WO2020013255A1 - Electrolyzed liquid generator - Google Patents

Electrolyzed liquid generator Download PDF

Info

Publication number
WO2020013255A1
WO2020013255A1 PCT/JP2019/027433 JP2019027433W WO2020013255A1 WO 2020013255 A1 WO2020013255 A1 WO 2020013255A1 JP 2019027433 W JP2019027433 W JP 2019027433W WO 2020013255 A1 WO2020013255 A1 WO 2020013255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
conductive film
electrolytic
anode
space
Prior art date
Application number
PCT/JP2019/027433
Other languages
French (fr)
Japanese (ja)
Inventor
賢一郎 稲垣
山口 友宏
今堀 修
俊輔 森
実 長田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018133659A external-priority patent/JP6937476B2/en
Priority claimed from JP2018133658A external-priority patent/JP6937475B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980041029.5A priority Critical patent/CN112334603B/en
Priority to EP19834422.8A priority patent/EP3822230A4/en
Publication of WO2020013255A1 publication Critical patent/WO2020013255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the present disclosure relates to an electrolytic liquid generation device.
  • an electrolytic unit formed by laminating an anode, a conductive film, and a cathode is formed. Ozone (electrolytic product) is generated in the electrolytic unit, and ozone water (electrolytic liquid) is generated. ) Is known (for example, see Patent Document 1).
  • the electrolysis section described in Patent Document 1 has a groove that connects a hole formed in a cathode as an electrode and a hole formed in a conductive film. Then, by applying a voltage to the electrolysis unit, the water introduced into the groove is electrolyzed to generate ozone.
  • the electrolytic portion is housed in the housing with the outer peripheral portion in contact with the inner surface of the housing.
  • the housing and the electrolytic section may be pressed and deformed by the scale accumulated in the minute gap.
  • the present disclosure provides an electrolytic liquid generation device capable of suppressing pressure on a housing and an electrolytic unit by a scale.
  • the electrolytic liquid generation device has a stacked body in which a conductive film is interposed between a cathode and an anode, an electrolytic unit that performs electrolytic treatment on a liquid, and a housing in which the electrolytic unit is disposed. , Is provided.
  • the housing has an inlet through which the liquid supplied to the electrolytic unit flows in, and an outlet through which the electrolytic liquid generated in the electrolytic unit flows out, and the liquid passing direction intersects the laminating direction of the laminate. Is formed.
  • the electrolysis part has a groove that is open to the flow channel and that exposes at least a part of the interface between the conductive film and the anode and the interface between the conductive film and the anode.
  • a space is formed between at least one of the outer peripheral portion of the cathode and the outer peripheral portion of the anode and the inner surface of the housing.
  • an electrolytic liquid generation device capable of suppressing pressure on a housing and an electrolytic unit by a scale.
  • FIG. 1 is an exploded perspective view showing an electrolyzed water generation device according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of the electrolyzed water generation device according to the embodiment of the present disclosure, which is cut along a plane perpendicular to a liquid flowing direction.
  • FIG. 3 is a cross-sectional view showing, on an enlarged scale, a portion of the electrolytic portion according to the embodiment of the present disclosure where the conductive film side groove is formed.
  • FIG. 4 is a partially enlarged plan view illustrating a state where the anode is stacked on the power supply body according to the embodiment of the present disclosure.
  • FIG. 5 is a partially enlarged plan view illustrating a state where a conductive film is stacked on an anode according to an embodiment of the present disclosure.
  • FIG. 6 is a partially enlarged plan view showing a state in which a cathode is stacked on a conductive film according to an embodiment of the present disclosure.
  • FIG. 7 is a partially enlarged view of the electrolyzed water generation device according to the first modified example of the present disclosure, and is a cross-sectional view corresponding to FIG.
  • FIG. 8 is a partially enlarged view of an electrolyzed water generation device according to a second modification of the present disclosure, and is a cross-sectional view corresponding to FIG. FIG.
  • FIG. 9 is a partially enlarged view of an electrolyzed water generation device according to a third modified example of the present disclosure, and is a cross-sectional view corresponding to FIG.
  • FIG. 10 is a partially enlarged view of an electrolyzed water generation device according to a fourth modified example of the present disclosure, and is a cross-sectional view corresponding to FIG.
  • FIG. 11 is a partially enlarged view of an electrolyzed water generation device according to a fifth modification, and is a cross-sectional view corresponding to FIG.
  • FIG. 12 is an enlarged view of a part of the electrolytic part where the conductive film side groove is formed according to the embodiment of the present disclosure.
  • FIG. 13 is an enlarged plan view illustrating a state where a conductive film is stacked on an anode according to an embodiment of the present disclosure.
  • FIG. 14 is an enlarged plan view illustrating a state where a cathode is stacked on a conductive film according to an embodiment of the present disclosure.
  • FIG. 15 is a diagram illustrating a state where the conductive film is displaced relative to the cathode in the liquid flowing direction according to an embodiment of the present disclosure, and is a plan view corresponding to FIG. 14.
  • FIG. 16 is a diagram illustrating a state where the conductive film is relatively displaced in the width direction with respect to the cathode according to the embodiment of the present disclosure, and is a plan view corresponding to FIG. 14.
  • an ozone water generation device that generates ozone (electrolysis product) by generating ozone (electrolysis product) and dissolving the ozone in water (liquid) will be described as an example of the electrolysis liquid generation device. I do.
  • O Ozone water is effective in disinfecting and decomposing organic substances, and thus is widely used in the field of water treatment, and in the fields of food and medicine, and has the advantage that it has no residue and does not generate by-products.
  • the extending direction of the flow path is the liquid flowing direction (the direction in which the liquid flows) X
  • the width direction of the flow path is the width direction (the direction crossing the liquid flowing direction) Y
  • the electrode and the conductive film are laminated.
  • the direction will be described as the stacking direction Z (see FIG. 1).
  • the vertical direction in a state where the electrolytic liquid generation device is arranged so that the electrode case lid is on the upper side is defined as the stacking direction Z.
  • the ozone water generating apparatus 1 has a housing 10 as shown in FIGS. 1 and 2, and a flow path 11 is formed inside the housing 10 (see FIG. 2). .
  • electrolytic section 50 is arranged so as to face the flow path 11. Then, the water flowing in the flow channel 11 is subjected to the electrolytic treatment by the electrolytic section 50.
  • electrolytic section 50 is arranged in housing 10 such that an upper surface (a surface on one side in stacking direction Z) 50a faces channel 11. .
  • the electrolytic section 50 has a laminate 51 as shown in FIGS. 1 and 2.
  • the laminate 51 has an anode (electrode) 54, a cathode (electrode) 55, and a conductive film 56, and is between the anode (electrode) 54 and the cathode (electrode) 55, that is, between a plurality of electrodes adjacent to each other.
  • a conductive film 56 is interposed.
  • the flow path 11 includes an inlet 111 into which the liquid supplied to the electrolytic unit 50 flows, and an outlet 112 from which the ozone water generated in the electrolytic unit 50 flows out.
  • the flow path 11 is formed in the housing 10 so that the liquid passing direction X intersects the stacking direction Z of the stacked body 51.
  • the laminated body 51 has a plurality of grooves 52 that are open to the flow channel 11 and that expose at least a part of the interface 57 and the interface 58 between the conductive film 56 and the plurality of electrodes (the anode 54 and the cathode 55). (See FIG. 3). It is sufficient that at least one groove 52 is formed in the laminated body 51.
  • water supplied from the inflow port 111 into the channel 11 can be introduced into the groove 52. Then, ozone water in which ozone is dissolved as an electrolysis product is generated by subjecting the water introduced into the groove 52 mainly to an electrolytic treatment for causing an electrochemical reaction.
  • the housing 10 is formed using a non-conductive resin such as PPS (Polyphenylenesulfide).
  • the housing 10 includes the electrode case 20 and the electrode case lid 40.
  • the electrode case 20 has a concave portion 23 which is open upward and accommodates the electrolytic portion 50.
  • the electrode case cover 40 covers the opening of the electrode case 20.
  • the electrode case 20 includes a bottom wall portion 21 and a peripheral wall portion 22 connected to a peripheral portion of the bottom wall portion 21, and has a substantially box-like shape that opens upward. I have. That is, the electrode case 20 is formed with the inner surface 21 a of the bottom wall portion 21 and the inner surface 22 a of the peripheral wall portion 22, and has a concave portion 23 that opens upward.
  • the electrolytic portion 50 is housed in the concave portion 23 by introducing the electrolytic portion 50 into the concave portion 23 from the opening side (upper side).
  • the opening of the concave portion 23 is formed so as to be larger than the outline shape of the electrolytic portion 50 as viewed in the laminating direction Z, and the laminating direction matches the vertical direction (laminating direction Z). 50 can be inserted into the recess 23 in the same posture.
  • electrolytic portion 50 is housed in recess 23 via elastic body 60. That is, the electrolysis unit 50 is housed in the recess 23 while the elastic body 60 is interposed between the electrolysis unit 50 and the electrode case 20 and the elastic body 60 is in contact with the lower surface 50 b of the electrolysis unit 50.
  • the elastic body 60 is formed using an elastic material such as rubber, plastic, and a metal spring.
  • the flow path 11 is formed between the electrolytic section 50 and the electrode case cover 40.
  • the flow channel 11 may be formed such that the cross-sectional area (the area of the flow channel 11 when cut along a plane perpendicular to the liquid flow direction X) at a portion facing the electrolytic unit 50 is substantially the same at a plurality of positions. preferable.
  • the electrode case lid 40 includes a substantially rectangular plate-shaped lid body 41 and a projection 42 projecting downward from the lower center of the lid body 41 and inserted into the recess 23 of the electrode case 20. I have.
  • a fitting recess 411 for welding is formed over the entire periphery of the lid body 41 at the periphery of the projection 42.
  • a welding fitting protrusion 241 formed around the entire periphery of the opening of the electrode case 20 is inserted into the fitting recess 411 (FIG. 2).
  • a flange portion 24 extending substantially horizontally outward is continuously provided on the entire periphery at the upper end of the peripheral wall portion 22 of the electrode case 20.
  • a fitting projection 241 projecting upward is formed on the flange 24 so as to surround the opening of the electrode case 20. Then, the electrode case lid 40 and the electrode case 20 are welded with the fitting projection 241 inserted into the fitting recess 411 while the projection 42 is inserted into the recess 23.
  • the electrode case cover 40 may be attached to the electrode case 20 by screwing the electrode case cover 40 to the electrode case 20 with a sealing material interposed between the electrode case cover 40 and the electrode case 20. It is possible.
  • a projection 421 for pressing the electrolytic portion 50 downward is formed at both ends and a center of the lower surface side of the projection 42 in the width direction Y.
  • a plurality of through-holes 61 penetrating in the stacking direction Z are formed in the elastic body 60 along the longitudinal direction (the liquid passing direction X).
  • the elastic body 60 can also be deformed to the through hole 61 side.
  • the compression of the electrode case 20 by the elastic body 60 pressed by the electrolytic unit 50 is suppressed.
  • the groove 412 is provided on the upper surface of the lid main body 41.
  • the groove 412 can be used for positioning, catching, preventing reverse insertion, and the like when fixing the ozone water generation device 1.
  • the ozone water generation device 1 can be more easily and erroneously incorporated into a device that requires ozone generation.
  • the ozone water generator 1 is used in a state where it is incorporated in other equipment and facilities.
  • ozone generated at the electrode interface can be quickly separated from the electrode interface by buoyancy. That is, ozone generated at the electrode interface can be quickly separated from the electrode interface before bubble growth. As a result, ozone is easily dissolved in water, and the efficiency of generating ozone water is improved.
  • the arrangement state of the ozone water generation device 1 is not limited to this, and can be appropriately arranged.
  • Electrolysis section 50 has a substantially rectangular shape with liquid passage direction X as its longitudinal direction in plan view (when viewed from laminating direction Z).
  • the electrolytic section 50 includes a laminate 51 formed by laminating an anode 54, a conductive film 56, and a cathode 55 in this order.
  • the stacked body 51 is stacked such that the conductive film 56 is interposed between the anode 54 and the cathode 55 which are a plurality of electrodes adjacent to each other.
  • a power supply 53 is stacked below the anode 54, and electricity is supplied to the anode 54 via the power supply 53.
  • each of the power supply 53, the anode 54, the conductive film 56, and the cathode 55 has a rectangular shape having a liquid passing direction X as a longitudinal direction and a width direction Y as a transverse direction in plan view. And a flat plate shape having a thickness in the stacking direction Z. At least one of the anode 54 and the cathode 55 may have a film shape, a mesh shape, or a linear shape.
  • the power supply 53 can be formed using, for example, titanium.
  • the power supply 53 is in contact with the anode 54 on the side of the anode 54 opposite to the side in contact with the conductive film 56.
  • An anode power supply shaft 53b is electrically connected to one end of the power supply body 53 in the longitudinal direction (upstream side in the liquid passing direction X) via a spiral spring portion 53a.
  • the power supply shaft 53b is inserted into a through hole 211 formed at one end of the bottom wall 21 in the liquid flow direction X.
  • a portion of the power supply shaft 53b protruding outside the electrode case 20 is electrically connected to a positive electrode of a power supply unit (not shown).
  • the anode 54 is formed, for example, by forming a conductive diamond film on a conductive substrate having a size of about 10 mm in width and about 100 mm in length formed using silicon. Further, for example, two sheets each having a size of about 10 mm in width and about 50 mm in length may be formed side by side.
  • the conductive diamond film has Borundov conductivity.
  • the conductive diamond film is formed on a conductive substrate with a thickness of about 3 ⁇ m by a plasma CVD method.
  • the conductive film 56 is disposed on the anode 54 on which the conductive diamond film is formed.
  • the conductive film 56 is a proton conductive type ion exchange film and has a thickness of about 100 to 200 ⁇ m.
  • the conductive film 56 has a plurality of conductive film side holes (conductive film side grooves) 56c penetrating in the thickness direction (stacking direction Z) (see FIG. 5).
  • each conductive film side hole 56c has substantially the same shape. Specifically, each conductive film side hole 56c has a long and narrow hole shape in the width direction Y. The plurality of conductive film side holes 56c are provided so as to be arranged in a line at a predetermined pitch in the longitudinal direction (liquid flowing direction X). The shape and arrangement of the conductive film side holes 56c may be different from the example shown in FIG. In addition, at least one conductive film side hole 56c may be formed.
  • the negative electrode 55 is disposed on the conductive film 56.
  • the cathode 55 is made of, for example, a titanium electrode plate having a thickness of about 0.5 mm.
  • a cathode power supply shaft 55b is electrically connected to the other end of the cathode 55 in the longitudinal direction (downstream in the liquid passing direction X) via a spiral spring portion 55a.
  • the power supply shaft 55b is inserted into a through hole 211 formed on the other end of the bottom wall 21 in the liquid passing direction X.
  • a portion of the power supply shaft 55b protruding outside the electrode case 20 is electrically connected to a negative electrode of a power supply unit (not shown).
  • each cathode side hole 55e has substantially the same shape. Specifically, each cathode side hole 55e has a V-shape in which a bent portion 55f is disposed on the downstream side in plan view.
  • the plurality of cathode-side holes 55e are provided so as to be arranged in a line at a predetermined pitch along the longitudinal direction (liquid flowing direction X).
  • the pitch of the cathode side holes 55e may be the same pitch as the conductive film side holes 56c, or may be different from the conductive film side holes 56c. Further, the shape and arrangement of the cathode side holes 55e may be different from the example of FIG. Further, at least one cathode side hole 55e may be formed.
  • the shapes of the conductive film side holes 56c and the cathode side holes 55e in a plan view (a state viewed along the stacking direction of the stacked body 51). , At least one).
  • the shape (contour shape and size) of the conductive film side hole 56c and the cathode side hole 55e in plan view can be the same.
  • the conductive film 56 and the cathode 55 are stacked, at least a part of the mutual holes (the cathode side hole 55e and the conductive film side hole 56c) needs to communicate with each other. A sufficient contact area must be ensured. As long as the above conditions are satisfied, the conductive film 56 and the cathode 55 may have the same projected size (size in plan view) or may have different projected sizes.
  • the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56 (see FIG. 3).
  • the projected size of the anode 54 may be the same size as at least one of the conductive film 56 and the cathode 55 or may be different, but when stacked, the conductive film side hole 56c is closed from below. It is preferably of a size that can be used.
  • the anode 54 and the conductive film 56 have substantially the same projected dimensions.
  • the power supply 53 can efficiently supply electricity to the anode 54, and the elastic body 60 has a projected size enough to be pressed by the entire lower surface of the power supply 53 (the lower surface 50 b of the electrolytic unit 50). It is preferable that
  • the dimension of the power supply 53 in the width direction Y is smaller than that of the anode 54 and the conductive film 56, and the dimension of the elastic body 60 in the width direction Y is substantially equal to that of the anode 54 and the conductive film 56.
  • the projection dimensions are the same.
  • the projection dimensions of the power supply 53 and the elastic body 60 can be various dimensions.
  • the electrolytic unit 50 having such a configuration can be accommodated in the concave portion 23 of the electrode case 20 by, for example, a method described below.
  • the power supply 53 is arranged on the elastic body 60 inserted into the recess 23 of the electrode case 20. Specifically, the power supply body 53 is inserted into the concave portion 23 of the electrode case 20 with the tip of the power supply shaft 53b facing downward. Then, the power supply body 53 is stacked on the elastic body 60 by inserting the power supply shaft 53b into the one through hole 211.
  • the anode 54 is inserted into the recess 23 of the electrode case 20 and laminated on the power supply 53.
  • the conductive film 56 is inserted into the recess 23 of the electrode case 20 and laminated on the anode 54.
  • the cathode 55 is inserted into the recess 23 of the electrode case 20 with the tip of the power supply shaft 55b facing downward while the power supply shaft 55b is inserted into the other through-hole 211, so that the cathode 55 is It is laminated on the conductive film 56.
  • an O-ring 31, a washer 32, and a washer are provided on a portion of the anode power supply shaft 53b protruding outside the electrode case 20 and on a portion of the cathode power supply shaft 55b protruding outside the electrode case 20, respectively.
  • 33 and hex nut 34 are inserted.
  • the electrolytic portion 50 is housed and fixed in the recess 23 while being pressed against the elastic body 60 by tightening the hexagon nut 34.
  • the projection 42 is inserted into the recess 23 while being fitted into the fitting recess 411 for welding.
  • the collision part 241 is inserted.
  • the ozone water generation device 1 is assembled simply by moving each member relatively to the electrode case 20 in the vertical direction (the stacking direction Z).
  • water is supplied from the inlet 111 to the channel 11. Part of the water supplied to the flow channel 11 flows into the groove 52 and comes into contact with the interface 57 and the interface 58 of the groove 52.
  • a voltage is applied between the anode 54 and the cathode 55 of the electrolytic unit 50 by a power supply unit (not shown). Then, a potential difference is generated between the anode 54 and the cathode 55 via the conductive film 56.
  • the anode 54, the conductive film 56, and the cathode 55 are energized, and the electrolytic treatment is performed mainly in the water in the groove 52. Ozone is generated in the vicinity of the interface 57 with the ozone.
  • Ozone generated near the interface 57 between the conductive film 56 and the anode 54 dissolves in the water while being carried to the downstream side of the flow path 11 along the flow of the water.
  • dissolved ozone water ozone water: electrolytic liquid
  • ozone water electrolytic liquid
  • the ozone water generating apparatus 1 can be applied to an electric device using the electrolytic liquid generated by the electrolytic liquid generating apparatus, a liquid reforming apparatus including the electrolytic liquid generating apparatus, and the like.
  • Examples of electric equipment and liquid reforming equipment include water treatment equipment such as water purification equipment, washing machines, dishwashers, hot water washing toilet seats, refrigerators, hot and cold water supply equipment, sterilization equipment, medical equipment, air conditioning equipment, and kitchens. Equipment.
  • peripheral wall portion 22 housing 10
  • electrolytic portion 50 by the scale generated by the electrolysis of water is suppressed.
  • a space S is formed between the outer peripheral portion of at least one of the cathode 55 and the anode 54 and the inner surface 22a of the peripheral wall portion 22 (the inner surface of the housing 10). Is prevented from staying around the surrounding area.
  • the space portion S has a gap larger than a manufacturing tolerance generated when assembling the ozone water generation device 1.
  • the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56.
  • the anode 54 and the conductive film 56 have substantially the same projected dimensions.
  • both ends of the cathode 55 in the width direction Y protrude outside the anode 54 and the conductive film 56.
  • the outer peripheral portion (side surface) 55c of the cathode 55 protrudes outside the outer peripheral portion (side surface) 54a of the anode 54 in the width direction Y (the direction intersecting the stacking direction Z).
  • a portion of the cathode 55 that protrudes outside the outer peripheral portion 54a of the anode 54 in the width direction Y is referred to as a cathode-side protruding portion 55g (see FIG. 3).
  • the cathode-side protruding portions 55g that protrude outside the anode 54 and the conductive film 56 are formed at both ends in the width direction Y of the cathode 55, when the stacked body 51 is accommodated in the concave portion 23, the peripheral wall portion is formed.
  • a space S is formed between the inner surface 22 a of the anode 22 and the anode 54.
  • a space S is also formed below the cathode-side projection 55g of the cathode 55 (on the anode 54 side in the stacking direction Z).
  • the space portion S is an anode-side space portion (second space portion) formed between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. S2 is provided. Further, the space S has a lower space (third space) S3 formed on the anode 54 side in the stacking direction Z with respect to the cathode 55.
  • the manufacturing tolerance is also provided between the outer peripheral portion (side surface) 55c of the cathode 55 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22.
  • a larger gap is provided. That is, the space portion S has a cathode-side space portion (first space portion) S1 formed between the outer peripheral portion (side surface) 55c of the cathode 55 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. ing.
  • the cathode space portion (first space portion) S1 and the anode space portion (first space portion) are provided between the outer peripheral portion (side surface) 51a of the multilayer body 51 and the inner surface 22a of the peripheral wall portion 22, the cathode space portion (first space portion) S1 and the anode space portion (first space portion) are provided.
  • the space S is formed at least around the longitudinal direction of the stacked body 51. That is, at least a portion of the cathode-side space (first space) S1 is formed along the side surface 51a.
  • the side surfaces 51a are arranged on both sides in the width direction Y of the multilayer body 51 and extend in the longitudinal direction (liquid flow direction X).
  • the cathode side space (first space) S1 communicates with the inflow port 111 and the outflow port 112, and the water introduced into the cathode side space (first space) S1 flows out of the outflow port 112 efficiently. Although it is preferable to make it communicate, it may be made to communicate in the middle of the channel 11.
  • the vicinity of the interface 58 between the conductive film 56 and the cathode 55 is a portion where the pH value is likely to increase and scale is likely to occur, but if the space S described in the present embodiment is formed, A relatively large space is formed near the interface 58. That is, the outer interface 58 in the width direction Y forms a space (lower space portion (third space portion) S3) of a predetermined size on the anode 54 side (lower side) in the stacking direction Z and has a width In a state where a space (anode-side space (second space) S2) having a predetermined size is formed outside the direction Y, the space S is exposed.
  • the outer interface 58 in the width direction Y is exposed to the space S along the longitudinal direction (the liquid passing direction X), and the outer interface 58 in the width direction Y is substantially The whole is exposed to the space S.
  • the water introduced into the space S flows downstream along the liquid flowing direction X. That is, the water introduced near the interface 58 exposed to the space S also flows relatively quickly to the downstream side along the liquid flowing direction X. Therefore, the scale generated near the interface 58 can flow downstream before being fixed to the laminate 51 and the housing 10. In this manner, if the space S shown in the present embodiment is formed, water is prevented from staying in the vicinity of the interface 58 where scale is likely to occur, and the scale generated in the vicinity of the interface 58 is It can quickly flow downstream. As a result, accumulation of scale between the laminate 51 and the peripheral wall 22 is suppressed. Therefore, it is possible to prevent the peripheral wall portion 22 (housing 10) and the electrolytic portion 50 from being pressed by the scale.
  • the space S is provided, accumulation of scale between the laminate 51 and the peripheral wall 22 is suppressed, but the laminate 51 and the peripheral wall 22 have a relatively small amount, The scale sticks. Therefore, when the ozone water generation device 1 is used for a long time, the scale fixed to the laminate 51 and the peripheral wall 22 becomes large, and the peripheral wall 22 (housing 10) and the electrolytic unit 50 may be pressed. There is also. For this reason, the size of the space S may be set to such a size that the space S is not blocked by the fixed scale even when the ozone water generation device 1 is used for the expected life or longer by a normal method. preferable. Typical usage methods are, for example, water quality (liquid quality) of water supplied into the housing, average flow velocity and average flow rate of water flowing in the housing, ozone generation efficiency (voltage applied between electrodes and electrolytic area). , And the expected use frequency.
  • a plurality of positioning protrusions 221 extending in the vertical direction (stacking direction Z) are formed inside the peripheral wall portion 22 of the electrode case 20 along the longitudinal direction (liquid flow direction X) (see FIG. 4). ). Then, the displacement of the anode 54 at the time of lamination is suppressed by the positioning projection 221 (see FIG. 4).
  • the positioning protrusion 221 is formed on the inner surface of the peripheral wall portion 22 (the inner surface of the housing) at a position facing the outer peripheral portion 51a of the laminate 51.
  • the positioning protrusion 221 corresponds to a housing protrusion protruding toward the stacked body 51.
  • the outer peripheral portion (side surface) 51 a of the laminated body 51 and the inner surface 22 a of the peripheral wall portion 22 can be formed simply by disposing the laminate 51 in the concave portion 23. A space S is formed therebetween.
  • a conductive film-side concave portion 56b as a relief portion is formed in a concave shape on the outer peripheral portion (side surface) 56a (contour line in a plane) of the conductive film 56 (see FIG. 5).
  • the conductive film-side concave portion 56b is formed at a position corresponding to the positioning protrusion (housing protrusion) 221 when the laminated body 51 is disposed in the concave portion 23.
  • the concave portion 56b of the conductive film side facing the concave portion faces the positioning protrusion 221 of the peripheral wall portion 22 (see FIG. 5). Accordingly, it is possible to prevent the conductive film 56 expanded including water from interfering with the positioning protrusion 221 at the time of generation of ozone water or the like.
  • a cathode-side concave portion 55d as a relief portion is formed in a concave shape also on an outer peripheral portion (side surface) 55c (a contour line in a plan view) of the cathode 55 having a width larger in the width direction Y than the conductive film 56 (see FIG. See FIG. 6).
  • the cathode-side concave portion 55d is formed at a position corresponding to the positioning protrusion (housing protrusion) 221 when the stacked body 51 is disposed in the concave portion 23.
  • the concave cathode-side recess 55d faces the positioning projection 221 of the peripheral wall 22 (see FIG. 6). This suppresses interference of the cathode 55 having a larger dimension in the width direction Y with the positioning protrusion 221. That is, the cathode-side recess 55d is formed so that the interference between the cathode 55 and the positioning protrusion 221 is suppressed while the surface area of the cathode 55 is increased as much as possible.
  • the space S may be formed between the outer peripheral portion of at least one of the cathode 55 and the anode 54 and the inner surface 22a of the peripheral wall portion 22 (the inner surface of the housing 10). 51 may be configured as shown in FIGS. 7 to 11, for example.
  • FIG. 7 shows a stacked body 51 in which the outer peripheral portion (side surface) 56a of the conductive film 56 is projected more than the outer peripheral portion (side surface) 54a of the anode 54 in the width direction Y (direction intersecting with the laminating direction Z). Is disclosed.
  • the portion of the conductive film 56 that protrudes beyond the outer peripheral portion 54a of the anode 54 in the width direction Y is defined as a conductive film-side protrusion 56d.
  • the cathode 55 and the conductive film 56 have substantially the same projected dimensions.
  • the cathode 54 is formed at both ends in the width direction Y of the cathode 55, while the cathode-side protrusions 55 g projecting outside the anode 54 are formed at both ends in the width direction Y of the conductive film 56.
  • a conductive film-side protruding portion 56d protruding outward is formed.
  • the conductive film 56 also comes into contact with the lower surface of the cathode-side protruding portion 55g. Available. That is, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 can be further increased.
  • the outer peripheral portion (side surface extending in the longitudinal direction) 55c of the cathode 55 contacts the inner surface 22a of the peripheral wall portion 22, and the outer peripheral portion 54a of the anode 54, the outer peripheral portion 56a of the conductive film 56, and the inner surface 22a of the peripheral wall portion 22.
  • a space S is formed between the two. That is, when the stacked body 51 is accommodated in the recess 23, the anode-side space (second space) S ⁇ b> 2 and the lower side are provided between the outer peripheral portion (side surface) 51 a of the stacked body 51 and the inner surface 22 a of the peripheral wall 22.
  • a space S having a space (third space) S3 is formed.
  • the conductive film side protrusion 56d described in FIG. 8 is possible to form. However, if the conductive film-side protruding portion 56d is also brought into contact with the inner surface 22a of the peripheral wall portion 22, there is a possibility that water may stay between the interface 58 and the inner surface 22a of the peripheral wall portion 22 where scale is likely to occur. . Therefore, when forming the conductive film side protruding portion 56d, a gap (space S) between the outer peripheral portion 56a of the conductive film 56 and the inner surface 22a of the peripheral wall portion 22 that can suppress the accumulation of water is provided. Is preferably formed.
  • FIG. 9 shows a laminate 51 in which at least portions extending in the longitudinal direction in the outer peripheral portion 54a of the anode 54, the outer peripheral portion 55c of the cathode 55, and the outer peripheral portion 56a of the conductive film 56 are substantially flush with each other. Is disclosed.
  • the side surface 54 a extending in the longitudinal direction of the anode 54, the side surface 55 c extending in the longitudinal direction of the cathode 55, the side surface 56 a extending in the longitudinal direction of the conductive film 56, and the inner surface 22 a of the peripheral wall portion 22.
  • a space S is formed between the two.
  • the cathode-side space portion (first space portion) S ⁇ b> 1 and the anode-side space portion are provided between the outer peripheral portion (side surface) 51 a of the laminate 51 and the inner surface 22 a of the peripheral wall portion 22.
  • a space S having a space (second space) S2 is formed.
  • FIG. 10 discloses a stacked body 51 in which the size of the anode 54 in the width direction Y is larger than that of the conductive film 56 and the cathode 55 and the conductive film 56 have substantially the same projected dimensions. I have.
  • both ends of the anode 54 in the width direction Y are projected outside the cathode 55 and the conductive film 56, and the width of the anode 54 in the width direction Y is larger than the outer peripheral portion 55 c of the cathode 55.
  • the part protruding outside is defined as the anode-side protruding part 54b.
  • the peripheral wall A space S is formed between the inner surface 22a of the portion 22 and the cathode 55.
  • a space S is also formed above the anode-side protruding portion 54b of the anode 54 (on the side of the cathode 55 in the stacking direction Z).
  • the space S is formed between the outer peripheral portion (side surface) 55 c of the cathode 55 and the inner surface (inner surface of the housing 10) 22 a of the peripheral wall 22 (the first space). Part) S1.
  • the space S also has an upper space (fourth space) S4 formed closer to the cathode 55 in the stacking direction Z than the anode 54.
  • a gap exceeding the manufacturing tolerance is provided between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22 in a state where the anode-side protruding portion 54b is formed.
  • the space portion S has an anode-side space portion (second space portion) S2 formed between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. ing.
  • the conductive film side protruding portion 56d described in FIG. 7 can be formed on the conductive film 56. That is, at both ends in the width direction Y of the anode 54, the anode-side protrusions 54 b protruding outside the cathode 55 are formed, and at both ends in the width direction Y of the conductive film 56, the protrusions protrude outside the cathode 55.
  • the conductive film side protrusion 56d can be formed.
  • the conductive film 56 also contacts the upper surface of the anode-side protruding portion 54b. Available. That is, the contact area (electrolysis area) between anode 54 and conductive film 56 can be further increased.
  • FIG. 11 similarly to the stacked body 51 described with reference to FIG. 10, at both ends in the width direction Y of the anode 54, the anode-side protruding portions 54b projecting outside the cathode 55 and the conductive film 56 are formed.
  • a stacked body 51 is disclosed.
  • the outer peripheral portion (side surface extending in the longitudinal direction) 54 a of the anode 54 contacts the inner surface 22 a of the peripheral wall portion 22, and the outer peripheral portion 55 c of the cathode 55, the outer peripheral portion 56 a of the conductive film 56, and the inner surface of the peripheral wall portion 22.
  • the space S is formed between the space S and the space 22a. That is, when the laminate 51 is accommodated in the recess 23, the cathode-side space (first space) S ⁇ b> 1 and the upper space are provided between the outer peripheral portion (side surface) 51 a of the laminate 51 and the inner surface 22 a of the peripheral wall portion 22.
  • a space portion S having a portion (fourth space portion) S4 is formed.
  • a gap (space S) between the outer peripheral portion 56a of the conductive film 56 and the inner surface 22a of the peripheral wall portion 22 that can suppress the accumulation of water is provided. Is preferably formed.
  • the ozone water generation device (electrolytic liquid generation device) 1 is configured such that the conductive film 56 is interposed between the anode 54 and the cathode 55 (between adjacent electrodes). It has a stacked body 51 and is provided with an electrolysis section 50 for electrolyzing water (liquid). Further, the ozone water generation device 1 includes the housing 10 in which the electrolysis unit 50 is disposed.
  • the housing 10 has an inlet 111 into which water supplied to the electrolytic unit 50 flows, and an outlet 112 from which ozone water (electrolyzed water: electrolytic liquid) generated in the electrolytic unit 50 flows out.
  • the flow path 11 is formed in which the direction X intersects with the stacking direction Z of the stacked body 51.
  • an interface 57 between the conductive film 56 and the electrode (anode 54) and an interface 58 between the conductive film 56 and the electrode (cathode 55) is opened in the flow channel 11.
  • An exposed groove 52 is formed.
  • the electrodes adjacent to each other are the cathode 55 and the anode 54, and the outer periphery of at least one of the cathode 55 and the anode 54 and the inner surface (inner surface of the housing) 22 a of the peripheral wall 22.
  • a space S that suppresses stagnation of water is formed therebetween.
  • the space S may have a cathode-side space (first space) S1 formed between the outer peripheral portion 55c of the cathode 55 and the inner surface (inner surface of the housing) 22a of the peripheral wall 22. .
  • the space S may have an anode-side space (second space) S2 formed between the outer peripheral portion 54a of the anode 54 and the inner surface (inner surface of the housing) 22a of the peripheral wall 22. .
  • the space S may have a lower space (third space) S3 formed closer to the anode 54 in the stacking direction Z than the cathode 55 is.
  • the space S is formed between the electrolytic portion 50 and the peripheral wall portion 22, so that the electrolytic portion 50 and the peripheral wall portion 22 are formed. Compression by the scale 22 is suppressed, and deformation (bending or the like) of the electrolytic unit 50 is suppressed.
  • the deformation of the electrolytic section 50 is suppressed, the contact between the anode 54 and the conductive film 56 and the contact between the conductive film 56 and the cathode 55 are prevented from becoming uneven. That is, the anode 54 and the conductive film 56 can be more uniformly contacted, and the conductive film 56 and the cathode 55 can be more uniformly contacted.
  • a current-carrying area for example, an electrolysis area between the conductive film 56 and the cathode 55
  • the current density of the current flowing through the electrolytic unit 50 can be made more uniform, and the generation efficiency of ozone (electrolysis product) can be further stabilized. Can be done.
  • the ozone water generation device 1 that can suppress the compression of the peripheral wall portion 22 (housing 10) and the electrolytic portion 50 by the scale.
  • the outer peripheral portion 55c of the cathode 55 may be made to protrude more than the outer peripheral portion 54a of the anode 54 in the width direction Y (a direction intersecting the stacking direction Z).
  • the area of the cathode 55 is increased by an amount corresponding to the projection in the width direction Y from the outer peripheral portion 54a of the anode 54, so that the current density of the current flowing through the cathode 55 is reduced and the periphery of the cathode 55 is electrolyzed. Accumulation of the generated scale can be suppressed.
  • the outer peripheral portion 56a of the conductive film 56 may be made to protrude more than the outer peripheral portion 54a of the anode 54 in the width direction Y (the direction intersecting the stacking direction Z).
  • the conductive film 56 also comes into contact with the lower surfaces of both ends in the width direction Y of the cathode 55, so that the size is increased.
  • the area of the cathode 55 can be used more effectively. That is, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 can be further increased.
  • the space S may be formed at least around the longitudinal direction of the laminate 51.
  • the stagnation of water around the electrolytic section 50 can be more reliably suppressed, and the ozone (electrolysis product) generation efficiency can be further stabilized.
  • a positioning projection (housing projection) 221 projecting toward the laminate 51 may be formed on a portion of the inner surface (inner surface of the housing) 22a of the peripheral wall portion 22 facing the outer peripheral portion 51a of the laminate 51.
  • the space S can be formed between the outer peripheral portion (side surface) 51 a of the laminated body 51 and the inner surface 22 a of the peripheral wall portion 22 only by disposing the laminated body 51 in the concave portion 23. Therefore, a gap (space S) can be more reliably secured between the laminate 51 and the peripheral wall 22.
  • the cathode-side concave portion 55d may be formed at a position corresponding to the positioning projection (housing projection) 221 on the outer peripheral portion 55c of the cathode 55.
  • the conductive film side concave portion 56b may be formed at a position corresponding to the positioning protrusion (housing protrusion) 221 on the outer peripheral portion 56a of the conductive film 56.
  • an ozone water generation apparatus that generates ozone and generates ozone water by dissolving the ozone in water is illustrated.
  • the substance to be generated is not limited to ozone.
  • Chlorous acid may be generated and used for sterilization and water treatment. It is also possible to use an apparatus for generating oxygen water, hydrogen water, chlorine-containing water, hydrogen peroxide water, and the like.
  • electrolytic liquid generation devices can also be used in a state where they are incorporated in other equipment and facilities.
  • the electrolytic liquid generation device When the electrolytic liquid generation device is incorporated into another device or facility, it is preferable to arrange the electrolytic liquid generation device in an upright state with the inflow port down and the outflow port up, as in the ozone water generation apparatus 1.
  • the present invention is not limited to this, and an appropriate arrangement is possible.
  • the anode 54 can be made of a material selected from, for example, conductive silicon, conductive diamond, titanium, platinum, lead oxide, tantalum oxide, and the like, and has a conductive property capable of generating electrolytic water. Any material may be used as long as the electrode has durability and durability.
  • the manufacturing method is not limited to the manufacturing method by film formation.
  • the substrate can be formed using a material other than a metal.
  • the cathode 55 may be an electrode having conductivity and durability, and may be made of, for example, a material selected from platinum, titanium, stainless steel, and conductive silicon.
  • the shape of the housing protrusion may be various shapes.
  • a housing protrusion extending in the longitudinal direction (liquid flow direction X) may be provided at a portion of the peripheral wall 22 corresponding to the outer peripheral portion (side surface extending in the longitudinal direction) 54 a of the anode 54. .
  • the space S can be more reliably secured between the stacked body 51 and the peripheral wall 22 and the flow of water (liquid) in the space S is prevented from being obstructed by the housing protrusion. Can be suppressed.
  • the specifications (shape, size, layout, etc.) of the housing, the electrolytic section, and other details can be appropriately changed.
  • the components described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the basic configuration of the ozone water generation device 1 is common to the first embodiment.
  • the hole formed in the cathode and the hole formed in the conductive film have the same shape. That is, the hole formed in the cathode and the hole formed in the conductive film are formed so that the contour shape and the size in plan view are the same. Then, a groove is formed by laminating the cathode and the conductive film such that the outlines of the holes overlap.
  • an electrolytic liquid generation device capable of further stabilizing the generation efficiency of an electrolytic product.
  • both ends in the width direction of the cathode 55 project outside the anode 54 and the conductive film 56 (the configuration as shown in FIG. 12).
  • the both ends in the width direction of the cathode 55 are made to protrude outside the anode 54 and the conductive film 56, when the laminate 51 is accommodated in the concave portion 23, at least the inner surface 22 a of the peripheral wall portion 22 and the anode A space S is formed between the space 54 and the space 54.
  • the space S is a space formed between the outer edge of the stacked body 51 and the peripheral wall 22 to prevent water from staying there.
  • a space S is also formed between the inner surface 22a of the peripheral wall 22 and the cathode 55.
  • the configuration of the laminate 51 may be based on the configuration shown in FIGS. 7 to 11 described above. That is, the basic configuration of the first embodiment can be combined with the detailed configuration described in the second embodiment.
  • the generation efficiency of ozone 70 can be further stabilized.
  • the configuration (contour shape and size) of the conductive film side hole 56c and the cathode side hole 55e is different in a plan view (a state viewed along the stacking direction of the stacked body 51). ing.
  • the conductive film side hole 56c is formed into a long and narrow hole shape in the width direction Y, and the cathode side hole 55e is formed in a V shape in which a bent portion 55f is disposed on the downstream side in plan view.
  • the outline shapes of the conductive film side hole 56c and the cathode side hole 55e in plan view are different (see FIGS. 13 and 4).
  • the conductive film side hole 56c is arranged in a direction (width direction Y) orthogonal to the liquid flowing direction X in plan view. It will extend (see FIG. 13). That is, the angle between the extending direction of the conductive film side hole 56c in plan view and the liquid flowing direction X is 90 degrees.
  • the cathode side hole 55e has a shape in which two long holes extending from the upstream side and the outside in the width direction Y toward the bent side 55f located on the downstream side and the center in the width direction Y are communicated with the bent part 55f. You are. That is, the two long holes extending from the bent portion 55f toward the upstream end portion 55h extend in a direction intersecting the liquid flowing direction X in a plan view (see FIG. 14).
  • the cathode side hole 55e is formed such that the tip end 55h is located outside the width direction on the upstream side of the bent portion 55f. Therefore, each of the two long holes constituting the cathode side hole 55e intersects the liquid passage direction X and extends in a direction intersecting the width direction Y (a direction orthogonal to the liquid passage direction X). That is, in the extending directions of the two long holes constituting the cathode side hole 55e, the absolute value of the acute angle formed by the liquid flowing direction X is larger than 0 degree and smaller than 90 degrees.
  • the extending direction of one long hole of the cathode-side hole 55e is a direction inclined by 30 degrees with respect to the liquid flowing direction X
  • the extending direction of the other long hole is the liquid flowing direction X.
  • the absolute value of the acute angle between the extending direction of one of the long holes and the liquid passing direction X is equal to the absolute value of the acute angle between the extending direction of the other long hole and the liquid passing direction X. No need. That is, the shape of the cathode side hole 55e in a plan view does not need to be line-symmetric with respect to a straight line passing through the bent portion 55f and extending in the liquid flowing direction X.
  • the extending directions of the two long holes constituting the cathode side hole 55e are respectively equal to those of the conductive film side hole 56c in plan view.
  • the direction is not parallel to the extending direction.
  • the conductive film side hole 56c and the cathode side hole 55e are configured so as to partially communicate with each other. That is, it is configured such that a part of a plurality of long holes extending in different directions communicate with each other.
  • the conductive film 56 and the cathode 55 are arranged such that the outer peripheral portion (contour line in plan view) 66d of the conductive film side hole 56c and the outer peripheral portion of the cathode side hole 55e (plan view) in plan view. Are stacked so as to have an intersecting portion 59 intersecting with an outline 55g (see FIG. 14).
  • a plurality of conductive film side holes 56c are formed in the conductive film 56 so as to be arranged in a line along the liquid flowing direction X.
  • a plurality of cathode side holes 55e are formed so as to be arranged in a line along the liquid flowing direction X.
  • Two cathode-side holes 55e that are adjacent to each other in the liquid passing direction X are such that the bent portion 55f of the cathode-side hole 55e arranged on the upstream side is located on the downstream side of the tip end 55h of the cathode-side hole 55e arranged on the downstream side. It is arranged to be located.
  • the plurality of conductive film side holes 56c are arranged so as to intersect with one cathode side hole 55e.
  • a plurality of communication regions R1 with the conductive film side hole 56c are formed in one cathode side hole 55e, and the conductive film 56 A plurality of exposed regions R2 to be exposed are formed. That is, a plurality of intersections 59 are formed in one cathode side hole 55e.
  • the shape of the plurality of conductive film side holes 56c is the same, the shape of the plurality of cathode side holes 55e is the same, and the pitch of the conductive film side holes 56c in the liquid passing direction X and the cathode hole 55e are It is preferable that the pitch in the liquid passing direction X is the same.
  • the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56. Therefore, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 is determined from the area of the upper surface of the conductive film 56 (the portion above the conductive film 56 where the conductive film side hole 56c is not formed). It can be approximated by a value obtained by subtracting the total area of the exposed region R2.
  • the cathode 55 and the conductive film 56 are configured as described above, even when the conductive film 56 is relatively displaced with respect to the cathode 55 when forming the laminate 51, The amount of change in the contact area (electrolysis area) between the conductive film 55 and the conductive film 56 can be reduced. That is, when the positions are displaced by the same amount, the configuration shown in the present embodiment can make the amount of change in the electrolytic area smaller than the configuration shown in the above-described conventional technique.
  • the area of one exposed region R2 (and (The area of one communication region R1) slightly changes near the bent portion 55f of the cathode side hole 55e.
  • the area of one exposed region R2 hardly changes in other portions. Therefore, the amount of change in the total area of the exposed region R2 in one cathode side hole 55e is substantially the same as the amount of change near the bent portion 55f.
  • the contact area of the conductive film 56 with the cathode 55 after the displacement in the liquid flowing direction X is the same as that of the conductive film 56 when the conductive film 56 is laminated at a regular position. Only slightly changes from the contact area with the cathode 55.
  • the conductive film 56 when the conductive film 56 is relatively displaced in the width direction Y with respect to the cathode 55 when forming the stacked body 51, the area of one exposed region R2 (and 1 Basically, the area of one communication region R1 hardly changes.
  • the length of the conductive film side hole 56c in the width direction Y is slightly shorter at the portion where the conductive film side concave portion 56b as the escape portion is formed, and in this portion, the area of one exposed region R2 is formed. Slightly changes.
  • the amount of change in the total area of the exposed region R2 in one cathode side hole 55e is the amount of change in the portion where the conductive film side concave portion 56b as the escape portion is formed. It is almost the same as the amount of change.
  • the contact area between the conductive film 56 and the cathode 55 after the displacement in the width direction Y is smaller than the conductive area when the conductive film 56 is laminated at a regular position. It only slightly changes from the contact area between the membrane 56 and the cathode 55.
  • the total area of the exposed regions R2 formed in the respective groove portions is the amount of change in the contact area between the conductive film 56 and the cathode 55. Then, when the conductive film 56 is displaced by the same amount with respect to the cathode 55 by the same amount, the exposed region R2 newly formed in each groove portion is different from the conductive film 56 and the cathode 55 in the configuration shown in the present embodiment. Is larger than the change amount of the contact area.
  • the conductive film 56 when the conductive film 56 is displaced in the liquid flowing direction X by the same amount with respect to the cathode 55, in the configuration shown in this embodiment, only the exposed region R2 changes near the bent portion 55f. It is. However, in the configuration shown in the related art, the exposed region R2 protruding by the amount of displacement in the liquid flowing direction X is formed almost entirely in the width direction Y of the groove 52. Thus, when the conductive film 56 is displaced by the same amount with respect to the cathode 55, the configuration shown in the present embodiment is more conductive and the cathode 55 than the configuration shown in the prior art. And the amount of change in the contact area with the contact is reduced.
  • arc-shaped curved portions 56e are formed at both ends in the width direction Y of the conductive film side holes 56c in plan view. This prevents an edge from being formed on the outer peripheral portion (contour line in plan view) 66d of the conductive film side hole 56c.
  • the curved portion 55f and the distal end portion 55h of the cathode side hole 55e are formed with an arcuate curved portion in plan view. This prevents an edge from being formed on the outer peripheral portion (contour line in plan view) 55g of the cathode side hole 55e.
  • the electrolytic treatment can be performed. At the time of performing, it is possible to reduce the occurrence of local electric field concentration. As a result, ozone 70 (see FIG. 13) can be more uniformly generated in the entire portion of the interface 57 exposed to the groove 52, and the generation efficiency of the ozone 70 can be further stabilized.
  • the groove 52 communicates with the conductive film side hole (conductive film side groove) 56c formed in the conductive film 56 and the cathode (electrode) 55 formed in the conductive film side hole 56c. And a cathode-side hole (electrode-side groove) 55e.
  • the shape of the conductive film side hole 56c and the shape of the cathode side hole 55e are different when viewed along the stacking direction Z of the stacked body 51.
  • the current density of the current flowing through the electrolysis unit 50 can be made more uniform. It can. That is, it is possible to suppress a change in the current density of the current flowing through the electrolytic unit 50 for each product. As a result, the generation efficiency of ozone (electrolysis product) 70 can be further stabilized.
  • the generation efficiency of ozone (electrolysis product) 70 is further stabilized.
  • the conductive film 56 and the cathode 55 are formed such that the outer peripheral portion 66d of the conductive film side hole 56c and the cathode side hole 55e are in a state of being viewed along the stacking direction Z of the stacked body 51. It is laminated so as to have an intersection portion 59 intersecting with the outer peripheral portion 55g.
  • the conductive film side hole 56c extends in a direction intersecting with the liquid flowing direction (liquid flowing direction) X.
  • the ozone 70 generated near the interface 57 between the conductive film 56 and the anode 54 can be quickly peeled off from the interface 57. That is, it is possible to suppress an increase in the size of bubbles of the ozone 70 generated in the vicinity of the interface 57.
  • the bubbles of the ozone 70 grow large, even if the bubbles of the ozone 70 are separated from the interface 57, they may float in the water (in the liquid) without being dissolved in the water (liquid). The dissolved concentration of the (electrolysis product) 70 may be reduced.
  • the ozone 70 is quickly peeled off from the interface 57 before the bubbles grow large. be able to. As a result, the dissolution of ozone (electrolysis product) 70 in water (liquid) can be further improved.
  • the conductive film side hole 56c extends in a direction orthogonal to the liquid flowing direction X.
  • the ozone 70 generated near the interface 57 between the conductive film 56 and the anode 54 can be more quickly peeled off from the interface 57.
  • the electrodes adjacent to each other are the cathode 55 and the anode 54.
  • the electrode-side groove has a cathode-side hole (cathode-side groove) 55e formed in the cathode 55, and the cathode-side hole 55e extends in a direction intersecting with the liquid flowing direction X.
  • the ozone (electrolysis product) 70 can be prevented from staying in the groove 52, and the ozone 70 can be made to flow through the flow channel 11 more efficiently.
  • the cathode side hole 55e has a V-shape in which the bent portion 55f is arranged on the downstream side when viewed along the stacking direction Z of the stacked body 51.
  • the generated ozone (electrolysis product) 70 moves to the central portion where the flow velocity is relatively large along the slope of the cathode side hole 55e, and the ozone (electrolysis product) 70 stays. Can be further suppressed. As a result, the ozone concentration (electrolysis product concentration) can be further increased.
  • the shape of the plurality of conductive film side holes 56c is the same, the shape of the plurality of cathode side holes 55e is the same, and the pitch of the conductive film side holes 56c in the liquid passing direction X and the passage of the cathode side holes 55e are changed. It is preferable that the pitch in the liquid direction X is the same.
  • the communication region R1 and the exposed region R2 appear regularly along the liquid flowing direction X, so that the influence of the displacement can be reduced more reliably.
  • arc-shaped curved portions 56e are formed at both ends in the width direction Y of the conductive film side holes 56c in plan view.
  • an arc-shaped curved portion in a plan view at the bent portion 55f and the tip of the cathode side hole 55e.
  • the cathode side hole 55e is formed in a long hole shape extending along the liquid direction X so that the cathode side hole 55e and the conductive film side hole 56c intersect in a cross shape in plan view at the time of lamination. You may.
  • the extending direction of the conductive film side hole 56c may be a direction that intersects the liquid flowing direction X and the width direction Y (a direction orthogonal to the liquid flowing direction X). At this time, the extending direction of the conductive film side hole 56c and the extending direction of the cathode side hole 55e are made non-parallel, and the conductive film side hole 56c and the cathode side hole 55e should intersect during lamination. preferable.
  • the conductive film side hole 56c and the cathode side hole 55e may have a similar shape so that the entire small hole is present in the large hole during lamination.
  • the conductive film side hole 56c may have a V-shape, and the cathode side hole 55e may have a long hole shape.
  • the specifications (shape, size, layout, etc.) of the electrode case, the electrode case cover, and other details can be appropriately changed.
  • the present disclosure can take the following aspects.
  • An electrolytic liquid generation device comprising: a laminated body laminated such that a conductive film is interposed between a plurality of electrodes adjacent to each other, wherein an electrolytic section for electrolytically treating a liquid and an electrolytic section are disposed inside. And a housing.
  • the housing has an inflow port through which the liquid supplied to the electrolysis unit flows, and an outflow port through which the electrolysis liquid generated in the electrolysis unit flows out, and a direction in which the flow direction intersects the stacking direction of the laminate. Are formed.
  • the electrolysis part is formed with a groove that opens into the flow path and exposes at least a part of the interface between the conductive film and the plurality of electrodes.
  • the groove has a conductive film-side groove formed in the conductive film, and an electrode-side groove formed in the plurality of electrodes and communicating with the conductive film-side groove.
  • the shape of the conductive film-side groove and the shape of the electrode-side groove are different when viewed along the stacking direction of the stacked body.
  • the conductive film and the plurality of electrodes may have an intersection portion where the outer peripheral portion of the conductive film side groove portion and the outer peripheral portion of the electrode side groove portion intersect in a state viewed along the lamination direction of the laminate. They may be stacked.
  • the conductive film side groove may extend in a direction intersecting the liquid flowing direction.
  • the conductive film side groove may extend in a direction perpendicular to the liquid flowing direction.
  • a plurality of electrodes adjacent to each other are a cathode and an anode
  • the electrode-side groove has a cathode-side groove formed in the cathode
  • the cathode-side groove extends in a direction intersecting the liquid flowing direction. Good.
  • the cathode-side groove may have a V-shape in which the bent portion is arranged on the downstream side when viewed along the stacking direction of the stack.
  • an ozone water generation device that generates ozone by generating ozone and dissolving the ozone in water is illustrated, but the substance to be generated is not limited to ozone.
  • hypochlorous acid may be generated and used for sterilization, water treatment, and the like. It is also possible to provide an apparatus for generating oxygen water, hydrogen water, chlorine-containing water, hydrogen peroxide water, and the like.
  • electrolytic liquid generation devices can also be used in a state where they are incorporated in other equipment and facilities.
  • the electrolytic liquid generation device When the electrolytic liquid generation device is incorporated into other equipment and facilities, it is preferable to arrange the electrolytic liquid generation device in a state in which the inflow port is lower and the outflow port is higher, like the ozone water generation device 1.
  • the present invention is not limited to this, and an appropriate arrangement is possible.
  • the anode 54 can be made of a material selected from, for example, conductive silicon, conductive diamond, titanium, platinum, lead oxide, and tantalum oxide. Any material may be used as long as an electrode having conductivity and durability capable of generating electrolyzed water can be formed.
  • the manufacturing method is not limited to the manufacturing method by film formation. Further, the substrate can be formed using a material other than a metal.
  • the cathode 55 only needs to be an electrode having conductivity and durability, and may be made of a material selected from, for example, platinum, titanium, stainless steel, and conductive silicon.
  • the cathode side hole 55e is formed in a long hole shape extending along the liquid passing direction X, and the cathode side hole 55e and the conductive film side hole 56c cross each other in a cross shape in plan view at the time of lamination. May be configured.
  • the extending direction of the conductive film side hole 56c may be a direction that intersects the liquid flowing direction X and the width direction Y (a direction orthogonal to the liquid flowing direction X). At this time, the extending direction of the conductive film side hole 56c and the extending direction of the cathode side hole 55e are made non-parallel, and the conductive film side hole 56c and the cathode side hole 55e should intersect during lamination. preferable.
  • the conductive film side hole 56c and the cathode side hole 55e may have similar shapes so that the entire small hole is present among the large holes at the time of lamination.
  • the conductive film side hole 56c may have a V-shape, and the cathode side hole 55e may have a long hole shape.
  • the specifications (shape, size, layout, etc.) of the electrode case, the electrode case lid, and other details can be appropriately changed.
  • the present disclosure is applicable and useful to an electric device using the electrolytic liquid generated by the electrolytic liquid generation device, a liquid reforming device including the electrolytic liquid generation device, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

This electrolyzed liquid generator is provided with: an electrolysis unit which comprises a multilayer body wherein a negative electrode (55) and a positive electrode (54) are stacked in such a manner that a conductive film (56) is interposed therebetween, and which performs an electrolytic treatment on a liquid; and a housing in which the electrolysis unit is arranged. The housing is provided with a flow channel (11); and the electrolysis unit is provided with a groove (52) which opens to the flow channel (11), and in which at least a part of the interface between the conductive film (56) and the negative electrode (55) and at least a part of the interface between the conductive film (56) and the positive electrode (54) are exposed. A space (S) is formed between an inner surface (22a) of the housing and at least one of an outer peripheral part (55c) of the negative electrode (55) and an outer peripheral part (54a) of the positive electrode (54).

Description

電解液体生成装置Electrolytic liquid generator
 本開示は、電解液体生成装置に関する。 The present disclosure relates to an electrolytic liquid generation device.
 従来、電解液体生成装置として、陽極と、導電性膜と、陰極とが積層されて形成された電解部を有し、電解部でオゾン(電解生成物)が生成されて、オゾン水(電解液体)が得られるものが知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, as an electrolytic liquid generating apparatus, an electrolytic unit formed by laminating an anode, a conductive film, and a cathode is formed. Ozone (electrolytic product) is generated in the electrolytic unit, and ozone water (electrolytic liquid) is generated. ) Is known (for example, see Patent Document 1).
 特許文献1に記載の電解部は、電極としての陰極に形成された孔と、導電性膜に形成された孔とを連通させた、溝部を有している。そして、電解部に電圧を印加することで、溝部に導入された水が電解処理されてオゾンが生成される。 電解 The electrolysis section described in Patent Document 1 has a groove that connects a hole formed in a cathode as an electrode and a hole formed in a conductive film. Then, by applying a voltage to the electrolysis unit, the water introduced into the groove is electrolyzed to generate ozone.
特開2017-176993号公報JP 2017-176993 A
 上記従来の技術では、電解部は、外周部をハウジングの内面に接触させた状態で、ハウジング内に収容されている。 で は In the above-mentioned conventional technology, the electrolytic portion is housed in the housing with the outer peripheral portion in contact with the inner surface of the housing.
 しかしながら、電解部の外周部をハウジングの内面に接触させても、積層時の位置ずれ等によって、電解部の外周部とハウジングの内面との間には、微小な隙間が形成される。したがって、電解部の周囲に形成された微小な隙間に、水が浸入して滞留してしまうおそれがある。 However, even when the outer peripheral portion of the electrolytic portion is brought into contact with the inner surface of the housing, a minute gap is formed between the outer peripheral portion of the electrolytic portion and the inner surface of the housing due to a displacement during lamination or the like. Therefore, there is a possibility that water may enter and stay in the minute gaps formed around the electrolytic portion.
 このように、電解部の周囲に水を滞留させた状態で、水を電解処理してオゾンを生成させると、電解部の周囲に滞留した水のpH値が上昇してしまい、主としてカルシウム成分からなるスケールが発生し易くなって、微小な隙間内にスケールが溜まってしまうおそれがある。 As described above, when water is subjected to electrolytic treatment to generate ozone in a state where water is retained around the electrolytic unit, the pH value of the water retained around the electrolytic unit increases, and mainly the calcium component A small scale is likely to be generated, and the scale may accumulate in a minute gap.
 電解部の周囲に形成された微小な隙間に、水の電気分解により生じるスケールが溜まると、ハウジングおよび電解部が、微小な隙間に溜まったスケールによって、圧迫されて変形してしまうおそれがある。 (4) If the scale generated by the electrolysis of water accumulates in the minute gap formed around the electrolytic section, the housing and the electrolytic section may be pressed and deformed by the scale accumulated in the minute gap.
 そこで、本開示は、スケールによる、ハウジングおよび電解部の圧迫を抑制することの可能な電解液体生成装置を得る。 Accordingly, the present disclosure provides an electrolytic liquid generation device capable of suppressing pressure on a housing and an electrolytic unit by a scale.
 本開示の電解液体生成装置は、陰極および陽極間に導電性膜が介在するように積層された積層体を有し、液体を電解処理する電解部と、電解部が内部に配置されるハウジングと、を備えている。 The electrolytic liquid generation device according to the present disclosure has a stacked body in which a conductive film is interposed between a cathode and an anode, an electrolytic unit that performs electrolytic treatment on a liquid, and a housing in which the electrolytic unit is disposed. , Is provided.
 ハウジングには、電解部に供給される液体が流入する流入口と、電解部で生成される電解液体が流出する流出口とを有し、通液方向が、積層体の積層方向と交差する方向となる流路が形成されている。 The housing has an inlet through which the liquid supplied to the electrolytic unit flows in, and an outlet through which the electrolytic liquid generated in the electrolytic unit flows out, and the liquid passing direction intersects the laminating direction of the laminate. Is formed.
 電解部には、流路に開口するとともに、導電性膜陰極との界面、および、導電性膜と陽極との界面のうち、少なくとも一部が露出する溝部が形成されている。 (4) The electrolysis part has a groove that is open to the flow channel and that exposes at least a part of the interface between the conductive film and the anode and the interface between the conductive film and the anode.
 陰極の外周部、および、陽極の外周部のうち少なくともいずれかと、ハウジングの内面との間には、空間部が形成されている。 空間 A space is formed between at least one of the outer peripheral portion of the cathode and the outer peripheral portion of the anode and the inner surface of the housing.
 本開示によれば、スケールによる、ハウジングおよび電解部の圧迫を抑制することの可能な電解液体生成装置を得ることができる。 According to the present disclosure, it is possible to obtain an electrolytic liquid generation device capable of suppressing pressure on a housing and an electrolytic unit by a scale.
図1は、本開示の一実施の形態にかかる電解水生成装置を分解して示す斜視図である。FIG. 1 is an exploded perspective view showing an electrolyzed water generation device according to an embodiment of the present disclosure. 図2は、本開示の一実施の形態にかかる電解水生成装置を、通液方向と直交する平面で切断した断面図である。FIG. 2 is a cross-sectional view of the electrolyzed water generation device according to the embodiment of the present disclosure, which is cut along a plane perpendicular to a liquid flowing direction. 図3は、本開示の一実施の形態にかかる電解部の、導電性膜側溝部が形成された部位を拡大して示す断面図である。FIG. 3 is a cross-sectional view showing, on an enlarged scale, a portion of the electrolytic portion according to the embodiment of the present disclosure where the conductive film side groove is formed. 図4は、本開示の一実施の形態にかかる、陽極を給電体上に積層した状態を一部拡大して示す平面図である。FIG. 4 is a partially enlarged plan view illustrating a state where the anode is stacked on the power supply body according to the embodiment of the present disclosure. 図5は、本開示の一実施の形態にかかる、導電性膜を陽極上に積層した状態を一部拡大して示す平面図である。FIG. 5 is a partially enlarged plan view illustrating a state where a conductive film is stacked on an anode according to an embodiment of the present disclosure. 図6は、本開示の一実施の形態にかかる、陰極を導電性膜上に積層した状態を一部拡大して示す平面図である。FIG. 6 is a partially enlarged plan view showing a state in which a cathode is stacked on a conductive film according to an embodiment of the present disclosure. 図7は、本開示の第1変形例にかかる電解水生成装置を一部拡大して示す図であって、図3に対応する断面図である。FIG. 7 is a partially enlarged view of the electrolyzed water generation device according to the first modified example of the present disclosure, and is a cross-sectional view corresponding to FIG. 図8は、本開示の第2変形例にかかる電解水生成装置を一部拡大して示す図であって、図3に対応する断面図である。FIG. 8 is a partially enlarged view of an electrolyzed water generation device according to a second modification of the present disclosure, and is a cross-sectional view corresponding to FIG. 図9は、本開示の第3変形例にかかる電解水生成装置を一部拡大して示す図であって、図3に対応する断面図である。FIG. 9 is a partially enlarged view of an electrolyzed water generation device according to a third modified example of the present disclosure, and is a cross-sectional view corresponding to FIG. 図10は、本開示の第4変形例にかかる電解水生成装置を一部拡大して示す図であって、図3に対応する断面図である。FIG. 10 is a partially enlarged view of an electrolyzed water generation device according to a fourth modified example of the present disclosure, and is a cross-sectional view corresponding to FIG. 図11は、第5変形例にかかる電解水生成装置を一部拡大して示す図であって、図3に対応する断面図である。FIG. 11 is a partially enlarged view of an electrolyzed water generation device according to a fifth modification, and is a cross-sectional view corresponding to FIG. 図12は、本開示の一実施の形態にかかる電解部の導電性膜側溝部が形成された部位を拡大して示す図である。FIG. 12 is an enlarged view of a part of the electrolytic part where the conductive film side groove is formed according to the embodiment of the present disclosure. 図13は、本開示の一実施の形態にかかる、導電性膜を陽極上に積層した状態を拡大して示す平面図である。FIG. 13 is an enlarged plan view illustrating a state where a conductive film is stacked on an anode according to an embodiment of the present disclosure. 図14は、本開示の一実施の形態にかかる、陰極を導電性膜上に積層した状態を拡大して示す平面図である。FIG. 14 is an enlarged plan view illustrating a state where a cathode is stacked on a conductive film according to an embodiment of the present disclosure. 図15は、本開示の一実施の形態にかかる、導電性膜が陰極に対して通液方向に相対的に位置ずれした状態を示す図であって、図14に対応する平面図である。FIG. 15 is a diagram illustrating a state where the conductive film is displaced relative to the cathode in the liquid flowing direction according to an embodiment of the present disclosure, and is a plan view corresponding to FIG. 14. 図16は、本開示の一実施の形態にかかる、導電性膜が陰極に対して幅方向に相対的に位置ずれした状態を示す図であって、図14に対応する平面図である。FIG. 16 is a diagram illustrating a state where the conductive film is relatively displaced in the width direction with respect to the cathode according to the embodiment of the present disclosure, and is a plan view corresponding to FIG. 14.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本開示が限定されるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited by the following embodiments.
 以下では、電解液体生成装置として、オゾン(電解生成物)を発生し、当該オゾンを水(液体)に溶解させることで、オゾン水(電解水:電解液体)を生成するオゾン水生成装置を例示する。 Hereinafter, an ozone water generation device that generates ozone (electrolysis product) by generating ozone (electrolysis product) and dissolving the ozone in water (liquid) will be described as an example of the electrolysis liquid generation device. I do.
 オゾン水は、殺菌および有機物分解に有効であるため、水処理分野、ならびに、食品および医学分野において広く利用されており、残留性がなく、副生成物を生成しないという利点を有する。 O Ozone water is effective in disinfecting and decomposing organic substances, and thus is widely used in the field of water treatment, and in the fields of food and medicine, and has the advantage that it has no residue and does not generate by-products.
 また、以下では、流路の延在方向を通液方向(液体が流れる方向)X、流路の幅方向を幅方向(通液方向を横切る方向)Y、電極および導電性膜が積層される方向を積層方向Zとして説明する(図1参照)。 In the following, the extending direction of the flow path is the liquid flowing direction (the direction in which the liquid flows) X, the width direction of the flow path is the width direction (the direction crossing the liquid flowing direction) Y, and the electrode and the conductive film are laminated. The direction will be described as the stacking direction Z (see FIG. 1).
 なお、以下の実施の形態では、電解液体生成装置を、電極ケース蓋が上側となるように配置した状態における上下方向を積層方向Zとしている。 In the following embodiments, the vertical direction in a state where the electrolytic liquid generation device is arranged so that the electrode case lid is on the upper side is defined as the stacking direction Z.
 (第1の実施の形態)
 本実施の形態にかかるオゾン水生成装置1は、図1および図2に示すように、ハウジング10を有しており、このハウジング10の内部に流路11が形成されている(図2参照)。
(First Embodiment)
The ozone water generating apparatus 1 according to the present embodiment has a housing 10 as shown in FIGS. 1 and 2, and a flow path 11 is formed inside the housing 10 (see FIG. 2). .
 流路11が形成されたハウジング10の内部には、電解部50が、流路11に臨むように配置されている。そして、流路11内を流れる水が、電解部50によって電解処理される。本実施の形態では、図2および図3に示すように、電解部50は、上面(積層方向Zの一方側の面)50aが流路11に臨むように、ハウジング10内に配置されている。 電解 Inside the housing 10 in which the flow path 11 is formed, the electrolytic section 50 is arranged so as to face the flow path 11. Then, the water flowing in the flow channel 11 is subjected to the electrolytic treatment by the electrolytic section 50. In the present embodiment, as shown in FIGS. 2 and 3, electrolytic section 50 is arranged in housing 10 such that an upper surface (a surface on one side in stacking direction Z) 50a faces channel 11. .
 電解部50は、図1および図2に示すように、積層体51を有している。積層体51は、陽極(電極)54と陰極(電極)55と導電性膜56とを有し、陽極(電極)54と陰極(電極)55との間、すなわち、互いに隣り合う複数の電極間に、導電性膜56が介在するように積層されている。 (1) The electrolytic section 50 has a laminate 51 as shown in FIGS. 1 and 2. The laminate 51 has an anode (electrode) 54, a cathode (electrode) 55, and a conductive film 56, and is between the anode (electrode) 54 and the cathode (electrode) 55, that is, between a plurality of electrodes adjacent to each other. Are laminated so that a conductive film 56 is interposed.
 一方、流路11は、電解部50に供給される液体が流入する流入口111と、電解部50で生成されるオゾン水が流出する流出口112と、を備えている。流路11は、通液方向Xが積層体51の積層方向Zと交差するように、ハウジング10に形成されている。 On the other hand, the flow path 11 includes an inlet 111 into which the liquid supplied to the electrolytic unit 50 flows, and an outlet 112 from which the ozone water generated in the electrolytic unit 50 flows out. The flow path 11 is formed in the housing 10 so that the liquid passing direction X intersects the stacking direction Z of the stacked body 51.
 さらに、積層体51には、流路11に開口するとともに、導電性膜56と複数の電極(陽極54および陰極55)との界面57,界面58の少なくとも一部が露出する溝部52が複数形成されている(図3参照)。なお、溝部52は、積層体51に少なくとも1個形成されていればよい。 Further, the laminated body 51 has a plurality of grooves 52 that are open to the flow channel 11 and that expose at least a part of the interface 57 and the interface 58 between the conductive film 56 and the plurality of electrodes (the anode 54 and the cathode 55). (See FIG. 3). It is sufficient that at least one groove 52 is formed in the laminated body 51.
 溝部52が積層体51に形成されることで、流入口111から流路11内に供給された水を、溝部52内に導入できる。そして、主に溝部52内に導入された水に、電気化学反応を起こす電解処理を施すことで、電解生成物としてのオゾンの溶解したオゾン水が生成される。 By forming the groove 52 in the laminated body 51, water supplied from the inflow port 111 into the channel 11 can be introduced into the groove 52. Then, ozone water in which ozone is dissolved as an electrolysis product is generated by subjecting the water introduced into the groove 52 mainly to an electrolytic treatment for causing an electrochemical reaction.
 ハウジング10は、例えば、PPS(Polyphenylenesulfide)等の非導電性の樹脂を用いて形成される。本実施の形態では、ハウジング10は、電極ケース20および電極ケース蓋40を備えている。電極ケース20には、上方に開口して電解部50が収容される凹部23が形成されている。電極ケース蓋40は電極ケース20の開口を覆う。 The housing 10 is formed using a non-conductive resin such as PPS (Polyphenylenesulfide). In the present embodiment, the housing 10 includes the electrode case 20 and the electrode case lid 40. The electrode case 20 has a concave portion 23 which is open upward and accommodates the electrolytic portion 50. The electrode case cover 40 covers the opening of the electrode case 20.
 電極ケース20は、図1に示すように、底壁部21と、底壁部21の周縁部に連設された周壁部22と、を備えており、上方に開口する略箱状をしている。すなわち、電極ケース20には、底壁部21の内面21aと、周壁部22の内面22aとによって画成され、上方に開口する凹部23が形成されている。 As shown in FIG. 1, the electrode case 20 includes a bottom wall portion 21 and a peripheral wall portion 22 connected to a peripheral portion of the bottom wall portion 21, and has a substantially box-like shape that opens upward. I have. That is, the electrode case 20 is formed with the inner surface 21 a of the bottom wall portion 21 and the inner surface 22 a of the peripheral wall portion 22, and has a concave portion 23 that opens upward.
 そして、開口側(上側)から、電解部50を凹部23内に導入することにより、電解部50が凹部23内に収容される。なお、凹部23の開口は、積層方向Zに沿って視た、電解部50の輪郭形状よりも大きくなるように形成されており、積層方向を上下方向(積層方向Z)に一致させた電解部50を、そのままの姿勢で凹部23内に挿入できる。 電解 Then, the electrolytic portion 50 is housed in the concave portion 23 by introducing the electrolytic portion 50 into the concave portion 23 from the opening side (upper side). The opening of the concave portion 23 is formed so as to be larger than the outline shape of the electrolytic portion 50 as viewed in the laminating direction Z, and the laminating direction matches the vertical direction (laminating direction Z). 50 can be inserted into the recess 23 in the same posture.
 さらに、本実施の形態において、電解部50は、弾性体60を介して凹部23内に収容されている。すなわち、電解部50は、当該電解部50と電極ケース20との間に弾性体60を介在させるとともに、電解部50の下面50bに弾性体60を当接させた状態で、凹部23内に収容されている。弾性体60は、例えば、ゴム、プラスチックおよび金属ばね等の、弾力性を有する材料を用いて形成される。 Furthermore, in the present embodiment, electrolytic portion 50 is housed in recess 23 via elastic body 60. That is, the electrolysis unit 50 is housed in the recess 23 while the elastic body 60 is interposed between the electrolysis unit 50 and the electrode case 20 and the elastic body 60 is in contact with the lower surface 50 b of the electrolysis unit 50. Have been. The elastic body 60 is formed using an elastic material such as rubber, plastic, and a metal spring.
 本実施の形態では、電極ケース蓋40を電極ケース20に取り付けた際に、電解部50と電極ケース蓋40との間に流路11が形成される。流路11は、電解部50が臨む部位における断面積(通液方向Xと直交する面で切断したときの流路11の面積)が、複数の位置でほぼ同一となるように形成することが好ましい。 In the present embodiment, when the electrode case cover 40 is attached to the electrode case 20, the flow path 11 is formed between the electrolytic section 50 and the electrode case cover 40. The flow channel 11 may be formed such that the cross-sectional area (the area of the flow channel 11 when cut along a plane perpendicular to the liquid flow direction X) at a portion facing the electrolytic unit 50 is substantially the same at a plurality of positions. preferable.
 電極ケース蓋40は、略長方形の板状の蓋部本体41と、蓋部本体41の下部中央から下方に突設し、電極ケース20の凹部23に挿入される突部42と、を備えている。 The electrode case lid 40 includes a substantially rectangular plate-shaped lid body 41 and a projection 42 projecting downward from the lower center of the lid body 41 and inserted into the recess 23 of the electrode case 20. I have.
 蓋部本体41における突部42の周縁部には、溶着用の嵌合凹部411が全周にわたって形成されている。そして、電極ケース蓋40を電極ケース20に取り付ける際には、電極ケース20の開口の周囲に全周にわたって形成された溶着用の嵌合突部241が、嵌合凹部411に挿入される(図2参照)。 (4) A fitting recess 411 for welding is formed over the entire periphery of the lid body 41 at the periphery of the projection 42. When the electrode case lid 40 is attached to the electrode case 20, a welding fitting protrusion 241 formed around the entire periphery of the opening of the electrode case 20 is inserted into the fitting recess 411 (FIG. 2).
 本実施の形態では、電極ケース20の周壁部22の上端に、外方に向けて略水平に延在するフランジ部24が、全周にわたって連設される。フランジ部24には、上方に突出する嵌合突部241が、電極ケース20の開口を囲うように形成されている。そして、突部42を凹部23に挿入させつつ、嵌合凹部411に嵌合突部241を挿入させた状態で、電極ケース蓋40と電極ケース20とを溶着させる。 In the present embodiment, a flange portion 24 extending substantially horizontally outward is continuously provided on the entire periphery at the upper end of the peripheral wall portion 22 of the electrode case 20. A fitting projection 241 projecting upward is formed on the flange 24 so as to surround the opening of the electrode case 20. Then, the electrode case lid 40 and the electrode case 20 are welded with the fitting projection 241 inserted into the fitting recess 411 while the projection 42 is inserted into the recess 23.
 なお、電極ケース蓋40と電極ケース20との間にシール材を介させた状態で、電極ケース蓋40を電極ケース20にネジ止めすることによって、電極ケース蓋40を電極ケース20に取り付けることも可能である。 The electrode case cover 40 may be attached to the electrode case 20 by screwing the electrode case cover 40 to the electrode case 20 with a sealing material interposed between the electrode case cover 40 and the electrode case 20. It is possible.
 また、突部42の下面側における、幅方向Yの両端および中央には、電解部50を下方に向けて押圧する突起部421が形成されている。弾性体60を介して凹部23内に電解部50を収容し、電極ケース蓋40を電極ケース20に取り付ける際には、電極ケース蓋40に設けられた突起部421によって、電解部50が下方に押圧される。 突起 A projection 421 for pressing the electrolytic portion 50 downward is formed at both ends and a center of the lower surface side of the projection 42 in the width direction Y. When the electrolytic portion 50 is accommodated in the concave portion 23 via the elastic body 60 and the electrode case cover 40 is attached to the electrode case 20, the electrolytic portion 50 is lowered by the projection 421 provided on the electrode case cover 40. Pressed.
 このように、本実施の形態では、電解部50を下方に押圧すると、弾性体60によって、電解部50の全体に、一定の圧力がかけられる。これにより、電解部50を構成する各部材の密着性を、より高められる。 As described above, in the present embodiment, when the electrolytic section 50 is pressed downward, a constant pressure is applied to the entire electrolytic section 50 by the elastic body 60. Thereby, the adhesiveness of each member constituting the electrolysis unit 50 can be further enhanced.
 なお、本実施の形態では、弾性体60には、積層方向Zに貫通する貫通穴61が、長手方向(通液方向X)に沿って複数形成されている。これにより、電解部50によって押圧された際に、弾性体60は、貫通穴61側にも変形できる。このように、弾性体60を貫通穴61側にも変形させることで、電解部50によって押圧された弾性体60による、電極ケース20の圧迫が抑制される。 In the present embodiment, a plurality of through-holes 61 penetrating in the stacking direction Z are formed in the elastic body 60 along the longitudinal direction (the liquid passing direction X). Thereby, when pressed by the electrolytic part 50, the elastic body 60 can also be deformed to the through hole 61 side. As described above, by deforming the elastic body 60 also toward the through hole 61, the compression of the electrode case 20 by the elastic body 60 pressed by the electrolytic unit 50 is suppressed.
 本実施の形態では、蓋部本体41の上面に溝412が設けられている。オゾン水生成装置1を固定する際の、位置決め、引っかかり、および、逆入れ防止等に、この溝412を活用できる。溝412を設けることにより、オゾン水生成装置1を、オゾンの発生が必要な機器に、より容易に、間違えることなく組み込むことができる。 In the present embodiment, the groove 412 is provided on the upper surface of the lid main body 41. The groove 412 can be used for positioning, catching, preventing reverse insertion, and the like when fixing the ozone water generation device 1. By providing the groove 412, the ozone water generation device 1 can be more easily and erroneously incorporated into a device that requires ozone generation.
 オゾン水生成装置1は、他の機器および設備に組み込まれた状態で使用される。オゾン水生成装置1を、他の機器および設備に組み込む際には、流入口111が下、流出口112が上になるように、立てた状態で配置することが好ましい。流入口が下、流出口が上となるようにオゾン水生成装置1を配置すれば、電極界面で発生したオゾンを、浮力によって、速やかに電極界面から引き離すことができる。すなわち、電極界面で発生したオゾンを、気泡成長する前に、速やかに電極界面から引き離すことができる。これにより、オゾンが水に溶け込みやすくなり、オゾン水の生成効率が向上する。なお、オゾン水生成装置1の配置状態は、これに限るものではなく、適宜、配置することが可能である。 The ozone water generator 1 is used in a state where it is incorporated in other equipment and facilities. When assembling the ozone water generating apparatus 1 into other equipment and facilities, it is preferable to arrange the ozone water generating apparatus 1 in an upright state so that the inflow port 111 is located downward and the outflow port 112 is located upward. By arranging the ozone water generating device 1 so that the inflow port is located downward and the outflow port is located upward, ozone generated at the electrode interface can be quickly separated from the electrode interface by buoyancy. That is, ozone generated at the electrode interface can be quickly separated from the electrode interface before bubble growth. As a result, ozone is easily dissolved in water, and the efficiency of generating ozone water is improved. Note that the arrangement state of the ozone water generation device 1 is not limited to this, and can be appropriately arranged.
 次に、電解部50の具体的な構成について説明する。 Next, a specific configuration of the electrolysis unit 50 will be described.
 電解部50は、平面視(積層方向Zから視た状態)で、通液方向Xが長手方向となる略長方形状をしている。電解部50は、陽極54、導電性膜56、陰極55の順に積層することで構成された積層体51を備えている。このように、本実施の形態では、積層体51は、互いに隣り合う複数の電極である陽極54と陰極55との間に、導電性膜56が介在するように積層されている。 Electrolysis section 50 has a substantially rectangular shape with liquid passage direction X as its longitudinal direction in plan view (when viewed from laminating direction Z). The electrolytic section 50 includes a laminate 51 formed by laminating an anode 54, a conductive film 56, and a cathode 55 in this order. As described above, in the present embodiment, the stacked body 51 is stacked such that the conductive film 56 is interposed between the anode 54 and the cathode 55 which are a plurality of electrodes adjacent to each other.
 陽極54の下側には給電体53が積層されており、この給電体53を介して、陽極54に電気が供給される。 給 電 A power supply 53 is stacked below the anode 54, and electricity is supplied to the anode 54 via the power supply 53.
 本実施の形態では、給電体53、陽極54、導電性膜56および陰極55は、いずれも、平面視においては、通液方向Xを長手方向とし、幅方向Yを短手方向とする、長方形の平面形状を有するとともに、積層方向Zに厚さを有する平板形状をしている。なお、陽極54および陰極55のうち、少なくともいずれかは、膜状、網目状または線状であってもよい。 In the present embodiment, each of the power supply 53, the anode 54, the conductive film 56, and the cathode 55 has a rectangular shape having a liquid passing direction X as a longitudinal direction and a width direction Y as a transverse direction in plan view. And a flat plate shape having a thickness in the stacking direction Z. At least one of the anode 54 and the cathode 55 may have a film shape, a mesh shape, or a linear shape.
 給電体53は、例えば、チタンを用いて形成することができる。給電体53は、陽極54の、導電性膜56と接触している側とは反対側で、陽極54と接触している。また、給電体53の長手方向の一端(通液方向Xの上流側)には、陽極用の給電シャフト53bが、渦巻き状のバネ部53aを介して、電気的に接続されている。給電シャフト53bは、底壁部21の通液方向Xの一端側に形成された貫通孔211に挿入されている。そして、給電シャフト53bの電極ケース20の外部に突出する部分は、図示せぬ電力供給部の正極に、電気的に接続されている。 The power supply 53 can be formed using, for example, titanium. The power supply 53 is in contact with the anode 54 on the side of the anode 54 opposite to the side in contact with the conductive film 56. An anode power supply shaft 53b is electrically connected to one end of the power supply body 53 in the longitudinal direction (upstream side in the liquid passing direction X) via a spiral spring portion 53a. The power supply shaft 53b is inserted into a through hole 211 formed at one end of the bottom wall 21 in the liquid flow direction X. A portion of the power supply shaft 53b protruding outside the electrode case 20 is electrically connected to a positive electrode of a power supply unit (not shown).
 陽極54は、例えば、シリコンを用いて形成された、幅10mm、長さ100mm程度の大きさの導電性基板に、導電性ダイヤモンド膜を成膜することで形成される。また、例えば、幅10mm、長さ50mm程度の大きさのものを、2枚並べて形成してもよい。導電性ダイヤモンド膜は、ボロンドーブ導電性を有する。導電性ダイヤモンド膜は、プラズマCVD法によって、3μm程度の膜厚で、導電性基板上に形成される。 The anode 54 is formed, for example, by forming a conductive diamond film on a conductive substrate having a size of about 10 mm in width and about 100 mm in length formed using silicon. Further, for example, two sheets each having a size of about 10 mm in width and about 50 mm in length may be formed side by side. The conductive diamond film has Borundov conductivity. The conductive diamond film is formed on a conductive substrate with a thickness of about 3 μm by a plasma CVD method.
 導電性膜56は、導電性ダイヤモンド膜が形成された陽極54上に配置されている。導電性膜56は、プロトン導電型のイオン交換フィルムであり、100~200μm程度の厚みを有している。そして、導電性膜56には、厚み方向(積層方向Z)に貫通した導電性膜側孔(導電性膜側溝部)56cが複数形成されている(図5参照)。 The conductive film 56 is disposed on the anode 54 on which the conductive diamond film is formed. The conductive film 56 is a proton conductive type ion exchange film and has a thickness of about 100 to 200 μm. The conductive film 56 has a plurality of conductive film side holes (conductive film side grooves) 56c penetrating in the thickness direction (stacking direction Z) (see FIG. 5).
 本実施の形態では、各導電性膜側孔56cは、ほぼ同一の形状をしている。具体的には、各導電性膜側孔56cは、幅方向Yに細長い長孔状をしている。そして、複数の導電性膜側孔56cは、長手方向(通液方向X)に沿って、所定のピッチで一列に並ぶように設けられている。なお、導電性膜側孔56cの形状および配列は、図5に示した例とは別の形態であってもよい。また、導電性膜側孔56cは、少なくとも1つ形成されていればよい。 In the present embodiment, each conductive film side hole 56c has substantially the same shape. Specifically, each conductive film side hole 56c has a long and narrow hole shape in the width direction Y. The plurality of conductive film side holes 56c are provided so as to be arranged in a line at a predetermined pitch in the longitudinal direction (liquid flowing direction X). The shape and arrangement of the conductive film side holes 56c may be different from the example shown in FIG. In addition, at least one conductive film side hole 56c may be formed.
 陰極55は、導電性膜56上に配置されている。陰極55は、例えば、厚みが0.5mm程度のチタンの電極板からなる。また、陰極55の長手方向の他端(通液方向Xの下流側)には、陰極用の給電シャフト55bが、渦巻き状のバネ部55aを介して、電気的に接続されている。給電シャフト55bは、底壁部21の通液方向Xの他端側に形成された貫通孔211に挿入されている。そして、給電シャフト55bの、電極ケース20の外部に突出する部分が、図示せぬ電力供給部の負極に、電気的に接続されている。 The negative electrode 55 is disposed on the conductive film 56. The cathode 55 is made of, for example, a titanium electrode plate having a thickness of about 0.5 mm. A cathode power supply shaft 55b is electrically connected to the other end of the cathode 55 in the longitudinal direction (downstream in the liquid passing direction X) via a spiral spring portion 55a. The power supply shaft 55b is inserted into a through hole 211 formed on the other end of the bottom wall 21 in the liquid passing direction X. A portion of the power supply shaft 55b protruding outside the electrode case 20 is electrically connected to a negative electrode of a power supply unit (not shown).
 また、陰極55には、厚み方向に貫通した陰極側孔(陰極側溝部:電極側溝部)55eが複数形成されている(図6参照)。本実施の形態では、各陰極側孔55eは、ほぼ同一の形状をしている。具体的には、各陰極側孔55eは、平面視において、屈曲部55fが下流側に配置される、V字状をしている。 複数 Further, a plurality of cathode-side holes (cathode-side groove portions: electrode-side groove portions) 55e penetrating in the thickness direction are formed in the cathode 55 (see FIG. 6). In the present embodiment, each cathode side hole 55e has substantially the same shape. Specifically, each cathode side hole 55e has a V-shape in which a bent portion 55f is disposed on the downstream side in plan view.
 複数の陰極側孔55eは、長手方向(通液方向X)に沿って、所定のピッチで一列に並ぶように設けられている。 (4) The plurality of cathode-side holes 55e are provided so as to be arranged in a line at a predetermined pitch along the longitudinal direction (liquid flowing direction X).
 なお、陰極側孔55eのピッチは、導電性膜側孔56cと同じピッチとしてもよいし、導電性膜側孔56cとは異なるピッチとしてもよい。また、陰極側孔55eの形状および配列は、図6の例とは別の形態であってもよい。また、陰極側孔55eは、少なくとも1つ形成されていればよい。 The pitch of the cathode side holes 55e may be the same pitch as the conductive film side holes 56c, or may be different from the conductive film side holes 56c. Further, the shape and arrangement of the cathode side holes 55e may be different from the example of FIG. Further, at least one cathode side hole 55e may be formed.
 このように、本実施の形態では、平面視(積層体51の積層方向に沿って視た状態)において、導電性膜側孔56cと陰極側孔55eとの形状(輪郭形状および大きさのうち、少なくともいずれか)が異なる。こうすることで、導電性膜56が、陰極(電極)55に対して、積層方向Zと交差する方向に相対的に位置ずれしたとしても、導電性膜56と陰極(電極)55との接触面積の変化を抑制できる。なお、平面視における導電性膜側孔56cと陰極側孔55eとの形状(輪郭形状および大きさ)を同一とすることも可能である。 As described above, in the present embodiment, the shapes of the conductive film side holes 56c and the cathode side holes 55e (out of the contour shape and the size) in a plan view (a state viewed along the stacking direction of the stacked body 51). , At least one). By doing so, even if the conductive film 56 is relatively displaced with respect to the cathode (electrode) 55 in the direction intersecting the stacking direction Z, the contact between the conductive film 56 and the cathode (electrode) 55 A change in area can be suppressed. Note that the shape (contour shape and size) of the conductive film side hole 56c and the cathode side hole 55e in plan view can be the same.
 また、導電性膜56および陰極55は、積層した際に、少なくとも相互の孔(陰極側孔55eおよび導電性膜側孔56c)の一部が連通している必要があり、また、電気的な接触面積が十分確保されている必要がある。上記の条件を満たすものであれば、導電性膜56および陰極55は、投影寸法(平面視における大きさ)が同じであってよいし、異なっていてもよい。 When the conductive film 56 and the cathode 55 are stacked, at least a part of the mutual holes (the cathode side hole 55e and the conductive film side hole 56c) needs to communicate with each other. A sufficient contact area must be ensured. As long as the above conditions are satisfied, the conductive film 56 and the cathode 55 may have the same projected size (size in plan view) or may have different projected sizes.
 本実施の形態では、陰極55のほうが、導電性膜56よりも幅方向Yの幅が大きい(図3参照)。 In the present embodiment, the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56 (see FIG. 3).
 陽極54の投影寸法は、導電性膜56および陰極55のうち少なくともいずれかと同じ大きさでもよいし、異なっていてもよいが、積層した際に、導電性膜側孔56cを、下側から塞ぐことのできる大きさであることが好ましい。 The projected size of the anode 54 may be the same size as at least one of the conductive film 56 and the cathode 55 or may be different, but when stacked, the conductive film side hole 56c is closed from below. It is preferably of a size that can be used.
 本実施の形態では、陽極54と導電性膜56とは、ほぼ同じ投影寸法である。 In the present embodiment, the anode 54 and the conductive film 56 have substantially the same projected dimensions.
 また、給電体53は、陽極54への電気の供給を効率よく行えることが好ましく、弾性体60は、給電体53の下面(電解部50の下面50b)の全体によって押圧される程度の投影寸法であることが好ましい。 In addition, it is preferable that the power supply 53 can efficiently supply electricity to the anode 54, and the elastic body 60 has a projected size enough to be pressed by the entire lower surface of the power supply 53 (the lower surface 50 b of the electrolytic unit 50). It is preferable that
 本実施の形態では、給電体53の幅方向Yの寸法を、陽極54および導電性膜56よりも小さくし、弾性体60の幅方向Yの寸法を、陽極54および導電性膜56と、ほぼ同じ投影寸法としている。なお、給電体53および弾性体60の投影寸法は、様々な寸法にできる。 In the present embodiment, the dimension of the power supply 53 in the width direction Y is smaller than that of the anode 54 and the conductive film 56, and the dimension of the elastic body 60 in the width direction Y is substantially equal to that of the anode 54 and the conductive film 56. The projection dimensions are the same. The projection dimensions of the power supply 53 and the elastic body 60 can be various dimensions.
 このような構成の電解部50は、例えば、下記に示す方法で、電極ケース20の凹部23内に収容できる。 電解 The electrolytic unit 50 having such a configuration can be accommodated in the concave portion 23 of the electrode case 20 by, for example, a method described below.
 まず、電極ケース20の凹部23内に挿入された弾性体60上に、給電体53を配置する。具体的には、給電体53を、給電シャフト53bの先端が下方を向いた状態で、電極ケース20の凹部23内に挿入させる。そして、給電シャフト53bを一方の貫通孔211に挿通させることで、給電体53を弾性体60上に積層する。 First, the power supply 53 is arranged on the elastic body 60 inserted into the recess 23 of the electrode case 20. Specifically, the power supply body 53 is inserted into the concave portion 23 of the electrode case 20 with the tip of the power supply shaft 53b facing downward. Then, the power supply body 53 is stacked on the elastic body 60 by inserting the power supply shaft 53b into the one through hole 211.
 次に、陽極54を、電極ケース20の凹部23内に挿入させて、給電体53上に積層する。 Next, the anode 54 is inserted into the recess 23 of the electrode case 20 and laminated on the power supply 53.
 次に、導電性膜56を、電極ケース20の凹部23内に挿入させて、陽極54上に積層する。 Next, the conductive film 56 is inserted into the recess 23 of the electrode case 20 and laminated on the anode 54.
 次に、陰極55を、給電シャフト55bの先端が下方を向いた状態で、電極ケース20の凹部23内に挿入させつつ、給電シャフト55bを他方の貫通孔211に挿通させることで、陰極55を導電性膜56上に積層する。 Next, the cathode 55 is inserted into the recess 23 of the electrode case 20 with the tip of the power supply shaft 55b facing downward while the power supply shaft 55b is inserted into the other through-hole 211, so that the cathode 55 is It is laminated on the conductive film 56.
 次に、陽極用の給電シャフト53bの電極ケース20の外部に突出する部分、および、陰極用の給電シャフト55bの電極ケース20の外部に突出する部分に、それぞれ、Oリング31、ワッシャ32、座金33および六角ナット34を挿入する。 Next, an O-ring 31, a washer 32, and a washer are provided on a portion of the anode power supply shaft 53b protruding outside the electrode case 20 and on a portion of the cathode power supply shaft 55b protruding outside the electrode case 20, respectively. 33 and hex nut 34 are inserted.
 電解部50は、六角ナット34の締め付けにより、弾性体60に押し付けられた状態で、凹部23内に収容固定される。 The electrolytic portion 50 is housed and fixed in the recess 23 while being pressed against the elastic body 60 by tightening the hexagon nut 34.
 なお、本実施の形態では、電極ケース蓋40を、電極ケース20に対して積層方向Zに相対移動させることで、突部42が凹部23に挿入されつつ、溶着用の嵌合凹部411に嵌合突部241が挿入される。 In the present embodiment, by moving the electrode case lid 40 relative to the electrode case 20 in the stacking direction Z, the projection 42 is inserted into the recess 23 while being fitted into the fitting recess 411 for welding. The collision part 241 is inserted.
 このように、本実施の形態にかかるオゾン水生成装置1は、各部材を電極ケース20に対して上下方向(積層方向Z)に相対移動させるだけで組み立てられる。 As described above, the ozone water generation device 1 according to the present embodiment is assembled simply by moving each member relatively to the electrode case 20 in the vertical direction (the stacking direction Z).
 次に、オゾン水生成装置1の動作および作用について説明する。 Next, the operation and action of the ozone water generation device 1 will be described.
 まず、オゾン水生成装置1へ水を供給するために、流入口111から流路11へ水を供給する。流路11へ供給された水の一部が、溝部52内に流入して、溝部52の界面57,界面58に接触する。 First, in order to supply water to the ozone water generator 1, water is supplied from the inlet 111 to the channel 11. Part of the water supplied to the flow channel 11 flows into the groove 52 and comes into contact with the interface 57 and the interface 58 of the groove 52.
 このような状態(供給された水によって電解部50が水中に浸された状態)で、図示せぬ電源供給部により、電解部50の陽極54と陰極55との間に電圧を印加する。そうすると、陽極54と陰極55との間に、導電性膜56を介して電位差が生じる。陽極54と陰極55との間に電位差を生じさせることで、陽極54、導電性膜56および陰極55が通電し、主に溝部52内の水中にて電解処理がなされ、導電性膜56と陽極54との界面57の近傍でオゾンが発生する。 で In such a state (a state in which the electrolytic unit 50 is immersed in the supplied water), a voltage is applied between the anode 54 and the cathode 55 of the electrolytic unit 50 by a power supply unit (not shown). Then, a potential difference is generated between the anode 54 and the cathode 55 via the conductive film 56. By generating a potential difference between the anode 54 and the cathode 55, the anode 54, the conductive film 56, and the cathode 55 are energized, and the electrolytic treatment is performed mainly in the water in the groove 52. Ozone is generated in the vicinity of the interface 57 with the ozone.
 導電性膜56と陽極54との界面57の近傍で発生したオゾンは、水の流れに沿って、流路11の下流側へと運ばれながら水に溶解する。このように、オゾンを水に溶解させることで、溶存オゾン水(オゾン水:電解液体)が生成される。 Ozone generated near the interface 57 between the conductive film 56 and the anode 54 dissolves in the water while being carried to the downstream side of the flow path 11 along the flow of the water. As described above, dissolved ozone water (ozone water: electrolytic liquid) is generated by dissolving ozone in water.
 オゾン水生成装置1は、電解液体生成装置で生成された電解液体を利用する電気機器、および、電解液体生成装置を備える液体改質装置等に適用できる。 The ozone water generating apparatus 1 can be applied to an electric device using the electrolytic liquid generated by the electrolytic liquid generating apparatus, a liquid reforming apparatus including the electrolytic liquid generating apparatus, and the like.
 なお、電気機器および液体改質装置の一例としては、浄水装置等の水処理機器、洗濯機、食洗機、温水洗浄便座、冷蔵庫、給湯給水装置、殺菌装置、医療用機器、空調機器および厨房機器等があげられる。 Examples of electric equipment and liquid reforming equipment include water treatment equipment such as water purification equipment, washing machines, dishwashers, hot water washing toilet seats, refrigerators, hot and cold water supply equipment, sterilization equipment, medical equipment, air conditioning equipment, and kitchens. Equipment.
 本実施の形態によれば、水の電気分解により生じるスケールによって、周壁部22(ハウジング10)および電解部50が圧迫されてしまうことが抑制される。 According to the present embodiment, compression of peripheral wall portion 22 (housing 10) and electrolytic portion 50 by the scale generated by the electrolysis of water is suppressed.
 具体的には、陰極55および陽極54のうち少なくともいずれか一方の電極の外周部と、周壁部22の内面22a(ハウジング10の内面)との間に、空間部Sが形成され、電解部50の周囲に水が滞留してしまうことが抑制される。 Specifically, a space S is formed between the outer peripheral portion of at least one of the cathode 55 and the anode 54 and the inner surface 22a of the peripheral wall portion 22 (the inner surface of the housing 10). Is prevented from staying around the surrounding area.
 すなわち、電解部50の周囲と周壁部22(ハウジング10)との間に、水を流すための空間部Sを積極的に設けることで、電解部50の周囲における水の滞留を抑制できる。空間部Sは、オゾン水生成装置1を組み立てる際に生じる製造公差よりも大きな隙間を有している。 That is, by actively providing the space S for flowing water between the periphery of the electrolysis unit 50 and the peripheral wall portion 22 (housing 10), the stagnation of water around the electrolysis unit 50 can be suppressed. The space portion S has a gap larger than a manufacturing tolerance generated when assembling the ozone water generation device 1.
 本実施の形態では、上述したように、陰極55のほうが、導電性膜56よりも、幅方向Yの幅が大きい。また、陽極54と導電性膜56とは、ほぼ同じ投影寸法である。 In the present embodiment, as described above, the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56. The anode 54 and the conductive film 56 have substantially the same projected dimensions.
 積層体51を形成した際には、陰極55の幅方向Yの両端が、陽極54および導電性膜56よりも外側に突出する。 (4) When the laminated body 51 is formed, both ends of the cathode 55 in the width direction Y protrude outside the anode 54 and the conductive film 56.
 すなわち、陰極55の外周部(側面)55cは、陽極54の外周部(側面)54aよりも幅方向Y(積層方向Zと交差する方向)の外側に突出している。陰極55における、陽極54の外周部54aよりも幅方向Yの外側に突出した部位を陰極側突出部55gとする(図3参照)。 That is, the outer peripheral portion (side surface) 55c of the cathode 55 protrudes outside the outer peripheral portion (side surface) 54a of the anode 54 in the width direction Y (the direction intersecting the stacking direction Z). A portion of the cathode 55 that protrudes outside the outer peripheral portion 54a of the anode 54 in the width direction Y is referred to as a cathode-side protruding portion 55g (see FIG. 3).
 このように、陰極55の幅方向Yの両端に、陽極54および導電性膜56よりも外側に突出した陰極側突出部55gを形成すると、積層体51を凹部23に収容した際に、周壁部22の内面22aと陽極54との間に空間部Sが形成される。また、陰極55の陰極側突出部55gよりも下側(積層方向Zの陽極54側)にも、空間部Sが形成される。 As described above, when the cathode-side protruding portions 55g that protrude outside the anode 54 and the conductive film 56 are formed at both ends in the width direction Y of the cathode 55, when the stacked body 51 is accommodated in the concave portion 23, the peripheral wall portion is formed. A space S is formed between the inner surface 22 a of the anode 22 and the anode 54. A space S is also formed below the cathode-side projection 55g of the cathode 55 (on the anode 54 side in the stacking direction Z).
 本実施の形態では、空間部Sは、陽極54の外周部(側面)54aと周壁部22の内面(ハウジング10の内面)22aとの間に形成される陽極側空間部(第2空間部)S2を有している。また、空間部Sは、陰極55よりも積層方向Zの陽極54側に形成される下側空間部(第3空間部)S3を有している。 In the present embodiment, the space portion S is an anode-side space portion (second space portion) formed between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. S2 is provided. Further, the space S has a lower space (third space) S3 formed on the anode 54 side in the stacking direction Z with respect to the cathode 55.
 さらに、本実施の形態では、陰極側突出部55gが形成された状態で、陰極55の外周部(側面)55cと周壁部22の内面(ハウジング10の内面)22aとの間にも、製造公差よりも大きな隙間が設けられている。すなわち、空間部Sは、陰極55の外周部(側面)55cと周壁部22の内面(ハウジング10の内面)22aとの間に形成される陰極側空間部(第1空間部)S1を有している。 Further, in the present embodiment, with the cathode-side protruding portion 55g formed, the manufacturing tolerance is also provided between the outer peripheral portion (side surface) 55c of the cathode 55 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. A larger gap is provided. That is, the space portion S has a cathode-side space portion (first space portion) S1 formed between the outer peripheral portion (side surface) 55c of the cathode 55 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. ing.
 このように、本実施の形態では、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陰極側空間部(第1空間部)S1、陽極側空間部(第2空間部)S2、および、下側空間部(第3空間部)S3を有する空間部Sが形成されている。 As described above, in the present embodiment, between the outer peripheral portion (side surface) 51a of the multilayer body 51 and the inner surface 22a of the peripheral wall portion 22, the cathode space portion (first space portion) S1 and the anode space portion (first space portion) are provided. A space S having a second space S2 and a lower space (third space) S3 is formed.
 本実施の形態では、空間部Sは、積層体51の少なくとも長手方向の周囲に形成されている。すなわち、陰極側空間部(第1空間部)S1の少なくとも一部が、側面51aに沿うように形成されている。側面51aは、積層体51の幅方向Yの両側に配置されて長手方向(通液方向X)に延在する。 In the present embodiment, the space S is formed at least around the longitudinal direction of the stacked body 51. That is, at least a portion of the cathode-side space (first space) S1 is formed along the side surface 51a. The side surfaces 51a are arranged on both sides in the width direction Y of the multilayer body 51 and extend in the longitudinal direction (liquid flow direction X).
 陰極側空間部(第1空間部)S1は、流入口111および流出口112に連通し、陰極側空間部(第1空間部)S1内に導入された水を、効率よく流出口112から流出させることが好ましいが、流路11の途中に連通させるようにしてもよい。 The cathode side space (first space) S1 communicates with the inflow port 111 and the outflow port 112, and the water introduced into the cathode side space (first space) S1 flows out of the outflow port 112 efficiently. Although it is preferable to make it communicate, it may be made to communicate in the middle of the channel 11.
 このような空間部Sを形成することで、水の電気分解により生じる、カルシウム成分等からなるスケールが、積層体51と周壁部22との間に溜まってしまうことを抑制できる。 形成 By forming such a space portion S, it is possible to suppress the scale formed by the electrolysis of water, such as a calcium component, from accumulating between the laminate 51 and the peripheral wall portion 22.
 例えば、導電性膜56と陰極55との界面58の近傍は、pH値が上昇しやすく、スケールが生じやすい部位となっているが、本実施の形態で示した空間部Sを形成すれば、界面58の近傍に、比較的大きな空間が形成される。すなわち、幅方向Yの外側の界面58は、積層方向Zの陽極54側(下側)に所定の大きさの空間(下側空間部(第3空間部)S3)が形成されるとともに、幅方向Yの外側に所定の大きさの空間(陽極側空間部(第2空間部)S2)が形成された状態で、空間部Sに露出する。 For example, the vicinity of the interface 58 between the conductive film 56 and the cathode 55 is a portion where the pH value is likely to increase and scale is likely to occur, but if the space S described in the present embodiment is formed, A relatively large space is formed near the interface 58. That is, the outer interface 58 in the width direction Y forms a space (lower space portion (third space portion) S3) of a predetermined size on the anode 54 side (lower side) in the stacking direction Z and has a width In a state where a space (anode-side space (second space) S2) having a predetermined size is formed outside the direction Y, the space S is exposed.
 さらに、本実施の形態では、幅方向Yの外側の界面58は、長手方向(通液方向X)に沿うように空間部Sに露出しており、幅方向Yの外側の界面58の、ほぼ全体が空間部Sに露出している。 Furthermore, in the present embodiment, the outer interface 58 in the width direction Y is exposed to the space S along the longitudinal direction (the liquid passing direction X), and the outer interface 58 in the width direction Y is substantially The whole is exposed to the space S.
 そのため、空間部Sに導入された水は、通液方向Xに沿って下流側へと流れる。すなわち、空間部Sに露出する界面58の近傍に導入された水も、比較的速やかに、通液方向Xに沿って下流側へと流れる。したがって、界面58の近傍で生じたスケールを、積層体51およびハウジング10に固着する前に、下流側へと流すことができる。このように、本実施の形態で示した空間部Sを形成すれば、スケールが生じやすい界面58の近傍に、水が滞留してしまうことが抑制され、界面58の近傍で生じたスケールを、速やかに下流側へ流すことができる。その結果、積層体51と周壁部22との間にスケールが溜まってしまうことが抑制される。よって、周壁部22(ハウジング10)および電解部50が、スケールによって圧迫されることを抑制できる。 た め Therefore, the water introduced into the space S flows downstream along the liquid flowing direction X. That is, the water introduced near the interface 58 exposed to the space S also flows relatively quickly to the downstream side along the liquid flowing direction X. Therefore, the scale generated near the interface 58 can flow downstream before being fixed to the laminate 51 and the housing 10. In this manner, if the space S shown in the present embodiment is formed, water is prevented from staying in the vicinity of the interface 58 where scale is likely to occur, and the scale generated in the vicinity of the interface 58 is It can quickly flow downstream. As a result, accumulation of scale between the laminate 51 and the peripheral wall 22 is suppressed. Therefore, it is possible to prevent the peripheral wall portion 22 (housing 10) and the electrolytic portion 50 from being pressed by the scale.
 なお、空間部Sを設ければ、積層体51と周壁部22との間にスケールが溜まってしまうことが抑制されるが、積層体51および周壁部22には、比較的少量ではあるが、スケールが固着してしまう。したがって、オゾン水生成装置1を長期間使用した場合などには、積層体51および周壁部22に固着したスケールが大きくなって、周壁部22(ハウジング10)および電解部50が圧迫されてしまう可能性もある。このため、空間部Sの大きさを、通常の方法で、オゾン水生成装置1を想定寿命以上使用した場合でも、固着したスケールによって、空間部Sが塞がれない程度の大きさとすることが好ましい。通常の使用方法は、例えば、ハウジング内に供給される水の水質(液体の液質)、ハウジング内を流れる水の平均流速および平均流量、オゾン生成効率(電極間に印加する電圧および電解面積)、ならびに、想定される使用頻度などに基づき決定できる。 If the space S is provided, accumulation of scale between the laminate 51 and the peripheral wall 22 is suppressed, but the laminate 51 and the peripheral wall 22 have a relatively small amount, The scale sticks. Therefore, when the ozone water generation device 1 is used for a long time, the scale fixed to the laminate 51 and the peripheral wall 22 becomes large, and the peripheral wall 22 (housing 10) and the electrolytic unit 50 may be pressed. There is also. For this reason, the size of the space S may be set to such a size that the space S is not blocked by the fixed scale even when the ozone water generation device 1 is used for the expected life or longer by a normal method. preferable. Typical usage methods are, for example, water quality (liquid quality) of water supplied into the housing, average flow velocity and average flow rate of water flowing in the housing, ozone generation efficiency (voltage applied between electrodes and electrolytic area). , And the expected use frequency.
 また、電極ケース20の周壁部22の内側には、上下方向(積層方向Z)に延在する位置決め突起221が、長手方向(通液方向X)に沿って複数形成されている(図4参照)。そして、積層時における陽極54の位置ずれが、この位置決め突起221によって抑制される(図4参照)。本実施の形態では、位置決め突起221は、周壁部22の内面(ハウジングの内面)における、積層体51の外周部51aと対向する部位に形成されている。位置決め突起221は、積層体51に向けて突出するハウジング突部に相当する。 A plurality of positioning protrusions 221 extending in the vertical direction (stacking direction Z) are formed inside the peripheral wall portion 22 of the electrode case 20 along the longitudinal direction (liquid flow direction X) (see FIG. 4). ). Then, the displacement of the anode 54 at the time of lamination is suppressed by the positioning projection 221 (see FIG. 4). In the present embodiment, the positioning protrusion 221 is formed on the inner surface of the peripheral wall portion 22 (the inner surface of the housing) at a position facing the outer peripheral portion 51a of the laminate 51. The positioning protrusion 221 corresponds to a housing protrusion protruding toward the stacked body 51.
 位置決め突起(ハウジング突部)221を周壁部22に形成することで、積層体51を凹部23内に配置するだけで、積層体51の外周部(側面)51aと、周壁部22の内面22aとの間に、空間部Sが形成される。 By forming the positioning projections (housing projections) 221 on the peripheral wall portion 22, the outer peripheral portion (side surface) 51 a of the laminated body 51 and the inner surface 22 a of the peripheral wall portion 22 can be formed simply by disposing the laminate 51 in the concave portion 23. A space S is formed therebetween.
 本実施の形態では、導電性膜56の外周部(側面)56a(平面における輪郭線)に、逃がし部としての導電性膜側凹部56bが、凹状に形成されている(図5参照)。導電性膜側凹部56bは、積層体51を凹部23内に配置した際に、位置決め突起(ハウジング突部)221と対応する部位に形成されている。 In the present embodiment, a conductive film-side concave portion 56b as a relief portion is formed in a concave shape on the outer peripheral portion (side surface) 56a (contour line in a plane) of the conductive film 56 (see FIG. 5). The conductive film-side concave portion 56b is formed at a position corresponding to the positioning protrusion (housing protrusion) 221 when the laminated body 51 is disposed in the concave portion 23.
 したがって、導電性膜56を凹部23内に挿入して陽極54上に積層した際には、凹状の導電性膜側凹部56bが、周壁部22の位置決め突起221と対向する(図5参照)。これにより、オゾン水生成時等に、水を含んで膨張した導電性膜56が、位置決め突起221と干渉してしまうことを抑制できる。 Therefore, when the conductive film 56 is inserted into the concave portion 23 and laminated on the anode 54, the concave portion 56b of the conductive film side facing the concave portion faces the positioning protrusion 221 of the peripheral wall portion 22 (see FIG. 5). Accordingly, it is possible to prevent the conductive film 56 expanded including water from interfering with the positioning protrusion 221 at the time of generation of ozone water or the like.
 また、導電性膜56よりも幅方向Yの幅が大きい陰極55の外周部(側面)55c(平面視における輪郭線)にも、逃がし部としての陰極側凹部55dが凹状に形成されている(図6参照)。陰極側凹部55dは、積層体51を凹部23内に配置した際に、位置決め突起(ハウジング突部)221と対応する部位に形成されている。 In addition, a cathode-side concave portion 55d as a relief portion is formed in a concave shape also on an outer peripheral portion (side surface) 55c (a contour line in a plan view) of the cathode 55 having a width larger in the width direction Y than the conductive film 56 (see FIG. See FIG. 6). The cathode-side concave portion 55d is formed at a position corresponding to the positioning protrusion (housing protrusion) 221 when the stacked body 51 is disposed in the concave portion 23.
 したがって、陰極55を凹部23内に挿入して導電性膜56上に積層した際には、凹状の陰極側凹部55dが、周壁部22の位置決め突起221と対向する(図6参照)。これにより、幅方向Yの寸法を大きくした陰極55が位置決め突起221と干渉してしまうことが抑制される。すなわち、陰極55の表面積を極力大きくさせつつ、陰極55と位置決め突起221との干渉が抑制されるように、陰極側凹部55dが形成されている。 Therefore, when the cathode 55 is inserted into the recess 23 and laminated on the conductive film 56, the concave cathode-side recess 55d faces the positioning projection 221 of the peripheral wall 22 (see FIG. 6). This suppresses interference of the cathode 55 having a larger dimension in the width direction Y with the positioning protrusion 221. That is, the cathode-side recess 55d is formed so that the interference between the cathode 55 and the positioning protrusion 221 is suppressed while the surface area of the cathode 55 is increased as much as possible.
 なお、空間部Sは、陰極55および陽極54のうち少なくともいずれか一方の電極の外周部と、周壁部22の内面22a(ハウジング10の内面)との間に形成されていればよく、積層体51を、例えば、図7~図11に示す構成としてもよい。 The space S may be formed between the outer peripheral portion of at least one of the cathode 55 and the anode 54 and the inner surface 22a of the peripheral wall portion 22 (the inner surface of the housing 10). 51 may be configured as shown in FIGS. 7 to 11, for example.
 以下、本実施の形態の空間部Sの変形例について説明する。 Hereinafter, a modified example of the space S of the present embodiment will be described.
 まず、図7には、導電性膜56の外周部(側面)56aを、陽極54の外周部(側面)54aよりも幅方向Y(積層方向Zと交差する方向)に突出させた積層体51が開示されている。そして、導電性膜56における、陽極54の外周部54aよりも、幅方向Yの外側に突出した部位を、導電性膜側突出部56dとしている。 First, FIG. 7 shows a stacked body 51 in which the outer peripheral portion (side surface) 56a of the conductive film 56 is projected more than the outer peripheral portion (side surface) 54a of the anode 54 in the width direction Y (direction intersecting with the laminating direction Z). Is disclosed. The portion of the conductive film 56 that protrudes beyond the outer peripheral portion 54a of the anode 54 in the width direction Y is defined as a conductive film-side protrusion 56d.
 さらに、図7では、陰極55と導電性膜56とが、ほぼ同じ投影寸法となる。 (7) Further, in FIG. 7, the cathode 55 and the conductive film 56 have substantially the same projected dimensions.
 このように、図7では、陰極55の幅方向Yの両端に、陽極54よりも外側に突出した陰極側突出部55gを形成しつつ、導電性膜56の幅方向Yの両端に、陽極54よりも外側に突出した導電性膜側突出部56dを形成している。こうすれば、積層体51を凹部23に収容した際に、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陰極側空間部(第1空間部)S1、陽極側空間部(第2空間部)S2および下側空間部(第3空間部)S3を有する空間部Sが形成される。 In this manner, in FIG. 7, the cathode 54 is formed at both ends in the width direction Y of the cathode 55, while the cathode-side protrusions 55 g projecting outside the anode 54 are formed at both ends in the width direction Y of the conductive film 56. A conductive film-side protruding portion 56d protruding outward is formed. In this way, when the stacked body 51 is accommodated in the concave portion 23, the cathode side space (first space) S1, between the outer peripheral portion (side surface) 51a of the stacked body 51 and the inner surface 22a of the peripheral wall portion 22, A space S having an anode-side space (second space) S2 and a lower space (third space) S3 is formed.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 また、導電性膜56を、陰極55の幅方向Yの両端まで拡げることで、陰極側突出部55gの下面にも導電性膜56が接触するため、大きくした陰極55の面積を、より有効に利用できる。すなわち、陰極55と導電性膜56との接触面積(電解面積)を、より増大させることができる。 Further, by expanding the conductive film 56 to both ends in the width direction Y of the cathode 55, the conductive film 56 also comes into contact with the lower surface of the cathode-side protruding portion 55g. Available. That is, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 can be further increased.
 次に、図8には、本実施の形態で説明した積層体51と同様に、陰極55の幅方向Yの両端に、陽極54および導電性膜56よりも外側に突出した陰極側突出部55gが形成された積層体51が開示されている。 Next, in FIG. 8, similarly to the laminate 51 described in the present embodiment, at both ends in the width direction Y of the cathode 55, the cathode-side projections 55g projecting outside the anode 54 and the conductive film 56 are shown. Is disclosed.
 陰極55の外周部(長手方向に延在する側面)55cは、周壁部22の内面22aに接触し、陽極54の外周部54aおよび導電性膜56の外周部56aと、周壁部22の内面22aとの間には空間部Sが形成される。すなわち、積層体51を凹部23に収容した際に、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陽極側空間部(第2空間部)S2および下側空間部(第3空間部)S3を有する空間部Sが形成される。 The outer peripheral portion (side surface extending in the longitudinal direction) 55c of the cathode 55 contacts the inner surface 22a of the peripheral wall portion 22, and the outer peripheral portion 54a of the anode 54, the outer peripheral portion 56a of the conductive film 56, and the inner surface 22a of the peripheral wall portion 22. A space S is formed between the two. That is, when the stacked body 51 is accommodated in the recess 23, the anode-side space (second space) S <b> 2 and the lower side are provided between the outer peripheral portion (side surface) 51 a of the stacked body 51 and the inner surface 22 a of the peripheral wall 22. A space S having a space (third space) S3 is formed.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 なお、図8に示す構成(陰極55の外周部55cを、周壁部22の内面22aに接触させた構成)においても、図7で説明した導電性膜側突出部56dを、導電性膜56に形成することが可能である。ただし、周壁部22の内面22aに、導電性膜側突出部56dも接触させると、スケールが生じやすい、界面58と周壁部22の内面22aとの間に、水が滞留してしまうおそれがある。そのため、導電性膜側突出部56dを形成する際には、導電性膜56の外周部56aと周壁部22の内面22aとの間に、水の滞留を抑制できる程度の隙間(空間部S)が形成されることが好ましい。 In the configuration shown in FIG. 8 (the configuration in which the outer peripheral portion 55c of the cathode 55 is brought into contact with the inner surface 22a of the peripheral wall portion 22), the conductive film side protrusion 56d described in FIG. It is possible to form. However, if the conductive film-side protruding portion 56d is also brought into contact with the inner surface 22a of the peripheral wall portion 22, there is a possibility that water may stay between the interface 58 and the inner surface 22a of the peripheral wall portion 22 where scale is likely to occur. . Therefore, when forming the conductive film side protruding portion 56d, a gap (space S) between the outer peripheral portion 56a of the conductive film 56 and the inner surface 22a of the peripheral wall portion 22 that can suppress the accumulation of water is provided. Is preferably formed.
 次に、図9には、陽極54の外周部54a、陰極55の外周部55cおよび導電性膜56の外周部56aにおける、少なくとも長手方向に延在する部位が、略同一面となる積層体51が開示されている。そして、陽極54の長手方向に延在する側面54a、陰極55の長手方向に延在する側面55c、および、導電性膜56の長手方向に延在する側面56aと、周壁部22の内面22aとの間に空間部Sが形成される。すなわち、積層体51を凹部23に収容した際に、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陰極側空間部(第1空間部)S1および陽極側空間部(第2空間部)S2を有する空間部Sが形成される。 Next, FIG. 9 shows a laminate 51 in which at least portions extending in the longitudinal direction in the outer peripheral portion 54a of the anode 54, the outer peripheral portion 55c of the cathode 55, and the outer peripheral portion 56a of the conductive film 56 are substantially flush with each other. Is disclosed. The side surface 54 a extending in the longitudinal direction of the anode 54, the side surface 55 c extending in the longitudinal direction of the cathode 55, the side surface 56 a extending in the longitudinal direction of the conductive film 56, and the inner surface 22 a of the peripheral wall portion 22. A space S is formed between the two. That is, when the laminate 51 is accommodated in the recess 23, the cathode-side space portion (first space portion) S <b> 1 and the anode-side space portion are provided between the outer peripheral portion (side surface) 51 a of the laminate 51 and the inner surface 22 a of the peripheral wall portion 22. A space S having a space (second space) S2 is formed.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 次に、図10には、陽極54の幅方向Yの大きさを導電性膜56よりも大きくするとともに、陰極55と導電性膜56とをほぼ同じ投影寸法とした積層体51が開示されている。 Next, FIG. 10 discloses a stacked body 51 in which the size of the anode 54 in the width direction Y is larger than that of the conductive film 56 and the cathode 55 and the conductive film 56 have substantially the same projected dimensions. I have.
 そして、積層体51を形成した際に、陽極54の幅方向Yの両端を、陰極55および導電性膜56よりも外側に突出させ、陽極54における、陰極55の外周部55cよりも幅方向Yの外側に突出した部位を陽極側突出部54bとしている。 Then, when the laminated body 51 is formed, both ends of the anode 54 in the width direction Y are projected outside the cathode 55 and the conductive film 56, and the width of the anode 54 in the width direction Y is larger than the outer peripheral portion 55 c of the cathode 55. The part protruding outside is defined as the anode-side protruding part 54b.
 このように、陽極54の幅方向Yの両端に、陰極55および導電性膜56よりも外側に突出した陽極側突出部54bを形成すれば、積層体51を凹部23に収容した際に、周壁部22の内面22aと陰極55との間に空間部Sが形成される。また、陽極54の陽極側突出部54bよりも上側(積層方向Zの陰極55側)にも、空間部Sが形成される。 As described above, by forming the anode-side protruding portions 54 b protruding outside the cathode 55 and the conductive film 56 at both ends in the width direction Y of the anode 54, when the stacked body 51 is accommodated in the concave portion 23, the peripheral wall A space S is formed between the inner surface 22a of the portion 22 and the cathode 55. A space S is also formed above the anode-side protruding portion 54b of the anode 54 (on the side of the cathode 55 in the stacking direction Z).
 このように、図10では、空間部Sが、陰極55の外周部(側面)55cと周壁部22の内面(ハウジング10の内面)22aとの間に形成される陰極側空間部(第1空間部)S1を有している。また、空間部Sは、陽極54よりも積層方向Zの陰極55側に形成される上側空間部(第4空間部)S4も有している。 In this manner, in FIG. 10, the space S is formed between the outer peripheral portion (side surface) 55 c of the cathode 55 and the inner surface (inner surface of the housing 10) 22 a of the peripheral wall 22 (the first space). Part) S1. The space S also has an upper space (fourth space) S4 formed closer to the cathode 55 in the stacking direction Z than the anode 54.
 さらに、図10では、陽極側突出部54bを形成した状態で、陽極54の外周部(側面)54aと周壁部22の内面(ハウジング10の内面)22aとの間にも、製造公差を超える隙間が設けられている。すなわち、空間部Sは、陽極54の外周部(側面)54aと周壁部22の内面(ハウジング10の内面)22aとの間に形成される陽極側空間部(第2空間部)S2を有している。 Further, in FIG. 10, a gap exceeding the manufacturing tolerance is provided between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22 in a state where the anode-side protruding portion 54b is formed. Is provided. That is, the space portion S has an anode-side space portion (second space portion) S2 formed between the outer peripheral portion (side surface) 54a of the anode 54 and the inner surface (inner surface of the housing 10) 22a of the peripheral wall portion 22. ing.
 このように、図10では、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陰極側空間部(第1空間部)S1、陽極側空間部(第2空間部)S2、および、上側空間部(第4空間部)S4を有する空間部Sが形成されている。 As described above, in FIG. 10, between the outer peripheral portion (side surface) 51a of the laminate 51 and the inner surface 22a of the peripheral wall portion 22, the cathode side space portion (first space portion) S1 and the anode side space portion (second space portion) Part S2 and a space part S having an upper space part (fourth space part) S4.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 なお、図10に示す構成において、図7で説明した導電性膜側突出部56dを導電性膜56に形成することが可能である。すなわち、陽極54の幅方向Yの両端に、陰極55よりも外側に突出した陽極側突出部54bを形成しつつ、導電性膜56の幅方向Yの両端に、陰極55よりも外側に突出した導電性膜側突出部56dを形成できる。 In the configuration shown in FIG. 10, the conductive film side protruding portion 56d described in FIG. 7 can be formed on the conductive film 56. That is, at both ends in the width direction Y of the anode 54, the anode-side protrusions 54 b protruding outside the cathode 55 are formed, and at both ends in the width direction Y of the conductive film 56, the protrusions protrude outside the cathode 55. The conductive film side protrusion 56d can be formed.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 また、導電性膜56を、陽極54の幅方向Yの両端まで拡げることで、陽極側突出部54bの上面にも導電性膜56が接触するため、大きくした陽極54の面積を、より有効に利用できる。すなわち、陽極54と導電性膜56との接触面積(電解面積)を、より増大させることができる。 Further, by expanding the conductive film 56 to both ends in the width direction Y of the anode 54, the conductive film 56 also contacts the upper surface of the anode-side protruding portion 54b. Available. That is, the contact area (electrolysis area) between anode 54 and conductive film 56 can be further increased.
 次に、図11では、図10で説明した積層体51と同様に、陽極54の幅方向Yの両端に、陰極55および導電性膜56よりも外側に突出した陽極側突出部54bが形成された積層体51が開示されている。 Next, in FIG. 11, similarly to the stacked body 51 described with reference to FIG. 10, at both ends in the width direction Y of the anode 54, the anode-side protruding portions 54b projecting outside the cathode 55 and the conductive film 56 are formed. A stacked body 51 is disclosed.
 そして、陽極54の外周部(長手方向に延在する側面)54aが周壁部22の内面22aに接触し、陰極55の外周部55cおよび導電性膜56の外周部56aと、周壁部22の内面22aとの間に空間部Sが形成される。すなわち、積層体51を凹部23に収容した際に、積層体51の外周部(側面)51aと周壁部22の内面22aとの間に、陰極側空間部(第1空間部)S1および上側空間部(第4空間部)S4を有する空間部Sが形成される。 Then, the outer peripheral portion (side surface extending in the longitudinal direction) 54 a of the anode 54 contacts the inner surface 22 a of the peripheral wall portion 22, and the outer peripheral portion 55 c of the cathode 55, the outer peripheral portion 56 a of the conductive film 56, and the inner surface of the peripheral wall portion 22. The space S is formed between the space S and the space 22a. That is, when the laminate 51 is accommodated in the recess 23, the cathode-side space (first space) S <b> 1 and the upper space are provided between the outer peripheral portion (side surface) 51 a of the laminate 51 and the inner surface 22 a of the peripheral wall portion 22. A space portion S having a portion (fourth space portion) S4 is formed.
 このような構成とすることでも、積層体51と周壁部22との間にスケールが溜まってしまうことを抑制できる。 で も Even with such a configuration, accumulation of scale between the laminate 51 and the peripheral wall portion 22 can be suppressed.
 なお、図11に示す構成(陽極54の外周部54aを、周壁部22の内面22aに接触させた構成)においても、図7で説明した導電性膜側突出部56dを導電性膜56に形成することが可能である。ただし、周壁部22の内面22aに導電性膜側突出部56dも接触させると、スケールが生じやすい、界面58と周壁部22の内面22aとの間に、水が滞留してしまうおそれがある。そのため、導電性膜側突出部56dを形成する際には、導電性膜56の外周部56aと周壁部22の内面22aとの間に、水の滞留を抑制できる程度の隙間(空間部S)が形成されることが好ましい。 In the configuration shown in FIG. 11 (the configuration in which the outer peripheral portion 54a of the anode 54 is in contact with the inner surface 22a of the peripheral wall portion 22), the conductive film-side protruding portion 56d described in FIG. It is possible to do. However, if the conductive film side protruding portion 56 d is also brought into contact with the inner surface 22 a of the peripheral wall portion 22, there is a possibility that water may stagnate between the interface 58 and the inner surface 22 a of the peripheral wall portion 22 where scale is likely to occur. Therefore, when forming the conductive film side protruding portion 56d, a gap (space S) between the outer peripheral portion 56a of the conductive film 56 and the inner surface 22a of the peripheral wall portion 22 that can suppress the accumulation of water is provided. Is preferably formed.
 以上説明したように、本実施の形態にかかるオゾン水生成装置(電解液体生成装置)1は、陽極54と陰極55との間(互いに隣り合う電極間)に導電性膜56が介在するように積層された積層体51を有し、水(液体)を電解処理する電解部50を備えている。また、オゾン水生成装置1は、電解部50が内部に配置されるハウジング10を備えている。 As described above, the ozone water generation device (electrolytic liquid generation device) 1 according to the present embodiment is configured such that the conductive film 56 is interposed between the anode 54 and the cathode 55 (between adjacent electrodes). It has a stacked body 51 and is provided with an electrolysis section 50 for electrolyzing water (liquid). Further, the ozone water generation device 1 includes the housing 10 in which the electrolysis unit 50 is disposed.
 ハウジング10には、電解部50に供給される水が流入する流入口111と、電解部50で生成されるオゾン水(電解水:電解液体)が流出する流出口112とを有し、通液方向Xが積層体51の積層方向Zと交差する方向となる流路11が形成されている。 The housing 10 has an inlet 111 into which water supplied to the electrolytic unit 50 flows, and an outlet 112 from which ozone water (electrolyzed water: electrolytic liquid) generated in the electrolytic unit 50 flows out. The flow path 11 is formed in which the direction X intersects with the stacking direction Z of the stacked body 51.
 電解部50には、流路11に開口するとともに、導電性膜56と電極(陽極54)との界面57,導電性膜56と電極(陰極55)との界面58のうち、少なくとも一部が露出する溝部52が形成されている。 In the electrolysis part 50, at least a part of an interface 57 between the conductive film 56 and the electrode (anode 54) and an interface 58 between the conductive film 56 and the electrode (cathode 55) is opened in the flow channel 11. An exposed groove 52 is formed.
 本実施の形態では、互いに隣り合う電極が陰極55と陽極54であり、陰極55および陽極54のうち、少なくともいずれか一方の電極の外周部と、周壁部22の内面(ハウジングの内面)22aとの間に、水の滞留を抑制する空間部Sが形成されている。 In the present embodiment, the electrodes adjacent to each other are the cathode 55 and the anode 54, and the outer periphery of at least one of the cathode 55 and the anode 54 and the inner surface (inner surface of the housing) 22 a of the peripheral wall 22. A space S that suppresses stagnation of water is formed therebetween.
 また、空間部Sが、陰極55の外周部55cと周壁部22の内面(ハウジングの内面)22aとの間に形成される陰極側空間部(第1空間部)S1を有するようにしてもよい。 The space S may have a cathode-side space (first space) S1 formed between the outer peripheral portion 55c of the cathode 55 and the inner surface (inner surface of the housing) 22a of the peripheral wall 22. .
 また、空間部Sが、陽極54の外周部54aと周壁部22の内面(ハウジングの内面)22aとの間に形成される陽極側空間部(第2空間部)S2を有するようにしてもよい。 In addition, the space S may have an anode-side space (second space) S2 formed between the outer peripheral portion 54a of the anode 54 and the inner surface (inner surface of the housing) 22a of the peripheral wall 22. .
 また、空間部Sが、陰極55よりも積層方向Zの陽極54側に形成される下側空間部(第3空間部)S3を有するようにしてもよい。 The space S may have a lower space (third space) S3 formed closer to the anode 54 in the stacking direction Z than the cathode 55 is.
 このような空間部Sを電解部50の周辺に形成すれば、電解部50の周辺に水が滞留してしまうことを抑制できる。そして、電解部50の周辺に水が滞留しないようにすれば、電解部50の周辺および周壁部22(ハウジング10)へのスケールの固着が抑制される。 れ ば If such a space S is formed around the electrolysis unit 50, it is possible to prevent water from staying around the electrolysis unit 50. Then, if water is prevented from staying around the electrolysis unit 50, the adhesion of the scale to the periphery of the electrolysis unit 50 and the peripheral wall 22 (the housing 10) is suppressed.
 また、仮に、電解部50の周辺および周壁部22にスケールが固着したとしても、電解部50と周壁部22との間には、空間部Sが形成されているので、電解部50および周壁部22のスケールによる圧迫が抑制されて、電解部50の変形(撓み等)が抑制される。そして、電解部50の変形が抑制されると、陽極54と導電性膜56との接触、および、導電性膜56と陰極55との接触が不均一になってしまうことが抑制される。すなわち、陽極54と導電性膜56とを、より均等に接触させることができる上、導電性膜56と陰極55とを、より均等に接触させることができる。 Further, even if the scale is fixed to the periphery of the electrolytic portion 50 and the peripheral wall portion 22, the space S is formed between the electrolytic portion 50 and the peripheral wall portion 22, so that the electrolytic portion 50 and the peripheral wall portion 22 are formed. Compression by the scale 22 is suppressed, and deformation (bending or the like) of the electrolytic unit 50 is suppressed. When the deformation of the electrolytic section 50 is suppressed, the contact between the anode 54 and the conductive film 56 and the contact between the conductive film 56 and the cathode 55 are prevented from becoming uneven. That is, the anode 54 and the conductive film 56 can be more uniformly contacted, and the conductive film 56 and the cathode 55 can be more uniformly contacted.
 このように、電解部50と周壁部22との間に空間部Sを形成すれば、スケールが固着することによる電解部50の変形が抑制されて、電解部50における積層体51の接触を、より均等にできる。そして、積層体51の接触を、より均等にすることで、通電面積(例えば、導電性膜56と陰極55との電解面積)を、より安定的に確保できる。そして、通電面積を、より安定的に確保できるようにすれば、電解部50を流れる電流の電流密度を、より均等にすることができ、オゾン(電解生成物)の生成効率を、より安定化させることができる。 In this way, if the space S is formed between the electrolysis part 50 and the peripheral wall part 22, the deformation of the electrolysis part 50 due to the scale being fixed is suppressed, and the contact of the laminate 51 in the electrolysis part 50 is reduced. Can be more even. Then, by making the contact of the stacked body 51 more uniform, a current-carrying area (for example, an electrolysis area between the conductive film 56 and the cathode 55) can be more stably secured. If the current-carrying area can be more stably secured, the current density of the current flowing through the electrolytic unit 50 can be made more uniform, and the generation efficiency of ozone (electrolysis product) can be further stabilized. Can be done.
 このように、本実施の形態によれば、スケールによる、周壁部22(ハウジング10)および電解部50の圧迫を抑制することの可能なオゾン水生成装置1を得ることができる。 As described above, according to the present embodiment, it is possible to obtain the ozone water generation device 1 that can suppress the compression of the peripheral wall portion 22 (housing 10) and the electrolytic portion 50 by the scale.
 また、陰極55の外周部55cを、陽極54の外周部54aよりも幅方向Y(積層方向Zと交差する方向)に突出させてもよい。 The outer peripheral portion 55c of the cathode 55 may be made to protrude more than the outer peripheral portion 54a of the anode 54 in the width direction Y (a direction intersecting the stacking direction Z).
 こうすれば、陽極54の外周部54aよりも幅方向Yに突出させた分だけ陰極55の面積が増えるため、陰極55を流れる電流の電流密度が低下して、陰極55の周辺に電気分解により生じたスケールが溜まってしまうことを抑制できる。 In this case, the area of the cathode 55 is increased by an amount corresponding to the projection in the width direction Y from the outer peripheral portion 54a of the anode 54, so that the current density of the current flowing through the cathode 55 is reduced and the periphery of the cathode 55 is electrolyzed. Accumulation of the generated scale can be suppressed.
 また、導電性膜56の外周部56aを、陽極54の外周部54aよりも幅方向Y(積層方向Zと交差する方向)に突出させてもよい。 {Circle around (4)} The outer peripheral portion 56a of the conductive film 56 may be made to protrude more than the outer peripheral portion 54a of the anode 54 in the width direction Y (the direction intersecting the stacking direction Z).
 こうすることでも、電解部50および周壁部22のスケールによる圧迫が抑制されて、オゾン(電解生成物)の生成効率を、より安定化させることができる。 で も This also suppresses the pressure of the electrolytic section 50 and the peripheral wall section 22 due to the scale, so that the generation efficiency of ozone (electrolysis product) can be further stabilized.
 また、陰極55および導電性膜56の幅方向Yの大きさを、陽極54よりも大きくすれば、陰極55の幅方向Yの両端側の下面にも導電性膜56が接触するため、大きくした陰極55の面積を、より有効に利用できる。すなわち、陰極55と導電性膜56との接触面積(電解面積)を、より増大させることができる。 Further, if the size of the cathode 55 and the conductive film 56 in the width direction Y is made larger than that of the anode 54, the conductive film 56 also comes into contact with the lower surfaces of both ends in the width direction Y of the cathode 55, so that the size is increased. The area of the cathode 55 can be used more effectively. That is, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 can be further increased.
 また、空間部Sが、積層体51の少なくとも長手方向の周囲に形成されるようにしてもよい。 The space S may be formed at least around the longitudinal direction of the laminate 51.
 こうすれば、電解部50の周辺における水の滞留を、より確実に抑制することができ、オゾン(電解生成物)の生成効率を、より一層安定化させることができる。 In this way, the stagnation of water around the electrolytic section 50 can be more reliably suppressed, and the ozone (electrolysis product) generation efficiency can be further stabilized.
 また、周壁部22の内面(ハウジングの内面)22aにおける、積層体51の外周部51aと対向する部位に、積層体51に向けて突出する位置決め突起(ハウジング突部)221を形成してもよい。 Further, a positioning projection (housing projection) 221 projecting toward the laminate 51 may be formed on a portion of the inner surface (inner surface of the housing) 22a of the peripheral wall portion 22 facing the outer peripheral portion 51a of the laminate 51. .
 こうすれば、積層体51を凹部23内に配置するだけで、積層体51の外周部(側面)51aと、周壁部22の内面22aとの間に、空間部Sを形成できる。このため、より確実に、積層体51と周壁部22との間に隙間(空間部S)を確保できる。 In this case, the space S can be formed between the outer peripheral portion (side surface) 51 a of the laminated body 51 and the inner surface 22 a of the peripheral wall portion 22 only by disposing the laminated body 51 in the concave portion 23. Therefore, a gap (space S) can be more reliably secured between the laminate 51 and the peripheral wall 22.
 また、陰極55の外周部55cにおける、位置決め突起(ハウジング突部)221と対応する部位に、陰極側凹部55dを形成してもよい。 The cathode-side concave portion 55d may be formed at a position corresponding to the positioning projection (housing projection) 221 on the outer peripheral portion 55c of the cathode 55.
 こうすれば、陰極55を凹部23内に配置する際に、陰極55が位置決め突起(ハウジング突部)221と干渉してしまうことを抑制できる。このため、表面積を極力大きくさせた陰極55を、凹部23内に配置させることができる。 In this way, it is possible to suppress the cathode 55 from interfering with the positioning projection (housing projection) 221 when the cathode 55 is disposed in the recess 23. For this reason, the cathode 55 whose surface area is increased as much as possible can be arranged in the recess 23.
 また、導電性膜56の外周部56aにおける、位置決め突起(ハウジング突部)221と対応する部位に、導電性膜側凹部56bを形成してもよい。 The conductive film side concave portion 56b may be formed at a position corresponding to the positioning protrusion (housing protrusion) 221 on the outer peripheral portion 56a of the conductive film 56.
 こうすれば、オゾン水生成時等に水を含んで膨張した導電性膜56が、位置決め突起(ハウジング突部)221と干渉してしまうことを抑制できる。すなわち、膨張した導電性膜56が、位置決め突起(ハウジング突部)221と干渉して変形してしまうことを抑制できる。その結果、積層体51の接触を、より均等にすることができ、オゾン(電解生成物)の生成効率を、より安定化させることができる。 In this way, it is possible to prevent the conductive film 56 swelled with water at the time of generation of ozone water or the like from interfering with the positioning projection (housing projection) 221. That is, it is possible to suppress the expanded conductive film 56 from being deformed by interfering with the positioning projection (housing projection) 221. As a result, the contact of the stacked body 51 can be made more uniform, and the generation efficiency of ozone (electrolysis product) can be further stabilized.
 以上、本開示の好適な実施の形態について説明したが、本開示は上記実施の形態には限定されず、種々の変形が可能である。 Although the preferred embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment, and various modifications are possible.
 例えば、上記実施の形態では、オゾンを発生させ、当該オゾンを水に溶解させることでオゾン水を生成するオゾン水生成装置を例示したが、生成させる物質はオゾンに限るものではなく、例えば、次亜塩素酸を生成して殺菌および水処理等に利用するようにしてもよい。また、酸素水、水素水、塩素含有水、および、過酸化水素水等を生成する装置とすることも可能である。 For example, in the above-described embodiment, an ozone water generation apparatus that generates ozone and generates ozone water by dissolving the ozone in water is illustrated. However, the substance to be generated is not limited to ozone. Chlorous acid may be generated and used for sterilization and water treatment. It is also possible to use an apparatus for generating oxygen water, hydrogen water, chlorine-containing water, hydrogen peroxide water, and the like.
 なお、これらの電解液体生成装置についても、他の機器および設備に組み込まれた状態で使用することが可能である。そして、電解液体生成装置を他の機器および設備に組み込む際には、オゾン水生成装置1と同様に、流入口が下、流出口が上になるように立てた状態で配置することが好ましいが、これに限るものではなく、適宜の配置が可能である。 Note that these electrolytic liquid generation devices can also be used in a state where they are incorporated in other equipment and facilities. When the electrolytic liquid generation device is incorporated into another device or facility, it is preferable to arrange the electrolytic liquid generation device in an upright state with the inflow port down and the outflow port up, as in the ozone water generation apparatus 1. However, the present invention is not limited to this, and an appropriate arrangement is possible.
 また、陽極54は、例えば導電性シリコン、導電性ダイヤモンド、チタン、白金、酸化鉛、および酸化タンタルなどから選択される材料で構成することも可能であり、電解水を生成することのできる導電性と耐久性とを持つ電極であれば、どのような材料を用いてもよい。また、陽極54をダイヤモンド電極とした場合、その製造方法は、成膜による製造方法に限定されるものではない。また、金属以外の材料を用いて基板を構成することも可能である。 Further, the anode 54 can be made of a material selected from, for example, conductive silicon, conductive diamond, titanium, platinum, lead oxide, tantalum oxide, and the like, and has a conductive property capable of generating electrolytic water. Any material may be used as long as the electrode has durability and durability. When the anode 54 is a diamond electrode, the manufacturing method is not limited to the manufacturing method by film formation. Further, the substrate can be formed using a material other than a metal.
 また、陰極55は、導電性と耐久性とを備えた電極であればよく、例えば白金、チタン、ステンレス、および導電性シリコンなどから選択される材料で構成することも可能である。 The cathode 55 may be an electrode having conductivity and durability, and may be made of, for example, a material selected from platinum, titanium, stainless steel, and conductive silicon.
 また、上記実施の形態では、周壁部22に、積層方向Zに延在する位置決め突起(ハウジング突部)221が設けられたものを例示したが、ハウジング突部の形状は、様々な形状にできる。例えば、長手方向(通液方向X)に延在するハウジング突部を、周壁部22における、陽極54の外周部(長手方向に延在する側面)54aと対応する部位に設けるようにしてもよい。こうすれば、より確実に、積層体51と周壁部22との間に空間部Sを確保できる上、空間部S内の水(液体)の流れが、ハウジング突部によって阻害されてしまうことを抑制できる。 Further, in the above-described embodiment, an example in which the positioning protrusion (housing protrusion) 221 extending in the stacking direction Z is provided on the peripheral wall portion 22 is exemplified, but the shape of the housing protrusion may be various shapes. . For example, a housing protrusion extending in the longitudinal direction (liquid flow direction X) may be provided at a portion of the peripheral wall 22 corresponding to the outer peripheral portion (side surface extending in the longitudinal direction) 54 a of the anode 54. . By doing so, the space S can be more reliably secured between the stacked body 51 and the peripheral wall 22 and the flow of water (liquid) in the space S is prevented from being obstructed by the housing protrusion. Can be suppressed.
 また、ハウジングおよび電解部、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 ハ ウ ジ ン グ Also, the specifications (shape, size, layout, etc.) of the housing, the electrolytic section, and other details can be appropriately changed.
 (第2の実施の形態)
 ここで、本開示の第2の実施の形態として、本開示のオゾン水生成装置1の積層体51の構成について、より詳細に説明する。
(Second embodiment)
Here, as a second embodiment of the present disclosure, the configuration of the laminate 51 of the ozone water generation device 1 of the present disclosure will be described in more detail.
 なお、第1の実施の形態で説明した構成要素については、同じ符号を付して、その説明を省略する。オゾン水生成装置1の基本的な構成は、第1の実施の形態と共通している。 The components described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The basic configuration of the ozone water generation device 1 is common to the first embodiment.
 上述した従来の技術では、陰極に形成された孔と、導電性膜に形成された孔とは同一の形状をしている。すなわち、陰極に形成された孔、および、導電性膜に形成された孔は、平面視における、輪郭形状および大きさが同一となるように形成されている。そして、各孔の輪郭線を重ね合わせるように、陰極と導電性膜とを積層することにより、溝部が形成されている。 で は In the above-described conventional technology, the hole formed in the cathode and the hole formed in the conductive film have the same shape. That is, the hole formed in the cathode and the hole formed in the conductive film are formed so that the contour shape and the size in plan view are the same. Then, a groove is formed by laminating the cathode and the conductive film such that the outlines of the holes overlap.
 しかしながら、従来の技術では、陰極が、導電性膜に対して積層方向と交差する方向に相対的に位置ずれすると、陰極と導電性膜との電解面積(接触面積)が変化する。このため、電解部を流れる電流の電流密度が変化して、オゾンの生成効率が変動してしまう。 However, in the related art, when the cathode is displaced relative to the conductive film in a direction intersecting the laminating direction, the electrolytic area (contact area) between the cathode and the conductive film changes. For this reason, the current density of the current flowing through the electrolytic unit changes, and the ozone generation efficiency changes.
 下記に説明する構成によれば、電解生成物の生成効率を、より安定化させることの可能な電解液体生成装置を得ることができる。 According to the configuration described below, it is possible to obtain an electrolytic liquid generation device capable of further stabilizing the generation efficiency of an electrolytic product.
 以下の例では、陽極54と導電性膜56とが、ほぼ同じ投影寸法となるように構成されているとして説明する。 In the following example, description will be made assuming that the anode 54 and the conductive film 56 are configured to have substantially the same projected dimensions.
 そして、積層体51を形成した際には、陰極55の幅方向の両端が、陽極54および導電性膜56よりも外側に突出する構成である(図12に示したような構成)。 Then, when the laminate 51 is formed, both ends in the width direction of the cathode 55 project outside the anode 54 and the conductive film 56 (the configuration as shown in FIG. 12).
 なお、陰極55の幅方向の両端を、陽極54および導電性膜56よりも外側に突出させるようにすると、積層体51を凹部23に収容した際に、少なくとも、周壁部22の内面22aと陽極54との間に空間部Sが形成される。この空間部Sは、積層体51の外縁部と周壁部22との間に水が滞留してしまうことを抑制するために形成された空間である。 If the both ends in the width direction of the cathode 55 are made to protrude outside the anode 54 and the conductive film 56, when the laminate 51 is accommodated in the concave portion 23, at least the inner surface 22 a of the peripheral wall portion 22 and the anode A space S is formed between the space 54 and the space 54. The space S is a space formed between the outer edge of the stacked body 51 and the peripheral wall 22 to prevent water from staying there.
 このような空間部Sを形成すれば、水の電気分解により生じるカルシウム成分等からなるスケールが、積層体51と周壁部22との間に溜まってしまうことを抑制できる。 れ ば By forming such a space portion S, it is possible to suppress the scale composed of the calcium component or the like generated by the electrolysis of water from accumulating between the laminate 51 and the peripheral wall portion 22.
 さらに、本実施の形態では、図12に示すように、周壁部22の内面22aと陰極55との間にも空間部Sが形成されている。 Further, in the present embodiment, as shown in FIG. 12, a space S is also formed between the inner surface 22a of the peripheral wall 22 and the cathode 55.
 また、積層体51の構成は、上述した図7~図11に示した構成を前提としてもよい。すなわち、第1の実施の形態の基本的な構成と、第2の実施の形態で説明する、詳細な構成とを組み合わせることができる。 The configuration of the laminate 51 may be based on the configuration shown in FIGS. 7 to 11 described above. That is, the basic configuration of the first embodiment can be combined with the detailed configuration described in the second embodiment.
 以下の例では、オゾン70の生成効率を、より安定化させることができる。 で は In the following example, the generation efficiency of ozone 70 can be further stabilized.
 具体的には、平面視(積層体51の積層方向に沿って視た状態)で、導電性膜側孔56cと陰極側孔55eとの形状(輪郭形状および大きさ)が異なるように構成されている。 Specifically, the configuration (contour shape and size) of the conductive film side hole 56c and the cathode side hole 55e is different in a plan view (a state viewed along the stacking direction of the stacked body 51). ing.
 導電性膜側孔56cを、幅方向Yに細長い長孔状とするとともに、陰極側孔55eを、平面視で、屈曲部55fが下流側に配置されるV字状に構成する。これにより、導電性膜側孔56cと陰極側孔55eとの平面視における輪郭形状を異ならせている(図13、図4参照)。 (4) The conductive film side hole 56c is formed into a long and narrow hole shape in the width direction Y, and the cathode side hole 55e is formed in a V shape in which a bent portion 55f is disposed on the downstream side in plan view. Thus, the outline shapes of the conductive film side hole 56c and the cathode side hole 55e in plan view are different (see FIGS. 13 and 4).
 このように、導電性膜側孔56cを幅方向Yに細長い長孔状とすることで、導電性膜側孔56cは、平面視で、通液方向Xと直交する方向(幅方向Y)に延びることになる(図13参照)。すなわち、導電性膜側孔56cの平面視における延在方向と、通液方向Xとのなす角とは90度である。 As described above, by forming the conductive film side hole 56c in a long and narrow shape in the width direction Y, the conductive film side hole 56c is arranged in a direction (width direction Y) orthogonal to the liquid flowing direction X in plan view. It will extend (see FIG. 13). That is, the angle between the extending direction of the conductive film side hole 56c in plan view and the liquid flowing direction X is 90 degrees.
 一方、陰極側孔55eは、上流側かつ幅方向Yの外側から、下流側かつ幅方向Yの中央に位置する屈曲部55fに向けて延びる2つの長孔を、屈曲部55fで連通させた形状をしている。すなわち、屈曲部55fから上流側の先端部55hに向けて延びる2つの長孔は、平面視で通液方向Xと交差する方向に伸びている(図14参照)。 On the other hand, the cathode side hole 55e has a shape in which two long holes extending from the upstream side and the outside in the width direction Y toward the bent side 55f located on the downstream side and the center in the width direction Y are communicated with the bent part 55f. You are. That is, the two long holes extending from the bent portion 55f toward the upstream end portion 55h extend in a direction intersecting the liquid flowing direction X in a plan view (see FIG. 14).
 屈曲部55fよりも上流側における、幅方向の外側に先端部55hが位置するように、陰極側孔55eが形成されている。そのため、陰極側孔55eを構成する2つの長孔は、それぞれ、通液方向Xと交差するとともに、幅方向Y(通液方向Xと直交する方向)と交差する方向に延在している。すなわち、陰極側孔55eを構成する2つの長孔の延在方向は、それぞれ、通液方向Xとなす鋭角の角度の絶対値が、0度よりも大きく90度よりも小さくなっている。 陰極 The cathode side hole 55e is formed such that the tip end 55h is located outside the width direction on the upstream side of the bent portion 55f. Therefore, each of the two long holes constituting the cathode side hole 55e intersects the liquid passage direction X and extends in a direction intersecting the width direction Y (a direction orthogonal to the liquid passage direction X). That is, in the extending directions of the two long holes constituting the cathode side hole 55e, the absolute value of the acute angle formed by the liquid flowing direction X is larger than 0 degree and smaller than 90 degrees.
 したがって、陰極側孔55eを、例えば、一方の長孔の延在方向が、通液方向Xに対して30度傾斜させた方向であり、他方の長孔の延在方向が、通液方向Xに対して-30度傾斜させた方向であるV字状の溝とすることができる。 Therefore, for example, the extending direction of one long hole of the cathode-side hole 55e is a direction inclined by 30 degrees with respect to the liquid flowing direction X, and the extending direction of the other long hole is the liquid flowing direction X. A V-shaped groove that is inclined -30 degrees with respect to.
 なお、一方の長孔の延在方向と通液方向Xとがなす鋭角の絶対値と、他方の長孔の延在方向と通液方向Xとがなす鋭角の絶対値とを同じ値にする必要はない。すなわち、陰極側孔55eの平面視における形状を、屈曲部55fを通り、通液方向Xに延在する直線に対して線対称とする必要はない。 The absolute value of the acute angle between the extending direction of one of the long holes and the liquid passing direction X is equal to the absolute value of the acute angle between the extending direction of the other long hole and the liquid passing direction X. No need. That is, the shape of the cathode side hole 55e in a plan view does not need to be line-symmetric with respect to a straight line passing through the bent portion 55f and extending in the liquid flowing direction X.
 本実施の形態では、陰極55を導電性膜56上に積層した状態で、平面視において、陰極側孔55eを構成する2つの長孔の延在方向が、それぞれ、導電性膜側孔56cの延在方向とは非平行な方向になっている。 In the present embodiment, in a state where the cathode 55 is stacked on the conductive film 56, the extending directions of the two long holes constituting the cathode side hole 55e are respectively equal to those of the conductive film side hole 56c in plan view. The direction is not parallel to the extending direction.
 そして、陰極55を導電性膜56上に積層した状態で、導電性膜側孔56cと陰極側孔55eとが一部で連通するように構成されている。すなわち、互いに異なる方向に延在する複数の長孔の一部が連通するように構成されている。 {Circle around (5)} In a state where the cathode 55 is stacked on the conductive film 56, the conductive film side hole 56c and the cathode side hole 55e are configured so as to partially communicate with each other. That is, it is configured such that a part of a plurality of long holes extending in different directions communicate with each other.
 このような構成とすれば、導電性膜56と陰極55とが、平面視において、導電性膜側孔56cの外周部(平面視における輪郭線)66dと陰極側孔55eの外周部(平面視における輪郭線)55gとが交差する交差部59を有するように積層される(図14参照)。 With such a configuration, the conductive film 56 and the cathode 55 are arranged such that the outer peripheral portion (contour line in plan view) 66d of the conductive film side hole 56c and the outer peripheral portion of the cathode side hole 55e (plan view) in plan view. Are stacked so as to have an intersecting portion 59 intersecting with an outline 55g (see FIG. 14).
 また、導電性膜56には、導電性膜側孔56cが、通液方向Xに沿って一列に並ぶように複数形成されている。陰極55には、陰極側孔55eが、通液方向Xに沿って一列に並ぶように複数形成されている。 In addition, a plurality of conductive film side holes 56c are formed in the conductive film 56 so as to be arranged in a line along the liquid flowing direction X. In the cathode 55, a plurality of cathode side holes 55e are formed so as to be arranged in a line along the liquid flowing direction X.
 通液方向Xで隣りあう2つの陰極側孔55eは、上流側に配置された陰極側孔55eの屈曲部55fが、下流側に配置された陰極側孔55eの先端部55hよりも下流側に位置するように配置されている。陰極55を導電性膜56上に積層した状態で、複数の導電性膜側孔56cが、1つの陰極側孔55eと交差するように配置されている。 Two cathode-side holes 55e that are adjacent to each other in the liquid passing direction X are such that the bent portion 55f of the cathode-side hole 55e arranged on the upstream side is located on the downstream side of the tip end 55h of the cathode-side hole 55e arranged on the downstream side. It is arranged to be located. In a state where the cathode 55 is stacked on the conductive film 56, the plurality of conductive film side holes 56c are arranged so as to intersect with one cathode side hole 55e.
 したがって、陰極55を導電性膜56上に積層した状態における平面視で、1つの陰極側孔55eに、導電性膜側孔56cとの連通領域R1が複数形成されるとともに、導電性膜56が露出する露出領域R2が複数形成される。すなわち、1つの陰極側孔55eに複数の交差部59が形成される。 Accordingly, in a plan view in a state where the cathode 55 is stacked on the conductive film 56, a plurality of communication regions R1 with the conductive film side hole 56c are formed in one cathode side hole 55e, and the conductive film 56 A plurality of exposed regions R2 to be exposed are formed. That is, a plurality of intersections 59 are formed in one cathode side hole 55e.
 このとき、複数の導電性膜側孔56cの形状を同一とするとともに、複数の陰極側孔55eの形状を同一とし、導電性膜側孔56cの通液方向Xのピッチと陰極側孔55eの通液方向Xのピッチとが同一となるようにすることが好ましい。 At this time, the shape of the plurality of conductive film side holes 56c is the same, the shape of the plurality of cathode side holes 55e is the same, and the pitch of the conductive film side holes 56c in the liquid passing direction X and the cathode hole 55e are It is preferable that the pitch in the liquid passing direction X is the same.
 こうすれば、連通領域R1および露出領域R2が、通液方向Xに沿って規則的に出現する。 す In this way, the communication region R1 and the exposed region R2 appear regularly along the liquid flowing direction X.
 また、この例では、陰極55のほうが、導電性膜56よりも幅方向Yの幅が大きくなっている。そのため、陰極55と導電性膜56との接触面積(電解面積)は、導電性膜56の上面(導電性膜56の上部における導電性膜側孔56cが形成されていない部位)の面積から、露出領域R2の面積の合計を引いた値で近似することができる。 In addition, in this example, the width of the cathode 55 in the width direction Y is larger than that of the conductive film 56. Therefore, the contact area (electrolysis area) between the cathode 55 and the conductive film 56 is determined from the area of the upper surface of the conductive film 56 (the portion above the conductive film 56 where the conductive film side hole 56c is not formed). It can be approximated by a value obtained by subtracting the total area of the exposed region R2.
 陰極55および導電性膜56を、上記のような構成とすれば、積層体51を形成する際に、導電性膜56が陰極55に対して相対的に位置ずれした場合であっても、陰極55と導電性膜56との接触面積(電解面積)の変化量を小さくすることができる。すなわち、同じ量だけ位置ずれした場合、本実施の形態で示す構成のほうが、上述した従来の技術で示した構成よりも、電解面積の変化量を小さくすることができる。 If the cathode 55 and the conductive film 56 are configured as described above, even when the conductive film 56 is relatively displaced with respect to the cathode 55 when forming the laminate 51, The amount of change in the contact area (electrolysis area) between the conductive film 55 and the conductive film 56 can be reduced. That is, when the positions are displaced by the same amount, the configuration shown in the present embodiment can make the amount of change in the electrolytic area smaller than the configuration shown in the above-described conventional technique.
 例えば、図15に示すように、積層体51を形成する際に、導電性膜56が陰極55に対して通液方向Xに相対的に位置ずれした場合、1つの露出領域R2の面積(および、1つの連通領域R1の面積)は、陰極側孔55eの屈曲部55fの近傍では若干変化する。しかしながら、1つの露出領域R2の面積は、その他の部位ではほとんど変化しない。そのため、1つの陰極側孔55eにおける露出領域R2の合計面積の変化量は、屈曲部55fの近傍における変化量とほぼ同量となる。 For example, as shown in FIG. 15, when the conductive film 56 is displaced relative to the cathode 55 in the liquid flowing direction X when the stacked body 51 is formed, the area of one exposed region R2 (and (The area of one communication region R1) slightly changes near the bent portion 55f of the cathode side hole 55e. However, the area of one exposed region R2 hardly changes in other portions. Therefore, the amount of change in the total area of the exposed region R2 in one cathode side hole 55e is substantially the same as the amount of change near the bent portion 55f.
 また、この例では、導電性膜56が陰極55に対して通液方向Xに相対的にずれたとしても、ある程度の位置ずれ量であれば、導電性膜56の外周部(平面視における輪郭線)56aが陰極55と接触する。したがって、導電性膜56の外周部(平面視における輪郭線)56aが陰極55からはみ出すことによって、導電性膜56と陰極55との接触面積が変化してしまうことが抑制される。 Further, in this example, even if the conductive film 56 is relatively displaced in the liquid flowing direction X with respect to the cathode 55, the outer peripheral portion of the conductive film 56 (the outline in a plan view) Line 56a contacts the cathode 55. Therefore, a change in the contact area between the conductive film 56 and the cathode 55 due to the outer peripheral portion (contour line in plan view) 56a of the conductive film 56 protruding from the cathode 55 is suppressed.
 このような構成とした場合、通液方向Xへの位置ずれ後における、導電性膜56の陰極55との接触面積は、導電性膜56を正規の位置に積層させた場合における導電性膜56の陰極55との接触面積から若干変化するだけである。 In such a configuration, the contact area of the conductive film 56 with the cathode 55 after the displacement in the liquid flowing direction X is the same as that of the conductive film 56 when the conductive film 56 is laminated at a regular position. Only slightly changes from the contact area with the cathode 55.
 また、図16に示すように、積層体51を形成する際に、導電性膜56が陰極55に対して幅方向Yに相対的に位置ずれした場合、1つの露出領域R2の面積(および1つの連通領域R1の面積)は、基本的にはほとんど変化しない。ただし、逃がし部としての導電性膜側凹部56bが形成された部位では、導電性膜側孔56cの幅方向Yの長さが若干短くなっており、この部位では、1つの露出領域R2の面積が若干変化する。 As shown in FIG. 16, when the conductive film 56 is relatively displaced in the width direction Y with respect to the cathode 55 when forming the stacked body 51, the area of one exposed region R2 (and 1 Basically, the area of one communication region R1 hardly changes. However, the length of the conductive film side hole 56c in the width direction Y is slightly shorter at the portion where the conductive film side concave portion 56b as the escape portion is formed, and in this portion, the area of one exposed region R2 is formed. Slightly changes.
 このように、幅方向Yに相対的に位置ずれした場合、1つの陰極側孔55eにおける露出領域R2の合計面積の変化量は、逃がし部としての導電性膜側凹部56bが形成された部位における変化量とほぼ同量となる。 As described above, when the positions are relatively displaced in the width direction Y, the amount of change in the total area of the exposed region R2 in one cathode side hole 55e is the amount of change in the portion where the conductive film side concave portion 56b as the escape portion is formed. It is almost the same as the amount of change.
 図16に示すように、導電性膜56が陰極55に対して幅方向Yに相対的にずれたとしても、ある程度の位置ずれ量であれば、導電性膜56の外周部(平面視における輪郭線)56aが陰極55と接触する。したがって、このような構成とした場合、幅方向Yへの位置ずれ後における、導電性膜56と陰極55との接触面積は、導電性膜56を正規の位置に積層させた場合における、導電性膜56と陰極55との接触面積から若干変化するだけである。 As shown in FIG. 16, even if the conductive film 56 is relatively displaced in the width direction Y with respect to the cathode 55, the outer peripheral portion of the conductive film 56 (the outline in a plan view) Line 56a contacts the cathode 55. Accordingly, in the case of such a configuration, the contact area between the conductive film 56 and the cathode 55 after the displacement in the width direction Y is smaller than the conductive area when the conductive film 56 is laminated at a regular position. It only slightly changes from the contact area between the membrane 56 and the cathode 55.
 このような構成とした場合、導電性膜56が、陰極55に対して水平方向(通液方向Xおよび幅方向Y)に相対的にずれたとしても、導電性膜56と陰極55との接触面積が若干変化するだけである。 In such a configuration, even if the conductive film 56 is relatively displaced in the horizontal direction (the liquid passing direction X and the width direction Y) with respect to the cathode 55, the contact between the conductive film 56 and the cathode 55 is prevented. Only the area changes slightly.
 これに対して、上述した従来の技術で示したように、同一形状の孔を重ね合わせることで溝部を形成した場合、導電性膜56が陰極55に対して位置ずれすると、正規の状態では形成されない露出領域R2が、それぞれの溝部に形成されてしまう。 On the other hand, as shown in the above-described conventional technique, when a groove is formed by overlapping holes of the same shape, if the conductive film 56 is displaced with respect to the cathode 55, the conductive film 56 is formed in a normal state. Unexposed regions R2 are formed in the respective grooves.
 したがって、各溝部に形成された露出領域R2の合計面積が、導電性膜56と陰極55との接触面積の変化量となる。そして、各溝部に新たに形成される露出領域R2は、導電性膜56を陰極55に対して同じ量だけ位置ずれさせた場合、本実施の形態で示す構成における導電性膜56と陰極55との接触面積の変化量よりも大きな値となる。 Therefore, the total area of the exposed regions R2 formed in the respective groove portions is the amount of change in the contact area between the conductive film 56 and the cathode 55. Then, when the conductive film 56 is displaced by the same amount with respect to the cathode 55 by the same amount, the exposed region R2 newly formed in each groove portion is different from the conductive film 56 and the cathode 55 in the configuration shown in the present embodiment. Is larger than the change amount of the contact area.
 例えば、導電性膜56を、陰極55に対して、同じ量だけ通液方向Xに位置ずれさせた場合、本実施の形態で示す構成では、屈曲部55fの近傍で露出領域R2が変化するだけである。しかしながら、従来の技術で示した構成では、溝部52の幅方向Yの、ほぼ全体に、通液方向Xへの位置ずれ量だけ突出した露出領域R2が形成されてしまう。このように、導電性膜56を陰極55に対して同じ量だけ位置ずれさせた場合、本実施の形態で示す構成のほうが、従来の技術で示した構成よりも、導電性膜56と陰極55との接触面積の変化量が小さくなる。 For example, when the conductive film 56 is displaced in the liquid flowing direction X by the same amount with respect to the cathode 55, in the configuration shown in this embodiment, only the exposed region R2 changes near the bent portion 55f. It is. However, in the configuration shown in the related art, the exposed region R2 protruding by the amount of displacement in the liquid flowing direction X is formed almost entirely in the width direction Y of the groove 52. Thus, when the conductive film 56 is displaced by the same amount with respect to the cathode 55, the configuration shown in the present embodiment is more conductive and the cathode 55 than the configuration shown in the prior art. And the amount of change in the contact area with the contact is reduced.
 さらに、本実施の形態では、導電性膜側孔56cの幅方向Yの両端に、平面視で円弧状の湾曲部56eが形成されるようにしている。こうすることで、導電性膜側孔56cの外周部(平面視における輪郭線)66dにエッジが形成されないようにしている。 Further, in the present embodiment, arc-shaped curved portions 56e are formed at both ends in the width direction Y of the conductive film side holes 56c in plan view. This prevents an edge from being formed on the outer peripheral portion (contour line in plan view) 66d of the conductive film side hole 56c.
 また、陰極側孔55eの屈曲部55fおよび先端部55hにも、平面視で円弧状の湾曲部が形成されるようにしている。こうすることで、陰極側孔55eの外周部(平面視における輪郭線)55gにもエッジが形成されないようにしている。 Also, the curved portion 55f and the distal end portion 55h of the cathode side hole 55e are formed with an arcuate curved portion in plan view. This prevents an edge from being formed on the outer peripheral portion (contour line in plan view) 55g of the cathode side hole 55e.
 このように、導電性膜側孔56cの外周部(平面視における輪郭線)66d、および、陰極側孔55eの外周部(平面視における輪郭線)55gを滑らかな形状とすれば、電解処理を行う際に、局所的に電界集中が生じてしまうことを緩和することができる。その結果、界面57における溝部52に露出する部位の全体で、より均等にオゾン70(図13参照)を生成することができ、オゾン70の生成効率を、より安定化させることができる。 As described above, if the outer peripheral portion (contour line in plan view) 66d of the conductive film side hole 56c and the outer peripheral portion (contour line in plan view) 55g of the cathode side hole 55e are formed in a smooth shape, the electrolytic treatment can be performed. At the time of performing, it is possible to reduce the occurrence of local electric field concentration. As a result, ozone 70 (see FIG. 13) can be more uniformly generated in the entire portion of the interface 57 exposed to the groove 52, and the generation efficiency of the ozone 70 can be further stabilized.
 本実施の形態において、溝部52は、導電性膜56に形成された導電性膜側孔(導電性膜側溝部)56cと、陰極(電極)55に形成されて導電性膜側孔56cに連通する陰極側孔(電極側溝部)55eと、を備えている。 In the present embodiment, the groove 52 communicates with the conductive film side hole (conductive film side groove) 56c formed in the conductive film 56 and the cathode (electrode) 55 formed in the conductive film side hole 56c. And a cathode-side hole (electrode-side groove) 55e.
 そして、積層体51の積層方向Zに沿って視た状態で、導電性膜側孔56cの形状と陰極側孔55eの形状とが異なる。 {Circle around (5)} The shape of the conductive film side hole 56c and the shape of the cathode side hole 55e are different when viewed along the stacking direction Z of the stacked body 51.
 こうすれば、導電性膜56が陰極(電極)55に対して、積層方向Zと交差する方向に相対的に位置ずれしたとしても、導電性膜56と陰極(電極)55との接触面積の変化を抑制することができる。すなわち、導電性膜56と陰極(電極)55との電解面積(通電面積)を、より安定的に確保することができる。 In this way, even if the conductive film 56 is relatively displaced with respect to the cathode (electrode) 55 in a direction intersecting the laminating direction Z, the contact area between the conductive film 56 and the cathode (electrode) 55 is reduced. Changes can be suppressed. That is, it is possible to more stably secure an electrolysis area (current-carrying area) between the conductive film 56 and the cathode (electrode) 55.
 このように、導電性膜56と陰極(電極)55との電解面積(通電面積)を安定的に確保できるようにすれば、電解部50を流れる電流の電流密度を、より均等にすることができる。すなわち、個々の製品ごとに、電解部50を流れる電流の電流密度が変化することを抑制できる。その結果、オゾン(電解生成物)70の生成効率を、より安定化させることができる。 As described above, by stably securing the electrolysis area (energization area) between the conductive film 56 and the cathode (electrode) 55, the current density of the current flowing through the electrolysis unit 50 can be made more uniform. it can. That is, it is possible to suppress a change in the current density of the current flowing through the electrolytic unit 50 for each product. As a result, the generation efficiency of ozone (electrolysis product) 70 can be further stabilized.
 このように、本実施の形態によれば、導電性膜56と陰極(電極)55とが位置ずれした場合であっても、オゾン(電解生成物)70の生成効率を、より安定化させることができる。すなわち、オゾン(電解生成物)70の生成効率を、ほぼ一定にしたオゾン水生成装置1を得ることができる。 As described above, according to the present embodiment, even when the position of the conductive film 56 and the position of the cathode (electrode) 55 are shifted, the generation efficiency of ozone (electrolysis product) 70 is further stabilized. Can be. That is, it is possible to obtain the ozone water generation device 1 in which the generation efficiency of the ozone (electrolysis product) 70 is made substantially constant.
 また、本実施の形態では、導電性膜56と陰極55とは、積層体51の積層方向Zに沿って視た状態で、導電性膜側孔56cの外周部66dと、陰極側孔55eの外周部55gとが交差する交差部59を有するように積層されている。 Further, in the present embodiment, the conductive film 56 and the cathode 55 are formed such that the outer peripheral portion 66d of the conductive film side hole 56c and the cathode side hole 55e are in a state of being viewed along the stacking direction Z of the stacked body 51. It is laminated so as to have an intersection portion 59 intersecting with the outer peripheral portion 55g.
 こうすれば、導電性膜56と陰極(電極)55とが位置ずれした場合に、導電性膜56と陰極(電極)55との接触面積の変化を、より確実に抑制することができる。 In this way, when the position of the conductive film 56 and the position of the cathode (electrode) 55 are displaced, the change in the contact area between the conductive film 56 and the cathode (electrode) 55 can be more reliably suppressed.
 また、本実施の形態では、導電性膜側孔56cが、通液方向(液体の通液方向)Xと交差する方向に延びている。 In the present embodiment, the conductive film side hole 56c extends in a direction intersecting with the liquid flowing direction (liquid flowing direction) X.
 こうすれば、導電性膜56と陽極54との界面57の近傍で発生したオゾン70を、速やかに界面57から剥がすことができる。すなわち、界面57の近傍で生成されたオゾン70の気泡が大きくなってしまうことを抑制できる。 In this way, the ozone 70 generated near the interface 57 between the conductive film 56 and the anode 54 can be quickly peeled off from the interface 57. That is, it is possible to suppress an increase in the size of bubbles of the ozone 70 generated in the vicinity of the interface 57.
 なお、オゾン70の気泡が大きく成長すると、界面57から剥がれたとしても、水(液体)に溶解されずに、水中(液体中)を漂ってしまうおそれがあり、水中(液体中)のオゾン(電解生成物)70の溶解濃度が低下してしまうおそれがある。 If the bubbles of the ozone 70 grow large, even if the bubbles of the ozone 70 are separated from the interface 57, they may float in the water (in the liquid) without being dissolved in the water (liquid). The dissolved concentration of the (electrolysis product) 70 may be reduced.
 しかしながら、本実施の形態のように、通液方向Xと交差する方向に延びるように導電性膜側孔56cを形成すれば、オゾン70の気泡が大きく成長する前に、速やかに界面57から剥がすことができる。その結果、オゾン(電解生成物)70の水(液体)への溶解を、より向上させることができる。 However, if the conductive film side hole 56c is formed so as to extend in a direction intersecting with the liquid passing direction X as in the present embodiment, the ozone 70 is quickly peeled off from the interface 57 before the bubbles grow large. be able to. As a result, the dissolution of ozone (electrolysis product) 70 in water (liquid) can be further improved.
 また、本実施の形態では、導電性膜側孔56cが通液方向Xと直交する方向に延びている。 In the present embodiment, the conductive film side hole 56c extends in a direction orthogonal to the liquid flowing direction X.
 こうすれば、導電性膜56と陽極54との界面57の近傍で発生したオゾン70を、より速やかに界面57から剥がすことができる。 In this way, the ozone 70 generated near the interface 57 between the conductive film 56 and the anode 54 can be more quickly peeled off from the interface 57.
 また、本実施の形態では、互いに隣り合う電極が陰極55と陽極54となっている。そして、電極側溝部が、陰極55に形成された陰極側孔(陰極側溝部)55eを有しており、この陰極側孔55eが、通液方向Xと交差する方向に延びている。 In this embodiment, the electrodes adjacent to each other are the cathode 55 and the anode 54. The electrode-side groove has a cathode-side hole (cathode-side groove) 55e formed in the cathode 55, and the cathode-side hole 55e extends in a direction intersecting with the liquid flowing direction X.
 こうすれば、オゾン(電解生成物)70の溝部52内での滞留を抑制することができ、オゾン70を、より効率よく流路11に流すことができる。 With this configuration, the ozone (electrolysis product) 70 can be prevented from staying in the groove 52, and the ozone 70 can be made to flow through the flow channel 11 more efficiently.
 また、本実施の形態では、陰極側孔55eは、積層体51の積層方向Zに沿って視た状態で、屈曲部55fが下流側に配置されるV字状をしている。 In addition, in the present embodiment, the cathode side hole 55e has a V-shape in which the bent portion 55f is arranged on the downstream side when viewed along the stacking direction Z of the stacked body 51.
 こうすれば、生成されたオゾン(電解生成物)70が、陰極側孔55eの傾斜に沿って、流速が比較的大きくなる中央部に移動することとなり、オゾン(電解生成物)70の滞留を、さらに抑制することができる。その結果、オゾン濃度(電解生成物濃度)を、より高めることができるようになる。 In this way, the generated ozone (electrolysis product) 70 moves to the central portion where the flow velocity is relatively large along the slope of the cathode side hole 55e, and the ozone (electrolysis product) 70 stays. Can be further suppressed. As a result, the ozone concentration (electrolysis product concentration) can be further increased.
 また、複数の導電性膜側孔56cの形状を同一とするとともに、複数の陰極側孔55eの形状を同一とし、導電性膜側孔56cの通液方向Xのピッチと陰極側孔55eの通液方向Xのピッチとが同一となるようにすることが好ましい。 In addition, the shape of the plurality of conductive film side holes 56c is the same, the shape of the plurality of cathode side holes 55e is the same, and the pitch of the conductive film side holes 56c in the liquid passing direction X and the passage of the cathode side holes 55e are changed. It is preferable that the pitch in the liquid direction X is the same.
 こうすれば、連通領域R1および露出領域R2が、通液方向Xに沿って規則的に出現するため、より確実に、位置ずれによる影響を低減させることができる。 In this case, the communication region R1 and the exposed region R2 appear regularly along the liquid flowing direction X, so that the influence of the displacement can be reduced more reliably.
 また、導電性膜側孔56cの幅方向Yの両端に、平面視で円弧状の湾曲部56eが形成されるようにするのが好ましい。 {Circle around (5)} It is preferable that arc-shaped curved portions 56e are formed at both ends in the width direction Y of the conductive film side holes 56c in plan view.
 また、陰極側孔55eの屈曲部55fおよび先端に、平面視で円弧状の湾曲部が形成されるようにするのが好ましい。 Further, it is preferable to form an arc-shaped curved portion in a plan view at the bent portion 55f and the tip of the cathode side hole 55e.
 こうすれば、電解処理を行う際に局所的に電界集中が生じてしまうことを緩和することができ、界面57における、溝部52に露出する部位の全体で、より均等にオゾン70を発生させることができる。その結果、オゾン70の生成効率を、より安定化させることができる。 By doing so, it is possible to alleviate the occurrence of local electric field concentration when performing the electrolytic treatment, and it is possible to generate ozone 70 more evenly over the entire portion of the interface 57 that is exposed to the groove 52. Can be. As a result, the generation efficiency of ozone 70 can be further stabilized.
 また、陰極側孔55eを通液方向Xに沿って延在する長孔状に形成し、積層時に、陰極側孔55eと導電性膜側孔56cとが平面視で十字状に交差するようにしてもよい。 Further, the cathode side hole 55e is formed in a long hole shape extending along the liquid direction X so that the cathode side hole 55e and the conductive film side hole 56c intersect in a cross shape in plan view at the time of lamination. You may.
 また、導電性膜側孔56cの延在方向が、通液方向Xおよび幅方向Y(通液方向Xと直交する方向)と交差する方向となるようにしてもよい。このとき、導電性膜側孔56cの延在方向と陰極側孔55eの延在方向とが非平行となるようにし、積層時に導電性膜側孔56cと陰極側孔55eとを交差させるのが好ましい。 The extending direction of the conductive film side hole 56c may be a direction that intersects the liquid flowing direction X and the width direction Y (a direction orthogonal to the liquid flowing direction X). At this time, the extending direction of the conductive film side hole 56c and the extending direction of the cathode side hole 55e are made non-parallel, and the conductive film side hole 56c and the cathode side hole 55e should intersect during lamination. preferable.
 また、導電性膜側孔56cと陰極側孔55eとを相似形状とし、積層時に、大きな孔の中に小さな孔の全体が存在するようにしてもよい。 The conductive film side hole 56c and the cathode side hole 55e may have a similar shape so that the entire small hole is present in the large hole during lamination.
 また、導電性膜側孔56cをV字状とし、陰極側孔55eを長孔状としてもよい。 The conductive film side hole 56c may have a V-shape, and the cathode side hole 55e may have a long hole shape.
 また、電極ケース、電極ケース蓋、および、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 電極 Also, the specifications (shape, size, layout, etc.) of the electrode case, the electrode case cover, and other details can be appropriately changed.
 以上述べたように、本開示は、以下の態様を取りうる。 As described above, the present disclosure can take the following aspects.
 電解液体生成装置であって、互いに隣り合う複数の電極間に導電性膜が介在するように積層された積層体を有し、液体を電解処理する電解部と、電解部が内部に配置されるハウジングと、を備えている。 An electrolytic liquid generation device, comprising: a laminated body laminated such that a conductive film is interposed between a plurality of electrodes adjacent to each other, wherein an electrolytic section for electrolytically treating a liquid and an electrolytic section are disposed inside. And a housing.
 ハウジングには、電解部に供給される液体が流入する流入口と、電解部で生成される電解液体が流出する流出口とを有し、通液方向が積層体の積層方向と交差する方向となる流路が形成されている。 The housing has an inflow port through which the liquid supplied to the electrolysis unit flows, and an outflow port through which the electrolysis liquid generated in the electrolysis unit flows out, and a direction in which the flow direction intersects the stacking direction of the laminate. Are formed.
 そして、電解部には、流路に開口するとともに、導電性膜と複数の電極との界面の少なくとも一部が露出する溝部が形成されている。 {Circle around (5)} The electrolysis part is formed with a groove that opens into the flow path and exposes at least a part of the interface between the conductive film and the plurality of electrodes.
 溝部は、導電性膜に形成された導電性膜側溝部と、複数の電極に形成されて導電性膜側溝部に連通する電極側溝部と、を備えている。 The groove has a conductive film-side groove formed in the conductive film, and an electrode-side groove formed in the plurality of electrodes and communicating with the conductive film-side groove.
 積層体の積層方向に沿って視た状態で、導電性膜側溝部の形状と電極側溝部の形状とが異なる。 で The shape of the conductive film-side groove and the shape of the electrode-side groove are different when viewed along the stacking direction of the stacked body.
 また、導電性膜と複数の電極とは、積層体の積層方向に沿って視た状態で、導電性膜側溝部の外周部と電極側溝部の外周部とが交差する交差部を有するように積層されていてもよい。 Further, the conductive film and the plurality of electrodes may have an intersection portion where the outer peripheral portion of the conductive film side groove portion and the outer peripheral portion of the electrode side groove portion intersect in a state viewed along the lamination direction of the laminate. They may be stacked.
 また、導電性膜側溝部が、通液方向と交差する方向に延びていてもよい。 溝 The conductive film side groove may extend in a direction intersecting the liquid flowing direction.
 また、導電性膜側溝部が、通液方向と直交する方向に延びていてもよい。 溝 The conductive film side groove may extend in a direction perpendicular to the liquid flowing direction.
 また、互いに隣り合う複数の電極が陰極と陽極であり、電極側溝部は、陰極に形成された陰極側溝部を有しており、陰極側溝部が通液方向と交差する方向に延びていてもよい。 Further, a plurality of electrodes adjacent to each other are a cathode and an anode, the electrode-side groove has a cathode-side groove formed in the cathode, and the cathode-side groove extends in a direction intersecting the liquid flowing direction. Good.
 陰極側溝部は、積層体の積層方向に沿って視た状態で、屈曲部が下流側に配置されるV字状をしていてもよい。 The cathode-side groove may have a V-shape in which the bent portion is arranged on the downstream side when viewed along the stacking direction of the stack.
 以上、本開示の好適な実施の形態について説明したが、本開示は上記実施の形態には限定されず、種々の変形が可能である。 Although the preferred embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment, and various modifications are possible.
 例えば、上記実施の形態では、オゾンを発生させ、当該オゾンを水に溶解させることでオゾン水を生成するオゾン水生成装置を例示したが、生成させる物質はオゾンに限るものではない。例えば、次亜塩素酸を生成して殺菌および水処理等に利用するようにしてもよい。また、酸素水、水素水、塩素含有水、および過酸化水素水等を生成する装置とすることも可能である。 For example, in the above-described embodiment, an ozone water generation device that generates ozone by generating ozone and dissolving the ozone in water is illustrated, but the substance to be generated is not limited to ozone. For example, hypochlorous acid may be generated and used for sterilization, water treatment, and the like. It is also possible to provide an apparatus for generating oxygen water, hydrogen water, chlorine-containing water, hydrogen peroxide water, and the like.
 なお、これらの電解液体生成装置についても、他の機器および設備に組み込まれた状態で使用することが可能である。そして、電解液体生成装置を、他の機器および設備に組み込む際には、オゾン水生成装置1と同様に、流入口が下、流出口が上になるように立てた状態で配置するのが好ましいが、これに限るものではなく、適宜の配置が可能である。 Note that these electrolytic liquid generation devices can also be used in a state where they are incorporated in other equipment and facilities. When the electrolytic liquid generation device is incorporated into other equipment and facilities, it is preferable to arrange the electrolytic liquid generation device in a state in which the inflow port is lower and the outflow port is higher, like the ozone water generation device 1. However, the present invention is not limited to this, and an appropriate arrangement is possible.
 また、陽極54は、例えば導電性シリコン、導電性ダイヤモンド、チタン、白金、酸化鉛、および酸化タンタルなどから選択される材料で構成することも可能である。電解水を生成することのできる導電性と耐久性を持つ電極を構成できれば、どのような材料を用いてもよい。また、陽極54をダイヤモンド電極とした場合、その製造方法は、成膜による製造方法に限定されるものではない。また、金属以外の材料を用いて基板を構成することも可能である。 The anode 54 can be made of a material selected from, for example, conductive silicon, conductive diamond, titanium, platinum, lead oxide, and tantalum oxide. Any material may be used as long as an electrode having conductivity and durability capable of generating electrolyzed water can be formed. When the anode 54 is a diamond electrode, the manufacturing method is not limited to the manufacturing method by film formation. Further, the substrate can be formed using a material other than a metal.
 また、陰極55は、導電性と耐久性とを備えた電極であればよく、例えば白金やチタン、ステンレス、および導電性シリコンなどから選択される材料で構成することも可能である。 The cathode 55 only needs to be an electrode having conductivity and durability, and may be made of a material selected from, for example, platinum, titanium, stainless steel, and conductive silicon.
 また、陰極側孔55eを、通液方向Xに沿って延在する長孔状に形成し、積層時に、陰極側孔55eと導電性膜側孔56cとが平面視で十字状に交差するように構成してもよい。 Further, the cathode side hole 55e is formed in a long hole shape extending along the liquid passing direction X, and the cathode side hole 55e and the conductive film side hole 56c cross each other in a cross shape in plan view at the time of lamination. May be configured.
 また、導電性膜側孔56cの延在方向が、通液方向Xおよび幅方向Y(通液方向Xと直交する方向)と交差する方向となるようにしてもよい。このとき、導電性膜側孔56cの延在方向と陰極側孔55eの延在方向とが非平行となるようにし、積層時に導電性膜側孔56cと陰極側孔55eとを交差させるのが好ましい。 The extending direction of the conductive film side hole 56c may be a direction that intersects the liquid flowing direction X and the width direction Y (a direction orthogonal to the liquid flowing direction X). At this time, the extending direction of the conductive film side hole 56c and the extending direction of the cathode side hole 55e are made non-parallel, and the conductive film side hole 56c and the cathode side hole 55e should intersect during lamination. preferable.
 また、導電性膜側孔56cと陰極側孔55eとを相似形状とし、積層時に大きな孔の中に小さな孔の全体が存在するようにしてもよい。 The conductive film side hole 56c and the cathode side hole 55e may have similar shapes so that the entire small hole is present among the large holes at the time of lamination.
 また、導電性膜側孔56cをV字状、陰極側孔55eを長孔状としてもよい。 The conductive film side hole 56c may have a V-shape, and the cathode side hole 55e may have a long hole shape.
 また、電極ケースや電極ケース蓋、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 電極 Also, the specifications (shape, size, layout, etc.) of the electrode case, the electrode case lid, and other details can be appropriately changed.
 以上述べたように、本開示によれば、スケールによるハウジングおよび電解部の圧迫を抑制することが可能、という格別な効果を奏することができる。よって、本開示は、電解液体生成装置で生成された電解液体を利用する電気機器、および、電解液体生成装置を備える液体改質装置等に適用でき、有用である。 述 べ As described above, according to the present disclosure, it is possible to achieve a special effect that it is possible to suppress pressure on the housing and the electrolytic unit by the scale. Therefore, the present disclosure is applicable and useful to an electric device using the electrolytic liquid generated by the electrolytic liquid generation device, a liquid reforming device including the electrolytic liquid generation device, and the like.
 1  オゾン水生成装置(電解液体生成装置)
 10  ハウジング
 11  流路
 111  流入口
 112  流出口
 20  電極ケース
 21  底壁部
 21a  内面
 211  貫通孔
 22  周壁部
 22a  内面
 221  位置決め突起(ハウジング突部)
 23  凹部
 24  フランジ部
 241  嵌合突部
 31  Oリング
 32  ワッシャ
 33  座金
 34  六角ナット
 40  電極ケース蓋
 41  蓋部本体
 411  嵌合凹部
 412  溝
 42  突部
 421  突起部
 50  電解部
 50a  上面
 50b  下面
 51  積層体
 51a  外周部(側面)
 52  溝部
 53  給電体
 53a  バネ部
 53b  給電シャフト
 54  陽極(電極)
 54a  外周部(側面)
 54b  陽極側突出部
 55  陰極(電極)
 55a  バネ部
 55b  給電シャフト
 55c  外周部(側面)
 55d  陰極側凹部
 55e  陰極側孔
 55f  屈曲部
 55g  陰極側突出部
 55h  先端部
 56  導電性膜
 56a  外周部(側面)
 56b  導電性膜側凹部
 56c  導電性膜側孔
 56d  導電性膜側突出部
 56e  湾曲部
 57  界面(導電性膜と陽極との界面)
 58  界面(導電性膜と陰極との界面)
 59  交差部
 60  弾性体
 61  貫通穴
 66d  外周部
 70  オゾン
 S  空間部
 S1  陰極側空間部(第1空間部)
 S2  陽極側空間部(第2空間部)
 S3  下側空間部(第3空間部)
 S4  上側空間部(第4空間部)
 X  通液方向(液体の通液方向)
 Y  幅方向
 Z  積層方向
1 Ozone water generator (electrolytic liquid generator)
DESCRIPTION OF SYMBOLS 10 Housing 11 Flow path 111 Inflow 112 Outflow 20 Electrode case 21 Bottom wall 21a Inner surface 211 Through hole 22 Peripheral wall 22a Inner surface 221 Positioning protrusion (housing protrusion)
23 Concave part 24 Flange part 241 Fitting protrusion 31 O-ring 32 Washer 33 Washer 34 Hexagon nut 40 Electrode case lid 41 Lid body 411 Fitting concave part 412 Groove 42 Projection 421 Projection 50 Electrolytic part 50a Upper surface 50b Lower surface 51 Stack 51a Outer circumference (side)
52 Groove portion 53 Power supply body 53a Spring portion 53b Power supply shaft 54 Anode (electrode)
54a Outer circumference (side)
54b Anode-side protrusion 55 Cathode (electrode)
55a Spring portion 55b Power supply shaft 55c Outer peripheral portion (side surface)
55d Cathode-side recess 55e Cathode-side hole 55f Bend 55g Cathode-side protrusion 55h Tip 56 Conductive film 56a Outer periphery (side surface)
56b Conductive film side concave portion 56c Conductive film side hole 56d Conductive film side protrusion 56e Curved portion 57 Interface (interface between conductive film and anode)
58 Interface (interface between conductive film and cathode)
59 Intersection 60 Elastic body 61 Through hole 66d Outer periphery 70 Ozone S Space S1 Cathode side space (first space)
S2 anode side space (second space)
S3 Lower space part (third space part)
S4 Upper space part (fourth space part)
X Liquid flow direction (liquid flow direction)
Y width direction Z stacking direction

Claims (16)

  1.  陰極および陽極間に導電性膜が介在するように積層された積層体を有し、液体を電解処理する電解部と、
     前記電解部が内部に配置されるハウジングと、
     を備え、
     前記ハウジングには、前記電解部に供給される液体が流入する流入口と前記電解部で生成される電解液体が流出する流出口とを有し、通液方向が、前記積層体の積層方向と交差する方向となる流路が形成されており、
     前記電解部には、前記流路に開口するとともに、前記導電性膜と前記陰極との界面、および、前記導電性膜と前記陽極との界面のうち、少なくとも一部が露出する溝部が形成されており、
     前記陰極の外周部、および、前記陽極の外周部のうち少なくともいずれかと、前記ハウジングの内面との間に空間部が形成されている
    電解液体生成装置。
    An electrolytic section having a laminate laminated such that a conductive film is interposed between a cathode and an anode, and an electrolytic section for electrolytically treating a liquid,
    A housing in which the electrolysis unit is disposed,
    With
    The housing has an inlet through which the liquid supplied to the electrolytic unit flows in and an outlet through which the electrolytic liquid generated in the electrolytic unit flows out, and the flow direction is the stacking direction of the laminate. A flow path that is in an intersecting direction is formed,
    In the electrolytic portion, a groove is formed, which is open to the flow channel, and at least a part of an interface between the conductive film and the cathode and an interface between the conductive film and the anode is exposed. And
    An electrolytic liquid generation device, wherein a space is formed between at least one of an outer peripheral portion of the cathode and an outer peripheral portion of the anode and an inner surface of the housing.
  2.  前記空間部は、前記陰極の前記外周部と前記ハウジングの前記内面との間に形成される第1空間部を有する
    請求項1に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 1, wherein the space has a first space formed between the outer peripheral portion of the cathode and the inner surface of the housing.
  3.  前記空間部は、前記陽極の前記外周部と前記ハウジングの前記内面との間に形成される第2空間部を有する
    請求項1または請求項2に記載の電解液体生成装置。
    3. The electrolytic liquid generation device according to claim 1, wherein the space has a second space formed between the outer periphery of the anode and the inner surface of the housing. 4.
  4.  前記陰極の前記外周部が、前記陽極の前記外周部よりも、前記積層方向と交差する方向に突出している
    請求項1から請求項3までのいずれか1項に記載の電解液体生成装置。
    The electrolytic liquid generation device according to any one of claims 1 to 3, wherein the outer peripheral portion of the cathode projects more than the outer peripheral portion of the anode in a direction intersecting the stacking direction.
  5.  前記空間部は、前記陰極よりも前記積層方向の前記陽極側に形成される第3空間部を有する
    請求項4に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 4, wherein the space has a third space formed closer to the anode in the stacking direction than the cathode.
  6.  前記導電性膜の外周部が、前記陽極の前記外周部よりも前記積層方向と交差する方向に突出している
    請求項4または請求項5に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 4, wherein an outer peripheral portion of the conductive film protrudes from the outer peripheral portion of the anode in a direction intersecting with the laminating direction.
  7.  前記空間部は、前記積層体の少なくとも長手方向の周囲に形成されている
    請求項1から請求項6までのうちいずれか1項に記載の電解液体生成装置。
    The electrolytic liquid generation device according to any one of claims 1 to 6, wherein the space is formed at least around a periphery of the laminate in a longitudinal direction.
  8.  前記ハウジングの前記内面における、前記積層体の外周部と対向する部位に、前記積層体に向けて突出するハウジング突部が形成されている
    請求項1から請求項7までのうちいずれか1項に記載の電解液体生成装置。
    8. The housing according to claim 1, wherein a housing protrusion protruding toward the laminate is formed at a portion of the inner surface of the housing that faces an outer peripheral portion of the laminate. 9. An electrolytic liquid generation device according to claim 1.
  9.  前記陰極の前記外周部における、前記ハウジング突部と対応する部位に陰極側凹部が形成されている
    請求項8に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 8, wherein a cathode-side recess is formed in a portion of the outer peripheral portion of the cathode corresponding to the housing protrusion.
  10.  前記導電性膜における、前記ハウジング突部と対応する部位に導電性膜側凹部が形成されている
    請求項8または請求項9に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 8, wherein a conductive film-side concave portion is formed in a portion of the conductive film corresponding to the housing protrusion.
  11.  前記溝部は、前記導電性膜に形成された導電性膜側溝部と、前記陰極および前記陽極のうち、少なくともいずれかに形成されて、前記導電性膜側溝部に連通する電極側溝部と、を有しており、
     前記積層体の積層方向に沿って視た状態で、前記導電性膜側溝部の形状と前記電極側溝部の形状とが異なる
    請求項1から請求項10までのいずれか1項に記載の電解液体生成装置。
    The groove, a conductive film-side groove formed in the conductive film, an electrode-side groove formed in at least one of the cathode and the anode, and communicating with the conductive film-side groove, Have
    The electrolytic liquid according to any one of claims 1 to 10, wherein a shape of the conductive film-side groove portion and a shape of the electrode-side groove portion are different from each other when viewed along a stacking direction of the stack. Generator.
  12.  前記導電性膜と前記陰極および前記陽極のうち、少なくともいずれかとは、前記積層体の積層方向に沿って視た状態で、前記導電性膜側溝部の外周部と、前記電極側溝部の外周部とが交差する交差部を有するように積層されている
    請求項11に記載の電解液体生成装置。
    At least one of the conductive film, the cathode, and the anode is an outer peripheral portion of the conductive film-side groove portion and an outer peripheral portion of the electrode-side groove portion, as viewed along a laminating direction of the laminate. 12. The electrolytic liquid generation device according to claim 11, wherein the electrolytic liquid generation device is stacked so as to have an intersection portion that intersects.
  13.  前記導電性膜側溝部が、前記通液方向と交差する方向に延びている
    請求項11または請求項12に記載の電解液体生成装置。
    13. The electrolytic liquid generating device according to claim 11, wherein the conductive film side groove extends in a direction intersecting the liquid flowing direction.
  14.  前記導電性膜側溝部が前記通液方向と直交する方向に延びている
    請求項13に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 13, wherein the conductive film side groove extends in a direction orthogonal to the liquid flowing direction.
  15.  前記電極側溝部は、前記陰極に形成された陰極側溝部を有しており、前記陰極側溝部が前記通液方向と交差する方向に延びている
    請求項11から請求項14までのいずれか1項に記載の電解液体生成装置。
    The electrode-side groove has a cathode-side groove formed in the cathode, and the cathode-side groove extends in a direction intersecting the liquid flowing direction. Item 8. The electrolytic liquid generation device according to item 1.
  16.  前記陰極側溝部は、前記積層体の積層方向に沿って視た状態で、屈曲部が下流側に配置されるV字状をしている
    請求項15に記載の電解液体生成装置。
    The electrolytic liquid generation device according to claim 15, wherein the cathode-side groove has a V-shape in which a bent portion is disposed on a downstream side when viewed along a stacking direction of the stack.
PCT/JP2019/027433 2018-07-13 2019-07-11 Electrolyzed liquid generator WO2020013255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980041029.5A CN112334603B (en) 2018-07-13 2019-07-11 Electrolytic liquid generating device
EP19834422.8A EP3822230A4 (en) 2018-07-13 2019-07-11 Electrolyzed liquid generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-133659 2018-07-13
JP2018-133658 2018-07-13
JP2018133659A JP6937476B2 (en) 2018-07-13 2018-07-13 Electrolytic liquid generator
JP2018133658A JP6937475B2 (en) 2018-07-13 2018-07-13 Electrolytic liquid generator

Publications (1)

Publication Number Publication Date
WO2020013255A1 true WO2020013255A1 (en) 2020-01-16

Family

ID=69138197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027433 WO2020013255A1 (en) 2018-07-13 2019-07-11 Electrolyzed liquid generator

Country Status (5)

Country Link
US (2) US11299812B2 (en)
EP (1) EP3822230A4 (en)
KR (1) KR20200007709A (en)
CN (1) CN112334603B (en)
WO (1) WO2020013255A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113897622A (en) * 2021-10-27 2022-01-07 广州德百顺蓝钻科技有限公司 Electrolytic water assembly and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292370A (en) * 2001-01-23 2002-10-08 Silver Seiko Ltd Ozone water producer
JP2012012695A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Electrolytic electrode unit and electrolytic water generator using the same
WO2016047055A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
US20160362310A1 (en) * 2014-02-25 2016-12-15 Condias Gmbh Method for electrochemically producing electrolyzed water
WO2017054392A1 (en) * 2015-09-30 2017-04-06 钟建华 Electrolytic cell apparatus with separated anode and cathode chambers for electrolytic preparation of ozone water
JP2017176993A (en) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Electrolytic liquid generator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676672B2 (en) * 1989-11-14 1994-09-28 株式会社オーディーエス Electrolytic ozone water production equipment
JP3550383B2 (en) * 2001-08-10 2004-08-04 麻弓 川端 Ozone generator
JP4394942B2 (en) * 2003-12-22 2010-01-06 株式会社Ihiシバウラ Electrolytic ozonizer
JP5060793B2 (en) * 2007-02-02 2012-10-31 日科ミクロン株式会社 Ozone water generator
JP5441756B2 (en) * 2010-02-22 2014-03-12 ホシザキ電機株式会社 Separation membrane electrolyzer for electrolyzed water generator
JP6037282B2 (en) * 2013-03-13 2016-12-07 パナソニックIpマネジメント株式会社 Electrolyzed water generator
JP2014173183A (en) * 2013-03-13 2014-09-22 Panasonic Corp Ozone water generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292370A (en) * 2001-01-23 2002-10-08 Silver Seiko Ltd Ozone water producer
JP2012012695A (en) * 2010-07-05 2012-01-19 Panasonic Electric Works Co Ltd Electrolytic electrode unit and electrolytic water generator using the same
US20160362310A1 (en) * 2014-02-25 2016-12-15 Condias Gmbh Method for electrochemically producing electrolyzed water
WO2016047055A1 (en) * 2014-09-26 2016-03-31 パナソニックIpマネジメント株式会社 Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
WO2017054392A1 (en) * 2015-09-30 2017-04-06 钟建华 Electrolytic cell apparatus with separated anode and cathode chambers for electrolytic preparation of ozone water
JP2017176993A (en) 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Electrolytic liquid generator
WO2017168475A1 (en) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 Electrolytic liquid generation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822230A4

Also Published As

Publication number Publication date
KR20200007709A (en) 2020-01-22
EP3822230A1 (en) 2021-05-19
CN112334603A (en) 2021-02-05
EP3822230A4 (en) 2021-08-25
CN112334603B (en) 2024-04-05
US11299812B2 (en) 2022-04-12
US20200017984A1 (en) 2020-01-16
US11649553B2 (en) 2023-05-16
US20220195614A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
KR102089475B1 (en) Electrolytic liquid generating device
US10464830B2 (en) Electrolytic liquid generating device, liquid modifying device provided with electrolytic liquid generating device, and electric apparatus using electrolytic liquid generated by means of electrolytic liquid generating device
JP6937476B2 (en) Electrolytic liquid generator
JP6937475B2 (en) Electrolytic liquid generator
TWI546419B (en) Electrolytic electrode device and electrolytic water generator having the electrolytic electrode device
WO2020013255A1 (en) Electrolyzed liquid generator
WO2021161601A1 (en) Electrolyte solution production device
WO2021161598A1 (en) Electrolytic liquid generation device
JP6630984B2 (en) Electrolyzed water generator
JP7228847B2 (en) Electrolyte liquid generator
WO2021161600A1 (en) Electrolytic liquid production device
JP7253718B2 (en) Electrolyte liquid generator
JP6982839B2 (en) Electrolytic liquid generator
JP2023073296A (en) Electrolytic liquid generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019834422

Country of ref document: EP

Effective date: 20210215