WO2020012771A1 - Laser machining device, laser machining method, and production method for film-formation mask - Google Patents

Laser machining device, laser machining method, and production method for film-formation mask Download PDF

Info

Publication number
WO2020012771A1
WO2020012771A1 PCT/JP2019/018507 JP2019018507W WO2020012771A1 WO 2020012771 A1 WO2020012771 A1 WO 2020012771A1 JP 2019018507 W JP2019018507 W JP 2019018507W WO 2020012771 A1 WO2020012771 A1 WO 2020012771A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
line beam
shadow mask
mask
laser processing
Prior art date
Application number
PCT/JP2019/018507
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 雄二
平山 秀雄
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020012771A1 publication Critical patent/WO2020012771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • B23K26/0661Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks disposed on the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic

Definitions

  • the present invention relates to a laser processing apparatus, and more particularly, to a laser processing apparatus, a laser processing method, and a method for manufacturing a film forming mask that reduce the tact time in a laser processing step.
  • a conventional laser processing apparatus irradiates a shadow mask provided with a plurality of opening windows corresponding to a plurality of processing marks to be laser-processed on a workpiece with laser light, and a laser beam passing through the opening windows causes the laser beam to pass through the opening window.
  • the above processing marks are laser-processed (for example, see Patent Document 1).
  • a processing mark is laser-processed on a predetermined region of the workpiece while irradiating the shadow mask with a plurality of shots of laser light, and when the processing is completed, the workpiece is placed.
  • This is a so-called step-and-repeat method in which the stage is moved by a predetermined distance, and an operation of laser machining a processing mark in another region of the workpiece in the same manner as described above is repeated. Therefore, the time required to move the stage by controlling the acceleration and deceleration while securing the distance is much longer than the laser processing time, and it is difficult to reduce the tact time in the laser processing step. Therefore, there was a problem that the manufacturing cost of the processed product was increased.
  • a laser processing apparatus includes a laser optical system that generates a line beam, and a plurality of laser optical systems that are disposed downstream of the laser optical system in the light traveling direction and are laser-processed on a workpiece.
  • a shadow mask provided with a plurality of opening windows corresponding to processing marks, a projection lens for projecting an image of the shadow mask on the workpiece, and the shadow mask for projecting the line beam irradiated on the shadow mask
  • a moving mechanism for moving the line beam in a direction intersecting the long axis of the line beam relative to the projection lens; and a stage for mounting and holding the workpiece.
  • the laser processing method according to the present invention is a method of irradiating a line mask on a shadow mask provided with a plurality of opening windows corresponding to a plurality of processing marks to be laser-processed on a workpiece, and passing the laser beam through the opening window.
  • a laser processing method for laser processing the processing mark on the workpiece using a beam wherein the line beam irradiated on the shadow mask is used to form the shadow mask and an image of the shadow mask during laser processing. It moves in a direction intersecting the long axis of the line beam relative to a projection lens that projects onto a workpiece.
  • the method for manufacturing a film forming mask according to the present invention is applicable to a plurality of opening patterns to be laser-processed on a mask member in which a resin film and a metal sheet made of a magnetic metal material provided with a plurality of through holes are laminated.
  • a method of manufacturing a film forming mask comprising: irradiating a line beam onto a shadow mask provided with a plurality of opening windows, and laser processing the opening pattern on the mask member by a laser beam passing through the opening windows.
  • the line beam irradiated on the mask intersects the major axis of the line beam relative to the shadow mask and a projection lens that projects an image of the shadow mask onto the mask member during laser processing. To move in the direction of movement.
  • the laser processing time of the predetermined region is determined by the moving speed of the line beam, unlike the related art which depends on the step moving time of the stage, and the moving speed of the line beam is substantially determined by the oscillation frequency of the laser. Since it is determined, laser processing that makes full use of the oscillation frequency of the laser can be performed. Therefore, the tact time of the laser processing step can be reduced, and the cost of the processed product can be reduced. In addition, since the workpiece is laser-processed while moving the line beam, the intensity distribution in the moving direction of the line beam is averaged and uniform, and a uniform processing mark with no excess or shortage can be formed.
  • FIG. 3 is a plan view showing a relationship between a line beam and a shadow mask.
  • FIG. 4 is an explanatory diagram illustrating a configuration example of a moving mechanism.
  • FIG. 3 is a block diagram illustrating a configuration example of a control device. 4 is a table comparing the laser processing method according to the present invention and the conventional method with respect to the processing time of laser processing under the same conditions.
  • FIG. 1 is a front view showing a schematic configuration of an embodiment of a laser processing apparatus according to the present invention.
  • This laser processing apparatus irradiates a workpiece with a laser beam through a shadow mask to form a processing mark.
  • the workpiece is a resin film 7 made of, for example, polyimide or polyethylene terephthalate (PET) and a metal sheet 8 made of a magnetic metal material provided with a plurality of through holes 10.
  • PKT polyethylene terephthalate
  • metal sheet 8 made of a magnetic metal material provided with a plurality of through holes 10.
  • the processing trace is an opening pattern 11 formed in a portion of the resin film 7 located in the through hole 10 as shown in FIG. 2B will be described.
  • reference numeral 12 denotes a frame that supports the mask member 9.
  • a metal foil sheet having a thickness substantially equal to that of the resin film 7 (about 3 ⁇ m to about 10 ⁇ m) may be used.
  • an infrared laser beam is used, unlike ultraviolet rays described below.
  • the laser optical system 1 generates a laser beam L of a line beam Lb, and includes a laser light source 13, a front optical system 14, and a rear optical system 15 from the upstream side in the light traveling direction. .
  • the laser light source 13 emits laser light L having a wavelength in an ultraviolet region capable of ablating the resin film 7, and is, for example, an excimer laser or a YAG laser.
  • the pre-stage optical system 14 includes a beam expander that expands the diameter of the laser light L emitted from the laser light source 13, a collimator lens that converts the expanded laser light L into parallel light, and an attenuator that adjusts the laser intensity. And a shutter for opening and closing the optical path of the laser light L, and has functions such as a beam profile check, a power monitor, and a beam position correction.
  • the rear optical system 15 includes a homogenizer for equalizing the intensity distribution of the laser beam L in the cross section and a cylindrical lens for converting the laser beam L having an enlarged diameter into a line beam Lb, for example.
  • reference numeral 16 denotes a plane reflecting mirror.
  • a shadow mask 2 is provided on the downstream side of the laser optical system 1 in the light traveling direction.
  • the shadow mask 2 is provided with a plurality of opening windows 17 corresponding to a plurality of opening patterns 11 to be laser-processed on the mask member 9 and branches the line beam Lb into a plurality of laser beams B.
  • the mask member 9 is irradiated with a plurality of openings 17 formed by etching or the like on an opaque film such as chromium adhered to the surface of transparent glass.
  • a plurality of opening windows 17 penetrating a metal sheet may be provided.
  • the shadow mask 2 of the present invention is larger than the conventional shadow mask so as to cover a larger area than the processing area on the mask member 9 covered by the conventional shadow mask.
  • a projection lens 3 is provided downstream of the shadow mask 2 in the light traveling direction.
  • the projection lens 3 projects the image of the shadow mask 2 onto the mask member 9.
  • the image of the opening window 17 of the shadow mask 2 is formed by the resin in the through hole 10 of the metal sheet 8.
  • the image is projected on the film 7 by reducing it to 1/5.
  • a moving mechanism 4 is provided so as to move the line beam Lb irradiated on the shadow mask 2 in a direction (Y-axis direction) intersecting with the long axis (X-axis) of the line beam Lb.
  • the moving mechanism 4 moves the line beam Lb during laser processing at a constant speed (constant speed).
  • a constant speed for example, an air slider, a linear guide, or the like that moves the subsequent optical system 15 of the laser optical system 1 is provided. It is composed of a ball screw and the like.
  • the projection lens 3 including the shadow mask 2 described below may be moved with respect to the line beam Lb.
  • the case where the line beam Lb is moved will be described.
  • FIG. 4 is an explanatory diagram showing an example of the configuration of the moving mechanism 4.
  • the moving mechanism 4 has a mirror configuration inserted in the optical path on the output side of the post-stage optical system 15, and includes a fixed reflective mirror 19 having two outer reflective surfaces 18 intersecting at an angle of 90 ° with each other, It has two inner reflecting surfaces 20 that intersect at an angle of 90 °, and the two inner reflecting surfaces 20 maintain a parallel state with the two outer reflecting surfaces 18 of the fixed reflecting mirror 19, and And a movable reflective mirror 21 which is separated and approached in a direction connecting the intersections of the inner reflective surfaces 18 and 20, and a movable planar reflective mirror 22 which bends the optical path of the output light reflected by the fixed reflective mirror 19 by, for example, 90 °. And is provided.
  • the line beam Lb is moved on the shadow mask 2 by moving the movable flat reflecting mirror 22 along the optical axis of the incident light.
  • the optical path length of the rear optical system 15 can be maintained by moving the movable reflection mirror 21 in synchronization with the movement of the movable flat reflection mirror 22.
  • the movable flat reflecting mirror 22 is moved from left to right by a distance D in FIG. 4, the movable flat reflecting mirror 22 is moved so as to increase the distance between the movable reflecting mirror 21 and the fixed reflecting mirror 19 by D / 2.
  • the reflection mirror 21 may be moved.
  • the moving mechanism 4 may be a combination of a galvano mirror or a polygon mirror and an f ⁇ lens. Accordingly, the line beam Lb can be swung right and left by the galvanometer mirror or the polygon mirror, and the speed of the line beam Lb moving on the shadow mask 2 by the f ⁇ lens can be made uniform.
  • a stage 5 is provided to face the projection lens 3.
  • the stage 5 mounts and holds the mask member 9 and is configured to be movable in a two-dimensional plane orthogonal to the optical axis of the projection lens 3.
  • a control device 6 is electrically connected to the laser light source 13, the pre-stage optical system 14, the moving mechanism 4 and the stage 5.
  • the control device 6 controls each component to drive appropriately.
  • a laser light source controller 23 a pre-stage optical system controller 24, a moving mechanism controller 25, a stage controller 26, a memory 27, a calculation unit 28, and a central control unit 29.
  • the laser light source controller 23 controls the turning on and off of the laser light source 13, the oscillation frequency, and the like.
  • the upstream optical system controller 24 controls the attenuator of the upstream optical system 14 so that the intensity of the laser beam L can be adjusted and controls the opening and closing of the shutter.
  • the moving mechanism controller 25 controls the moving mechanism 4 to control the moving speed of the line beam Lb on the shadow mask 2.
  • the stage controller 26 controls the rotation angle of the stage 5 about the normal line at the center of the mounting surface of the stage 5, the moving direction, the moving speed, and the moving amount of the stage 5.
  • the memory 27 stores the oscillation frequency of the laser light source 13, the number of shots of laser processing, the moving speed of the line beam Lb, the moving speed and the moving amount of the stage 5, and the like. Further, the arithmetic unit 28 compares the moving speed of the line beam Lb read from the memory 27 with the actual moving speed of the line beam Lb, and controls the moving mechanism controller 25 so that the moving mechanism 4 is appropriately driven. At the same time, the moving speed and the moving amount of the stage 5 are read from the memory 27, and the stage controller 26 is controlled so that the stage 5 is appropriately driven by comparing with the actual moving speed and the moving amount of the stage 5. .
  • the central control unit 29 controls each component in an integrated manner.
  • alignment marks provided on the left and right sides of the center line in the Y-axis direction of the mask member 9 are photographed by an imaging camera (not shown), and the center line of the mask member 9 is moved to the stage 5 based on the photographed image.
  • the rotation angle of the stage 5 is adjusted by the stage controller 26 so as to match the moving direction (Y-axis direction).
  • the stage 5 is moved in the X-axis and Y-axis directions to adjust the irradiation position of the laser beam B to the laser processing start position of the mask member 9.
  • the optical system including the projection lens 3 is moved in the Z-axis direction and adjusted automatically so that the laser beam B is condensed on the resin film 7 by an auto-focus means (not shown). This completes the preparation for laser processing.
  • the laser light source 13 is turned on through the laser light source controller 23 of the control device 6, and the shutter of the front optical system 14 is opened through the front optical system controller 24 to start laser processing.
  • the laser light source 13 emits a laser beam L oscillating at, for example, 300 Hz and having a wavelength of 308 nm.
  • the laser beam L emitted from the laser light source 13 is expanded in beam diameter by the pre-stage optical system 14, is converted into parallel light, and enters the post-stage optical system 15.
  • the attenuator is adjusted in advance through the pre-stage optical system controller 24 so that the energy density of the laser light L is, for example, 400 mJ / cm 2 .
  • the laser light L incident on the rear-stage optical system 15 is made uniform in laser intensity by a homogenizer constituting the rear-stage optical system 15, and then converted into one line beam Lb by, for example, a cylindrical lens. Irradiation.
  • the moving mechanism 4 is driven under the control of the moving mechanism controller 25 of the control device 6 to move the rear optical system 15 at a constant speed in the Y-axis direction.
  • the line beam Lb moves on the shadow mask 2 at a constant speed in the Y-axis direction.
  • the moving speed of the plurality of laser beams B passing through the shadow mask 2 and irradiating the mask member 9 has a predetermined area of the mask member 9, for example, a 3 mm width equal to the width of the laser beam B in the Y-axis direction. It is determined that the region is processed by laser irradiation of 60 shots (300 Hz). Therefore, in the embodiment of the present invention, the moving speed of the laser beam B is 15 mm / sec on the mask member 9. In the embodiment of the present invention, since the magnification of the projection lens 3 is 1/5, the moving speed of the line beam Lb on the shadow mask 2 is 75 mm / sec.
  • the plurality of laser beams B that have passed through the shadow mask 2 are reduced to 1/5 by the projection lens 3 and are applied to an area of the mask member 9 having a width of 3 mm. Thereby, the resin film 7 located in the through hole 10 of the metal sheet 8 of the mask member 9 is ablated by the plurality of laser beams B, and a plurality of opening patterns 11 are formed.
  • the mask member 9 is laser-processed while the line beam Lb moves over the shadow mask 2 at a distance of 160 mm at the above-described speed of 75 mm / sec.
  • the region width 29 mm in the direction is laser-processed, and a plurality of opening patterns 11 are formed.
  • the shutter is closed by being driven by the pre-stage optical system controller 24, and the stage 5 is moved by the stage controller 26 in the predetermined direction. Is moved by a predetermined distance. Then, a new region of the mask member 9 is laser-processed in the same manner as described above, and the next plurality of opening patterns 11 are formed.
  • the line beam Lb may be returned to the movement start position at a high speed and then moved in the same manner as described above, or may be moved in the opposite direction from the movement end position to the movement start position at a speed of 75 mm / sec. Is also good.
  • the mask member 9 is laser-processed while moving the line beam Lb at a speed of 75 mm / sec, for example, at a distance of 160 mm. Therefore, the line beam required for one-step laser processing is performed.
  • the moving time of Lb is 2.13 sec.
  • the acceleration / deceleration time (total) at the start and stop of the movement of the line beam Lb is 1.0 sec, and the communication time between the control device 6 and the laser light source 13 is 0.5 sec.
  • the processing time of one-step laser processing is 3.63 sec.
  • the conventional method laser processing is performed in a state where the line beam Lb and the stage 5 are stopped. Therefore, in one-step laser processing, a region with a width of 3 mm in the Y-axis direction is irradiated with a laser beam L of 300 Hz. Done with shots. Therefore, the laser processing time of the processing region having a width of 3 mm is 0.2 sec. Further, as in the present invention, if the communication time between the control device 6 and the laser light source 13 is 0.5 sec, the processing time of one-step laser processing is 0.7 sec.
  • the stage 5 is step-moved every time the laser processing of the processing area of 3 mm width is completed, and the laser processing of the next processing area of 3 mm width is performed.
  • the laser processing of the region is performed by ten processing steps and nine step movements of the stage 5. Since the step moving time of the stage 5 is 1.70 sec, the processing time required for laser processing the same 29 mm (Y) width region as in the present invention by the conventional method is 22.3 sec in total, which is the present invention. This is much longer than the processing time of 3.63 sec.
  • the processing time for laser processing the mask member 9 having the same area is much shorter in the present invention than in the conventional method, and the present invention shortens the tact time for manufacturing a film forming mask. be able to.
  • the processing time can be further reduced, and the tact time can be further reduced.
  • an apparatus for manufacturing a film formation mask and a method for manufacturing a film formation mask have been described.
  • the present invention is not limited to this.
  • an apparatus for laser annealing amorphous silicon on a semiconductor substrate, an exposure apparatus, and the like can be applied to other laser processing apparatuses and laser processing methods.

Abstract

The present invention comprises: a laser optical system 1 that generates a line beam Lb; a shadow mask 2 that is arranged downstream of the laser optical system 1 in a light advancement direction and has provided therein a plurality of open windows that correspond to a plurality of opening patterns that are to be laser machined into a mask member 9; a projection lens 3 that projects an image of the shadow mask 2 onto the mask member 9; a movement mechanism 4 that makes the line beam Lb, which is radiated onto the shadow mask 2, move relative to the shadow mask 2 and the projection lens 3 in a direction that intersects the long axis of the line beam Lb; and a stage 5 that carries the mask member 9.

Description

レーザ加工装置、レーザ加工方法及び成膜マスクの製造方法Laser processing apparatus, laser processing method, and method of manufacturing film forming mask
 本発明は、レーザ加工装置に関し、特にレーザ加工工程のタクトタイムを短縮しようとするレーザ加工装置、レーザ加工方法及び成膜マスクの製造方法に係るものである。 The present invention relates to a laser processing apparatus, and more particularly, to a laser processing apparatus, a laser processing method, and a method for manufacturing a film forming mask that reduce the tact time in a laser processing step.
 従来のレーザ加工装置は、被加工物にレーザ加工される複数の加工痕に対応して複数の開口窓を設けたシャドーマスクにレーザ光を照射し、開口窓を通過したレーザビームにより被加工物に上記加工痕をレーザ加工するものとなっていた(例えば、特許文献1参照)。 A conventional laser processing apparatus irradiates a shadow mask provided with a plurality of opening windows corresponding to a plurality of processing marks to be laser-processed on a workpiece with laser light, and a laser beam passing through the opening windows causes the laser beam to pass through the opening window. The above processing marks are laser-processed (for example, see Patent Document 1).
国際公開第2017/154233号WO 2017/154233
 しかし、このような従来のレーザ加工装置においては、シャドーマスクに複数ショットのレーザ光を照射しながら被加工物の所定領域に加工痕をレーザ加工し、それが終了すると被加工物を載置するステージを所定距離だけ移動して、被加工物の別の領域に上記と同様にして加工痕をレーザ加工するという動作を繰り返し行う、いわゆるステップアンドリピート方式のものであるため、上記ステージの移動精度を確保しながらステージを加速減速制御して移動するのに要する時間がレーザ加工時間よりも遥かに長くなり、レーザ加工工程のタクトタイムを短縮することが困難であった。そのため、加工製品の製造コストが高くなるという問題があった。 However, in such a conventional laser processing apparatus, a processing mark is laser-processed on a predetermined region of the workpiece while irradiating the shadow mask with a plurality of shots of laser light, and when the processing is completed, the workpiece is placed. This is a so-called step-and-repeat method in which the stage is moved by a predetermined distance, and an operation of laser machining a processing mark in another region of the workpiece in the same manner as described above is repeated. Therefore, the time required to move the stage by controlling the acceleration and deceleration while securing the distance is much longer than the laser processing time, and it is difficult to reduce the tact time in the laser processing step. Therefore, there was a problem that the manufacturing cost of the processed product was increased.
 そこで、本発明は、このような問題点に対処し、レーザ加工工程のタクトタイムを短縮しようとするレーザ加工装置、レーザ加工方法及び成膜マスクの製造方法を提供することを目的とする。 Accordingly, it is an object of the present invention to provide a laser processing apparatus, a laser processing method, and a method of manufacturing a film forming mask which address such a problem and reduce the tact time in a laser processing step.
 上記目的を達成するために、本発明によるレーザ加工装置は、ラインビームを生成するレーザ光学系と、前記レーザ光学系の光進行方向下流側に配置され、被加工物にレーザ加工される複数の加工痕に対応して複数の開口窓を設けたシャドーマスクと、前記シャドーマスクの像を前記被加工物上に投影する投影レンズと、前記シャドーマスク上に照射される前記ラインビームを前記シャドーマスク及び前記投影レンズに対して相対的に、前記ラインビームの長軸と交差する方向に移動させる移動機構と、前記被加工物を載置して保持するステージと、を備えたものである。 In order to achieve the above object, a laser processing apparatus according to the present invention includes a laser optical system that generates a line beam, and a plurality of laser optical systems that are disposed downstream of the laser optical system in the light traveling direction and are laser-processed on a workpiece. A shadow mask provided with a plurality of opening windows corresponding to processing marks, a projection lens for projecting an image of the shadow mask on the workpiece, and the shadow mask for projecting the line beam irradiated on the shadow mask A moving mechanism for moving the line beam in a direction intersecting the long axis of the line beam relative to the projection lens; and a stage for mounting and holding the workpiece.
 また、本発明によるレーザ加工方法は、被加工物にレーザ加工される複数の加工痕に対応して複数の開口窓を設けたシャドーマスク上にラインビームを照射し、前記開口窓を通過したレーザビームにより前記被加工物に前記加工痕をレーザ加工するレーザ加工方法であって、前記シャドーマスク上に照射される前記ラインビームを、レーザ加工中に前記シャドーマスク及び該シャドーマスクの像を前記被加工物上に投影する投影レンズに対して相対的に、前記ラインビームの長軸に交差する方向に移動するものである。 Further, the laser processing method according to the present invention is a method of irradiating a line mask on a shadow mask provided with a plurality of opening windows corresponding to a plurality of processing marks to be laser-processed on a workpiece, and passing the laser beam through the opening window. A laser processing method for laser processing the processing mark on the workpiece using a beam, wherein the line beam irradiated on the shadow mask is used to form the shadow mask and an image of the shadow mask during laser processing. It moves in a direction intersecting the long axis of the line beam relative to a projection lens that projects onto a workpiece.
 さらに、本発明による成膜マスクの製造方法は、樹脂フィルムと複数の貫通孔を設けた磁性金属材料から成るメタルシートとを積層したマスク用部材にレーザ加工される複数の開口パターンに対応して複数の開口窓を設けたシャドーマスク上にラインビームを照射し、前記開口窓を通過したレーザビームにより前記マスク用部材に前記開口パターンをレーザ加工する成膜マスクの製造方法であって、前記シャドーマスク上に照射される前記ラインビームを、レーザ加工中に前記シャドーマスク及び該シャドーマスクの像を前記マスク用部材上に投影する投影レンズに対して相対的に、前記ラインビームの長軸に交差する方向に移動するものである。 Further, the method for manufacturing a film forming mask according to the present invention is applicable to a plurality of opening patterns to be laser-processed on a mask member in which a resin film and a metal sheet made of a magnetic metal material provided with a plurality of through holes are laminated. A method of manufacturing a film forming mask, comprising: irradiating a line beam onto a shadow mask provided with a plurality of opening windows, and laser processing the opening pattern on the mask member by a laser beam passing through the opening windows. The line beam irradiated on the mask intersects the major axis of the line beam relative to the shadow mask and a projection lens that projects an image of the shadow mask onto the mask member during laser processing. To move in the direction of movement.
 本発明によれば、所定領域のレーザ加工処理時間は、ステージのステップ移動時間に依存する従来技術と違って、ラインビームの移動速度により決まり、ラインビームの移動速度は、略レーザの発振周波数により決まるので、レーザの発振周波数を十分に生かしたレーザ加工を行うことができる。したがって、レーザ加工工程のタクトタイムを短縮することができ、加工製品のコストを低減することができる。また、被加工物がラインビームを移動しながらレーザ加工されるため、ラインビームの移動方向の強度分布が平均化されて均一になり、過不足のない均一な加工痕を形成することができる。 According to the present invention, the laser processing time of the predetermined region is determined by the moving speed of the line beam, unlike the related art which depends on the step moving time of the stage, and the moving speed of the line beam is substantially determined by the oscillation frequency of the laser. Since it is determined, laser processing that makes full use of the oscillation frequency of the laser can be performed. Therefore, the tact time of the laser processing step can be reduced, and the cost of the processed product can be reduced. In addition, since the workpiece is laser-processed while moving the line beam, the intensity distribution in the moving direction of the line beam is averaged and uniform, and a uniform processing mark with no excess or shortage can be formed.
本発明によるレーザ加工装置の一実施形態の概略構成を示す正面図である。It is a front view showing the schematic structure of one embodiment of the laser processing device by the present invention. 被加工物としてのマスク用部材を示す図であり、(a)は断面図、(b)は加工痕である開口パターンを示す要部拡大断面図である。It is a figure which shows the member for masks as a to-be-processed object, (a) is sectional drawing, (b) is a principal part expanded sectional view which shows the opening pattern which is a processing mark. ラインビームとシャドーマスクとの関係を示す平面図である。FIG. 3 is a plan view showing a relationship between a line beam and a shadow mask. 移動機構の一構成例を示す説明図である。FIG. 4 is an explanatory diagram illustrating a configuration example of a moving mechanism. 制御装置の一構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a control device. 同一条件の下でのレーザ加工の処理時間について、本発明によるレーザ加工方法と従来方法とを比較した表である。4 is a table comparing the laser processing method according to the present invention and the conventional method with respect to the processing time of laser processing under the same conditions.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザ加工装置の一実施形態の概略構成を示す正面図である。このレーザ加工装置は、シャドーマスクを介して被加工物にレーザビームを照射し加工痕を形成しようとするもので、レーザ光学系1と、シャドーマスク2と、投影レンズ3と、移動機構4と、ステージ5と、制御装置6と、を備えて構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing a schematic configuration of an embodiment of a laser processing apparatus according to the present invention. This laser processing apparatus irradiates a workpiece with a laser beam through a shadow mask to form a processing mark. The laser optical system 1, a shadow mask 2, a projection lens 3, a moving mechanism 4, , Stage 5 and control device 6.
 ここでは、被加工物が、図2(a)に示すように、例えばポリイミド又はポリエチレンテレフタラート(PET)等の樹脂フィルム7と複数の貫通孔10を設けた磁性金属材料から成るメタルシート8とを積層したマスク用部材9であり、上記加工痕が、図2(b)に示すように上記貫通孔10内に位置する樹脂フィルム7の部分に形成された開口パターン11である場合について説明する。なお、図2(a)において、符号12は、マスク用部材9を支持するフレームである。 Here, as shown in FIG. 2A, the workpiece is a resin film 7 made of, for example, polyimide or polyethylene terephthalate (PET) and a metal sheet 8 made of a magnetic metal material provided with a plurality of through holes 10. A case where the processing trace is an opening pattern 11 formed in a portion of the resin film 7 located in the through hole 10 as shown in FIG. 2B will be described. . In FIG. 2A, reference numeral 12 denotes a frame that supports the mask member 9.
 樹脂フィルム7に替えて厚みが該樹脂フィルム7と略同等(約3μm~約10μm)のメタル箔シートを使用してもよい。この場合、メタル箔シートに開口パターン11を形成するためには、後述の紫外線と違って、赤外線のレーザ光が使用される。 メ タ ル Instead of the resin film 7, a metal foil sheet having a thickness substantially equal to that of the resin film 7 (about 3 μm to about 10 μm) may be used. In this case, in order to form the opening pattern 11 on the metal foil sheet, an infrared laser beam is used, unlike ultraviolet rays described below.
 上記レーザ光学系1は、ラインビームLbのレーザ光Lを生成するものであり、光進行方向上流側からレーザ光源13と、前段光学系14と、後段光学系15とを備えて構成されている。 The laser optical system 1 generates a laser beam L of a line beam Lb, and includes a laser light source 13, a front optical system 14, and a rear optical system 15 from the upstream side in the light traveling direction. .
 上記レーザ光源13は、上記樹脂フィルム7をアブレート可能な紫外領域の波長を有するレーザ光Lを放射するものであり、例えばエキシマレーザやYAGレーザ等である。また、上記前段光学系14は、レーザ光源13から放射されたレーザ光Lの径を拡大するビームエキスパンダや、拡大されたレーザ光Lを平行光にするコリメータレンズや、レーザ強度を調整するアッテネータや、レーザ光Lの光路を開閉するシャッタ等を備えて構成され、ビームプロファイルチェック、パワーモニター、ビーム位置補正等の機能を有するようにされている。さらに、上記後段光学系15は、レーザ光Lの横断面内の強度分布を均一化するホモジナイザーや、径が拡大されたレーザ光LをラインビームLbに変換する、例えばシリンドリカルレンズ等を備えて構成されている。なお、図1において符号16は、平面反射ミラーである。 The laser light source 13 emits laser light L having a wavelength in an ultraviolet region capable of ablating the resin film 7, and is, for example, an excimer laser or a YAG laser. The pre-stage optical system 14 includes a beam expander that expands the diameter of the laser light L emitted from the laser light source 13, a collimator lens that converts the expanded laser light L into parallel light, and an attenuator that adjusts the laser intensity. And a shutter for opening and closing the optical path of the laser light L, and has functions such as a beam profile check, a power monitor, and a beam position correction. Further, the rear optical system 15 includes a homogenizer for equalizing the intensity distribution of the laser beam L in the cross section and a cylindrical lens for converting the laser beam L having an enlarged diameter into a line beam Lb, for example. Have been. In FIG. 1, reference numeral 16 denotes a plane reflecting mirror.
 上記レーザ光学系1の光進行方向下流側には、シャドーマスク2が配置して設けられている。このシャドーマスク2は、図3に示すように、マスク用部材9にレーザ加工される複数の開口パターン11に対応して複数の開口窓17を設け、ラインビームLbを複数のレーザビームBに分岐してマスク用部材9に照射するものであり、例えば透明ガラスの表面に被着されたクロム等の不透明膜に複数の開口窓17をエッチング等により形成したものである。又は、メタルシートに貫通する複数の開口窓17を設けたものであってもよい。詳細には、本発明のシャドーマスク2は、従来のシャドーマスクがカバーするマスク用部材9上の加工領域よりも広い領域をカバーするように、従来のシャドーマスクよりも大型のものである。 シ ャ A shadow mask 2 is provided on the downstream side of the laser optical system 1 in the light traveling direction. As shown in FIG. 3, the shadow mask 2 is provided with a plurality of opening windows 17 corresponding to a plurality of opening patterns 11 to be laser-processed on the mask member 9 and branches the line beam Lb into a plurality of laser beams B. The mask member 9 is irradiated with a plurality of openings 17 formed by etching or the like on an opaque film such as chromium adhered to the surface of transparent glass. Alternatively, a plurality of opening windows 17 penetrating a metal sheet may be provided. In detail, the shadow mask 2 of the present invention is larger than the conventional shadow mask so as to cover a larger area than the processing area on the mask member 9 covered by the conventional shadow mask.
 上記シャドーマスク2の光進行方向下流側には、投影レンズ3が設けられている。この投影レンズ3は、シャドーマスク2の像をマスク用部材9上に投影するものであり、本実施形態においては、シャドーマスク2の開口窓17の像をメタルシート8の貫通孔10内の樹脂フィルム7上に1/5に縮小して投影するようになっている。 投影 A projection lens 3 is provided downstream of the shadow mask 2 in the light traveling direction. The projection lens 3 projects the image of the shadow mask 2 onto the mask member 9. In the present embodiment, the image of the opening window 17 of the shadow mask 2 is formed by the resin in the through hole 10 of the metal sheet 8. The image is projected on the film 7 by reducing it to 1/5.
 図1に示すように、上記シャドーマスク2上に照射されるラインビームLbを、該ラインビームLbの長軸(X軸)と交差する方向(Y軸方向)に移動可能に移動機構4が設けられている。この移動機構4は、レーザ加工中のラインビームLbの移動を等速(一定速度)で行わせるものであり、レーザ光学系1の後段光学系15を移動させる例えばエアスライダーや、リニアガイドや、ボールねじ等で構成されている。なお、ラインビームLbに対してシャドーマスク2を含む後述の投影レンズ3を移動させてもよいが、ここでは、ラインビームLbを移動させる場合について説明する。 As shown in FIG. 1, a moving mechanism 4 is provided so as to move the line beam Lb irradiated on the shadow mask 2 in a direction (Y-axis direction) intersecting with the long axis (X-axis) of the line beam Lb. Have been. The moving mechanism 4 moves the line beam Lb during laser processing at a constant speed (constant speed). For example, an air slider, a linear guide, or the like that moves the subsequent optical system 15 of the laser optical system 1 is provided. It is composed of a ball screw and the like. The projection lens 3 including the shadow mask 2 described below may be moved with respect to the line beam Lb. Here, the case where the line beam Lb is moved will be described.
 図4は上記移動機構4の一構成例を示す説明図である。この移動機構4は、後段光学系15の出力側の光路に挿入されたミラー構成のものであり、互いに90°の角度で交差する二つの外側反射面18を有する固定型反射ミラー19と、互いに90°の角度で交差する二つの内側反射面20を有し、該二つの内側反射面20が上記固定型反射ミラー19の二つの外側反射面18に対して平行状態を維持して、上記外側及び内側反射面18,20の各交点を結ぶ方向に離隔及び接近する可動型反射ミラー21と、上記固定型反射ミラー19で反射された出力光の光路を例えば90°折り曲げる可動型平面反射ミラー22と、を備えて構成されている。 FIG. 4 is an explanatory diagram showing an example of the configuration of the moving mechanism 4. The moving mechanism 4 has a mirror configuration inserted in the optical path on the output side of the post-stage optical system 15, and includes a fixed reflective mirror 19 having two outer reflective surfaces 18 intersecting at an angle of 90 ° with each other, It has two inner reflecting surfaces 20 that intersect at an angle of 90 °, and the two inner reflecting surfaces 20 maintain a parallel state with the two outer reflecting surfaces 18 of the fixed reflecting mirror 19, and And a movable reflective mirror 21 which is separated and approached in a direction connecting the intersections of the inner reflective surfaces 18 and 20, and a movable planar reflective mirror 22 which bends the optical path of the output light reflected by the fixed reflective mirror 19 by, for example, 90 °. And is provided.
 そして、上記可動型平面反射ミラー22を入射光の光軸に沿って移動させることにより、ラインビームLbがシャドーマスク2上を移動するようにしている。この場合、可動型平面反射ミラー22の移動に同期して可動型反射ミラー21を移動させることにより、後段光学系15の光路長を維持できるようにしている。具体的には、図4において可動型平面反射ミラー22を左から右へ距離Dだけ移動させる場合、可動型反射ミラー21と固定型反射ミラー19との間隔をD/2だけ広げるように可動型反射ミラー21を移動させるとよい。 Then, the line beam Lb is moved on the shadow mask 2 by moving the movable flat reflecting mirror 22 along the optical axis of the incident light. In this case, the optical path length of the rear optical system 15 can be maintained by moving the movable reflection mirror 21 in synchronization with the movement of the movable flat reflection mirror 22. Specifically, when the movable flat reflecting mirror 22 is moved from left to right by a distance D in FIG. 4, the movable flat reflecting mirror 22 is moved so as to increase the distance between the movable reflecting mirror 21 and the fixed reflecting mirror 19 by D / 2. The reflection mirror 21 may be moved.
 また、上記移動機構4は、ガルバノミラー又はポリゴンミラーとfθレンズとを組み合わせたものであってもよい。これにより、ラインビームLbをガルバノミラー又はポリゴンミラーで左右に振ると共に、fθレンズでシャドーマスク2上を移動するラインビームLbの速度を等速にすることができる。 The moving mechanism 4 may be a combination of a galvano mirror or a polygon mirror and an fθ lens. Accordingly, the line beam Lb can be swung right and left by the galvanometer mirror or the polygon mirror, and the speed of the line beam Lb moving on the shadow mask 2 by the fθ lens can be made uniform.
 上記投影レンズ3に対向してステージ5が設けられている。このステージ5は、マスク用部材9を載置して保持するものであり、投影レンズ3の光軸に直交する二次元平面内を移動可能に構成されている。 ス テ ー ジ A stage 5 is provided to face the projection lens 3. The stage 5 mounts and holds the mask member 9 and is configured to be movable in a two-dimensional plane orthogonal to the optical axis of the projection lens 3.
 上記レーザ光源13、前段光学系14、移動機構4及びステージ5に電気的に接続して制御装置6が設けられている。この制御装置6は、各構成要素が適切に駆動するように制御するものであり、図5に示すように、レーザ光源コントローラ23と、前段光学系コントローラ24と、移動機構コントローラ25と、ステージコントローラ26と、メモリ27と、演算部28と、中央制御部29と、を備えている。 制 御 A control device 6 is electrically connected to the laser light source 13, the pre-stage optical system 14, the moving mechanism 4 and the stage 5. The control device 6 controls each component to drive appropriately. As shown in FIG. 5, a laser light source controller 23, a pre-stage optical system controller 24, a moving mechanism controller 25, a stage controller 26, a memory 27, a calculation unit 28, and a central control unit 29.
 ここで、上記レーザ光源コントローラ23は、レーザ光源13の点灯及び消灯、発振周波数等を制御するものである。また、前段光学系コントローラ24は、前段光学系14のアッテネータを制御してレーザ光Lの強度を調整可能とすると共に、シャッタの開閉を制御するものである。さらに、移動機構コントローラ25は、移動機構4を制御してシャドーマスク2上のラインビームLbの移動速度を制御するものである。また、ステージコントローラ26は、ステージ5の載置面の中心における法線を軸とするステージ5の回動角度、ステージ5の移動方向、移動速度及び移動量を制御するものである。さらに、メモリ27は、レーザ光源13の発振周波数及びレーザ加工のショット数、ラインビームLbの移動速度、ステージ5の移動速度及び移動量等を記憶するものである。さらにまた、演算部28は、メモリ27から読み出したラインビームLbの移動速度と実際のラインビームLbの移動速度とを比較して移動機構4が適切に駆動するように移動機構コントローラ25を制御すると共に、メモリ27からステージ5の移動速度及び移動量を読み出し、実際のステージ5の移動速度及び移動量と比較してステージ5が適切に駆動するようにステージコントローラ26を制御するようになっている。そして、中央制御部29は、各構成要素を統合して制御するものである。 Here, the laser light source controller 23 controls the turning on and off of the laser light source 13, the oscillation frequency, and the like. Further, the upstream optical system controller 24 controls the attenuator of the upstream optical system 14 so that the intensity of the laser beam L can be adjusted and controls the opening and closing of the shutter. Further, the moving mechanism controller 25 controls the moving mechanism 4 to control the moving speed of the line beam Lb on the shadow mask 2. The stage controller 26 controls the rotation angle of the stage 5 about the normal line at the center of the mounting surface of the stage 5, the moving direction, the moving speed, and the moving amount of the stage 5. Further, the memory 27 stores the oscillation frequency of the laser light source 13, the number of shots of laser processing, the moving speed of the line beam Lb, the moving speed and the moving amount of the stage 5, and the like. Further, the arithmetic unit 28 compares the moving speed of the line beam Lb read from the memory 27 with the actual moving speed of the line beam Lb, and controls the moving mechanism controller 25 so that the moving mechanism 4 is appropriately driven. At the same time, the moving speed and the moving amount of the stage 5 are read from the memory 27, and the stage controller 26 is controlled so that the stage 5 is appropriately driven by comparing with the actual moving speed and the moving amount of the stage 5. . The central control unit 29 controls each component in an integrated manner.
 次に、このように構成されたレーザ加工装置を使用したレーザ加工方法について説明する。特に、ここでは、図6に示す同一の加工条件の下で行う成膜マスクの製造方法について、従来方式と比較して説明する。
 先ず、図1及び図2(a)に示すように、マスク用部材9の樹脂フィルム7を平坦なガラス基板30に密着させた状態でステージ5上に載置する。
Next, a laser processing method using the laser processing apparatus configured as described above will be described. In particular, here, a method of manufacturing a film forming mask performed under the same processing conditions shown in FIG. 6 will be described in comparison with a conventional method.
First, as shown in FIGS. 1 and 2A, the resin film 7 of the mask member 9 is placed on the stage 5 in a state where the resin film 7 is in close contact with a flat glass substrate 30.
 次いで、マスク用部材9のY軸方向の中心線に対して左右に設けられたアライメントマークを図示省略の撮像カメラにより撮影し、その撮影画像に基づいてマスク用部材9の上記中心線がステージ5の移動方向(Y軸方向)に合致するように、ステージコントローラ26によりステージ5の回動角度を調整する。 Next, alignment marks provided on the left and right sides of the center line in the Y-axis direction of the mask member 9 are photographed by an imaging camera (not shown), and the center line of the mask member 9 is moved to the stage 5 based on the photographed image. The rotation angle of the stage 5 is adjusted by the stage controller 26 so as to match the moving direction (Y-axis direction).
 続いて、ステージ5をX軸及びY軸方向に移動してレーザビームBの照射位置をマスク用部材9のレーザ加工開始位置に合せる。併せて、図示省略のオートフォーカス手段により、レーザビームBが樹脂フィルム7上に集光するように投影レンズ3を含む光学系をZ軸方向に移動して自動調整する。これにより、レーザ加工の準備が終了する。 Next, the stage 5 is moved in the X-axis and Y-axis directions to adjust the irradiation position of the laser beam B to the laser processing start position of the mask member 9. At the same time, the optical system including the projection lens 3 is moved in the Z-axis direction and adjusted automatically so that the laser beam B is condensed on the resin film 7 by an auto-focus means (not shown). This completes the preparation for laser processing.
 次に、制御装置6のレーザ光源コントローラ23を通してレーザ光源13が点灯されると共に、前段光学系コントローラ24を通して前段光学系14のシャッタが開かれてレーザ加工が開始される。この場合、レーザ光源13からは、例えば300Hzで発振する波長が308nmのレーザ光Lが放射される。レーザ光源13から放射されたレーザ光Lは、前段光学系14によりビーム径が拡大され、平行光にされて後段光学系15に入射する。なお、事前に、レーザ光Lのエネルギー密度が例えば400mJ/cmとなるように、前段光学系コントローラ24を通してアッテネータが調整されている。 Next, the laser light source 13 is turned on through the laser light source controller 23 of the control device 6, and the shutter of the front optical system 14 is opened through the front optical system controller 24 to start laser processing. In this case, the laser light source 13 emits a laser beam L oscillating at, for example, 300 Hz and having a wavelength of 308 nm. The laser beam L emitted from the laser light source 13 is expanded in beam diameter by the pre-stage optical system 14, is converted into parallel light, and enters the post-stage optical system 15. The attenuator is adjusted in advance through the pre-stage optical system controller 24 so that the energy density of the laser light L is, for example, 400 mJ / cm 2 .
 後段光学系15に入射したレーザ光Lは、該後段光学系15を構成するホモジナイザーによりレーザ強度が均一化された後、例えばシリンドリカルレンズにより1本のラインビームLbに変換されて後段のシャドーマスク2に照射する。 The laser light L incident on the rear-stage optical system 15 is made uniform in laser intensity by a homogenizer constituting the rear-stage optical system 15, and then converted into one line beam Lb by, for example, a cylindrical lens. Irradiation.
 同時に、制御装置6の移動機構コントローラ25により制御されて移動機構4が駆動し、上記後段光学系15をY軸方向に一定速度で移動する。これにより、ラインビームLbがシャドーマスク2上をY軸方向に等速で移動することになる。 At the same time, the moving mechanism 4 is driven under the control of the moving mechanism controller 25 of the control device 6 to move the rear optical system 15 at a constant speed in the Y-axis direction. As a result, the line beam Lb moves on the shadow mask 2 at a constant speed in the Y-axis direction.
 この場合、シャドーマスク2を通過し、マスク用部材9に照射する複数のレーザビームBの移動速度は、マスク用部材9の所定領域、例えばレーザビームBのY軸方向の幅に等しい3mm幅の領域が60ショット(300Hz)のレーザ照射により加工されるように決められている。したがって、本発明の実施例においては、レーザビームBの移動速度はマスク用部材9上で15mm/secとなる。本発明の実施例においては、投影レンズ3の倍率が1/5であるから、シャドーマスク2上のラインビームLbの移動速度は、75mm/secとなる。 In this case, the moving speed of the plurality of laser beams B passing through the shadow mask 2 and irradiating the mask member 9 has a predetermined area of the mask member 9, for example, a 3 mm width equal to the width of the laser beam B in the Y-axis direction. It is determined that the region is processed by laser irradiation of 60 shots (300 Hz). Therefore, in the embodiment of the present invention, the moving speed of the laser beam B is 15 mm / sec on the mask member 9. In the embodiment of the present invention, since the magnification of the projection lens 3 is 1/5, the moving speed of the line beam Lb on the shadow mask 2 is 75 mm / sec.
 シャドーマスク2を通過した複数のレーザビームBは、投影レンズ3により1/5に縮小されてマスク用部材9の3mm幅の領域に照射する。これにより、マスク用部材9のメタルシート8の貫通孔10内に位置する樹脂フィルム7が上記複数のレーザビームBによりアブレートされ、複数の開口パターン11が形成される。 (4) The plurality of laser beams B that have passed through the shadow mask 2 are reduced to 1/5 by the projection lens 3 and are applied to an area of the mask member 9 having a width of 3 mm. Thereby, the resin film 7 located in the through hole 10 of the metal sheet 8 of the mask member 9 is ablated by the plurality of laser beams B, and a plurality of opening patterns 11 are formed.
 このとき、ラインビームLbが上記75mm/secの速度でシャドーマスク2上を距離160mm移動しながらマスク用部材9がレーザ加工されるから、マスク用部材9には、1ステップの加工処理でY軸方向の領域幅29mmがレーザ加工され、複数の開口パターン11が形成される。 At this time, the mask member 9 is laser-processed while the line beam Lb moves over the shadow mask 2 at a distance of 160 mm at the above-described speed of 75 mm / sec. The region width 29 mm in the direction is laser-processed, and a plurality of opening patterns 11 are formed.
 上記のようにしてラインビームLbを移動しながら、マスク用部材9の所定領域がレーザ加工されると、前段光学系コントローラ24により駆動されてシャッタが閉じられ、ステージコントローラ26によりステージ5が所定方向に所定距離だけステップ移動される。そして、マスク用部材9の新たな領域が上記と同様にしてレーザ加工され、次の複数の開口パターン11が形成される。この場合、ラインビームLbは、一旦移動開始位置まで高速で戻ってから上記と同様に移動させてもよく、移動終了位置から移動開始位置に向けて反対方向に75mm/secの速度で移動させてもよい。 When the predetermined area of the mask member 9 is laser-processed while moving the line beam Lb as described above, the shutter is closed by being driven by the pre-stage optical system controller 24, and the stage 5 is moved by the stage controller 26 in the predetermined direction. Is moved by a predetermined distance. Then, a new region of the mask member 9 is laser-processed in the same manner as described above, and the next plurality of opening patterns 11 are formed. In this case, the line beam Lb may be returned to the movement start position at a high speed and then moved in the same manner as described above, or may be moved in the opposite direction from the movement end position to the movement start position at a speed of 75 mm / sec. Is also good.
 このように、本発明によれば、ラインビームLbを例えば75mm/secの速度で距離160mmを移動しながらマスク用部材9をレーザ加工するものであるので、1ステップのレーザ加工処理に要するラインビームLbの移動時間は、2.13secとなる。また、図6に示すように、ラインビームLbの移動開始及び停止時の加減速時間(トータル)を1.0secとし、制御装置6とレーザ光源13との間の通信時間を0.5secとすると、1ステップのレーザ加工の処理時間は3.63secとなる。 As described above, according to the present invention, the mask member 9 is laser-processed while moving the line beam Lb at a speed of 75 mm / sec, for example, at a distance of 160 mm. Therefore, the line beam required for one-step laser processing is performed. The moving time of Lb is 2.13 sec. As shown in FIG. 6, if the acceleration / deceleration time (total) at the start and stop of the movement of the line beam Lb is 1.0 sec, and the communication time between the control device 6 and the laser light source 13 is 0.5 sec. The processing time of one-step laser processing is 3.63 sec.
 一方、従来方式によれば、レーザ加工は、ラインビームLb及びステージ5を停止した状態で行われるため、1ステップのレーザ加工は、Y軸方向の幅3mmの領域が300Hzのレーザ光Lにより60ショットで行われる。したがって、3mm幅の加工領域のレーザ加工時間は、0.2secとなる。また、本発明と同様に制御装置6とレーザ光源13との間の通信時間を0.5secとすると、1ステップのレーザ加工の処理時間は0.7secとなる。 On the other hand, according to the conventional method, laser processing is performed in a state where the line beam Lb and the stage 5 are stopped. Therefore, in one-step laser processing, a region with a width of 3 mm in the Y-axis direction is irradiated with a laser beam L of 300 Hz. Done with shots. Therefore, the laser processing time of the processing region having a width of 3 mm is 0.2 sec. Further, as in the present invention, if the communication time between the control device 6 and the laser light source 13 is 0.5 sec, the processing time of one-step laser processing is 0.7 sec.
 従来方式においては、3mm幅の加工領域のレーザ加工が終了する毎にステージ5をステップ移動して次の3mm幅の加工領域がレーザ加工されるから、本発明と同様にY軸方向の幅29mmの領域をレーザ加工するには、10回の処理ステップと、ステージ5の9回のステップ移動により実施されることになる。ステージ5のステップ移動時間は、1.70secであるから、従来方式により本発明と同じ29mm(Y)幅の領域をレーザ加工するのに要する処理時間は、トータルで22.3secとなり、本発明の処理時間3.63secに比べて遥かに長くなる。 In the conventional method, the stage 5 is step-moved every time the laser processing of the processing area of 3 mm width is completed, and the laser processing of the next processing area of 3 mm width is performed. The laser processing of the region is performed by ten processing steps and nine step movements of the stage 5. Since the step moving time of the stage 5 is 1.70 sec, the processing time required for laser processing the same 29 mm (Y) width region as in the present invention by the conventional method is 22.3 sec in total, which is the present invention. This is much longer than the processing time of 3.63 sec.
 したがって、同じ面積を有するマスク用部材9をレーザ加工する処理時間は、従来方式に比べて本発明の方が遥かに短くなり、本発明は、成膜マスクを製造するためのタクトタイムを短縮することができる。 Therefore, the processing time for laser processing the mask member 9 having the same area is much shorter in the present invention than in the conventional method, and the present invention shortens the tact time for manufacturing a film forming mask. be able to.
 特に、本発明においては、シャドーマスク2のサイズが大きくなり、1回の処理面積が大きくなるほど処理時間をより短縮することができ、タクトタイムをより短縮することができる。 In particular, in the present invention, as the size of the shadow mask 2 increases and the processing area of one time increases, the processing time can be further reduced, and the tact time can be further reduced.
 なお、以上の説明においては、成膜マスクの製造装置及び成膜マスクの製造方法について説明したが、本発明はこれに限られず、半導体基板のアモルファスシリコンをレーザアニールする装置や、露光装置等の他のレーザ加工装置及びレーザ加工方法にも適用することができる。 In the above description, an apparatus for manufacturing a film formation mask and a method for manufacturing a film formation mask have been described. However, the present invention is not limited to this. For example, an apparatus for laser annealing amorphous silicon on a semiconductor substrate, an exposure apparatus, and the like. The present invention can be applied to other laser processing apparatuses and laser processing methods.
 1…レーザ光学系
 2…シャドーマスク
 3…投影レンズ
 4…移動機構
 5…ステージ
 7…樹脂フィルム
 8…メタルシート
 9…マスク用部材(被加工物)
 10…貫通孔
 11…開口パターン(加工痕)
 17…開口窓
 Lb…ラインビーム
 B…レーザビーム
DESCRIPTION OF SYMBOLS 1 ... Laser optical system 2 ... Shadow mask 3 ... Projection lens 4 ... Moving mechanism 5 ... Stage 7 ... Resin film 8 ... Metal sheet 9 ... Mask member (workpiece)
10: Through-hole 11: Opening pattern (processing mark)
17: Opening window Lb: Line beam B: Laser beam

Claims (13)

  1.  ラインビームを生成するレーザ光学系と、
     前記レーザ光学系の光進行方向下流側に配置され、被加工物にレーザ加工される複数の加工痕に対応して複数の開口窓を設けたシャドーマスクと、
     前記シャドーマスクの像を前記被加工物上に投影する投影レンズと、
     前記シャドーマスク上に照射される前記ラインビームを前記シャドーマスク及び前記投影レンズに対して相対的に、前記ラインビームの長軸と交差する方向に移動させる移動機構と、
     前記被加工物を載置して保持するステージと、
    を備えたことを特徴とするレーザ加工装置。
    A laser optical system for generating a line beam;
    A shadow mask arranged on the downstream side in the light traveling direction of the laser optical system and provided with a plurality of opening windows corresponding to a plurality of processing marks to be laser-processed on the workpiece,
    A projection lens that projects the image of the shadow mask onto the workpiece;
    A moving mechanism for moving the line beam irradiated on the shadow mask relative to the shadow mask and the projection lens in a direction intersecting a long axis of the line beam;
    A stage for mounting and holding the workpiece,
    A laser processing apparatus comprising:
  2.  前記ラインビームの相対的な移動速度は、一定であることを特徴とする請求項1記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the relative moving speed of the line beam is constant.
  3.  前記ステージは、前記投影レンズの光軸に直交する二次元平面内を移動可能に構成されたことを特徴とする請求項1又は2記載のレーザ加工装置。 3. The laser processing apparatus according to claim 1, wherein the stage is configured to be movable in a two-dimensional plane orthogonal to an optical axis of the projection lens.
  4.  前記被加工物は、樹脂フィルムと複数の貫通孔を設けたメタルシートとを積層したマスク用部材であり、
     前記加工痕は、前記貫通孔内に位置する前記樹脂フィルムの部分に形成された開口パターンである、
    ことを特徴とする請求項1又は2に記載のレーザ加工装置。
    The workpiece is a mask member in which a resin film and a metal sheet provided with a plurality of through holes are laminated.
    The processing mark is an opening pattern formed in a portion of the resin film located in the through hole,
    The laser processing apparatus according to claim 1, wherein:
  5.  前記被加工物は、樹脂フィルムと複数の貫通孔を設けたメタルシートとを積層したマスク用部材であり、
     前記加工痕は、前記貫通孔内に位置する前記樹脂フィルムの部分に形成された開口パターンである、
    ことを特徴とする請求項3記載のレーザ加工装置。
    The workpiece is a mask member in which a resin film and a metal sheet provided with a plurality of through holes are laminated.
    The processing mark is an opening pattern formed in a portion of the resin film located in the through hole,
    The laser processing apparatus according to claim 3, wherein:
  6.  被加工物にレーザ加工される複数の加工痕に対応して複数の開口窓を設けたシャドーマスク上にラインビームを照射し、前記開口窓を通過したレーザビームにより前記被加工物に前記加工痕をレーザ加工するレーザ加工方法であって、
     前記シャドーマスク上に照射される前記ラインビームを、レーザ加工中に前記シャドーマスク及び該シャドーマスクの像を前記被加工物上に投影する投影レンズに対して相対的に、前記ラインビームの長軸に交差する方向に移動することを特徴とするレーザ加工方法。
    A line beam is irradiated on a shadow mask provided with a plurality of opening windows corresponding to a plurality of processing marks laser-processed on the workpiece, and the processing mark is formed on the workpiece by the laser beam passing through the opening windows. A laser processing method for laser processing,
    The long axis of the line beam is irradiated with the line beam irradiated on the shadow mask relative to a projection lens that projects an image of the shadow mask and the shadow mask onto the workpiece during laser processing. A laser processing method characterized by moving in a direction intersecting with the laser beam.
  7.  前記ラインビームの相対的な移動速度は、一定であることを特徴とする請求項6記載のレーザ加工方法。 7. The laser processing method according to claim 6, wherein the relative moving speed of the line beam is constant.
  8.  前記シャドーマスク上の前記ラインビームの移動を終えると、前記被加工物を移動して該被加工物上の別の領域に、前記ラインビームを前記シャドーマスク及び前記投影レンズに対して相対移動しながら前記加工痕をレーザ加工することを特徴とする請求項6又は7記載のレーザ加工方法。 When the movement of the line beam on the shadow mask is completed, the workpiece is moved to another area on the workpiece, and the line beam is relatively moved with respect to the shadow mask and the projection lens. The laser processing method according to claim 6, wherein the processing mark is laser-processed while performing the laser processing.
  9.  前記被加工物は、樹脂フィルムと複数の貫通孔を設けたメタルシートとを積層したマスク用部材であり、
     前記加工痕は、前記貫通孔内に位置する前記樹脂フィルムの部分に形成された開口パターンである、
    ことを特徴とする請求項6又は7に記載のレーザ加工方法。
    The workpiece is a mask member in which a resin film and a metal sheet provided with a plurality of through holes are laminated.
    The processing mark is an opening pattern formed in a portion of the resin film located in the through hole,
    The laser processing method according to claim 6, wherein:
  10.  前記被加工物は、樹脂フィルムと複数の貫通孔を設けたメタルシートとを積層したマスク用部材であり、
     前記加工痕は、前記貫通孔内に位置する前記樹脂フィルムの部分に形成された開口パターンである、
    ことを特徴とする請求項8記載のレーザ加工方法。
    The workpiece is a mask member in which a resin film and a metal sheet provided with a plurality of through holes are laminated.
    The processing mark is an opening pattern formed in a portion of the resin film located in the through hole,
    9. The laser processing method according to claim 8, wherein:
  11.  樹脂フィルムと複数の貫通孔を設けた磁性金属材料から成るメタルシートとを積層したマスク用部材にレーザ加工される複数の開口パターンに対応して複数の開口窓を設けたシャドーマスク上にラインビームを照射し、前記開口窓を通過したレーザビームにより前記マスク用部材に前記開口パターンをレーザ加工する成膜マスクの製造方法であって、
     前記シャドーマスク上に照射される前記ラインビームを、レーザ加工中に前記シャドーマスク及び該シャドーマスクの像を前記マスク用部材上に投影する投影レンズに対して相対的に、前記ラインビームの長軸に交差する方向に移動することを特徴とする成膜マスクの製造方法。
    A line beam on a shadow mask provided with a plurality of opening windows corresponding to a plurality of opening patterns corresponding to a plurality of opening patterns to be laser-processed on a mask member in which a resin film and a metal sheet made of a magnetic metal material provided with a plurality of through holes are laminated. A method of manufacturing a film forming mask for laser processing the opening pattern on the mask member by a laser beam that has passed through the opening window,
    The long axis of the line beam is irradiated with the line beam irradiated on the shadow mask relative to a projection lens that projects an image of the shadow mask and the shadow mask onto the mask member during laser processing. A method of manufacturing a film-forming mask, wherein the film-forming mask is moved in a direction intersecting with the direction.
  12.  前記ラインビームの相対的な移動速度は、一定であることを特徴とする請求項11記載の成膜マスクの製造方法。 12. The method according to claim 11, wherein a relative moving speed of the line beam is constant.
  13.  前記シャドーマスク上の前記ラインビームの移動を終えると、前記マスク用部材を移動して該マスク用部材上の別の領域に、前記ラインビームを前記シャドーマスク及び前記投影レンズに対して相対移動しながら前記開口パターンをレーザ加工することを特徴とする請求項11又は12記載の成膜マスクの製造方法。 When the movement of the line beam on the shadow mask is completed, the mask member is moved to another area on the mask member, and the line beam is relatively moved with respect to the shadow mask and the projection lens. The method according to claim 11, wherein the opening pattern is laser-processed while performing the laser processing.
PCT/JP2019/018507 2018-07-09 2019-05-09 Laser machining device, laser machining method, and production method for film-formation mask WO2020012771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129709 2018-07-09
JP2018-129709 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020012771A1 true WO2020012771A1 (en) 2020-01-16

Family

ID=69142548

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/018507 WO2020012771A1 (en) 2018-07-09 2019-05-09 Laser machining device, laser machining method, and production method for film-formation mask
PCT/JP2019/026967 WO2020013122A1 (en) 2018-07-09 2019-07-08 Laser machining device, laser machining method, and production method for film-formation mask

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026967 WO2020013122A1 (en) 2018-07-09 2019-07-08 Laser machining device, laser machining method, and production method for film-formation mask

Country Status (6)

Country Link
JP (1) JP7175457B2 (en)
KR (1) KR102644949B1 (en)
CN (1) CN112384323B (en)
DE (1) DE112019003473T5 (en)
TW (1) TWI814859B (en)
WO (2) WO2020012771A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393087B2 (en) 2019-09-26 2023-12-06 株式会社オーク製作所 Processing equipment and processing method for ablation processing
CN115210973B (en) * 2020-03-10 2023-08-01 三菱电机株式会社 Wavelength conversion laser device and wavelength conversion laser processing machine
CN113795087B (en) * 2021-11-15 2022-05-03 深圳市大族数控科技股份有限公司 Windowing method and windowing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147242A (en) * 2006-12-06 2008-06-26 Hitachi Via Mechanics Ltd Laser-beam machining method of printed circuit board
JP2015534903A (en) * 2012-11-02 2015-12-07 エム−ソルヴ・リミテッド Method and apparatus for forming a fine scale structure in a dielectric substrate
WO2017154233A1 (en) * 2016-03-10 2017-09-14 鴻海精密工業股▲ふん▼有限公司 Deposition mask, mask member for deposition mask, method for manufacturing deposition mask, and method for manufacturing organic el display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989476A (en) * 1983-10-11 1984-05-23 Toshiba Corp Irradiating method of laser light
CN1376100A (en) * 1999-09-28 2002-10-23 住友重机械工业株式会社 Laser drilling method and laser drilling device
WO2006017510A2 (en) * 2004-08-02 2006-02-16 J.P. Sercel Associates, Inc. System and method for laser machining
KR101335951B1 (en) * 2012-04-23 2013-12-04 (주)파랑 Antenna patten forming apparatus using laser direct structuring
JP5989476B2 (en) 2012-09-19 2016-09-07 ヤンマー株式会社 Hydraulic pump device
GB2507542B (en) * 2012-11-02 2016-01-13 M Solv Ltd Apparatus and Method for forming fine scale structures in the surface of a substrate to different depths
JP6078747B2 (en) * 2013-01-28 2017-02-15 株式会社ブイ・テクノロジー Vapor deposition mask manufacturing method and laser processing apparatus
JP2017008342A (en) * 2015-06-17 2017-01-12 株式会社ブイ・テクノロジー Film deposition mask and production method of film deposition mask

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147242A (en) * 2006-12-06 2008-06-26 Hitachi Via Mechanics Ltd Laser-beam machining method of printed circuit board
JP2015534903A (en) * 2012-11-02 2015-12-07 エム−ソルヴ・リミテッド Method and apparatus for forming a fine scale structure in a dielectric substrate
WO2017154233A1 (en) * 2016-03-10 2017-09-14 鴻海精密工業股▲ふん▼有限公司 Deposition mask, mask member for deposition mask, method for manufacturing deposition mask, and method for manufacturing organic el display device

Also Published As

Publication number Publication date
KR102644949B1 (en) 2024-03-08
WO2020013122A1 (en) 2020-01-16
JP7175457B2 (en) 2022-11-21
DE112019003473T5 (en) 2021-04-01
KR20210028650A (en) 2021-03-12
JPWO2020013122A1 (en) 2021-08-02
TWI814859B (en) 2023-09-11
CN112384323B (en) 2023-08-15
CN112384323A (en) 2021-02-19
TW202005736A (en) 2020-02-01

Similar Documents

Publication Publication Date Title
WO2020012771A1 (en) Laser machining device, laser machining method, and production method for film-formation mask
JP4218209B2 (en) Laser processing equipment
US7807944B2 (en) Laser processing device, processing method, and method of producing circuit substrate using the method
US9233435B2 (en) Apparatus and method for the interference patterning of planar samples
JP2001096386A (en) Method of and equipment for positioning focal point of laser beam
KR20120004426A (en) Improved method and apparatus for laser machining
JP2004042140A (en) Process and device for removal of thin film
JP2010201479A (en) Apparatus and method of laser beam machining
US20090316127A1 (en) Substrate, and method and apparatus for producing the same
JP3635701B2 (en) Processing equipment
JP2003001470A (en) Laser beam machining device and laser beam machining method
JP4027873B2 (en) Laser processing apparatus and laser processing method
JP7221300B2 (en) LASER PROCESSING APPARATUS AND WORKING METHOD FOR PROCESSING
KR102654236B1 (en) Laser processing system with improved homogeneity of laser beam
JPH11342486A (en) Aperture mask, photo-processing method, and its device
WO2020213352A1 (en) Laser lift-off device, and laser lift-off method
KR102012297B1 (en) The pattern formation method to use multi-beam scanner system
JPH11226772A (en) Laser beam machining method and its device
JPH0428488A (en) Laser beam machine
TW202317300A (en) Illumination optical system and laser processing device capable of preventing optical element from being at high temperature and preventing increasing optical path and enlarging device
TW202317299A (en) Illumination optical system and laser processing device capable of reducing energy loss by having fly lens itself generating phase difference
TW202317298A (en) Illumination optical system and laser processing device independently adjusting the size of a laser beam in different directions
JPH11179576A (en) Optical machine and manufacture of orifice plate using the machine
JPH11347778A (en) Aperture mask, optical machining device and system therefor
JP2011147966A (en) Laser beam machining apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833287

Country of ref document: EP

Kind code of ref document: A1