WO2020012885A1 - アンテナ装置及び電子機器 - Google Patents

アンテナ装置及び電子機器 Download PDF

Info

Publication number
WO2020012885A1
WO2020012885A1 PCT/JP2019/024039 JP2019024039W WO2020012885A1 WO 2020012885 A1 WO2020012885 A1 WO 2020012885A1 JP 2019024039 W JP2019024039 W JP 2019024039W WO 2020012885 A1 WO2020012885 A1 WO 2020012885A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiating element
circuit
coil
frequency
Prior art date
Application number
PCT/JP2019/024039
Other languages
English (en)
French (fr)
Inventor
石塚 健一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020530061A priority Critical patent/JP6791460B2/ja
Priority to CN201990000721.9U priority patent/CN213816426U/zh
Publication of WO2020012885A1 publication Critical patent/WO2020012885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to an electronic device having a communication function and an antenna device provided in the electronic device.
  • a feed radiating element connected to a feed circuit and a parasitic radiating element physically separated from the feed circuit are provided, and the parasitic radiating element is used as the feed radiating element.
  • a technique of giving the characteristics of the parasitic radiating element to the characteristics of the feeding radiating element by electromagnetic field coupling has been conventionally used (Patent Document 1).
  • FIG. 22 is a circuit diagram of an antenna device showing the example.
  • the antenna device 100 illustrated in FIG. 22 includes a first antenna 1 and a second antenna 2.
  • the first antenna 1 includes a first antenna-side first radiating element 11 and a first antenna-side second radiating element 12.
  • the second antenna 2 includes a second antenna-side radiating element 29.
  • the feeder circuit 10 is connected to the first radiating element 11 on the first antenna side.
  • the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 are coupled via a transformer circuit including a first coil L1 and a second coil L2.
  • the first antenna-side second radiating element 12 has the resonance frequency determined by the first antenna-side first radiating element 11 and the first coil L1 constituting the transformer circuit.
  • the resonance frequency determined by the first antenna-side second radiating element 12 itself it is possible to broaden the first antenna 1 in a certain applicable frequency range.
  • the communication band that can be widened is limited. Can be This is because the resonance frequency added as described above has a value determined by the transformer circuit and the first antenna-side second radiating element 12 itself.
  • a configuration including a variable reactance circuit capable of switching the reactance between the second coil L2 and the ground was considered. This makes it possible to add a resonance frequency determined by the transformer circuit, the first antenna-side second radiating element 12, and the variable reactance circuit, so that the configuration shown in FIG. 22 without the variable reactance circuit is provided. In comparison, it is easier to increase the bandwidth in a plurality of communication bands.
  • a plurality of antennas are arranged in the same housing, such as the first antenna 1 and the second antenna 2 in FIG. 22, further use of the above-described variable reactance circuit of the first antenna 1 is performed. If an attempt is made to widen the band, isolation from other antennas such as the second antenna becomes a problem. That is, for example, depending on the reactance of the variable reactance circuit, a state in which one of the plurality of resonance frequencies of the first antenna 1 matches or approaches one resonance frequency within the communication band of the second antenna 2 ( A "substantially identical state") may occur. In such a state, the isolation between the first antenna 1 and the second antenna 2 may be reduced, and the communication characteristics using the first antenna 1 and the second antenna 2 may be deteriorated.
  • FIG. 23 is a diagram showing an example in which the above-described inconvenience occurs.
  • the vertical axis represents the reflection coefficient of the antenna in dB (S11), and the horizontal axis represents the frequency.
  • A1 indicates the frequency characteristic of the reflection coefficient of the first antenna 1
  • A2 indicates the frequency characteristic of the reflection coefficient of the second antenna 2.
  • the first antenna 1 has resonance points at frequencies f11, f12, f13
  • the second antenna 2 has resonance points at frequencies f21, f22.
  • FIG. 23 shows that when the reactance of the variable reactance circuit of the first antenna is switched, the resonance frequency f13 of the first antenna 1 substantially matches the resonance frequency f22 of the second antenna 2 at a certain reactance. ing. In such a state, in the frequency region near the frequency f13 and the frequency f22, the isolation between the first antenna 1 and the second antenna 2 decreases, and the communication characteristics of the antenna device deteriorate.
  • the frequency band in the frequency band is changed.
  • the isolation between the first antenna 1 and the second antenna 2 decreases, and the communication characteristics using the first antenna 1 and the second antenna 2 deteriorate.
  • An antenna device as an example of the present disclosure includes a first antenna including a first antenna-side first radiating element and a first antenna-side second radiating element, and a second antenna including a second antenna-side radiating element. And a self-resonant circuit connected between the first antenna-side first radiating element and the feeder circuit connection portion and connected between the first antenna-side second radiating element and ground. .
  • the self-resonant circuit includes a coupling element having a first coil, a second coil electromagnetically coupled to the first coil, and a capacitance formed between the first coil and the second coil.
  • a variable reactance circuit wherein the first coil is connected between the first antenna-side first radiating element and the feeder circuit connection portion, and the second coil is connected to the first antenna-side second radiating element. And the variable reactance circuit is connected between the first coil and the power supply circuit connection portion or between the second coil and the ground, and the self-resonant circuit is
  • the self-resonant circuit has a plurality of resonance frequencies that vary with reactance of the variable reactance circuit, and at least one of the resonance frequencies of the self-resonance circuit is a frequency within a communication band of the second antenna. It is characterized in.
  • An antenna device as an example of the present disclosure includes a first antenna having a first antenna-side first radiating element having a feeder circuit connection portion, a first antenna having a first antenna-side second radiating element, and a second antenna side.
  • a second antenna having a radiating element, a self-resonant circuit connected between the first antenna-side first radiating element and ground, and connected between the first antenna-side second radiating element and ground; , Is provided.
  • the self-resonant circuit includes a coupling element having a first coil, a second coil electromagnetically coupled to the first coil, and a capacitance formed between the first coil and the second coil.
  • a variable reactance circuit connected between the second coil and ground, the first coil is connected between the first antenna-side first radiating element and ground, and the second coil is
  • the resonance frequency of the self-resonant circuit is connected to the variable reactance circuit, and the resonance frequency of the self-resonance circuit changes according to the reactance of the variable reactance circuit.
  • At least one of the resonance frequencies of the self-resonance circuit is a frequency within a communication band of the second antenna.
  • an electronic device includes the antenna device, a power supply circuit connected to the power supply circuit connection unit, and a control circuit that controls the variable reactance circuit.
  • the resonance frequency of the self-resonant circuit of the first antenna can be adjusted according to the switching of the reactance of the variable reactance circuit. Then, when the resonance frequency outside the communication band of the first antenna substantially matches any one of the resonance frequencies within the communication band of the second antenna, the self-resonance frequency can be adjusted so as to be close to the resonance frequency substantially matched.
  • isolation between the first antenna and the second antenna can be secured, and it is possible to easily widen a band in a plurality of communication bands over a wide frequency range.
  • FIG. 1 is a circuit diagram of the antenna device 101A according to the first embodiment.
  • FIG. 2 is a circuit diagram of the antenna device 101B according to the first embodiment.
  • FIG. 3 is a circuit diagram of the antenna device 101C according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a resonance current flowing through the self-resonant circuit SR in the first antenna 1.
  • FIGS. 5A and 5B are diagrams showing frequency characteristics of reflection coefficients of the first antenna 1 and the second antenna 2 of the antenna device 101A shown in FIG.
  • FIG. 5C is a diagram illustrating a frequency characteristic of the radiation efficiency of the first antenna 1.
  • FIGS. 6A and 6B are diagrams illustrating frequency characteristics of reflection coefficients of the first antenna 1 and the second antenna 2 of the antenna device 101A illustrated in FIG.
  • FIGS. 7A, 7B, and 7C are diagrams illustrating frequency characteristics of reflection coefficients of the first antenna 1 and the second antenna 2 of the antenna device 101C illustrated in FIG.
  • FIG. 7D is a diagram illustrating a frequency characteristic of the radiation efficiency of the first antenna 1.
  • FIGS. 8A and 8B are diagrams illustrating a communication band of communication performed by the first antenna 1 and one reception band among communication bands of communication performed by the second antenna 2. .
  • FIG. 9 is a diagram illustrating another configuration example of the first antenna 1 included in the antenna device of the first embodiment.
  • FIGS. 10A and 10B are diagrams illustrating another configuration example of the first antenna 1 included in the antenna device of the first embodiment.
  • FIG. 11 is an external perspective view of the coupling element 3.
  • FIG. 11 is an external perspective view of the coupling element 3.
  • FIG. 12 is a perspective view showing the internal structure of the coupling element 3.
  • FIG. 13A is a cross-sectional view taken along the YZ plane passing through the center of the coupling element 3 in FIG.
  • FIG. 13B is a cross-sectional view taken along the XZ plane passing through the center of the coupling element 3 in FIG.
  • FIG. 14 is a plan view showing a conductor pattern formed on each of a plurality of insulating base materials.
  • FIG. 15 is a plan view illustrating an example of a structure of an electronic device including the first antenna 1 and the second antenna 2.
  • FIG. 16 is a circuit diagram of the first antenna 1 and the second antenna 2 included in the antenna device 102 according to the second embodiment.
  • FIGS. 17A and 17B are diagrams illustrating frequency characteristics of reflection coefficients of the first antenna 1 and the second antenna 2 of the second embodiment.
  • FIG. 17C is a diagram illustrating a state when the resonance frequency fsr of the self-resonant circuit SR included in the first antenna 1 is determined to be substantially equal to the resonance frequency f13p of the first antenna 1.
  • FIGS. 18A and 18B are circuit diagrams of the first antenna 1 included in the antenna device according to the third embodiment.
  • FIGS. 19A and 19B are circuit diagrams of the first antenna 1 included in another antenna device according to the third embodiment.
  • FIGS. 20A and 20B are circuit diagrams of the first antenna 1 included in the antenna device according to the fourth embodiment.
  • FIG. 21 is a block diagram showing a configuration of a main part of a communication circuit connected to the first antenna 1 and a main part of a communication circuit connected to the second antenna 2.
  • FIG. 22 is a circuit diagram of an antenna device in which the characteristics of the parasitic radiation element are switched by adding reactance.
  • FIG. 23 shows a state in which one of the plurality of resonance frequencies of the first antenna 1 matches one of the second antennas 2 according to the reactances of the variable reactance circuits 13 and 23 in FIG. It is a figure showing an example.
  • FIG. 1 is a circuit diagram of an antenna device 101A according to the first embodiment
  • FIG. 2 is a circuit diagram of another antenna device 101B according to the first embodiment
  • FIG. 3 is a circuit diagram according to the first embodiment
  • FIG. 21 is a circuit diagram of still another antenna device 101C.
  • Each of the antenna devices 101A, 101B, and 101C includes a first antenna 1 and a second antenna 2.
  • the configuration of the first antenna 1 in the antenna devices 101A, 101B, and 101C is the same.
  • the first antenna 1 includes a first antenna-side first radiating element 11 and a first antenna-side second radiating element 12. Both the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 are, for example, monopole radiating elements.
  • the first antenna 1 includes a self-resonant circuit SR connected between the first antenna-side first radiating element 11 and the feeder circuit connection portion, and between the first antenna-side second radiating element 12 and the ground.
  • the self-resonant circuit SR includes the coupling element 3 and the variable reactance circuit 13.
  • the coupling element 3 is formed integrally with a first coil L1, a second coil L2 electromagnetically coupled to the first coil L1, and a capacitor C formed between the first coil L1 and the second coil L2. It is a chip type element.
  • the coupling element 3 is not limited to the one formed integrally with the chip-type element, but may be, for example, a configuration in which the capacitor C and the first coil L1 and the second coil L2 are formed separately.
  • the coupling element 3 includes a first radiating element connection terminal PA, a second radiating element connection terminal PS, a power supply circuit connection terminal PF, and a ground connection terminal (connection terminal of the variable reactance circuit 13) PG.
  • the first coil L1 is connected between the first antenna-side first radiating element 11 and the feeder circuit connection part. That is, the first coil L ⁇ b> 1 is connected between the first antenna-side first radiating element 11 and the power supply circuit 10.
  • the variable reactance circuit 13 is connected between the second coil L2 and the ground, and the second coil L2 is connected between the first antenna-side second radiating element 12 and the variable reactance circuit 13.
  • the variable reactance circuit 13 may be composed of a plurality of reactance elements 14 and a switch 15 for selecting them, or may be composed of a variable capacitor, a variable inductor, or the like, as described later.
  • the second antenna 2 shown in FIG. 1 includes a second antenna-side radiating element 29.
  • the second antenna-side radiating element 29 is, for example, a monopole radiating element.
  • the feed circuit 20 is connected to the second antenna-side radiating element 29.
  • the second antenna 2 shown in FIG. 2 includes a second radiating element 21 on the second antenna side and a second radiating element 22 on the second antenna side. Both the first radiating element 21 on the second antenna side and the second radiating element 22 on the second antenna side are, for example, monopole radiating elements.
  • the feed circuit 20 is connected to the second radiating element 21 on the second antenna side.
  • the first radiation element 21 on the second antenna side and the second radiation element 22 on the second antenna side are electromagnetically coupled.
  • the second antenna-side first radiating element 21 and the second antenna-side second radiating element 22 may be electromagnetically coupled using a chip-type element such as the coupling element 3 included in the first antenna 1. .
  • the second antenna 2 shown in FIG. 3 includes a first radiating element 21 on the second antenna side and a second radiating element 22 on the second antenna side. Both the first radiating element 21 on the second antenna side and the second radiating element 22 on the second antenna side are, for example, monopole radiating elements.
  • the feed circuit 20 is connected to the second radiating element 21 on the second antenna side.
  • a variable reactance circuit 23 is provided between the second antenna-side second radiation element 22 and the ground.
  • the variable reactance circuit 23 includes a plurality of reactance elements 24 and a switch 25 for selecting them.
  • the first radiation element 21 on the second antenna side and the second radiation element 22 on the second antenna side are electromagnetically coupled.
  • the first radiating element 21 on the second antenna side and the second radiating element 22 on the second antenna side are electromagnetically coupled using a chip-type element such as the coupling element 3 like the first antenna 1. Is also good.
  • the first antenna 1 and the second antenna 2 are antennas used in different communication systems or antennas used in the same communication system.
  • the first antenna 1 is an antenna for LTE communication
  • the second antenna 2 is an antenna for WiFi, GPS, Bluetooth (registered trademark), or the like.
  • the first antenna 1 is a main antenna of a diversity antenna
  • the second antenna 2 is a sub-antenna.
  • the first antenna 1 and the second antenna 2 are antennas for performing communication by, for example, a MIMO (Multi-Input / Multi-Output) method.
  • MIMO Multi-Input / Multi-Output
  • FIG. 4 is a diagram showing an example of a resonance current flowing through the self-resonant circuit SR in the first antenna 1.
  • the self-resonant circuit SR includes a first coil L1 of the coupling element 3, a capacitance C of the coupling element 3, a second coil L2 of the coupling element 3, and a variable reactance circuit 13, and a resonance current RC flows through this path. Therefore, the resonance frequency of the self-resonant circuit SR changes according to the reactance of the variable reactance circuit 13. In other words, the resonance frequency of the self-resonant circuit SR can be arbitrarily changed by setting the reactance of the variable reactance circuit 13. At least one of the resonance frequencies of the self-resonant circuit SR is a frequency within a communication band of the second antenna 2.
  • the “communication band by the second antenna” means, in the embodiment, a case where a single frequency band (communication frequency band) is handled in a communication system using the second antenna 2 (matching with the second antenna 2).
  • the “frequency in the communication band by the second antenna” is a frequency included in the frequency range.
  • variable reactance circuit 13 allows the self-resonant circuit SR to maintain such electromagnetic coupling between the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12. Can be set.
  • FIGS. 5A and 5B are diagrams showing the frequency characteristics of the reflection coefficient of the first antenna 1 and the second antenna 2 shown in FIG. 1, and the vertical axis represents the reflection coefficient of the antenna (S11). , The horizontal axis is frequency.
  • FIG. 5C is a diagram showing the frequency characteristics of the radiation efficiency of the first antenna 1, where the vertical axis represents the radiation efficiency and the horizontal axis represents the frequency.
  • the characteristic of the antenna device 101B shown in FIG. 2 is almost the same as the characteristic shown in FIG. 1 except that the resonance point of the second antenna-side second radiating element 22 is added.
  • A1 indicates the frequency characteristic of the reflection coefficient of the first antenna 1
  • A2 indicates the frequency characteristic of the reflection coefficient of the second antenna 2, respectively.
  • the first antenna 1 has resonance points at frequencies f11, f12, and f13
  • the second antenna 2 has resonance points at frequencies f21 and f22.
  • the frequency f11 is a fundamental resonance frequency of the first radiating element 11 on the first antenna side
  • the frequency f13 is a tertiary resonance frequency of the first radiating element 11 on the first antenna side
  • the frequency f12 is a resonance frequency of the first antenna-side second radiating element 12, the coupling element 3, and the variable reactance circuit 13.
  • the resonance frequency given to the first antenna-side first radiating element 11 by the first antenna-side second radiating element 12 and the self-resonant circuit is f12.
  • the frequency f21 is a fundamental resonance frequency of the radiating element 29 of the second antenna 2
  • the frequency f22 is a tertiary resonance frequency of the radiating element 29.
  • the frequencies f11 and ⁇ f12 are resonance points within the communication band of the first antenna 1, and the frequency f13 is outside the communication band of the first antenna 1 and is one of the resonance points not used by the first antenna 1. is there.
  • FIG. 6 (A) and 6 (B) are diagrams showing frequency characteristics of the reflection coefficient of the first antenna 1 and the second antenna 2 of the antenna device 101A shown in FIG.
  • FIG. 6A shows an example of the above “substantially coincides with a certain resonance frequency”.
  • FIG. 6B is an example of a state in which the situation of “substantially coincident with a certain resonance frequency” is avoided (a state of being different from a certain resonance frequency). For example, as shown in FIG.
  • FIG. 5B shows a state where the resonance frequency fsr of the self-resonant circuit SR included in the first antenna 1 is set to be substantially equal to the resonance frequency f13 of the first antenna 1 as described above.
  • the self-resonant circuit SR can resonate at the resonance frequency f13 of the first antenna 1.
  • the reflection coefficient A1 of the first antenna 1 increases at the frequency f13. That is, the self-resonant circuit SR self-resonates at this frequency f13 (fsr), and a closed current path is formed between the two grounds and the self-resonant circuit, so that the first antenna-side first radiating element 11 and the The current flowing into the one antenna-side second radiating element 12 is suppressed.
  • the radiation of the first antenna-side first radiation element 11 and the first antenna-side second radiation element 12 is suppressed. Therefore, as shown in FIG. 5C, the radiation efficiency of the first antenna 1 decreases at the frequency f13. Thereby, isolation between the first antenna 1 and the second antenna 2 can be ensured.
  • the resonance frequency of the self-resonant circuit SR shown in FIG. 1 is switched by selecting the reactance element 14 of the variable reactance circuit 13, the resonance frequency f12 of the first antenna 1 is changed with the change of the reactance of the variable reactance circuit 13. (The resonance frequency of the first antenna-side second radiation element 12, the coupling element 3, and the variable reactance circuit 13) is also displaced. As a result, as shown in FIG. 5C, the radiation efficiency is increased between the resonance frequencies f11 and f12 of the first antenna 1.
  • FIGS. 7A, 7B, and 7C are graphs showing the frequency characteristics of the reflection coefficient of the first antenna 1 and the second antenna 2 shown in FIG. And the horizontal axis is frequency.
  • FIG. 7D is a diagram showing the frequency characteristics of the radiation efficiency of the first antenna 1, where the vertical axis represents the radiation efficiency and the horizontal axis represents the frequency.
  • A1 indicates the frequency characteristic of the reflection coefficient of the first antenna 1
  • A2 indicates the frequency characteristic of the reflection coefficient of the second antenna 2, respectively.
  • the first antenna 1 has resonance points at the frequencies f11, f12, and f13.
  • the second antenna 2 has resonance points at frequencies f21, f22, and f23, respectively.
  • the frequency f21 is a basic resonance frequency of the first radiating element 21 on the second antenna side
  • the frequency f23 is a tertiary resonance frequency of the first radiating element 21 on the second antenna side
  • the frequency f22 is a resonance frequency of the second antenna-side second radiating element 22 and the variable reactance circuit 23.
  • the frequencies f11 and ⁇ f12 are resonance points within the communication band of the first antenna 1, and the frequency f13 is outside the communication band of the first antenna 1 and is one of the resonance points not used by the first antenna 1. is there.
  • the resonance frequency f22 used by the second antenna by the second antenna-side second radiating element 22 and the variable reactance circuit 23 is changed to the resonance frequency according to the selection of the reactance of the variable reactance circuit 23. This shows a state when the value substantially matches f13.
  • FIG. 7C shows a state in which the resonance frequency fsr of the self-resonant circuit SR included in the first antenna 1 is determined to be substantially equal to the resonance frequency f13 of the first antenna 1.
  • the resonance frequency of the self-resonant circuit SR shown in FIG. 1 is switched by selecting the reactance element 14 of the variable reactance circuit 13, the resonance frequency f12 of the first antenna 1 is changed with the change of the reactance of the variable reactance circuit 13. (The resonance frequency of the first antenna-side second radiation element 12, the coupling element 3, and the variable reactance circuit 13) is also displaced. This increases the radiation efficiency between the resonance frequencies f11 and f12 of the first antenna 1 as shown in FIG. 7D.
  • FIG. 5A shows an example in which the resonance frequency of the radiating element 29 of the second antenna 2 substantially matches one of the resonance frequencies of the first antenna 1
  • FIG. 7B shows the second radiation on the second antenna 2 side.
  • the resonance frequency of the element 22 and the variable reactance circuit 23 substantially matches one resonance frequency of the first antenna 1
  • at least one of the resonance frequencies of the self-resonance circuit SR is the second antenna. 2
  • the radiation efficiency of the first antenna 1 can be reduced at a specific resonance frequency of the first antenna 1, whereby the radiation efficiency between the first antenna 1 and the second antenna 2 can be reduced. Isolation can be secured.
  • FIGS. 8A and 8B are diagrams illustrating a communication band of communication performed by the first antenna 1 and one reception band among communication bands of communication performed by the second antenna 2.
  • A1 indicates the frequency characteristic of the reflection coefficient of the first antenna 1
  • A2 indicates the frequency characteristic of a part of the reflection coefficient of the second antenna 2.
  • the first antenna 1 has a resonance point at each of the frequencies fa, fb, and fc.
  • the band including the resonance point of the frequency fa is used for communication in the communication frequency bands FB1 and FB2
  • the band including the resonance point of the frequency fb is used for communication in the communication frequency band FB3 and including the resonance point of the frequency fc. Is used for communication in the communication frequency band FB4.
  • the resonance frequency f1 of the second antenna 2 is used for a reception band (Rx) in a predetermined communication system, and this frequency f1 is a communication frequency band in a communication system using the first antenna 1. It matches the transmission band (Tx) of FB2.
  • the reception band and transmission band shown in FIG. 8 (A) are simplified representations of a part of the 3GPP (Third Generation Partnership Project) standard band, and the frequency band lower than 1 GHz is 1 GHz or more. This indicates that a plurality of reception bands and transmission bands are denser than the frequency band of FIG.
  • the communication band is from the lower limit frequency (LLF) of 700 MHz to the upper limit frequency (ULF) of 2700 MHz in the communication frequency band shown in FIG.
  • each reception band and transmission band has a lower limit frequency and an upper limit frequency, and has a certain width.
  • One communication frequency band includes one transmission band and one reception band, and is a frequency region equal to or higher than the lower limit frequency of the transmission band and equal to or lower than the upper limit frequency of the reception band.
  • the reactance of the variable reactance circuit 13 is determined so that the resonance frequency of the self-resonance circuit SR of the first antenna 1 is close to or equal to the resonance frequency f1 of the second antenna 2.
  • the reflection coefficient of the first antenna 1 increases at the frequency f1, and the isolation between the first antenna 1 and the second antenna 2 at the frequency f1 is ensured.
  • This also adds the resonance point of the first antenna-side second radiating element 12 to a frequency region lower than Tx at the frequency f1, and widens the Rx at the frequency fa, for example.
  • many bands may be dense in a low frequency region. However, even in such a case, it is possible to restrict the radiation of the first antenna to a specific band. For example, the radiation of the first antenna 1 at Tx is suppressed without substantially affecting Rx included in the communication frequency band FB2 in FIG.
  • FIG. 9 is a diagram illustrating another configuration example of the first antenna 1 included in the antenna device of the present embodiment.
  • the configuration of the variable reactance circuit 13 is different from that of the first antenna 1 shown in FIG.
  • the reactance element 14 is provided on the ground side of the switch 15 in the example of FIG. 1, the switch 15 may be provided on the ground side of the reactance element 14 as shown in FIG.
  • first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 have a small space via the first coil L1 and the second coil L2 of the coupling element 3 having the same winding axis. Therefore, an antenna device in which resonance by the first antenna-side second radiating element 12, the coupling element 3, and the variable reactance circuit 13 is broadened can be obtained.
  • FIGS. 10A and 10B are diagrams illustrating another configuration example of the first antenna 1 included in the antenna device of the present embodiment.
  • the configuration of the variable reactance circuit 13 is different from that of the first antenna 1 shown in FIG.
  • the variable reactance circuit 13 is configured by a variable inductor whose inductance changes according to a control signal or a control voltage.
  • the variable reactance circuit 13 is configured by a variable capacitor whose capacitance changes according to a control signal or a control voltage.
  • the variable reactance circuit 13 may be a combination of a variable capacitor and a variable inductor.
  • variable reactance circuit 13 may be configured by a variable capacitor, a variable inductor, or the like.
  • FIG. 11 is an external perspective view of the coupling element 3.
  • FIG. 12 is a perspective view showing the internal structure of the coupling element 3.
  • a first radiating element connection terminal PA On the outer surface of the coupling element 3, a first radiating element connection terminal PA, a second radiating element connection terminal PS, a power supply circuit connection terminal PF, and a ground connection terminal (connection terminal of the variable reactance circuit 13) PG are formed.
  • FIG. 13A is a cross-sectional view taken along the YZ plane passing through the center of the coupling element 3 in FIG.
  • FIG. 13B is a cross-sectional view taken along the XZ plane passing through the center of the coupling element 3 in FIG.
  • the main part of the coupling element 3 is a laminate of a plurality of insulating base materials in which a conductor pattern is formed on a predetermined insulating base material.
  • the first coil L1, the second coil L2, and the capacitor C are configured by the conductor patterns formed on the plurality of insulating base materials.
  • FIG. 14 is a plan view showing a conductor pattern formed on each of the plurality of insulating base materials.
  • Conductive patterns CP1, CP2, CP3, and CP4 for forming the capacitor C are formed in four layers above the lowermost layer.
  • the conductor patterns L11, L12, L13, L14, and L15 for forming the first coil L1 are formed in the five layers above.
  • conductor patterns L21, L22, L23, L24, and L25 for forming the second coil L2 are formed in the five layers above. By opposing the conductor pattern L15 and the conductor pattern L21, the first coil L1 and the second coil L2 are electromagnetically coupled.
  • the structure of the coupling element 3 is not limited to those shown in FIGS.
  • the capacitance component of the capacitance C a parasitic capacitance component generated when the first coil L1 and the second coil L2 face each other may be used. That is, the capacitance C may be constituted by a parasitic capacitance component generated between the first coil L1 and the second coil L2, or may be constituted by a combined capacitance of this parasitic capacitance component and the capacitance of other capacitors. It may be.
  • FIG. 15 is a plan view illustrating an example of the structure of an electronic device 201 including the first antenna 1 and the second antenna 2.
  • a dielectric chip antenna on which the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 are formed is mounted on one area of the circuit board 4 where the ground pattern is not formed.
  • a dielectric chip antenna on which the second antenna-side first radiating element 21 and the second antenna-side second radiating element 22 are formed is mounted on the other area where the ground pattern is not formed.
  • the coupling element 3 shown in FIG. 1 is mounted on the circuit board 4.
  • the circuit board 4 is provided with the power supply circuits 10 and 20 and the variable reactance circuits 13 and 23 shown in FIG.
  • the circuit board 4 is housed in a housing of the electronic device 201.
  • the resonance frequency of the self-resonant circuit SR of the first antenna 1 is approximated or equal to the resonance frequency f1 of the second antenna 2, so that the first antenna 1 and the second antenna 2 at the frequency f1
  • the isolation is ensured, for example, if the resonance frequency of the self-resonant circuit SR shown in FIG. 1 is set to a predetermined unnecessary frequency in the band of the transmission signal transmitted from the power supply circuit 10, The transmission of the unnecessary frequency signal from the first antenna 1 can also be suppressed.
  • FIG. 16 is a circuit diagram of the first antenna 1 and the second antenna 2 included in the antenna device 102 according to the second embodiment.
  • the first antenna 1 is, like the first antenna 1 shown in the first embodiment, between the first antenna-side first radiating element 11 and the feeder circuit connecting portion, and between the first antenna-side second radiating element 12 And a self-resonant circuit SR connected between the ground and the ground.
  • the variable reactance circuit 13 is connected between the first coil L1 of the coupling element 3 and the power supply circuit 10 to which the first radiating element 11 on the first antenna side is connected.
  • the second coil L2 of the coupling element 3 to which the first antenna-side second radiation element 12 is connected is connected to the ground.
  • the configuration of the second antenna 2 is the same as that shown in the first embodiment.
  • FIGS. 17A and 17B are diagrams showing the frequency characteristics of the reflection coefficient of the first antenna 1 and the second antenna 2 of the present embodiment, where the vertical axis represents the reflection coefficient of the antenna and the horizontal axis represents the frequency. It is.
  • A1 shows the frequency characteristic of the reflection coefficient of the first antenna 1
  • A2 shows the frequency characteristic of the reflection coefficient of the second antenna 2, respectively.
  • the first antenna 1 has resonance points at frequencies f11, f12, and f13, respectively.
  • the frequency f11 is a fundamental resonance frequency of the first antenna-side first radiating element 11 including the variable reactance circuit 13
  • the frequency f13 is a third order of the first antenna-side first radiating element 11 including the variable reactance circuit 13.
  • the frequency f12 is the resonance frequency of the first antenna-side second radiating element 12.
  • the second antenna 2 has a resonance point at a frequency f22.
  • the frequency f22 is a resonance frequency of the second antenna-side second radiating element 22 and the variable reactance circuit 23.
  • FIG. 17 (B) shows that the resonance frequency of the first antenna 1 is changed from f11 to f11p from the state shown in FIG. 17 (A) in response to the selection of the reactance of the variable reactance circuit 13 of the first antenna 1.
  • the state when f13 is displaced to f13p and this resonance frequency f13p substantially matches the resonance frequency f22 of the second antenna 2 is shown.
  • the resonance point of the frequency f13 due to the harmonic of the fundamental wave of the first radiating element is displaced together with the frequency f11, so that the resonance point unintentionally overlaps with the resonance frequency f22 used in the second antenna 2. It is.
  • FIG. 17C shows a state in which the resonance frequency fsr of the self-resonant circuit SR included in the first antenna 1 is determined to be substantially equal to the resonance frequency f13p of the first antenna 1.
  • the reflection coefficient A1 of the first antenna 1 increases at the frequency f13p, as shown in FIG. That is, the self-resonant circuit SR self-resonates at this frequency f13p (fsr), and the radiation of the first antenna-side first radiation element 11 and the first antenna-side second radiation element 12 is suppressed.
  • FIGS. 18A and 18B are circuit diagrams of the first antenna 1 included in the antenna device according to the third embodiment.
  • the first radiating element 11 on the first antenna side shown in FIGS. 18A and 18B is a loop radiating element, and the second radiating element 12 on the first antenna side is a monopole radiating element.
  • the configuration of the self-resonant circuit SR connected to the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 shown in FIG. 18A is the same as that shown in FIG.
  • the configuration of the self-resonant circuit SR connected to the first antenna-side first radiating element 11 and the first antenna-side second radiating element 12 shown in FIG. 18B is the same as that shown in FIG.
  • FIGS. 19A and 19B are circuit diagrams of the first antenna 1 included in another antenna device according to the third embodiment.
  • the first radiating element 11 on the first antenna side shown in FIGS. 19A and 19B is a loop radiating element
  • the second radiating element 12 on the first antenna side is a monopole radiating element.
  • the power supply circuit 10 is connected between one end of the first radiating element 11 on the first antenna side and the ground.
  • Other configurations are the same as those in the example shown in FIGS. 18A and 18B.
  • FIGS. 18A and 19A the same operation and effect as those of the antenna device shown in the first embodiment can be obtained. Further, according to the configurations shown in FIGS. 18B and 19B, the same operation and effect as those of the antenna device shown in the first embodiment can be obtained.
  • PIFA plane inverted-F antenna
  • FIGS. 20A and 20B are circuit diagrams of the first antenna 1 included in the antenna device according to the fourth embodiment.
  • a feeding circuit 10 is connected to a predetermined feeding point of a first antenna-side first radiating element 11, and a predetermined grounding point (PIFA).
  • the first coil L1 of the coupling element 3 is connected between the short pin position) and the ground.
  • a variable reactance circuit 13 is connected between the second coil L2 of the coupling element 3 and the ground.
  • the ground side of the first coil L1 of the coupling element 3 connected to the ground point of the first antenna-side first radiating element 11 is the maximum point of the current flowing through the first antenna-side first radiating element 11.
  • the first coil L1 of the coupling element 3 may be provided between the ground point of the first radiating element 11 on the first antenna side and the ground.
  • the first coil L1 of the coupling element 3 is inserted between a predetermined feeding point of the first radiating element 11 on the first antenna side and the feeding circuit 10, and the ground point of the first radiating element 11 on the first antenna side is grounded. You may connect directly.
  • the first radiating element 11 on the first antenna side may be a PIFA. Further, the first radiating element 11 on the first antenna side is not limited to the PIFA, and may be a general inverted F-type antenna.
  • ⁇ 5th Embodiment a configuration example of a communication circuit included in an electronic device according to the present invention will be described.
  • FIG. 21 is a block diagram showing a configuration of a main part of a communication circuit connected to the first antenna 1 and a main part of a communication circuit connected to the second antenna 2.
  • the communication circuit connected to the first antenna 1 includes an RFIC, a power amplifier RFPA, switches SW1 and SW2, a duplexer DUP, a control circuit CNT, and a low noise amplifier LNA. The same applies to the communication circuit connected to the second antenna 2.
  • the power amplifier RFPA power-amplifies the transmission signal output from the RFIC.
  • Switches SW1 and SW2 select one of a plurality of duplexers DUP.
  • the control circuit CNT selects the switches SW1 and SW2, respectively.
  • the control circuit CNT of the communication circuit connected to the first antenna 1 selects a switch (the switch 15 in FIG. 1) of the variable reactance circuit 13 of the first antenna 1.
  • the control circuit CNT of the communication circuit connected to the second antenna 2 selects a switch (the switch 25 in FIG. 1) of the variable reactance circuit 23 of the second antenna 2.
  • the control circuit CNT of the communication circuit connected to the first antenna 1 controls the resonance point of the first antenna 1 by selecting a switch (the switch 15 in FIG. 1) of the variable reactance circuit 13 of the first antenna 1. And controls the resonance frequency of the self-resonant circuit SR.
  • the control circuit CNT of the communication circuit connected to the second antenna 2 controls the resonance point of the second antenna 2 by selecting the switch (the switch 25 in FIG. 1) of the variable reactance circuit 23 of the second antenna 2. I do.
  • the antenna device including two antennas (the first antenna 1 and the second antenna 2) is illustrated, but the present invention can be similarly applied to a case where three or more antennas are provided.
  • C capacitance
  • CNT control circuits CP1, CP2, CP3, CP4: capacitance forming conductor pattern
  • DUP duplexer
  • L1 first coil L11, L12, L13, L14, L15: first coil forming conductor pattern
  • L2 second coil L21, L22, L23, L24, L25 ... second coil forming conductor pattern
  • LNA low noise amplifier
  • PF feeding circuit connection terminal PS ... second radiating element connection terminal RC ... resonance current RFPA ... power amplifier SR ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

アンテナ装置(101A)は第1アンテナ(1)及び第2アンテナ(2)を備える。第1アンテナ側第1放射素子(11)と給電回路接続部との間、及び第1アンテナ側第2放射素子(12)とグランドとの間には自己共振回路(SR)が構成されている。そして、自己共振回路(SR)は、第1コイル(L1)と、第1コイル(L1)に電磁界結合する第2コイル(L2)と、第1コイル(L1)と第2コイル(L2)との間に形成される容量(C)とを有する結合素子(3)と、第2コイル(L2)とグランドとの間に接続される可変リアクタンス回路(13)とで構成される。自己共振回路(SR)の共振周波数は可変リアクタンス回路(13)のリアクタンスによって変化し、自己共振回路(SR)の共振周波数のうち少なくとも1つは第2アンテナ(2)による通信帯域内の周波数である。

Description

アンテナ装置及び電子機器
 本発明は、通信機能を有する電子機器及び、この電子機器に備えられるアンテナ装置に関するものである。
 近年、通信に用いる通信帯域の広帯域化に伴い、通信帯域をカバーするための広帯域アンテナ装置の需要が高まっている。
 アンテナ装置を広帯域化する手法の一つとして、給電回路に接続される給電放射素子と、この給電回路から物理的に切り離された無給電放射素子とを備え、無給電放射素子を給電放射素子に電磁界結合させることにより、給電放射素子の特性に無給電放射素子の特性を付与する手法が従来用いられている(特許文献1)。
国際公開第2012/153690号
 この特許文献1に記載のようなアンテナ装置において、複数のシステムに用いられる複数のアンテナが同一の電子機器(筐体)内に配置されることがある。図22はその例を示すアンテナ装置の回路図である。図22に示すアンテナ装置100は、第1アンテナ1と第2アンテナ2とを備える。第1アンテナ1は第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12を備える。また、第2アンテナ2は第2アンテナ側放射素子29を備える。第1アンテナ側第1放射素子11には給電回路10が接続される。第1アンテナ側第1放射素子11と第1アンテナ側第2放射素子12とは、第1コイルL1及び第2コイルL2で構成されるトランス回路を介して結合する。図22に示した例のように、第1アンテナ側第1放射素子11に結合する第1アンテナ側第2放射素子12を設けることによって、適用可能な周波数帯域を広帯域化できる。
 図22に示した例では、第1アンテナ側第1放射素子11と、トランス回路を構成する第1コイルL1とによって決められる共振周波数に、第1アンテナ側第2放射素子12は上記トランス回路及び第1アンテナ側第2放射素子12自体によって決められた共振周波数が付加されることで、第1アンテナ1をある適用可能な周波数領域において広帯域化することが可能となる。しかしながら、第1アンテナ側第1放射素子11と、トランス回路を構成する第1コイルL1とによって決められる複数の共振周波数によって形成される複数の通信帯域において、広帯域化することのできる通信帯域は限られる。なぜなら、前述のように付加される共振周波数は、上記トランス回路及び第1アンテナ側第2放射素子12自体によって定まった値となってしまうからである。
 そこで、第1アンテナ1を更に別の周波数領域において広帯域化させるために、例えば第2コイルL2とグランドとの間にリアクタンスを切り替えることのできる可変リアクタンス回路を備えた構成を考えた。これによって、上記トランス回路と、第1アンテナ側第2放射素子12と可変リアクタンス回路とによって定められる共振周波数を付加することが可能になり、可変リアクタンス回路を備えていない図22のような構成に比べて、より複数の通信帯域において広帯域化することが容易になる。
 一方、図22における第1アンテナ1や第2アンテナ2等のように、複数のアンテナが同一の筐体内に配置される場合、第1アンテナ1の上記のような可変リアクタンス回路を用いて更なる広帯域化を図ろうとすると、それによって、第2アンテナ等の他のアンテナとのアイソレーションが問題となる。つまり、例えば、可変リアクタンス回路のリアクタンスによっては、第1アンテナ1の複数の共振周波数のうち一つの共振周波数が第2アンテナ2の通信帯域内にある、一つの共振周波数に一致又は近接する状態(「略一致の状態」)が生じる可能性がある。このような状態では、第1アンテナ1と第2アンテナ2とのアイソレーションが低下し、第1アンテナ1及び第2アンテナ2を用いる通信特性が劣化するおそれがある。
 図23は上述の不都合が生じる一例を示す図である。図23において、縦軸はアンテナの反射係数のdB表記(S11)、横軸は周波数である。また、この図23において、A1は第1アンテナ1の反射係数の周波数特性、A2は第2アンテナ2の反射係数の周波数特性をそれぞれ示す。第1アンテナ1は周波数f11,f12,f13に共振点を持ち、第2アンテナ2は、周波数f21,f22に共振点を持つ。図23は、第1アンテナの可変リアクタンス回路のリアクタンスを切り替えた際、あるリアクタンスにおいて、第2アンテナ2の共振周波数f22に第1アンテナ1の共振周波数f13が略一致の状態となったことを表している。このような状態では、周波数f13と周波数f22の近傍周波数領域において、第1アンテナ1と第2アンテナ2とのアイソレーションが低下して、上記アンテナ装置の通信特性が劣化する。
 このように、可変リアクタンス回路のリアクタンスの切り替えによって、第1アンテナ1の複数の共振周波数のうち一つの共振周波数が第2アンテナ2の共振周波数に一致又は近接するような状態では、その周波数帯で、第1アンテナ1と第2アンテナ2とのアイソレーションが低下し、第1アンテナ1及び第2アンテナ2を用いる通信特性が劣化する。
 そこで、本発明の目的は、複数のアンテナを備えた電子機器内においても、広い周波数領域に亘る複数の通信帯域において、広帯域化を容易にするアンテナ装置及び電子機器を提供することにある。
(1)本開示の一例としてのアンテナ装置は、先ず、第1アンテナ側第1放射素子及び第1アンテナ側第2放射素子を備える第1アンテナと、第2アンテナ側放射素子を備える第2アンテナと、前記第1アンテナ側第1放射素子と給電回路接続部との間に接続され、かつ前記第1アンテナ側第2放射素子とグランドとの間に接続される、自己共振回路と、を備える。そして、前記自己共振回路は、第1コイルと、前記第1コイルに電磁界結合する第2コイルと、前記第1コイルと前記第2コイルとの間に形成される容量とを有する結合素子と、可変リアクタンス回路とで構成され、前記第1コイルは前記第1アンテナ側第1放射素子と前記給電回路接続部との間に接続され、前記第2コイルは前記第1アンテナ側第2放射素子とグランドとの間に接続され、前記可変リアクタンス回路は、前記第1コイルと前記給電回路接続部との間、又は、前記第2コイルと前記グランドとの間に接続され、前記自己共振回路は前記可変リアクタンス回路のリアクタンスによって変化する複数の共振周波数を有し、前記自己共振回路の共振周波数のうち少なくとも1つは前記第2アンテナによる通信帯域内の周波数である、ことを特徴とする。
(2)本開示の一例としてのアンテナ装置は、先ず、給電回路接続部を有する第1アンテナ側第1放射素子、及び第1アンテナ側第2放射素子を備える第1アンテナと、第2アンテナ側放射素子を備える第2アンテナと、前記第1アンテナ側第1放射素子とグランドとの間に接続され、かつ前記第1アンテナ側第2放射素子とグランドとの間に接続される自己共振回路と、を備える。そして、前記自己共振回路は、第1コイルと、前記第1コイルに電磁界結合する第2コイルと、前記第1コイルと前記第2コイルとの間に形成される容量とを有する結合素子と、前記第2コイルとグランドとの間に接続される可変リアクタンス回路とで構成され、前記第1コイルは前記第1アンテナ側第1放射素子とグランドとの間に接続され、前記第2コイルは前記可変リアクタンス回路に接続され、前記自己共振回路の共振周波数は前記可変リアクタンス回路のリアクタンスによって変化し、前記自己共振回路の共振周波数のうち少なくとも1つは前記第2アンテナによる通信帯域内の周波数である、ことを特徴とする。
(3)本開示の一例として電子機器は、前記アンテナ装置と、前記給電回路接続部に接続される給電回路と、前記可変リアクタンス回路を制御する制御回路と、を備える。
 本発明によれば、可変リアクタンス回路のリアクタンスの切り替えに応じて第1アンテナが有する自己共振回路の共振周波数を調整できる。そして、第1アンテナの通信帯域外の共振周波数が、第2アンテナの通信帯域内における、いずれかの共振周波数と略一致した場合に、自己共振周波数を略一致した共振周波数に近接させるよう調整できる構造を有することで、第1アンテナと第2アンテナとの間のアイソレーションが確保でき、広い周波数領域に亘る複数の通信帯域において、広帯域化を容易にすることができる。
図1は第1の実施形態に係るアンテナ装置101Aの回路図である。 図2は第1の実施形態に係るアンテナ装置101Bの回路図である。 図3は第1の実施形態に係るアンテナ装置101Cの回路図である。 図4は、第1アンテナ1における、自己共振回路SRに流れる共振電流の例を示す図である。 図5(A)、図5(B)は、図1に示したアンテナ装置101Aの第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図である。図5(C)は第1アンテナ1の放射効率の周波数特性を示す図である。 図6(A)、図6(B)は、図1に示したアンテナ装置101Aの第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図である。 図7(A)、図7(B)、図7(C)は、図3に示したアンテナ装置101Cの第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図である。図7(D)は第1アンテナ1の放射効率の周波数特性を示す図である。 図8(A)、図8(B)は、第1アンテナ1によって行われる通信の通信帯域と、第2アンテナ2によって行われる通信の通信帯域のうち一つの受信帯域と、を示す図である。 図9は第1の実施形態のアンテナ装置が備える第1アンテナ1の別の構成例を示す図である。 図10(A)、図10(B)は第1の実施形態のアンテナ装置が備える第1アンテナ1の別の構成例を示す図である。 図11は結合素子3の外観斜視図である。 図12は結合素子3の内部の構造を示す斜視図である。 図13(A)は、図12における結合素子3の中心を通るY-Z面での断面図である。図13(B)は、図12における結合素子3の中心を通るX-Z面での断面図である。 図14は複数の絶縁性基材にそれぞれ形成された導体パターンを示す平面図である。 図15は、第1アンテナ1及び第2アンテナ2を備える電子機器の構造の一例を示す平面図である。 図16は、第2の実施形態のアンテナ装置102が備える第1アンテナ1及び第2アンテナ2の回路図である。 図17(A)、図17(B)は、第2の実施形態の第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図である。図17(C)は、第1アンテナ1が備える自己共振回路SRの共振周波数fsrが第1アンテナ1の共振周波数f13pに略等しくなるように定めたときの状態を示す図である。 図18(A)、図18(B)は、第3の実施形態に係るアンテナ装置が備える第1アンテナ1の回路図である。 図19(A)、図19(B)は、第3の実施形態に係る別のアンテナ装置が備える第1アンテナ1の回路図である。 図20(A)、図20(B)は、第4の実施形態に係るアンテナ装置が備える第1アンテナ1の回路図である。 図21は、第1アンテナ1に接続される通信回路の主要部、及び第2アンテナ2に接続される通信回路の主要部の構成を示すブロック図である。 図22は、リアクタンスの付加によって無給電放射素子の特性を切り替えるようにしたアンテナ装置の回路図である。 図23は、図22における可変リアクタンス回路13,23のリアクタンスに応じて、第1アンテナ1の複数の共振周波数のうち一つの共振周波数が第2アンテナ2の一つの共振周波数に一致する状態が生じる一例を示す図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係るアンテナ装置101Aの回路図であり、図2は第1の実施形態に係る別のアンテナ装置101Bの回路図であり、図3は第1の実施形態に係る、更に別のアンテナ装置101Cの回路図である。
 上記アンテナ装置101A,101B,101Cは、いずれも第1アンテナ1と第2アンテナ2とを備える。また、上記アンテナ装置101A,101B,101Cにおける第1アンテナ1の構成は同じである。第1アンテナ1は第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12を備える。第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12はいずれも例えばモノポール型放射素子である。
 第1アンテナ1は、第1アンテナ側第1放射素子11と給電回路接続部との間、及び第1アンテナ側第2放射素子12とグランドとの間に接続される自己共振回路SRを備える。
 自己共振回路SRは、結合素子3と可変リアクタンス回路13とで構成される。結合素子3は、第1コイルL1と、第1コイルL1に電磁界結合する第2コイルL2と、第1コイルL1と第2コイルL2との間に形成される容量Cと一体的に形成したチップ型の素子である。なお、結合素子3はチップ型素子で一体形成したものに限らず、例えば、容量Cと第1コイルL1及び第2コイルL2とは別体で構成したものであってもよい。
 結合素子3は、第1放射素子接続端子PA、第2放射素子接続端子PS、給電回路接続端子PF、及びグランド接続端子(可変リアクタンス回路13の接続端子)PGを備える。第1コイルL1は第1アンテナ側第1放射素子11と給電回路接続部との間に接続される。つまり、第1コイルL1は第1アンテナ側第1放射素子11と給電回路10との間に接続される。
 可変リアクタンス回路13は第2コイルL2とグランドとの間に接続され、第2コイルL2は第1アンテナ側第2放射素子12と可変リアクタンス回路13との間に接続される。可変リアクタンス回路13は、複数のリアクタンス素子14と、それらを選択するスイッチ15とで構成されていてもよいし、後に示すように、可変キャパシタや可変インダクタなどで構成されていてもよい。
 図1に示す第2アンテナ2は、第2アンテナ側放射素子29を備える。第2アンテナ側放射素子29は例えばモノポール型放射素子である。第2アンテナ側放射素子29には給電回路20が接続される。
 図2に示す第2アンテナ2は、第2アンテナ側第1放射素子21及び第2アンテナ側第2放射素子22を備える。第2アンテナ側第1放射素子21及び第2アンテナ側第2放射素子22はいずれも例えばモノポール型放射素子である。第2アンテナ側第1放射素子21には給電回路20が接続される。第2アンテナ側第1放射素子21と第2アンテナ側第2放射素子22とは電磁界結合する。なお、第2アンテナ側第1放射素子21と第2アンテナ側第2放射素子22とは、第1アンテナ1が備える結合素子3のようなチップ型の素子を用いて電磁界結合させてもよい。
 図3に示す第2アンテナ2は第2アンテナ側第1放射素子21及び第2アンテナ側第2放射素子22を備える。第2アンテナ側第1放射素子21及び第2アンテナ側第2放射素子22はいずれも例えばモノポール型放射素子である。第2アンテナ側第1放射素子21には給電回路20が接続される。第2アンテナ側第2放射素子22とグランドとの間には可変リアクタンス回路23が設けられる。可変リアクタンス回路23は、複数のリアクタンス素子24とそれら選択するスイッチ25とで構成されている。第2アンテナ側第1放射素子21と第2アンテナ側第2放射素子22とは電磁界結合する。なお、第2アンテナ側第1放射素子21と第2アンテナ側第2放射素子22とは、第1アンテナ1のように、結合素子3のようなチップ型の素子を用いて電磁界結合させてもよい。
 上記アンテナ装置101A,101B,101Cにおいて、第1アンテナ1と第2アンテナ2とはそれぞれ別の通信システムで用いられるアンテナ、又は同一通信システムで用いられるアンテナである。通信システムが異なる例として、第1アンテナ1はLTE通信用アンテナであり、第2アンテナ2はWiFi用、GPS用、Bluetooth(登録商標)用等のアンテナである。また、同一通信システムの例としては、例えば第1アンテナ1はダイバーシティアンテナのメインアンテナであり、第2アンテナ2はサブアンテナである。又は、第1アンテナ1及び第2アンテナ2は、例えばMIMO(Multi-Input Multi-Output)方式で通信を行うためのアンテナである。
 図4は、第1アンテナ1における、上記自己共振回路SRに流れる共振電流の例を示す図である。自己共振回路SRは、結合素子3の第1コイルL1、結合素子3の容量C、結合素子3の第2コイルL2、及び可変リアクタンス回路13で構成され、この経路に共振電流RCが流れる。したがって、この自己共振回路SRの共振周波数は可変リアクタンス回路13のリアクタンスによって変化する。換言すると、可変リアクタンス回路13のリアクタンスの設定によって自己共振回路SRの共振周波数を任意に変化させることができる。この自己共振回路SRの共振周波数のうち少なくとも1つは第2アンテナ2による通信帯域内の周波数である。
 本発明において「第2アンテナによる通信帯域」とは、実施形態において、第2アンテナ2を用いる(第2アンテナ2で整合する)通信システムで扱う周波数帯域(通信周波数帯)が1つの場合には、その周波数帯域の下限周波数から上限周波数までの周波数領域であり、第2アンテナ2を用いる(第2アンテナ2で整合する)通信システムで扱う周波数帯域(通信周波数帯)が複数の場合には、全周波数帯域(通信周波数帯)中における、下限周波数から上限周波数までの周波数領域のことである。また、本実施形態において「第2アンテナによる通信帯域内の周波数」とは、上記周波数領域内に含まれる周波数である。
 本実施形態では、可変リアクタンス回路13が存在することにより、第1アンテナ側第1放射素子11と第1アンテナ側第2放射素子12の電磁界結合を保ったまま、このような自己共振回路SRの共振周波数の設定を行うことができる。
 図5(A)、図5(B)は、図1中に示した第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図であり、縦軸はアンテナの反射係数(S11)、横軸は周波数である。また、図5(C)は第1アンテナ1の放射効率の周波数特性を示す図であり、縦軸は放射効率、横軸は周波数である。
 なお、図2に示したアンテナ装置101Bの特性についても、第2アンテナ側第2放射素子22の共振点が付加されるだけであり、それ以外は図1に示した特性と殆ど同じである。
 図5(A)、図5(B)において、A1は第1アンテナ1の反射係数の周波数特性、A2は第2アンテナ2の反射係数の周波数特性、をそれぞれ示す。図5(A)に示す状態で、第1アンテナ1は周波数f11,f12,f13にそれぞれ共振点を持ち、第2アンテナ2は周波数f21,f22にそれぞれ共振点を持つ。例えば、周波数f11は第1アンテナ側第1放射素子11の基本共振周波数であり、周波数f13は第1アンテナ側第1放射素子11の3次共振周波数である。また、周波数f12は、第1アンテナ側第2放射素子12、結合素子3及び可変リアクタンス回路13による共振周波数である。換言すれば、第1アンテナ側第2放射素子12と前記自己共振回路とによって第1アンテナ側第1放射素子11に付与される共振周波数がf12である。同様に、例えば、周波数f21は第2アンテナ2の放射素子29の基本共振周波数であり、周波数f22は放射素子29の3次共振周波数である。なお、上記周波数f11, f12は第1アンテナ1による通信帯域内にある共振点であり、周波数f13は第1アンテナ1の通信帯域外にあり、第1アンテナ1では使用しない共振点の1つである。
 図5(A)に示す例では、第1アンテナ側第1放射素子11の有する共振周波数のうち、3次共振周波数f13が第2アンテナ2の一つの使用する共振周波数f22に略一致したときの状態を示す。つまり、周波数f13は周波数f11の高調波による共振点であるために、意図せず第2アンテナで使用する共振周波数f22に重なっている状態である。本発明においてはこのような場合に、可変リアクタンス回路のリアクタンスを切り替えることで上記のような状態を回避することができる。
 図6(A)、図6(B)は、図1に示したアンテナ装置101Aの第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図である。図6(A)は、前述の「ある共振周波数に略一致する」例を示す。図6(B)は、この「ある共振周波数に略一致する」という状況を回避した状態(ある共振周波数とは異なるという状態)の一例である。例えば、図6(A)に示すように、第1アンテナの有する共振点A付近の第1アンテナ1の反射係数が-6dB以下となる領域Aと、第2アンテナ2の有する共振点B付近のアンテナの反射係数が-6dB以下となる領域Bが重なっている場合に、第1アンテナ1の共振点Aと第2アンテナ2の共振点Bとが略一致している状態である。また、-6.021という反射係数はVSWR(電圧定在波比)では3.0に対応するので、アンテナの反射係数が-6dB以下という指標の代わりに、VSWR(電圧定在波比)が3以下であるという指標を用いてもよい。
 図5(B)は上述したように第1アンテナ1が備える自己共振回路SRの共振周波数fsrを第1アンテナ1の共振周波数f13に略等しくなるように定めたときの状態を示している。このようにすることで、第1アンテナ1の共振周波数f13で自己共振回路SRが共振させることができる。すると、図5(B)に表わすように、第1アンテナ1の反射係数A1は周波数f13で高くなる。つまり、この周波数f13(fsr)で自己共振回路SRが自己共振して、2つのグランドと自己共振回路とで閉じた電流経路が形成されることによって、第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12へと流れ込む電流が抑制される。これによって、第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12の放射が抑制される。したがって、図5(C)に表れているように、第1アンテナ1の放射効率は周波数f13で低下する。これにより、第1アンテナ1と第2アンテナ2との間のアイソレーションが確保できる。
 なお、図1に示した自己共振回路SRの共振周波数は可変リアクタンス回路13のリアクタンス素子14の選択によって切り替えられるので、この可変リアクタンス回路13のリアクタンスの切り替えに伴って第1アンテナ1の共振周波数f12(第1アンテナ側第2放射素子12、結合素子3及び可変リアクタンス回路13による共振周波数)も変位する。このことによって、図5(C)に示されているように、第1アンテナ1の共振周波数f11とf12との間で放射効率が高まっている。
 図7(A)、図7(B)、図7(C)は、図3中に示した第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図であり、縦軸はアンテナの反射係数、横軸は周波数である。また、図7(D)は第1アンテナ1の放射効率の周波数特性を示す図であり、縦軸は放射効率、横軸は周波数である。
 図7(A)、図7(B)、図7(C)において、A1は第1アンテナ1の反射係数の周波数特性、A2は第2アンテナ2の反射係数の周波数特性、をそれぞれ示す。第1アンテナ1は、既に述べたとおり、周波数f11,f12,f13にそれぞれ共振点を持つ。第2アンテナ2は周波数f21,f22,f23にそれぞれ共振点を持つ。例えば、周波数f21は第2アンテナ側第1放射素子21の基本共振周波数であり、周波数f23は第2アンテナ側第1放射素子21の3次共振周波数である。また、周波数f22は、第2アンテナ側第2放射素子22及び可変リアクタンス回路23による共振周波数である。なお、上記周波数f11, f12は第1アンテナ1による通信帯域内にある共振点であり、周波数f13は第1アンテナ1の通信帯域外にあり、第1アンテナ1では使用しない共振点の1つである。
 図7(B)に示す例では、可変リアクタンス回路23のリアクタンスの選択に応じて、第2アンテナ側第2放射素子22及び可変リアクタンス回路23による、第2アンテナで使用する共振周波数f22が共振周波数f13に略一致したときの状態を示す。
 図7(C)は第1アンテナ1が備える自己共振回路SRの共振周波数fsrが第1アンテナ1の共振周波数f13に略等しくなるように定めたときの状態を示している。このように、第1アンテナ1の共振周波数f13で自己共振回路SRが共振すると、図7(C)に表れているように、第1アンテナ1の反射係数A1は周波数f13で高くなる。つまり、この周波数f13(fsr)で自己共振回路SRが自己共振して、第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12は周波数f13では放射しない。したがって、図7(D)に表れているように、第1アンテナ1の放射効率は周波数f13で低下する。これにより、第1アンテナ1と第2アンテナ2との間のアイソレーションが確保できる。
 なお、図1に示した自己共振回路SRの共振周波数は可変リアクタンス回路13のリアクタンス素子14の選択によって切り替えられるので、この可変リアクタンス回路13のリアクタンスの切り替えに伴って第1アンテナ1の共振周波数f12(第1アンテナ側第2放射素子12、結合素子3及び可変リアクタンス回路13による共振周波数)も変位する。このことによって、図7(D)に示されているように、第1アンテナ1の共振周波数f11とf12との間で放射効率が高まっている。
 図5(A)では、第2アンテナ2の放射素子29による共振周波数が第1アンテナ1の一つの共振周波数に略一致する例を示し、図7(B)では、第2アンテナ側第2放射素子22及び可変リアクタンス回路23による共振周波数が第1アンテナ1の一つの共振周波数に略一致する例を示したが、いずれの場合でも、自己共振回路SRの共振周波数のうち少なくとも1つが第2アンテナ2による通信帯域内の周波数であれば、第1アンテナ1の放射効率を特定の第1アンテナ1の共振周波数において低下させることができ、これによって第1アンテナ1と第2アンテナ2との間のアイソレーションが確保できる。
 図8(A)、図8(B)は、第1アンテナ1によって行われる通信の通信帯域と、第2アンテナ2によって行われる通信の通信帯域のうち一つの受信帯域と、を示す図である。図8(A)、図8(B)において、A1は第1アンテナ1の反射係数の周波数特性、A2は第2アンテナ2の反射係数の一部の周波数特性、をそれぞれ示す。第1アンテナ1は周波数fa,fb,fcにそれぞれ共振点を持つ。周波数faの共振点を含む帯域は通信周波数帯FB1,FB2での通信に用いられ、周波数fbの共振点を含む帯域は通信周波数帯FB3での通信に用いられ、周波数fcの共振点を含む帯域は通信周波数帯FB4での通信に用いられる。
 図8(A)に示す例では、第2アンテナ2の共振周波数f1が所定の通信システムにおける受信帯域(Rx)に用いられるが、この周波数f1は第1アンテナ1を用いる通信システムにおける通信周波数帯FB2の送信帯域(Tx)に一致する。なお、図8(A)に示している受信帯域と送信帯域は3GPP(Third Generation Partnership Project)規格の帯域の一部を簡略化して示したものであり、1GHzよりも低い周波数帯域には1GHz以上の周波数帯域に比べ、複数の受信帯域と送信帯域が密集していることを示している。この場合の通信帯域は、図8(A)に示した通信周波数帯のうち、下限周波数(LLF)である700MHzから、上限周波数(ULF)である2700MHzである。また、図8(A)に示すように、それぞれの受信帯域と送信帯域は下限周波数、上限周波数を有し、ある程度の幅を持っている。1つの通信周波数帯は、1つの送信帯域と1つの受信帯域からなり、送信帯域の下限周波数以上でかつ受信帯域の上限周波数以下の周波数領域である。
 このような状態では、第1アンテナ1の自己共振回路SRの共振周波数が第2アンテナ2の共振周波数f1に近似又は等しくなるように、可変リアクタンス回路13のリアクタンスを定める。そのことにより、図8(B)に示すように、第1アンテナ1の反射係数は周波数f1で高くなって、周波数f1における第1アンテナ1と第2アンテナ2とのアイソレーションが確保される。また、これによって第1アンテナ側第2放射素子12の共振点が周波数f1のTxよりも低い周波数領域に追加され、例えば周波数faのRxが広帯域化される。また、図8(A)に示すように、低い周波数領域においては多くのバンドが密集している場合がある。しかし、このような場合でも、特定のバンドに絞って第1アンテナの放射を抑制することができる。例えば、図8(A)における通信周波数帯FB2に含まれるRxにはほとんど影響することなく、Txでの第1アンテナ1の放射を抑えられている。
 図9は本実施形態のアンテナ装置が備える第1アンテナ1の別の構成例を示す図である。図1に示した第1アンテナ1とは、可変リアクタンス回路13の構成が異なる。図1の例ではリアクタンス素子14をスイッチ15よりもグランド側に設けたが、図9に示すように、スイッチ15をリアクタンス素子14よりもグランド側に設けてもよい。
 なお、結合素子3の有する同じ巻回軸を有した第1コイルL1と第2コイルL2を介して、第1アンテナ側第1放射素子11と第1アンテナ側第2放射素子12とを少ないスペースで比較的強く電磁界結合させることができるので、第1アンテナ側第2放射素子12、結合素子3及び可変リアクタンス回路13による共振が広帯域化されたアンテナ装置が得られる。
 図10(A)、図10(B)は、本実施形態のアンテナ装置が備える第1アンテナ1の別の構成例を示す図である。図1に示した第1アンテナ1とは、可変リアクタンス回路13の構成が異なる。図10(A)に示す例では、可変リアクタンス回路13は制御信号や制御電圧によってインダクタンスが変化する可変インダクタで構成されている。図10(B)に示す例では、可変リアクタンス回路13は制御信号や制御電圧によってキャパシタンスが変化する可変キャパシタで構成されている。なお、可変リアクタンス回路13は可変キャパシタと可変インダクタとを組み合わせたものであってもよい。
 このように、可変リアクタンス回路13は可変キャパシタや可変インダクタなどで構成されていてもよい。
 図11は上記結合素子3の外観斜視図である。図12は結合素子3の内部の構造を示す斜視図である。結合素子3の外面には、第1放射素子接続端子PA、第2放射素子接続端子PS、給電回路接続端子PF、及びグランド接続端子(可変リアクタンス回路13の接続端子)PGが形成されている。
 図13(A)は、図12における結合素子3の中心を通るY-Z面での断面図である。図13(B)は、図12における結合素子3の中心を通るX-Z面での断面図である。
 結合素子3の主要部は、所定の絶縁性基材に導体パターンが形成された、複数の絶縁性基材の積層体である。複数の絶縁性基材に形成された導体パターンによって第1コイルL1、第2コイルL2及び容量Cが構成されている。
 図14は上記複数の絶縁性基材にそれぞれ形成された導体パターンを示す平面図である。最下層より上の4層に容量C形成用の導体パターンCP1,CP2,CP3,CP4が形成されている。その上の5層には第1コイルL1形成用の導体パターンL11,L12,L13,L14,L15が形成されている。さらに、その上の5層には第2コイルL2形成用の導体パターンL21,L22,L23,L24,L25が形成されている。導体パターンL15と導体パターンL21とが対向することにより、第1コイルL1と第2コイルL2とは電磁界結合する。
 結合素子3の構造は図11~図14に示すものに限られるものではない。例えば、容量Cのキャパシタンス成分には、第1コイルL1と第2コイルL2が対向することで生じる寄生キャパシタンス成分を利用してもよい。つまり、容量Cは第1コイルL1と第2コイルL2との間に生じる寄生キャパシタンス成分で構成されてもよいし、この寄生キャパシタンス成分とそれ以外のキャパシタのキャパシタンスとの合成キャパシタンスで構成されるものであってもよい。
 図15は、第1アンテナ1及び第2アンテナ2を備える電子機器201の構造の一例を示す平面図である。回路基板4の、グランドパターンが形成されていない一方の領域に、第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12が形成された誘電体チップアンテナが実装されている。同様に、グランドパターンが形成されていない他方の領域に、第2アンテナ側第1放射素子21及び第2アンテナ側第2放射素子22が形成された誘電体チップアンテナが実装されている。回路基板4には、図1に示した結合素子3が実装されている。さらに、回路基板4には、図1に示した給電回路10,20、可変リアクタンス回路13,23が設けられている。この回路基板4は電子機器201の筐体内に収められる。
 以上に示した例では、第1アンテナ1の自己共振回路SRの共振周波数を第2アンテナ2の共振周波数f1に近似又は等しくすることにより、周波数f1における第1アンテナ1と第2アンテナ2とのアイソレーションを確保するものであったが、例えば図1に示した自己共振回路SRの共振周波数を、給電回路10から送信される送信信号の帯域のうち、所定の不要な周波数に定めれば、その不要な周波数の信号が第1アンテナ1から送信されることを抑制することもできる。
《第2の実施形態》
 第2の実施形態では、給電放射素子側に可変リアクタンス回路を設けたアンテナ装置の例について示す。
 図16は第2の実施形態のアンテナ装置102が備える第1アンテナ1及び第2アンテナ2の回路図である。第1アンテナ1は、第1の実施形態で示した第1アンテナ1と同様に、第1アンテナ側第1放射素子11と給電回路接続部との間、及び第1アンテナ側第2放射素子12とグランドとの間に接続される自己共振回路SRを備える。但し、可変リアクタンス回路13は、第1アンテナ側第1放射素子11が接続される、結合素子3の第1コイルL1と給電回路10との間に接続されている。また、第1アンテナ側第2放射素子12が接続される、結合素子3の第2コイルL2はグランドに接続されている。第2アンテナ2の構成は第1の実施形態で示したものと同様である。
 図17(A)、図17(B)は、本実施形態の第1アンテナ1及び第2アンテナ2の反射係数の周波数特性を示す図であり、縦軸はアンテナの反射係数、横軸は周波数である。
 図17(A)、図17(B)において、A1は第1アンテナ1の反射係数の周波数特性、A2は第2アンテナ2の反射係数の周波数特性、をそれぞれ示す。第1アンテナ1は周波数f11,f12,f13にそれぞれ共振点を持つ。例えば、周波数f11は、可変リアクタンス回路13を含む第1アンテナ側第1放射素子11の基本共振周波数であり、周波数f13は、可変リアクタンス回路13を含む第1アンテナ側第1放射素子11の3次共振周波数である。また、周波数f12は、第1アンテナ側第2放射素子12による共振周波数である。第2アンテナ2は周波数f22に共振点を持つ。この周波数f22は、第2アンテナ側第2放射素子22及び可変リアクタンス回路23による共振周波数である。
 図17(B)は、第1アンテナ1の可変リアクタンス回路13のリアクタンスの選択に応じて、図17(A)に示した状態から、第1アンテナ1の共振周波数f11からf11pに変位し、周波数f13がf13pに変位して、この共振周波数f13pが第2アンテナ2の共振周波数f22に略一致したときの状態を示す。この場合も、第1放射素子の基本波の高調波による、周波数f13の共振点が、周波数f11と共に変位したことによって、第2アンテナ2で使用する共振周波数f22に意図せず重なってしまった状態である。
 図17(C)は第1アンテナ1が備える自己共振回路SRの共振周波数fsrが第1アンテナ1の共振周波数f13pに略等しくなるように定めたときの状態を示している。このように、第1アンテナ1の共振周波数f13pで自己共振回路SRが共振すると、図17(C)に表れているように、第1アンテナ1の反射係数A1は周波数f13pで高くなる。つまり、この周波数f13p(fsr)で自己共振回路SRが自己共振して、第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12の放射が抑制される。
《第3の実施形態》
 第3の実施形態では、第1アンテナにおける第1放射素子及び第2放射素子の構成が第1の実施形態で示した例とは異なる第1アンテナについて示す。
 図18(A)、図18(B)は、第3の実施形態に係るアンテナ装置が備える第1アンテナ1の回路図である。図18(A)、図18(B)に示す第1アンテナ側第1放射素子11はループ型放射素子であり、第1アンテナ側第2放射素子12はモノポール型放射素子である。
 図18(A)に示す第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12に接続される自己共振回路SRの構成は図1に示したものと同じである。また、図18(B)に示す第1アンテナ側第1放射素子11及び第1アンテナ側第2放射素子12に接続される自己共振回路SRの構成は図16に示したものと同じである。
 図19(A)、図19(B)は、第3の実施形態に係る別のアンテナ装置が備える第1アンテナ1の回路図である。図19(A)、図19(B)に示す第1アンテナ側第1放射素子11はループ型放射素子であり、第1アンテナ側第2放射素子12はモノポール型放射素子である。図19(A)、図19(B)に示す例では、第1アンテナ側第1放射素子11の一端とグランドとの間に給電回路10が接続されている。その他の構成は図18(A)、図18(B)に示した例と同様である。
 図18(A)、図19(A)に示す構成によれば、第1の実施形態で示したアンテナ装置と同様に作用効果を奏する。また、図18(B)、図19(B)に示す構成によれば、第1の実施形態で示したアンテナ装置と同様に作用効果を奏する。
《第4の実施形態》
 第4の実施形態ではPIFA(planar inverted-F antenna)を備えるアンテナ装置について示す。
 図20(A)、図20(B)は、第4の実施形態に係るアンテナ装置が備える第1アンテナ1の回路図である。図20(A)、図20(B)に示す第1アンテナ1は、第1アンテナ側第1放射素子11の所定の給電点に給電回路10が接続されていて、所定の接地点(PIFAのショートピンの位置)とグランドとの間に、結合素子3の第1コイルL1が接続されている。結合素子3の第2コイルL2とグランドとの間には可変リアクタンス回路13が接続されている。
 このように、第1アンテナ側第1放射素子11の接地点に接続される結合素子3の第1コイルL1のグランド側が、第1アンテナ側第1放射素子11に流れる電流の最大点となる。
 図20(A)、図20(B)に示したように、結合素子3の第1コイルL1は、第1アンテナ側第1放射素子11の接地点とグランドとの間に設けてもよいが、第1アンテナ側第1放射素子11の所定の給電点と給電回路10との間に結合素子3の第1コイルL1を挿入し、第1アンテナ側第1放射素子11の接地点をグランドに直接接続してもよい。
 本実施形態で示したように、第1アンテナ側第1放射素子11はPIFAであってもよい。また、第1アンテナ側第1放射素子11はPIFAに限らず、一般的な逆F型アンテナであってもよい。
《第5の実施形態》
 第5の実施形態では、本発明に係る電子機器が備える通信回路の構成例について示す。
 図21は、第1アンテナ1に接続される通信回路の主要部、及び第2アンテナ2に接続される通信回路の主要部の構成を示すブロック図である。第1アンテナ1に接続される通信回路は、RFIC、パワーアンプRFPA、スイッチSW1,SW2、デュプレクサDUP、制御回路CNT、ローノイズアンプLNAを備える。第2アンテナ2に接続される通信回路についても同様である。
 上記パワーアンプRFPAはRFICから出力される送信信号を電力増幅する。スイッチSW1,SW2は複数のデュプレクサDUPのうちいずれかを選択する。制御回路CNTはスイッチSW1,SW2をそれぞれ選択する。第1アンテナ1に接続される通信回路の制御回路CNTは第1アンテナ1の可変リアクタンス回路13のスイッチ(図1中のスイッチ15)を選択する。また、第2アンテナ2に接続される通信回路の制御回路CNTは第2アンテナ2の可変リアクタンス回路23のスイッチ(図1中のスイッチ25)を選択する。
 第1アンテナ1に接続される通信回路の制御回路CNTは、第1アンテナ1の可変リアクタンス回路13のスイッチ(図1中のスイッチ15)を選択することで、第1アンテナ1の共振点を制御し、また自己共振回路SRの共振周波数を制御する。
 第2アンテナ2に接続される通信回路の制御回路CNTは、第2アンテナ2の可変リアクタンス回路23のスイッチ(図1中のスイッチ25)を選択することで、第2アンテナ2の共振点を制御する。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上の各実施形態では、二つのアンテナ(第1アンテナ1及び第2アンテナ2)を備えるアンテナ装置を例示したが、三つ以上のアンテナを備える場合にも同様に適用できる。
C…容量
CNT…制御回路
CP1,CP2,CP3,CP4…容量形成用導体パターン
DUP…デュプレクサ
L1…第1コイル
L11,L12,L13,L14,L15…第1コイル形成用導体パターン
L2…第2コイル
L21,L22,L23,L24,L25…第2コイル形成用導体パターン
LNA…ローノイズアンプ
PF…給電回路接続端子
PS…第2放射素子接続端子
RC…共振電流
RFPA…パワーアンプ
SR…自己共振回路
SW1,SW2…スイッチ
PA…第1放射素子接続端子
1…第1アンテナ
2…第2アンテナ
3…結合素子
4…回路基板
10,20…給電回路
11…第1アンテナ側第1放射素子
12…第1アンテナ側第2放射素子
13,23…可変リアクタンス回路
14…リアクタンス素子
15…スイッチ
20…給電回路
21…第2アンテナ側第1放射素子
22…第2アンテナ側第2放射素子
24…リアクタンス素子
25…スイッチ
29…第2アンテナ側放射素子
100,101A,101B,101C,102…アンテナ装置
201…電子機器

Claims (10)

  1.  第1アンテナ側第1放射素子及び第1アンテナ側第2放射素子を備える第1アンテナと、
     第2アンテナ側放射素子を備える第2アンテナと、
     前記第1アンテナ側第1放射素子と給電回路接続部との間に接続され、かつ前記第1アンテナ側第2放射素子とグランドとの間に接続される、自己共振回路と、を備え、
     前記自己共振回路は、第1コイルと、前記第1コイルに電磁界結合する第2コイルと、前記第1コイルと前記第2コイルとの間に形成される容量とを有する結合素子と、可変リアクタンス回路とで構成され、
     前記第1コイルは前記第1アンテナ側第1放射素子と前記給電回路接続部との間に接続され、
     前記第2コイルは前記第1アンテナ側第2放射素子とグランドとの間に接続され、
     前記可変リアクタンス回路は、前記第1コイルと前記給電回路接続部との間、又は、前記第2コイルと前記グランドとの間に接続され、
     前記自己共振回路は前記可変リアクタンス回路のリアクタンスによって変化する複数の共振周波数を有し、
     前記自己共振回路の共振周波数のうち少なくとも1つは前記第2アンテナによる通信帯域内の周波数である、
     ことを特徴とするアンテナ装置。
  2.  給電回路接続部を有する第1アンテナ側第1放射素子、及び第1アンテナ側第2放射素子を備える第1アンテナと、
     第2アンテナ側放射素子を備える第2アンテナと、
     前記第1アンテナ側第1放射素子とグランドとの間に接続され、かつ前記第1アンテナ側第2放射素子とグランドとの間に接続される自己共振回路と、を備え、
     前記自己共振回路は、第1コイルと、前記第1コイルに電磁界結合する第2コイルと、前記第1コイルと前記第2コイルとの間に形成される容量とを有する結合素子と、前記第2コイルとグランドとの間に接続される可変リアクタンス回路とで構成され、
     前記第1コイルは前記第1アンテナ側第1放射素子とグランドとの間に接続され、
     前記第2コイルは前記可変リアクタンス回路に接続され、
     前記自己共振回路の共振周波数は前記可変リアクタンス回路のリアクタンスによって変化し、
     前記自己共振回路の共振周波数のうち少なくとも1つは前記第2アンテナによる通信帯域内の周波数である、
     ことを特徴とするアンテナ装置。
  3.  前記可変リアクタンス回路は、複数のリアクタンス素子と、これら複数のリアクタンス素子との接続を選択するスイッチとで構成される、請求項1又は2に記載のアンテナ装置。
  4.  前記可変リアクタンス回路は、少なくとも1つの可変インダクタ又は少なくとも1つの可変キャパシタで構成される、請求項1又は2に記載のアンテナ装置。
  5.  前記第2アンテナ側放射素子は、前記第2アンテナによる通信帯域内で二つ以上の共振周波数を有する、請求項1から4のいずれかに記載のアンテナ装置。
  6.  前記第1アンテナ側第2放射素子と前記自己共振回路とによって前記第1アンテナ側第1放射素子に付与される共振周波数は、前記可変リアクタンス回路のリアクタンスによって変化し、前記第1アンテナ側第1放射素子に付与される前記共振周波数のうち少なくとも1つは、前記第1アンテナによる通信帯域内にある、請求項1から5のいずれかに記載のアンテナ装置。
  7.  前記第1アンテナ側第2放射素子と前記自己共振回路とによって前記第1アンテナ側第1放射素子に付与される共振周波数は、前記可変リアクタンス回路のリアクタンスによって変化し、前記第1アンテナ側第1放射素子に付与される前記共振周波数のうち少なくとも1つは、前記第2アンテナによる通信帯域内にある、前記第2アンテナが有する全ての共振周波数とは異なる、請求項1から5のいずれかに記載のアンテナ装置。
  8.  前記第2アンテナは、前記第2アンテナ側放射素子に接続される可変リアクタンス回路を備え、
     前記第2アンテナ側放射素子に接続される前記可変リアクタンス回路は、スイッチ及び複数のリアクタンス素子とで構成される、請求項1から7のいずれかに記載のアンテナ装置。
  9.  前記第2アンテナは、前記第2アンテナ側放射素子に接続される可変リアクタンス回路を備え、
     前記第2アンテナ側放射素子に接続される前記可変リアクタンス回路は、少なくとも1つの可変インダクタ又は可変キャパシタで構成される、請求項1から7のいずれかに記載のアンテナ装置。
  10.  請求項1から9のいずれかに記載のアンテナ装置と、前記給電回路接続部に接続される給電回路と、前記可変リアクタンス回路を制御する制御回路と、を備える、電子機器。
PCT/JP2019/024039 2018-07-09 2019-06-18 アンテナ装置及び電子機器 WO2020012885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020530061A JP6791460B2 (ja) 2018-07-09 2019-06-18 アンテナ装置及び電子機器
CN201990000721.9U CN213816426U (zh) 2018-07-09 2019-06-18 天线装置及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-129796 2018-07-09
JP2018129796 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020012885A1 true WO2020012885A1 (ja) 2020-01-16

Family

ID=69142544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024039 WO2020012885A1 (ja) 2018-07-09 2019-06-18 アンテナ装置及び電子機器

Country Status (3)

Country Link
JP (1) JP6791460B2 (ja)
CN (1) CN213816426U (ja)
WO (1) WO2020012885A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153215A1 (ja) * 2020-01-28 2021-08-05 株式会社村田製作所 アンテナ装置及び電子機器
JPWO2022018925A1 (ja) * 2020-07-20 2022-01-27
WO2022230371A1 (ja) * 2021-04-28 2022-11-03 株式会社村田製作所 アンテナ装置
WO2023120074A1 (ja) * 2021-12-22 2023-06-29 株式会社村田製作所 アンテナ装置、および通信端末装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033548A (ja) * 2007-07-27 2009-02-12 Toshiba Corp アンテナ装置及び無線機
JP2012100221A (ja) * 2010-11-05 2012-05-24 Murata Mfg Co Ltd アンテナ装置および通信端末装置
WO2013140758A1 (ja) * 2012-03-21 2013-09-26 日本電気株式会社 アンテナ装置
JP2014053808A (ja) * 2012-09-07 2014-03-20 Murata Mfg Co Ltd 結合度調整素子、アンテナ装置および無線通信装置
US20170358846A1 (en) * 2016-06-08 2017-12-14 Asustek Computer Inc. Communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033548A (ja) * 2007-07-27 2009-02-12 Toshiba Corp アンテナ装置及び無線機
JP2012100221A (ja) * 2010-11-05 2012-05-24 Murata Mfg Co Ltd アンテナ装置および通信端末装置
WO2013140758A1 (ja) * 2012-03-21 2013-09-26 日本電気株式会社 アンテナ装置
JP2014053808A (ja) * 2012-09-07 2014-03-20 Murata Mfg Co Ltd 結合度調整素子、アンテナ装置および無線通信装置
US20170358846A1 (en) * 2016-06-08 2017-12-14 Asustek Computer Inc. Communication device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153215A1 (ja) * 2020-01-28 2021-08-05 株式会社村田製作所 アンテナ装置及び電子機器
JP6950852B1 (ja) * 2020-01-28 2021-10-13 株式会社村田製作所 アンテナ装置及び電子機器
US11923624B2 (en) 2020-01-28 2024-03-05 Murata Manufacturing Co., Ltd. Antenna device and electronic apparatus
JPWO2022018925A1 (ja) * 2020-07-20 2022-01-27
JP7176667B2 (ja) 2020-07-20 2022-11-22 株式会社村田製作所 アンテナ装置、アンテナシステム及び通信端末装置
WO2022230371A1 (ja) * 2021-04-28 2022-11-03 株式会社村田製作所 アンテナ装置
WO2023120074A1 (ja) * 2021-12-22 2023-06-29 株式会社村田製作所 アンテナ装置、および通信端末装置

Also Published As

Publication number Publication date
JP6791460B2 (ja) 2020-11-25
CN213816426U (zh) 2021-07-27
JPWO2020012885A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6436277B2 (ja) 磁界結合素子、アンテナ装置および電子機器
US9190733B2 (en) Antenna with multiple coupled regions
WO2020012885A1 (ja) アンテナ装置及び電子機器
JP4508190B2 (ja) アンテナ及び無線通信機
US10205232B2 (en) Multi-antenna and radio apparatus including thereof
US8421702B2 (en) Multi-layer reactively loaded isolated magnetic dipole antenna
US7242364B2 (en) Dual-resonant antenna
JP6614363B2 (ja) アンテナ装置および電子機器
JP5826823B2 (ja) アンテナ装置及び無線通信装置
US8525731B2 (en) Small antenna using SRR structure in wireless communication system and method for manufacturing the same
US7505006B2 (en) Antenna arrangement
US8648763B2 (en) Ground radiator using capacitor
JP2009111999A (ja) マルチバンドアンテナ
WO2016076120A1 (ja) アンテナ装置および通信装置
US20190252786A1 (en) Devices and methods for implementing mimo in metal ring structures using tunable electrically small antennas
US8421695B2 (en) Multi-frequency, noise optimized active antenna
WO2016186091A1 (ja) アンテナ装置および電子機器
US20200373083A1 (en) Antenna coupling element, antenna device, and communication terminal device
US10511350B2 (en) Antenna device and electronic device
US11837800B2 (en) Antenna unit and electronic device
TW202019018A (zh) 寄生式單極多頻可調頻天線系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834111

Country of ref document: EP

Kind code of ref document: A1