WO2020013176A1 - Single frequency network cell configuration using haps - Google Patents

Single frequency network cell configuration using haps Download PDF

Info

Publication number
WO2020013176A1
WO2020013176A1 PCT/JP2019/027135 JP2019027135W WO2020013176A1 WO 2020013176 A1 WO2020013176 A1 WO 2020013176A1 JP 2019027135 W JP2019027135 W JP 2019027135W WO 2020013176 A1 WO2020013176 A1 WO 2020013176A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
sector
cell
relay
cells
Prior art date
Application number
PCT/JP2019/027135
Other languages
French (fr)
Japanese (ja)
Inventor
叔達 蔡
Original Assignee
Hapsモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hapsモバイル株式会社 filed Critical Hapsモバイル株式会社
Publication of WO2020013176A1 publication Critical patent/WO2020013176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies

Definitions

  • the present invention relates to a single frequency network (SFN) cell configuration using a communication relay device such as HAPS suitable for constructing a three-dimensional network for fifth generation communication.
  • a communication relay device such as HAPS suitable for constructing a three-dimensional network for fifth generation communication.
  • LTE-AdvancedPro which is an extension of LTE (Long Term Evolution) -Advanced (see Non-Patent Document 1) of 3GPP, which is a communication standard of a mobile communication system, is known (see Non-Patent Document 2).
  • LTE-AdvancedPro specifications for providing communication to a device for recent IoT (Internet of Things) have been formulated.
  • fifth-generation mobile devices that support simultaneous connection to a large number of terminal devices (also referred to as “UE (user device)”, “mobile station”, and “communication terminal”) such as devices for IoT and low delay. Communication is being studied (for example, see Non-Patent Document 3).
  • the communication relay device When a communication relay device for realizing a three-dimensional network in the fifth generation mobile communication or the like is movably arranged in the sky, the communication relay device may be located at a cell boundary of a plurality of cells formed toward the ground or the sea. There is a risk that communication quality will deteriorate or communication will be disconnected due to frequent handovers. In particular, when a plurality of cells formed by a communication relay device in the sky are formed along a vehicle moving route such as a high-speed rail or a highway on which a vehicle including a terminal device moves, the communication quality due to the frequent occurrence of the handover described above. Is likely to occur.
  • a communication relay device is a communication relay device that wirelessly communicates with a terminal device.
  • the communication relay device is mounted on a levitating body that can move over the sky by autonomous control or external control, and wirelessly communicates with the terminal device.
  • a relay communication station forming a wide area cell composed of a plurality of communicable sector cells, wherein the plurality of sector cells formed by the relay communication station are time-synchronized with each other by a same frequency in a downlink from the relay communication station. It includes a plurality of SFN (Single Frequency Network) sector cells that are continuously arranged and transmit the same data signal.
  • SFN Single Frequency Network
  • the plurality of sector cells of the SFN scheme may be formed along a movement route along which a vehicle including the terminal device moves. Further, in the communication relay device, the plurality of sector cells formed by the relay communication station transmit different data signals at different frequencies in the downlink from the relay communication station and the plurality of SFN sector cells. And a plurality of MFN (multi-frequency network) type sector cells.
  • MFN multi-frequency network
  • the communication relay device may further include a cell switching unit that selectively switches each of the plurality of sector cells formed by the relay communication station between the SFN sector cell and the MFN sector cell.
  • the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. Switching between a sector cell and the MFN scheme sector cell may be performed. Further, the cell switching means switches between the SFN-based sector cell and the MFN-based sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. May be performed.
  • a system is a system including a plurality of communication relay devices that wirelessly communicate with a terminal device, wherein the plurality of communication relay devices respectively fly above the sky by autonomous control or external control.
  • a relay communication station mounted on a movable floating body and forming a wide area cell including a plurality of sectors capable of wireless communication with the terminal device, wherein the plurality of sector cells formed by the relay communication stations of the plurality of communication relay devices are And a plurality of SFN (single frequency network) type sector cells which are continuously arranged and transmit signals of the same data in the downlink from the relay communication station in the same frequency and in time synchronization with each other.
  • SFN single frequency network
  • the plurality of SFN sector cells may be continuously formed by a plurality of communication relay devices adjacent to each other among the plurality of communication relay devices.
  • the plurality of sector cells of the SFN scheme may be formed along a movement route along which a vehicle including a terminal device moves.
  • the plurality of sector cells formed by the entire relay communication station of the plurality of communication relay devices are different from the plurality of SFN sector cells and the plurality of MFNs (multiple transmission units) transmitting different data at different frequencies. Frequency network) type sector cells.
  • the system may further include a cell switching unit that switches a plurality of sector cells formed by the relay communication stations of the plurality of communication relay apparatuses between the SFN sector cell and the MFN sector cell.
  • the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. Switching between a sector cell and the MFN scheme sector cell may be performed. Further, the cell switching means switches between the SFN-based sector cell and the MFN-based sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. May be performed.
  • the system further includes a remote control device for remotely controlling the plurality of communication relay devices, wherein the remote control device includes the SFN sector cell in at least one of the plurality of communication relay devices. And control information for controlling switching between the sector cell and the MFN scheme sector cell.
  • Still another remote control device of the present invention is a remote control device for remotely controlling the plurality of communication relay devices in the system, wherein at least one of the plurality of communication relay devices includes the SFN sector cell. And control information for controlling switching between the MFN-based sector cell and the MFN-based sector cell.
  • a method according to still another aspect of the present invention is directed to a communication relay device in which a relay communication station that performs wireless communication with a terminal device is mounted on a floating body that can move over the sky by autonomous control or external control.
  • Forming the plurality of sector cells so as to include a plurality of SFN (single frequency network) type sector cells.
  • a program according to yet another aspect of the present invention is a communication relay mounted on a floating body that can move over the sky by autonomous control or external control by a relay communication station that performs wireless communication with a terminal device.
  • a program code for forming the plurality of sector cells so as to include a plurality of continuously arranged SFN (single frequency network) type sector cells for transmitting the same data signal.
  • the present invention it is possible to suppress the frequent occurrence of handover at the cell boundary of a plurality of sector cells formed by a communication relay device that can move in the sky and the deterioration of communication quality due to the increase in interference from neighboring cells.
  • FIG. 1 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system that implements a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating an example of the HAPS used in the communication system according to the embodiment.
  • FIG. 3 is a side view illustrating another example of the HAPS used in the communication system according to the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed in the sky with a plurality of HAPSs according to the embodiment.
  • FIG. 5 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system that implements a three-dimensional network according to still another embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of the HAPS relay communication station according to the embodiment.
  • FIG. 7 is a block diagram illustrating another configuration example of the HAPS relay communication station according to the embodiment.
  • FIG. 8 is a block diagram showing still another configuration example of the HAPS relay communication station according to the embodiment.
  • FIG. 9 is an explanatory diagram illustrating an example of a wide area cell including a plurality of sector cells formed by the HAPS according to the embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a plurality of wide area cells formed so as to be continuously arranged by a plurality of HAPSs according to the embodiment.
  • FIG. 11 is an explanatory diagram illustrating an example of a plurality of sector cells formed by a plurality of HAPSs according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway.
  • FIG. 9 is an explanatory diagram illustrating an example of a wide area cell including a plurality of sector cells formed by the HAPS according to the embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of a pluralit
  • FIG. 12 is an explanatory diagram showing another example of a plurality of sector cells formed so that a plurality of SFN cells are continuously arranged along a high-speed rail by a plurality of HAPSs according to the embodiment.
  • FIG. 13A is an explanatory diagram illustrating an example of an arrangement of sector cells including SFN cells before the HAPS rotates.
  • FIG. 13B is an explanatory diagram showing an example of an arrangement of sector cells including SFN cells after cell switching control when the HAPS rotates.
  • FIG. 14 is a flowchart illustrating an example of the sector cell switching control in the HAPS according to the embodiment.
  • FIG. 15 is a flowchart illustrating another example of the sector cell switching control in the HAPS according to the embodiment.
  • FIG. 16 is a sequence diagram illustrating still another example of the sector cell switching control in the HAPS according to the embodiment.
  • FIG. 1 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is suitable for realizing a three-dimensional network of fifth-generation or subsequent fifth-generation mobile communication corresponding to simultaneous connection to a large number of terminal devices and reduction of delay.
  • the mobile communication standard applicable to the communication system, the relay communication station, the base station, the repeater, and the terminal device disclosed in this specification is the fifth generation mobile communication standard, and the fifth and subsequent generations. Includes standards for the next generation of mobile communications.
  • the communication system includes a plurality of high altitude platform stations (HAPS) (also referred to as “high altitude pseudo satellites”) 10 and 20 as a plurality of levitation type communication relay devices.
  • the HAPSs 10 and 20 are located in an airspace at a predetermined altitude, and form three-dimensional sector cells (three-dimensional areas) 41 and 42 as indicated by hatched areas in the cell formation target airspace 40 at a predetermined altitude.
  • the HAPS 10, 20 is a floating body (for example, a solar system) controlled by autonomous control or external control so as to float or fly in a high altitude air space (floating air space) 50 of 100 [km] or less from the ground or the sea surface. Plane, airship) equipped with a relay communication station.
  • the airspace 50 where the HAPSs 10 and 20 are located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less.
  • the airspace 50 may be an airspace having an altitude of 15 [km] or more and 25 [km] or less, where weather conditions are relatively stable, and may be an airspace of an altitude of approximately 20 [km].
  • Hrsl and Hrsu in the figure indicate the relative heights of the lower end and the upper end of the airspace 50 where the HAPSs 10, 20 are located, respectively, with respect to the ground (GL).
  • the cell formation target airspace 40 is a target airspace in which a three-dimensional cell is formed by one or more HAPSs in the communication system of the present embodiment.
  • the cell formation target airspace 40 is located between the airspace 50 where the HAPSs 10 and 20 are located and a cell formation area near the ground covered by a base station (for example, an LTE eNodeB) 90 such as a conventional macrocell base station.
  • a base station for example, an LTE eNodeB
  • This is an airspace within a range (for example, an altitude range of 50 [m] or more and 1000 [m] or less).
  • Hcl and Hcu in the figure indicate the relative heights of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL), respectively.
  • the cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
  • the relay communication stations of the HAPSs 10 and 20 form beams 100 and 200, respectively, for wireless communication with a terminal device as a mobile station toward the ground.
  • the terminal device may be a communication terminal module incorporated in the drone 60 which is an aircraft such as a small helicopter capable of remote control, or a user device used by a user in the airplane 65.
  • the areas where the beams 100 and 200 pass in the cell formation target airspace 40 are the three-dimensional cells 41 and 42.
  • the plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
  • Each of the relay communication stations of the HAPSs 10 and 20 wirelessly communicates with, for example, a feeder station (also referred to as a “gateway station” or “GW station”) 70 as a relay station connected to a terrestrial (or marine) core network. It is a repeater slave unit that wirelessly communicates with a base station or a feeder station (repeater master unit) 70 as a relay station connected to a base station on the ground (or at sea). Each of the relay communication stations of the HAPSs 10 and 20 is connected to a core network of a mobile communication network 80 via a feeder station 70 installed on the ground or at sea. Communication between the HAPS 10, 20 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • Each of the HAPSs 10 and 20 may autonomously control its own levitating movement (flying) and processing at the relay communication station by executing a control program by a control unit including a computer or the like incorporated therein.
  • each of the HAPSs 10 and 20 acquires its own current position information (for example, GPS position information), position control information (for example, flight schedule information) stored in advance, position information of another HAPS located in the vicinity, and the like. Based on this information, levitation movement (flight) and processing at the relay communication station may be autonomously controlled.
  • the levitation movement (flying) of each of the HAPSs 10 and 20 and the processing at the relay communication station may be controlled by a remote control device 85 provided at a communication center or the like of the mobile communication network 80.
  • the remote control device 85 can be composed of, for example, a computer device such as a PC or a server.
  • the HAPSs 10 and 20 control communication terminal devices (for example, mobile communication modules) so that they can receive control information from the remote control device 85 and transmit various information such as monitoring information to the remote control device 85. May be incorporated, and terminal identification information (for example, an IP address, a telephone number, etc.) may be assigned so that the remote control device 85 can identify the terminal identification information.
  • terminal identification information for example, an IP address, a telephone number, etc.
  • the MAC address of the communication interface may be used to identify the control communication terminal device.
  • Each of the HAPSs 10 and 20 also collects information on the levitation movement (flight) of the HAPS itself or its surroundings, processing at the relay communication station, information on the state of the HAPSs 10 and 20, monitoring information such as observation data acquired by various sensors, and the like. Alternatively, the data may be transmitted to a predetermined transmission destination such as the remote control device 85.
  • the control information may include target flight route information of the HAPS.
  • the monitoring information includes the current position of the HAPS 10, 20, flight route history information, airspeed, ground speed and propulsion direction, the wind speed and direction of the airflow around the HAPS 10, 20, and the atmospheric pressure and temperature around the HAPS 10, 20. At least one piece of information may be included.
  • a region where the beams 100 and 200 of the HAPSs 10 and 20 do not pass (a region where the three-dimensional cells 41 and 42 are not formed) may occur.
  • a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43, and an ATG (Air @ To ⁇ Ground) connection is formed.
  • a base station (hereinafter, referred to as an “ATG station”) 30 may be provided.
  • the relay communication stations of the HAPSs 10 and 20 can move to the cell formation target airspace 40.
  • the beams 100 and 200 may be formed so as to cover the entire upper end surface of the target cell formation space 40 so that the dimension cells are formed all over.
  • the three-dimensional cells formed by the HAPSs 10 and 20 may be formed so as to reach the ground or the sea surface so as to be able to communicate with a terminal device located on the ground or on the sea.
  • FIG. 2 is a perspective view illustrating an example of the HAPS 10 used in the communication system according to the embodiment.
  • the HAPS 10 of FIG. 2 is a solar plane type HAPS.
  • the main wing 101 has both ends in the longitudinal direction extending upward, and a plurality of bus power propulsion devices are provided on one edge of the main wing 101 in the short direction. And a motor driven propeller 103.
  • a photovoltaic panel hereinafter, referred to as "solar panel” 102 as a photovoltaic power generation unit having a photovoltaic power generation function is provided.
  • pods 105 serving as a plurality of device housing portions for housing mission devices are connected to two longitudinally lower portions of the main wing portion 101 via plate-shaped connecting portions 104.
  • a relay communication station 110 as a mission device and a battery 106 are accommodated.
  • wheels 107 used for taking off and landing are provided on the lower surface side of each pod 105.
  • the electric power generated by the solar panel 102 is stored in the battery 106, and the electric power supplied from the battery 106 drives the motor of the propeller 103 to rotate, so that the relay communication station 110 executes a wireless relay process.
  • the solar plane type HAPS 10 floats by lift, for example, by performing a circular flight, a “D” flight, or a “8” flight based on a predetermined target flight route, It can levitate so as to stay in a predetermined horizontal range at a predetermined altitude.
  • the solar plane type HAPS 10 can fly like a glider.
  • the battery 106 rises to a high position, and when power cannot be generated in the solar panel 102 at night or the like, the power supply from the battery 106 to the motor is stopped and Can fly like.
  • the HAPS 10 also includes a three-dimensional directional optical antenna device 130 as a communication unit used for optical communication with another HAPS or an artificial satellite.
  • the optical antenna devices 130 are disposed at both ends in the longitudinal direction of the main wing portion 101, but the optical antenna devices 130 may be disposed at other locations of the HAPS 10.
  • the communication unit used for optical communication with another HAPS or artificial satellite is not limited to the one that performs such optical communication, and may be a wireless communication using another method such as wireless communication using radio waves such as microwaves. Good.
  • FIG. 3 is a perspective view illustrating another example of the HAPS 20 used in the communication system according to the embodiment.
  • the HAPS 20 in FIG. 3 is an unmanned airship type HAPS, and has a large payload, so that a large-capacity battery can be mounted.
  • the HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and an equipment housing 203 for housing mission equipment.
  • a gas such as helium gas for buoyancy
  • a motor-driven propeller 202 as a propulsion device for a bus power system
  • an equipment housing 203 for housing mission equipment.
  • the relay communication station 210 and the battery 204 are housed inside the device housing unit 203.
  • the electric power supplied from the battery 204 drives the motor of the propeller 202 to rotate, and the relay relay station 210 executes a wireless relay process.
  • a solar panel having a photovoltaic power generation function may be provided on the upper surface of the airship body 201, and the power generated by the solar panel may be stored in the battery 204.
  • the unmanned airship type HAPS 20 also includes the three-dimensional directional optical antenna device 230 as a communication unit used for optical communication with other HAPS and artificial satellites.
  • the optical antenna device 230 is disposed on the upper surface of the airship main body 201 and the lower surface of the device housing 203, but the optical antenna device 230 may be disposed on another portion of the HAPS 20.
  • the communication unit used for optical communication with another HAPS or artificial satellite is not limited to the one that performs such optical communication, and performs wireless communication using another method such as wireless communication using radio waves such as microwaves. There may be.
  • FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed above the plurality of HAPSs 10 and 20 according to the embodiment.
  • the plurality of HAPSs 10 and 20 are configured to enable communication between HAPSs by optical communication with each other in the sky, and form a wireless communication network with excellent robustness capable of stably realizing a three-dimensional network over a wide area.
  • This wireless communication network can also function as an ad hoc network by dynamic routing according to various environments and various information.
  • the wireless communication network can be formed to have various two-dimensional or three-dimensional topologies.
  • the wireless communication network may be a mesh-type wireless communication network as shown in FIG.
  • FIG. 5 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system according to another embodiment.
  • the same reference numerals are given to the same parts as those in FIG. 1 described above, and description thereof will be omitted.
  • communication between the HAPS 10 and the core network of the mobile communication network 80 is performed via the feeder station 70 and the low-orbit artificial satellite 72.
  • communication between the artificial satellite 72 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • communication between the HAPS 10 and the artificial satellite 72 is performed by optical communication using laser light or the like.
  • FIG. 6 is a block diagram illustrating a configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
  • the relay communication stations 110 and 210 in FIG. 5 are examples of repeater type relay communication stations.
  • the relay communication stations 110 and 210 each include a 3D cell forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117.
  • each of the relay communication stations 110 and 210 includes an optical communication unit 125 used for communication between HAPSs and the like, and a beam control unit 126.
  • the # 3D cell forming antenna unit 111 has an antenna that forms the radial beams 100 and 200 toward the cell forming target airspace 40, and forms three-dimensional cells 41 and 42 that can communicate with the terminal device.
  • the transmission / reception unit 112 constitutes a first wireless communication unit together with the 3D cell forming antenna unit 111, has a duplexer (DUP: Duplexer), an amplifier, etc., and has a three-dimensional cell 41 via the 3D cell forming antenna unit 111. , 42, a wireless signal is transmitted to and received from a terminal device.
  • the 3D cell forming antenna unit 111 and the transmitting / receiving unit 112 form a wide area cell including a plurality of sector cells, which will be described later, in a service link for communicating with the terminal device.
  • the feed antenna unit 113 has a directional antenna for wireless communication with the feeder station 70 on the ground or at sea.
  • the transmission / reception unit 114 constitutes a second wireless communication unit together with the feed antenna unit 113, has a duplexer (DUP: Duplexer), an amplifier, etc., and transmits a wireless signal to the feeder station 70 via the feed antenna unit 113. , Or receives a wireless signal from the feeder station 70.
  • DUP Duplexer
  • the repeater unit 115 relays a signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and a signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70.
  • the repeater unit 115 has an amplifier function of amplifying a signal to be relayed having a predetermined frequency to a predetermined level.
  • the repeater unit 115 may have a frequency conversion function of converting the frequency of the signal to be relayed.
  • the monitoring control unit 116 is composed of, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPSs 10 and 20 and controls each unit by executing a program incorporated in advance.
  • the monitoring control unit 116 controls the motor drive unit 141 that drives the propellers 103 and 202 by executing the control program to move the HAPSs 10 and 20 to the target positions and to stay near the target positions. To control.
  • the monitoring control unit 116 selectively converts each of a plurality of sector cells to be described later between an SFN (single frequency network) type sector cell (SFN cell) and an MFN type (multi frequency network) sector cell (normal cell). It also functions as cell switching means for switching to.
  • SFN single frequency network
  • MFN multi frequency network
  • the power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPSs 10 and 20.
  • the power supply unit 117 may have a function of storing electric power generated by a solar panel or the like or electric power supplied from the outside in the batteries 106 and 204.
  • the optical communication unit 125 communicates with the other HAPSs 10 and 20 and the artificial satellite 72 via an optical communication medium such as a laser beam.
  • This communication enables dynamic routing for dynamically relaying wireless communication between a terminal device such as the drone 60 and the mobile communication network 80, and allows one HAPS to back up when one of the HAPSs fails.
  • the robustness of the mobile communication system can be improved.
  • the beam control unit 126 controls the direction and intensity of a beam such as a laser beam used for inter-HAPS communication and communication with the artificial satellite 72, and controls the relative position with respect to another HAPS (relay communication station) in the vicinity. In response to the change, control is performed such that another HAPS (relay communication station) that performs communication using a light beam such as a laser beam is switched. This control may be performed based on, for example, the position and orientation of the HAPS itself, the position of the surrounding HAPS, and the like.
  • the information on the position and orientation of the HAPS itself is obtained based on the output of a GPS receiver, a gyro sensor, an acceleration sensor, and the like incorporated in the HAPS, and the information on the position of the surrounding HAPS is obtained from a remote control provided on the mobile communication network 80. It may be obtained from the control device 85 or a server 86 such as a HAPS management server or an application server.
  • FIG. 7 is a block diagram illustrating another configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
  • the relay communication stations 110 and 210 in FIG. 7 are examples of base station type relay communication stations. In FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • Each of the relay communication stations 110 and 210 in FIG. 7 further includes a modem unit 118 and includes a base station processing unit 119 instead of the repeater unit 115. Further, the relay communication stations 110 and 210 each include an optical communication unit 125 and a beam control unit 126.
  • the modem unit 118 performs, for example, a demodulation process and a decoding process on a reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs a data signal output to the base station processing unit 119 side. Generate Further, the modem unit 118 performs an encoding process and a modulation process on the data signal received from the base station processing unit 119 side, and transmits the data signal to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
  • the base station processing unit 119 has, for example, a function as an e-NodeB that performs baseband processing based on a method compliant with the LTE / LTE-Advanced standard.
  • the base station processing unit 119 may perform processing by a method conforming to a standard for future mobile communication such as the fifth generation.
  • the base station processing unit 119 performs, for example, demodulation processing and decoding processing on a reception signal received from the terminal device located in the three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. , And generates a data signal to be output to the modem unit 118 side. Further, the base station processing unit 119 performs an encoding process and a modulation process on the data signal received from the modem unit 118 side, and performs three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmitting / receiving unit 112. A transmission signal to be transmitted to the terminal device is generated.
  • FIG. 8 is a block diagram showing still another configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
  • the relay communication stations 110 and 210 in FIG. 8 are examples of a high-performance base station type relay communication station having an edge computing function.
  • the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof will be omitted.
  • Each of the relay communication stations 110 and 210 in FIG. 8 further includes an edge computing unit 120 in addition to the components in FIG.
  • the edge computing unit 120 is composed of, for example, a small computer, and can execute various types of information processing related to wireless relay in the relay communication stations 110 and 210 of the HAPSs 10 and 20 by executing a program incorporated in advance. it can.
  • the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three-dimensional cell 41, 42, and based on the determination result, determines the relay destination of the communication. Is executed. More specifically, when the transmission destination of the data signal output from base station processing section 119 is a terminal device located in its own three-dimensional cell 41 or 42, the data signal is not passed to modem section 118. Then, it returns to the base station processing unit 119 to transmit to the terminal device of the transmission destination located in its own three-dimensional cell 41, 42.
  • the transmission destination of the data signal output from base station processing section 119 is a terminal device located in a cell other than its own three-dimensional cell 41 or 42
  • the data signal is passed to modem section 118.
  • the data is transmitted to the feeder station 70 and transmitted to the destination terminal device located in another cell of the destination via the mobile communication network 80.
  • the edge computing unit 120 may execute a process of analyzing information received from a large number of terminal devices located in the three-dimensional cells 41 and 42. This analysis result is transmitted to a large number of terminal devices located in the three-dimensional cells 41 and 42, a remote control device 85 provided in the mobile communication network 80, or a HAPS management server or application server (application server) as a remote control device. Server 86 or the like.
  • the uplink and downlink duplex schemes of wireless communication with the terminal device via the relay communication stations 110 and 210 are not limited to a specific scheme.
  • a time division duplex (Time / Division / Duplex: TDD) scheme may be used.
  • frequency division duplex (Frequency Division Duplex: FDD) may be used.
  • the access method of wireless communication with the terminal device via the relay communication stations 110 and 210 is not limited to a specific method.
  • an FDMA (Frequency Division Multiple Multiple Access) method a TDMA (Time Division Multiple Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or an OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and space division multiplexing (SDM), and simultaneously uses a plurality of antennas for both transmission and reception to achieve per unit frequency.
  • MIMO Multi-Input and Multi-Output
  • the MIMO technology may be an SU-MIMO (Single-User @ MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device, or one base station may transmit a plurality of signals.
  • MU-MIMO Multi-User @ MIMO
  • signals are transmitted to different terminal devices at the same time and the same frequency or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency may be used. .
  • a communication relay device that wirelessly communicates with a terminal device is a solar plane type HAPS 10 having a relay communication station 110.
  • an unmanned airship type HAPS 20 having a relay communication station 210 will be described.
  • the present invention can be similarly applied to other communication relay devices that can move over the sky.
  • FIG. 9 is an explanatory diagram illustrating an example of a service link wide area cell 100A including a plurality of sector cells 401 to 407 formed by the HAPS 10 according to the embodiment.
  • FIG. 9 shows an example in which one wide area cell 100A in the service link is composed of seven sector cells, the number of sector cells constituting the wide area cell 100A may be two to six, or eight. The number may be more than one.
  • FIG. 10 is an explanatory diagram showing an example of a plurality of wide area cells formed so as to be continuously arranged by a plurality of HAPSs according to the embodiment.
  • FIG. 10 shows only the footprint area of the wide area cell 100A on the ground or the sea and the sector cells constituting the same, a cone or a pyramid is formed between the footprint area and the HAPS 10.
  • a three-dimensional wide area cell and a sector cell having a three-dimensional shape such as those described above are formed (the same applies to FIGS. 11 to 13).
  • 14 HAPSs 10 are arranged above the Japanese archipelago, so that 14 wide area cells 100 ⁇ / b> A are continuously arranged above the Japanese archipelago, and the mobile communication service via the HAPS 10 above the entire Japanese archipelago is provided. Can be provided.
  • the bold line in the Japanese archipelago in the figure indicates the moving route (Shinkansen route) 400 of the Shinkansen that is a high-speed railway.
  • the communication relay device may be used at the cell boundary between the wide area cells of the plurality of wide area cells 100A formed toward the ground or the sea or between the sector cells.
  • the communication relay device may be used at the cell boundary between the wide area cells of the plurality of wide area cells 100A formed toward the ground or the sea or between the sector cells.
  • a plurality of sector cells formed by the HAPS 10 in the sky are formed along a vehicle movement route such as a high-speed railway such as the Shinkansen route 400 or a highway, communication quality is deteriorated due to the frequent occurrence of the handover. It's easy to do.
  • the plurality of sector cells formed by the HAPS 10 of the present embodiment are a plurality of SFNs (single frequency networks) that are continuously arranged and transmit signals of the same data in the downlink from the HAPS 10 in the same frequency and in time synchronization with each other.
  • System sector cells hereinafter also referred to as “SFN cells”. Since a plurality of SFN cells arranged continuously are time-synchronized with each other, downlink signals transmitted by, for example, orthogonal frequency division multiplexing (OFDM) transmission are the same among sector cells and are treated as a single cell. No handover between sector cells occurs.
  • OFDM orthogonal frequency division multiplexing
  • a combined gain is obtained by receiving a transmission signal of the same data synchronized in time, so that interference in the cell boundary area is eliminated and SINR (required signal versus interference) is obtained. (Noise power ratio) is increased, so that a decrease in communication quality can be prevented.
  • FIG. 11 is an explanatory diagram showing another example of a plurality of sector cells formed by a plurality of HAPSs according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway (Shinkansen route).
  • the hatched SFN cells in the figure are formed along the Shinkansen route 400 of the high-speed railway in which the terminal device moves at high speed together with the vehicle, and the Shinkansen route 400 is covered by the SFN cells.
  • not all of the plurality of sector cells formed by each HAPS 10 are SFN cells, but the sector cells located along the Shinkansen route 400 where handovers are likely to occur frequently (the hatched cells in FIG. (Sector cells) only are SFN cells.
  • the other sector cells are MFN (multiple frequency network) type sector cells (hereinafter, referred to as “normal cells”) that transmit different data signals at different frequencies, so that all of the plurality of sector cells are SFN.
  • MFN multiple frequency network type sector cells
  • FIG. 12 is an explanatory diagram showing another example of a plurality of sector cells formed by a plurality of HAPSs 10 according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway.
  • a sector cell 403 covering the Kanto metropolitan area centering on Tokyo where many terminal devices are concentrated and a sector cell 403 covering the Kansai metropolitan area centering on Osaka.
  • SFN cells but normal cells 403N that can secure communication capacity.
  • a decrease in communication capacity via the HAPS 10 in the Kanto metropolitan area and the Kansai metropolitan area can be suppressed.
  • FIGS. 13A and 13B are explanatory views showing still another example of a plurality of sector cells formed by the HAPS 10 according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway.
  • FIG. 13A is an explanatory diagram showing an example of the arrangement of the sector cells including the SFN cells before the HAPS rotationally moves.
  • FIG. 13B is a diagram showing the arrangement of the sector cells including the SFN cells after the cell switching control when the HAPS rotationally moves. It is explanatory drawing which shows an example.
  • SFN cells 401S, 402S, and 403S are formed at the positions of three sector cells along the Shinkansen route 400 of the high-speed railway, and normal cells 404N to 407N are formed at the positions of the other four sector cells.
  • FIG. 13B when the HAPS 10 in the sky moves in the downward direction of the arrow M in the figure and rotates about 45 degrees in the counterclockwise direction of the arrow R in the figure, the two SFN cells 401S and 402S become bullet trains. Departing from the route 400, the two normal cells 404N and 405N are located along the Shinkansen route 400.
  • control is performed such that the SFN cells 401S and 402S are switched to the normal cells 401N and 402N, and the normal cells 404N and 405N are switched to the SFN cells 404S and 405S based on the information on the movement and rotation of the HAPS 10 in the sky. ing.
  • the SFN cell is formed at a position along the Shinkansen route 400 and the normal cells N to 407N are formed at other positions. And reliably prevent communication quality degradation due to frequent handovers on the Shinkansen route 400 and increase in interference from neighboring cells, and also reliably prevent a decrease in communication capacity other than the Shinkansen route 400 it can.
  • FIG. 14 is a flowchart illustrating an example of the sector cell switching control in the HAPS 10 according to the embodiment.
  • the example of FIG. 14 illustrates a PRB (physical resource block) usage rate of a downlink service link wireless communication between a terminal device located in the sector cell and the relay communication station 110 of the HAPS 10 for each of a plurality of sector cells formed by the HAPS 10.
  • 5 is an example of sector cell switching control for switching between SFN cells and normal cells based on.
  • the relay communication station 110 of the HAPS 10 calculates and acquires information on the PRB (physical resource block) usage rate of the service link wireless communication for each of a plurality of sector cells formed by the HAPS 10 (S101).
  • the PRB usage rate is a ratio of PRBs actually used for wireless communication with a terminal device located in the sector cell among PRBs available in a downlink service link in the sector cell.
  • the information on the PRB usage rate may be calculated by reading information stored in the own station, or may be obtained from a device on the mobile communication network side (for example, the EPC or the remote control device 85).
  • the relay communication station 110 compares the PRB usage rate with a predetermined first threshold value THD1 (S102).
  • the threshold value THD1 is, for example, 10%, and a parameter value “SFNDLHIGHLOADTHD” may be used.
  • the PRB usage rate is smaller than the threshold value THD1 (YES in S102) and the current sector cell is a normal cell (YES in S103)
  • the sector cell is switched from a normal cell to an SFN cell (S104).
  • the PRB usage rate is equal to or higher than the threshold value THD1 (NO in S102) and the current sector cell is an SFN cell (YES in S105)
  • the sector cell is switched from the SFN cell to a normal cell (S106).
  • the relay communication station 110 repeatedly performs the acquisition and determination of the sector cell information (PRB) and the control of switching the sector cells (S101 to S106) at a predetermined determination cycle (for example, 1 to 10 seconds) (S107).
  • PRB sector cell information
  • S101 to S106 sector cells
  • S107 predetermined determination cycle
  • FIG. 15 is a flowchart illustrating another example of the sector cell switching control in the HAPS 10 according to the embodiment.
  • the PRB (physical resource block) usage rate of the uplink service link wireless communication between the terminal device located in the sector cell and the relay communication station 110 of the HAPS 10 5 is an example of sector cell switching control for switching between SFN cells and normal cells based on.
  • the relay communication station 110 of the HAPS 10 calculates and obtains information on the PRB (physical resource block) usage rate of the service link wireless communication for each of a plurality of sector cells formed by the HAPS 10 (S201).
  • PRB physical resource block
  • relay communication station 110 compares the PRB usage rate with predetermined second threshold value THD2 (upper limit value) and third threshold value THD3 (lower limit value) (S202, S203).
  • the second threshold value THD2 is, for example, 50%
  • the third threshold value THD3 is 10%.
  • the PRB usage rate is equal to or less than threshold value THD2 and smaller than threshold value THD3 (NO in S201, YES in S203)
  • the current sector cell is a normal cell (YES in S204)
  • the sector cell is changed from a normal cell to an SFN cell.
  • S205 On the other hand, if the PRB usage rate is greater than threshold value THD2 (YES in S202) and the current sector cell is an SFN cell (YES in S206), the sector cell is switched from the SFN cell to a normal cell (S207).
  • the relay communication station 110 repeatedly performs the acquisition and determination of the sector cell information (PRB usage rate) and the switching control of the sector cells (S201 to S207) at a predetermined determination cycle (for example, 1 to 10 seconds) (S208). .
  • the switching control of the sector cell is performed based on the PRB usage rate of the sector cell.
  • the switching control of the sector cell may be performed based on information other than the PRB usage rate of the sector cell. .
  • control may be performed so as to switch to a normal cell when the traffic volume of a sector cell is higher than or equal to a predetermined threshold, and to switch to an SFN cell when the traffic volume of the sector cell is lower than a predetermined threshold.
  • FIG. 16 is a sequence diagram showing still another example of the sector cell switching control in the HAPS 10 according to the embodiment.
  • the example of FIG. 16 is an example of remote control for performing sector cell switching in the HAPS 10 based on control information from the remote control device 85.
  • the relay communication station 110 of the HAPS 10 calculates and acquires communication information such as a PRB (physical resource block) usage rate of service link wireless communication for each of a plurality of sector cells formed by itself (S301). ), And transmits to the remote control device 85 together with device status information such as the current position, flight speed, and flight direction of the own station (S302).
  • PRB physical resource block
  • the remote control device 85 includes communication information such as the PRB usage rate received from the relay communication station 110 of the HAPS 10, device status information such as the current position, flight speed, and flight direction of the HAPS 10, and the position of the vehicle movement route such as the aforementioned Shinkansen route. Based on the information and the like, cell switching control information between SFN cells and normal cells is determined for each sector cell formed by HAPS 10 (S303), and the cell switching control information is transmitted to relay communication station 110 of HAPS 10 (S303). S304).
  • the relay communication station 110 of the HAPS 10 executes the cell switching control between the SFN cell and the normal cell for each sector cell formed by the own station based on the cell switching control information received from the remote control device 85.
  • the relay communication station 110 may repeatedly execute the acquisition / transmission of the communication information of the sector cell and the remote switching control of the sector cell (S301 to S2305) at a predetermined determination cycle (for example, 1 to 10 seconds).
  • the remote control device 85 performs remote control of cell switching in a plurality of sector cells in the wide area cell 100A formed by the relay communication station 110 of the HAPS 10, for example, as illustrated in FIG. 11. May be remotely controlled so that an SFN cell is configured between a plurality of HAPSs 10.
  • the remote control device 85 transmits various kinds of information (for example, communication information such as a PRB usage rate, device status information such as a current position, a flight speed, and a flight direction of the HAPS 10) to a plurality of sector cells formed by each of the plurality of HAPSs 10. , Position information of a vehicle movement route such as a Shinkansen route), and cell switching control information between an SFN cell and a normal cell is determined. Then, the remote control device 85 transmits the determined cell switching control information to the relay communication station 110 of each HAPS 10.
  • communication information such as a PRB usage rate
  • device status information such as a current position, a flight speed, and a flight direction of the HAPS
  • the function of the remote control device 85 may be provided in any one of the relay communication stations 110 of the plurality of HAPSs 10 that form a cell in cooperation with each other.
  • a plurality of SFN cells are selectively formed along the Shinkansen route 400.
  • the positions where SFN cells are formed are not limited thereto.
  • a plurality of SFN cells may be selectively formed along a highway as a moving route along which a vehicle such as an automobile including a terminal device moves.
  • the processing steps described in this specification and the relay communication station, feeder station, gateway station, management device, monitoring device, remote control device, server, terminal device (user device, mobile device, etc.) of the communication relay device such as the HAPS 10 and 20 are described.
  • the components of the station, the communication terminal), the base station, and the base station device can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entities eg, relay communication station, feeder station, gateway station, base station, base station device, relay communication station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device), one or more application-specific ICs (ASICs), such as processing units used to implement the steps and components.
  • ASICs application-specific ICs
  • DSP Digital signal processor
  • DSPD digital signal processor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • processor controller, microcontroller, microprocessor, electronic device, book Features described in the specification Designed other electronic units to run, computer, or may be implemented in a combination thereof.
  • any means such as a processing unit used to implement the components may include programs (eg, procedures, functions, modules, instructions, etc.) that perform the functions described herein. , Etc.).
  • any computer / processor readable medium that explicitly embodies firmware and / or software code is a means such as a processing unit used to implement the steps and components described herein. May be used to implement
  • firmware and / or software code may be stored in a memory, for example in a control device, and executed by a computer or a processor.
  • the memory may be implemented inside a computer or a processor, or may be implemented outside a processor.
  • firmware and / or software code includes, for example, a random access memory (RAM), a read only memory (ROM), a nonvolatile random access memory (NVRAM), a programmable read only memory (PROM), and an electrically erasable PROM (EEPROM). ), A FLASH memory, a floppy disk, a compact disk (CD), a digital versatile disk (DVD), a magnetic or optical data storage device, etc. Good.
  • the code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
  • the medium may be a non-transitory recording medium.
  • the code of the program may be executable by being read by a computer, a processor, or another device or an apparatus machine, and its format is not limited to a specific format.
  • the code of the program may be any of a source code, an object code, and a binary code, and may be a mixture of two or more of those codes.
  • HAPS Small plane type
  • HAPS airship type
  • Cell formation target airspace 41, 42, 43
  • Three-dimensional sector cell 50 Airspace where HAPS is located 60 Drone 61
  • Terminal device 65
  • Airplane 65
  • Feeder station 72
  • Artificial satellite 80
  • Mobile communication network 85
  • Remote control device control center, control center
  • server 90
  • base station eNodeB
  • eNodeB 100, 200, 300 beams 100A Wide area sector cell 110, 210 Relay communication station 401-407 sector cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

The present invention suppresses a deterioration in communication quality, which is caused by frequently-occurring handovers at the cell edges of a plurality of sector cells formed by a communication relay device that is movable in the air. The communication relay device, which wirelessly communicates with a terminal device, is provided with a relay communication station mounted in a floating body that is movable in the air by an autonomous control or a control from the outside. The relay communication station forms a plurality of sector cells so as to be able to wirelessly communicate with the terminal device. The plurality of sector cells include a plurality of single frequency network (SFN)-type sector cells in which identical data is transmitted in a state of being temporally synchronized at an identical frequency.

Description

HAPSを用いた単一周波数ネットワークセル構成Single frequency network cell configuration using HAPS
 本発明は、第5世代通信の3次元化ネットワークの構築に適したHAPS等の通信中継装置による単一周波数ネットワーク(SFN)セル構成に関するものである。 The present invention relates to a single frequency network (SFN) cell configuration using a communication relay device such as HAPS suitable for constructing a three-dimensional network for fifth generation communication.
 従来、移動通信システムの通信規格である3GPPのLTE(Long Term Evolution)-Advanced(非特許文献1参照)を発展させたLTE-AdvancedProと呼ばれる通信規格が知られている(非特許文献2参照)。このLTE-AdvancedProでは、近年のIoT(Internet of Things)向けデバイスへの通信を提供するための仕様が策定された。更に、IoT向けデバイス等の多数の端末装置(「UE(ユーザ装置)」、「移動局」、「通信端末」ともいう。)への同時接続や低遅延化などに対応する第5世代の移動通信が検討されている(例えば、非特許文献3参照)。 Conventionally, a communication standard called LTE-AdvancedPro, which is an extension of LTE (Long Term Evolution) -Advanced (see Non-Patent Document 1) of 3GPP, which is a communication standard of a mobile communication system, is known (see Non-Patent Document 2). . In this LTE-AdvancedPro, specifications for providing communication to a device for recent IoT (Internet of Things) have been formulated. Furthermore, fifth-generation mobile devices that support simultaneous connection to a large number of terminal devices (also referred to as “UE (user device)”, “mobile station”, and “communication terminal”) such as devices for IoT and low delay. Communication is being studied (for example, see Non-Patent Document 3).
 上記第5世代移動通信等において3次元化したネットワークを実現する通信中継装置を移動可能に上空に配置する場合、その通信中継装置で地上や海上に向けて形成される複数のセルのセル境界でハンドオーバーが多発して通信品質の劣化や通信の切断が発生するおそれがある。特に、上空の通信中継装置で形成される複数のセルが、端末装置を含む車両が移動する高速鉄道や高速道路などの車両移動経路に沿って形成される場合、上記ハンドオーバーの多発による通信品質の劣化などが発生しやすい。 When a communication relay device for realizing a three-dimensional network in the fifth generation mobile communication or the like is movably arranged in the sky, the communication relay device may be located at a cell boundary of a plurality of cells formed toward the ground or the sea. There is a risk that communication quality will deteriorate or communication will be disconnected due to frequent handovers. In particular, when a plurality of cells formed by a communication relay device in the sky are formed along a vehicle moving route such as a high-speed rail or a highway on which a vehicle including a terminal device moves, the communication quality due to the frequent occurrence of the handover described above. Is likely to occur.
 本発明の一態様に係る通信中継装置は、端末装置と無線通信する通信中継装置であって、自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載され、前記端末装置と無線通信可能な複数のセクタセルからなる広域セルを形成する中継通信局を備え、前記中継通信局が形成する前記複数のセクタセルは、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含む。
 前記通信中継装置において、前記複数のSFN方式のセクタセルは、前記端末装置を含む車両が移動する移動経路に沿って形成してもよい。
 また、前記通信中継装置において、前記中継通信局が形成する前記複数のセクタセルは、前記複数のSFN方式のセクタセルと、前記中継通信局からのダウンリンクにおいて互いに異なる周波数により互いに異なるデータの信号を送信する複数のMFN(複数周波数ネットワーク)方式のセクタセルとを含んでもよい。
A communication relay device according to one embodiment of the present invention is a communication relay device that wirelessly communicates with a terminal device. The communication relay device is mounted on a levitating body that can move over the sky by autonomous control or external control, and wirelessly communicates with the terminal device. A relay communication station forming a wide area cell composed of a plurality of communicable sector cells, wherein the plurality of sector cells formed by the relay communication station are time-synchronized with each other by a same frequency in a downlink from the relay communication station. It includes a plurality of SFN (Single Frequency Network) sector cells that are continuously arranged and transmit the same data signal.
In the communication relay device, the plurality of sector cells of the SFN scheme may be formed along a movement route along which a vehicle including the terminal device moves.
Further, in the communication relay device, the plurality of sector cells formed by the relay communication station transmit different data signals at different frequencies in the downlink from the relay communication station and the plurality of SFN sector cells. And a plurality of MFN (multi-frequency network) type sector cells.
 また、前記通信中継装置において、前記中継通信局が形成する前記複数のセクタセルのそれぞれを前記SFN方式のセクタセルと前記MFN方式のセクタセルとの間で選択的に切り替えるセル切替手段を備えてもよい。前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置と前記中継通信局との間の無線通信のPRB(物理リソースブロック)の使用率に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行ってもよい。また、前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置との間の無線通信のトラヒック状況に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行ってもよい。 The communication relay device may further include a cell switching unit that selectively switches each of the plurality of sector cells formed by the relay communication station between the SFN sector cell and the MFN sector cell. In each of the plurality of sector cells, the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. Switching between a sector cell and the MFN scheme sector cell may be performed. Further, the cell switching means switches between the SFN-based sector cell and the MFN-based sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. May be performed.
 本発明の他の態様に係るシステムは、端末装置と無線通信する複数の通信中継装置を備えたシステムであって、前記複数の通信中継装置はそれぞれ、自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載され、前記端末装置と無線通信可能な複数のセクタからなる広域セルを形成する中継通信局を備え、前記複数の通信中継装置の中継通信局が形成する複数のセクタセルは、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含む。
 前記システムにおいて、前記複数のSFN方式のセクタセルは、前記複数の通信中継装置のうち互いに隣り合う複数の通信中継装置によって連続的に形成してもよい。
 また、前記システムにおいて、前記複数のSFN方式のセクタセルは、端末装置を含む車両が移動する移動経路に沿って形成してもよい。
 また、前記システムにおいて、前記複数の通信中継装置の中継通信局の全体が形成する複数のセクタセルは、前記複数のSFN方式のセクタセルと、互いに異なる周波数により互いに異なるデータを送信する複数のMFN(複数周波数ネットワーク)方式のセクタセルとを含んでもよい。
A system according to another aspect of the present invention is a system including a plurality of communication relay devices that wirelessly communicate with a terminal device, wherein the plurality of communication relay devices respectively fly above the sky by autonomous control or external control. A relay communication station mounted on a movable floating body and forming a wide area cell including a plurality of sectors capable of wireless communication with the terminal device, wherein the plurality of sector cells formed by the relay communication stations of the plurality of communication relay devices are And a plurality of SFN (single frequency network) type sector cells which are continuously arranged and transmit signals of the same data in the downlink from the relay communication station in the same frequency and in time synchronization with each other.
In the system, the plurality of SFN sector cells may be continuously formed by a plurality of communication relay devices adjacent to each other among the plurality of communication relay devices.
In the system, the plurality of sector cells of the SFN scheme may be formed along a movement route along which a vehicle including a terminal device moves.
Further, in the system, the plurality of sector cells formed by the entire relay communication station of the plurality of communication relay devices are different from the plurality of SFN sector cells and the plurality of MFNs (multiple transmission units) transmitting different data at different frequencies. Frequency network) type sector cells.
 また、前記システムにおいて、前記複数の通信中継装置の中継通信局が形成する複数のセクタセルを前記SFN方式のセクタセルと前記MFN方式のセクタセルとの間で切り替えるセル切替手段を備えてもよい。前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置と前記中継通信局との間の無線通信のPRB(物理リソースブロック)の使用率に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行ってもよい。また、前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置との間の無線通信のトラヒック状況に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行ってもよい。 The system may further include a cell switching unit that switches a plurality of sector cells formed by the relay communication stations of the plurality of communication relay apparatuses between the SFN sector cell and the MFN sector cell. In each of the plurality of sector cells, the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. Switching between a sector cell and the MFN scheme sector cell may be performed. Further, the cell switching means switches between the SFN-based sector cell and the MFN-based sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. May be performed.
 また、前記システムにおいて、前記複数の通信中継装置を遠隔的に制御する遠隔制御装置を備え、前記遠隔制御装置は、前記複数の通信中継装置の少なくとも一つの通信中継装置に、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを制御するための制御情報を送信してもよい。 The system further includes a remote control device for remotely controlling the plurality of communication relay devices, wherein the remote control device includes the SFN sector cell in at least one of the plurality of communication relay devices. And control information for controlling switching between the sector cell and the MFN scheme sector cell.
 本発明の更に他の遠隔制御装置は、前記システムにおける前記複数の通信中継装置を遠隔的に制御する遠隔制御装置であって、前記複数の通信中継装置の少なくとも一つに、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを制御するための制御情報を送信する。 Still another remote control device of the present invention is a remote control device for remotely controlling the plurality of communication relay devices in the system, wherein at least one of the plurality of communication relay devices includes the SFN sector cell. And control information for controlling switching between the MFN-based sector cell and the MFN-based sector cell.
 本発明の更に他の態様に係る方法は、端末装置との間で無線通信を行う中継通信局が自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載された通信中継装置における前記中継通信局による複数のセクタセルからなる広域セルの形成を制御する方法であって、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むように前記複数のセクタセルを形成することを有する。
 また、本発明の更に他の態様に係るプログラムは、端末装置との間で無線通信を行う中継通信局が自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載された通信中継装置における前記中継通信局による複数のセクタセルからなる広域セルの形成の制御を、コンピュータ又はプロセッサに実行させるためのプログラムであって、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むように前記複数のセクタセルを形成するためのプログラムコードを有する。
A method according to still another aspect of the present invention is directed to a communication relay device in which a relay communication station that performs wireless communication with a terminal device is mounted on a floating body that can move over the sky by autonomous control or external control. A method for controlling the formation of a wide area cell including a plurality of sector cells by the relay communication station, wherein the relay station transmits signals of the same data in the downlink from the relay communication station in time synchronization with each other at the same frequency. Forming the plurality of sector cells so as to include a plurality of SFN (single frequency network) type sector cells.
Further, a program according to yet another aspect of the present invention is a communication relay mounted on a floating body that can move over the sky by autonomous control or external control by a relay communication station that performs wireless communication with a terminal device. A program for causing a computer or a processor to execute control of formation of a wide area cell including a plurality of sector cells by the relay communication station in an apparatus, the program being in a state of being time-synchronized with each other by the same frequency in a downlink from the relay communication station. And a program code for forming the plurality of sector cells so as to include a plurality of continuously arranged SFN (single frequency network) type sector cells for transmitting the same data signal.
 本発明によれば、上空を移動可能な通信中継装置で形成する複数のセクタセルのセル境界におけるハンドオーバーの多発や隣接セルからの干渉の増大による通信品質の劣化を抑制することができる。 According to the present invention, it is possible to suppress the frequent occurrence of handover at the cell boundary of a plurality of sector cells formed by a communication relay device that can move in the sky and the deterioration of communication quality due to the increase in interference from neighboring cells.
図1は、本発明の一実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system that implements a three-dimensional network according to an embodiment of the present invention. 図2は、実施形態に係る通信システムに用いられるHAPSの一例を示す斜視図である。FIG. 2 is a perspective view illustrating an example of the HAPS used in the communication system according to the embodiment. 図3は、実施形態に係る通信システムに用いられるHAPSの他の例を示す側面図である。FIG. 3 is a side view illustrating another example of the HAPS used in the communication system according to the embodiment. 図4は、実施形態に係る複数のHAPSで上空に形成される無線ネットワークの一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed in the sky with a plurality of HAPSs according to the embodiment. 図5は、更に他の実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。FIG. 5 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system that implements a three-dimensional network according to still another embodiment. 図6は、実施形態に係るHAPSの中継通信局の一構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration example of the HAPS relay communication station according to the embodiment. 図7は、実施形態に係るHAPSの中継通信局の他の構成例を示すブロック図である。FIG. 7 is a block diagram illustrating another configuration example of the HAPS relay communication station according to the embodiment. 図8は、実施形態に係るHAPSの中継通信局の更に他の構成例を示すブロック図である。FIG. 8 is a block diagram showing still another configuration example of the HAPS relay communication station according to the embodiment. 図9は、実施形態に係るHAPSによって形成される複数のセクタセルからなる広域セルの一例を示す説明図である。FIG. 9 is an explanatory diagram illustrating an example of a wide area cell including a plurality of sector cells formed by the HAPS according to the embodiment. 図10は、実施形態に係る複数のHAPSによって連続配置するように形成される複数の広域セルの一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of a plurality of wide area cells formed so as to be continuously arranged by a plurality of HAPSs according to the embodiment. 図11は、実施形態に係る複数のHAPSによって高速鉄道に沿って複数のSFNセルが連続配置するように形成される複数のセクタセルの一例を示す説明図である。FIG. 11 is an explanatory diagram illustrating an example of a plurality of sector cells formed by a plurality of HAPSs according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway. 図12は、実施形態に係る複数のHAPSによって高速鉄道に沿って複数のSFNセルが連続配置するように形成される複数のセクタセルの他の例を示す説明図である。FIG. 12 is an explanatory diagram showing another example of a plurality of sector cells formed so that a plurality of SFN cells are continuously arranged along a high-speed rail by a plurality of HAPSs according to the embodiment. 図13Aは、HAPSが回転移動する前のSFNセルを含むセクタセルの配置の一例を示す説明図である。FIG. 13A is an explanatory diagram illustrating an example of an arrangement of sector cells including SFN cells before the HAPS rotates. 図13Bは、HAPSが回転移動したときのセル切り替え制御後のSFNセルを含むセクタセルの配置の一例を示す説明図である。FIG. 13B is an explanatory diagram showing an example of an arrangement of sector cells including SFN cells after cell switching control when the HAPS rotates. 図14は、実施形態に係るHAPSにおけるセクタセル切り替え制御の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of the sector cell switching control in the HAPS according to the embodiment. 図15は、実施形態に係るHAPSにおけるセクタセル切り替え制御の他の例を示すフローチャートである。FIG. 15 is a flowchart illustrating another example of the sector cell switching control in the HAPS according to the embodiment. 図16は、実施形態に係るHAPSにおけるセクタセル切り替え制御の更に他の例を示すシーケンス図である。FIG. 16 is a sequence diagram illustrating still another example of the sector cell switching control in the HAPS according to the embodiment.
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。本実施形態に係る通信システムは、多数の端末装置への同時接続や低遅延化などに対応する第5世代又は第5世代以降の次々世代の移動通信の3次元化ネットワークの実現に適する。なお、本明細書に開示する通信システム、中継通信局、基地局、リピーター及び端末装置に適用可能な移動通信の標準規格は、第5世代の移動通信の標準規格、及び、第5世代以降の次々世代の移動通信の標準規格を含む。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system according to an embodiment of the present invention. The communication system according to the present embodiment is suitable for realizing a three-dimensional network of fifth-generation or subsequent fifth-generation mobile communication corresponding to simultaneous connection to a large number of terminal devices and reduction of delay. The mobile communication standard applicable to the communication system, the relay communication station, the base station, the repeater, and the terminal device disclosed in this specification is the fifth generation mobile communication standard, and the fifth and subsequent generations. Includes standards for the next generation of mobile communications.
 図1に示すように、通信システムは、複数の空中浮揚型の通信中継装置としての高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)10,20を備えている。HAPS10,20は、所定高度の空域に位置して、所定高度のセル形成目標空域40に図中ハッチング領域で示すような3次元セクタセル(3次元エリア)41,42を形成する。HAPS10,20は、自律制御又は外部から制御により地面又は海面から100[km]以下の高高度の空域(浮揚空域)50に浮遊あるいは飛行して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船)に、中継通信局が搭載されたものである。 As shown in FIG. 1, the communication system includes a plurality of high altitude platform stations (HAPS) (also referred to as “high altitude pseudo satellites”) 10 and 20 as a plurality of levitation type communication relay devices. The HAPSs 10 and 20 are located in an airspace at a predetermined altitude, and form three-dimensional sector cells (three-dimensional areas) 41 and 42 as indicated by hatched areas in the cell formation target airspace 40 at a predetermined altitude. The HAPS 10, 20 is a floating body (for example, a solar system) controlled by autonomous control or external control so as to float or fly in a high altitude air space (floating air space) 50 of 100 [km] or less from the ground or the sea surface. Plane, airship) equipped with a relay communication station.
 HAPS10,20の位置する空域50は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域50は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。図中のHrsl及びHrsuはそれぞれ、地面(GL)を基準にしたHAPS10,20の位置する空域50の下端及び上端の相対的な高度を示している。 The airspace 50 where the HAPSs 10 and 20 are located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less. The airspace 50 may be an airspace having an altitude of 15 [km] or more and 25 [km] or less, where weather conditions are relatively stable, and may be an airspace of an altitude of approximately 20 [km]. Hrsl and Hrsu in the figure indicate the relative heights of the lower end and the upper end of the airspace 50 where the HAPSs 10, 20 are located, respectively, with respect to the ground (GL).
 セル形成目標空域40は、本実施形態の通信システムにおける1又は2以上のHAPSで3次元セルを形成する目標の空域である。セル形成目標空域40は、HAPS10,20が位置する空域50と従来のマクロセル基地局等の基地局(例えばLTEのeNodeB)90がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。図中のHcl及びHcuはそれぞれ、地面(GL)を基準にしたセル形成目標空域40の下端及び上端の相対的な高度を示している。 The cell formation target airspace 40 is a target airspace in which a three-dimensional cell is formed by one or more HAPSs in the communication system of the present embodiment. The cell formation target airspace 40 is located between the airspace 50 where the HAPSs 10 and 20 are located and a cell formation area near the ground covered by a base station (for example, an LTE eNodeB) 90 such as a conventional macrocell base station. This is an airspace within a range (for example, an altitude range of 50 [m] or more and 1000 [m] or less). Hcl and Hcu in the figure indicate the relative heights of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL), respectively.
 なお、本実施形態の3次元セルが形成されるセル形成目標空域40は、海、川又は湖の上空であってもよい。 The cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
 HAPS10,20の中継通信局はそれぞれ、移動局である端末装置と無線通信するためのビーム100,200を地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプター等の航空機であるドローン60に組み込まれた通信端末モジュールでもよいし、飛行機65の中でユーザが使用するユーザ装置であってもよい。セル形成目標空域40においてビーム100,200が通過する領域が3次元セル41,42である。セル形成目標空域40において互いに隣り合う複数のビーム100,200は部分的に重なってもよい。 The relay communication stations of the HAPSs 10 and 20 form beams 100 and 200, respectively, for wireless communication with a terminal device as a mobile station toward the ground. The terminal device may be a communication terminal module incorporated in the drone 60 which is an aircraft such as a small helicopter capable of remote control, or a user device used by a user in the airplane 65. The areas where the beams 100 and 200 pass in the cell formation target airspace 40 are the three- dimensional cells 41 and 42. The plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
 HAPS10,20の中継通信局はそれぞれ、例えば、地上(又は海上)側のコアネットワークに接続された中継局としてのフィーダ局(「ゲートウェイ局」又は「GW局」ともいう。)70と無線通信する基地局、又は、地上(又は海上)側の基地局に接続された中継局としてのフィーダ局(リピーター親機)70と無線通信するリピーター子機である。HAPS10,20の中継通信局はそれぞれ、地上又は海上に設置されたフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。HAPS10,20とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。 Each of the relay communication stations of the HAPSs 10 and 20 wirelessly communicates with, for example, a feeder station (also referred to as a “gateway station” or “GW station”) 70 as a relay station connected to a terrestrial (or marine) core network. It is a repeater slave unit that wirelessly communicates with a base station or a feeder station (repeater master unit) 70 as a relay station connected to a base station on the ground (or at sea). Each of the relay communication stations of the HAPSs 10 and 20 is connected to a core network of a mobile communication network 80 via a feeder station 70 installed on the ground or at sea. Communication between the HAPS 10, 20 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
 HAPS10,20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。例えば、HAPS10,20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。 Each of the HAPSs 10 and 20 may autonomously control its own levitating movement (flying) and processing at the relay communication station by executing a control program by a control unit including a computer or the like incorporated therein. For example, each of the HAPSs 10 and 20 acquires its own current position information (for example, GPS position information), position control information (for example, flight schedule information) stored in advance, position information of another HAPS located in the vicinity, and the like. Based on this information, levitation movement (flight) and processing at the relay communication station may be autonomously controlled.
 また、HAPS10,20それぞれの浮揚移動(飛行)や中継通信局での処理は、移動通信網80の通信センター等に設けられた遠隔制御装置85によって制御できるようにしてもよい。遠隔制御装置85は、例えば、PCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS10,20は、遠隔制御装置85からの制御情報を受信したり遠隔制御装置85に監視情報などの各種情報を送信したりできるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、遠隔制御装置85から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10,20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や中継通信局での処理に関する情報、HAPS10,20の状態に関する情報や各種センサなどで取得した観測データなどの監視情報を、遠隔制御装置85等の所定の送信先に送信するようにしてもよい。制御情報は、HAPSの目標飛行ルート情報を含んでもよい。監視情報は、HAPS10,20の現在位置、飛行ルート履歴情報、対気速度、対地速度及び推進方向、HAPS10,20の周辺の気流の風速及び風向、並びに、HAPS10,20の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。 The levitation movement (flying) of each of the HAPSs 10 and 20 and the processing at the relay communication station may be controlled by a remote control device 85 provided at a communication center or the like of the mobile communication network 80. The remote control device 85 can be composed of, for example, a computer device such as a PC or a server. In this case, the HAPSs 10 and 20 control communication terminal devices (for example, mobile communication modules) so that they can receive control information from the remote control device 85 and transmit various information such as monitoring information to the remote control device 85. May be incorporated, and terminal identification information (for example, an IP address, a telephone number, etc.) may be assigned so that the remote control device 85 can identify the terminal identification information. The MAC address of the communication interface may be used to identify the control communication terminal device. Each of the HAPSs 10 and 20 also collects information on the levitation movement (flight) of the HAPS itself or its surroundings, processing at the relay communication station, information on the state of the HAPSs 10 and 20, monitoring information such as observation data acquired by various sensors, and the like. Alternatively, the data may be transmitted to a predetermined transmission destination such as the remote control device 85. The control information may include target flight route information of the HAPS. The monitoring information includes the current position of the HAPS 10, 20, flight route history information, airspeed, ground speed and propulsion direction, the wind speed and direction of the airflow around the HAPS 10, 20, and the atmospheric pressure and temperature around the HAPS 10, 20. At least one piece of information may be included.
 セル形成目標空域40では、HAPS10,20のビーム100,200が通過していない領域(3次元セル41,42が形成されない領域)が発生するおそれがある。この領域を補完するため、図1の構成例のように、地上側又は海上側から上方に向かって放射状のビーム300を形成して3次元セル43を形成してATG(Air To Ground)接続を行う基地局(以下「ATG局」という。)30を備えてもよい。 In the cell formation target airspace 40, there is a possibility that a region where the beams 100 and 200 of the HAPSs 10 and 20 do not pass (a region where the three- dimensional cells 41 and 42 are not formed) may occur. In order to supplement this area, as in the configuration example of FIG. 1, a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43, and an ATG (Air @ To \ Ground) connection is formed. A base station (hereinafter, referred to as an “ATG station”) 30 may be provided.
 また、ATG局30を用いずに、HAPS10,20の位置やビーム100,200の発散角(ビーム幅)等を調整することにより、HAPS10,20の中継通信局が、セル形成目標空域40に3次元セルがくまなく形成されるように、セル形成目標空域40の上端面の全体をカバーするビーム100,200を形成してもよい。 By adjusting the positions of the HAPSs 10 and 20 and the divergence angles (beam widths) of the beams 100 and 200 without using the ATG station 30, the relay communication stations of the HAPSs 10 and 20 can move to the cell formation target airspace 40. The beams 100 and 200 may be formed so as to cover the entire upper end surface of the target cell formation space 40 so that the dimension cells are formed all over.
 なお、前記HAPS10,20で形成する3次元セルは、地上又は海上に位置する端末装置との間でも通信できるよう地面又は海面に達するように形成してもよい。 The three-dimensional cells formed by the HAPSs 10 and 20 may be formed so as to reach the ground or the sea surface so as to be able to communicate with a terminal device located on the ground or on the sea.
 図2は、実施形態に係る通信システムに用いられるHAPS10の一例を示す斜視図である。
 図2のHAPS10は、ソーラープレーンタイプのHAPSであり、長手方向の両端部側が上方に沿った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の上面には、太陽光発電機能を有する太陽光発電部としての太陽光発電パネル(以下「ソーラーパネル」という。)102が設けられている。また、主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての中継通信局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラーパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、中継通信局110による無線中継処理が実行される。
FIG. 2 is a perspective view illustrating an example of the HAPS 10 used in the communication system according to the embodiment.
The HAPS 10 of FIG. 2 is a solar plane type HAPS. The main wing 101 has both ends in the longitudinal direction extending upward, and a plurality of bus power propulsion devices are provided on one edge of the main wing 101 in the short direction. And a motor driven propeller 103. On the upper surface of the main wing portion 101, a photovoltaic panel (hereinafter, referred to as "solar panel") 102 as a photovoltaic power generation unit having a photovoltaic power generation function is provided. Further, pods 105 serving as a plurality of device housing portions for housing mission devices are connected to two longitudinally lower portions of the main wing portion 101 via plate-shaped connecting portions 104. Inside each pod 105, a relay communication station 110 as a mission device and a battery 106 are accommodated. Further, wheels 107 used for taking off and landing are provided on the lower surface side of each pod 105. The electric power generated by the solar panel 102 is stored in the battery 106, and the electric power supplied from the battery 106 drives the motor of the propeller 103 to rotate, so that the relay communication station 110 executes a wireless relay process.
 ソーラープレーンタイプのHAPS10は、例えば所定の目標飛行ルートに基づいて円形状に旋回飛行を行ったり「D」の字飛行を行ったり「8」の字飛行を行ったりすることにより揚力で浮揚し、所定の高度で水平方向の所定の範囲に滞在するように浮揚することができる。なお、ソーラープレーンタイプのHAPS10は、プロペラ103が回転駆動されていないときは、グライダーのように飛ぶこともできる。例えば、昼間などのソーラーパネル102の発電によってバッテリー106の電力が余っているときに高い位置に上昇し、夜間などのソーラーパネル102で発電できないときにバッテリー106からモータへの給電を停止してグライダーのように飛ぶことができる。 The solar plane type HAPS 10 floats by lift, for example, by performing a circular flight, a “D” flight, or a “8” flight based on a predetermined target flight route, It can levitate so as to stay in a predetermined horizontal range at a predetermined altitude. When the propeller 103 is not driven to rotate, the solar plane type HAPS 10 can fly like a glider. For example, when the power of the battery 106 is excessive due to power generation of the solar panel 102 in the daytime or the like, the battery 106 rises to a high position, and when power cannot be generated in the solar panel 102 at night or the like, the power supply from the battery 106 to the motor is stopped and Can fly like.
 また、HAPS10は、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置130を備えている。なお、図2の例では主翼部101の長手方向の両端部に光アンテナ装置130を配置しているが、HAPS10の他の箇所に光アンテナ装置130を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信であってもよい。 The HAPS 10 also includes a three-dimensional directional optical antenna device 130 as a communication unit used for optical communication with another HAPS or an artificial satellite. In the example of FIG. 2, the optical antenna devices 130 are disposed at both ends in the longitudinal direction of the main wing portion 101, but the optical antenna devices 130 may be disposed at other locations of the HAPS 10. The communication unit used for optical communication with another HAPS or artificial satellite is not limited to the one that performs such optical communication, and may be a wireless communication using another method such as wireless communication using radio waves such as microwaves. Good.
 図3は、実施形態に係る通信システムに用いられるHAPS20の他の例を示す斜視図である。
 図3のHAPS20は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS20は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、中継通信局210とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、中継通信局210による無線中継処理が実行される。
FIG. 3 is a perspective view illustrating another example of the HAPS 20 used in the communication system according to the embodiment.
The HAPS 20 in FIG. 3 is an unmanned airship type HAPS, and has a large payload, so that a large-capacity battery can be mounted. The HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and an equipment housing 203 for housing mission equipment. Prepare. The relay communication station 210 and the battery 204 are housed inside the device housing unit 203. The electric power supplied from the battery 204 drives the motor of the propeller 202 to rotate, and the relay relay station 210 executes a wireless relay process.
 なお、飛行船本体201の上面に、太陽光発電機能を有するソーラーパネルを設け、ソーラーパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。 Note that a solar panel having a photovoltaic power generation function may be provided on the upper surface of the airship body 201, and the power generated by the solar panel may be stored in the battery 204.
 また、無人飛行船タイプのHAPS20も、他のHAPSや人工衛星と光通信に用いられる通信部としての3次元対応指向性の光アンテナ装置230を備えている。なお、図3の例では飛行船本体201の上面部及び機器収容部203の下面部に光アンテナ装置230を配置しているが、HAPS20の他の部分に光アンテナ装置230を配置してもよい。なお、他のHAPSや人工衛星と光通信に用いられる通信部は、このような光通信を行うものに限らず、マイクロ波などの電波による無線通信などの他の方式による無線通信を行うものであってもよい。 The unmanned airship type HAPS 20 also includes the three-dimensional directional optical antenna device 230 as a communication unit used for optical communication with other HAPS and artificial satellites. In the example of FIG. 3, the optical antenna device 230 is disposed on the upper surface of the airship main body 201 and the lower surface of the device housing 203, but the optical antenna device 230 may be disposed on another portion of the HAPS 20. The communication unit used for optical communication with another HAPS or artificial satellite is not limited to the one that performs such optical communication, and performs wireless communication using another method such as wireless communication using radio waves such as microwaves. There may be.
 図4は、実施形態に係る複数のHAPS10,20で上空に形成される無線ネットワークの一例を示す説明図である。
 複数のHAPS10,20は、上空で互いに光通信によるHAPS間通信ができるように構成され、3次元化したネットワークを広域にわたって安定に実現することができるロバスト性に優れた無線通信ネットワークを形成する。この無線通信ネットワークは、各種環境や各種情報に応じたダイナミックルーティングによるアドホックネットワークとして機能することもできる。前記無線通信ネットワークは、2次元又は3次元の各種トポロジーを有するように形成することができ、例えば、図4に示すようにメッシュ型の無線通信ネットワークであってもよい。
FIG. 4 is an explanatory diagram illustrating an example of a wireless network formed above the plurality of HAPSs 10 and 20 according to the embodiment.
The plurality of HAPSs 10 and 20 are configured to enable communication between HAPSs by optical communication with each other in the sky, and form a wireless communication network with excellent robustness capable of stably realizing a three-dimensional network over a wide area. This wireless communication network can also function as an ad hoc network by dynamic routing according to various environments and various information. The wireless communication network can be formed to have various two-dimensional or three-dimensional topologies. For example, the wireless communication network may be a mesh-type wireless communication network as shown in FIG.
 図5は、他の実施形態に係る通信システムの全体構成の一例を示す概略構成図である。なお、図5において、前述の図1と共通する部分については同じ符号を付し、その説明は省略する。 FIG. 5 is a schematic configuration diagram illustrating an example of the overall configuration of a communication system according to another embodiment. In FIG. 5, the same reference numerals are given to the same parts as those in FIG. 1 described above, and description thereof will be omitted.
 図5の実施形態では、HAPS10と移動通信網80のコアネットワークとの間の通信を、フィーダ局70及び低軌道の人工衛星72を介して行っている。この場合、人工衛星72とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。また、HAPS10と人工衛星72との間の通信については、レーザ光などを用いた光通信で行っている。 In the embodiment of FIG. 5, communication between the HAPS 10 and the core network of the mobile communication network 80 is performed via the feeder station 70 and the low-orbit artificial satellite 72. In this case, communication between the artificial satellite 72 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like. Further, communication between the HAPS 10 and the artificial satellite 72 is performed by optical communication using laser light or the like.
 図6は、実施形態に係るHAPS10,20の中継通信局110,210の一構成例を示すブロック図である。
 図5の中継通信局110,210はリピータータイプの中継通信局の例である。中継通信局110,210はそれぞれ、3Dセル形成アンテナ部111と、送受信部112と、フィード用アンテナ部113と、送受信部114と、リピーター部115と、監視制御部116と、電源部117とを備える。更に、中継通信局110,210はそれぞれ、HAPS間通信などに用いる光通信部125と、ビーム制御部126とを備える。
FIG. 6 is a block diagram illustrating a configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
The relay communication stations 110 and 210 in FIG. 5 are examples of repeater type relay communication stations. The relay communication stations 110 and 210 each include a 3D cell forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117. Prepare. Furthermore, each of the relay communication stations 110 and 210 includes an optical communication unit 125 used for communication between HAPSs and the like, and a beam control unit 126.
 3Dセル形成アンテナ部111は、セル形成目標空域40に向けて放射状のビーム100,200を形成するアンテナを有し、端末装置と通信可能な3次元セル41,42を形成する。送受信部112は、3Dセル形成アンテナ部111とともに第一無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、3次元セル41,42に在圏する端末装置に無線信号を送信したり端末装置から無線信号を受信したりする。3Dセル形成アンテナ部111及び送受信部112により、端末装置と通信するサービスリンクにおいて後述の複数のセクタセルからなる広域セルを形成する。 The # 3D cell forming antenna unit 111 has an antenna that forms the radial beams 100 and 200 toward the cell forming target airspace 40, and forms three- dimensional cells 41 and 42 that can communicate with the terminal device. The transmission / reception unit 112 constitutes a first wireless communication unit together with the 3D cell forming antenna unit 111, has a duplexer (DUP: Duplexer), an amplifier, etc., and has a three-dimensional cell 41 via the 3D cell forming antenna unit 111. , 42, a wireless signal is transmitted to and received from a terminal device. The 3D cell forming antenna unit 111 and the transmitting / receiving unit 112 form a wide area cell including a plurality of sector cells, which will be described later, in a service link for communicating with the terminal device.
 フィード用アンテナ部113は、地上又は海上のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、フィード用アンテナ部113とともに第二無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、フィード用アンテナ部113を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。 The feed antenna unit 113 has a directional antenna for wireless communication with the feeder station 70 on the ground or at sea. The transmission / reception unit 114 constitutes a second wireless communication unit together with the feed antenna unit 113, has a duplexer (DUP: Duplexer), an amplifier, etc., and transmits a wireless signal to the feeder station 70 via the feed antenna unit 113. , Or receives a wireless signal from the feeder station 70.
 リピーター部115は、端末装置との間で送受信される送受信部112の信号と、フィーダ局70との間で送受信される送受信部114の信号とを中継する。リピーター部115は、所定周波数の中継対象信号を所定のレベルまで増幅するアンプ機能を有する。リピーター部115は、中継対象信号の周波数を変換する周波数変換機能を有してもよい。 The repeater unit 115 relays a signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and a signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70. The repeater unit 115 has an amplifier function of amplifying a signal to be relayed having a predetermined frequency to a predetermined level. The repeater unit 115 may have a frequency conversion function of converting the frequency of the signal to be relayed.
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20内の各部の動作処理状況を監視したり各部を制御したりする。特に、監視制御部116は、制御プログラムを実行することにより、プロペラ103,202を駆動するモータ駆動部141を制御して、HAPS10,20を目標位置へ移動させ、また、目標位置近辺に留まるように制御する。 The monitoring control unit 116 is composed of, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPSs 10 and 20 and controls each unit by executing a program incorporated in advance. In particular, the monitoring control unit 116 controls the motor drive unit 141 that drives the propellers 103 and 202 by executing the control program to move the HAPSs 10 and 20 to the target positions and to stay near the target positions. To control.
 また、監視制御部116は、後述の複数のセクタセルのそれぞれをSFN(単一周波数ネットワーク)方式のセクタセル(SFNセル)とMFN方式(複数周波数ネットワーク)のセクタセル(ノーマルセル)との間で選択的に切り替えるセル切替手段としても機能する。 Further, the monitoring control unit 116 selectively converts each of a plurality of sector cells to be described later between an SFN (single frequency network) type sector cell (SFN cell) and an MFN type (multi frequency network) sector cell (normal cell). It also functions as cell switching means for switching to.
 電源部117は、バッテリー106,204から出力された電力をHAPS10,20内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。 (4) The power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPSs 10 and 20. The power supply unit 117 may have a function of storing electric power generated by a solar panel or the like or electric power supplied from the outside in the batteries 106 and 204.
 光通信部125は、レーザ光等の光通信媒体を介して周辺の他のHAPS10,20や人工衛星72と通信する。この通信により、ドローン60等の端末装置と移動通信網80との間の無線通信を動的に中継するダイナミックルーティングが可能になるとともに、いずれかのHAPSが故障したときに他のHAPSがバックアップして無線中継することにより移動通信システムのロバスト性を高めることができる。 The optical communication unit 125 communicates with the other HAPSs 10 and 20 and the artificial satellite 72 via an optical communication medium such as a laser beam. This communication enables dynamic routing for dynamically relaying wireless communication between a terminal device such as the drone 60 and the mobile communication network 80, and allows one HAPS to back up when one of the HAPSs fails. By performing the wireless relay, the robustness of the mobile communication system can be improved.
 ビーム制御部126は、HAPS間通信や人工衛星72との通信に用いるレーザ光などのビームの方向及び強度を制御したり、周辺の他のHAPS(中継通信局)との間の相対的な位置の変化に応じてレーザ光等の光ビームによる通信を行う他のHAPS(中継通信局)を切り替えるように制御したりする。この制御は、例えば、HAPS自身の位置及び姿勢、周辺のHAPSの位置などに基づいて行ってもよい。HAPS自身の位置及び姿勢の情報は、そのHAPSに組み込んだGPS受信装置、ジャイロセンサ、加速度センサなどの出力に基づいて取得し、周辺のHAPSの位置の情報は、移動通信網80に設けた遠隔制御装置85、又は、HAPS管理サーバやアプリケーションサーバ等のサーバ86から取得してもよい。 The beam control unit 126 controls the direction and intensity of a beam such as a laser beam used for inter-HAPS communication and communication with the artificial satellite 72, and controls the relative position with respect to another HAPS (relay communication station) in the vicinity. In response to the change, control is performed such that another HAPS (relay communication station) that performs communication using a light beam such as a laser beam is switched. This control may be performed based on, for example, the position and orientation of the HAPS itself, the position of the surrounding HAPS, and the like. The information on the position and orientation of the HAPS itself is obtained based on the output of a GPS receiver, a gyro sensor, an acceleration sensor, and the like incorporated in the HAPS, and the information on the position of the surrounding HAPS is obtained from a remote control provided on the mobile communication network 80. It may be obtained from the control device 85 or a server 86 such as a HAPS management server or an application server.
 図7は、実施形態に係るHAPS10,20の中継通信局110,210の他の構成例を示すブロック図である。
 図7の中継通信局110,210は基地局タイプの中継通信局の例である。
 なお、図7において、図6と同様な構成要素については同じ符号を付し、説明を省略する。図7の中継通信局110,210はそれぞれ、モデム部118を更に備え、リピーター部115の代わりに基地局処理部119を備える。更に、中継通信局110,210はそれぞれ、光通信部125とビーム制御部126とを備える。
FIG. 7 is a block diagram illustrating another configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
The relay communication stations 110 and 210 in FIG. 7 are examples of base station type relay communication stations.
In FIG. 7, the same components as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted. Each of the relay communication stations 110 and 210 in FIG. 7 further includes a modem unit 118 and includes a base station processing unit 119 instead of the repeater unit 115. Further, the relay communication stations 110 and 210 each include an optical communication unit 125 and a beam control unit 126.
 モデム部118は、例えば、フィーダ局70からフィード用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィード用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。 The modem unit 118 performs, for example, a demodulation process and a decoding process on a reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs a data signal output to the base station processing unit 119 side. Generate Further, the modem unit 118 performs an encoding process and a modulation process on the data signal received from the base station processing unit 119 side, and transmits the data signal to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格に準拠した方式に基づいてベースバンド処理を行うe-NodeBとしての機能を有する。基地局処理部119は、第5世代等の将来の移動通信の標準規格に準拠する方式で処理するものであってもよい。 The base station processing unit 119 has, for example, a function as an e-NodeB that performs baseband processing based on a method compliant with the LTE / LTE-Advanced standard. The base station processing unit 119 may perform processing by a method conforming to a standard for future mobile communication such as the fifth generation.
 基地局処理部119は、例えば、3次元セル41,42に在圏する端末装置から3Dセル形成アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、3Dセル形成アンテナ部111及び送受信部112を介して3次元セル41,42の端末装置に送信する送信信号を生成する。 The base station processing unit 119 performs, for example, demodulation processing and decoding processing on a reception signal received from the terminal device located in the three- dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. , And generates a data signal to be output to the modem unit 118 side. Further, the base station processing unit 119 performs an encoding process and a modulation process on the data signal received from the modem unit 118 side, and performs three- dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmitting / receiving unit 112. A transmission signal to be transmitted to the terminal device is generated.
 図8は、実施形態に係るHAPS10,20の中継通信局110,210の更に他の構成例を示すブロック図である。
 図8の中継通信局110,210はエッジコンピューティング機能を有する高機能の基地局タイプの中継通信局の例である。なお、図8において、図6及び図7と同様な構成要素については同じ符号を付し、説明を省略する。図8の中継通信局110,210はそれぞれ、図7の構成要素に加えてエッジコンピューティング部120を更に備える。
FIG. 8 is a block diagram showing still another configuration example of the relay communication stations 110 and 210 of the HAPSs 10 and 20 according to the embodiment.
The relay communication stations 110 and 210 in FIG. 8 are examples of a high-performance base station type relay communication station having an edge computing function. In FIG. 8, the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof will be omitted. Each of the relay communication stations 110 and 210 in FIG. 8 further includes an edge computing unit 120 in addition to the components in FIG.
 エッジコンピューティング部120は、例えば小型のコンピュータで構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20の中継通信局110,210における無線中継などに関する各種の情報処理を実行することができる。 The edge computing unit 120 is composed of, for example, a small computer, and can execute various types of information processing related to wireless relay in the relay communication stations 110 and 210 of the HAPSs 10 and 20 by executing a program incorporated in advance. it can.
 例えば、エッジコンピューティング部120は、3次元セル41,42に在圏する端末装置から受信したデータ信号に基づいて、そのデータ信号の送信先を判定し、その判定結果に基づいて通信の中継先を切り換える処理を実行する。より具体的には、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42に在圏する端末装置の場合は、そのデータ信号をモデム部118に渡さずに、基地局処理部119に戻して自身の3次元セル41,42に在圏する送信先の端末装置に送信するようにする。一方、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42以外の他のセルに在圏する端末装置の場合は、そのデータ信号をモデム部118に渡してフィーダ局70に送信し、移動通信網80を介して送信先の他のセルに在圏する送信先の端末装置に送信するようにする。 For example, the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three- dimensional cell 41, 42, and based on the determination result, determines the relay destination of the communication. Is executed. More specifically, when the transmission destination of the data signal output from base station processing section 119 is a terminal device located in its own three- dimensional cell 41 or 42, the data signal is not passed to modem section 118. Then, it returns to the base station processing unit 119 to transmit to the terminal device of the transmission destination located in its own three- dimensional cell 41, 42. On the other hand, when the transmission destination of the data signal output from base station processing section 119 is a terminal device located in a cell other than its own three- dimensional cell 41 or 42, the data signal is passed to modem section 118. The data is transmitted to the feeder station 70 and transmitted to the destination terminal device located in another cell of the destination via the mobile communication network 80.
 エッジコンピューティング部120は、3次元セル41,42に在圏する多数の端末装置から受信した情報を分析する処理を実行してもよい。この分析結果は3次元セル41,42に在圏する多数の端末装置に送信したり、移動通信網80に設けた遠隔制御装置85、又は、遠隔制御装置としてのHAPS管理サーバやアプリケーションサーバ(アプリサーバ)等のサーバ86などに送信したりしてもよい。 The edge computing unit 120 may execute a process of analyzing information received from a large number of terminal devices located in the three- dimensional cells 41 and 42. This analysis result is transmitted to a large number of terminal devices located in the three- dimensional cells 41 and 42, a remote control device 85 provided in the mobile communication network 80, or a HAPS management server or application server (application server) as a remote control device. Server 86 or the like.
 中継通信局110、210を介した端末装置との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、中継通信局110、210を介した端末装置との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、前記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、前記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。 The uplink and downlink duplex schemes of wireless communication with the terminal device via the relay communication stations 110 and 210 are not limited to a specific scheme. For example, a time division duplex (Time / Division / Duplex: TDD) scheme may be used. Alternatively, frequency division duplex (Frequency Division Duplex: FDD) may be used. In addition, the access method of wireless communication with the terminal device via the relay communication stations 110 and 210 is not limited to a specific method. For example, an FDMA (Frequency Division Multiple Multiple Access) method, a TDMA (Time Division Multiple Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or an OFDMA (Orthogonal Frequency Division Multiple Access). In addition, the wireless communication has functions such as diversity coding, transmission beamforming, and space division multiplexing (SDM), and simultaneously uses a plurality of antennas for both transmission and reception to achieve per unit frequency. MIMO (Multi-Input and Multi-Output) technology that can increase the transmission capacity of the MPU may be used. The MIMO technology may be an SU-MIMO (Single-User @ MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device, or one base station may transmit a plurality of signals. MU-MIMO (Multi-User @ MIMO) technology in which signals are transmitted to different terminal devices at the same time and the same frequency or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency may be used. .
 以下、端末装置と無線通信する通信中継装置が、中継通信局110を有するソーラープレーンタイプのHAPS10である場合について説明するが、以下の実施形態は、中継通信局210を有する無人飛行船タイプのHAPS20等の上空を移動可能な他の通信中継装置にも同様に適用できる。 Hereinafter, a case will be described in which a communication relay device that wirelessly communicates with a terminal device is a solar plane type HAPS 10 having a relay communication station 110. In the following embodiment, an unmanned airship type HAPS 20 having a relay communication station 210 will be described. The present invention can be similarly applied to other communication relay devices that can move over the sky.
 図9は、実施形態に係るHAPS10によって形成される複数のセクタセル401~407からなるサービスリンクの広域セル100Aの一例を示す説明図である。なお、図9は、サービスリンクにおける一つの広域セル100Aが7個のセクタセルで構成されている例を示しているが、広域セル100Aを構成するセクタセルの数は2~6個でもよいし、8個以上であってもよい。 FIG. 9 is an explanatory diagram illustrating an example of a service link wide area cell 100A including a plurality of sector cells 401 to 407 formed by the HAPS 10 according to the embodiment. Although FIG. 9 shows an example in which one wide area cell 100A in the service link is composed of seven sector cells, the number of sector cells constituting the wide area cell 100A may be two to six, or eight. The number may be more than one.
 図10は、実施形態に係る複数のHAPSによって連続配置するように形成される複数の広域セルの一例を示す説明図である。なお、図10では、地上又は海上における広域セル100A及びそれを構成するセクタセルのフットプリント状のエリアのみ図示しているが、そのフットプリント状のエリアとHAPS10との間には円錐状又は角錐状などの立体的な形状を有する3次元的な広域セル及びセクタセルが形成されている(図11~図13においても同様)。 FIG. 10 is an explanatory diagram showing an example of a plurality of wide area cells formed so as to be continuously arranged by a plurality of HAPSs according to the embodiment. Although FIG. 10 shows only the footprint area of the wide area cell 100A on the ground or the sea and the sector cells constituting the same, a cone or a pyramid is formed between the footprint area and the HAPS 10. A three-dimensional wide area cell and a sector cell having a three-dimensional shape such as those described above are formed (the same applies to FIGS. 11 to 13).
 図10の例では、日本列島の上空に14個のHAPS10を配置することにより、日本列島上に14個の広域セル100Aを連続配置させ、日本列島の全体にわたって上空のHAPS10を介した移動通信サービスを提供することができる。図中の日本列島内の太線は、高速鉄道である新幹線の移動経路(新幹線ルート)400を示している。 In the example of FIG. 10, 14 HAPSs 10 are arranged above the Japanese archipelago, so that 14 wide area cells 100 </ b> A are continuously arranged above the Japanese archipelago, and the mobile communication service via the HAPS 10 above the entire Japanese archipelago is provided. Can be provided. The bold line in the Japanese archipelago in the figure indicates the moving route (Shinkansen route) 400 of the Shinkansen that is a high-speed railway.
 本実施形態のように、複数のHAPS10を移動可能に上空に配置する場合、その通信中継装置で地上や海上に向けて形成される複数の広域セル100Aの広域セル間又はセクタセル間のセル境界でハンドオーバーが多発して通信品質の劣化や通信の切断が発生するおそれがある。特に、上空のHAPS10で形成される複数のセクタセルが、新幹線ルート400などの高速鉄道や高速道路などの車両移動経路に沿って形成される場合、上記ハンドオーバーの多発による通信品質の劣化などが発生しやすい。 When a plurality of HAPSs 10 are movably arranged in the sky as in the present embodiment, the communication relay device may be used at the cell boundary between the wide area cells of the plurality of wide area cells 100A formed toward the ground or the sea or between the sector cells. There is a risk that communication quality will deteriorate or communication will be disconnected due to frequent handovers. In particular, when a plurality of sector cells formed by the HAPS 10 in the sky are formed along a vehicle movement route such as a high-speed railway such as the Shinkansen route 400 or a highway, communication quality is deteriorated due to the frequent occurrence of the handover. It's easy to do.
 そこで、本実施形態のHAPS10が形成する複数のセクタセルは、HAPS10からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセル(以下「SFNセル」ともいう。)を含んでいる。この連続配置された複数のSFNセルは、互いに時間同期した状態で例えば直交周波数分割多重(OFDM)伝送により送信されるダウンリンク信号がセクタセル間で同一になり、単一のセルとして扱われるため、セクタセル間のハンドオーバーが発生しない。また、SFNセルのセル間のセル境界エリアでは時間同期した同一データの送信信号を端末装置が受信することにより合成利得が得られるため、セル境界エリアでの干渉がなくなるとともにSINR(所要信号対干渉・雑音電力比)が高まるので、通信品質の低下を防止できる。 Therefore, the plurality of sector cells formed by the HAPS 10 of the present embodiment are a plurality of SFNs (single frequency networks) that are continuously arranged and transmit signals of the same data in the downlink from the HAPS 10 in the same frequency and in time synchronization with each other. System sector cells (hereinafter also referred to as “SFN cells”). Since a plurality of SFN cells arranged continuously are time-synchronized with each other, downlink signals transmitted by, for example, orthogonal frequency division multiplexing (OFDM) transmission are the same among sector cells and are treated as a single cell. No handover between sector cells occurs. Further, in a cell boundary area between SFN cells, a combined gain is obtained by receiving a transmission signal of the same data synchronized in time, so that interference in the cell boundary area is eliminated and SINR (required signal versus interference) is obtained. (Noise power ratio) is increased, so that a decrease in communication quality can be prevented.
 図11は、実施形態に係る複数のHAPSによって高速鉄道(新幹線ルート)に沿って複数のSFNセルが連続配置するように形成される複数のセクタセルの他の例を示す説明図である。図11の例では、図中のハッチングを付したSFNセルを、車両と一緒に端末装置が高速移動する高速鉄道の新幹線ルート400に沿って形成し、新幹線ルート400をSFNセルでカバーすることにより、高速鉄道の車両と一緒に端末装置が高速移動することによるハンドオーバーの多発を防止している。 FIG. 11 is an explanatory diagram showing another example of a plurality of sector cells formed by a plurality of HAPSs according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway (Shinkansen route). In the example of FIG. 11, the hatched SFN cells in the figure are formed along the Shinkansen route 400 of the high-speed railway in which the terminal device moves at high speed together with the vehicle, and the Shinkansen route 400 is covered by the SFN cells. In addition, it is possible to prevent frequent handovers caused by the terminal device moving at high speed together with a high-speed rail vehicle.
 更に、図11の例では、各HAPS10が形成する複数のセクタセルのすべてをSFNセルにするのではなく、ハンドオーバーが多発しやすい新幹線ルート400に沿って位置するセクタセル(図11のハッチングを付したセクタセル)のみをSFNセルとしている。そして、他のセクタセルは、互いに異なる周波数により互いに異なるデータの信号を送信するMFN(複数周波数ネットワーク)方式のセクタセル(以下、「ノーマルセル」という。)とすることにより、複数のセクタセルのすべてをSFNセルにする場合に比して、HAPS10を介した通信キャパシティの低下を抑制できる。 Further, in the example of FIG. 11, not all of the plurality of sector cells formed by each HAPS 10 are SFN cells, but the sector cells located along the Shinkansen route 400 where handovers are likely to occur frequently (the hatched cells in FIG. (Sector cells) only are SFN cells. The other sector cells are MFN (multiple frequency network) type sector cells (hereinafter, referred to as “normal cells”) that transmit different data signals at different frequencies, so that all of the plurality of sector cells are SFN. As compared with the case where the cell is used, a decrease in communication capacity via the HAPS 10 can be suppressed.
 図12は、実施形態に係る複数のHAPS10によって高速鉄道に沿って複数のSFNセルが連続配置するように形成される複数のセクタセルの他の例を示す説明図である。図12の例では、図11とは異なり、多数の端末装置が集中する東京を中心とした関東大都市エリアをカバーするセクタセル403と、大阪を中心とした関西大都市エリアをカバーするセクタセル403を、SFNセルではなく、通信キャパシティを確保することができるノーマルセル403Nにしている。これにより、関東大都市エリア及び関西大都市エリアにおけるHAPS10を介した通信キャパシティの低下を抑制できる。 FIG. 12 is an explanatory diagram showing another example of a plurality of sector cells formed by a plurality of HAPSs 10 according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway. In the example of FIG. 12, unlike FIG. 11, a sector cell 403 covering the Kanto metropolitan area centering on Tokyo where many terminal devices are concentrated, and a sector cell 403 covering the Kansai metropolitan area centering on Osaka. , SFN cells, but normal cells 403N that can secure communication capacity. As a result, a decrease in communication capacity via the HAPS 10 in the Kanto metropolitan area and the Kansai metropolitan area can be suppressed.
 図13A及び図13Bはそれぞれ、実施形態に係るHAPS10によって高速鉄道に沿って複数のSFNセルが連続配置するように形成される複数のセクタセルの更に他の例を示す説明図である。図13AはHAPSが回転移動する前のSFNセルを含むセクタセルの配置の一例を示す説明図であり、図13Bは、HAPSが回転移動したときのセル切り替え制御後のSFNセルを含むセクタセルの配置の一例を示す説明図である。 FIGS. 13A and 13B are explanatory views showing still another example of a plurality of sector cells formed by the HAPS 10 according to the embodiment so that a plurality of SFN cells are continuously arranged along a high-speed railway. FIG. 13A is an explanatory diagram showing an example of the arrangement of the sector cells including the SFN cells before the HAPS rotationally moves. FIG. 13B is a diagram showing the arrangement of the sector cells including the SFN cells after the cell switching control when the HAPS rotationally moves. It is explanatory drawing which shows an example.
 図13Aにおいて、高速鉄道の新幹線ルート400に沿った3つのセクタセルの位置にはSFNセル401S,402S,403Sが形成され、他の4つのセクタセルの位置にはノーマルセル404N~407Nが形成されている。この状態から、図13Bに示すように、上空のHAPS10が図中矢印Mの下方向に移動するとともに図中矢印Rの左回転方向に約45度回転すると、2つのSFNセル401S,402Sが新幹線ルート400から外れ、2つのノーマルセル404N,405Nが新幹線ルート400に沿った位置になる。そこで、本例では、上空のHAPS10の移動及び回転の情報に基づいて、SFNセル401S,402Sをノーマルセル401N,402Nに切り替え、ノーマルセル404N,405NをSFNセル404S,405Sに切り替えるように制御している。このようにセル切り替え制御を行うことにより、HAPS10が移動したり回転したりした場合でも、新幹線ルート400に沿った位置にSFNセルを形成し、その他の位置にノーマルセルN~407Nを形成することができ、新幹線ルート400でのハンドオーバーの多発や隣接セルからの干渉の増大による通信品質の劣化を確実に抑制することができるとともに、新幹線ルート400以外での通信キャパシティの低下を確実に防止できる。 In FIG. 13A, SFN cells 401S, 402S, and 403S are formed at the positions of three sector cells along the Shinkansen route 400 of the high-speed railway, and normal cells 404N to 407N are formed at the positions of the other four sector cells. . From this state, as shown in FIG. 13B, when the HAPS 10 in the sky moves in the downward direction of the arrow M in the figure and rotates about 45 degrees in the counterclockwise direction of the arrow R in the figure, the two SFN cells 401S and 402S become bullet trains. Departing from the route 400, the two normal cells 404N and 405N are located along the Shinkansen route 400. Therefore, in this example, control is performed such that the SFN cells 401S and 402S are switched to the normal cells 401N and 402N, and the normal cells 404N and 405N are switched to the SFN cells 404S and 405S based on the information on the movement and rotation of the HAPS 10 in the sky. ing. By performing the cell switching control in this manner, even when the HAPS 10 moves or rotates, the SFN cell is formed at a position along the Shinkansen route 400 and the normal cells N to 407N are formed at other positions. And reliably prevent communication quality degradation due to frequent handovers on the Shinkansen route 400 and increase in interference from neighboring cells, and also reliably prevent a decrease in communication capacity other than the Shinkansen route 400 it can.
 図14は、実施形態に係るHAPS10におけるセクタセル切り替え制御の一例を示すフローチャートである。図14の例は、HAPS10が形成する複数のセクタセルそれぞれについて、セクタセル内に位置する端末装置とHAPS10の中継通信局110との間の下りのサービスリンクの無線通信のPRB(物理リソースブロック)使用率に基づいて、SFNセルとノーマルセルとの切り替えを行うセクタセル切り替え制御の例である。 FIG. 14 is a flowchart illustrating an example of the sector cell switching control in the HAPS 10 according to the embodiment. The example of FIG. 14 illustrates a PRB (physical resource block) usage rate of a downlink service link wireless communication between a terminal device located in the sector cell and the relay communication station 110 of the HAPS 10 for each of a plurality of sector cells formed by the HAPS 10. 5 is an example of sector cell switching control for switching between SFN cells and normal cells based on.
 図14において、HAPS10の中継通信局110は、自局が形成する複数のセクタセルのそれぞれについて、サービスリンクの無線通信のPRB(物理リソースブロック)使用率の情報を計算して取得する(S101)。PRB使用率は、当該セクタセルにおいて下りのサービスリンクで使用可能なPRBのうち、そのセクタセル内に位置する端末装置との無線通信に実際に使用されているPRBの割合である。PRB使用率の情報は、自局内に記憶されている情報を読み出して計算してもよいし、移動通信網側の装置(例えば、EPC又は遠隔制御装置85)から取得してもよい。 In FIG. 14, the relay communication station 110 of the HAPS 10 calculates and acquires information on the PRB (physical resource block) usage rate of the service link wireless communication for each of a plurality of sector cells formed by the HAPS 10 (S101). The PRB usage rate is a ratio of PRBs actually used for wireless communication with a terminal device located in the sector cell among PRBs available in a downlink service link in the sector cell. The information on the PRB usage rate may be calculated by reading information stored in the own station, or may be obtained from a device on the mobile communication network side (for example, the EPC or the remote control device 85).
 次に、中継通信局110は、PRB使用率と所定の第1の閾値THD1とを比較する(S102)。閾値THD1は、例えば10%であり、「SFNDLHIGHLOADTHD」というパラメータの値を用いてもよい。ここで、PRB使用率が閾値THD1よりも小さく(S102でYES)、かつ、現在のセクタセルがノーマルセルの場合(S103でYES)は、セクタセルをノーマルセルからSFNセルに切り替える(S104)。一方、PRB使用率が閾値THD1以上(S102でNO)、かつ、現在のセクタセルがSFNセルの場合(S105でYES)は、セクタセルをSFNセルからノーマルセルに切り替える(S106)。 Next, the relay communication station 110 compares the PRB usage rate with a predetermined first threshold value THD1 (S102). The threshold value THD1 is, for example, 10%, and a parameter value “SFNDLHIGHLOADTHD” may be used. Here, when the PRB usage rate is smaller than the threshold value THD1 (YES in S102) and the current sector cell is a normal cell (YES in S103), the sector cell is switched from a normal cell to an SFN cell (S104). On the other hand, if the PRB usage rate is equal to or higher than the threshold value THD1 (NO in S102) and the current sector cell is an SFN cell (YES in S105), the sector cell is switched from the SFN cell to a normal cell (S106).
 中継通信局110は、上記セクタセルの情報(PRB)の取得、判定及びセクタセルの切り替え制御(S101~S106)を、所定の判定周期(例えば、1~10秒)で繰り返し実行する(S107)。 (4) The relay communication station 110 repeatedly performs the acquisition and determination of the sector cell information (PRB) and the control of switching the sector cells (S101 to S106) at a predetermined determination cycle (for example, 1 to 10 seconds) (S107).
 図15は、実施形態に係るHAPS10におけるセクタセル切り替え制御の他の例を示すフローチャートである。図15の例は、HAPS10が形成する複数のセクタセルそれぞれについて、セクタセル内に位置する端末装置とHAPS10の中継通信局110との間の上りのサービスリンクの無線通信のPRB(物理リソースブロック)使用率に基づいて、SFNセルとノーマルセルとの切り替えを行うセクタセル切り替え制御の例である。 FIG. 15 is a flowchart illustrating another example of the sector cell switching control in the HAPS 10 according to the embodiment. In the example of FIG. 15, for each of a plurality of sector cells formed by the HAPS 10, the PRB (physical resource block) usage rate of the uplink service link wireless communication between the terminal device located in the sector cell and the relay communication station 110 of the HAPS 10 5 is an example of sector cell switching control for switching between SFN cells and normal cells based on.
 図15において、HAPS10の中継通信局110は、自局が形成する複数のセクタセルのそれぞれについて、サービスリンクの無線通信のPRB(物理リソースブロック)使用率の情報を計算して取得する(S201)。 In FIG. 15, the relay communication station 110 of the HAPS 10 calculates and obtains information on the PRB (physical resource block) usage rate of the service link wireless communication for each of a plurality of sector cells formed by the HAPS 10 (S201).
 次に、中継通信局110は、PRB使用率と所定の第2の閾値THD2(上限値)及び第3の閾値THD3(下限値)とを比較する(S202,S203)。第2の閾値THD2は例えば50%であり、第3の閾値THD3は10%である。ここで、PRB使用率が閾値THD2以下で閾値THD3よりも小さく(S201でNO,S203でYES)、かつ、現在のセクタセルがノーマルセルの場合(S204でYES)は、セクタセルをノーマルセルからSFNセルに切り替える(S205)。一方、PRB使用率が閾値THD2よりも大きく(S202でYES)、かつ、現在のセクタセルがSFNセルの場合(S206でYES)は、セクタセルをSFNセルからノーマルセルに切り替える(S207)。 Next, relay communication station 110 compares the PRB usage rate with predetermined second threshold value THD2 (upper limit value) and third threshold value THD3 (lower limit value) (S202, S203). The second threshold value THD2 is, for example, 50%, and the third threshold value THD3 is 10%. Here, when the PRB usage rate is equal to or less than threshold value THD2 and smaller than threshold value THD3 (NO in S201, YES in S203), and when the current sector cell is a normal cell (YES in S204), the sector cell is changed from a normal cell to an SFN cell. (S205). On the other hand, if the PRB usage rate is greater than threshold value THD2 (YES in S202) and the current sector cell is an SFN cell (YES in S206), the sector cell is switched from the SFN cell to a normal cell (S207).
 中継通信局110は、上記セクタセルの情報(PRB使用率)の取得、判定及びセクタセルの切り替え制御(S201~S207)を、所定の判定周期(例えば、1~10秒)で繰り返し実行する(S208)。 The relay communication station 110 repeatedly performs the acquisition and determination of the sector cell information (PRB usage rate) and the switching control of the sector cells (S201 to S207) at a predetermined determination cycle (for example, 1 to 10 seconds) (S208). .
 なお、図14及び図15の制御例では、セクタセルのPRB使用率に基づいてセクタセルの切り替え制御を行っているが、セクタセルのPRB使用率以外の情報に基づいてセクタセルの切り替え制御を行ってもよい。例えば、セクタセルのトラヒック量が所定の閾値以上の高トラヒックの場合にノーマルセルに切り替え、セクタセルのトラヒック量が所定の閾値よりも低い低トラヒックの場合にSFNセルに切り替えるように制御してもよい。 In the control examples of FIGS. 14 and 15, the switching control of the sector cell is performed based on the PRB usage rate of the sector cell. However, the switching control of the sector cell may be performed based on information other than the PRB usage rate of the sector cell. . For example, control may be performed so as to switch to a normal cell when the traffic volume of a sector cell is higher than or equal to a predetermined threshold, and to switch to an SFN cell when the traffic volume of the sector cell is lower than a predetermined threshold.
 図16は、実施形態に係るHAPS10におけるセクタセル切り替え制御の更に他の例を示すシーケンス図である。図16の例は、遠隔制御装置85からの制御情報に基づいてHAPS10におけるセクタセル切り替えを行う遠隔制御の例である。 FIG. 16 is a sequence diagram showing still another example of the sector cell switching control in the HAPS 10 according to the embodiment. The example of FIG. 16 is an example of remote control for performing sector cell switching in the HAPS 10 based on control information from the remote control device 85.
 図15において、HAPS10の中継通信局110は、自局が形成する複数のセクタセルのそれぞれについて、サービスリンクの無線通信のPRB(物理リソースブロック)使用率などの通信情報を計算して取得し(S301)、自局の現在位置、飛行速度、飛行方向などの装置状態情報とともに、遠隔制御装置85に送信する(S302)。 In FIG. 15, the relay communication station 110 of the HAPS 10 calculates and acquires communication information such as a PRB (physical resource block) usage rate of service link wireless communication for each of a plurality of sector cells formed by itself (S301). ), And transmits to the remote control device 85 together with device status information such as the current position, flight speed, and flight direction of the own station (S302).
 遠隔制御装置85は、HAPS10の中継通信局110から受信したPRB使用率などの通信情報及びHAPS10の現在位置、飛行速度、飛行方向などの装置状態情報、前述の新幹線ルートなどの車両移動経路の位置情報などに基づいて、HAPS10が形成する各セクタセルについて、SFNセルとノーマルセルとの間のセル切り替え制御情報を決定し(S303)、そのセル切り替え制御情報をHAPS10の中継通信局110に送信する(S304)。 The remote control device 85 includes communication information such as the PRB usage rate received from the relay communication station 110 of the HAPS 10, device status information such as the current position, flight speed, and flight direction of the HAPS 10, and the position of the vehicle movement route such as the aforementioned Shinkansen route. Based on the information and the like, cell switching control information between SFN cells and normal cells is determined for each sector cell formed by HAPS 10 (S303), and the cell switching control information is transmitted to relay communication station 110 of HAPS 10 (S303). S304).
 HAPS10の中継通信局110は、遠隔制御装置85から受信したセル切り替え制御情報に基づいて、自局が形成する各セクタセルについて、SFNセルとノーマルセルとの間のセル切り替え制御を実行する。 The relay communication station 110 of the HAPS 10 executes the cell switching control between the SFN cell and the normal cell for each sector cell formed by the own station based on the cell switching control information received from the remote control device 85.
 中継通信局110は、上記セクタセルの通信情報の取得・送信及びセクタセルの遠隔切り替え制御(S301~S2305)を、所定の判定周期(例えば、1~10秒)で繰り返し実行するようにしてもよい。 (4) The relay communication station 110 may repeatedly execute the acquisition / transmission of the communication information of the sector cell and the remote switching control of the sector cell (S301 to S2305) at a predetermined determination cycle (for example, 1 to 10 seconds).
 なお、図15の例では、遠隔制御装置85が、HAPS10の中継通信局110が形成する広域セル100A内の複数のセクタセルにおけるセル切り替えの遠隔制御を行っているが、例えば図11に例示するように複数のHAPS10間でSFNセルを構成するように遠隔制御してもよい。この場合、遠隔制御装置85は、複数のHAPS10のそれぞれが形成する複数のセクタセルについて、各種情報(例えば、PRB使用率などの通信情報、HAPS10の現在位置、飛行速度、飛行方向などの装置状態情報、新幹線ルートなどの車両移動経路の位置情報)を取得し、SFNセルとノーマルセルとの間のセル切り替え制御情報を決定する。そして、遠隔制御装置85は、決定したセル切り替え制御情報を各HAPS10の中継通信局110に送信する。 In the example of FIG. 15, the remote control device 85 performs remote control of cell switching in a plurality of sector cells in the wide area cell 100A formed by the relay communication station 110 of the HAPS 10, for example, as illustrated in FIG. 11. May be remotely controlled so that an SFN cell is configured between a plurality of HAPSs 10. In this case, the remote control device 85 transmits various kinds of information (for example, communication information such as a PRB usage rate, device status information such as a current position, a flight speed, and a flight direction of the HAPS 10) to a plurality of sector cells formed by each of the plurality of HAPSs 10. , Position information of a vehicle movement route such as a Shinkansen route), and cell switching control information between an SFN cell and a normal cell is determined. Then, the remote control device 85 transmits the determined cell switching control information to the relay communication station 110 of each HAPS 10.
 なお、上記遠隔制御装置85の機能は、互いに連携してセルを形成する複数のHAPS10の中継通信局110のいずれかに持たせてもよい。 The function of the remote control device 85 may be provided in any one of the relay communication stations 110 of the plurality of HAPSs 10 that form a cell in cooperation with each other.
 また、上記各実施形態では、新幹線ルート400に沿って複数のSFNセルを選択的に形成した例を示したが、SFNセルを形成する位置はこれに限定されるものではない。例えば、端末装置を含む自動車などの車両が移動する移動経路としての高速道路に沿って複数のSFNセルを選択的に形成してもよい。 Also, in each of the above-described embodiments, an example has been described in which a plurality of SFN cells are selectively formed along the Shinkansen route 400. However, the positions where SFN cells are formed are not limited thereto. For example, a plurality of SFN cells may be selectively formed along a highway as a moving route along which a vehicle such as an automobile including a terminal device moves.
 なお、本明細書で説明された処理工程並びにHAPS10,20等の通信中継装置の中継通信局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(ユーザ装置、移動局、通信端末)、基地局及び基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。 The processing steps described in this specification and the relay communication station, feeder station, gateway station, management device, monitoring device, remote control device, server, terminal device (user device, mobile device, etc.) of the communication relay device such as the HAPS 10 and 20 are described. The components of the station, the communication terminal), the base station, and the base station device can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
 ハードウェア実装については、実体(例えば、中継通信局、フィーダ局、ゲートウェイ局、基地局、基地局装置、中継通信局装置、端末装置(ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 For hardware implementation, entities (eg, relay communication station, feeder station, gateway station, base station, base station device, relay communication station device, terminal device (user device, mobile station, communication terminal), management device, monitoring device) , A remote control device, a server, a hard disk drive device, or an optical disk drive device), one or more application-specific ICs (ASICs), such as processing units used to implement the steps and components. , Digital signal processor (DSP), digital signal processor (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device, book Features described in the specification Designed other electronic units to run, computer, or may be implemented in a combination thereof.
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Also, for a firmware and / or software implementation, any means such as a processing unit used to implement the components may include programs (eg, procedures, functions, modules, instructions, etc.) that perform the functions described herein. , Etc.). In general, any computer / processor readable medium that explicitly embodies firmware and / or software code is a means such as a processing unit used to implement the steps and components described herein. May be used to implement For example, firmware and / or software code may be stored in a memory, for example in a control device, and executed by a computer or a processor. The memory may be implemented inside a computer or a processor, or may be implemented outside a processor. Further, the firmware and / or software code includes, for example, a random access memory (RAM), a read only memory (ROM), a nonvolatile random access memory (NVRAM), a programmable read only memory (PROM), and an electrically erasable PROM (EEPROM). ), A FLASH memory, a floppy disk, a compact disk (CD), a digital versatile disk (DVD), a magnetic or optical data storage device, etc. Good. The code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であれよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。 The medium may be a non-transitory recording medium. Further, the code of the program may be executable by being read by a computer, a processor, or another device or an apparatus machine, and its format is not limited to a specific format. For example, the code of the program may be any of a source code, an object code, and a binary code, and may be a mixture of two or more of those codes.
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Also, descriptions of the embodiments disclosed herein are provided to enable one of ordinary skill in the art to make or use the present disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the present disclosure. Therefore, the present disclosure is not limited to the examples and designs described herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
 10 HAPS(ソーラープレーンタイプ)
 20 HAPS(飛行船タイプ)
 40 セル形成目標空域
 41,42,43 3次元セクタセル
 50 HAPSが位置する空域
 60 ドローン
 61 端末装置
 65 飛行機
 70 フィーダ局
 72 人工衛星
 80 移動通信網
 85 遠隔制御装置(管制センター、コントロールセンター)
 86 サーバ
 90 基地局(eNodeB)
 100,200、300 ビーム
 100A 広域セクタセル
 110,210 中継通信局
 401~407 セクタセル
10 HAPS (Solar plane type)
20 HAPS (airship type)
40 Cell formation target airspace 41, 42, 43 Three-dimensional sector cell 50 Airspace where HAPS is located 60 Drone 61 Terminal device 65 Airplane 70 Feeder station 72 Artificial satellite 80 Mobile communication network 85 Remote control device (control center, control center)
86 server 90 base station (eNodeB)
100, 200, 300 beams 100A Wide area sector cell 110, 210 Relay communication station 401-407 sector cell

Claims (17)

  1.  端末装置と無線通信する通信中継装置であって、
     自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載され、前記端末装置と無線通信可能な複数のセクタセルからなる広域セルを形成する中継通信局を備え、
     前記中継通信局が形成する前記複数のセクタセルは、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むことを特徴とする通信中継装置。
    A communication relay device that wirelessly communicates with a terminal device,
    Equipped with a relay communication station mounted on a floating body capable of moving over the sky by autonomous control or control from the outside, forming a wide area cell consisting of a plurality of sector cells capable of wireless communication with the terminal device,
    The plurality of sector cells formed by the relay communication station are a plurality of SFNs (single-frequency networks) that are continuously arranged and transmit signals of the same data in the downlink from the relay communication station in a time-synchronized manner with the same frequency. A communication relay device comprising:
  2.  請求項1の通信中継装置において、
     前記複数のSFN方式のセクタセルは、端末装置を含む車両が移動する移動経路に沿って連続的に形成されていることを特徴とする通信中継装置。
    The communication relay device according to claim 1,
    The communication relay device, wherein the plurality of SFN sector cells are continuously formed along a moving route along which a vehicle including a terminal device moves.
  3.  請求項1又は2の通信中継装置において、
     前記中継通信局が形成する前記複数のセクタセルは、前記複数のSFN方式のセクタセルと、前記中継通信局からのダウンリンクにおいて互いに異なる周波数により互いに異なるデータの信号を送信する複数のMFN(複数周波数ネットワーク)方式のセクタセルとを含むことを特徴とする通信中継装置。
    The communication relay device according to claim 1 or 2,
    The plurality of sector cells formed by the relay communication station are a plurality of SFN sector cells and a plurality of MFNs (multi-frequency networks) that transmit different data signals at different frequencies in downlink from the relay communication station. A communication relay device comprising:
  4.  請求項3の通信中継装置において、
     前記中継通信局が形成する前記複数のセクタセルのそれぞれを前記SFN方式のセクタセルと前記MFN方式のセクタセルとの間で選択的に切り替えるセル切替手段を備えることを特徴とする通信中継装置。
    The communication relay device according to claim 3,
    A communication relay device comprising: a cell switching unit that selectively switches each of the plurality of sector cells formed by the relay communication station between the SFN sector cell and the MFN sector cell.
  5.  請求項4の通信中継装置において、
     前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置と前記中継通信局との間の無線通信のPRB(物理リソースブロック)の使用率に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行うことを特徴とする通信中継装置。
    The communication relay device according to claim 4,
    In each of the plurality of sector cells, the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. A communication relay device for switching between a sector cell and a sector cell of the MFN system.
  6.  請求項4の通信中継装置において、
     前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置との間の無線通信のトラヒック状況に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行うことを特徴とする通信中継装置。
    The communication relay device according to claim 4,
    The cell switching unit performs switching between the SFN sector cell and the MFN sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. A communication relay device characterized by the above-mentioned.
  7.  端末装置と無線通信する複数の通信中継装置を備えたシステムであって、
     前記複数の通信中継装置はそれぞれ、自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載され、前記端末装置と無線通信可能な複数のセクタセルからなる広域セルを形成する中継通信局を備え、
     前記複数の通信中継装置の中継通信局が形成する複数のセクタセルは、前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むことを特徴とするシステム。
    A system including a plurality of communication relay devices that wirelessly communicate with a terminal device,
    The plurality of communication relay devices are each mounted on a floating body that can move over the sky by autonomous control or control from the outside, and form a relay communication station that forms a wide area cell including a plurality of sector cells that can wirelessly communicate with the terminal device. With
    The plurality of sector cells formed by the relay communication stations of the plurality of communication relay devices are a plurality of consecutively arranged SFNs that transmit the same data signal in the downlink from the relay communication station in a state of being time-synchronized with each other at the same frequency. A system comprising (single frequency network) type sector cells.
  8.  請求項7のシステムにおいて、
     前記複数のSFN方式のセクタセルは、前記複数の通信中継装置のうち互いに隣り合う複数の通信中継装置によって連続的に形成されていることを特徴とするシステム。
    The system of claim 7,
    The system according to claim 1, wherein the plurality of SFN-type sector cells are continuously formed by a plurality of adjacent communication relay devices among the plurality of communication relay devices.
  9.  請求項7又は8のシステムにおいて、
     前記複数のSFN方式のセクタセルは、端末装置を含む車両が移動する移動経路に沿って連続的に形成されていることを特徴とするシステム。
    The system according to claim 7 or 8,
    The system according to claim 1, wherein the plurality of SFN-type sector cells are continuously formed along a moving path along which a vehicle including a terminal device moves.
  10.  請求項7乃至8のいずれかのシステムにおいて、
     前記複数の通信中継装置の中継通信局が形成する複数のセクタセルは、前記複数のSFN方式のセクタセルと、前記中継通信局からのダウンリンクにおいて互いに異なる周波数により互いに異なるデータの信号を送信する複数のMFN(複数周波数ネットワーク)方式のセクタセルとを含むことを特徴とするシステム。
    The system according to any one of claims 7 to 8,
    The plurality of sector cells formed by the relay communication stations of the plurality of communication relay devices are a plurality of sector cells of the SFN scheme and a plurality of different cells transmitting different data signals at different frequencies in a downlink from the relay communication station. A multi-frequency network (MFN) sector cell.
  11.  請求項10のシステムにおいて、
     前記複数の通信中継装置の中継通信局が形成する複数のセクタセルのそれぞれを、前記複数の通信中継装置それぞれの前記中継通信局が形成するセクタセルを前記SFN方式のセクタセルと前記MFN方式のセクタセルとの間で切り替えるセル切替手段を備えることを特徴とするシステム。
    The system of claim 10,
    Each of the plurality of sector cells formed by the relay communication stations of the plurality of communication relay devices is referred to as a sector cell formed by the relay communication station of each of the plurality of communication relay devices. A system comprising cell switching means for switching between cells.
  12.  請求項11のシステムにおいて、
     前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置と前記中継通信局との間の無線通信のPRB(物理リソースブロック)の使用率に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行うことを特徴とするシステム。
    The system of claim 11,
    In each of the plurality of sector cells, the cell switching unit uses the SFN scheme based on a PRB (physical resource block) usage rate of wireless communication between a terminal device located in the sector cell and the relay communication station. A system for switching between a sector cell and the MFN scheme sector cell.
  13.  請求項11のシステムにおいて、
     前記セル切替手段は、前記複数のセクタセルそれぞれにおいて、前記セクタセル内に位置する端末装置との間の無線通信のトラヒック状況に基づいて、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを行うことを特徴とするシステム。
    The system of claim 11,
    The cell switching unit performs switching between the SFN sector cell and the MFN sector cell in each of the plurality of sector cells based on a traffic situation of wireless communication with a terminal device located in the sector cell. A system characterized in that:
  14.  請求項7乃至13いずれかのシステムにおいて、
     前記複数の通信中継装置を遠隔的に制御する遠隔制御装置を備え、
     前記遠隔制御装置は、前記複数の通信中継装置の少なくとも一つの通信中継装置に、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを制御するための制御情報を送信することを特徴とするシステム。
    The system according to any one of claims 7 to 13,
    A remote control device for remotely controlling the plurality of communication relay devices,
    The remote control device transmits, to at least one of the plurality of communication relay devices, control information for controlling switching between the SFN type sector cell and the MFN type sector cell. system.
  15.  請求項7乃至13のいずれかのシステムにおける前記複数の通信中継装置を遠隔的に制御する遠隔制御装置であって、
     前記複数の通信中継装置の少なくとも一つの通信中継装置に、前記SFN方式のセクタセルと前記MFN方式のセクタセルとの切り替えを制御するための制御情報を送信することを特徴とする遠隔制御装置。
    A remote control device for remotely controlling the plurality of communication relay devices in the system according to claim 7,
    A remote control apparatus for transmitting control information for controlling switching between the SFN-based sector cell and the MFN-based sector cell to at least one of the plurality of communication relay apparatuses.
  16.  端末装置との間で無線通信を行う中継通信局が自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載された通信中継装置における前記中継通信局による複数のセクタセルからなる広域セルの形成を制御する方法であって、
     前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むように前記複数のセクタセルを形成することを有することを特徴とする方法。
    A wide area cell comprising a plurality of sector cells by the relay communication station in a communication relay device mounted on a floating body capable of moving over the sky by autonomous control or external control by a relay communication station performing wireless communication with a terminal device A method for controlling the formation of
    The plurality of sector cells are arranged so as to include a plurality of SFN (single frequency network) type sector cells which are continuously arranged and transmit the same data signal in the downlink from the relay communication station in the same frequency and time synchronized with each other. A method comprising forming.
  17.  端末装置との間で無線通信を行う中継通信局が自律制御により又は外部からの制御により上空を移動可能な浮揚体に搭載された通信中継装置における前記中継通信局による複数のセクタセルからなる広域セルの形成の制御を、コンピュータ又はプロセッサに実行させるためのプログラムであって、
     前記中継通信局からのダウンリンクにおいて同一周波数により互いに時間同期した状態で同一データの信号を送信する連続配置された複数のSFN(単一周波数ネットワーク)方式のセクタセルを含むように前記複数のセクタセルを形成するためのプログラムコードを有することを特徴とするプログラム。
    A wide area cell comprising a plurality of sector cells by the relay communication station in a communication relay device mounted on a floating body capable of moving over the sky by autonomous control or external control by a relay communication station performing wireless communication with a terminal device A program for causing a computer or a processor to execute the control of the formation of
    The plurality of sector cells are arranged so as to include a plurality of SFN (single frequency network) type sector cells which are continuously arranged and transmit the same data signal in the downlink from the relay communication station in the same frequency and time synchronized with each other. A program having a program code for forming.
PCT/JP2019/027135 2018-07-10 2019-07-09 Single frequency network cell configuration using haps WO2020013176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-130734 2018-07-10
JP2018130734A JP2020010219A (en) 2018-07-10 2018-07-10 Single frequency network cell configuration using HAPS

Publications (1)

Publication Number Publication Date
WO2020013176A1 true WO2020013176A1 (en) 2020-01-16

Family

ID=69141521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027135 WO2020013176A1 (en) 2018-07-10 2019-07-09 Single frequency network cell configuration using haps

Country Status (2)

Country Link
JP (1) JP2020010219A (en)
WO (1) WO2020013176A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182434A1 (en) * 2022-03-25 2023-09-28 ソニーグループ株式会社 Communication device, communication method, and communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7171648B2 (en) 2020-05-07 2022-11-15 Hapsモバイル株式会社 Optical communication device, program, system, and optical communication method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519304A (en) * 2003-10-24 2007-07-12 クゥアルコム・インコーポレイテッド Local and wide area transmissions in wireless broadcast networks.
JP2015518335A (en) * 2012-04-13 2015-06-25 インテル・コーポレーション A supported self-optimizing wireless network that is optimized for energy, mobility and capacity
US20160156406A1 (en) * 2014-08-18 2016-06-02 Sunlight Photonics Inc. Distributed airborne wireless communication services

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3366810B2 (en) * 1996-08-21 2003-01-14 株式会社エヌ・ティ・ティ・ドコモ Mobile communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007519304A (en) * 2003-10-24 2007-07-12 クゥアルコム・インコーポレイテッド Local and wide area transmissions in wireless broadcast networks.
JP2015518335A (en) * 2012-04-13 2015-06-25 インテル・コーポレーション A supported self-optimizing wireless network that is optimized for energy, mobility and capacity
US20160156406A1 (en) * 2014-08-18 2016-06-02 Sunlight Photonics Inc. Distributed airborne wireless communication services

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182434A1 (en) * 2022-03-25 2023-09-28 ソニーグループ株式会社 Communication device, communication method, and communication system

Also Published As

Publication number Publication date
JP2020010219A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
AU2018267309B2 (en) Inter-haps communication and high-capacity multi-cell haps for constructing three-dimensionalized network of fifth- generation communication
CA3090214C (en) Haps cooperative flight system
JP6898258B2 (en) Communication system and wireless relay device
JP6760982B2 (en) Wireless repeater and communication system
JP6721618B2 (en) Communication system, gateway station and base station
WO2019235329A1 (en) Cell optimization using remote control over flight control communication circuit for haps
WO2020013176A1 (en) Single frequency network cell configuration using haps
OA19809A (en) Inter-HAPS communication that builds three-dimensionally formed network of fifthgeneration communication, and large-capacity and multi-cell captive airship-type HAPS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834291

Country of ref document: EP

Kind code of ref document: A1