stained image was taken with an Olympus IX70 inverted microscope (Olympus, Toyo, Japan).
  • the cells were fixed with 4% paraformaldehyde phosphate buffer (Wako, 163-12014) for 15 minutes at room temperature, washed four times with PBS (-), 30% at room temperature with 0.5% Triton X-100, 5% bovine serum albumin (BSA, Nacalai Tesque, Inc., Kyoto, Japan) and 5% normal goat serum (abcam, ab7481, Cambridge, UK) in PBS. Permeabilized for 5 minutes and blocked. The cells were then incubated overnight at 4 ° C. with the primary antibody in PBS containing 1% BSA. After washing three times with PBS, cells were incubated with the appropriate species-specific secondary antibody containing a fluorescent dye for 2 hours at room temperature. The cells were washed three times with PBS and then counterstained with DAPI (fluoroshield mounting medium containing ab104139, DAPI, Abcam, Cambridge, UK) for 30 minutes.
  • DAPI fluoroshield mounting medium containing ab104139, DAPI, Abcam
  • the secondary antibodies are as follows: Goat anti-mouse IgG H & L (Alexa Fluor 488) (ab150113, Abcam, Cambridge, UK), Anti-mouse IgM (Alexa Fluor 488) (ab150121, Abcam, Cambridge, UK), and anti-rabbit IgG H & L (Alexa Fluor 647) (ab150079, Abcam, Cambridge, UK).
  • Quantitative real-time PCR Twelve hours, one, three, and five days after cell seeding, total RNA was extracted from cells with TRIzol reagent (Invitrogen Corporation, Carlsbad, CA, USA) and PrimeScript TM RT Master Mix (Perfect Real Time) according to the manufacturer's protocol. (TaKaRa, Cat # RR036A) to synthesize cDNA.
  • qRT-PCR was performed three times using SYBR (registered trademark) Premix Ex TaqTM II (TaKaRa, RR820A) using a Thermal Cycler Dice Real Time System fluorimeter (TaKaRa TP900).
  • RT-PCR has a volume of 25 ⁇ l and contains 2 ⁇ l (2 ⁇ g) cDNA, 12.5 ⁇ L SYBR Premix Ex Taq II (TaKaRa, RR820A), 1 ⁇ l each of specific forward and reverse primers, and 8.5 ⁇ l sterile water.
  • qRT-PCR consists of 40 cycles of 95 ° C. for 30 seconds, followed by 95 ° C. for 5 seconds, 60 ° C. for 30 seconds, followed by a final cycle of 95 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 95 ° C. for 15 seconds. Separation was performed. Data was analyzed by 2- ⁇ Ct ratio quantification. Data were normalized to ⁇ -actin levels and compared to normalized control values.
  • the expected amplicon primers are as follows: SSEA1 (also known as Fut4)
  • the water contact angle of each culture plate was relatively stable between the same lot from the same manufacturer and there was a significant difference between the three culture plates (FIG. 1B).
  • the surface roughness of the dish was evaluated using SPM.
  • the images showed differences in surface roughness and correlated with the observed water contact angle.
  • Dish 1 with the smallest water contact angle showed the highest roughness
  • Dish 3 with the largest water contact angle showed the lowest surface roughness
  • Dish 2 with the middle water contact angle showed a medium surface roughness.
  • Table 1 shows the measurement results of the surface roughness.
  • FIG. 5 shows an AP-stained image of spheroids and cells when oral mucosa-derived cells were cultured for spheroid formation and planar monolayer culture.
  • spheroid-forming cells Surrounding the spheroid-forming cells are spindle-shaped fibroblasts, which also proliferate but do not form spheroids.
  • immunofluorescence of ES cell markers SSEA-1 and Sox2 was performed from an early stage after seeding the cells on Dish # 3 (FIGS. 3A to 3C). These spheroid-forming cells were positive for both SSEA1 and Sox2, and non-spheroid-forming cells were generally negative for these ES cell markers.
  • FIG. 4 Time course images showed that the presence of at least two populations was observed in the cultures on this culture plate (FIG. 4).
  • One type of cell is spindle-shaped and looks like fibroblasts or typical mesenchymal stromal (stem) cells. This type of cell has a relatively high ability to adhere and can remain attached to the dish. The other type of cells appears oval or rectangular in shape, migrates rapidly, and begins to form cell aggregates. When cells of this type contacted cells of the same type, they began to attach, forming larger cell aggregates, proliferating, and forming spheroids. Once the spheroids reached a certain size, they began to spontaneously detach from the dish.
  • Enzymatic separation of cells is not easy and many stem cells may not dissociate completely. Also, the method of producing SKP is too harsh due to the high adhesion of the plate, so that even stem cells cannot float and attach to the dish and lose their spheroid properties.
  • the ratio of non-dividing cells will decrease over time, and that most of the spheroid-forming cells will be occupied by stem cells or stem cell-derived cells.
  • the main advantage of spontaneous spheroid formation may be the purity of the stem cells and the rapid selection of the stem cells.
  • qRT-PCR results showed significantly higher stem cell marker expression from the very beginning (even after 12 hours) (FIGS. 2B-E).
  • stem cell aggregation to form spheroids can affect stem cell properties and enhance or alter the expression of stem cell markers, which can be tested under different and more specific study designs.
  • Another important question is the need for a serum-free environment and their growth factors. As far as the inventor can confirm, the method of this example does not exclude the possibility that these factors for maintaining stem cells or spheroids may play a role, however, these growth factors and additives do not affect spheroid formation. Is not necessary. The next issue is the universality of this phenomenon. Therefore, we tested the feasibility of this phenomenon using three other different cell types. Interestingly, not only cells derived from skin (FIGS. 3A to 3C) but also cells derived from oral mucosa (FIG. 3D), cells derived from cortical bone (FIG. 3E), and NIH-3T3 (FIG. 3F) were observed.
  • Spheroids could be formed with stem cells in a similar manner, although some differences were noted in the efficiency and shape of spheroid formation. This supports that the method of the present invention is very universal. In conclusion, the novel method of the present invention is easy and reproducible for spheroid formation and is less expensive. Therefore, the method of the present invention contributes to understanding the mechanism of the nature of somatic stem cells from various tissues, and can also be applied to various clinical treatments.
  • FIG. Klein A .; , Di Halvorsen Y .; Storms R .; W. Goh B .; , Killoy G .; , Wu X. , And Gimble J .; M. Immunophenotype of human adipose-derived cells: temporal changes in strom-associated and stem cell-associated markers. Stem Cells 24, 376, 2006 [PubMed] 9. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. Revision of the marriage phenotype of human breast cells in the three-dimensional culture and in vivo by integrating blocking antibodies. The Journal of cell biology. 1997; 137 (1): 231-245.
  • Example 2 SUMMARY The present inventors have developed a new method for spontaneous spheroid formation using specific low-adhesion culture plates with a water contact angle of about 90 degrees. Although the method of the present invention can be applied to various cells, this example describes application to oral mucosa-derived cells and skin-derived cells. First, the feasibility of spontaneous spheroid formation was tested. Next, the properties of spheroids from oral mucosa and skin-derived cells were compared, with a particular focus on stemness and neurogenic potential.
  • Oral mucosal cells were obtained from the palate and buccal mucosa of C57BL / 6J mice. Similarly, skin cells were obtained from the back of the same strain of mice. Cells from passage 2 to 3 were seeded on specific low-adhesion culture plates to form spontaneous spheroids. The effects of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27 on spheroid formation and maintenance were evaluated. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to examine the expression of pluripotency markers, cell proliferation and apoptosis markers, and neural differentiation markers.
  • bFGF basic fibroblast growth factor
  • EGF epidermal growth factor
  • qRT-PCR quantitative reverse transcription polymerase chain reaction
  • spheroid-forming cells were capable of differentiating into neural and Schwann cells after induction of differentiation to nervous system cells, whereas MAP2, MBP, nestin and Nurr1 gene expression was derived from oral mucosal-derived spheroids. Significantly higher in cells.
  • Nurr1 is a marker for dopamine-producing cells, and it is known that dopamine-producing cells are reduced in Parkinson's disease.
  • the high expression of the Nurr1 gene means that the spheroids of the present invention differentiate into dopamine-producing cells. Therefore, the spheroid of the present invention is useful as a therapeutic agent for Parkinson's disease.
  • Spontaneous spheroids obtained by the method of the present invention have excellent neuronal differentiation ability and have been shown to be useful for treating neurological diseases.
  • spontaneous spheroids prepared from oral mucosal cells were shown to be excellent neural stem cells.
  • neural stem cells can be prepared.
  • additional factors such as bFGF and EGF are important for improving the formation efficiency and maintaining the spheroid. Therefore, in the present invention, it is also possible to use these additional factors.
  • Spheroid formation has been used for the selective culture of stem cells from various tissues, including neurons, skin, salivary glands, bone marrow stroma, periodontal ligaments, and pulp tissue [1-5].
  • Various methods are used to form spheroids.
  • the hanging drop method utilizes droplets of a cell suspension, and the cells begin to aggregate by gravity at the bottom of the droplet, eventually forming spheroids [6].
  • Media rotation has also been used [7,8]. Because these methods rely on physical forces and the adhesion between cells is achieved by forced contact of cells, we call them “mechanical spheroid formation” methods, and the process of spheroid formation is It is not selective for stem cells [9].
  • oral mucosa is considered to be very unique.
  • Cell lineage studies have shown that even adult tissues contain neural crest-like stem cells [12,13].
  • Oral mucosa and dermal fibroblasts have similar morphology and function, but there are some essential differences.
  • wound healing in the oral mucosa is faster and produces less scarring compared to wound healing in the skin [14, 15].
  • These features of the oral mucosa can be attributed to the presence of highly potent neural crest-derived cells [16]. Therefore, some researchers consider oral mucosa to be a preferred source for somatic stem cells [17].
  • stem cell populations in the lamina intestinal of the lips and oral mucosa exhibit neural crest-like characteristics, leading to osteoblasts, chondroblasts, adipocytes, and neural lineages. It has been reported that it has a very broad differentiation potential, including that of [18-21]. However, to the inventors' knowledge, there is no direct comparison of stem cells from skin and oral mucosa.
  • CBDC cortical bone-derived cells
  • Spheroid Formation The method used for spheroid formation has been described in our previous publication [9]. Briefly, monolayer cultured cells are trypsinized and the cells are 55 mm dishes (1.5 ⁇ 10 4 cells / cm 2 ) (Azunol®, # 1-8549-02, AS ONE, Osaka, Japan). And spheroids were produced in a basal culture medium. The medium was changed every three days. In order to evaluate the spheroid formation efficiency of oral mucosa and skin-derived cells, 1 to 5 with 4 parallel phase contrast microscope fields / dish (x4 objective lens (Olympus IX70 inverted microscope, Olympus Optical CO, Ltd, Tokyo, Japan)).
  • Neural Differentiation Spheroids from oral mucosal, skin and CBDC derived cells were transferred to new regular culture dishes. After these cultures reached 50% to 60% confluence, the medium was replaced with a neural differentiation induction medium.
  • the medium used for neuronal differentiation was L-glutamine, phenol red (Wako), 50 ng / ml nerve growth factor, 50 ng / ml brain-derived neurotrophic factor, 10 ng / ml NT-3 (all Peprotech), 10% FBS, ⁇ MEM supplemented with 100 U / ml penicillin, 100 ⁇ g / ml streptomycin, and 0.25 ⁇ g / ml amphotericin B (Biological Industries).
  • the medium used for Schwann cell differentiation was L-glutamine, phenol red (Wako), 5 ⁇ M forskolin forskolin (Sigma), 50 ng / ml heregulin-1 ⁇ (Peprotech), 2% v / v N2 supplement (Invitrogen), ⁇ MEM supplemented with 10% FBS, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin, and 0.25 ⁇ g / ml amphotericin B (Biological Industries). Cells were differentiated for one or two weeks and 50% of the medium was changed every two days.
  • Immunofluorescent staining was performed as previously reported [9]. Primary antibodies targeting the following proteins were used: SSEA1 (1:40, ab16285, Abcam), Sox2 (1: 250, 97959, Abcam), Oct4 (1: 250, ab19857, Abcam), Nanog (1: 100, ab80892, Abcam), ⁇ III-tubulin (1: 250, ab87087, Abcam), nestin (1: 200, ab6142, Abcam), NEUN (1: 100, ab177487, Abcam), MAP2 (1:50, ab32454). , Abcam), and S100 ⁇ (1: 100, ab52642, Abcam).
  • the secondary antibodies used were as follows: goat anti-mouse IgM @ Alex @ Fluor @ 488 (1: 200, ab150121, Abcam), goat anti-mouse IgG @ Alex @ Fluor @ 488 (1: 500, ab150113, Abcam), and goat anti-mouse Rabbit IgG Alex Fluor 647 (1: 200-1: 500, ab150079, Abcam), and nuclei were counterstained with 4 ', 6-diamidino-2-phenylindole (DAPI, ab104139, Abcam) for 30 minutes at room temperature. .
  • DAPI 6-diamidino-2-phenylindole
  • the spheroid diameter and number were then measured in the presence of one or several of the additives. Compared to spheroids without additives, spheroid size was significantly larger in media containing bFGF, EGF and B27 supplement (p ⁇ 0.001) (FIG. 7D). The closest results were obtained when spheroids were cultured with bFGF and B27 supplement. In addition, the number of spheroids was larger in the group in which three kinds of additives were added and cultured for 24 to 120 hours (p ⁇ 0.001) than in the group in which no additives were added (FIG. 7E). Similar results were obtained with the group treated with the bFGF and B27 supplements, the number being higher at all time points than the group without additives.
  • Ki67 expression was higher in spheroids cultured with additives than in spheroids without additives (FIG. 8B).
  • the expression of caspase 7 was significantly higher in spheroids cultured without additives than in spheroids with additives (FIG. 8B).
  • caspase 7 expression was compared between spheroids of oral mucosa-derived cells and spheroids of skin-derived cells, the expression was significantly higher in spheroids of oral mucosa-derived cells regardless of the presence of additives (FIG. 8C). ).
  • stem cell marker expression was compared between oral mucosa-derived cell spheroids and skin-derived cell spheroids.
  • the expression of Sox2 was higher in spheroids of cells derived from oral mucosa than in spheroids of cells derived from skin, and the tendency was not affected by the presence of additives (FIGS. 10A and B).
  • Nestin expression was higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells without additives (FIG. 10A). However, this difference was not observed when spheroids were cultured with the additives (FIG. 10B).
  • MAP2 MAP2, MBP, nestin and Nurr1 mRNA expression in oral mucosal spheroid-derived cells was significantly higher than skin spheroid-derived cells.
  • NF-M expression levels did not change between spheroid-derived cells of both origins.
  • GFAP expression in oral mucosal spheroid-derived cells was higher than in skin spheroid-derived cells, but the difference was not significant due to large variability.
  • spheroids of oral mucosa-derived cells Although relatively high expression of several neuronal differentiation markers was observed in spheroids of oral mucosa-derived cells, it was not clear whether their levels were comparable to levels in other somatic stem cells such as mesenchymal stem cells. Did not. Therefore, the present inventors next discovered that spheroids derived from oral mucosa and CBDC-derived spheroids, which are known as an excellent source of mesenchymal stem cells in mice and can differentiate into neurogenic cell lineages, Among them, the expression levels of MAP2, MBP and nestin were compared [22-24].
  • DISCUSSION Characteristics of spontaneous spheroids of cells derived from oral mucosa During mechanical formation of spheroids, ideally almost all cells in culture are involved in spheroid formation. Therefore, the process is not selective [22].
  • spontaneous spheroid formation occurs under static conditions. It starts only with cells that can survive without attachment, and the cells have the ability to proliferate and form spheroids.
  • spontaneous spheroid formation is selective, but not as efficient as mechanical spheroid formation.
  • skin-derived precursors (SKPs) that are well known to form spheroids spontaneously can be obtained from embryonic tissue and difficult to obtain from adult tissue [23].
  • the present inventor's method for spontaneous spheroid formation can overcome this limitation because spheroid formation is possible even with cells cultured for 4 to 5 passages (FIG. 12). It is also important to ask whether spheroids formed using the method of the invention are identical to spontaneously formed spheroids, such as SKP spheroids. Spheroids spontaneously formed from cells derived from oral mucosa are positive for Sox2, SSEA1, Oct4, Nanog and Nestin, and are capable of neurogenic differentiation, which is a previously reported spontaneous spheroid. [2, 12].
  • additives for spontaneous spheroid formation and maintenance
  • the number of spheroids at 24 hours was about twice as high as without additives, which is It shows some roles. Additives promote spheroid formation, but are not required, since spontaneous spheroid formation was feasible without additives.
  • spheroid size and number decreased with time. This tendency was more apparent in spheroids of cells derived from oral mucosa than in spheroids of cells derived from skin. Therefore, it is also possible to add these additives in spontaneous spheroid formation.
  • MAP2, MBP and nestin expression levels were significantly higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells. Furthermore, higher expression of the dopaminergic neuronal marker Nurr1 in spheroids of cells derived from oral mucosa was observed.
  • these findings suggest the benefits of using these oral mucosal cells for the treatment of neurodegenerative diseases such as Parkinson's disease. More importantly, the expression of MAP2, MBP and nestin was much higher in spheroids of cells from oral mucosa than spheroids from mesenchymal stem cells from CBDC. This can be attributed to the presence of neural crest-derived stem / progenitor cells in oral mucosa-derived spheroids, and can further emphasize the unique advantages of this cell source for application to neurodegenerative diseases.
  • Example 3 Method The culture method of CBDCs and the method of spontaneously forming spheroids were performed according to Examples 1 and 2. Induction of bone differentiation of CBCSc Twenty-four hours after spheroid formation, the cells were passaged to another adherent culture dish. The medium was replaced with an osteogenesis induction medium at 50-60% confluence. This medium contains 100 nM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 50 ⁇ M L-ascorbic acid (Wako Pure Chemical Industries, Ltd.) and 10 mM ⁇ -glycerophosphate (Sigma-Aldrich). . The medium was changed every two days.
  • ALP activity was measured on the 7th day of bone differentiation induction to confirm bone differentiation. Cells that did not induce differentiation were used as controls. cell counting kit-8 (CCK- 8) (Dojindo Laboratories, Kumamoto, Japan) and p- nitrophenol (SIGMA Fast TM p-Nitrophenyl Phosphate Tablet;. Sigma-Aldrich Co.LLC) were used according to suppliers of description. Absorbance was measured at 450 nm for formazan and 405 nm for p-nitrophenol using an iMark TM Microplate Absorbance Reader (BIO-RAD Laboratories, Hercules, CA, USA).
  • FIG. 2 A histological image 4 weeks after transplantation of CBDC cells is shown in FIG. From the histological image, formation of bone tissue was observed (pink portion), and the ability of the spontaneous spheroid of the present invention to regenerate bone was confirmed.
  • SEQ ID NOS: 1 to 40 Synthetic DNA

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A method for forming spheroids characterized by comprising culturing stem cells with the use of a culture container, the surface of which is processed or treated so as to inhibit cell adhesion, to thereby form spheroids.

Description

親水性の違いを利用したスフェロイドの製造方法Method for producing spheroids utilizing difference in hydrophilicity
 本発明は、親水性の違いを利用したスフェロイドの製造方法に関する。 The present invention relates to a method for producing spheroids utilizing a difference in hydrophilicity.
 近年、幹細胞に基づく細胞医療(細胞治療)及び再生医療は、様々な医療及び歯科分野で広く使用されているため、ますます魅力的になっている(1~5)。しかし、体性幹細胞に関する我々の理解は依然として限られている。体性幹細胞を理解することが困難である1つの理由は、in vivo環境とin vitro環境との間で特徴的な変化を有するからである。従来、in vivoでは体性幹細胞の維持を支持するが、細胞抽出及び培養環境(in vitro)では失われるニッチの存在が信じられてきた。大部分の細胞培養は培養プレート上で二次元培養を利用するが、これは幹細胞と環境との間の複雑な相互作用を模倣することができないだけでなく(6)、幹細胞の天然の表現型も変化させてしまう(7~9)。 、 In recent years, stem cell-based cell therapy (cell therapy) and regenerative medicine have become increasingly attractive because they are widely used in various medical and dental fields (1-5). However, our understanding of somatic stem cells is still limited. One reason that somatic stem cells are difficult to understand is that they have characteristic changes between the in vivo and in vitro environments. Traditionally, it has been believed that niches exist that support the maintenance of somatic stem cells in vivo, but are lost in the cell extraction and culture environment (in vitro). Most cell cultures utilize two-dimensional cultures on culture plates, which not only cannot mimic the complex interactions between stem cells and the environment (6), but also the natural phenotype of stem cells. Is also changed (7-9).
 スフェロイド培養は三次元(3D)培養法の1つであり、1940年代に早くも知られていた(10)。従来の二次元(2D)培養と比較して、スフェロイド培養はin vivoでより密接に増殖すると考えられる(10、11)。より最近では、神経幹細胞のための新規な選択的培養方法として、スフェロイド培養が非常に注目を集めている(12)。その後、この培養技術は、皮膚(13)、唾液腺(14)、及び間葉幹細胞(15)を含む多くの他のタイプの体細胞幹細胞の選択的培養に有効であることが証明されている。研究の大部分はスフェロイド培養が強力な体性幹細胞の選択的培養であり、それが幹細胞の治療能力を高めることができることを示した(11)。 Spheroid culture is one of three-dimensional (3D) culture methods, and was known as early as the 1940s (10). Compared to conventional two-dimensional (2D) cultures, spheroid cultures are expected to grow more closely in vivo (10, 11). More recently, spheroid culture has received much attention as a novel selective culture method for neural stem cells (12). This culture technique has since proven to be effective in the selective culture of many other types of somatic stem cells, including skin (13), salivary glands (14), and mesenchymal stem cells (15). Most of the studies have shown that spheroid cultures are a potent selective culture of somatic stem cells, which can enhance the therapeutic potential of stem cells (11).
 スフェロイドは広く使用されているにもかかわらず、スフェロイドを生成する方法についてのコンセンサスはない。さらに、スフェロイド形成に影響を及ぼす基本的なメカニズムも、十分に理解されていない。
 大まかには、体性幹細胞のスフェロイドを生成するための3つの主要な方法が存在する。
 最も伝統的な手法は、塩基性線維芽細胞成長因子(bFGF)、上皮成長因子(EGF)及びB27(16)などのいくつかの重要な因子と共に、無血清環境下で組織から解離した単細胞を培養する方法である。この方法は、ディッシュに付着することなく生存することができ、また増殖して細胞凝集体を形成することができる細胞を選択する方法である。このアプローチは幹細胞集団を選択するのに合理的であると思われるが、細胞のほとんどがディッシュに付着するか、又はディッシュに付着することなく増殖しないので、通常、効率が非常に低かった。
Although spheroids are widely used, there is no consensus on how to make spheroids. In addition, the basic mechanisms that affect spheroid formation are not well understood.
Broadly, there are three main methods for producing somatic stem cell spheroids.
The most traditional approach is to combine single cells dissociated from tissue in a serum-free environment with several key factors such as basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27 (16). This is a method of culturing. This method is for selecting cells that can survive without adhering to the dish and that can proliferate and form cell aggregates. Although this approach seems reasonable for selecting stem cell populations, it has usually been very inefficient since most of the cells attach to the dish or do not grow without attaching to the dish.
 第2の方法は、動的細胞培養法に基づくものであり、細胞を回転フラスコ中で培養するか、又は培地を撹拌して、機械的方法を用いてフラスコへの細胞付着を回避するというものである(17)。また、第3の方法は、非接着性逆円錐形培養ウェル、又はゲルコートディッシュを使用して、重力を利用するハンギングドロップ培養などにおいてスフェロイドを形成する培養法である(18)。自発的に形成されたスフェロイドを選択的に培養する第1の方法と比較して、第2及び第3の培養方法は、理論的には選択なしに単に細胞凝集体を形成する。従って、これら2つの異なるタイプのスフェロイドは、自発的に形成されたスフェロイド及び機械的に形成されたスフェロイドとして定義する。
 ところで、スフェロイド形成に関する発明について、例えば、細胞培養面のアルブミン吸着量や静的水接触角が所定量又は範囲内の接着性細胞培養用基材などが知られている(特開2017−077240号公報(特許文献1)及び特開2017−077241号公報(特許文献2)等)。
 しかしながら、上記基材は表面コーティングが行われており、当該基材を用いてスフェロイドが形成されるか否かは不明である。
The second method is based on a dynamic cell culture method, in which cells are cultured in a rotating flask or the medium is agitated to avoid cell attachment to the flask using a mechanical method. (17). The third method is a culture method in which spheroids are formed in a hanging drop culture using gravity using a non-adhesive inverted conical culture well or a gel coat dish (18). Compared to the first method of selectively culturing spontaneously formed spheroids, the second and third culturing methods theoretically simply form cell aggregates without selection. Thus, these two different types of spheroids are defined as spontaneously formed spheroids and mechanically formed spheroids.
By the way, with respect to the invention relating to spheroid formation, for example, a substrate for adhesive cell culture having an albumin adsorption amount on a cell culture surface or a static water contact angle within a predetermined amount or within a range is known (JP-A-2017-077240). Japanese Unexamined Patent Application Publication No. 2007-077241 (Patent Document 2) and the like.
However, the base material has been subjected to surface coating, and it is unknown whether spheroids are formed using the base material.
特開2017−077240号公報JP 2017-077240 A 特開2017−077241号公報JP 2017-077241 A
 本発明は、高性能な幹細胞のスフェロイド形成方法を提供することを目的とする。 An object of the present invention is to provide a high-performance method for forming spheroids of stem cells.
 本発明者は、上記課題を解決するために鋭意検討を行った結果、培養プレートの疎水性を一定に保つことにより、効率的かつ自発的にスフェロイド形成が起こることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, found that spheroid formation occurs efficiently and spontaneously by keeping the hydrophobicity of the culture plate constant, thereby completing the present invention. Reached.
 すなわち、本発明は以下の通りである。
(1)細胞の接着が阻害されるように表面が加工又は処理された培養容器を用いて幹細胞を培養することによりスフェロイドを形成させることを特徴とする、スフェロイドの形成方法。
(2)細胞の接着が阻害されるように表面が加工又は処理された培養容器が、疎水性を有するものである、(1)に記載の方法。
(3)疎水性を有する培養容器が、接触角が85°~95°の範囲となる条件を満たすように培養底面の粗さを有するものである、(2)に記載の方法。
(4)接触角が89°~91°である、(3)に記載の方法。
(5)細胞の接着が阻害されるように表面が加工又は処理された培養容器が、ポリスチレン製又はガラス製であり、かつ底面がフッ素含有ポリマーによるコーティングがされていない、(1)~(4)のいずれか1項に記載の方法。
(6)細胞の接着が阻害されるように表面が加工又は処理された培養容器が、2.400nm~2.500nmの二乗平均表面粗さを有するものである、(1)~(5)のいずれか1項に記載の方法。
(7)幹細胞が体性幹細胞、胚性幹細胞、間葉系幹細胞、又は癌幹細胞若しくは腫瘍由来細胞である(1)~(6)のいずれか1項に記載の方法。
(8) (1)~(7)のいずれか1項に記載の方法により形成されたスフェロイドを回収することを特徴とする、スフェロイドの製造方法。
(9)接触角が85°~95°の範囲となる条件を満たすように培養底面の粗さを有する培養容器。
(10)接触角が89°~91°である(9)に記載の培養容器。
(11)ポリスチレン製又はガラス製であり、かつ底面がフッ素含有ポリマーによるコーティングがされていない、(9)又は(10)に記載の培養容器。
(12)2.400nm~2.500nmの二乗平均表面粗さを有する、(9)~(11)のいずれか1項に記載の培養容器。
(13) (8)に記載の方法により製造されたスフェロイド。
(14)組織への分化能が(1)~(7)のいずれか1項に記載の方法を用いないで形成されたスフェロイドよりも高い、(13)に記載のスフェロイド。
(15)組織が神経又は骨である(14)に記載のスフェロイド。
(16) (13)~(15)のいずれか1項に記載のスフェロイドを含む、再生医療用材料。
(17)再生医療が、神経疾患又は骨疾患治の再生医療である(15)に記載の材料。
(18) (13)~(15)のいずれか1項に記載のスフェロイドを含む、再生医療用キット。
(19)再生医療が、神経疾患又は骨疾患治の再生医療である(18)に記載のキット。
That is, the present invention is as follows.
(1) A method for forming spheroids, wherein spheroids are formed by culturing stem cells using a culture vessel having a surface processed or treated so that cell adhesion is inhibited.
(2) The method according to (1), wherein the culture vessel whose surface is processed or treated so as to inhibit cell adhesion has hydrophobicity.
(3) The method according to (2), wherein the culture vessel having hydrophobicity has a roughness of a culture bottom so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
(4) The method according to (3), wherein the contact angle is from 89 ° to 91 °.
(5) The culture vessel whose surface is processed or treated so as to inhibit cell adhesion is made of polystyrene or glass, and the bottom surface is not coated with a fluorine-containing polymer. (1) to (4) The method according to any one of claims 1 to 4.
(6) The culture vessel whose surface has been processed or treated so as to inhibit cell adhesion has a root-mean-square surface roughness of 2.400 nm to 2.500 nm, (1) to (5). A method according to any one of the preceding claims.
(7) The method according to any one of (1) to (6), wherein the stem cells are somatic stem cells, embryonic stem cells, mesenchymal stem cells, or cancer stem cells or tumor-derived cells.
(8) A method for producing spheroids, comprising recovering spheroids formed by the method according to any one of (1) to (7).
(9) A culture vessel having a bottom surface of a culture so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
(10) The culture container according to (9), wherein the contact angle is 89 ° to 91 °.
(11) The culture vessel according to (9) or (10), wherein the culture vessel is made of polystyrene or glass, and the bottom surface is not coated with a fluorine-containing polymer.
(12) The culture vessel according to any one of (9) to (11), having a root-mean-square surface roughness of 2.400 nm to 2.500 nm.
(13) A spheroid produced by the method according to (8).
(14) The spheroid according to (13), wherein the spheroid has a higher ability to differentiate into a tissue than a spheroid formed without using the method according to any one of (1) to (7).
(15) The spheroid according to (14), wherein the tissue is a nerve or a bone.
(16) A regenerative medical material comprising the spheroid according to any one of (13) to (15).
(17) The material according to (15), wherein the regenerative medicine is a regenerative medicine for treating a nerve disease or a bone disease.
(18) A regenerative medicine kit comprising the spheroid according to any one of (13) to (15).
(19) The kit according to (18), wherein the regenerative medicine is a regenerative medicine for treating a nerve disease or a bone disease.
 本発明により、スフェロイドの形成方法及び製造方法が提供される。本発明によれば、特殊な培地はもとより、特殊な装置も必要とせずに、高性能な幹細胞のスフェロイドを選択的に作製することが可能となった。 According to the present invention, a method for forming a spheroid and a method for producing the same are provided. According to the present invention, it has become possible to selectively produce high-performance spheroids of stem cells without requiring a special medium as well as a special medium.
マウス皮膚由来細胞からのスフェロイド形成に対する表面疎水性の効果を示す図である。 A)Dishの表面にピペッティングした水滴の写真画像。B)Dish上への1μLの水滴の平均接触角。データは、平均±標準偏差(n=5−10)、***p<0.0001として示す。C)Dish1、Dish2、Dish3の表面粗さの3D像をスキャンプローブ顕微鏡で観察した。D)培養皿上のマウス皮膚由来細胞の形態変化は1,3,5日目に異なる疎水性を示した。細胞はDish1及びDish2に付着することができたが、Dish3上でのみスフェロイド形成を示した。スケールバーは、100μm(黒色)及び500μm(赤色)を表す。FIG. 3 shows the effect of surface hydrophobicity on spheroid formation from mouse skin-derived cells. A) Photographic image of water drops pipetted on the surface of the dish. B) Average contact angle of a 1 μL water droplet on the dish. Data are shown as mean ± standard deviation (n = 5-10), *** p <0.0001. C) A 3D image of the surface roughness of Dish1, Dish2, and Dish3 was observed with a scanning probe microscope. D) The morphological changes of the mouse skin-derived cells on the culture dish showed different hydrophobicities on days 1, 3, and 5. Cells were able to attach to Dish1 and Dish2, but showed spheroid formation only on Dish3. Scale bars represent 100 μm (black) and 500 μm (red). マウス皮膚由来細胞からのスフェロイドにおける幹細胞マーカーの発現を示す図である。 A)SSEA1、Nanog、Oct4及びSox2についての免疫蛍光染色。スケールバーは50μmである。SSEA1(B)、nanog(C)、Oct4(D)、Sox2(E)の発現の経時変化を単層培養と比較した。平均±標準偏差(P<0.05,**P<0.01,***P<0.001,n=5)で示す。It is a figure which shows the expression of a stem cell marker in spheroids from mouse skin-derived cells. A) Immunofluorescent staining for SSEA1, Nanog, Oct4 and Sox2. The scale bar is 50 μm. The time course of expression of SSEA1 (B), nanog (C), Oct4 (D), and Sox2 (E) was compared with that of monolayer culture. Mean ± standard deviation ( * P <0.05, ** P <0.01, *** P <0.001, n = 5). 異なるタイプの細胞でのスフェロイド形成能を示す図である。 皮膚由来細胞(A)、口腔粘膜由来細胞(D)、皮質骨由来細胞(E)、NIH3T3細胞(F)のスフェロイド形成。皮膚由来細胞のスフェロイド上のSSEA1(B)及びSox2(C)の免疫蛍光染色。スケールバーは、500μm(白色)及び100μm(黒色)を表す。FIG. 2 is a diagram showing spheroid-forming ability in different types of cells.ス Spheroid formation of skin-derived cells (A), oral mucosa-derived cells (D), cortical bone-derived cells (E), and NIH3T3 cells (F). Immunofluorescent staining of SSEA1 (B) and Sox2 (C) on spheroids of skin-derived cells. Scale bars represent 500 μm (white) and 100 μm (black). 皮膚由来細胞による自発的スフェロイド形成過程を示す図である(3時間毎に撮影)。It is a figure which shows the spontaneous spheroid formation process by the skin origin cell (taken every 3 hours). 口腔粘膜由来細胞の自発的スフェロイド培養及び平面培養を行った時のアルカリホスファターゼ染色結果を示す図である。It is a figure which shows the result of alkaline phosphatase staining at the time of spontaneous spheroid culture and planar culture of cells derived from oral mucosa. 口腔粘膜由来細胞からの自発的なスフェロイドの特徴付け。(A)特殊培養皿上の口腔粘膜由来細胞の形態学的変化。bFGF、EGFおよびB27サプリメントを含む無血清培地および無血清培地では、スフェロイド形成は観察されなかった。血清を含む培地中の細胞のみが自発的にスフェロイドを形成し、次いでそれを維持した。スケールバー=100μm(B)口腔粘膜由来細胞由来のスフェロイドにおけるSox2、SSEA1、Oct4およびNanog発現の免疫蛍光分析。ほぼすべてのスフェロイド形成細胞において陽性反応が観察された。(C)口腔粘膜由来細胞由来のスフェロイドにおけるネスチンの発現。スケールバー=50μm.DAPI:4’,6−ジアミジノ−2フェニルインドール。Characterization of spontaneous spheroids from cells derived from oral mucosa. (A) Morphological changes of oral mucosa-derived cells on special culture dishes. No spheroid formation was observed in serum-free and serum-free media containing bFGF, EGF and B27 supplement. Only cells in the medium containing serum spontaneously formed spheroids and then maintained them. Scale bar = 100 μm (B) Immunofluorescence analysis of Sox2, SSEA1, Oct4 and Nanog expression in spheroids from cells derived from oral mucosa. Positive reactions were observed in almost all spheroid-forming cells. (C) Expression of nestin in spheroids derived from oral mucosa-derived cells. Scale bar = 50 μm. DAPI: 4 ', 6-diamidino-2phenylindole. 口腔粘膜および皮膚由来細胞からの自発的スフェロイド形成。(A)スフェロイドの位相差画像。血清を含む培地において、口腔粘膜由来細胞および皮膚由来細胞は細胞播種後24時間以内に自発的に凝集し、緻密な多細胞スフェロイドを形成する。(B)口腔粘膜および皮膚由来細胞由来のスフェロイドのサイズ。差は120時間で有意であった;n=10。(C)口腔粘膜および皮膚由来細胞由来のスフェロイドの数。有意差は120時間でのみ観察された;n=10。(D)スフェロイドのサイズに対する添加物の効果。スフェロイドのサイズはbFGF、EGFおよびB27サプリメントを含む培地ではこれらの添加物を含まない培地よりも有意に大きかった。n=20.(E)スフェロイドの数に対する添加物の効果。bFGF、EGFおよびB27サプリメントを含む培地では、これらの添加物を含まない培地よりも多数のスフェロイドが観察された。n=6.スケールバー=100μm.データを平均±SEM;*、p<0.05;***、p<0.001として示す。Spontaneous spheroid formation from oral mucosal and skin-derived cells. (A) Phase difference image of spheroid. In a medium containing serum, oral mucosa-derived cells and skin-derived cells spontaneously aggregate within 24 hours after cell seeding to form dense multicellular spheroids. (B) Size of spheroids derived from oral mucosa and skin-derived cells. The difference was significant at 120 hours; n = 10. (C) Number of spheroids derived from oral mucosa and skin-derived cells. Significant differences were observed only at 120 hours; n = 10. (D) Effect of additives on spheroid size. Spheroid size was significantly larger in media containing bFGF, EGF and B27 supplements than in media without these additives. n = 20. (E) Effect of additives on the number of spheroids. More spheroids were observed in media containing bFGF, EGF and B27 supplements than in media without these additives. n = 6. Scale bar = 100 μm. Data are shown as mean ± SEM; *, p <0.05; ***, p <0.001. 口腔粘膜および皮膚由来細胞のスフェロイドにおける細胞増殖およびアポトーシス。(A)口腔粘膜細胞および皮膚細胞由来のスフェロイドにおけるKi67およびカスパーゼ7の免疫蛍光。Ki67陽性細胞の数は、起源にかかわらず、添加物を含むスフェロイドでは添加物を含まないスフェロイドよりも多かった。カスパーゼ7の免疫蛍光からの結果は添加物なしの口腔粘膜スフェロイドにおいて陽性細胞を示したが、添加物含有スフェロイドにおいてはほんの少数の弱陽性細胞しか認められなかった。皮膚由来のスフェロイドは添加物を含まないスフェロイドでのみかすかな染色を示したが、添加物を含むスフェロイドでは陽性細胞は示さなかった。(B)口腔粘膜および皮膚由来細胞由来のスフェロイドにおけるKi67およびカスパーゼ7の発現をqRT−PCRを用いて分析し、添加物の有無にかかわらずスフェロイドにおけるレベルを比較した。Ki67のより高い発現は、添加物を用いた口腔粘膜スフェロイドおよび皮膚由来スフェロイドの両方において、添加物を用いない場合よりも観察された。一方、カスパーゼ7の発現は、添加物を含まないスフェロイドにおいて、添加物を含むスフェロイドよりも有意に高かった。(C)口腔粘膜由来および皮膚由来細胞のスフェロイドにおけるカスパーゼ7の発現レベルを比較した。カスパーゼ7の発現は、添加物にかかわらず、皮膚由来細胞のスフェロイドより口腔粘膜由来細胞のスフェロイドで有意に高かった。スケールバー=50μm.DAPI:4’,6−ジアミジノ−2フェニルインドール。データを平均±SEMとして示す。n=3.*,p<0.05;**,p<0.01;***,p<0.001.Cell proliferation and apoptosis in spheroids of oral mucosal and skin-derived cells. (A) Immunofluorescence of Ki67 and caspase 7 in spheroids from oral mucosal cells and skin cells. Regardless of the origin, the number of Ki67-positive cells was higher in spheroids with additives than in spheroids without additives. Results from caspase 7 immunofluorescence showed positive cells in oral mucosal spheroids without additives, but only a few weakly positive cells were observed in spheroids with additives. Skin-derived spheroids showed only faint staining with spheroids without additives, whereas spheroids with additives did not show positive cells. (B) Expression of Ki67 and caspase 7 in spheroids derived from oral mucosa and skin-derived cells was analyzed using qRT-PCR, and the levels in spheroids were compared with or without additives. Higher expression of Ki67 was observed in both oral mucosal spheroids and skin-derived spheroids with additives than without additives. On the other hand, the expression of caspase 7 was significantly higher in spheroids without additives than in spheroids with additives. (C) The expression levels of caspase 7 in spheroids of oral mucosa-derived and skin-derived cells were compared. Regardless of the additive, caspase 7 expression was significantly higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells. Scale bar = 50 μm. DAPI: 4 ', 6-diamidino-2phenylindole. Data are shown as mean ± SEM. n = 3. *, P <0.05; **, p <0.01; ***, p <0.001. 口腔粘膜および皮膚由来細胞のスフェロイドにおける幹細胞マーカー発現に対するbFGF、EGFおよびB27サプリメントの効果。(A)口腔粘膜由来細胞のスフェロイド中のSox2、Fut4(SSEA1)、Oct4およびネスチンの発現をqRT−PCRを用いて分析し、添加物の存在下及び非存在下で培養したスフェロイド中のレベルを比較した。(B)皮膚由来細胞のスフェロイド中のSox2、Fut4(SSEA1)、Oct4およびネスチンの発現をqRT−PCRを用いて分析し、添加物の存在下及び非存在下で培養したスフェロイド中のレベルを比較した。データを平均±SEMとして示す。n=3.*,p<0.05;**,p<0.01;***,p<0.001.Effect of bFGF, EGF and B27 supplements on stem cell marker expression in spheroids of oral mucosal and skin-derived cells. (A) Expression of Sox2, Fut4 (SSEA1), Oct4 and nestin in spheroids of cells derived from oral mucosa was analyzed using qRT-PCR, and the level in spheroids cultured in the presence and absence of additives was analyzed. Compared. (B) Expression of Sox2, Fut4 (SSEA1), Oct4 and nestin in spheroids of skin-derived cells was analyzed using qRT-PCR, and the levels in spheroids cultured in the presence and absence of additives were compared. did. Data are shown as mean ± SEM. n = 3. *, P <0.05; **, p <0.01; ***, p <0.001. 口腔粘膜由来細胞および皮膚由来細胞のスフェロイド間の幹細胞マーカー発現の直接比較。(A)bFGF、EGFおよびB27サプリメントを含まない口腔粘膜および皮膚由来細胞のスフェロイドにおけるSox2、Fut4(SSEA1)、Oct4およびネスチンの発現レベルをqRT−PCRを用いて分析し、比較した。(B)bFGF、EGFおよびB27サプリメントで培養した口腔粘膜および皮膚由来細胞のスフェロイドにおけるSox2、Fut4(SSEA1)、Oct4およびネスチンの発現レベルをqRT−PCRを用いて分析し、比較した。データを平均±SEMとして示す。n=3.*,p<0.05;**,p<0.01;***,p<0.001.Direct comparison of stem cell marker expression between oral mucosa-derived cells and skin-derived cells spheroids. (A) Expression levels of Sox2, Fut4 (SSEA1), Oct4 and nestin in spheroids of oral mucosa and skin derived cells without bFGF, EGF and B27 supplements were analyzed using qRT-PCR and compared. (B) Expression levels of Sox2, Fut4 (SSEA1), Oct4 and nestin in spheroids of oral mucosal and skin-derived cells cultured with bFGF, EGF and B27 supplements were analyzed using qRT-PCR and compared. Data are shown as mean ± SEM. n = 3. *, P <0.05; **, p <0.01; ***, p <0.001. 口腔粘膜および皮膚からのスフェロイド由来細胞の神経原性誘導。(A)スフェロイドの免疫蛍光画像。βIII−チューブリン−およびMAP2−陽性細胞は観察されなかったが、ネスチン−、NeuN−、Sox2−およびS100β−陽性細胞は口腔粘膜細胞(二次元培養)に見出された。ネスチン−、βIII−チューブリン−、MAP2−、NeuN−、Sox2−およびS100β−陽性細胞が口腔粘膜と皮膚の両方からのスフェロイド由来細胞で観察された。(B)神経細胞マーカーの発現レベルを、qRT−PCRを用いて分析した。口腔粘膜由来のスフェロイド形成細胞におけるMAP2、MBP、ネスチンおよびNurr1の発現レベルは、皮膚由来のスフェロイド形成細胞における発現レベルより有意に高かった。(C)口腔粘膜およびCBDCからのスフェロイド形成細胞におけるMAP2、MBPおよびネスチンの発現。口腔粘膜由来のスフェロイド形成細胞におけるMAP2、MBPおよびネスチンの発現レベルは、CBDC由来のスフェロイド形成細胞における発現レベルより有意に高かった。データを平均±SEMとして示す。n=3.*,p<0.05;**,p<0.01;***,p<0.001.スケールバー=50μm.DAPI:4’,6−ジアミジノ−2−フェニルインドール。Neurogenic induction of spheroid-derived cells from oral mucosa and skin. (A) Immunofluorescence image of spheroids. βIII-tubulin- and MAP2-positive cells were not observed, but nestin-, NeuN-, Sox2- and S100β-positive cells were found in oral mucosal cells (two-dimensional culture). Nestin-, βIII-tubulin-, MAP2-, NeuN-, Sox2- and S100β-positive cells were observed in spheroid-derived cells from both oral mucosa and skin. (B) The expression level of the neuronal marker was analyzed using qRT-PCR. The expression levels of MAP2, MBP, nestin and Nurr1 in spheroid-forming cells from oral mucosa were significantly higher than in spheroid-forming cells from skin. (C) Expression of MAP2, MBP and nestin in spheroid-forming cells from oral mucosa and CBDC. The expression levels of MAP2, MBP and nestin in spheroid-forming cells from oral mucosa were significantly higher than in spheroid-forming cells from CBDC. Data are shown as mean ± SEM. n = 3. *, P <0.05; **, p <0.01; ***, p <0.001. Scale bar = 50 μm. DAPI: 4 ', 6-diamidino-2-phenylindole. 皮膚由来細胞からの自発的スフェロイドの位相差画像。継代細胞からであっても、自発的に形成されたスフェロイドの存在に注目されたい。(A)継代2代目での皮膚由来細胞からの自発的スフェロイド形成。(B)継代3代目の皮膚由来細胞からの自発的スフェロイド形成。(C)継代4代目の皮膚由来細胞からの自発的スフェロイド形成。(D)継代5代目の皮膚由来細胞からの自発的スフェロイド形成。Phase contrast image of spontaneous spheroids from skin-derived cells. Note the presence of spontaneously formed spheroids, even from passaged cells. (A) Spontaneous spheroid formation from skin-derived cells at the second passage. (B) Spontaneous spheroid formation from skin-derived cells at the third passage. (C) Spontaneous spheroid formation from skin-derived cells at passage 4. (D) Spontaneous spheroid formation from skin-derived cells at the fifth passage. スフェロイドの骨形成能。単層培養CBDCおよびスフェロイド由来細胞を、骨分化誘導培地中で7日間インキュベートした。ALPアッセイデータは、誘導されたスフェロイド由来細胞が誘導された単層細胞と比較して有意に増加したALP活性を有することを示した(a)。qRT‐PCRデータは、誘導スフェロイド由来細胞が骨形成関連遺伝子、例えばオステリックス、BSP、およびDMP1を統計的有意に高レベルで発現することを示した(b‐d)。データは、平均±SEMとして表す。ALPアッセイ、N=3;qRT−PCR、N=3.*P<0.05、**P<0.01、***P<0.001。Bone forming ability of spheroids. Monolayer cultured CBDC and spheroid-derived cells were incubated for 7 days in an osteogenic induction medium. ALP assay data showed that the induced spheroid-derived cells had significantly increased ALP activity compared to the induced monolayer cells (a). The qRT-PCR data showed that the derived spheroid-derived cells expressed bone formation-related genes, such as Osterix, BSP, and DMP1, at statistically significant levels (bd). Data are expressed as mean ± SEM. ALP assay, N = 3; qRT-PCR, N = 3. * P <0.05, ** P <0.01, *** P <0.001. 移植後4週後の組織像。 Histology 4 weeks after transplantation.
 以下、本発明を詳細に説明する。
1.概要
 本発明は、細胞の接着が阻害されるように表面が加工又は処理された培養容器を用いて幹細胞を培養することによりスフェロイドを形成させることを特徴とする、スフェロイドの形成方法に関する。
 また本発明は、接触角が85°~95°の範囲となる条件を満たすように培養底面の粗さを有する培養容器であり、当該培養容器を用いて、幹細胞を培養することを特徴とする、スフェロイドの形成方法である。
Hereinafter, the present invention will be described in detail.
1. Outline The present invention relates to a method for forming spheroids, which comprises forming spheroids by culturing stem cells using a culture vessel having a surface processed or treated so that cell adhesion is inhibited.
Further, the present invention is a culture container having a roughness of a culture bottom surface so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °, wherein stem cells are cultured using the culture container. , A method of forming spheroids.
1.概要
 神経幹細胞の選択的培養の発見後、スフェロイド培養は、体細胞幹細胞の選択的培養法として認識されている。以来、様々な方法でスフェロイドが生成されることが報告されている。しかし、強力な幹細胞集団を富化することができるスフェロイドを形成するための基本的因子は何であるかは明らかではない。
1. Overview After the discovery of selective culture of neural stem cells, spheroid culture has been recognized as a method for selective culture of somatic stem cells. Since then, it has been reported that spheroids are produced by various methods. However, it is not clear what are the fundamental factors for forming spheroids that can enrich a strong stem cell population.
 本発明者は、スフェロイド形成に際し、培養容器への細胞の接着性(付着性)に着目した。細胞の接着性は、疎水性が影響を与えることは良く知られている。しかしながら、細胞接着に影響を与える因子は疎水性以外にも表面形状などさまざまな因子がある。
 そこで、本発明においては、疎水性条件に限らず、細胞接着に影響を与える条件を利用して細胞の接着性をコントロールし、これによりスフェロイドを形成させることを特徴とする。
The present inventors paid attention to the adhesiveness (adhesiveness) of cells to a culture vessel during spheroid formation. It is well known that hydrophobicity affects cell adhesion. However, factors that affect cell adhesion include various factors such as surface shape in addition to hydrophobicity.
Therefore, the present invention is characterized in that spheroids are formed by controlling cell adhesion using conditions that affect cell adhesion, not limited to hydrophobic conditions.
 細胞接着に影響を与える条件は、細胞の培養容器への接着が阻害されるように、当該培養容器の表面を加工又は処理することで設定することができる。「接着が阻害される」とは、細胞の全部又は一部が培養容器に付着することが妨げられることを意味し、物理的な処理及び化学的処理のいずれも含まれる。
 例えば、水の接触角(撥水性又は疎水性)に着目すると、撥水性又は疎水性によって得られる細胞の接着性の程度が、自発的スフェロイド形成のもっとも重要な要因となる。つまり、培養容器の表面が疎水性であれば非接着となるので、その程度によって細胞の接着性は変化する。従って、細胞接着性の程度によって自発的スフェロイド形成の良い形成条件が決まる。細胞の接着が阻害されるように表面が加工又は処理された培養容器を用いて幹細胞を培養することにより、スフェロイドを形成させることが可能となる。
Conditions that affect cell adhesion can be set by processing or treating the surface of the culture vessel so that the adhesion of the cells to the culture vessel is inhibited. “Adhesion is inhibited” means that all or a part of the cells is prevented from attaching to the culture vessel, and includes both physical treatment and chemical treatment.
For example, focusing on the contact angle of water (water repellency or hydrophobicity), the degree of cell adhesion obtained by water repellency or hydrophobicity is the most important factor for spontaneous spheroid formation. That is, if the surface of the culture vessel is hydrophobic, it becomes non-adhesive, and the degree of cell adhesion changes depending on the degree. Therefore, the degree of cell adhesion determines good formation conditions for spontaneous spheroid formation. By culturing stem cells using a culture vessel whose surface has been processed or treated so as to inhibit cell adhesion, spheroids can be formed.
 さらに、上記培養容器を用いてスフェロイドを形成させると、得られた自発的スフェロイドは高い分化能を有していることが示される。特に本発明においては、(i)骨由来の間葉系幹細胞には優れた骨および神経分化能があること、さらに(ii)皮膚,口腔粘膜由来の幹細胞には優れた神経分化能を有することが示された。本発明の方法で作製された皮膚および口腔粘膜の幹細胞は、本発明の方法を用いないで形成された既存の細胞(スフェロイド)、例えば既製品の骨髄由来間葉系幹細胞(例えばステミラック)よりもはるかに高い組織分化能(例えば骨分化能及び神経再生能)を有している。従って、本発明の方法は、再生医療用の優れた幹細胞調製法であるとともに、本発明の自発的スフェロイドは、再生医療、特に神経再生及び骨再生に有用な細胞源である。 Furthermore, when spheroids are formed using the above culture vessel, it is shown that the obtained spontaneous spheroids have high differentiation ability. In particular, in the present invention, (i) bone-derived mesenchymal stem cells have excellent bone and nerve differentiation ability, and (ii) skin and oral mucosa-derived stem cells have excellent nerve differentiation ability. It has been shown. The skin and oral mucosal stem cells produced by the method of the present invention are better than existing cells (spheroids) formed without using the method of the present invention, for example, off-the-shelf bone marrow-derived mesenchymal stem cells (eg, stemilac). It has much higher tissue differentiation ability (eg, bone differentiation ability and nerve regeneration ability). Therefore, the method of the present invention is an excellent method for preparing stem cells for regenerative medicine, and the spontaneous spheroid of the present invention is a cell source useful for regenerative medicine, particularly nerve regeneration and bone regeneration.
2.培養容器の表面特性
 本発明において、細胞の接着が阻害されるように表面が加工又は処理された培養容器(培養プレート)としては、疎水性を有するものが挙げられる。
 そこで本発明の一態様では、培養容器の表面特性、特に疎水性に焦点を当てた。マウス皮膚から、従来の二次元培養で初代培養細胞を調製し、細胞を異なる疎水性を有する培養プレートに移し、これを異なる接触角で確認した。接触角の大きさは培養面の親水性、疎水性を規定するが、本発明において使用される培養容器の底面(培養面)の接触角は、培養面(培養容器の底面)とほぼ直角であり、85°~95°の範囲である。さらに、接触角は89°~91°が好ましく、90°がさらに好ましい。上記接触角を有する細胞培養プレートのみが、スフェロイド形成を首尾よく達成することができた。
2. Surface Properties of Culture Vessel In the present invention, examples of a culture vessel (culture plate) whose surface is processed or treated so as to inhibit cell adhesion include those having hydrophobicity.
Thus, one aspect of the present invention focuses on the surface properties of the culture vessel, especially on hydrophobicity. Primary culture cells were prepared from mouse skin by conventional two-dimensional culture, and the cells were transferred to culture plates with different hydrophobicity, which were confirmed at different contact angles. The size of the contact angle defines the hydrophilicity and hydrophobicity of the culture surface. Yes, in the range of 85 ° to 95 °. Further, the contact angle is preferably 89 ° to 91 °, more preferably 90 °. Only cell culture plates with the above contact angles were able to successfully achieve spheroid formation.
 また、スフェロイドの形成は自発的であり、効率的であり、安定であった。スフェロイド形成は、EGF、bFGF及びB27等の添加剤(因子)を全く含まない培地(10%FBS添加αMEM)で達成されたことから、スフェロイド生成過程は上記因子に依存しないと言える。 In addition, spheroid formation was spontaneous, efficient, and stable. Since spheroid formation was achieved in a medium (αMEM supplemented with 10% FBS) containing no additives (factors) such as EGF, bFGF and B27, it can be said that the spheroid production process does not depend on the above factors.
 さらに、免疫蛍光法及び定量的リアルタイムPCRを行った結果、SSEA−1、SOX−2、OCT4及びnanog等のES細胞マーカーの発現を示し、本発明の方法による強力な幹細胞集団の選択的性質を確認した。この現象は再現性があり、皮膚由来幹細胞だけでなく、口腔粘膜由来幹細胞、間葉系幹細胞及び3T3細胞にも適用可能であった。従って、本発明の方法は、上記現象のロバスト性を示すものである。 Furthermore, as a result of immunofluorescence and quantitative real-time PCR, the expression of ES cell markers such as SSEA-1, SOX-2, OCT4, and nanog was shown, and the selective properties of a strong stem cell population according to the method of the present invention were confirmed. confirmed. This phenomenon was reproducible and applicable not only to skin-derived stem cells, but also to oral mucosa-derived stem cells, mesenchymal stem cells and 3T3 cells. Therefore, the method of the present invention shows the robustness of the above phenomenon.
3.培養容器の底面における接触角
 本発明において使用される培養容器(培養プレート又はディッシュということもある)は、接触角が、85°から95°の範囲を有しており、例えば85°、86°、87°、88°、89°、90°、91°、92°、93°、94°、又は95°であり、好ましくは89°~91°(例えば89°、90°又は91°)、さらに好ましくは90°である。
 接触角とは、静止液体の自由表面が、固体壁に接する場所で、液面と固体面とのなす角を意味する。そして、接触角は、ぬれ性を示す指標として使用され、種々の方法により測定することができる。例えば、本発明においては、θ/2法、接線法、カーブフィッティング法などが挙げられる。これらの接触角の測定法は周知である。
3. Contact Angle at the Bottom of the Culture Vessel The culture vessel (sometimes referred to as a culture plate or dish) used in the present invention has a contact angle in the range of 85 ° to 95 °, for example, 85 °, 86 °. , 87 °, 88 °, 89 °, 90 °, 91 °, 92 °, 93 °, 94 °, or 95 °, preferably 89 ° to 91 ° (eg, 89 °, 90 ° or 91 °), More preferably, it is 90 °.
Contact angle refers to the angle between the liquid surface and the solid surface where the free surface of the stationary liquid contacts the solid wall. The contact angle is used as an index indicating wettability and can be measured by various methods. For example, in the present invention, a θ / 2 method, a tangent method, a curve fitting method and the like can be mentioned. Methods for measuring these contact angles are well known.
 本発明において使用される培養容器は、形態に特に限定はなく、例えばフラスコ、マルチウェルプレート、シャーレ(ディッシュ)等のいずれの形態であってもよい。
 また、本発明において使用される培養容器の材質も限定されるものではなく、例えばポリスチレン製、又はガラス製である。
 通常の培養容器には、細胞の接着性などを付与するために種々のコーティングがされているが、本発明において使用される培養容器はそのようなコーティングは不要である。例えば、培養容器の底面(培養面)がフッ素系含有ポリマーによりコーティングされていないものを用いる。さらに、培養面において、接触角が上記範囲を満たすような表面粗さ(線粗さ)を有するものであればよい。
The form of the culture vessel used in the present invention is not particularly limited, and may be any form such as a flask, a multiwell plate, and a petri dish (dish).
In addition, the material of the culture vessel used in the present invention is not limited, and is made of, for example, polystyrene or glass.
Various coatings are applied to ordinary culture vessels in order to impart cell adhesion and the like, but the culture vessels used in the present invention do not require such coatings. For example, a culture vessel in which the bottom surface (culture surface) is not coated with a fluorine-containing polymer is used. Furthermore, it is sufficient that the culture surface has a surface roughness (line roughness) such that the contact angle satisfies the above range.
 表面粗さは、本発明においては、JIS B 0601、JIS B 0651などのJIS規格により表される粗さをパラメータとすることができ、算術平均粗さ(Ra)、最大高さ(Rz)、二乗平均表面粗さ(Rms)などがあるが、これらに限定されるものではない。
 本発明においては、これらのパラメータを単独で、又は適宜組み合わせて使用することができる。
 例えば、Rmsをパラメータとした場合、本発明において使用される培養容器の培養面のRmsは、2.400nm~2.500nmである。
In the present invention, the surface roughness can be a roughness represented by JIS standards such as JIS B 0601 and JIS B 0651 as parameters, and the arithmetic average roughness (Ra), the maximum height (Rz), There is a root mean square surface roughness (Rms), but is not limited thereto.
In the present invention, these parameters can be used alone or in an appropriate combination.
For example, when Rms is used as a parameter, Rms on the culture surface of the culture vessel used in the present invention is 2.400 nm to 2.500 nm.
4.培養法
 本発明においては、上記培養プレートを用いて幹細胞を培養する。
 まず、幹細胞の取得法は特に限定されるものではなく、任意の組織から採取することができる。例えば脂肪組織、骨髄、皮膚、口腔粘膜、唾液腺、歯根膜、歯髄、軟骨、臍帯、胎盤などから採取可能である。幹細胞としては、例えば体性幹細胞、胚性幹細胞、間葉系幹細胞、又は癌幹細胞若しくは腫瘍由来細胞などが挙げられる。本発明で用いる幹細胞は、ヒトを含むいずれの動物種に由来するものであってもよい。
4. Culture method In the present invention, stem cells are cultured using the culture plate.
First, the method for obtaining stem cells is not particularly limited, and can be collected from any tissue. For example, it can be collected from adipose tissue, bone marrow, skin, oral mucosa, salivary gland, periodontal ligament, dental pulp, cartilage, umbilical cord, placenta, and the like. Examples of stem cells include somatic stem cells, embryonic stem cells, mesenchymal stem cells, cancer stem cells or tumor-derived cells, and the like. The stem cells used in the present invention may be derived from any animal species including human.
 上記幹細胞を、ウシ胎児血清含有動物細胞培地(例えばMEM培地、DMEM培地、RPMI−1640培地等)中で通常の動物細胞培養で使用される条件、例えば37℃、5%CO、95%空気下で培養し、スフェロイドを形成させる。本発明の培養容器を用いて培養すると、細胞がコンフルエントになる前に凝集し始めて塊を自発的に形成する。
 その後は、形成されたスフェロイドを、回収すればよい。このようにして作製されたスフェロイドを、本明細書において「自発的スフェロイド」と呼ぶ。
The stem cells are cultured in animal cell culture medium containing fetal bovine serum (eg, MEM medium, DMEM medium, RPMI-1640 medium, etc.) under conditions used for normal animal cell culture, for example, at 37 ° C., 5% CO 2 , and 95% air. Cultivate underneath to form spheroids. When the cells are cultured using the culture container of the present invention, the cells start to aggregate before they become confluent and spontaneously form clumps.
Thereafter, the formed spheroids may be collected. The spheroid thus produced is referred to herein as “spontaneous spheroid”.
 本発明のスフェロイドは、スフェロイド形成する際に幹細胞以外の細胞を巻き込まない。すなわち、本発明のスフェロイドはほぼ幹細胞によってのみ構成されており、スフェロイド形成能を持たない細胞をほとんど含まない点が特徴である。例えば、本発明の方法により得られたスフェロイドにおいて幹細胞の占める割合は、例えば80%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上、又は99.9%以上である。従来のハンギングドロップ法等により作製されたスフェロイドは、幹細胞のほかに、分化細胞などが含まれる混合物であるため、本発明のスフェロイドは、それを構成する細胞純度が高く、幹細胞としての機能が高くなる。
 幹細胞から形成されたスフェロイドの性質を特定するために、スフェロイドで固有に発現する遺伝子又は遺伝子産物をマーカーとして用いることができる。例えば、SSEA1(Fut4としても知られる)、SOX2、OCT4、Nanog、Nestinなどを、単独で、又は適宜組み合わせて使用する。
The spheroid of the present invention does not involve cells other than stem cells when forming spheroids. That is, the spheroids of the present invention are characterized by being substantially constituted only by stem cells and containing almost no cells having no spheroid-forming ability. For example, the proportion of stem cells in spheroids obtained by the method of the present invention is, for example, 80% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.5 or more. % Or 99.9% or more. Spheroids produced by the conventional hanging drop method and the like are, in addition to stem cells, a mixture containing differentiated cells, etc., the spheroids of the present invention have a high purity of the cells constituting them and have high functions as stem cells. Become.
In order to identify the properties of spheroids formed from stem cells, a gene or gene product that is uniquely expressed in spheroids can be used as a marker. For example, SSEA1 (also known as Fut4), SOX2, OCT4, Nanog, Nestin, etc. are used alone or in an appropriate combination.
 それぞれのマーカーの発現を確認するためには、RT−PCR法、ウエスタンブロット法等を用いる。プライマーは、それぞれの遺伝子情報から設計し、通常の化学合成により得ることができる。
 本発明のスフェロイドは、例えば以下の性質を有する。
 組織(例えば神経や骨)への分化能が、本発明の方法を用いないで形成されたスフェロイドよりも高い。
 Sox2、SSEA1、Oct4、Nanogおよびネスチンなどの幹細胞マーカーを発現する。
 神経系細胞への分化誘導後に神経およびシュワン細胞に分化する能力を有する。
 神経分化誘導後にドーパミン産生細胞へ分化する能力を有する.
In order to confirm the expression of each marker, an RT-PCR method, a Western blot method, or the like is used. Primers can be designed from each genetic information and can be obtained by ordinary chemical synthesis.
The spheroid of the present invention has, for example, the following properties.
The ability to differentiate into tissues (eg, nerves and bones) is higher than spheroids formed without using the method of the present invention.
It expresses stem cell markers such as Sox2, SSEA1, Oct4, Nanog and Nestin.
It has the ability to differentiate into nerve and Schwann cells after inducing differentiation into neural cells.
It has the ability to differentiate into dopamine-producing cells after induction of neural differentiation.
5.再生医療用材料
 前記の通り、本発明の自発的スフェロイドは、組織への優れた分化能を有する。従って、本発明は、自発的スフェロイドを含む、再生医療用材料又は再生医療用組成物を提供する。
 再生医療の対象となる組織は特に限定されるものではなく、任意の組織であるが、例えば神経及び骨などが挙げられる。
5. Materials for Regenerative Medicine As described above, the spontaneous spheroids of the present invention have an excellent ability to differentiate into tissues. Accordingly, the present invention provides a regenerative medicine material or composition comprising spontaneous spheroids.
The tissue to be subjected to regenerative medicine is not particularly limited, and may be any tissue, such as nerves and bones.
 本発明の自発的スフェロイドを神経疾患治療に使用するためには、当該スフェロイドを、それを必要とする部位(例えば脳や脊髄等の中枢神経、又は末梢神経)に移植することができる。あるいは、神経成長因子、神経栄養因子等の存在下で培養し、神経に分化させて使用することもできる。
 また、本発明の自発的スフェロイドを骨疾患治療に使用するためには、当該スフェロイドを、それを必要とする部位(例えば歯槽骨の萎縮や腫瘍,嚢胞の摘出,切除後の欠損部位,難治性骨折,腫瘍切除後の骨欠損,変形性関節症における骨,軟骨欠損部位,骨粗鬆症における骨折部位)(関節を含む)に移植することができる。また,骨粗鬆症患者へ局所注射あるいは静脈から全身へ投与することで,骨密度が改善し,骨折のリスクを低くすることができる.あるいは、骨分化誘導因子(デキサメタゾン,βグリセロリン酸,アスコルビン酸,BMP等の存在下で培養し,骨芽細胞に分化させて使用することもできる。
 神経及び骨以外の他の組織についても、上記と同様に処置することができる。
In order to use the spontaneous spheroid of the present invention for treating a neurological disease, the spheroid can be transplanted to a site where the spheroid is needed (for example, a central nerve such as brain or spinal cord, or a peripheral nerve). Alternatively, the cells can be cultured in the presence of a nerve growth factor, a neurotrophic factor, or the like, and differentiated into nerves for use.
In addition, in order to use the spontaneous spheroid of the present invention for the treatment of bone disease, the spheroid is required to be used in a site that requires it (for example, atrophy of alveolar bone, tumor, removal of cyst, defective site after resection, intractable disease). It can be transplanted to bone fractures, bone defects after tumor resection, bone and cartilage defects in osteoarthritis, and fracture sites in osteoporosis (including joints). Local injection or intravenous administration to osteoporosis patients improves bone density and lowers the risk of fractures. Alternatively, the cells can be cultured in the presence of a bone differentiation inducing factor (dexamethasone, β-glycerophosphate, ascorbic acid, BMP, etc.) and differentiated into osteoblasts before use.
Other tissues other than nerves and bones can be treated in the same manner as described above.
6.キット
 本発明は、前記自発的スフェロイド含む、再生医療用キットを提供する。自発的スフェロイドの単位キットあたりの量は任意でよく、適宜調製することができる。再生医療の対象は、前記と同様である。
 本発明のキットには、培養容器、分化因子、緩衝液、培養液、使用説明書などを含めることができる。
6. Kit The present invention provides a regenerative medicine kit containing the spontaneous spheroid. The amount of the spontaneous spheroids per unit kit may be arbitrary and can be appropriately prepared. The target of regenerative medicine is the same as described above.
The kit of the present invention can include a culture container, a differentiation factor, a buffer, a culture solution, instructions for use, and the like.
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
[実施例1]
Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited by these examples.
[Example 1]
 スフェロイド形成に影響を及ぼし得る種々の因子を明らかにするために、細胞培養プレートの接着性の効果に焦点を当てた。疎水性が細胞付着に影響を及ぼすことはよく知られている(19)。そこで、スフェロイド形成に及ぼす培養プレートの疎水性の影響を調べた。 To focus on the adhesive effects of cell culture plates to identify various factors that could affect spheroid formation. It is well known that hydrophobicity affects cell attachment (19). Thus, the effect of the hydrophobicity of the culture plate on spheroid formation was examined.
材料及び方法
細胞培養プレートの選択とその特徴
 本実施例では、疎水性を水接触角として評価するため、種々の市販の細胞培養プレートを試験した。最終的に、3つの異なる皿、すなわち、付着依存性細胞培養皿(以下、Dish1と称する)(Falcon,REF 353001及び353002,Corning Inc.)及び懸濁培養皿(以下、Dish2と称する)(NuncTM、Lot# 171099及び150340,Thermo Fisher Scientific Inc.)及び低付着表面(LAS)細胞培養プレート(以下、Dish3と称する)をさらなる分析のために選択した。
 1μlの超純水滴の培養表面への接触角を、親水性(培養プレートの表面湿潤性)として、表面接触角測定機(ポータブル接触角計PCA−1、Kyowa Interface Science Co.,Ltd.)により測定した。疎水性は主に表面粗さに依存するため、2.5×2.5μm径の走査型プローブ顕微鏡(SPM)(SPM−9500J3,Shimadzu)により表面粗さを調べた。
Materials and Methods Selection of Cell Culture Plates and Their Characteristics In this example, various commercially available cell culture plates were tested to evaluate hydrophobicity as a water contact angle. Finally, three different dishes, namely, adhesion-dependent cell culture dishes (hereinafter referred to as Dish1) (Falcon, REF 353001 and 353002, Corning Inc.) and suspension culture dishes (hereinafter referred to as Dish2) (Nunc) TM , Lot # 171099 and 150340, Thermo Fisher Scientific Inc. and a low attachment surface (LAS) cell culture plate (hereinafter referred to as Dish3) were selected for further analysis.
The contact angle of a 1 μl ultrapure water droplet on the culture surface was determined as hydrophilicity (the surface wettability of the culture plate) by a surface contact angle measurement device (portable contact angle meter PCA-1, Kyowa Interface Science Co., Ltd.). It was measured. Since the hydrophobicity mainly depends on the surface roughness, the surface roughness was examined with a scanning probe microscope (SPM) (SPM-9500J3, Shimadzu) having a diameter of 2.5 × 2.5 μm.
動物
 使用した実験動物は、米国国立衛生研究所(NIH)のガイドラインに従って、松本歯科大学の実験手順のための実験動物のケア及び使用、並びに「松本歯科大学動物実験委員会」(承認番号269及び319)の承認に従って実施した。
 C57BL/6Jマウス(雌、3週齢)を、Japan SLC,Inc.(Hamamatsu,Japan)から購入し、松本歯科大学ハイテクセンターの実験動物施設で維持した。これらのマウスを、制御された温度(25±2℃)及び照明(12時間の明/暗サイクル)条件下で維持した。動物を新しい環境で約1週間馴らした後、以下の実験に使用した。
Animals The experimental animals used were according to the guidelines of the National Institutes of Health (NIH), care and use of laboratory animals for the experimental procedures at Matsumoto Dental University, and the “Matsumoto Dental University Animal Experimental Committee” (approval number 269 and 319).
C57BL / 6J mice (female, 3 weeks old) were purchased from Japan SLC, Inc. (Hamamatsu, Japan) and maintained at a laboratory animal facility at Matsumoto Dental University High Tech Center. The mice were maintained under controlled temperature (25 ± 2 ° C.) and lighting (12 hour light / dark cycle). After the animals had been acclimated in the new environment for about one week, they were used in the following experiments.
細胞の調製
 皮膚由来細胞(SDC)及び口腔粘膜由来細胞(OMDC)
 マウスを麻酔過剰投与により殺し、ヘアクリッパーにより毛を除去した。70%アルコールで滅菌した後、背側皮膚、並びに頬粘膜及び口蓋粘膜を採取した。初代培養細胞は、従来の外植片培養技術を用いて得た。簡単に述べると、組織切片をリン酸緩衝生理食塩水(PBS,Cat No:166−23555,Wako,Osaka,Japan)で2回洗浄し、約4mmの大きさの断片に切断した。組織を、6ウェル組織培養プレート(Falcon、製品番号353046)中のウェル表面上に分配し、そして5%CO、37℃で加湿インキュベーター中に置いた。
Preparation of cells Skin-derived cells (SDC) and oral mucosa-derived cells (OMDC)
Mice were killed by overdose of anesthesia and hair was removed with a hair clipper. After sterilization with 70% alcohol, dorsal skin and buccal and palatal mucosa were collected. Primary cultures were obtained using conventional explant culture techniques. Briefly, tissue sections were washed twice with phosphate buffered saline (PBS, Cat No: 166-23555, Wako, Osaka, Japan) and cut into fragments approximately 4 mm in size. The tissues were dispensed onto the well surface in a 6-well tissue culture plate (Falcon, Product No. 353046) and placed in a humidified incubator at 37 ° C., 5% CO 2 .
 組織がプレートに付着した後、10%ウシ胎児血清(FBS,Bio West,Nuaille,France)、1%ペニシリン−ストレプトマイシン−アンホテリシンB(Biological Industries USA,Inc.,Cromwell,CT,USA)を補充した1.5mLのαMEM(Wako,Osaka,Japan)を添加し、プレートを95%空気及び5%COの加湿インキュベーター中に37℃で置いた。培地は3日毎に交換した。
 培養開始10日目に、細胞を0.25% Trypsin−EDTA(Life Technologies Japan Ltd.,Cat No:25200056,Tokyo,Japan)で37℃で2~3分間解離させた。解離した細胞を40μmセルストレーナ(Corning,Inc.,NY,USA)で濾過し、10%FBSを含むαMEMで2回洗浄し、300gで5分間4℃遠心分離した。最後に、2×10細胞を、10%FBS、1%ペニシリン−ストレプトマイシン−アンホテリシンBを補充したαMEMを含有する直径60mmの細胞培養皿(Falcon,製品番号353002)にプレーティングし、5%CO、95%空気の加湿インキュベーター中で培養した。培地は2日毎に交換した。
 細胞が80~90%コンフルエントになったときに、細胞を剥離した。2~3継代目の細胞を本実施例に使用した。
After the tissue adhered to the plate, it was supplemented with 10% fetal bovine serum (FBS, BioWest, Nuail, France) and 1% penicillin-streptomycin-amphotericin B (Biological Industries USA, Inc., Cromwell, CT, USA). 0.5 mL of αMEM (Wako, Osaka, Japan) was added and the plates were placed at 37 ° C. in a humidified incubator with 95% air and 5% CO 2 . The medium was changed every three days.
On the 10th day from the start of the culture, the cells were dissociated with 0.25% Trypsin-EDTA (Life Technologies Japan Ltd., Cat No: 2520056, Tokyo, Japan) at 37 ° C for 2 to 3 minutes. The dissociated cells were filtered with a 40 μm cell strainer (Corning, Inc., NY, USA), washed twice with αMEM containing 10% FBS, and centrifuged at 300 g for 5 minutes at 4 ° C. Finally, 2 × 10 5 cells were plated in 60 mm diameter cell culture dishes (Falcon, product number 353002) containing αMEM supplemented with 10% FBS, 1% penicillin-streptomycin-amphotericin B, and 5% CO 2. 2. Cultured in a humidified incubator with 95% air. The medium was changed every two days.
When the cells reached 80-90% confluence, the cells were detached. Cells at passages 2-3 were used in this example.
緻密骨由来細胞(CBDC)
 CBDCの培養は、本発明者による以前の研究(20)で報告されたプロトコールに基づいて行った。その手法は以下の通りである。
 まず、大腿骨及び脛骨を注意深く切開して他の組織を取り除いた。大腿骨及び脛骨の骨端を切断し、28Gニードル付き注射器を用いて骨髄を洗い流した。0.25%コラゲナーゼ(Wako)及び20%FBSを含むPBS中で、骨を細かい断片に細断した。細断された骨チップは、上記のコラゲナーゼ溶液(13ml)を含む50ml遠心管に移し、90rpmのスピードでバイオシェーカー中で、37℃で45分間インキュベートした。次いで、細胞を70μmセルストレーナを通して回収し、4℃、300×gで5分間遠心分離した。
Compact bone-derived cells (CBDC)
Cultivation of CBDC was based on the protocol reported in a previous study by the inventor (20). The method is as follows.
First, the femur and tibia were carefully dissected to remove other tissue. The epiphysis of the femur and tibia were cut and the bone marrow was flushed using a syringe with a 28G needle. Bone was minced into small pieces in PBS containing 0.25% collagenase (Wako) and 20% FBS. The minced bone chips were transferred to a 50 ml centrifuge tube containing the above collagenase solution (13 ml) and incubated at 37 ° C. for 45 minutes in a bioshaker at a speed of 90 rpm. The cells were then collected through a 70 μm cell strainer and centrifuged at 4 ° C., 300 × g for 5 minutes.
 細胞ペレットを回収し、10%FBS、1%ペニシリン−ストレプトマイシン−アンホテリシンB、及び10ng/mlのbFGF(PeproTech,Rocky Hill,USA)を補充したαMEMで穏やかに再懸濁した。細胞懸濁液を35mm細胞培養ディッシュ(Falcon、#353001)に播種し、5%CO、95%加湿インキュベーター中で37℃で培養した。培地は3日毎に交換した。7日目に、細胞を2.5×10細胞/cmの密度で新しい培養ディッシュ中で継代培養した。3回目の継代における細胞を、その後の実験に使用した。 The cell pellet was collected and gently resuspended in αMEM supplemented with 10% FBS, 1% penicillin-streptomycin-amphotericin B, and 10 ng / ml bFGF (PeproTech, Rocky Hill, USA). The cell suspension was seeded on a 35 mm cell culture dish (Falcon, # 353001) and cultured at 37 ° C. in a 5% CO 2 , 95% humidified incubator. The medium was changed every three days. On day 7, the cells were subcultured at a density of 2.5 × 10 5 cells / cm 2 in a new culture dish. Cells from the third passage were used for subsequent experiments.
NIH 3T3 cells
 NIH3T3(細胞番号JCRB0615;Health Science Research Resources Bank,Osaka,Japan)細胞を、10%FBS及び1%ペニシリン−ストレプトマイシン−アンホテリシンBを補充したαMEM中で培養した。培養物を、95%空気及び5%CO2の水飽和雰囲気中で37℃で維持した。細胞を3~4日毎に日常的に継代し、8~10継代の細胞を実験に使用した。
NIH 3T3 cells
NIH3T3 (cell number JCRB0615; Health Science Research Resources Bank, Osaka, Japan) cells were cultured in αMEM supplemented with 10% FBS and 1% penicillin-streptomycin-amphotericin B. Cultures were maintained at 37 ° C. in a water-saturated atmosphere of 95% air and 5% CO 2. Cells were routinely passaged every 3-4 days, and cells at passages 8-10 were used for experiments.
スフェロイド形成能試験
 上記のSDC、OMDC、CBDC及びNIH3T3を上記3つの異なるプレートに播種し、10%FBS、1%ペニシリン−ストレプトマイシン−アンホテリシンBを同じ濃度で補充したαMEM(LAS細胞培養プレートについて1.5×10細胞/cm)中で培養した。他の研究報告(21、22)に従い、50μm径以上の細胞凝集体を形成したときに、本実施例におけるスフェロイドとした。培養3日後に新鮮な培地を加えた(ただし、培地の吸引は避けた)。スフェロイドの形成を観察し、1、3、5及び7日目に各プレートで計数した。3~5日の間に形成された一次スフェロイドを、遺伝子及びタンパク質発現研究のために使用した。
Spheroid-forming ability test The above SDC, OMDC, CBDC and NIH3T3 were seeded on the three different plates, and αMEM supplemented with the same concentration of 10% FBS, 1% penicillin-streptomycin-amphotericin B (1. 5 × 10 4 cells / cm 2 ). According to other research reports (21, 22), when a cell aggregate having a diameter of 50 μm or more was formed, it was regarded as a spheroid in this example. After 3 days of culture, fresh medium was added (however, aspiration of the medium was avoided). Spheroid formation was observed and counted on days 1, 3, 5, and 7 in each plate. Primary spheroids formed between 3-5 days were used for gene and protein expression studies.
アルカリホスファターゼ(AP)活性の検出
 AP活性は、培養プレートに播種した後の3日目に試験した。細胞を4%パラホルムアルデヒドリン酸緩衝液(Wako,163−20145)で4℃で15分間固定した。固定した細胞を蒸留水中で2回洗浄し、製造業者の指示に従ってBlue−Color AP Staining Kit(SBI,https://www.systembio.com/,CA,USA)で染色した。染色像は、オリンパスIX70倒立顕微鏡(Olympus,Totyo,Japan)で撮影した。
Detection of Alkaline Phosphatase (AP) Activity AP activity was tested on day 3 after plating on culture plates. Cells were fixed with 4% paraformaldehyde phosphate buffer (Wako, 163-12014) at 4 ° C for 15 minutes. Fixed cells were washed twice in distilled water and stained with Blue-Color AP Staining Kit (SBI, https://www.systembio.com/, CA, USA) according to the manufacturer's instructions. The stained image was taken with an Olympus IX70 inverted microscope (Olympus, Toyo, Japan).
免疫蛍光染色
 培養プレートへの播種後3日目に、細胞を4%パラホルムアルデヒドリン酸緩衝液(Wako,163−20145)で室温で15分間固定し、PBS(−)で4回洗浄し、続いてPBS中の0.5%Triton X−100,5%ウシ血清アルブミン(BSA,Nacalai Tesque,Inc.,Kyoto,Japan)及び5%正常ヤギ血清(abcam,ab7481,Cambridge,UK)で室温で30分間透過性化してブロックした。次いで、細胞を、1%BSAを含むPBS中の一次抗体と共に4℃で一晩インキュベートした。PBSで3回洗浄した後、細胞を、蛍光色素を含む適切な種特異的二次抗体と共に室温で2時間インキュベートした。細胞をPBSで3回洗浄し、次いでDAPI(ab104139,DAPI,Abcam,Cambridge,UKを含むフルオロシールドマウンティング培地)で30分間対比染色した。
On day 3 after seeding the culture plate, the cells were fixed with 4% paraformaldehyde phosphate buffer (Wako, 163-12014) for 15 minutes at room temperature, washed four times with PBS (-), 30% at room temperature with 0.5% Triton X-100, 5% bovine serum albumin (BSA, Nacalai Tesque, Inc., Kyoto, Japan) and 5% normal goat serum (abcam, ab7481, Cambridge, UK) in PBS. Permeabilized for 5 minutes and blocked. The cells were then incubated overnight at 4 ° C. with the primary antibody in PBS containing 1% BSA. After washing three times with PBS, cells were incubated with the appropriate species-specific secondary antibody containing a fluorescent dye for 2 hours at room temperature. The cells were washed three times with PBS and then counterstained with DAPI (fluoroshield mounting medium containing ab104139, DAPI, Abcam, Cambridge, UK) for 30 minutes.
 蛍光顕微鏡(Keyence,model BZ−X710,Osaka,Japan)によって画像を捕捉した。
 一次抗体は以下の通りである:
 マウス抗SSEA1[MC−480](1:50;ab16285,Abcam,Cambridge,UK)、
 ウサギ抗Oct4−ChIPグレード(1:250;ab19857,Abcam,Cambridge,UK)、
 ウサギ抗Nanog(1:100;ab80892,Abcam,Cambridge,UK)、及び
 ウサギ抗SOX2(1:250,ab97959,Abcam,Cambridge,UK)。
Images were captured by fluorescence microscopy (Keyence, model BZ-X710, Osaka, Japan).
The primary antibodies are as follows:
Mouse anti-SSEA1 [MC-480] (1:50; ab16285, Abcam, Cambridge, UK),
Rabbit anti-Oct4-ChIP grade (1: 250; ab19857, Abcam, Cambridge, UK),
Rabbit anti-Nanog (1: 100; ab80892, Abcam, Cambridge, UK), and rabbit anti-SOX2 (1: 250, ab97959, Abcam, Cambridge, UK).
 二次抗体は以下の通りである:
 ヤギ抗マウスIgG H&L(Alexa Fluor 488)(ab150113,Abcam,Cambridge,UK)、
 抗マウスIgM(Alexa Fluor 488)(ab150121,Abcam,Cambridge,UK)、及び
 抗ウサギIgG H&L(Alexa Fluor 647)(ab150079,Abcam,Cambridge,UK)。
The secondary antibodies are as follows:
Goat anti-mouse IgG H & L (Alexa Fluor 488) (ab150113, Abcam, Cambridge, UK),
Anti-mouse IgM (Alexa Fluor 488) (ab150121, Abcam, Cambridge, UK), and anti-rabbit IgG H & L (Alexa Fluor 647) (ab150079, Abcam, Cambridge, UK).
定量的リアルタイムPCR(qRT−PCR)
 細胞播種の12時間、1、3及び5日後に、TRIzol試薬(Invitrogen Corporation,Carlsbad,CA,USA)で細胞から全RNAを抽出し、製造業者のプロトコルに従ってPrimeScriptTM RT Master Mix(Perfect Real Time)(TaKaRa、Cat# RR036A)でcDNAを合成した。qRT−PCRは、Thermal Cycler Dice Real Time System蛍光定量装置(TaKaRa TP900)を用いて、SYBR(登録商標)Premix Ex TaqTM II(TaKaRa、RR820A)を用いて3回行った。RT−PCRの容量は25μlであり、2μl(2μg)cDNA、12.5μL SYBR Premix Ex Taq II(TaKaRa,RR820A)、それぞれ1μlの特異的フォワード及びリバースプライマー、並びに8.5μl滅菌水を含有する。
Quantitative real-time PCR (qRT-PCR)
Twelve hours, one, three, and five days after cell seeding, total RNA was extracted from cells with TRIzol reagent (Invitrogen Corporation, Carlsbad, CA, USA) and PrimeScript RT Master Mix (Perfect Real Time) according to the manufacturer's protocol. (TaKaRa, Cat # RR036A) to synthesize cDNA. qRT-PCR was performed three times using SYBR (registered trademark) Premix Ex TaqTM II (TaKaRa, RR820A) using a Thermal Cycler Dice Real Time System fluorimeter (TaKaRa TP900). RT-PCR has a volume of 25 μl and contains 2 μl (2 μg) cDNA, 12.5 μL SYBR Premix Ex Taq II (TaKaRa, RR820A), 1 μl each of specific forward and reverse primers, and 8.5 μl sterile water.
 qRT−PCRは、95℃で30秒間、続いて、95℃で5秒間、60℃で30秒間の40サイクル、次いで、95℃で15秒間、60℃で30秒間、95℃で15秒間の最終分離を行った。データは、2−ΔΔCt比定量により解析した。データをβ−actinレベルに対して正規化し、正規化対照値と比較した。
 予想された単位複製配列のプライマーは以下の通りである:
SSEA1(Fut4としても知られる)
qRT-PCR consists of 40 cycles of 95 ° C. for 30 seconds, followed by 95 ° C. for 5 seconds, 60 ° C. for 30 seconds, followed by a final cycle of 95 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 95 ° C. for 15 seconds. Separation was performed. Data was analyzed by 2-ΔΔCt ratio quantification. Data were normalized to β-actin levels and compared to normalized control values.
The expected amplicon primers are as follows:
SSEA1 (also known as Fut4)
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
統計解析
 データは、一元配置分散分析(one−way analysis of variance)(ANOVA)により分析した。有意なF比の場合、Tukeyの事後試験を行った。有意水準はP<0.05とし、他に示さない限り平均±標準偏差として示した。全てのデータは、特に示さない限り少なくとも3回の独立した実験から得た。
Statistical analysis Data were analyzed by one-way analysis of variance (ANOVA). Tukey's post-test was performed for significant F ratios. Significance levels were P <0.05 and are shown as mean ± SD unless otherwise indicated. All data were obtained from at least three independent experiments unless otherwise indicated.
結果
疎水性の異なる培養ディッシュの選択
 種々の表面疎水性の影響を調べるために、種々の培養プレートの水接触角を調べたが、これは3つの培養プレートの間で変化した。3つの培養プレートの水接触角を図1Aに示す。最も一般的な培養プレート(Dish1)の水接触角は60°付近であった。非接着性プレート(Dish 2)の水接触角はほぼ75.12°であった。しかし、培養プレートの1つだけ(Dish 3)が非常に大きな接触角(90.83°)を示した。
Results Selection of Culture Dishes with Different Hydrophobicities To investigate the effect of various surface hydrophobicities, the water contact angles of various culture plates were examined, which varied between the three culture plates. The water contact angles of the three culture plates are shown in FIG. 1A. The water contact angle of the most common culture plate (Dish 1) was around 60 °. The water contact angle of the non-adhesive plate (Dish 2) was approximately 75.12 °. However, only one of the culture plates (Dish 3) showed a very large contact angle (90.83 °).
 それぞれの培養プレートの水接触角は、同じメーカーの同じロット間で比較的安定しており、3つの培養プレート間では有意な差異があった(図1B)。水接触角の違いを理解するために、ディッシュの表面粗さをSPMを用いて評価した。画像は表面粗さの差を示し、観察された水接触角に相関した。水接触角が最も小さいDish 1は最も高い粗さを示し、水接触角が最も大きいDish 3は最も低い表面粗さを示し、水接触角が中間のDish 2は中間の表面粗さを示した(図1C)。
 図1Cにおいて、表面粗さの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
The water contact angle of each culture plate was relatively stable between the same lot from the same manufacturer and there was a significant difference between the three culture plates (FIG. 1B). In order to understand the difference in water contact angle, the surface roughness of the dish was evaluated using SPM. The images showed differences in surface roughness and correlated with the observed water contact angle. Dish 1 with the smallest water contact angle showed the highest roughness, Dish 3 with the largest water contact angle showed the lowest surface roughness, and Dish 2 with the middle water contact angle showed a medium surface roughness. (FIG. 1C).
In FIG. 1C, Table 1 shows the measurement results of the surface roughness.
Figure JPOXMLDOC01-appb-T000003
 皮膚由来細胞をこれらのDishに播種した場合、細胞は各Dish上で良好に増殖する。しかし、Dish 3の細胞のみが、スフェロイド生成を示した(図1D)。ディッシュ上で増殖した細胞は1日目までに徐々に細胞凝集体を形成したが、ほとんどの細胞凝集体はディッシュ上に付着したままであった。スフェロイドの形成は3日目までに明らかになり、多数のスフェロイドが培地中に浮遊していることが見出された。新しいスフェロイドの形成は、6日目以降は明白ではなかった。一方、Dish 1及びDish 2では、同じ播種密度でスフェロイドの形成は見られなかった。 When skin-derived cells are seeded on these dishes, the cells proliferate well on each dish. However, only the cells of dish # 3 showed spheroid production (FIG. 1D). Cells growing on the dish gradually formed cell aggregates by day 1, but most cell aggregates remained attached to the dish. Spheroid formation was evident by day 3 and a number of spheroids were found to be floating in the medium. The formation of new spheroids was not evident after day 6. On the other hand, in Dish # 1 and Dish # 2, spheroid formation was not observed at the same seeding density.
皮膚由来細胞由来のスフェロイドの特徴づけ
 スフェロイド形成細胞の特性を調べるために、免疫蛍光分析を行った。スフェロイドはSSEA1、nanog、oct−4、及びsox2に対して陽性であり(図2A)、これはqRT−PCR(図2B、C、D、E)で確認された。SSEA1の発現は、細胞播種後12時間後でさえスフェロイドでより高かった(図2B)。Oct4及びSox2の発現もスフェロイドで高く、72時間までに比較的安定であった(図2C,D)。スフェロイドにおけるNanogの発現も単層の発現よりも高く、発現は72時間増加した(図2E)。
Characterization of spheroids derived from skin-derived cells Immunofluorescence analysis was performed to characterize spheroid-forming cells. Spheroids were positive for SSEA1, nanog, oct-4, and sox2 (FIG. 2A), which was confirmed by qRT-PCR (FIGS. 2B, C, D, E). SSEA1 expression was higher in spheroids even 12 hours after cell seeding (FIG. 2B). Oct4 and Sox2 expression was also high in spheroids and was relatively stable by 72 hours (FIGS. 2C, D). Nanog expression in spheroids was also higher than monolayer expression, with expression increasing for 72 hours (FIG. 2E).
スフェロイド形成の可能なメカニズムとその普遍性
 特異的疎水性(90°水接触角は疎水性と親水性の境界線として知られている)を有するスフェロイド形成の考えられるメカニズムを調べるために、スフェロイド形成の過程を観察した(図4)。また、口腔粘膜由来細胞をスフェロイド形成培養及び平面単層培養したときのスフェロイド及び細胞のAP染色像を図5に示す。
Possible mechanisms of spheroid formation and its universality To investigate possible mechanisms of spheroid formation with specific hydrophobicity (90 ° water contact angle is known as the boundary between hydrophobicity and hydrophilicity) Was observed (FIG. 4). FIG. 5 shows an AP-stained image of spheroids and cells when oral mucosa-derived cells were cultured for spheroid formation and planar monolayer culture.
 最初のスフェロイド形成は培養プレートの特定の部分で観察され、次いで、増殖し、そして時には、他のスフェロイド形成細胞と凝集する。時間が経過することにつれて、これらの細胞凝集体は丸くなり、より大きくなり、次いで、ディッシュから徐々に脱離する。スフェロイド形成細胞の周囲には紡錘形の線維芽細胞があり、これもまた増殖するが、スフェロイドを形成しない。このスフェロイド形成細胞の特徴を確認するために、ES細胞マーカー(SSEA−1及びSox2)の免疫蛍光をDish 3上への細胞播種後の初期段階から行った(図3A−C)。これらのスフェロイド形成細胞はSSEA1及びSox2の両方に対して陽性であり、そして非スフェロイド形成細胞は一般に、これらのES細胞マーカーに対して陰性であった。 -Initial spheroid formation is observed in certain parts of the culture plate, then proliferates and sometimes aggregates with other spheroid-forming cells. Over time, these cell aggregates become rounder and larger, and then gradually detach from the dish. Surrounding the spheroid-forming cells are spindle-shaped fibroblasts, which also proliferate but do not form spheroids. In order to confirm the characteristics of the spheroid-forming cells, immunofluorescence of ES cell markers (SSEA-1 and Sox2) was performed from an early stage after seeding the cells on Dish # 3 (FIGS. 3A to 3C). These spheroid-forming cells were positive for both SSEA1 and Sox2, and non-spheroid-forming cells were generally negative for these ES cell markers.
 この現象の普遍性を調べるために、口腔粘膜由来細胞、緻密骨由来細胞(20)及びNIH‐3T3細胞を試験した。これらの細胞はすべて、Dish 3上でのみスフェロイドを形成することができたが、Dish 1及びDish 2上ではスフェロイドを形成することができず、このことは皮膚由来の細胞に限定されることなく、この現象の普遍性を確認した(図3D、E、F)。 調 べ る To examine the generality of this phenomenon, cells from oral mucosa, cells from compact bone (20) and NIH-3T3 cells were tested. All of these cells were able to form spheroids only on Dish # 3, but not on Dish # 1 and Dish # 2, which is not limited to skin-derived cells. The universality of this phenomenon was confirmed (FIGS. 3D, E, F).
考察
 体細胞幹細胞に対するスフェロイド培養の重要性に関する多くの刊行物があるが、単一の、一般に受け入れられているプロトコルはない。例えば、神経幹細胞培養のためのオリジナルの方法は、従来の二次元細胞培養なしで解離した細胞を利用する。スフェロイド形成は機械的移動なしに静的条件下で行い、スフェロイドは浮遊細胞のある画分から自然に形成した。より最近では、コーティングされたプレート上の細胞培養物もまた、スフェロイドを形成するために利用される。しかし、回転(23)、振盪(24)又は撹拌運動(25)を含む物理的又は機械的刺激を使用する多くの研究がある。また、重力を利用してスフェロイドを形成する方法としては、ハンギングドロップ法(26)や、特定の逆コーン形状の非付着性培養皿(27)を用いる方法などがある。全体として、これらの方法は、2つの主要なグループに分けることができる。
Discussion Although there are many publications on the importance of spheroid cultures for somatic stem cells, there is no single, generally accepted protocol. For example, original methods for neural stem cell culture utilize dissociated cells without traditional two-dimensional cell culture. Spheroid formation was performed under static conditions without mechanical migration, and spheroids formed spontaneously from certain fractions of floating cells. More recently, cell cultures on coated plates have also been utilized to form spheroids. However, there are many studies using physical or mechanical stimuli, including rotation (23), shaking (24) or agitating movement (25). As a method of forming spheroids using gravity, there are a hanging drop method (26) and a method using a specific inverted cone-shaped non-adherent culture dish (27). Overall, these methods can be divided into two main groups.
 自然に浮遊する細胞を使用する最初に報告された方法において、このプロセスは、「自発的なスフェロイド形成」とみなされた。そして、ある種の機械的力を用いたスフェロイド形成に基づく他の方法は、「機械的スフェロイド形成」と考えることができる。スフェロイドを形成する方法だけでなく、培地についても多様性がある。最初のスフェロイド形成培養は、添加剤(bFGF、EGF及びB27又は他の試薬)を含む無血清培養培地(DMEM/F12)を利用する(28)。一方、これらの添加剤を用いず、血清含有培地(29)を用いた刊行物がいくつかある。各研究は各方法の優越性及びこれらの添加剤の必要性を証明するいくつかの証拠を示したが、なぜこれほど多くのバリエーションがあり、スフェロイド培養に本当に必須であるのかはまだ明らかではない。さらに、これらの種々の方法で製造されたスフェロイドが同一であるか否かは明らかではない。したがって、本発明者らは非常に基本的な点、すなわち、スフェロイド形成に対する培養プレートの接着性の影響を調べることを決定した。 に お い て In the first reported method using naturally floating cells, this process was considered “spontaneous spheroid formation”. And another method based on spheroid formation using some kind of mechanical force can be considered as “mechanical spheroid formation”. There is diversity not only in the method of forming spheroids, but also in the medium. Initial spheroid-forming cultures utilize a serum-free culture medium (DMEM / F12) containing additives (bFGF, EGF and B27 or other reagents) (28). On the other hand, there are some publications using serum-containing medium (29) without using these additives. Each study showed some evidence demonstrating the superiority of each method and the need for these additives, but it is not yet clear why there are so many variations and they are really essential for spheroid culture . Furthermore, it is not clear whether spheroids produced by these various methods are identical. Therefore, we decided to look at a very basic point: the effect of culture plate adhesion on spheroid formation.
 これを達成するために、本発明者は2つのことに焦点を当てた。まず、疎水性は細胞接着性を反映することが知られており(30~32)、水接触角によって容易に評価できるため、培養プレートの疎水性の差に焦点を当てた。第2に、自発的スフェロイド形成と機械的スフェロイド形成を区別することを試み、自発的スフェロイド形成を達成するための必須条件を見出した。自発的スフェロイド形成は、幹細胞の選択的培養を達成するのに妥当であるように思われ、機械的スフェロイド形成はその性質のために、様々なタイプの細胞を含み得る。 To achieve this, we focused on two things. First, since the hydrophobicity is known to reflect cell adhesion (30 to 32) and can be easily evaluated by the water contact angle, the difference in the hydrophobicity of the culture plate was focused on. Second, we tried to distinguish between spontaneous spheroid formation and mechanical spheroid formation and found the prerequisites for achieving spontaneous spheroid formation. Spontaneous spheroid formation appears to be justified in achieving selective culture of stem cells, and mechanical spheroid formation, by its nature, may involve various types of cells.
 驚くべきことに、本実施例の結果は、疎水性とスフェロイド形成との間の直接的な関係を示した。スフェロイドの形成は、最も高い特定の水接触角を有するプレートでのみ観察された(図1、Dish 3)。これは、培養プレートが最も低い接着性を有することを意味する。 Surprisingly, the results of this example showed a direct relationship between hydrophobicity and spheroid formation. Spheroid formation was observed only on the plate with the highest specific water contact angle (FIG. 1, Dish # 3). This means that the culture plate has the lowest adhesion.
 時間経過画像では、少なくとも2つの集団の存在がこの培養プレート上の培養物中に認められたことを示した(図4)。1つのタイプの細胞は紡錘形であり、線維芽細胞又は典型的な間葉間質(幹)細胞のように見える。このタイプの細胞は比較的高い接着能力を有し、この皿に付着したままであり得る。もう一方のタイプの細胞は楕円形又は直方体の形状に見え、急速に移動し、細胞凝集を形成し始める。このタイプの細胞が同じタイプの細胞と接触すると、それらは付着し始めて、より大きな細胞凝集体を形成し、増殖し、スフェロイドを形成した。スフェロイドが一定の大きさになると、自然に皿から脱離し始めた。 Time course images showed that the presence of at least two populations was observed in the cultures on this culture plate (FIG. 4). One type of cell is spindle-shaped and looks like fibroblasts or typical mesenchymal stromal (stem) cells. This type of cell has a relatively high ability to adhere and can remain attached to the dish. The other type of cells appears oval or rectangular in shape, migrates rapidly, and begins to form cell aggregates. When cells of this type contacted cells of the same type, they began to attach, forming larger cell aggregates, proliferating, and forming spheroids. Once the spheroids reached a certain size, they began to spontaneously detach from the dish.
 この段階の免疫蛍光分析(図2A)から、凝集細胞のみが幹細胞マーカーを発現し、これは凝集細胞が体性幹細胞であることを示し、他の型の細胞よりも低い接着能力を有することができ、自然発生的なスフェロイド形成を生じる。紡錘形細胞がニッチのような幹細胞の維持に何らかの特定の役割を果たしているかどうかは不明である。しかし、これらの紡錘形細胞の少なくともいくつかは、in vivo又はin vitroの一定期間で幹細胞のニッチとして作用し、幹細胞の機能を支持すると推測するのは妥当である。この場合、これらの細胞はin vivoでのニッチの「支持細胞」として、さらにはin vitroでの仮想ニッチとしてさえも指定することができ、さらに調査すべきである。 From this stage of immunofluorescence analysis (FIG. 2A), only the aggregated cells express the stem cell marker, indicating that the aggregated cells are somatic stem cells and have a lower adherence capacity than other types of cells. Can result in spontaneous spheroid formation. It is unknown whether spindle cells play any particular role in maintaining niche-like stem cells. However, it is reasonable to speculate that at least some of these spindle cells act as a niche for stem cells over a period of time in vivo or in vitro and support stem cell function. In this case, these cells can be designated as "feeders" of the niche in vivo, and even as virtual niches in vitro, and should be further investigated.
 皮膚細胞からのスフェロイド形成は既に報告されており(いわゆるSKP)(33)、神経幹細胞培養のためのオリジナルの方法に基づいた基本プロトコルである(34)。しかし、効率は非常に低く、成体組織由来の細胞ではほとんど不可能であったため、胚性皮膚組織を利用する必要があった。一方、幹細胞を有するスェロイドは、本発明者らの方法で効率的に得ることができる。 ス Spheroid formation from skin cells has already been reported (so-called SKP) (33) and is a basic protocol based on the original method for neural stem cell culture (34). However, the efficiency was so low that it was almost impossible with cells from adult tissues, so that embryonic skin tissue had to be used. On the other hand, spheroids having stem cells can be efficiently obtained by the method of the present inventors.
 本来の方法と本発明の方法との主な違いは細胞継代であった(SKPには培養することなく分離細胞のみを使用し、本研究では2~3継代した細胞を使用した)。さらに、SKP研究は、より高い接着性を示した通常の培養プレートを利用する。したがって、幹細胞でさえも培養皿に付着している可能性がある。著者らの研究の結果は幹細胞が従来の二次元細胞培養後も依然として残存し得ることを示し、著者らは5継代後でさえもスフェロイド形成を確認したが、効率は低下した。 主 The main difference between the original method and the method of the present invention was cell passage (only isolated cells were used for SKP without culturing, and cells passaged 2-3 were used in this study). In addition, SKP studies utilize regular culture plates that showed higher adherence. Therefore, even stem cells may be attached to the culture dish. The results of our studies indicate that stem cells can still survive conventional two-dimensional cell culture, and the authors confirmed spheroid formation even after 5 passages, but with reduced efficiency.
 細胞の酵素的分離は容易ではなく、多数の幹細胞は完全には解離しないかもしれない。また、SKPを生成する方法は、プレートの高い接着性のために過度に厳しく、その結果、幹細胞でさえ、浮遊したままで皿に付着することができず、そのスフェロイド特性を失うことがある。 Enzymatic separation of cells is not easy and many stem cells may not dissociate completely. Also, the method of producing SKP is too harsh due to the high adhesion of the plate, so that even stem cells cannot float and attach to the dish and lose their spheroid properties.
 本実施例、及び機械的刺激を用いた他の試験との比較も興味深い問題である。これを確認するために、代表的な機械的スフェロイド形成プロトコールでもあるハンギングドロップ法を用いた時間経過実験も行った。その結果、細胞凝集の間、細胞のいくつかは成長し始めて小さなスフェロイドを形成し、それらのスフェロイドのサイズは変化した。他方、多数の細胞は、スフェロイドを形成しない。これは、死んだ分化細胞又は非増殖分化細胞である。最終的には、異なるタイプの細胞のすべてが凝集し、単一又は複数のスフェロイドを形成する。これは機械的に形成されたスフェロイドもまた、種々のレベルの幹細胞を有する幹細胞集団、及び分化した細胞を含み、これは機械的スフェロイドの比較的非選択的な性質を表す。 比較 Comparing this example with other tests using mechanical stimulation is also an interesting issue. In order to confirm this, a time-lapse experiment using the hanging drop method, which is a typical mechanical spheroid formation protocol, was also performed. As a result, during cell aggregation, some of the cells began to grow to form small spheroids, and the size of those spheroids changed. On the other hand, many cells do not form spheroids. It is a dead or non-proliferating differentiated cell. Eventually, all of the different types of cells aggregate and form single or multiple spheroids. This includes mechanically formed spheroids, also stem cell populations with varying levels of stem cells, and differentiated cells, which represent the relatively non-selective nature of mechanical spheroids.
しかし、理論的には、非分裂細胞の比は時間とともに減少し、スフェロイド形成細胞の大部分が幹細胞又は幹細胞由来細胞で占有されることが予測できる。この場合、自発的スフェロイド形成の主な利点は、幹細胞の純度及び幹細胞の迅速な選択であり得る。この考えを確認するために、qRT−PCRの結果は、ごく最初から(12時間後でさえ)有意に高い幹細胞マーカー発現を示した(図2B~E)。 However, theoretically, it can be expected that the ratio of non-dividing cells will decrease over time, and that most of the spheroid-forming cells will be occupied by stem cells or stem cell-derived cells. In this case, the main advantage of spontaneous spheroid formation may be the purity of the stem cells and the rapid selection of the stem cells. To confirm this idea, qRT-PCR results showed significantly higher stem cell marker expression from the very beginning (even after 12 hours) (FIGS. 2B-E).
 スフェロイドを形成するための幹細胞の凝集が幹細胞の特性に影響を及ぼし、幹細胞マーカーの発現を増強又は変化させ得ることもまた可能であり、これは、異なるより特異的な研究デザインの下で試験される。また、無血清環境とそれらの成長因子の必要性についても重要な問いである。本発明者が確認できる限り、本実施例の方法は、幹細胞又はスフェロイドを維持するためのこれらの因子が役割を担う可能性を排除するものではないが、これらの成長因子及び添加剤はスフェロイド形成に必要ではない。
 次の問題は、この現象の普遍性である。したがって、本発明者らは、3つの他の異なる細胞型を使用して、この現象の実現可能性を試験した。興味深いことに、皮膚由来細胞(図3A~C)だけでなく、口腔粘膜由来細胞(図3D)、皮質骨由来細胞(図3E)、NIH−3T3(図3F)でも観察された。
It is also possible that stem cell aggregation to form spheroids can affect stem cell properties and enhance or alter the expression of stem cell markers, which can be tested under different and more specific study designs. You. Another important question is the need for a serum-free environment and their growth factors. As far as the inventor can confirm, the method of this example does not exclude the possibility that these factors for maintaining stem cells or spheroids may play a role, however, these growth factors and additives do not affect spheroid formation. Is not necessary.
The next issue is the universality of this phenomenon. Therefore, we tested the feasibility of this phenomenon using three other different cell types. Interestingly, not only cells derived from skin (FIGS. 3A to 3C) but also cells derived from oral mucosa (FIG. 3D), cells derived from cortical bone (FIG. 3E), and NIH-3T3 (FIG. 3F) were observed.
 スフェロイド形成の効率及び形状においていくらかの差が示したが、同様の様式で幹細胞と共にスフェロイドを形成することができた。これは、本発明の方法が非常に普遍的であることを支持するものである。
 結論として、本発明の新規方法は、スフェロイド形成のために容易かつ再現性があり、そしてより安価である。従って、本発明の方法は、種々の組織由来の体性幹細胞の性質のメカニズムを理解することに寄与し、そしてまた、種々の臨床処置に適用することができる。
Spheroids could be formed with stem cells in a similar manner, although some differences were noted in the efficiency and shape of spheroid formation. This supports that the method of the present invention is very universal.
In conclusion, the novel method of the present invention is easy and reproducible for spheroid formation and is less expensive. Therefore, the method of the present invention contributes to understanding the mechanism of the nature of somatic stem cells from various tissues, and can also be applied to various clinical treatments.
参考文献
1.Joseph P.McGuirk,J.Robert Smith,Clint L.Divine,Micheal Zuniga,Mark L.Weiss Wharton’s Jelly−Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategy for the Management of Graft−versus−Host Disease.Pharmaceuticals(Basel)2015 Jun;8(2):196−220.
2.Yuriy Petrenko,Eva Sykova,Sarka Kubinova.The therapeutic potential of three−dimensional multipotent mesenchymal stromal cell spheroids.Stem Cell Res Ther.2017;8:94.Published online 2017 Apr 26.doi:10.1186/s13287−017−0558−6
3.Sart S,Tsai AC,Li Y,Ma T.Three−dimensional aggregates of mesenchymal stem cells:cellular mechanisms,biological properties,and applications.Tissue Eng Part B Rev.2014;20(5):365−80.
4.Pavo N,Charwat S,Nyolczas N,Jakab A,Murlasits Z,Bergler−Klein J,et al.Cell therapy for human ischemic heart diseases:Critical review and summary of the clinical experiences.J Mol Cell Cardiol.Elsevier Ltd;2014;75:12−24.doi:10.1016/j.yjmcc.2014.06.016[PubMed]
5.Malliaras K,Makkar RR,Smith RR,Cheng K,Wu E,Bonow RO,et al.Intracoronary cardiosphere−derived cells after myocardial infarction:evidence of therapeutic regeneration in the final 1−year results of the CADUCEUS trial(CArdiosphere−Derived aUtologous stem CElls to reverse ventricUlar dySfunction).J Am Coll Cardiol.2014;63:110−22.doi:10.1016/j.jacc.2013.08.724[PMC free article][PubMed]
6.Valente KP,Khetani S,Kolahchi AR,Sanati−Nezhad A,Suleman A,Akbari M.Microfluidic technologies for anticancer drug studies.Drug Discov Today.2017 Jul 4.pii:S1359−6446(17)30003−X.doi:10.1016/j.drudis.2017.06.010.
7.Pittenger M.F.,Mackay A.M.,Beck S.C.,Jaiswal R.K.,Douglas R.,Mosca J.D.,Moorman M.A.,Simonetti D.W.,Craig S.,and Marshak D.R.Multilineage potential of adult human mesenchymal stem cells.Science 284,143,1999[PubMed]
8.Mitchell J.B.,McIntosh K.,Zvonic S.,Garrett S.,Floyd Z.E.,Kloster A.,Di Halvorsen Y.,Storms R.W.,Goh B.,Kilroy G.,Wu X.,and Gimble J.M.Immunophenotype of human adipose−derived cells:temporal changes in stromal−associated and stem cell−associated markers.Stem Cells 24,376,2006[PubMed]
9.Weaver VM,Petersen OW,Wang F,Larabell CA,Briand P,Damsky C,Bissell MJ.Reversion of the malignant phenotype of human breast cells in three−dimensional culture and in vivo by integrin blocking antibodies.The Journal of cell biology.1997;137(1):231−245.[PMC free article][PubMed]
10.Mueller−Klieser W.Three−dimensional cell cultures:from molecular mechanisms to clinical applications.Am J Physiol.1997 Oct;273(4 Pt 1):C1109−23.
11.Cesarz Z,Tamama K.Spheroid culture of mesenchymal stem cells.Stem Cells Int.2016;2016:9176357.
12.Chandrasekaran A,Avci HX,Ochalek A,Rosingh LN,Molnar K,Laszlo L,Bellak T,Teglasi A,Pesti K,Mike A,Phanthong P,Biro O,Hall V,Kitiyanant N,Krause KH,Kobolak J,Dinnyes A.Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.Stem Cell Res.2017 Dec;25:139−151.doi:10.1016/j.scr.2017.10.010.[PubMed]
13.Vapniarsky N,Arzi B,Hu JC,Nolta JA,Athanasiou KA.Concise Review:Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.Stem Cells Transl Med.2015 Oct;4(10):1187−98.doi:10.5966/sctm.2015−0084.[PubMed]
14.Srinivasan PP,Patel VN,Liu S,Harrington DA,Hoffman MP,Jia X,Witt RL,Farach−Carson MC,Pradhan−Bhatt S.Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment−Driven Acinar−Like Differentiation in Hyaluronate Hydrogel Culture.Stem Cells Transl Med.2016 Aug 18.pii:sctm.2016−0083.
15.Vorwald CE,Ho SS,Whitehead J,Leach JK.High−Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels.Methods Mol Biol.2018;1758:139−149.doi:10.1007/978−1−4939−7741−3_11.[PubMed]
16.Biernaskie JA,McKenzie IA,Toma JG,Miller FD.Isolation of skin−derived precursors(SKPs)and differentiation and enrichment of their Schwann cell progeny.Nat.Protoc.2006;1(6):2803−12.[PubMed]
17.Montanez−Sauri SI,Beebe DJ,Sung KE.Microscale screening systems for 3D cellular microenvironments:platforms,advances,and challenges.Cell Mol Life Sci.2015 Jan;72(2):237−49.doi:10.1007/s00018−014−1738−5.[PubMed]
18.Dixon AR,Ramirez Y,Haengel K,Barald KF.A drop array culture for patterning adherent mouse embryonic stem cell−derived neurospheres.J Tissue Eng Regen Med.2018 Jan;12(1):e379−e383.doi:10.1002/term.2389.[PubMed]
19.Alves NM,Shi J,Oramas E,Santos JL,Tomas H,Mano JF.Bioinspired superhydrophobic poly(L−lactic acid)surfaces control bone marrow derived cells adhesion and proliferation.J Biomed Mater Res A.2009 Nov;91(2):480−8.doi:10.1002/jbm.a.32210.[PubMed]
20.Zhang Y,Li X,Chihara T,Mizoguchi T,Hori A,Udagawa N,Nakamura H,Hasegawa H,Taguchi A,Shinohara A,Kagami H.Comparing immunocompetent and immunodeficient mice as animal models for bone tissue engineering.Oral Dis.2015 Jul;21(5):583−92.doi:10.1111/odi.12319.
21.Toma JG,McKenzie IA,Bagli D,Miller FD.Isolation and characterization of multipotent skin−derived precursors from human skin.Stem Cells.2005 Jun−Jul;23(6):727−37.
22.Abe S,Yamaguchi S,Sato Y,Harada K.Sphere−Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells.Stem Cells Transl Med.2016 Jan;5(1):117−28.doi:10.5966/sctm.2015−0111.
23.Suenaga H,Furukawa KS,Suzuki Y,Takato T,Ushida T.Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow−derived mesenchymal stromal cell spheroids.J Mater Sci Mater Med.2015 Nov;26(11):254.doi:10.1007/s10856−015−5591−3.
24.Shi W,Kwon J,Huang Y,Tan J,Uhl CG,He R,Zhou C,Liu Y.Facile Tumor Spheroids Formation in Large Quantity with Controllable Size and High Unifomity.Sci Rep.2018 May 1;8(1):6837.doi:10.1038/s41598−018−25203−3.
25.Gati I,Danielsson O,Betmark T,Ernerudh J,Ollinger K,Dizdar N.Culturing of diagnostic muscle biopsies as spheroid−like structures:a pilot study of morphology and viability.Neurol Res.2010 Jul;32(6):650−5.doi:10.1179/016164109X12464612122579.
26.Park MJ,Lee J,Byeon JS,Jeong DU,Gu NY,Cho IS,Cha SH.Effects of three−dimensional spheroid culture on equine mesenchymal stem cell plasticity.Vet Res Commun.2018 May 2.doi:10.1007/s11259−018−9720−6.
27.Hendriks DF,Fredriksson Puigvert L,Messner S,Mortiz W,Ingelman−Sundberg M.Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability.Sci Rep.2016 Oct 19;6:35434.doi:10.1038/srep35434.
28.Munthe S,Halle B,Boldt HB,Christiansen H,Schmidt S,Kaimal V,Xu J,Zabludoff S,Mollenhauer J,Poulsen FR,Kristensen BW.Shift of microRNA profile upon glioma cell migration using patient−derived spheroids and serum−free conditions.J Neurooncol.2017 Mar;132(1):45−54.doi:10.1007/s11060−016−2356−x.
29.Maritan SM,Lian EY,Mulligan LM.An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production.J Vis Exp.2017 Mar 27;(121).doi:10.3791/55544.
30.Yanagisawa I,Sakuma H,Shimura M,Wakamatsu Y,Yanagisawa S,Sairenji E.Effects of “wettability”of biomaterials on culture cells.J Oral Implantol.1989;15(3):168−77.
31.Anderson CR,Gambinossi F,DiLillo KM,Laschewsky A,Wischerhoff E,Ferri JK,Sefcik LS.Tuning reversible cell adhesion to methacrylate−based thermoresponsive polymers:Effects of composition on substrate hydrophobicity and cellular responses.J Biomed Mater Res A.2017 Sep;105(9):2416−2428.doi:10.1002/jbm.a.36100.
32.Zangi S,Hejazi I,Seyfi J,Hejazi E,Khonakdar HA,Davachi SM.Tuning cell adhesion on polymeric and nanocomposite surfaces:Role of topography versus superhydrophobicity.Mater Sci Eng C Mater Biol Appl.2016 Jun;63:609−15.doi:10.1016/j.msec.2016.03.021.
33.Toma JG,Akhavan M,Fernandes KJ,Barnabe−Heider F,Sadikot A,Kaplan DR,Miller FD.Isolation of multipotent adult stem cells from the dermis of mammalian skin.Nat Cell Biol.2001 Sep;3(9):778−84.
34.Biernaskie JA,McKenzie IA,Toma JG,Miller FD.Isolation of skin−derived precursors(SKPs)and differentiation and enrichment of their Schwann cell progeny.Nat Protoc.2006;1(6):2803−12.
Reference 1. Joseph P.S. McGuirk, J .; Robert Smith, Clint L. Divine, Michel Zuniga, Mark L .; Weiss Wharton's Jelly-Derived Mesenchymal Stromal Cells as a Promising Cellular Therapeutic Strategies for the Management of the Draft-Hovers- Pharmaceuticals (Basel) 2015 Jun; 8 (2): 196-220.
2. Yury Petrenko, Eva Sykova, Sarka Kubinova. Therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther. 2017; 8: 94. Published online 2017 Apr 26. doi: 10.1186 / s13287-017-0558-6
3. Sart S, Tsai AC, Li Y, MaT. Three-dimensional aggregations of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng Part B Rev. 2014; 20 (5): 365-80.
4. See Pavo N, Charwat S, Nyloczas N, Jakab A, Murrasits Z, Bergler-Klein J, et al. Cell therapy for human ischemic heart diseases: Critical review and summery of the clinical experiences. J Mol Cell Cardiol. Elsevier Ltd; 2014; 75: 12-24. doi: 10.1016 / j. yjmcc. 2014.6.016 [PubMed]
5. See Mallieras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014; 63: 110-22. doi: 10.1016 / j. jack. 2013.08.724 [PMC free article] [PubMed]
6. Valente KP, Khetani S, Kolahchi AR, Sanati-Nezhad A, Suleman A, Akbari M. Microfluidic technologies for anticancer drug studies. Drug Discov Today. 2017 Jul 4. pii: S1359-6446 (17) 3000-X. doi: 10.1016 / j. drugis. 2017.6.010.
7. Pittenger M. F. , Mackay A .; M. , Beck S.A. C. , Jaiswal R .; K. , Douglas R .; , Mosca J. et al. D. , Moorman M .; A. , Simonetti D., et al. W. , Craig S .; , And Marshak D .; R. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143, 1999 [PubMed]
8. Mitchell J. et al. B. , McIntosh K .; , Zvonic S .; , Garrett S .; , Floyd Z .; E. FIG. , Kloster A .; , Di Halvorsen Y .; Storms R .; W. Goh B .; , Killoy G .; , Wu X. , And Gimble J .; M. Immunophenotype of human adipose-derived cells: temporal changes in strom-associated and stem cell-associated markers. Stem Cells 24, 376, 2006 [PubMed]
9. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. Revision of the marriage phenotype of human breast cells in the three-dimensional culture and in vivo by integrating blocking antibodies. The Journal of cell biology. 1997; 137 (1): 231-245. [PMC free article] [PubMed]
10. Mueller-Klieser W.M. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol. 1997 Oct; 273 (4 Pt 1): C1109-23.
11. Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016; 2016: 9176357.
12. Chandrasekaran A, Avci HX, Ochalek A, Rossing LN, Molnar K, Laszlo L, Bellak T, Teglasi A, Pesti K, Mike A, Phanthong P, BirloK, ItalKonK, HallKan, KalNHK . Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced stem cells. Stem Cell Res. 2017 Dec; 25: 139-151. doi: 10.1016 / j. scr. 2017.10.010. [PubMed]
13. Vapniasky N, Arzi B, Hu JC, Nolt JA, Athanassiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerating Medicine. Stem Cells Trans Med. 2015 Oct; 4 (10): 1187-98. doi: 10.5966 / sctm. 2015-0084. [PubMed]
14. Srinivasan PP, Patel VN, Liu S, Harrington DA, Hoffman MP, Jia X, Witt RL, Farach-Carson MC, Pradhan-Bhatt S. Primary Salivary Human Stem / Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture. Stem Cells Trans Med. 2016 Aug 18. pii: sctm. 2016-0083.
15. Vorwald CE, Ho SS, Whitehead J, Leach JK. High-Throughput Formation of Mesenchymal Stem Cell Spheres and Entrapment in Originate Hydrogels. Methods Mol Biol. 2018; 1758: 139-149. doi: 10.1007 / 978-1-4939-7741-3_11. [PubMed]
16. Biernaskie JA, McKenzie IA, Toma JG, Miller FD. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat. Protoc. 2006; 1 (6): 2803-12. [PubMed]
17. Montanez-Sauri SI, Beebe DJ, Sung KE. Microscale screening systems for 3D cellular microenvironments: platforms, advancees, and challenges. Cell Mol Life Sci. 2015 Jan; 72 (2): 237-49. doi: 10.1007 / s00018-014-1738-5. [PubMed]
18. Dixon AR, Ramirez Y, Haengel K, Barald KF. A drop array culture for patterning adherent mouse embryonic stem cell-derived neurospheres. J Tissue Eng Regen Med. 2018 Jan; 12 (1): e379-e383. doi: 10.1002 / term. 2389. [PubMed]
19. Alves NM, Shi J, Oramas E, Santos JL, Thomas H, Mano JF. Bioinspired superhydrophobic poly (L-lactic acid) surface controls control bone marlow derived cells adhesion and promotion. J Biomed Mater Res A. 2009 Nov; 91 (2): 480-8. doi: 10.1002 / jbm. a. 32210. [PubMed]
20. Zhang Y, Li X, Chihara T, Mizoguchi T, Hori A, Udagawa N, Nakamura H, Hasegawa H, Taguchi A, Shinohara A, Kagami H. Comparing immunocompetent and immunodefinient mice as animal models for bone tissue engineering. Oral Dis. 2015 Jul; 21 (5): 583-92. doi: 10.1111 / odi. 12319.
21. Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005 Jun-Jul; 23 (6): 727-37.
22. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Trans Med. 2016 Jan; 5 (1): 117-28. doi: 10.5966 / sctm. 2015-0111.
23. Suenaga H, Furukawa KS, Suzuki Y, Takato T, Ushida T. Bone generation in calvarial defects in a rat model by implantation of human bone marlow-derived mesenchymal structural cell spheroids. J Mater Sci Mater Med. 2015 Nov; 26 (11): 254. doi: 10.1007 / s10856-015-5591-3.
24. Shi W, Kwon J, Huang Y, Tan J, Uhl CG, He R, Zhou C, Liu Y. Facile Tumor Spheroids Formation in Large Quantity with Controllable Size and High Uniformity. Sci Rep. 2018 May 1; 8 (1): 6837. doi: 10.1038 / s 41598-018-25203-3.
25. Gati I, Danielsson O, Betmark T, Ernerud J, Olinger K, Dizdar N. Culturing of diagnostic muscle biopsies as spheroid-like structures: a pilot study of morphology and availability. Neurol Res. 2010 Jul; 32 (6): 650-5. doi: 10.1179 / 016164109X12464621222579.
26. Park MJ, Lee J, Byeon JS, Jong DU, Gu NY, Cho IS, Cha SH. Effects of three-dimensional spheroid culture on equine mesenchymal stem cell plasticity. Vet Res Commun. 2018 May 2. doi: 10.1007 / s11259-018-9720-6.
27. Hendriks DF, Fredriksson Puigvert L, Messner S, Mortiz W, Ingelman-Sundberg M. Hepatic 3D spheroid models for the detection and study of compounds with the children's reliability. Sci Rep. 2016 Oct 19; 6: 35434. doi: 10.1038 / srep35434.
28. Munte S, Halle B, Boldt HB, Christiansen H, Schmidt S, Kaimal V, Xu J, Zabloffoff S, Mollenhauer J, Poulsen FR, Kristensen BW. Shift of microRNA profile up gloma cell migration using patent-derived spheroids and serum-free conditions. J Neurooncol. 2017 Mar; 132 (1): 45-54. doi: 10.1007 / s11060-016-2356-x.
29. Maritan SM, Lian EY, Mulligan LM. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production. J Vis Exp. 2017 Mar 27; (121). doi: 10.3791 / 55544.
30. Yanagisawa I, Sakuma H, Shimura M, Wakamatsu Y, Yanagiwa S, Sairenji E. Effects of “wetability” of biomaterials on culture cells. J Oral Implantol. 1989; 15 (3): 168-77.
31. Anderson CR, Gambinossi F, DiLillo KM, Laschewsky A, Wischerhoff E, Ferri JK, Sefcik LS. Tuning reversible cell adhesion to methacrylate-based thermoresponsive polymers: Effects of composition on subsidiary hydrasonic reliance and reciprocity and responsivity. J Biomed Mater Res A. 2017 Sep; 105 (9): 2416-2428. doi: 10.1002 / jbm. a. 36100.
32. Zangi S, Hejazi I, Seyfi J, Hejazi E, Khonakdar HA, Davachi SM. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity. Mater Sci Eng C Mater Biol Appl. 2016 Jun; 63: 609-15. doi: 10.1016 / j. msec. 2016.3.03.021.
33. Toma JG, Akhavan M, Fernandez KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammarian skin. Nat Cell Biol. 2001 Sep; 3 (9): 778-84.
34. Biernaskie JA, McKenzie IA, Toma JG, Miller FD. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protocol. 2006; 1 (6): 2803-12.
[実施例2]
要約
本発明者は、約90度の水接触角を有する特異的低接着性培養プレートを用いた自発的スフェロイド形成のための新しい方法を開発した。本発明の方法はさまざまな細胞に適応可能であるが、本実施例では口腔粘膜由来細胞および皮膚由来細胞への応用について述べる。最初に、自発的スフェロイド形成の実現可能性を試験した。次に、口腔粘膜由来および皮膚由来細胞由来のスフェロイドの特性を、幹性および神経分化能に特に焦点を当てて比較した。
[Example 2]
SUMMARY The present inventors have developed a new method for spontaneous spheroid formation using specific low-adhesion culture plates with a water contact angle of about 90 degrees. Although the method of the present invention can be applied to various cells, this example describes application to oral mucosa-derived cells and skin-derived cells. First, the feasibility of spontaneous spheroid formation was tested. Next, the properties of spheroids from oral mucosa and skin-derived cells were compared, with a particular focus on stemness and neurogenic potential.
C57BL/6Jマウスの口蓋および頬粘膜から経口粘膜細胞を得た。同様に、同じ系統のマウス背部から皮膚細胞を得た。2~3継代の細胞を特異的低接着性培養プレートに播種して、自発的スフェロイドを形成した。塩基性線維芽細胞増殖因子(bFGF)、上皮増殖因子(EGF)およびB27のスフェロイド形成および維持に対する効果を評価した。免疫蛍光および定量的逆転写ポリメラーゼ連鎖反応(qRT−PCR)を行って、多能性マーカー、細胞増殖およびアポトーシスマーカー、並びに神経分化マーカーの発現を調べた。 Oral mucosal cells were obtained from the palate and buccal mucosa of C57BL / 6J mice. Similarly, skin cells were obtained from the back of the same strain of mice. Cells from passage 2 to 3 were seeded on specific low-adhesion culture plates to form spontaneous spheroids. The effects of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27 on spheroid formation and maintenance were evaluated. Immunofluorescence and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were performed to examine the expression of pluripotency markers, cell proliferation and apoptosis markers, and neural differentiation markers.
この培養プレートを用いることにより、口腔粘膜由来細胞,皮膚油彩棒とも自発的スフェロイド形成が可能となった。このプロセスは血清の存在に依存したが、bFGF、EGFおよびB27サプリメント等の添加剤とは無関係であった(但し、これらの添加因子はスフェロイド形成効率を改善し、またスフェロイドの維持に必須であった)。口腔粘膜由来細胞からのスフェロイドは、Sox2、SSEA1、Oct4、Nanogおよびネスチンなどの幹細胞マーカーを発現した。口腔粘膜細胞由来のスフェロイドにおけるSox2の発現は、皮膚由来細胞由来のスフェロイドにおける発現よりも高かった。スフェロイド形成細胞は、どちらのタイプも、神経系細胞への分化原性誘導後に神経およびシュワン細胞に分化する能力を有したが、MAP2、MBP、ネスチンおよびNurr1遺伝子発現は、口腔粘膜由来スフェロイド由来の細胞において有意に高く認められた。 The use of this culture plate enabled spontaneous spheroid formation of both oral mucosa-derived cells and skin oil sticks. This process depended on the presence of serum but was independent of additives such as bFGF, EGF and B27 supplements (although these added factors improved spheroid formation efficiency and were essential for spheroid maintenance). T). Spheroids from oral mucosa-derived cells expressed stem cell markers such as Sox2, SSEA1, Oct4, Nanog and Nestin. The expression of Sox2 in spheroids from oral mucosal cells was higher than in spheroids from skin-derived cells. Both types of spheroid-forming cells were capable of differentiating into neural and Schwann cells after induction of differentiation to nervous system cells, whereas MAP2, MBP, nestin and Nurr1 gene expression was derived from oral mucosal-derived spheroids. Significantly higher in cells.
 ここで、Nurr1はドーパミン産生細胞のマーカーであり、ドーパミン産生細胞はパーキンソン病で減少することが知られている。Nurr1遺伝子の高い発現が認められたことは、本発明のスフェロイドがドーパミン産生細胞に分化することを意味している。従って、本発明のスフェロイドは、パーキンソン病の治療薬として有用である。 Here, Nurr1 is a marker for dopamine-producing cells, and it is known that dopamine-producing cells are reduced in Parkinson's disease. The high expression of the Nurr1 gene means that the spheroids of the present invention differentiate into dopamine-producing cells. Therefore, the spheroid of the present invention is useful as a therapeutic agent for Parkinson's disease.
結果は、口腔粘膜由来細胞からの自発的スフェロイドが皮膚由来幹細胞と同程度に良好な高度に強力な幹細胞を含むことを示した。特定のニューロンマーカー遺伝子の高発現は、ニューロン障害の再生治療のためのこれらの細胞の利点を示唆する。 The results showed that spontaneous spheroids from oral mucosa-derived cells contain highly potent stem cells as good as skin-derived stem cells. High expression of certain neuronal marker genes suggests the benefit of these cells for regenerative treatment of neuronal disorders.
 本発明の方法によって得られた自発的スフェロイドは神経分化能に優れ,神経疾患の治療に有用であることが示された。そして、中でも口腔粘膜細胞から作製した自発的スフェロイドは優れた神経幹細胞であることが示された。本発明の方法により調製された自発的スフェロイドを用いることにより、神経幹細胞を調製することができる。また、本発明の方法による自発的スフェロイド形成に際しては、bFGFやEGFなどの添加因子は、形成効率を改善するとともに、スフェロイドの維持に重要である。従って、本発明においては、これらの添加因子を使用することも可能である。 (4) Spontaneous spheroids obtained by the method of the present invention have excellent neuronal differentiation ability and have been shown to be useful for treating neurological diseases. In particular, spontaneous spheroids prepared from oral mucosal cells were shown to be excellent neural stem cells. By using the spontaneous spheroid prepared by the method of the present invention, neural stem cells can be prepared. Further, upon spontaneous spheroid formation by the method of the present invention, additional factors such as bFGF and EGF are important for improving the formation efficiency and maintaining the spheroid. Therefore, in the present invention, it is also possible to use these additional factors.
背景
 スフェロイド形成は、ニューロン、皮膚、唾液腺、骨髄間質、歯周靭帯および歯髄組織を含む様々な組織からの幹細胞の選択的培養に使用されている[1~5]。スフェロイドを形成するために様々な方法が使用される。ハンギングドロップ法は、細胞懸濁液の液滴を利用し、細胞は、重力によって液滴の底部で凝集し始め、最終的にスフェロイドを形成する[6]。培地の回転もまた使用されている[7、8]。これらの方法は物理的な力に依存し、細胞間の接着は細胞の強制的な接触によって達成されるため、本発明者はそれらを「機械的スフェロイド形成」法と呼び、スフェロイド形成のプロセスは幹細胞に対して選択的ではない[9]。
Background Spheroid formation has been used for the selective culture of stem cells from various tissues, including neurons, skin, salivary glands, bone marrow stroma, periodontal ligaments, and pulp tissue [1-5]. Various methods are used to form spheroids. The hanging drop method utilizes droplets of a cell suspension, and the cells begin to aggregate by gravity at the bottom of the droplet, eventually forming spheroids [6]. Media rotation has also been used [7,8]. Because these methods rely on physical forces and the adhesion between cells is achieved by forced contact of cells, we call them "mechanical spheroid formation" methods, and the process of spheroid formation is It is not selective for stem cells [9].
 本発明の方法を含む他の方法は物理的な力は使用せず、スフェロイド形成は静的条件下で起こる。したがって、本発明者は、これらのアプローチを「自発的スフェロイド形成」法と名付けた[9]。自発的なスフェロイド形成は可能な幹細胞からのみ開始するので、理論的には幹細胞の選択的培養を可能にする。これまでのところ、報告されている自発的スフェロイド形成のほとんどは、神経幹細胞および皮膚由来幹細胞に限られており[10、11]、口腔粘膜由来細胞由来の自発的スフェロイドの詳細な特徴は報告されていない。 他 Other methods, including the method of the present invention, do not use physical forces and spheroid formation occurs under static conditions. Therefore, we have named these approaches the "spontaneous spheroid formation" method [9]. Since spontaneous spheroid formation starts only from possible stem cells, it theoretically allows selective culture of stem cells. So far, most of the reported spontaneous spheroid formation has been limited to neural stem cells and skin-derived stem cells [10, 11], and the detailed characteristics of spontaneous spheroids derived from oral mucosal cells have been reported. Not.
 体性幹細胞用の細胞源の中で、口腔粘膜は非常に独特であると考えられる。細胞系統研究は、成体組織でさえ、神経堤細胞様幹細胞を含むことを明らかになっている[12、13]。口腔粘膜および皮膚線維芽細胞は、類似の形態および機能を有するが、いくつかの本質的な差異が存在する。例えば、口腔粘膜における創傷治癒は、皮膚における創傷治癒と比較して、より速く、瘢痕形成がより少ない[14、15]。口腔粘膜のこれらの特徴は、高度に強力な神経堤由来細胞の存在に起因し得る[16]。従って、何名かの研究者は、口腔粘膜が体性幹細胞のための好ましい供給源であると考えている[17]。この考えを支持するために、いくつかの最近の研究では、口唇および口腔粘膜の固有層における幹細胞集団が神経堤様の特徴を示し、骨芽細胞、軟骨芽細胞、脂肪細胞、および神経系統への分化を含む、非常に広い分化能力を有することを報告している[18~21]。しかし、本発明者の知る限りでは、皮膚および口腔粘膜由来の幹細胞を直接比較した試験はない。 口 Among the cell sources for somatic stem cells, oral mucosa is considered to be very unique. Cell lineage studies have shown that even adult tissues contain neural crest-like stem cells [12,13]. Oral mucosa and dermal fibroblasts have similar morphology and function, but there are some essential differences. For example, wound healing in the oral mucosa is faster and produces less scarring compared to wound healing in the skin [14, 15]. These features of the oral mucosa can be attributed to the presence of highly potent neural crest-derived cells [16]. Therefore, some researchers consider oral mucosa to be a preferred source for somatic stem cells [17]. To support this notion, several recent studies have shown that stem cell populations in the lamina propria of the lips and oral mucosa exhibit neural crest-like characteristics, leading to osteoblasts, chondroblasts, adipocytes, and neural lineages. It has been reported that it has a very broad differentiation potential, including that of [18-21]. However, to the inventors' knowledge, there is no direct comparison of stem cells from skin and oral mucosa.
 本実施例では、口腔粘膜由来細胞からの自発的スフェロイド形成の可能性を試験した。次に、神経スフェロイド形成の必須因子として報告されている塩基性線維芽細胞増殖因子(bFGF)、上皮増殖因子(EGF)およびB27サプリメントの、自発的スフェロイド形成および維持に対する役割を調べた。最後に、口腔粘膜由来および皮膚由来細胞由来の自発的スフェロイドの特徴を、それらの幹細胞性および神経分化能に特に焦点を当てて比較した。 In this example, the possibility of spontaneous spheroid formation from cells derived from oral mucosa was tested. Next, the role of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and B27 supplements, which have been reported as essential factors for nerve spheroid formation, on spontaneous spheroid formation and maintenance was examined. Finally, the characteristics of spontaneous spheroids from oral mucosal and skin-derived cells were compared, with a special focus on their stem cell and neural differentiation potential.
材料及び方法
細胞培養
 動物実験は、松本歯科大学動物実験委員会(no.289)によって承認された。初代培養細胞は、従来のエキスプラント培養法を用いて得た。マウス(3~4週齢)を麻酔過剰投与で死亡させ、次いで頬粘膜および口蓋粘膜並びに背部皮膚を除去し、培養した。基本培地は10%ウシ胎児血清(FBS;Biowest,Nuaille,French)、100U/mlペニシリン、100μg/mlストレプトマイシン、および0.25μg/mlアンホテリシンB(Biological Industries USA,Inc.,Cromwell,CT,USA)を補充したαMEM(Wako Pure Chemical Industries,Ltd,Osaka,Japan)である。細胞は、80%~90%コンフルエントで継代した。培地は、3~4日毎に交換した。2~3継代の細胞を実験に使用した。
Materials and Methods Cell Culture Animal experiments were approved by the Animal Experiment Committee of Matsumoto Dental University (no. 289). Primary cultured cells were obtained using a conventional explant culture method. Mice (3-4 weeks old) were killed by overdose of anesthesia, then the buccal and palatal mucosa and the back skin were removed and cultured. The basal medium is 10% fetal bovine serum (FBS; Biowest, Nuail, France), 100 U / ml penicillin, 100 μg / ml streptomycin, and 0.25 μg / ml amphotericin B (Biological Industries USA, Inc., Cromwell, CT, USA). (Wako Pure Chemical Industries, Ltd., Osaka, Japan) supplemented with. Cells were passaged at 80% -90% confluence. The medium was changed every 3-4 days. Cells from 2-3 passages were used for the experiments.
 皮質骨由来細胞(CBDC)の培養は本発明者の以前の研究で報告された計画書に基づき、改変した[9]。簡潔には、大腿骨および脛骨を切開し、骨端を切断し、骨髄を灌流した。次いで、皮質骨を細かい断片に切断し、コラゲナーゼ溶液中、37℃で45分間、バイオシェーカー中でインキュベートした。細胞を回収し、10ng/mlの塩基性線維芽細胞増殖因子(bFGF)(PeproTech,Rocky Hill,USA)を補充したαMEM中で培養した。骨チップを同じ培養培地で同じ皿の他のウェルに播種して、さらに細胞を回収した。 培養 The culture of cortical bone-derived cells (CBDC) was modified based on the protocol reported in our previous work [9]. Briefly, femurs and tibias were incised, epiphyses were cut, and bone marrow was perfused. The cortical bone was then cut into small pieces and incubated in a collagenase solution at 37 ° C. for 45 minutes in a bioshaker. Cells were harvested and cultured in αMEM supplemented with 10 ng / ml basic fibroblast growth factor (bFGF) (PeproTech, Rocky @ Hill, USA). Bone chips were seeded with the same culture medium in other wells of the same dish, and further cells were collected.
スフェロイド形成
 スフェロイド形成のために使用される方法は、本発明者の以前の刊行物[9]に記載されている。簡潔には、単層培養細胞をトリプシン処理し、細胞を55mmディッシュ(1.5×10細胞/cm)(Azunol(登録商標)、#1−8549−02、AS ONE、Osaka、Japan)に播種し、基礎培養培地でスフェロイドを生成した。培地は3日毎に交換した。口腔粘膜および皮膚由来細胞のスフェロイド形成効率を評価するために、4つの平行位相差顕微鏡視野/ディッシュ(x4対物レンズ(Olympus IX70倒立顕微鏡、Olympus Optical CO,Ltd,Tokyo,Japan))で1~5日間、スフェロイドの数およびサイズを測定した。スフェロイドの維持を評価するために、塩基性線維芽細胞増殖因子(bFGF;Gibco,Carlsbad,CA,USA)、上皮増殖因子(EGF;PeproTech,Rocky Hill,NJ,USA)およびB27サプリメント(Gibco,Carlsbad,CA,USA)を基本培地に添加した。各因子の必要性を調べるために、これらの添加剤の1つまたはいくつかを用いて培養を行った。スフェロイドの直径および数を5日間測定した。
Spheroid Formation The method used for spheroid formation has been described in our previous publication [9]. Briefly, monolayer cultured cells are trypsinized and the cells are 55 mm dishes (1.5 × 10 4 cells / cm 2 ) (Azunol®, # 1-8549-02, AS ONE, Osaka, Japan). And spheroids were produced in a basal culture medium. The medium was changed every three days. In order to evaluate the spheroid formation efficiency of oral mucosa and skin-derived cells, 1 to 5 with 4 parallel phase contrast microscope fields / dish (x4 objective lens (Olympus IX70 inverted microscope, Olympus Optical CO, Ltd, Tokyo, Japan)). During the day, the number and size of spheroids were measured. To assess spheroid maintenance, basic fibroblast growth factor (bFGF; Gibco, Carlsbad, CA, USA), epidermal growth factor (EGF; PeproTech, Rocky Hill, NJ, USA) and B27 supplement (Gibco, Carlsbad). , CA, USA) was added to the basal medium. Cultures were performed with one or several of these additives to determine the need for each factor. Spheroid diameter and number were measured for 5 days.
神経分化
 口腔粘膜由来、皮膚由来、及びCBDC由来細胞からのスフェロイドを、新しい通常培養皿に移した。これらの培養物が50%~60%コンフルエントに達した後、培地を神経分化誘導培地に交換した。神経細胞分化に使用した培地は、L−グルタミン、フェノールレッド(Wako)、50ng/ml神経成長因子、50ng/ml脳由来神経栄養因子、10ng/ml NT−3(すべてPeprotech)、10% FBS、100U/mlペニシリン、100μg/mlストレプトマイシン、および0.25μg/mlアンホテリシンB(Biological Industries)を添加したαMEMとした。シュワン細胞分化のために使用した培地は、L−グルタミン、フェノールレッド(Wako)、5μM forskolinフォルスコリン(Sigma)、50ng/mlヘレグリン−1β(Peprotech)、2% v/v N2サプリメント(Invitrogen)、10% FBS、100U/mlペニシリン、100μg/mlストレプトマイシン、および0.25μg/mlアンホテリシンB(Biological Industries)を添加したαMEMとした。細胞を1または2週間分化させ、培地の50%を2日ごとに交換した。
Neural Differentiation Spheroids from oral mucosal, skin and CBDC derived cells were transferred to new regular culture dishes. After these cultures reached 50% to 60% confluence, the medium was replaced with a neural differentiation induction medium. The medium used for neuronal differentiation was L-glutamine, phenol red (Wako), 50 ng / ml nerve growth factor, 50 ng / ml brain-derived neurotrophic factor, 10 ng / ml NT-3 (all Peprotech), 10% FBS, ΑMEM supplemented with 100 U / ml penicillin, 100 μg / ml streptomycin, and 0.25 μg / ml amphotericin B (Biological Industries). The medium used for Schwann cell differentiation was L-glutamine, phenol red (Wako), 5 μM forskolin forskolin (Sigma), 50 ng / ml heregulin-1β (Peprotech), 2% v / v N2 supplement (Invitrogen), ΑMEM supplemented with 10% FBS, 100 U / ml penicillin, 100 μg / ml streptomycin, and 0.25 μg / ml amphotericin B (Biological Industries). Cells were differentiated for one or two weeks and 50% of the medium was changed every two days.
免疫蛍光染色
 免疫蛍光染色は、以前に報告されたように行った[9]。以下のタンパク質を標的とする一次抗体を使用した:SSEA1(1:40、ab16285、Abcam)、Sox2(1:250、97959、Abcam)、Oct4(1:250、ab19857、Abcam)、Nanog(1:100、ab80892、Abcam)、βIII−チューブリン(1:250、ab87087、Abcam)、ネスチン(1:200、ab6142、Abcam)、NEUN(1:100、ab177487、Abcam)、MAP2(1:50、ab32454、Abcam)、およびS100β(1:100、ab52642、Abcam)。
Immunofluorescent staining Immunofluorescent staining was performed as previously reported [9]. Primary antibodies targeting the following proteins were used: SSEA1 (1:40, ab16285, Abcam), Sox2 (1: 250, 97959, Abcam), Oct4 (1: 250, ab19857, Abcam), Nanog (1: 100, ab80892, Abcam), βIII-tubulin (1: 250, ab87087, Abcam), nestin (1: 200, ab6142, Abcam), NEUN (1: 100, ab177487, Abcam), MAP2 (1:50, ab32454). , Abcam), and S100β (1: 100, ab52642, Abcam).
 使用した二次抗体は、以下の通りである:ヤギ抗マウスIgM Alex Fluor 488(1:200、ab150121、Abcam)、ヤギ抗マウスIgG Alex Fluor 488(1:500、ab150113、Abcam)、およびヤギ抗ウサギIgG Alex Fluor 647(1:200~1:500、ab150079、Abcam)、ならびに核を、4’,6−ジアミジノ−2−フェニルインドール(DAPI、ab104139、Abcam)で30分間、室温で対比染色した。 The secondary antibodies used were as follows: goat anti-mouse IgM @ Alex @ Fluor @ 488 (1: 200, ab150121, Abcam), goat anti-mouse IgG @ Alex @ Fluor @ 488 (1: 500, ab150113, Abcam), and goat anti-mouse Rabbit IgG Alex Fluor 647 (1: 200-1: 500, ab150079, Abcam), and nuclei were counterstained with 4 ', 6-diamidino-2-phenylindole (DAPI, ab104139, Abcam) for 30 minutes at room temperature. .
 スフェロイド内の細胞増殖とアポトーシスを調べるために、Ki67とカスパーゼ7の免疫蛍光染色を行った。スフェロイドを、製造業者の指示に従ってiPGell(Genostaff,Tokyo,Japan)中で固化し、リン酸緩衝液中の4%パラホルムアルデヒドで固定し、パラフィン中に包埋し、8μmの厚さで切片化した。切片を免疫染色には,以下のタンパク質を標的とする一次抗体を使用した:Ki67(1:100、ab15580、Abcam)およびカスパーゼ7(1:100、ab69540、Abcam)。一次抗体と共に4℃で一晩インキュベートした後、切片をPBSで3回洗浄し、それぞれ二次抗体と共にインキュベートした。使用した二次抗体はロバ抗マウスIgG Alex Fluor 488(1:250、ab96875、Abcam)およびロバ抗ウサギIgG Alex Fluor 647(1:250、ab150075、Abcam)であり、核をDAPI溶液で対比染色した。 In order to examine cell proliferation and apoptosis in spheroids, immunofluorescent staining of Ki67 and caspase 7 was performed. Spheroids were solidified in iPGell (Genostaff, Tokyo, Japan) according to the manufacturer's instructions, fixed with 4% paraformaldehyde in phosphate buffer, embedded in paraffin, and sectioned at 8 μm thickness. . Primary antibodies targeting the following proteins were used for immunostaining of the sections: Ki67 (1: 100, ab15580, Abcam) and Caspase 7 (1: 100, ab69540, Abcam). After overnight incubation at 4 ° C. with the primary antibody, the sections were washed three times with PBS and each incubated with the secondary antibody. Secondary antibodies used were donkey anti-mouse IgG Alex Alex Fluor 488 (1: 250, ab96875, Abcam) and donkey anti-rabbit IgG Alex Alex Fluor 647 (1: 250, ab 150075, Abcam) and nuclei were counterstained with DAPI solution. .
 蛍光を位相差顕微鏡(KEYENCE BZ−X710,Keyence,Osaka,Japan)で観察し、BZ−X Analyzerソフトウェアで分析した。 Fluorescence was observed with a phase contrast microscope (KEYENCE 顕 微鏡 BZ-X710, Keyence, Osaka, Japan) and analyzed with BZ-X Analyzer software.
定量的逆転写ポリメラーゼ連鎖反応(qRT−PCR)
全RNAを、TRIzol試薬(Invitrogen Corporation,Carlsbad,CA,USA)を用いて細胞から抽出し、cDNAを、PrimeScriptTM RT Master Mix(Perfect Real Time)(TaKaRa,cat# RR036A,Kusatsu,Japan)を用いて合成した。qRT−PCRは、製造業者のプロトコールに従って、少なくとも3回行った。データはΔΔCt法を用いて定量化し、β−アクチンの発現量によって標準化した。PCRに使用したプライマー配列を表2に示す。
Figure JPOXMLDOC01-appb-T000004
Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
Total RNA was extracted from cells using TRIzol reagent (Invitrogen Corporation, Carlsbad, Calif., USA) and cDNA was cloned from PrimeScript ™ RT Master Mix (Perfect Real Time) (TaKaRa, cat # RR036A, Kats, Japan). Synthesized. qRT-PCR was performed at least three times according to the manufacturer's protocol. The data was quantified using the ΔΔCt method and normalized by the expression level of β-actin. Table 2 shows the primer sequences used for PCR.
Figure JPOXMLDOC01-appb-T000004
統計解析
 Student’s t検定を用いて統計分析を行った。結果は、最低3回の実験における平均のmean ± standard error(SEM)として示す。
Statistical analysis Statistical analysis was performed using Student's t-test. The results are shown as the mean mean standard error (SEM) of at least three experiments.
結果
口腔粘膜由来細胞由来の自発的スフェロイド
 特定の培養皿上の口腔粘膜由来細胞のスフェロイド形成能を調べた。無血清培地では、口腔粘膜由来細胞の一部が培養皿に接着し、24時間後に線維芽細胞形態を示し、72時間後にアポトーシスを起こした(図6A)。bFGF、EGFおよびB27サプリメントを含む無血清培地では口腔粘膜由来細胞が皿に接着し、いくらかの細胞凝集体を示したが、スフェロイド形成は観察されなかった(図6A)。血清を含む培地において、口腔粘膜由来細胞は24時間以内に自然にスフェロイドを形成し、スフェロイドは観察期間(72時間)の間維持された(図6A)。
 幹細胞マーカー遺伝子の発現を調べるために、スフェロイド形成細胞を免疫蛍光によって分析した。口腔粘膜由来細胞から形成された自発的スフェロイドは、Sox2、SSEA1、Oct4、Nanog(図6B)およびネスチン(図6C)を発現した。
Results Spontaneous spheroids derived from oral mucosa-derived cells The spheroid-forming ability of oral mucosa-derived cells on a specific culture dish was examined. In the serum-free medium, some of the cells derived from the oral mucosa adhered to the culture dish, exhibited fibroblast morphology after 24 hours, and apoptosis occurred after 72 hours (FIG. 6A). In serum-free medium containing bFGF, EGF and B27 supplement, cells from the oral mucosa adhered to the dish and showed some cell aggregates, but no spheroid formation was observed (FIG. 6A). In the serum-containing medium, oral mucosa-derived cells spontaneously formed spheroids within 24 hours, and spheroids were maintained during the observation period (72 hours) (FIG. 6A).
To examine the expression of the stem cell marker gene, spheroid-forming cells were analyzed by immunofluorescence. Spontaneous spheroids formed from cells derived from oral mucosa expressed Sox2, SSEA1, Oct4, Nanog (FIG. 6B) and Nestin (FIG. 6C).
口腔粘膜および皮膚由来細胞のスフェロイド形成および維持に対する添加剤の効果
 血清を含む培地において、口腔粘膜由来細胞および皮膚由来細胞は、添加剤なしで24時間以内にコンパクトな多細胞スフェロイドを形成するように自然に凝集し、72時間維持した(図7A)。スフェロイドの形態は添加剤の存在や細胞の起源に影響されず、群間の差異は顕著ではなかった。
Effect of additives on spheroid formation and maintenance of oral mucosa and skin-derived cells In media containing serum, oral mucosa-derived cells and skin-derived cells form compact multicellular spheroids within 24 hours without additives. Aggregated spontaneously and maintained for 72 hours (FIG. 7A). The spheroid morphology was not affected by the presence of the additives or the origin of the cells, and the differences between the groups were not significant.
 時間経過中のスフェロイドの変化をさらに調査するために、スフェロイドの直径および数を120時間まで評価した。口腔粘膜由来細胞由来のスフェロイドのサイズは細胞播種後72時間まで増加する傾向があり、その後、経時的に徐々に減少した(図7B)。一方、皮膚由来細胞からのスフェロイドのサイズは120時間まで変化せず、スフェロイド間の差は120時間で有意であった(p<0.001)。口腔粘膜由来細胞からのスフェロイドの数は48時間で増加し、ピークに達し、次いで徐々に減少した(図7C)。皮膚由来細胞からのスフェロイドの数は96時間まで徐々に増加し、次いで減少した。数の差は120時間でのみ有意であった(p<0.001)。 直径 To further investigate the changes in spheroids over time, the diameter and number of spheroids were evaluated up to 120 hours. The size of spheroids derived from oral mucosa-derived cells tended to increase up to 72 hours after cell seeding, and then gradually decreased over time (FIG. 7B). On the other hand, the size of spheroids from skin-derived cells did not change until 120 hours, and the difference between spheroids was significant at 120 hours (p <0.001). The number of spheroids from oral mucosa-derived cells increased at 48 hours, peaked, and then gradually decreased (FIG. 7C). The number of spheroids from skin-derived cells gradually increased until 96 hours and then decreased. Number differences were significant only at 120 hours (p <0.001).
 次に、スフェロイドの直径および数を、添加剤の1つまたはいくつかの存在下で測定した。添加剤を含まないスフェロイドと比較して、スフェロイドサイズは、bFGF、EGFおよびB27サプリメントを含む培地において有意に大きかった(p<0.001)(図7D)。スフェロイドをbFGFおよびB27サプリメントと共に培養した場合に、最も近い結果が得られた。また、スフェロイドの数は、添加剤を添加しない群よりも3種類の添加剤を添加して24~120時間培養した群の方が多かった(p<0.001)(図7E)。bFGFおよびB27サプリメントで処置した群でも同様の結果が得られ、その数は、すべての時点で、添加剤なしの群よりも多かった。 直径 The spheroid diameter and number were then measured in the presence of one or several of the additives. Compared to spheroids without additives, spheroid size was significantly larger in media containing bFGF, EGF and B27 supplement (p <0.001) (FIG. 7D). The closest results were obtained when spheroids were cultured with bFGF and B27 supplement. In addition, the number of spheroids was larger in the group in which three kinds of additives were added and cultured for 24 to 120 hours (p <0.001) than in the group in which no additives were added (FIG. 7E). Similar results were obtained with the group treated with the bFGF and B27 supplements, the number being higher at all time points than the group without additives.
スフェロイド内の細胞増殖およびアポトーシスの分析
 口腔粘膜および皮膚由来細胞からのスフェロイドのいずれにおいても、添加剤なしのスフェロイドよりも、添加剤ありのスフェロイドでは、より多くのKi67陽性細胞が観察された(図8A)。カスパーゼ7陽性細胞は添加剤を含まない口腔粘膜スフェロイドで観察されたが、添加剤を含むほんの少数の弱陽性細胞が観察された。皮膚由来のスフェロイドは添加剤を含まないスフェロイドにおいてかすかなカスパーゼ7陽性細胞を示したが、添加剤を含むスフェロイドにおいては陽性細胞は観察されなかった(図8A)。
Analysis of cell proliferation and apoptosis in spheroids In both spheroids from oral mucosa and skin-derived cells, more Ki67-positive cells were observed in spheroids with additives than in spheroids without additives (FIG. 8A). Caspase 7 positive cells were observed in oral mucosal spheroids without additives, but only a few weakly positive cells with additives were observed. Skin-derived spheroids showed faint caspase 7-positive cells in spheroids without additives, but no positive cells were observed in spheroids with additives (FIG. 8A).
 増殖およびアポトーシス遺伝子の発現を、qRT−PCRを用いて分析した。Ki67の発現は、添加剤を用いて培養したスフェロイドでは添加剤を用いないスフェロイドよりも高かった(図8B)。一方、カスパーゼ7の発現は、添加剤なしで培養したスフェロイドの方が添加剤ありのスフェロイドよりも有意に高かった(図8B)。カスパーゼ7の発現を口腔粘膜由来細胞のスフェロイドと皮膚由来細胞のスフェロイドとの間で比較した場合、発現は、添加剤の存在にかかわらず、口腔粘膜由来細胞のスフェロイドにおいて有意に高かった(図8C)。 Proliferation and apoptosis gene expression was analyzed using qRT-PCR. Ki67 expression was higher in spheroids cultured with additives than in spheroids without additives (FIG. 8B). On the other hand, the expression of caspase 7 was significantly higher in spheroids cultured without additives than in spheroids with additives (FIG. 8B). When caspase 7 expression was compared between spheroids of oral mucosa-derived cells and spheroids of skin-derived cells, the expression was significantly higher in spheroids of oral mucosa-derived cells regardless of the presence of additives (FIG. 8C). ).
口腔粘膜由来および皮膚由来細胞のスフェロイドにおける幹細胞マーカー発現の比較
 qRT−PCRを用いて多能性関連遺伝子の発現を解析した。口腔粘膜由来細胞由来のスフェロイドにおいて、Sox2、Fut4(SSEA1)およびネスチンの発現は、添加剤を用いて培養したスフェロイドでは添加剤を用いないスフェロイドよりも高かったが、Oct4の発現は添加剤の存在によって影響されなかった(図9A)。皮膚由来細胞由来のスフェロイドにおいて、Fut4(SSEA1)およびネスチンの発現は、スフェロイドを添加剤と共に培養した場合に有意に高かった(図9B)。一方、Sox2の発現は添加剤の存在で低下した。Oct4の発現は、口腔粘膜スフェロイドと同様に、添加剤の有無に関わらず有意差を示さなかった。
Comparison of stem cell marker expression in spheroids of oral mucosa-derived and skin-derived cells Expression of pluripotency-related genes was analyzed using qRT-PCR. In spheroids derived from oral mucosa-derived cells, the expression of Sox2, Fut4 (SSEA1) and nestin was higher in spheroids cultured with additives than in spheroids without additives, but the expression of Oct4 was higher in the presence of additives. Unaffected (FIG. 9A). In spheroids derived from skin-derived cells, the expression of Fut4 (SSEA1) and nestin was significantly higher when spheroids were cultured with additives (FIG. 9B). On the other hand, the expression of Sox2 decreased in the presence of the additive. As with the oral mucosal spheroids, the expression of Oct4 showed no significant difference regardless of the presence or absence of additives.
 次に、幹細胞マーカー発現を、口腔粘膜由来細胞スフェロイドと皮膚由来細胞スフェロイドとの間で比較した。Sox2の発現は、口腔粘膜由来細胞のスフェロイドでは皮膚由来細胞のスフェロイドよりも高く、その傾向は添加剤の存在によって影響されなかった(図10AおよびB)。ネスチンの発現は、添加剤を含まない皮膚由来細胞のスフェロイドよりも口腔粘膜由来細胞のスフェロイドにおいて高かった(図10A)。しかし、この差異は、スフェロイドを添加剤と共に培養した場合には観察されなかった(図10B)。口腔粘膜由来細胞のスフェロイドにおけるFut4(SSEA1)の発現は、添加剤なしでは120時間、添加剤ありでは24時間において皮膚由来細胞スフェロイドより高かったが、他の条件下では差は観察されなかった。Oct4の発現は、口腔粘膜由来細胞と皮膚由来細胞のスフェロイド間に有意差を示さず、この傾向は添加剤の存在によって影響されなかった。 Next, stem cell marker expression was compared between oral mucosa-derived cell spheroids and skin-derived cell spheroids. The expression of Sox2 was higher in spheroids of cells derived from oral mucosa than in spheroids of cells derived from skin, and the tendency was not affected by the presence of additives (FIGS. 10A and B). Nestin expression was higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells without additives (FIG. 10A). However, this difference was not observed when spheroids were cultured with the additives (FIG. 10B). The expression of Fut4 (SSEA1) in spheroids of oral mucosa-derived cells was higher than that of skin-derived cell spheroids at 120 hours without additives and at 24 hours with additives, but no difference was observed under other conditions. Oct4 expression did not show a significant difference between oral mucosa-derived cells and skin-derived cells spheroids, and this trend was not affected by the presence of the additives.
口腔粘膜からのスフェロイド由来細胞と皮膚からのスフェロイド由来細胞との間における神経分化能の比較
 2次元培養された口腔粘膜細胞は、ネスチン、NeuN、Sox2およびS100βの陽性細胞を含んでいたが、βIII−チューブリンおよびMAP2は陰性であった(図11A)。口腔粘膜および皮膚の両者からのスフェロイド由来細胞は、ネスチン、βIII−チューブリン、MAP2、NeuN、Sox2およびS100βに対して陽性であった(図11A)。分化のレベルを調べるために、MAP2、MBP、NF−M、GFAPおよびネスチンのmRNA発現レベルを分析した。さらに、特異的ドーパミン作動性ニューロンマーカーNurr1の発現もqRT−PCRによって評価した(図11B)。口腔粘膜スフェロイド由来細胞におけるMAP2、MBP、ネスチンおよびNurr1のmRNA発現は、皮膚スフェロイド由来細胞より有意に高かった。NF−Mの発現レベルは両起源のスフェロイド由来細胞間で変わらなかった。口腔粘膜スフェロイド由来細胞におけるGFAPの発現は、皮膚スフェロイド由来細胞における発現よりも高かったが、その差は大きな変動のために有意ではなかった。
Comparison of neural differentiation potential between spheroid-derived cells from oral mucosa and spheroid-derived cells from skin Two-dimensionally cultured oral mucosal cells contained nestin, NeuN, Sox2 and S100β positive cells, while βIII -Tubulin and MAP2 were negative (Figure 11A). Spheroid-derived cells from both oral mucosa and skin were positive for nestin, βIII-tubulin, MAP2, NeuN, Sox2 and S100β (FIG. 11A). To determine the level of differentiation, MAP2, MBP, NF-M, GFAP and nestin mRNA expression levels were analyzed. In addition, the expression of the specific dopaminergic neuronal marker Nurr1 was also evaluated by qRT-PCR (FIG. 11B). MAP2, MBP, nestin and Nurr1 mRNA expression in oral mucosal spheroid-derived cells was significantly higher than skin spheroid-derived cells. NF-M expression levels did not change between spheroid-derived cells of both origins. GFAP expression in oral mucosal spheroid-derived cells was higher than in skin spheroid-derived cells, but the difference was not significant due to large variability.
 口腔粘膜由来細胞のスフェロイドにおいて、いくつかのニューロン分化マーカーの比較的高い発現が観察されたが、そのレベルが間葉系幹細胞などの他の体性幹細胞におけるレベルと同等であるかどうかは明らかでなかった。従って、次に、本発明者は口腔粘膜由来細胞のスフェロイドと、マウスにおける間葉系幹細胞の優れた供給源として知られており神経原性細胞系統に分化することができるCBDC由来のスフェロイドとの間で、MAP2、MBP、およびネスチンの発現レベルを比較した[22−24]。神経誘発後、口腔粘膜スフェロイド由来細胞におけるMAP2、MBP、およびネスチンの発現は、CBDCのスフェロイド由来細胞における発現よりも非常に高かった(それぞれ、20.08倍、3.02倍、および16.18倍)(図11C)。 Although relatively high expression of several neuronal differentiation markers was observed in spheroids of oral mucosa-derived cells, it was not clear whether their levels were comparable to levels in other somatic stem cells such as mesenchymal stem cells. Did not. Therefore, the present inventors next discovered that spheroids derived from oral mucosa and CBDC-derived spheroids, which are known as an excellent source of mesenchymal stem cells in mice and can differentiate into neurogenic cell lineages, Among them, the expression levels of MAP2, MBP and nestin were compared [22-24]. Following neural induction, the expression of MAP2, MBP, and nestin in oral mucosal spheroid-derived cells was much higher than that of CBDC in spheroid-derived cells (20.08, 3.02, and 16.18, respectively). Times) (FIG. 11C).
考察
口腔粘膜由来細胞の自発的スフェロイドの特徴
 スフェロイドの機械的形成の間、理想的には、培養物中のほとんど全ての細胞がスフェロイド形成に関与する。したがって、プロセスは選択的ではない[22]。一方、自発的なスフェロイド形成は、静的条件下で起こる。それは接着することなく生存することができる細胞からのみ開始し、細胞は増殖してスフェロイドを形成する能力を有する。従って、自発的スフェロイド形成は選択的であるが、機械的スフェロイド形成ほど効率的ではない。実際、自発的にスフェロイドを形成することがよく知られている皮膚由来前駆体(SKP)は胚組織から得ることができ、成体組織から得ることは困難である[23]。本発明者の自発的スフェロイド形成の方法は、4~5継代で培養した細胞であってもスフェロイド形成が可能であるので、この制限を克服することができる(図12)。本発明の方法を用いて形成されたスフェロイドが、SKPスフェロイドのような自発的に形成されたスフェロイドと同一であるかどうかを問うことも重要である。口腔粘膜由来細胞から自発的に形成されたスフェロイドは、Sox2、SSEA1、Oct4、Nanogおよびネスチンに対して陽性であり、神経原性分化が可能であり、これは、以前に報告された自発的スフェロイドと同一の幹性の特性を示したことを示す[2、12]。
DISCUSSION Characteristics of spontaneous spheroids of cells derived from oral mucosa During mechanical formation of spheroids, ideally almost all cells in culture are involved in spheroid formation. Therefore, the process is not selective [22]. On the other hand, spontaneous spheroid formation occurs under static conditions. It starts only with cells that can survive without attachment, and the cells have the ability to proliferate and form spheroids. Thus, spontaneous spheroid formation is selective, but not as efficient as mechanical spheroid formation. Indeed, skin-derived precursors (SKPs) that are well known to form spheroids spontaneously can be obtained from embryonic tissue and difficult to obtain from adult tissue [23]. The present inventor's method for spontaneous spheroid formation can overcome this limitation because spheroid formation is possible even with cells cultured for 4 to 5 passages (FIG. 12). It is also important to ask whether spheroids formed using the method of the invention are identical to spontaneously formed spheroids, such as SKP spheroids. Spheroids spontaneously formed from cells derived from oral mucosa are positive for Sox2, SSEA1, Oct4, Nanog and Nestin, and are capable of neurogenic differentiation, which is a previously reported spontaneous spheroid. [2, 12].
 本法のおよび以前に報告された自発的スフェロイド形成手順間の基本的な差異の1つは、添加物の有無である。自発的スフェロイド形成は、無血清環境および成長因子(例えば、bFGF、EGFおよびB27サプリメント)の添加を必要とすることが報告されている[24、25]。一方、本発明の方法によって誘発された自発的なスフェロイド形成は、これらの添加剤を含まない血清含有環境で達成することができる。 1 One of the fundamental differences between this method and the previously reported spontaneous spheroid formation procedure is the presence or absence of additives. Spontaneous spheroid formation has been reported to require a serum-free environment and the addition of growth factors such as bFGF, EGF and B27 supplements [24, 25]. On the other hand, spontaneous spheroid formation induced by the method of the present invention can be achieved in a serum-containing environment without these additives.
自発的スフェロイド形成および維持のための添加剤の役割
 添加剤を用いた場合、24時間でのスフェロイドの数は、添加剤を用いない場合よりも約2倍多く、これはスフェロイド形成における添加剤のいくつかの役割を示している。自発的スフェロイド形成は添加剤なしで実現可能であったので、添加剤は、スフェロイド形成を促進するが、必須ではない。一方、添加剤なしでは、スフェロイドサイズおよび数は時間とともに減少した。この傾向は、口腔粘膜由来細胞のスフェロイドにおいて、皮膚由来細胞のスフェロイドよりも明らかであった。したがって、自発的スフェロイド形成においてはこれら添加剤を加えることも可能である。
The role of additives for spontaneous spheroid formation and maintenance With additives, the number of spheroids at 24 hours was about twice as high as without additives, which is It shows some roles. Additives promote spheroid formation, but are not required, since spontaneous spheroid formation was feasible without additives. On the other hand, without additives, spheroid size and number decreased with time. This tendency was more apparent in spheroids of cells derived from oral mucosa than in spheroids of cells derived from skin. Therefore, it is also possible to add these additives in spontaneous spheroid formation.
口腔粘膜からの自発的スフェロイド形成細胞の神経分化
 神経誘発後、口腔粘膜細胞の平面培養では、MAP2およびβIII−チューブリンなどの神経マーカーを発現することができなかった。スフェロイド由来細胞におけるこれらの分化した神経細胞マーカーの存在は、スフェロイド形成細胞の高い神経分化能を示唆する。口腔粘膜由来および皮膚由来の両方の細胞由来のスフェロイドは、ネスチン、βIII−チューブリン、MAP2、NeuN、Sox2およびS100βに対して陽性の細胞を含んでいたので、神経分化マーカーの発現をqRT−PCRを用いて比較した。
Neuronal differentiation of spontaneous spheroid-forming cells from oral mucosa After neural induction, planar culture of oral mucosal cells failed to express neural markers such as MAP2 and βIII-tubulin. The presence of these differentiated neuronal markers in spheroid-derived cells suggests a high neural differentiation potential of spheroid-forming cells. Since spheroids from both oral mucosal and skin-derived cells contained cells that were positive for nestin, βIII-tubulin, MAP2, NeuN, Sox2 and S100β, qRT-PCR Were compared.
 試験したマーカーの中で、MAP2、MBPおよびネスチンの発現レベルは、皮膚由来細胞のスフェロイドよりも口腔粘膜由来細胞のスフェロイドにおいて有意に高かった。さらに、口腔粘膜由来細胞のスフェロイドにおけるドーパミン作動性ニューロンマーカーNurr1のより高い発現が観察された。総合すると、これらの知見は、パーキンソン病などの神経変性疾患の治療のためにこれらの口腔粘膜細胞を使用する利点を示唆する。より重要なことに、MAP2、MBPおよびネスチンの発現は、CBDCからの間葉系幹細胞由来のスフェロイドよりも口腔粘膜由来細胞のスフェロイドにおいて非常に高かった。これは、口腔粘膜由来スフェロイドにおける神経堤由来幹/前駆細胞の存在に起因し得ると言え、そして神経変性疾患への適用のために、この細胞供給源の独特の利点をさらに強調できる。 の Among the markers tested, MAP2, MBP and nestin expression levels were significantly higher in spheroids of oral mucosa-derived cells than in spheroids of skin-derived cells. Furthermore, higher expression of the dopaminergic neuronal marker Nurr1 in spheroids of cells derived from oral mucosa was observed. Taken together, these findings suggest the benefits of using these oral mucosal cells for the treatment of neurodegenerative diseases such as Parkinson's disease. More importantly, the expression of MAP2, MBP and nestin was much higher in spheroids of cells from oral mucosa than spheroids from mesenchymal stem cells from CBDC. This can be attributed to the presence of neural crest-derived stem / progenitor cells in oral mucosa-derived spheroids, and can further emphasize the unique advantages of this cell source for application to neurodegenerative diseases.
結論
 本研究の結果は、自発的スフェロイド形成が本発明者らの方法を用いて口腔粘膜由来細胞で実現可能であることを示した。bFGF、EGF、B27サプリメントなしで自発的スフェロイド形成が可能であったが、それらはスフェロイド形成の効率を改善し、より重要なことにはスフェロイド維持に必須であった。口腔粘膜由来細胞の自発的スフェロイドは、皮膚由来幹細胞と同程度に優れた強力な幹細胞を含む。特定のニューロンマーカー遺伝子の高発現は、ニューロン疾患の再生治療のためのこれらの細胞の利点を示唆する。
Conclusions The results of this study showed that spontaneous spheroid formation was feasible in cells from oral mucosa using our method. Although spontaneous spheroid formation was possible without bFGF, EGF, B27 supplements, they improved the efficiency of spheroid formation and, more importantly, were essential for spheroid maintenance. Spontaneous spheroids of oral mucosa-derived cells include powerful stem cells that are as good as skin-derived stem cells. High expression of specific neuronal marker genes suggests the benefit of these cells for regenerative treatment of neuronal disease.
実施例2における参考文献
1.Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.Science.1992;255(5052):1707−10.
2.Abe S,Yamaguchi S,Sato Y,Harada K.Sphere−derived multipotent progenitor cells obtained from human oral mucosa are enriched in neural crest cells.Stem Cells Transl Med.2016;5(1):117−28.
3.Toma JG,Akhavan M,Fernandes KJ,Barnabe−Heider F,Sadikot A,Kaplan DR,Miller FD.Isolation of multipotent adult stem cells from the dermis of mammalian skin.Nat Cell Biol.2001;3(9):778−84.
4.Techawattanawisal W,Nakahama K,Komaki M,Abe M,Takagi Y,Morita I.Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere−forming culture system.Biochem Biophys Res Commun.2007;357(4):917−23.
5.Fournier BP,Loison−Robert LS,Ferre FC,Owen GR,Larjava H,Hakkinen L.Characterisation of human gingival neural crest−derived stem cells in monolayer and neurosphere cultures.Eur Cell Mater.2016;31:40−58.
6.Dixon AR,Ramirez Y,Haengel K,Barald KF.A drop array culture for patterning adherent mouse embryonic stem cell−derived neurospheres.J Tissue Eng Regen Med.2018;12(1):e379−83.
7.Low HP,Savarese TM,Schwartz WJ.Neural precursor cells form rudimentary tissue−like structures in a rotating−wall vessel bioreactor.In Vitro Cell Dev Biol Anim.2001;37(3):141−47.
8.Frith JE,Thomson B,Genever PG.Dynamic three−dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.Tissue Eng Part C Methods.2010;16(4):735−49.
9.Li X,Li N,Chen K,Nagasawa S,Yoshizawa M,Kagami H.Around 90°contact angle of dish surface is a key factor in achieving spontaneous spheroid formation.Tissue Eng Part C Methods.2018;24(10):578−84.
10.Neumeister B,Grabosch A,Basak O,Kemler R,Taylor V.Neural progenitors of the postnatal and adult mouse forebrain retain the ability to self−replicate,form neurospheres,and undergo multipotent differentiation in vivo.Stem Cells.2009;27(3):714−23.
11.Biernaskie JA,McKenzie IA,Toma JG,Miller FD.Isolation of skin−derived precursors(SKPs)and differentiation and enrichment of their Schwann cell progeny.Nat Protoc.2006;1(6):2803−12.
12.Fournier BP,Ferre FC,Couty L,Lataillade JJ,Gourven M,Naveau A,Coulomb B,Lafont A,Gogly B.Multipotent progenitor cells in gingival connective tissue.Tissue Eng Part A.2010;16(9):2891−9.
13.Xu X,Chen C,Akiyama K,Chai Y,Le AD,Wang Z,Shi S.Gingivae contain neural−crest−and mesoderm−derived mesenchymal stem cells.J Dent Res.2013;92(9):825−32.
14.Eslami A,Gallant−Behm CL,Hart DA,Wiebe C,Honardoust D,Gardner H,Hakkinen L,Larjava HS.Expression of integrin alphavbeta6 and TGF−beta in scarless vs scar−forming wound healing.J Histochem Cytochem.2009;57(6):543−57.
15.Iglesias−Bartolome R,Uchiyama A,Molinolo AA,Abusleme L,Brooks SR,Callejas−Valera JL,Edwards D,Doci C,Asselin−Labat ML,Onaitis MW,et al.Transcriptional signature primes human oral mucosa for rapid wound healing.Sci Transl Med.2018;doi:10.1126/scitranslmed.aap8798.
16.Marynka−Kalmani K,Treves S,Yafee M,Rachima H,Gafni Y,Cohen MA,Pitaru S.The lamina propria of adult human oral mucosa harbors a novel stem cell population.Stem Cells.2010;28(5):984−95.
17.Davies LC,Locke M,Webb RDJ,Roberts JT,Langley M,Thomas DW,Archer CW,Stephens P.A multipotent neural crest−derived progenitor cell population is resident within the oral mucosa lamina propria.Stem Cells Dev.2010;19(6):819−30.
18.Fournier BP,Larjava H,Hakkinen L.Gingiva as a source of stem cells with therapeutic potential.Stem Cells Dev.2013;22(24):3157−77.
19.Wang F,Yu M,Yan X,Wen Y,Zeng Q,Yue W,Yang P,Pei X.Gingiva−derived mesenchymal stem cell−mediated therapeutic approach for bone tissue regeneration.Stem Cells Dev.2011;20(12):2093−102.
20.Okazaki M,Yoshimura K,Uchida G,Harii K.Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal−mucosa−derived fibroblasts compared with normal−skin−derived fibroblasts.J Dermatol Sci.2002;30(2):108−15.
21.Ebisawa K,Kato R,Okada M,Sugimura T,Latif MA,Hori Y,Narita Y,Ueda M,Honda H,Kagami H.Gingival and dermal fibroblasts:Their similarities and differences revealed from gene expression.Journal of Bioscience and Bioengineering.2001;113(3):255−8.
22.Timmins NE,Nielsen LK.Generation of multicellular tumor spheroids by the hanging−drop method.Methods Mol Med.2007;140−141−51.
23.Biernaskie J,Paris M,Morozova O,Fagan BM,Marra M,Pevny L,Miller FD.SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.Cell Stem Cell.2009;5(6):610−23.
24.Fernandes KJ,McKenzie IA,Mill P,Smith KM,Akhavan M,Barnabe−Heider F,Biernaskie J,Junek A,Kobayashi NR,Toma JG,et al.A dermal niche for multipotent adult skin−derived precursor cells.Nat Cell Biol.2004;6(11):1082−93.
25.Hill RP,Gledhill K,Gardner A,Higgins CA,Crawford H,Lawrence C,Hutchison CJ,Owens WA,Kara B,James SE,et al.Generation and characterization of multipotent stem cells from established dermal cultures.PLoS One.2012;7(11):e50742.
26.Eiselleova L,Matulka K,Kriz V,Kunova M,Schmidtova Z,Neradil J,Tichy B,Dvorakova D,Pospisilova S,Hampl A,et al.Complex role for FGF−2 in self−renewal,survival,and adhesion of human embryonic stem cells.Stem Cells.2009;27(8):1847−57.
27.Zeineddine D,Hammoud AA,Mortada M,Boeuf H.The Oct4 protein:more than a magic stemness marker.Am J Stem Cells.2014;3(2):74−82.
28.Zhang S,Zhao L,Wang J,Chen N,Yan J,Pan X.HIF−2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic−like mesenchymal stem cells in infarcted hearts.Cell Death Dis.2017;8(1):e2548.
29.Adachi K,Nikaido I,Ohta H,Ohtsuka S,Ura H,Kadota M,Wakayama T,Ueda HR,Niwa H.Context−dependent wiring of Sox2 regulatory networks for self−renewal of embryonic and trophoblast stem cells.Mol Cell.2013;52(3):380−92.
30.Ellis P,Fagan BM,Magness ST,Hutton S,Taranova O,Hayashi S,McMahon A,Rao M,Pevny L.SOX2,a persistent marker for multipotential neural stem cells derived from embryonic stem cells,the embryo or the adult.Dev Neurosci.2004;26(2−4):148−65.
31.Johnston AP,Naska S,Jones K,Jinno H,Kaplan DR,Miller FD.Sox2−mediated regulation of adult neural crest precursors and skin repair.Stem Cell Reports.2013;1(1):38−45.
References in Example 2 Reynolds BA, Weiss S.L. Generation of neurons and astrocytes from the isolated cells of the adult mammarian central neural system. Science. 1992; 255 (5052): 1707-10.
2. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-derived multipotent promoter cells cells obtained from human oral mucosa are enriched in neural crest cells. Stem Cells Trans Med. 2016; 5 (1): 117-28.
3. Toma JG, Akhavan M, Fernandez KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammarian skin. Nat Cell Biol. 2001; 3 (9): 778-84.
4. Techawattanawial W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I. Isolation of multipotent stem cells from adult rat rate periodical ligation by neurosphere-forming culture system. Biochem Biophys Res Commun. 2007; 357 (4): 917-23.
5. Fournier BP, Loison-Robert LS, Ferre FC, Owen GR, Larjava H, Hakkinen L. Characterization of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures. Eur Cell Mater. 2016; 31: 40-58.
6. Dixon AR, Ramirez Y, Haengel K, Barald KF. A drop array culture for patterning adherent mouse embryonic stem cell-derived neurospheres. J Tissue Eng Regen Med. 2018; 12 (1): e379-83.
7. Low HP, Savarese TM, Schwartz WJ. Neural precursor cells cells form radiation-tissue-like structures in a rotating-wall vessels bioreactor. In Vitro Cell Dev Biol Anim. 2001; 37 (3): 141-47.
8. Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhancement mesenchymal stem cell properties and incremental therapeutic potential. Tissue Eng Part C Methods. 2010; 16 (4): 735-49.
9. Li X, Li N, Chen K, Nagasawa S, Yoshizawa M, Kagami H. Around 90 ° contact angle of dish surface is a key factor in achieving spontaneous spheroid formation. Tissue Eng Part C Methods. 2018; 24 (10): 578-84.
10. Neumeister B, Grabosch A, Basak O, Kemler R, Taylor V. Neutral progenitors of the postnatal and add mouse forebrain retaining the availability to self-replicate, form neurospheres, and underground mitigation. Stem Cells. 2009; 27 (3): 714-23.
11. Biernaskie JA, McKenzie IA, Toma JG, Miller FD. Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protocol. 2006; 1 (6): 2803-12.
12. Fournier BP, Ferre FC, Couty L, Latillade JJ, Gourven M, Naveau A, Coulomb B, Lafont A, Gogly B. Multipotent progenitor cells cells inging connective tissue. Tissue Eng Part A. 2010; 16 (9): 2891-9.
13. Xu X, Chen C, Akiyama K, Chai Y, Le AD, Wang Z, Shi S. Gingivae contain neural-crest-and mesoderm-derived mesenchymal stem cells. J Dent Res. 2013; 92 (9): 825-32.
14. Eslami A, Galant-Behem CL, Hart DA, Wiebe C, Hondoust D, Gardner H, Hakkinen L, Larjava HS. Expression of integration alphavbeta6 and TGF-beta in scales vs. scar-forming wound hearing. J Histochem Cytochem. 2009; 57 (6): 543-57.
15. Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onalytics. Transcriptional signature primes human oral mucosa for rapid wound hearing. Sci Trans Med. 2018; doi: 10.1126 / scitransmed. aap8798.
16. See Marynka-Kalmani K, Treves S, Yaffee M, Rachima H, Gafni Y, Cohen MA, Pitaru S. The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells. 2010; 28 (5): 984-95.
17. Davies LC, Locke M, Webb RDJ, Roberts JT, Langley M, Thomas DW, Archer CW, Stephens P. A multipotent neural crest-derived progenitor cell population is resident with the oral mucosa lamina propria. Stem Cells Dev. 2010; 19 (6): 819-30.
18. Fournier BP, Larjava H, Hakkinen L. Gingiva as a source of stem cells with therapeutic potential. Stem Cells Dev. 2013; 22 (24): 3157-77.
19. Wang F, Yu M, Yan X, Wen Y, Zeng Q, Yue W, Yang P, Pei X. Gingiva-derived mesenchymal stem cell-mediated therapeutic aproach for bone tissue regeneration. Stem Cells Dev. 2011; 20 (12): 2093-102.
20. Okazaki M, Yoshimura K, Uchida G, Harii K. Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derivative fibroblasts compared with normal-brick-stromal-bomb-delivered-bomb-free-river-bomb. J Dermatol Sci. 2002; 30 (2): 108-15.
21. Ebisawa K, Kato R, Okada M, Sugimura T, Latif MA, Hori Y, Narita Y, Ueda M, Honda H, Kagami H. Gingival and dermal fibroblasts: Their similarities and differences reviewed from gene expression. Journal of Bioscience and Bioengineering. 2001; 113 (3): 255-8.
22. Timmins NE, Nielsen LK. Generation of multicellular tumour spheroids by the hanging-drop method. Methods Mol Med. 2007; 140-141-51.
23. Biernski J, Paris M, Morozova O, Fagan BM, Marra M, Pevny L, Miller FD. SKPs derived from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell. 2009; 5 (6): 610-23.
24. Fernandez KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, Biernashie J, Junek A, Kobayashi NR, Toma JG. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004; 6 (11): 1082-93.
25. Hill RP, Gledhill K, Gardner A, Higgins CA, Crawford H, Lawrence C, Hutchison CJ, Owens WA, Kara B, James SE, et al. Generation and characterisation of multipotent stem cells from established dermal cultures. PLoS One. 2012; 7 (11): e50742.
26. Eiseleova L, Matulka K, Kriz V, Kunova M, Schmidova Z, Neradil J, Tichy B, Dvorakova D, Posipiliova S, Hampl A, et al. Complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells. 2009; 27 (8): 1847-57.
27. Zeinedine D, Hammood AA, Mortada M, Boeuf H. The Oct4 protein: more than a magic stemmarker. Am J Stem Cells. 2014; 3 (2): 74-82.
28. Zhang S, Zhao L, Wang J, Chen N, Yan J, Pan X. HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of many small embroidery skeletal medical technic chem. Cell Death Dis. 2017; 8 (1): e2548.
29. Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-dependent wiring of Sox2 regulatory networks for self-renewal of embryonic and trophoblast stem cells. Mol Cell. 2013; 52 (3): 380-92.
30. Ellis P, Fagan BM, Magnesity ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 2004; 26 (2-4): 148-65.
31. Johnston AP, Naska S, Jones K, Jinno H, Kaplan DR, Miller FD. Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Reports. 2013; 1 (1): 38-45.
[実施例3]
方法
CBDCsの培養法、及び自発的スフェロイドの形成法は、実施例1、2に準じて行った。
CBCScの骨分化誘導
 スフェロイド形成24時間後、別の接着性培養皿へ継代した。50−60%コンフルエントの状態で骨分化誘導培地へ交換した。この培地には、100nMデキサメタゾン(Sigma−Aldrich,St.Louis,MO,USA)、50μM L−アスコルビン酸(Wako Pure Chemical Industries,Ltd.)及び10mMβグリセロリン酸(Sigma−Aldrich))が含まれている。培地は2日ごとに交換した。
[Example 3]
Method The culture method of CBDCs and the method of spontaneously forming spheroids were performed according to Examples 1 and 2.
Induction of bone differentiation of CBCSc Twenty-four hours after spheroid formation, the cells were passaged to another adherent culture dish. The medium was replaced with an osteogenesis induction medium at 50-60% confluence. This medium contains 100 nM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 50 μM L-ascorbic acid (Wako Pure Chemical Industries, Ltd.) and 10 mM β-glycerophosphate (Sigma-Aldrich). . The medium was changed every two days.
ALP活性の測定
 骨分化誘導7日目に骨分化の確認のためALP活性を測定した。分化誘導していない細胞をコントロールとした。cell counting kit−8(CCK−8)(Dojindo Laboratories,Kumamoto,Japan)とp−ニトロフェノール(SIGMA FastTM p−Nitrophenyl Phosphate Tablet;Sigma−Aldrich Co.LLC.)を業者の説明に従って用いた。フォルマザンは450nm、p−ニトロフェノールは405nmでiMarkTM Microplate Absorbance Reader(BIO−RAD Laboratories,Hercules,CA,USA)を用いて吸光度を測定した。
Measurement of ALP activity ALP activity was measured on the 7th day of bone differentiation induction to confirm bone differentiation. Cells that did not induce differentiation were used as controls. cell counting kit-8 (CCK- 8) (Dojindo Laboratories, Kumamoto, Japan) and p- nitrophenol (SIGMA Fast TM p-Nitrophenyl Phosphate Tablet;. Sigma-Aldrich Co.LLC) were used according to suppliers of description. Absorbance was measured at 450 nm for formazan and 405 nm for p-nitrophenol using an iMark Microplate Absorbance Reader (BIO-RAD Laboratories, Hercules, CA, USA).
qRT−PCRによる骨分化マーカーの解析
 qRT−PCRは、実施例1と同様にして行った。
使用したプライマーを表3に示す。
Figure JPOXMLDOC01-appb-T000005
Analysis of Bone Differentiation Markers by qRT-PCR qRT-PCR was performed in the same manner as in Example 1.
Table 3 shows the primers used.
Figure JPOXMLDOC01-appb-T000005
移植実験による骨再生
 1x10個のCBDC細胞を直径2mm,厚さ2mmのβ−TCPブロック(オスフェリオン,オリンパステルモバイオマテリアル)に播種した。翌日骨分化誘導培地へと交換し、7日間分化誘導を行い、その後6週齢雄SCIDマウス背部皮下に移植した。移植後4週間で取り出し、μCTにて評価後、脱灰、パラフィン包埋し、薄切した。切片はHE染色にて観察を行った。
Bone regeneration by transplantation experiment 1 × 10 6 CBDC cells were seeded on a β-TCP block (Ospherion, Olympus Terumo Biomaterial) having a diameter of 2 mm and a thickness of 2 mm. The next day, the medium was replaced with a bone differentiation induction medium, differentiation was induced for 7 days, and then transplanted subcutaneously to the back of a 6-week-old male SCID mouse. Four weeks after transplantation, the cells were taken out, evaluated by μCT, decalcified, embedded in paraffin, and sectioned. The sections were observed by HE staining.
結果
1.骨分化マーカーの解析
 骨分化マーカーの解析結果を図13に示す。
2.In vivoでの骨再生能
 CBDC細胞を移植後4週後の組織像を図14に示す。組織像から、骨組織の形成が認められ(ピンクの部分)、本発明の自発的スフェロイドの骨再生能が確認された。
Result 1. Analysis of Bone Differentiation Markers The analysis results of the bone differentiation markers are shown in FIG.
2. In Vivo Bone Regeneration A histological image 4 weeks after transplantation of CBDC cells is shown in FIG. From the histological image, formation of bone tissue was observed (pink portion), and the ability of the spontaneous spheroid of the present invention to regenerate bone was confirmed.
配列番号1~40:合成DNA
SEQ ID NOS: 1 to 40: Synthetic DNA

Claims (19)

  1. 細胞の接着が阻害されるように表面が加工又は処理された培養容器を用いて幹細胞を培養することによりスフェロイドを形成させることを特徴とする、スフェロイドの形成方法。 A method for forming a spheroid, comprising forming a spheroid by culturing a stem cell using a culture vessel having a surface processed or treated so that cell adhesion is inhibited.
  2. 細胞の接着が阻害されるように表面が加工又は処理された培養容器が、疎水性を有するものである、請求項1に記載の方法。 The method according to claim 1, wherein the culture vessel whose surface has been processed or treated so as to inhibit cell adhesion has hydrophobicity.
  3. 疎水性を有する培養容器が、接触角が85°~95°の範囲となる条件を満たすように培養底面の粗さを有するものである、請求項2に記載の方法。 3. The method according to claim 2, wherein the culture vessel having hydrophobicity has a roughness of a culture bottom so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
  4. 接触角が89°~91°である、請求項3に記載の方法。 4. The method according to claim 3, wherein the contact angle is from 89 ° to 91 °.
  5. 細胞の接着が阻害されるように表面が加工又は処理された培養容器が、ポリスチレン製又はガラス製であり、かつ底面がフッ素含有ポリマーによるコーティングがされていない、請求項1~4のいずれか1項に記載の方法。 The culture vessel having a surface processed or treated so as to inhibit cell adhesion is made of polystyrene or glass, and the bottom surface is not coated with a fluorine-containing polymer. The method described in the section.
  6. 細胞の接着が阻害されるように表面が加工又は処理された培養容器が、2.400nm~2.500nmの二乗平均表面粗さを有するものである、請求項1~5のいずれか1項に記載の方法。 The culture vessel according to any one of claims 1 to 5, wherein the culture vessel having a surface processed or treated so as to inhibit cell adhesion has a root-mean-square surface roughness of 2.400 nm to 2.500 nm. The described method.
  7. 幹細胞が体性幹細胞、胚性幹細胞、間葉系幹細胞、又は癌幹細胞若しくは腫瘍由来細胞である請求項1~6のいずれか1項に記載の方法。 7. The method according to claim 1, wherein the stem cells are somatic stem cells, embryonic stem cells, mesenchymal stem cells, or cancer stem cells or tumor-derived cells.
  8. 請求項1~7のいずれか1項に記載の方法により形成されたスフェロイドを回収することを特徴とする、スフェロイドの製造方法。 A method for producing spheroids, comprising recovering spheroids formed by the method according to any one of claims 1 to 7.
  9. 接触角が85°~95°の範囲となる条件を満たすように培養底面の粗さを有する培養容器。 A culture vessel having a bottom surface of a culture so as to satisfy a condition that a contact angle is in a range of 85 ° to 95 °.
  10. 接触角が89°~91°である請求項9に記載の培養容器。 10. The culture container according to claim 9, having a contact angle of 89 ° to 91 °.
  11. ポリスチレン製又はガラス製であり、かつ底面がフッ素含有ポリマーによるコーティングがされていない、請求項9又は10に記載の培養容器。 The culture vessel according to claim 9 or 10, wherein the culture vessel is made of polystyrene or glass, and the bottom surface is not coated with a fluorine-containing polymer.
  12. 2.400nm~2.500nmの二乗平均表面粗さを有する、請求項9~11のいずれか1項に記載の培養容器。 The culture vessel according to any one of claims 9 to 11, which has a root-mean-square surface roughness of 400 nm to 2.500 nm.
  13. 請求項8に記載の方法により製造されたスフェロイド。 A spheroid produced by the method according to claim 8.
  14. 組織への分化能が請求項1~7のいずれか1項に記載の方法を用いないで形成されたスフェロイドよりも高い、請求項13に記載のスフェロイド。 14. The spheroid according to claim 13, wherein the spheroid has a higher ability to differentiate into a tissue than a spheroid formed without using the method according to any one of claims 1 to 7.
  15. 組織が神経又は骨である請求項14に記載のスフェロイド。 The spheroid according to claim 14, wherein the tissue is a nerve or a bone.
  16. 請求項13~15のいずれか1項に記載のスフェロイドを含む、再生医療用材料。 A regenerative medicine material comprising the spheroid according to any one of claims 13 to 15.
  17. 再生医療が、神経疾患又は骨疾患の再生医療である請求項15に記載の材料。 The material according to claim 15, wherein the regenerative medicine is a regenerative medicine for a nerve disease or a bone disease.
  18. 請求項13~15のいずれか1項に記載のスフェロイドを含む、再生医療用キット。 A regenerative medicine kit comprising the spheroid according to any one of claims 13 to 15.
  19. 再生医療が、神経疾患又は骨疾患の再生医療である請求項18に記載のキット。 The kit according to claim 18, wherein the regenerative medicine is a regenerative medicine for a nerve disease or a bone disease.
PCT/JP2019/028377 2018-07-11 2019-07-11 Spheroid production method utilizing difference in hydrophilicity WO2020013345A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530293A JP7398114B2 (en) 2018-07-11 2019-07-11 Method for producing spheroids using differences in hydrophilicity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-131645 2018-07-11
JP2018131645 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013345A1 true WO2020013345A1 (en) 2020-01-16

Family

ID=69142710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028377 WO2020013345A1 (en) 2018-07-11 2019-07-11 Spheroid production method utilizing difference in hydrophilicity

Country Status (2)

Country Link
JP (1) JP7398114B2 (en)
WO (1) WO2020013345A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138101A1 (en) 2020-12-23 2022-06-30 三井化学株式会社 Culture member and use thereof
WO2022254961A1 (en) * 2021-05-31 2022-12-08 将 岡本 Cell culture supplement for producing stem cells, and method for producing stem cells
JP7425947B1 (en) 2022-12-22 2024-02-01 artience株式会社 Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731464A (en) * 1993-03-12 1995-02-03 W R Grace & Co Cell culture base material and its preparation
JP2003304866A (en) * 2002-04-17 2003-10-28 National Institute Of Advanced Industrial & Technology Differentiation control of cell by three-dimensional agglutinate formation
JP2010273655A (en) * 2009-05-29 2010-12-09 Canon Inc Cell holding method, cell testing method and cell treating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010022366A (en) * 2008-06-16 2010-02-04 Scivax Kk Method for preparing spheroid
JP6912789B2 (en) * 2016-03-16 2021-08-04 株式会社日本触媒 Neural stem cell culture method and neurospheroid formation method
KR101969115B1 (en) * 2016-12-26 2019-04-16 한국과학기술원 Platform for preparing surface stimuli-responsive 3D multicellular spheroids and Use Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731464A (en) * 1993-03-12 1995-02-03 W R Grace & Co Cell culture base material and its preparation
JP2003304866A (en) * 2002-04-17 2003-10-28 National Institute Of Advanced Industrial & Technology Differentiation control of cell by three-dimensional agglutinate formation
JP2010273655A (en) * 2009-05-29 2010-12-09 Canon Inc Cell holding method, cell testing method and cell treating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN,RZ. ET AL.: "Recent advances in the three-dimensional multicellular spheroid culture for biomedical research", BIOTECHNOLOGY JOURNAL, vol. 3, 2008, pages 1172 - 1184, XP002558418, DOI: 10.1002/biot.200700228 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138101A1 (en) 2020-12-23 2022-06-30 三井化学株式会社 Culture member and use thereof
KR20230079442A (en) 2020-12-23 2023-06-07 미쓰이 가가쿠 가부시키가이샤 Culture member and use thereof
WO2022254961A1 (en) * 2021-05-31 2022-12-08 将 岡本 Cell culture supplement for producing stem cells, and method for producing stem cells
JP7425947B1 (en) 2022-12-22 2024-02-01 artience株式会社 Cell culture substrate, method for producing cell culture substrate, and method for producing spheroids
WO2024135798A1 (en) * 2022-12-22 2024-06-27 artience株式会社 Cell culture substrate, production method for cell culture substrate, and production method for spheroids

Also Published As

Publication number Publication date
JPWO2020013345A1 (en) 2021-10-07
JP7398114B2 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
Trubiani et al. Periodontal ligament stem cells: current knowledge and future perspectives
Kim et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine
Potdar et al. Human dental pulp stem cells: Applications in future regenerative medicine
Cheng et al. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities
Lai et al. Reconstitution of marrow-derived extracellular matrix ex vivo: a robust culture system for expanding large-scale highly functional human mesenchymal stem cells
Govindasamy et al. Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth
Hsu et al. Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes
Morito et al. Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells
WO2020013345A1 (en) Spheroid production method utilizing difference in hydrophilicity
Mantesso et al. Dental stem cells for tooth regeneration and repair
Greiner et al. Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics
KR102150244B1 (en) CD49f promoting proliferation, multipotency and reprogramming of Adult Stem Cells via PI3K/AKT/GSK3 pathway
Kang et al. The potential of mouse skin-derived precursors to differentiate into mesenchymal and neural lineages and their application to osteogenic induction in vivo
Zarrinpour et al. Expression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition
Tsurumachi et al. Small buccal fat pad cells have high osteogenic differentiation potential
De Rosa et al. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells
Zhao et al. Maintenance and modulation of stem cells stemness based on biomaterial designing via chemical and physical signals
Song et al. Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars
Xiao et al. Adipogenic and osteogenic differentiation of Lin− CD271+ Sca-1+ adipose-derived stem cells
Sauerzweig et al. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells
Nguyen et al. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells
Yu et al. Epithelial-mesenchymal cell ratios can determine the crown morphogenesis of dental pulp stem cells
Peptan et al. Multiple differentiation potentials of neonatal dura mater-derived cells
Tao et al. Human platelet lysate supports mouse skeletal myoblast growth but suppresses cell fusion on nanogrooves
Abdallah et al. Direct differentiation of human embryonic stem cells toward osteoblasts and chondrocytes through an intermediate mesenchyme progenitor lineage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833478

Country of ref document: EP

Kind code of ref document: A1