WO2020013019A1 - Rotor blade support structure for electrical generator - Google Patents

Rotor blade support structure for electrical generator Download PDF

Info

Publication number
WO2020013019A1
WO2020013019A1 PCT/JP2019/026211 JP2019026211W WO2020013019A1 WO 2020013019 A1 WO2020013019 A1 WO 2020013019A1 JP 2019026211 W JP2019026211 W JP 2019026211W WO 2020013019 A1 WO2020013019 A1 WO 2020013019A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
rotor
case
support structure
shaft
Prior art date
Application number
PCT/JP2019/026211
Other languages
French (fr)
Japanese (ja)
Inventor
広平 小野
近藤 博光
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2020013019A1 publication Critical patent/WO2020013019A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a rotor supporting structure for a generator, and to a technique applied to a wind power generator and a hydroelectric generator.
  • Patent Document 1 Since a wind power generator is generally installed in a natural environment and operates basically using irregular wind energy as a power, a relatively large load acts on components of the wind power generator (Patent Document 1, 2).
  • FIG. 5 is a sectional view showing the arrangement and configuration of a generator and the like used in a conventional vertical axis wind turbine.
  • a bending load generated by the wind pressing the wind receiving surface of the blade 50a is generated.
  • the bending load and the generated torque are received by the generator shaft 51a and the bearing 52 of the generator 51, and the diameter of the shaft is increased to cope with this.
  • FIG. 6 shows a structure in which the intermediate shaft 53 is set to reduce the bending load acting on the generator shaft 51a of the generator 51, and the load is not directly received by the generator shaft 51a of the generator 51. In this case, the bending load can be absorbed by the intermediate shaft 53, but the distance between the shafts increases, and the entire device becomes larger.
  • the power generation torque is relatively stable because the moment of inertia of the rotor impedes rapid changes, while the bending load that the wind pushes against the wind receiving surface is extremely shocking. In the calculation, it is necessary to estimate many static effects, and as a result, the shaft diameter must be increased.
  • Patent Document 3 some large wind turbines have an assist mechanism for improving startability (Patent Document 3), but it is difficult to provide an assist mechanism for a small wind turbine from the viewpoint of cost.
  • ⁇ Factors attributable to the startability of a wind turbine without an assist mechanism include friction loss, inertia loss, and viscous loss.
  • friction loss is dominant because the problem before starting movement is a problem.
  • friction loss occurs from an oil seal, a bearing, and the like, it has been technically shown that in both cases, the friction loss largely depends on the shaft diameter. Therefore, suppressing the bending load unnecessary for power generation and reducing the shaft diameter leads to an improvement in startability.
  • An object of the present invention is to provide a rotor supporting structure for a generator that can improve the startability of a power generator and improve power generation efficiency.
  • the rotor support structure for a generator rotatably supports a vertical shaft type rotor, and transmits the rotation of the rotor to a generator or a gearbox located below the rotor.
  • Rotor support structure of A cylindrical bearing case is rotatably mounted on the outer periphery of the case of the generator or the gearbox via a ring-shaped bearing, and the bearing case is coaxially coupled to the rotating blade and the generator Or the input shaft of the gearbox.
  • a cylindrical bearing case is rotatably installed on the outer periphery of the case of the generator or the gearbox via a ring-shaped bearing, and this bearing case is connected to the rotor blades and the power generation of the generator. Connected to the input shaft of the gearbox or gearbox. For this reason, a load other than the rotational force generated when the rotor blades receive wind power or hydraulic power, that is, a bending load acting on the generator shaft or the input shaft of the gearbox, can be received by the bearing case and the bearing. In this case, it becomes possible to increase the section modulus of the structure as compared with receiving a bending load on the shaft, and the bearing only needs to have a small load capacity.
  • the generator shaft or the input shaft of the gearbox is connected to the bearing case and is not directly connected to the rotor, the bending load hardly acts, and therefore, only the torsional load, which is the power generation torque, is applied. This can be taken into consideration, and the shaft diameter can be reduced. As a result, the friction loss of the generator or the gearbox can be reduced, the startability of the power generator can be improved, and the power generation efficiency can be improved.
  • the bearing case may be connected to a generator shaft of the generator or an input shaft of the gearbox via a torque transmission coupling. Even when the generator shaft or the input shaft of the gearbox and the rotor are provided coaxially, a deviation in coaxiality may occur due to an installation error or aging deterioration. In this case, due to the alignment of the torque transmitting coupling, the coaxiality is adjusted to a desired value by absorbing a deviation of the coaxiality due to an installation error between the generator shaft or the input shaft of the gearbox and the rotating blade or deterioration over time. Can be secured. Therefore, the friction loss of the generator or the gearbox can be further reduced, and the startability of the power generator can be improved.
  • the bearing case includes a cylindrical case main body, and an end plate provided at one axial end of the case main body and coupled with the rotating blade, and the end plate is fitted to the case main body with an intaglio. You may. According to this configuration, since the bearing case and the rotor are coaxial, and the rotor is coupled to the end plate of the bearing case, the end plate and the rotor are coaxial. Further, since a cylindrical case body is rotatably installed via bearings on the outer periphery of the case of the generator or the speed-up gear, the input shaft of the generator shaft or the speed-up gear rotatably supported by the case, Desired coaxiality is secured with respect to the axis of the case body.
  • the end plate is fitted to the case body, the coaxiality between the generator shaft or the input shaft of the gearbox and the rotor can be easily secured to a desired value, thereby reducing costs. Can be planned. Therefore, the friction loss of the generator or the gearbox can be further reduced, and the startability of the power generator can be improved.
  • An annular seal member may be provided at a fitting portion between the case body and the end plate. In this case, the sealing property in the bearing case is sufficiently ensured, and the life of the generator or the gearbox can be extended.
  • the bearing case may be provided with one or both of a concave portion and a convex portion for increasing the surface area. In this case, since the surface area of the bearing case increases, heat radiation from the bearing case is promoted.
  • a slit may be provided at a position other than the bearing fitting portion of the bearing case.
  • a fan for heat dissipation may be provided in the generator or the speed increaser. In this case, for example, by rotating the fan in synchronization with the rotation of the generator or the gearbox, heat radiation of the generator or the gearbox can be promoted.
  • FIG. 1 shows an example in which the rotor support structure of the generator is applied to a vertical axis wind turbine type wind power generator.
  • the vertical axis wind turbine type wind turbine includes a rotor 1, a generator 2, and a rotor support 3.
  • the rotor 1 has a plurality of blades 1a extending in the vertical direction and a support 1b.
  • the rotary wing 1 is of a lift type that rotates by the lift received by the blade 1a.
  • a plurality of blades 1a are attached to a rotor support 3 described later via a support 1b extending in the horizontal direction.
  • the number of the blades 1a is, for example, two, and is provided at a position having a phase difference of 180 ° with respect to the rotation axis L.
  • the number of blades 1a may be three or more.
  • the generator 2 is located below the rotor 1.
  • the generator 2 is provided in a bearing case 4 of the rotor support 3.
  • the generator 2 generates electric power by rotating the generator shaft 2 a by the rotation of the rotor 1.
  • the generator 2 is, for example, a three-phase AC generator of a permanent magnet synchronous type, an induction type or the like, or a single-phase AC generator, and includes a case 5, a stator 2b, a rotor 2c, a bearing 6 in the generator, and a generator shaft 2a. Have.
  • the case 5 has a cylindrical shape extending in the up-down direction, and the lower end in the axial direction of the case 5 is supported and attached to the support plate 7.
  • a generator shaft 2a is rotatably supported on the inner peripheral surface of the case 5 via generator inner bearings 6,6.
  • the bearing 6 in the generator is a rolling bearing such as a deep groove ball bearing, an angular ball bearing, and a tapered roller bearing.
  • the stator 2b is fixed to the inner peripheral surface of the case 5, and the rotor 2c is fixed to the outer peripheral surface of the generator shaft 2a.
  • the rotor 2c faces the stator 2b with a predetermined gap therebetween.
  • the generator 2 When the rotor 2c rotates together with the generator shaft 2a, the generator 2 generates power.
  • the power generated by the generator 2 is supplied to an external power system via a wiring (not shown).
  • the rotor support section 3 rotatably supports the rotor 1 and transmits the rotation of the rotor 1 to the generator 2.
  • the rotor support 3 includes a support member 7, a bearing case 4, a bearing 9, a torque transmission coupling 10, and an annular seal member 11.
  • the support member 7 in this example has a support substrate 7a fixed to the upper end member 12a of the tower support 12 by bolts 13 and a fixing member 7b fixed to the upper surface of the support substrate 7a.
  • the support member 7 may be an integral member formed from the same material.
  • the tower support 12 is formed of, for example, a steel tower, and a plate-like upper end member 12a extending in the horizontal direction is provided at the top of the steel tower.
  • Cylindrical bearing cases 4 are rotatably installed at a plurality of upper and lower locations on the outer periphery of a case 5 of the generator 2 via ring-shaped bearings 9, 9.
  • the ring-shaped bearing 9 is a so-called thin-type rolling bearing in which a bearing height obtained by dividing a value obtained by subtracting the inner ring inner diameter from the outer ring inner diameter from the outer ring by 2 is formed thinner than a general bearing.
  • Rolling bearings such as deep groove ball bearings, angular contact ball bearings, and tapered roller bearings.
  • the bearing case 4 is coaxially coupled to the rotor 1 and connected to the generator shaft 2a of the generator 2 via a torque transmitting coupling 10 having an aligning property.
  • the bearing case 4 includes a cylindrical case main body 4a and an end plate 4b fastened to the case main body 4a by bolts 14.
  • the support 1b is fixed to the upper end surface of the end plate 4b via a bracket 15.
  • An annular seal portion 16 is provided on the lower surface of the end plate 4b, and the end plate 4b is fitted to the upper end portion (one axial end portion) of the case body 4a in the axial direction by the seal portion 16.
  • An annular seal member 11 is provided at a fitting portion between the case main body 4a and the end plate 4b.
  • the annular seal member 11 for example, packing or the like is applied.
  • a shaft portion 17 protruding in the axial direction is provided, and the shaft portion 17 is provided coaxially with the generator shaft 2a.
  • the generator shaft 2 a is connected to the shaft portion 17 via the torque transmission coupling 10.
  • the shaft portion 17 is provided coaxially with the generator shaft 2a, a deviation in coaxiality may occur due to an installation error or aging deterioration.
  • the torque transmission coupling 10 absorbs a deviation in coaxiality due to an attachment error between the shaft portion 17 and the generator shaft 2a or deterioration over time. Note that the generator shaft 2a can be directly connected to the shaft portion 17 of the end plate 4b without the torque transmission coupling 10 interposed therebetween.
  • the cylindrical bearing case 4 is rotatably installed on the outer periphery of the case 5 of the generator 2 via the ring-shaped bearings 9, 9. 4 is connected to the rotor 1 and connected to the generator shaft 2a of the generator 2.
  • the bearing case 4 and the bearings 9 and 9 can receive a load other than the rotational force generated when the rotor blade 1 receives the wind, that is, a bending load acting on the generator shaft 2a.
  • the bearing 9 need only have a small load capacity.
  • the generator shaft 2a is connected to the bearing case 4 and is not directly connected to the rotary wing 1, no bending load is applied. Therefore, only the torsional load, which is the generation torque, needs to be considered. The diameter can be reduced. As a result, the friction loss of the generator 2 can be reduced, the startability of the wind turbine generator can be improved, and the power generation efficiency can be improved.
  • the bearing case 4 is connected to the generator shaft 2a via a torque transmission coupling 10. Because of the alignment of the torque transmitting coupling, the coaxiality between the generator shaft 2a and the rotary blade 1 can be maintained at a desired value. Therefore, the friction loss of the generator 2 can be further reduced, and the startability of the wind power generator can be improved. Since the bearing case 4 and the rotor 1 are coaxial, and the rotor 1 is coupled to the end plate 4b of the bearing case 4, the end plate 4b and the rotor 1 are coaxial.
  • the cylindrical case body 4a is rotatably installed on the outer periphery of the case 5 of the generator 2 via the bearing 9, the generator shaft 2a rotatably supported by the case 5 has the axis center of the case body 4a. , A desired coaxiality is secured.
  • the end plate 4b is fitted to the case main body 4a with the intaglio, the coaxiality between the generator shaft 2a and the rotary wing 1 can be easily secured to a desired value, whereby the cost can be reduced. . Therefore, the friction loss of the generator 2 can be further reduced, and the startability of the wind power generator can be improved. Since the annular seal member 11 is provided at the fitting portion between the case main body 4a and the end plate 4b, the sealing property inside the bearing case 4 is sufficiently ensured, and the life of the generator 2 can be extended.
  • the generator 2 may be provided with a fan 18 for heat radiation.
  • the rotating shaft 18a of the fan 18 is connected to the lower end of the generator shaft 2a.
  • wind can be sent from a ventilation hole (not shown) formed in the tower support 12, and heat radiation of the generator 2 can be promoted.
  • FIG. 3A and 3b show an example in which the shape of the bearing case 4 is changed in the first embodiment, and a part (for example, line III-III in FIG. 2) of the case body 4a is cut in a horizontal direction and viewed.
  • FIG. 3A a plurality of recesses 19 that are recessed radially inward from the outer peripheral surface may be formed on the outer peripheral surface of the case main body 4 a of the bearing case 4.
  • the recesses 19 are recesses for increasing the surface area, and are formed, for example, at regular intervals in the circumferential direction and include slits extending in the axial direction.
  • the concave portions 19 and the convex portions 20 may be alternately formed in the circumferential direction on the outer peripheral surface of the case main body 4a.
  • Each projection 20 is formed of a ridge extending in the axial direction.
  • a plurality of convex portions may be formed on the outer peripheral surface of the case main body 4a so as to project a predetermined distance radially outward from the outer peripheral surface.
  • Either one or both of the concave portion and the convex portion may be provided at a portion other than the bearing fitting portion on the inner peripheral surface of the case main body 4a.
  • One or both of the concave portion and the convex portion may be provided in a part of the end plate 4b.
  • One or both of the concave portion and the convex portion may be formed in an annular shape on the peripheral surface of the case main body 4a. According to these configurations, since the surface area of the bearing case 4 increases, heat radiation from the bearing case 4 is promoted.
  • a speed increaser 21 for increasing the rotation of the rotor 1 and transmitting the rotation to the generator 2 is provided like the rotor support structure of the generator according to the second embodiment of the present invention.
  • a cylindrical bearing case 4 may be rotatably mounted on the outer periphery of a case 21 a of the speed change device 21 via ring-shaped bearings 9, 9.
  • the bearing case 4 is coaxially coupled to the rotor 1 and is connected to the input shaft 21b of the gearbox 21.
  • the speed increaser 21 increases the rotation of the input shaft 21b and transmits the rotation to a low-speed shaft (not shown). And a secondary speed increasing device (not shown) for transmission.
  • the input shaft 21b is connected to the shaft 17 of the end plate 4b in the bearing case 4, and the output shaft 21c is connected to the generator 2.
  • the angle of the rotating shaft may be changed by 90 ° by connecting the output shaft 21c of the gearbox 21 to the generator shaft via a bevel gear or the like.
  • ⁇ Drag-type vertical axis wind turbine> In each embodiment, an example is shown in which the vertical axis wind turbine is a lift type. However, in some cases, the configuration of the present invention may be applied to a drag type vertical axis wind turbine.
  • the rotor support structure is applied to a vertical axis windmill type wind power generator, but the rotor support structure may be applied to a hydraulic power generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

This rotor blade support structure for an electrical generator rotatably supports a vertical axis type rotor blade (1) and transmits the rotation of the rotor blade (1) to an electrical generator (2) located below the rotor blade (1). A circular cylindrical bearing case (4) is rotatably mounted on the outer periphery of the case (5) of the electrical generator (2) through ring-shaped bearings (9, 9). The bearing case (4) is coaxially joined to the rotor blade (1) and is connected to the electrical generator shaft (2a) of the electrical generator (2). The bearing case (4) is provided with a circular cylindrical case body (4a) and an end plate (4b) which is provided at one axial end of the case body (4a) and to which the rotor blade (1) is joined.

Description

発電機の回転翼支持構造Rotor blade support structure for generator 関連出願Related application
 本出願は、2018年7月9日出願の特願2018-130131の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2018-130131 filed on Jul. 9, 2018, the entire contents of which are incorporated herein by reference.
 この発明は、発電機の回転翼支持構造に関し、風力発電装置、水力発電装置に適用される技術に関する。 The present invention relates to a rotor supporting structure for a generator, and to a technique applied to a wind power generator and a hydroelectric generator.
 風力発電装置は一般に自然環境下に設置され、基本的には不規則な風エネルギーを動力として稼働するので、風力発電装置の構成要素には比較的大きく変動する荷重が作用する(特許文献1,2)。 Since a wind power generator is generally installed in a natural environment and operates basically using irregular wind energy as a power, a relatively large load acts on components of the wind power generator (Patent Document 1, 2).
 図5は、従来の垂直軸風車で使用する発電機等の配置・構成を示す断面図である。風力発電装置では、回転翼50の羽根50aの揚力または抗力で発生した発電トルクの他に風が羽根50aの受風面を押すことにより発生する曲げ荷重が発生する。この曲げ荷重および発電トルクは、発電機51の発電機軸51aおよびベアリング52で受けることになり、この対応のために軸径が増大する。
 図6に、発電機51の発電機軸51aに作用する曲げ荷重を低減するために中間軸53を設定し、荷重を発電機51の発電機軸51aで直接受けない構造を示す。この場合、中間軸53で曲げ荷重を吸収可能ではあるが、軸間距離が拡大し、装置全体が大きくなる。
FIG. 5 is a sectional view showing the arrangement and configuration of a generator and the like used in a conventional vertical axis wind turbine. In the wind power generator, in addition to the power generation torque generated by the lift or drag of the blade 50a of the rotary wing 50, a bending load generated by the wind pressing the wind receiving surface of the blade 50a is generated. The bending load and the generated torque are received by the generator shaft 51a and the bearing 52 of the generator 51, and the diameter of the shaft is increased to cope with this.
FIG. 6 shows a structure in which the intermediate shaft 53 is set to reduce the bending load acting on the generator shaft 51a of the generator 51, and the load is not directly received by the generator shaft 51a of the generator 51. In this case, the bending load can be absorbed by the intermediate shaft 53, but the distance between the shafts increases, and the entire device becomes larger.
 発電トルクについては、回転翼の慣性モーメントにより急激な変化が妨げられるため、比較的安定的であることに対して、受風面を風が押す曲げ荷重は極めて衝撃的であるため、軸の強度計算では、静的効果を多く見積もる必要があり、結果として軸径を大きくしなければいけない。 The power generation torque is relatively stable because the moment of inertia of the rotor impedes rapid changes, while the bending load that the wind pushes against the wind receiving surface is extremely shocking. In the calculation, it is necessary to estimate many static effects, and as a result, the shaft diameter must be increased.
 一方、大型の風力発電装置では、始動性改善のため、アシスト機構を具備したもの(特許文献3)があるが、小型風車ではアシスト機構を設けることは、コストの観点から難しい。 On the other hand, some large wind turbines have an assist mechanism for improving startability (Patent Document 3), but it is difficult to provide an assist mechanism for a small wind turbine from the viewpoint of cost.
特開2016-89736号公報JP 2016-89736 A 特開2006-322445号公報JP 2006-322445 A 特開平8-322298号公報JP-A-8-322298
 アシスト機構のない風力発電装置の始動性に起因する因子としては、摩擦損失、慣性損失、粘性損失があるが、この場合、動き出し前を問題にするため、摩擦損失が支配的になる。摩擦損失は、オイルシールおよびベアリングなどから発生するが、どちらの場合も摩擦損失は軸径に大きく依存することが技術的に示されている。よって、発電に不必要な曲げ荷重を抑制して軸径を小さくすることが始動性向上へとつながる。 因子 Factors attributable to the startability of a wind turbine without an assist mechanism include friction loss, inertia loss, and viscous loss. In this case, friction loss is dominant because the problem before starting movement is a problem. Although friction loss occurs from an oil seal, a bearing, and the like, it has been technically shown that in both cases, the friction loss largely depends on the shaft diameter. Therefore, suppressing the bending load unnecessary for power generation and reducing the shaft diameter leads to an improvement in startability.
 この発明の目的は、発電装置の始動性を改善し、発電効率を向上することができる発電機の回転翼支持構造を提供することである。 An object of the present invention is to provide a rotor supporting structure for a generator that can improve the startability of a power generator and improve power generation efficiency.
 この発明の発電機の回転翼支持構造は、垂直軸型の回転翼を回転自在に支持し、前記回転翼の下方に位置する発電機または増速機に前記回転翼の回転を伝達する発電機の回転翼支持構造であって、
 前記発電機または前記増速機のケースの外周に、リング状のベアリングを介して円筒状のベアリングケースが回転自在に設置され、このベアリングケースは前記回転翼に同軸心で結合されかつ前記発電機の発電機軸または前記増速機の入力軸に接続されている。
The rotor support structure for a generator according to the present invention rotatably supports a vertical shaft type rotor, and transmits the rotation of the rotor to a generator or a gearbox located below the rotor. Rotor support structure of
A cylindrical bearing case is rotatably mounted on the outer periphery of the case of the generator or the gearbox via a ring-shaped bearing, and the bearing case is coaxially coupled to the rotating blade and the generator Or the input shaft of the gearbox.
 この構成によると、発電機または増速機のケースの外周に、リング状のベアリングを介して円筒状のベアリングケースが回転自在に設置され、このベアリングケースは回転翼に結合されかつ発電機の発電機軸または増速機の入力軸に接続されている。このため、回転翼が風力または水力を受けることで発生する回転力以外の荷重、すなわち発電機軸または増速機の入力軸に対して作用する曲げ荷重を、ベアリングケースおよびベアリングで受けることができる。
 この場合、構造物として軸で曲げ荷重を受けるよりも、断面係数を大きくとることが可能となり、前記ベアリングは小さな負荷容量のもので足りる。また、発電機軸または増速機の入力軸は、前記ベアリングケースに接続されていて直接には回転翼に接続されていないため、曲げ荷重がほとんど作用せず、そのため、発電トルクであるねじり荷重のみ考慮すればよくなり、軸径を小さくすることができる。結果、発電機または増速機の摩擦損失を小さくし、発電装置の始動性を改善し、発電効率を向上することができる。
According to this configuration, a cylindrical bearing case is rotatably installed on the outer periphery of the case of the generator or the gearbox via a ring-shaped bearing, and this bearing case is connected to the rotor blades and the power generation of the generator. Connected to the input shaft of the gearbox or gearbox. For this reason, a load other than the rotational force generated when the rotor blades receive wind power or hydraulic power, that is, a bending load acting on the generator shaft or the input shaft of the gearbox, can be received by the bearing case and the bearing.
In this case, it becomes possible to increase the section modulus of the structure as compared with receiving a bending load on the shaft, and the bearing only needs to have a small load capacity. Further, since the generator shaft or the input shaft of the gearbox is connected to the bearing case and is not directly connected to the rotor, the bending load hardly acts, and therefore, only the torsional load, which is the power generation torque, is applied. This can be taken into consideration, and the shaft diameter can be reduced. As a result, the friction loss of the generator or the gearbox can be reduced, the startability of the power generator can be improved, and the power generation efficiency can be improved.
 前記ベアリングケースは、トルク伝達用カップリングを介して、前記発電機の発電機軸または前記増速機の入力軸に接続されていてもよい。発電機軸または増速機の入力軸と、回転翼とが同軸心で設けられている場合であっても、取り付け誤差または経年劣化等による同軸度のずれが生じ得る。この場合、トルク伝達用カップリングの調心性のため、発電機軸または増速機の入力軸と、回転翼との取り付け誤差または経年劣化等による同軸度のずれを吸収し同軸度を所望の値に確保することができる。したがって、発電機または増速機の摩擦損失をさらに小さくし、発電装置の始動性の向上を図れる。 The bearing case may be connected to a generator shaft of the generator or an input shaft of the gearbox via a torque transmission coupling. Even when the generator shaft or the input shaft of the gearbox and the rotor are provided coaxially, a deviation in coaxiality may occur due to an installation error or aging deterioration. In this case, due to the alignment of the torque transmitting coupling, the coaxiality is adjusted to a desired value by absorbing a deviation of the coaxiality due to an installation error between the generator shaft or the input shaft of the gearbox and the rotating blade or deterioration over time. Can be secured. Therefore, the friction loss of the generator or the gearbox can be further reduced, and the startability of the power generator can be improved.
 前記ベアリングケースは、円筒状のケース本体と、このケース本体の軸方向一端部に設けられ前記回転翼が結合される端板と、を備え、前記ケース本体に前記端板が印籠嵌合されていてもよい。この構成によると、ベアリングケースと回転翼とが同軸心であるうえ、前記ベアリングケースにおける端板に回転翼が結合されているため、端板と回転翼とは同軸心である。
 また、発電機または増速機のケースの外周に、ベアリングを介して円筒状のケース本体が回転自在に設置されるため、前記ケースに回転支持される発電機軸または増速機の入力軸は、ケース本体の軸心に対し所望の同軸度が確保される。さらにケース本体に端板が印籠嵌合されているため、発電機軸または増速機の入力軸と、回転翼との同軸度を所望の値に簡易に確保することができ、これによりコスト低減を図ることができる。したがって、発電機または増速機の摩擦損失をさらに小さくし、発電装置の始動性の向上を図れる。
The bearing case includes a cylindrical case main body, and an end plate provided at one axial end of the case main body and coupled with the rotating blade, and the end plate is fitted to the case main body with an intaglio. You may. According to this configuration, since the bearing case and the rotor are coaxial, and the rotor is coupled to the end plate of the bearing case, the end plate and the rotor are coaxial.
Further, since a cylindrical case body is rotatably installed via bearings on the outer periphery of the case of the generator or the speed-up gear, the input shaft of the generator shaft or the speed-up gear rotatably supported by the case, Desired coaxiality is secured with respect to the axis of the case body. Furthermore, since the end plate is fitted to the case body, the coaxiality between the generator shaft or the input shaft of the gearbox and the rotor can be easily secured to a desired value, thereby reducing costs. Can be planned. Therefore, the friction loss of the generator or the gearbox can be further reduced, and the startability of the power generator can be improved.
 前記ケース本体と前記端板との嵌合部に環状のシール部材が設けられていてもよい。この場合、ベアリングケース内のシール性が良好に確保され、発電機または増速機の寿命を延ばすことができる。 環状 An annular seal member may be provided at a fitting portion between the case body and the end plate. In this case, the sealing property in the bearing case is sufficiently ensured, and the life of the generator or the gearbox can be extended.
 前記ベアリングケースに、表面積増大用の凹み部および凸部のいずれか一方または両方が設けられていてもよい。この場合、ベアリングケースの表面積が増加するため、ベアリングケースからの放熱が促進される。前記凹み部として、例えば、ベアリングケースのベアリング嵌合部以外の場所にスリットを設けてもよい。 ベ ア リ ン グ The bearing case may be provided with one or both of a concave portion and a convex portion for increasing the surface area. In this case, since the surface area of the bearing case increases, heat radiation from the bearing case is promoted. As the recess, for example, a slit may be provided at a position other than the bearing fitting portion of the bearing case.
 前記発電機または前記増速機に放熱用のファンが設けられていてもよい。この場合、発電機または前記増速機の回転に例えば同期してファンを回転させることで、発電機または増速機の放熱を促進することができる。 放熱 A fan for heat dissipation may be provided in the generator or the speed increaser. In this case, for example, by rotating the fan in synchronization with the rotation of the generator or the gearbox, heat radiation of the generator or the gearbox can be promoted.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 ど の Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of the following claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の第1の実施形態に係る発電機の回転翼支持構造の断面図である。 同回転翼支持構造の一部を拡大した拡大断面図である。 同回転翼支持構造を部分的に変更した変更形態の端面図である。 同回転翼支持構造を部分的に変更した別の変更形態の端面図である。 この発明の第2の実施形態に係る発電機の回転翼支持構造の断面図である。 従来例の発電機の回転翼支持構造を表す断面図である。 他の従来例の発電機の回転翼支持構造を表す断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and figures are for illustration and description only and should not be used to define the scope of the invention. The scope of the invention is defined by the appended claims. In the attached drawings, the same part numbers in a plurality of drawings indicate the same parts.
It is a sectional view of a rotor supporting structure of a generator concerning a 1st embodiment of this invention. It is the expanded sectional view which expanded a part of the rotating blade support structure. It is the end view of the modification form which changed the rotary wing support structure partially. It is an end elevation of another modification which changed the same rotor support structure partially. It is sectional drawing of the rotor support structure of the generator which concerns on 2nd Embodiment of this invention. It is sectional drawing showing the rotating blade support structure of the generator of the prior art example. It is sectional drawing showing the rotor blade support structure of the generator of other conventional examples.
 [第1の実施形態]
 この発明の第1の実施形態に係る発電機の回転翼支持構造を図1および図2と共に説明する。
 図1では、この発電機の回転翼支持構造を垂直軸風車方式の風力発電装置に適用した例を示す。垂直軸風車方式の風力発電装置は、回転翼1と、発電機2と、回転翼支持部3とを備える。
[First Embodiment]
A rotor support structure for a generator according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows an example in which the rotor support structure of the generator is applied to a vertical axis wind turbine type wind power generator. The vertical axis wind turbine type wind turbine includes a rotor 1, a generator 2, and a rotor support 3.
 <回転翼1>
 回転翼1は、垂直方向に延びる複数の羽根1aと、支持体1bとを有する。この回転翼1は、羽根1aが受ける揚力によって回転する揚力型である。後述する回転翼支持部3に、水平方向に延びる支持体1bを介して、複数の羽根1aが取り付けられている。羽根1aの数は例えば二枚であり、回転軸Lを中心として180°位相の異なる位置に設けられている。なお羽根1aの数は三枚以上であってもよい。
<Rotary wing 1>
The rotor 1 has a plurality of blades 1a extending in the vertical direction and a support 1b. The rotary wing 1 is of a lift type that rotates by the lift received by the blade 1a. A plurality of blades 1a are attached to a rotor support 3 described later via a support 1b extending in the horizontal direction. The number of the blades 1a is, for example, two, and is provided at a position having a phase difference of 180 ° with respect to the rotation axis L. The number of blades 1a may be three or more.
 <発電機2>
 発電機2は回転翼1の下方に位置する。発電機2は、回転翼支持部3におけるベアリングケース4内に設けられる。発電機2は、回転翼1の回転により発電機軸2aが回転することで発電する。発電機2は、例えば、永久磁石同期型、誘導型等の三相交流発電機、または単相交流の発電機であり、ケース5、ステータ2b、ロータ2c、発電機内ベアリング6および発電機軸2aを有する。
<Generator 2>
The generator 2 is located below the rotor 1. The generator 2 is provided in a bearing case 4 of the rotor support 3. The generator 2 generates electric power by rotating the generator shaft 2 a by the rotation of the rotor 1. The generator 2 is, for example, a three-phase AC generator of a permanent magnet synchronous type, an induction type or the like, or a single-phase AC generator, and includes a case 5, a stator 2b, a rotor 2c, a bearing 6 in the generator, and a generator shaft 2a. Have.
 ケース5は、上下方向に延びる円筒状であり、ケース5の軸方向下端部が支持板7に支持されて取り付けられている。このケース5の内周面に発電機内ベアリング6,6を介して発電機軸2aが回転自在に支持されている。発電機内ベアリング6は、例えば、深溝玉軸受、アンギュラ玉軸受、円すいころ軸受等の転がり軸受である。ケース5の内周面にステータ2bが固定され、発電機軸2aの外周面にロータ2cが固定されている。ロータ2cは、ステータ2bに所定のギャップを隔てて対向する。発電機軸2aと共にロータ2cが回転することで、発電機2は発電する。発電機2で発電した電力は、図示外の配線を介して外部の電力系統に供給される。 The case 5 has a cylindrical shape extending in the up-down direction, and the lower end in the axial direction of the case 5 is supported and attached to the support plate 7. A generator shaft 2a is rotatably supported on the inner peripheral surface of the case 5 via generator inner bearings 6,6. The bearing 6 in the generator is a rolling bearing such as a deep groove ball bearing, an angular ball bearing, and a tapered roller bearing. The stator 2b is fixed to the inner peripheral surface of the case 5, and the rotor 2c is fixed to the outer peripheral surface of the generator shaft 2a. The rotor 2c faces the stator 2b with a predetermined gap therebetween. When the rotor 2c rotates together with the generator shaft 2a, the generator 2 generates power. The power generated by the generator 2 is supplied to an external power system via a wiring (not shown).
 <回転翼支持部3>
 図1および図2に示すように、回転翼支持部3は、回転翼1を回転自在に支持し、発電機2に回転翼1の回転を伝達する。回転翼支持部3は、支持部材7、ベアリングケース4、ベアリング9、トルク伝達用カップリング10および環状のシール部材11を有する。この例の支持部材7は、タワー支柱12の上端部材12aにボルト13により固定される支持基板7aと、この支持基板7aの上面に固定される固定部材7bとを有する。但し、支持部材7は、同一材料から形成された一体の部材であってもよい。前記タワー支柱12は、例えば、鉄塔で構成され、この鉄塔の最頂部に水平方向に延びる板状の上端部材12aが設けられている。発電機2のケース5における外周の上下複数箇所に、リング状のベアリング9,9を介して円筒状のベアリングケース4が回転自在に設置されている。前記リング状のベアリング9は、外輪外径から内輪内径を減じた値を2で除した軸受高さが、一般的な軸受よりも薄肉に形成されたいわゆる薄肉型の転がり軸受であって、例えば、深溝玉軸受、アンギュラ玉軸受、円すいころ軸受等の転がり軸受である。
<Rotary wing support part 3>
As shown in FIGS. 1 and 2, the rotor support section 3 rotatably supports the rotor 1 and transmits the rotation of the rotor 1 to the generator 2. The rotor support 3 includes a support member 7, a bearing case 4, a bearing 9, a torque transmission coupling 10, and an annular seal member 11. The support member 7 in this example has a support substrate 7a fixed to the upper end member 12a of the tower support 12 by bolts 13 and a fixing member 7b fixed to the upper surface of the support substrate 7a. However, the support member 7 may be an integral member formed from the same material. The tower support 12 is formed of, for example, a steel tower, and a plate-like upper end member 12a extending in the horizontal direction is provided at the top of the steel tower. Cylindrical bearing cases 4 are rotatably installed at a plurality of upper and lower locations on the outer periphery of a case 5 of the generator 2 via ring-shaped bearings 9, 9. The ring-shaped bearing 9 is a so-called thin-type rolling bearing in which a bearing height obtained by dividing a value obtained by subtracting the inner ring inner diameter from the outer ring inner diameter from the outer ring by 2 is formed thinner than a general bearing. , Rolling bearings such as deep groove ball bearings, angular contact ball bearings, and tapered roller bearings.
 ベアリングケース4は、回転翼1に同軸心で結合され、かつ発電機2の発電機軸2aに、調心性を有するトルク伝達用カップリング10を介して接続されている。ベアリングケース4は、円筒状のケース本体4aと、このケース本体4aにボルト14により締結される端板4bとを備える。端板4bの上端面に、ブラケット15を介して前記支持体1bが固定されている。端板4bの下面には円環状の印籠部16が設けられ、この印籠部16により、ケース本体4aの軸方向上端部(軸方向一端部)に、端板4bが印籠嵌合されている。ケース本体4aと端板4bとの嵌合部には、環状のシール部材11が設けられている。 The bearing case 4 is coaxially coupled to the rotor 1 and connected to the generator shaft 2a of the generator 2 via a torque transmitting coupling 10 having an aligning property. The bearing case 4 includes a cylindrical case main body 4a and an end plate 4b fastened to the case main body 4a by bolts 14. The support 1b is fixed to the upper end surface of the end plate 4b via a bracket 15. An annular seal portion 16 is provided on the lower surface of the end plate 4b, and the end plate 4b is fitted to the upper end portion (one axial end portion) of the case body 4a in the axial direction by the seal portion 16. An annular seal member 11 is provided at a fitting portion between the case main body 4a and the end plate 4b.
 環状のシール部材11として、例えばパッキング等が適用される。端板4bの下面の中央には、軸方向に突出する軸部17が設けられ、この軸部17は発電機軸2aと同軸心で設けられている。この軸部17に、トルク伝達用カップリング10を介して、発電機軸2aが接続されている。軸部17は発電機軸2aと同軸心で設けられているものの、取り付け誤差または経年劣化等による同軸度のずれが生じ得る。トルク伝達用カップリング10は、軸部17と発電機軸2aとの取り付け誤差または経年劣化等による同軸度のずれを吸収する。なお端板4bの軸部17に、トルク伝達用カップリング10を介在させずに発電機軸2aを直接接続することも可能である。 例 え ば As the annular seal member 11, for example, packing or the like is applied. At the center of the lower surface of the end plate 4b, a shaft portion 17 protruding in the axial direction is provided, and the shaft portion 17 is provided coaxially with the generator shaft 2a. The generator shaft 2 a is connected to the shaft portion 17 via the torque transmission coupling 10. Although the shaft portion 17 is provided coaxially with the generator shaft 2a, a deviation in coaxiality may occur due to an installation error or aging deterioration. The torque transmission coupling 10 absorbs a deviation in coaxiality due to an attachment error between the shaft portion 17 and the generator shaft 2a or deterioration over time. Note that the generator shaft 2a can be directly connected to the shaft portion 17 of the end plate 4b without the torque transmission coupling 10 interposed therebetween.
 <作用効果について>
 以上説明した発電機の回転翼支持構造によれば、発電機2のケース5の外周に、リング状のベアリング9,9を介して円筒状のベアリングケース4が回転自在に設置され、このベアリングケース4は回転翼1に結合されかつ発電機2の発電機軸2aに接続されている。このため、回転翼1が風を受けることで発生する回転力以外の荷重、すなわち発電機軸2aに対して作用する曲げ荷重を、ベアリングケース4およびベアリング9,9で受けることができる。
 この場合、構造物として軸で曲げ荷重を受けるよりも、断面係数を大きくとることが可能となり、前記ベアリング9は小さな負荷容量のもので足りる。また、発電機軸2aはベアリングケース4に接続されていて直接には回転翼1に接続されていないため、曲げ荷重が作用せず、そのため、発電トルクであるねじり荷重のみ考慮すればよくなり、軸径を小さくすることができる。結果、発電機2の摩擦損失を小さくし、風力発電装置の始動性を改善し、発電効率を向上することができる。
<Effects>
According to the rotating blade support structure of the generator described above, the cylindrical bearing case 4 is rotatably installed on the outer periphery of the case 5 of the generator 2 via the ring-shaped bearings 9, 9. 4 is connected to the rotor 1 and connected to the generator shaft 2a of the generator 2. For this reason, the bearing case 4 and the bearings 9 and 9 can receive a load other than the rotational force generated when the rotor blade 1 receives the wind, that is, a bending load acting on the generator shaft 2a.
In this case, it becomes possible to increase the section modulus of the structure as compared with receiving a bending load on the shaft, and the bearing 9 need only have a small load capacity. Further, since the generator shaft 2a is connected to the bearing case 4 and is not directly connected to the rotary wing 1, no bending load is applied. Therefore, only the torsional load, which is the generation torque, needs to be considered. The diameter can be reduced. As a result, the friction loss of the generator 2 can be reduced, the startability of the wind turbine generator can be improved, and the power generation efficiency can be improved.
 ベアリングケース4は、トルク伝達用カップリング10を介して発電機軸2aに接続されている。このトルク伝達用カップリングの調心性のため、発電機軸2aと回転翼1との同軸度を所望の値に確保することができる。したがって、発電機2の摩擦損失をさらに小さくし、風力発電装置の始動性の向上を図れる。
 ベアリングケース4と回転翼1とが同軸心であるうえ、ベアリングケース4における端板4bに回転翼1が結合されているため、端板4bと回転翼1とは同軸心である。
 また、発電機2のケース5の外周に、ベアリング9を介して円筒状のケース本体4aが回転自在に設置されるため、ケース5に回転支持される発電機軸2aは、ケース本体4aの軸心に対し所望の同軸度が確保される。さらにケース本体4aに端板4bが印籠嵌合されているため、発電機軸2aと回転翼1との同軸度を所望の値に簡易に確保することができ、これによりコスト低減を図ることができる。したがって、発電機2の摩擦損失をさらに小さくし、風力発電装置の始動性の向上を図れる。
 ケース本体4aと端板4bとの嵌合部に環状のシール部材11が設けられているため、ベアリングケース4内のシール性が良好に確保され、発電機2の寿命を延ばすことができる。
The bearing case 4 is connected to the generator shaft 2a via a torque transmission coupling 10. Because of the alignment of the torque transmitting coupling, the coaxiality between the generator shaft 2a and the rotary blade 1 can be maintained at a desired value. Therefore, the friction loss of the generator 2 can be further reduced, and the startability of the wind power generator can be improved.
Since the bearing case 4 and the rotor 1 are coaxial, and the rotor 1 is coupled to the end plate 4b of the bearing case 4, the end plate 4b and the rotor 1 are coaxial.
In addition, since the cylindrical case body 4a is rotatably installed on the outer periphery of the case 5 of the generator 2 via the bearing 9, the generator shaft 2a rotatably supported by the case 5 has the axis center of the case body 4a. , A desired coaxiality is secured. Further, since the end plate 4b is fitted to the case main body 4a with the intaglio, the coaxiality between the generator shaft 2a and the rotary wing 1 can be easily secured to a desired value, whereby the cost can be reduced. . Therefore, the friction loss of the generator 2 can be further reduced, and the startability of the wind power generator can be improved.
Since the annular seal member 11 is provided at the fitting portion between the case main body 4a and the end plate 4b, the sealing property inside the bearing case 4 is sufficiently ensured, and the life of the generator 2 can be extended.
 図1に示すように、発電機2に放熱用のファン18が設けられていてもよい。この例では、発電機軸2aの下端にファン18の回転軸18aが連結されている。この場合、発電機2の回転に同期してファン18を回転させることで、タワー支柱12に形成された図示外の通風孔から風を送り、発電機2の放熱を促進することができる。 発 電 As shown in FIG. 1, the generator 2 may be provided with a fan 18 for heat radiation. In this example, the rotating shaft 18a of the fan 18 is connected to the lower end of the generator shaft 2a. In this case, by rotating the fan 18 in synchronization with the rotation of the generator 2, wind can be sent from a ventilation hole (not shown) formed in the tower support 12, and heat radiation of the generator 2 can be promoted.
 <他の実施形態>
 以下の説明においては、各実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
<Other embodiments>
In the following description, the same reference numerals are given to portions corresponding to the items described earlier in each embodiment, and overlapping description will be omitted. In the case where only a part of the configuration is described, the other parts of the configuration are the same as the previously described embodiment unless otherwise specified. The same operation and effect can be obtained from the same configuration. Not only the combination of the parts specifically described in the respective embodiments, but also the embodiments can be partially combined with each other as long as the combination is not particularly hindered.
 <放熱構造>
 図3aおよび図3bは、第1の実施形態において、ベアリングケース4の形状を変更した例を示し、ケース本体4aの一部(例えば図2のIII-III線)を水平方向に切断して見た端面図である。図3aに示すように、ベアリングケース4のケース本体4aの外周面に、この外周面よりも半径方向内方に凹む凹み部19が複数形成されてもよい。これら凹み部19は、表面積増大用の凹み部であり、例えば円周方向一定間隔おきに形成され、かつ軸方向に延びるスリットから成る。
<Heat dissipation structure>
3a and 3b show an example in which the shape of the bearing case 4 is changed in the first embodiment, and a part (for example, line III-III in FIG. 2) of the case body 4a is cut in a horizontal direction and viewed. FIG. As shown in FIG. 3A, a plurality of recesses 19 that are recessed radially inward from the outer peripheral surface may be formed on the outer peripheral surface of the case main body 4 a of the bearing case 4. The recesses 19 are recesses for increasing the surface area, and are formed, for example, at regular intervals in the circumferential direction and include slits extending in the axial direction.
 図3bに示すように、ケース本体4aの外周面に、凹み部19と凸部20が円周方向に交互に形成されてもよい。各凸部20は軸方向に延びる突条から成る。以下図示しないがケース本体4aの外周面に、この外周面よりも半径方向外方に所定距離突出する凸部のみが複数形成されていてもよい。ケース本体4aの内周面でベアリング嵌合部以外の箇所に、凹み部および凸部のいずれか一方または両方が設けられていてもよい。端板4bの一部に凹み部および凸部のいずれか一方または両方が設けられていてもよい。凹み部および凸部のいずれか一方または両方は、ケース本体4aの周面に環状に形成されてもよい。
 これらの構成によると、ベアリングケース4の表面積が増加するため、ベアリングケース4からの放熱が促進される。
As shown in FIG. 3B, the concave portions 19 and the convex portions 20 may be alternately formed in the circumferential direction on the outer peripheral surface of the case main body 4a. Each projection 20 is formed of a ridge extending in the axial direction. Although not shown in the following, a plurality of convex portions may be formed on the outer peripheral surface of the case main body 4a so as to project a predetermined distance radially outward from the outer peripheral surface. Either one or both of the concave portion and the convex portion may be provided at a portion other than the bearing fitting portion on the inner peripheral surface of the case main body 4a. One or both of the concave portion and the convex portion may be provided in a part of the end plate 4b. One or both of the concave portion and the convex portion may be formed in an annular shape on the peripheral surface of the case main body 4a.
According to these configurations, since the surface area of the bearing case 4 increases, heat radiation from the bearing case 4 is promoted.
 <増速機への適用例>
 図4に示す、この発明の第2の実施形態に係る発電機の回転翼支持構造のように、回転翼1の回転を増速して発電機2に伝達する増速機21を設け、増速機21のケース21aの外周に、リング状のベアリング9,9を介して円筒状のベアリングケース4が回転自在に設置されてもよい。ベアリングケース4は回転翼1に同軸心で結合されかつ増速機21の入力軸21bに接続されている。
<Example of application to gearbox>
As shown in FIG. 4, a speed increaser 21 for increasing the rotation of the rotor 1 and transmitting the rotation to the generator 2 is provided like the rotor support structure of the generator according to the second embodiment of the present invention. A cylindrical bearing case 4 may be rotatably mounted on the outer periphery of a case 21 a of the speed change device 21 via ring-shaped bearings 9, 9. The bearing case 4 is coaxially coupled to the rotor 1 and is connected to the input shaft 21b of the gearbox 21.
 増速機21は、例えば、入力軸21bの回転を増速して低速軸(図示せず)に伝達する図示外の遊星歯車装置と、前記低速軸の回転を増速して出力軸21cに伝達する図示外の二次増速装置とを備える。入力軸21bは、ベアリングケース4における端板4bの軸部17に接続され、出力軸21cは、発電機2に接続される。なお図示しないが、増速機21の出力軸21cを、傘歯車等を介して発電機軸に連結することにより、回転軸の角度を90°変えてもよい。 For example, the speed increaser 21 increases the rotation of the input shaft 21b and transmits the rotation to a low-speed shaft (not shown). And a secondary speed increasing device (not shown) for transmission. The input shaft 21b is connected to the shaft 17 of the end plate 4b in the bearing case 4, and the output shaft 21c is connected to the generator 2. Although not shown, the angle of the rotating shaft may be changed by 90 ° by connecting the output shaft 21c of the gearbox 21 to the generator shaft via a bevel gear or the like.
 <抗力型の垂直軸風車>
 各実施形態では、垂直軸風車が揚力型である例を示すが、場合によっては、この発明の構成を抗力型の垂直軸風車に適用してもよい。
<Drag-type vertical axis wind turbine>
In each embodiment, an example is shown in which the vertical axis wind turbine is a lift type. However, in some cases, the configuration of the present invention may be applied to a drag type vertical axis wind turbine.
 <水力発電装置への適用例>
 各実施形態では、回転翼支持構造を垂直軸風車方式の風力発電装置に適用しているが、回転翼支持構造を水力発電装置に適用してもよい。
<Example of application to a hydroelectric generator>
In each embodiment, the rotor support structure is applied to a vertical axis windmill type wind power generator, but the rotor support structure may be applied to a hydraulic power generator.
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。 As described above, the preferred embodiment has been described with reference to the drawings. However, those skilled in the art will readily see various changes and modifications within the obvious scope by referring to the present specification. Accordingly, such changes and modifications are to be construed as being within the scope of the invention as defined by the appended claims.
1…回転翼
2…発電機
2a…発電機軸
5…ケース
4…ベアリングケース
4a…ケース本体
4b…端板
9…ベアリング
10…トルク伝達用カップリング
11…環状のシール部材
18…ファン
19…凹み部
20…凸部
21…増速機
21b…入力軸
DESCRIPTION OF SYMBOLS 1 ... Rotor blade 2 ... Generator 2a ... Generator shaft 5 ... Case 4 ... Bearing case 4a ... Case main body 4b ... End plate 9 ... Bearing 10 ... Torque transmission coupling 11 ... Annular sealing member 18 ... Fan 19 ... Depression Reference numeral 20: convex portion 21: gearbox 21b: input shaft

Claims (6)

  1.  垂直軸型の回転翼を回転自在に支持し、前記回転翼の下方に位置する発電機または増速機に前記回転翼の回転を伝達する発電機の回転翼支持構造であって、
     前記発電機または前記増速機のケースの外周に、リング状のベアリングを介して円筒状のベアリングケースが回転自在に設置され、このベアリングケースは、前記回転翼に同軸心で結合されかつ前記発電機の発電機軸または前記増速機の入力軸に接続されている発電機の回転翼支持構造。
    A rotor support structure for a generator that rotatably supports a vertical axis type rotor and transmits the rotation of the rotor to a generator or a gearbox located below the rotor,
    A cylindrical bearing case is rotatably installed on the outer periphery of the case of the generator or the speed increaser via a ring-shaped bearing. A rotor support structure for a generator connected to a generator shaft of the machine or an input shaft of the gearbox.
  2.  請求項1に記載の発電機の回転翼支持構造において、前記ベアリングケースは、トルク伝達用カップリングを介して、前記発電機の発電機軸または前記増速機の入力軸に接続されている発電機の回転翼支持構造。 The generator rotor blade supporting structure according to claim 1, wherein the bearing case is connected to a generator shaft of the generator or an input shaft of the gearbox via a coupling for transmitting torque. Rotor wing support structure.
  3.  請求項1または請求項2に記載の発電機の回転翼支持構造において、前記ベアリングケースは、円筒状のケース本体と、このケース本体の軸方向一端部に設けられ前記回転翼が結合される端板と、を備え、前記ケース本体に前記端板が印籠嵌合されている発電機の回転翼支持構造。 3. The rotating blade support structure for a generator according to claim 1, wherein the bearing case is provided at a cylindrical case main body and an end provided at one axial end of the case main body and coupled with the rotor blade. 4. A rotating blade support structure for a generator, comprising: a plate;
  4.  請求項3に記載の発電機の回転翼支持構造において、前記ケース本体と前記端板との嵌合部に環状のシール部材が設けられている発電機の回転翼支持構造。 The rotating blade support structure for a generator according to claim 3, wherein an annular seal member is provided at a fitting portion between the case body and the end plate.
  5.  請求項1ないし請求項4のいずれか1項に記載の発電機の回転翼支持構造において、前記ベアリングケースに、表面積増大用の凹み部および凸部のいずれか一方または両方が設けられている発電機の回転翼支持構造。 The power generator according to any one of claims 1 to 4, wherein the bearing case includes one or both of a concave portion and a convex portion for increasing a surface area. Rotor wing support structure of the machine.
  6.  請求項1ないし請求項5のいずれか1項に記載の発電機の回転翼支持構造において、前記発電機または前記増速機に放熱用のファンが設けられている発電機の回転翼支持構造。 The rotor blade support structure for a generator according to any one of claims 1 to 5, wherein the generator or the speed increaser is provided with a fan for heat radiation.
PCT/JP2019/026211 2018-07-09 2019-07-02 Rotor blade support structure for electrical generator WO2020013019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018130131A JP7042176B2 (en) 2018-07-09 2018-07-09 Rotor blade support structure of generator
JP2018-130131 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020013019A1 true WO2020013019A1 (en) 2020-01-16

Family

ID=69142549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026211 WO2020013019A1 (en) 2018-07-09 2019-07-02 Rotor blade support structure for electrical generator

Country Status (2)

Country Link
JP (1) JP7042176B2 (en)
WO (1) WO2020013019A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301087A (en) * 2003-03-31 2004-10-28 Ebara Corp Vertical shaft windmill equipment
JP2006207374A (en) * 2005-01-25 2006-08-10 Ise:Kk Wind power generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270731A (en) * 2008-04-25 2008-09-24 陈施宇 Wind power generation method and wind power generation plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301087A (en) * 2003-03-31 2004-10-28 Ebara Corp Vertical shaft windmill equipment
JP2006207374A (en) * 2005-01-25 2006-08-10 Ise:Kk Wind power generation device

Also Published As

Publication number Publication date
JP7042176B2 (en) 2022-03-25
JP2020007978A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5264329B2 (en) Wind turbine and mounting method thereof, and adjustment method of air gap between rotor and stator of wind turbine generator
US9279413B2 (en) Wind turbine
JP6165845B2 (en) Planetary gear stage having a plain bearing as a planetary bearing and use thereof
US7011598B2 (en) Drive assembly for wind turbines
EP2416006B1 (en) Yaw assembly for use in wind turbines
JP5306458B2 (en) Windmill
KR20140108733A (en) Wind turbine rotor
WO2013080998A1 (en) Bearing for vertical axis wind turbine and vertical axis wind power generation device
EP2661553B1 (en) A direct drive generator
US11111902B2 (en) Nacelle and rotor for a wind turbine, and method
EP1423608A1 (en) Drive assembly
WO2020013019A1 (en) Rotor blade support structure for electrical generator
KR20190043621A (en) Segment sheet for stator laminated iron core, stator laminated iron core, generator and wind power plant equipped with same
KR20100103966A (en) Wind power generator
JP6138633B2 (en) Wind power generation system
US9587624B2 (en) Wind turbine rotor with improved hub system
KR101939322B1 (en) Wind generator
KR20080101338A (en) Horizontal drum type wind power generator
CN103670947A (en) Torque limiter, wind turbine and wind turbine generator
WO2011089036A1 (en) Planetary gear unit with rotating ring gear
JP2013227866A (en) Wind power generation system
JP2019082135A (en) Wind power generator
CN112751456B (en) Generator and wind generating set
JP6272147B2 (en) Wind power generator
TW201024537A (en) Tilt angle driving device of wind power generator and the wind power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833846

Country of ref document: EP

Kind code of ref document: A1