WO2020012610A1 - Display device, method of manufacturing same, and method of emitting light therefor - Google Patents

Display device, method of manufacturing same, and method of emitting light therefor Download PDF

Info

Publication number
WO2020012610A1
WO2020012610A1 PCT/JP2018/026377 JP2018026377W WO2020012610A1 WO 2020012610 A1 WO2020012610 A1 WO 2020012610A1 JP 2018026377 W JP2018026377 W JP 2018026377W WO 2020012610 A1 WO2020012610 A1 WO 2020012610A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel
containing layer
light
phosphorescent
Prior art date
Application number
PCT/JP2018/026377
Other languages
French (fr)
Japanese (ja)
Inventor
学 二星
伸一 川戸
時由 梅田
優人 塚本
裕士 今田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/026377 priority Critical patent/WO2020012610A1/en
Publication of WO2020012610A1 publication Critical patent/WO2020012610A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers

Definitions

  • the present invention relates to a display device, a manufacturing method thereof, and a light emitting method thereof.
  • organic EL display devices Conventionally, color has been emphasized in organic EL display devices. Therefore, an organic EL display device using a fluorescent light emitting material having a wide color gamut as a light emitting material is widely used. However, fluorescent materials can only utilize 25% of singlet excitons for emission.
  • the internal quantum efficiency of the phosphorescent material is theoretically 100%. Therefore, in recent years, for example, as a white light emitting device, a display device using a phosphorescent light emitting material as a light emitting material has been developed (for example, see Patent Document 1).
  • JP-A-2014-241405 (published on December 25, 2014)
  • the blue phosphorescent light-emitting material has a problem in color purity when it is used as a light-emitting material of a display device that emits blue light with a low blue chromaticity.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a pixel that emits blue light, which has a good balance between luminous efficiency and chromaticity, consumes less power than before, and emits blue light and An object of the present invention is to provide a display device capable of emitting light of a plurality of colors including cyan light, a manufacturing method thereof, and a light emitting method thereof.
  • a display device includes a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light.
  • Pixel comprising a plurality of pixels including, each pixel, an anode, a cathode, formed between the anode and the cathode, a display device provided with an organic layer including a light-emitting layer,
  • the first pixel is provided as a light-emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a cathode side of the first phosphorescent material-containing layer,
  • a fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescent light having a peak wavelength shorter than the cyan phosphorescence, and the second pixel includes the first pixel as the light-emitting layer.
  • a phosphorescent material-containing layer wherein the first phosphorescent material is contained;
  • the layer is a common layer provided in common for the plurality of pixels.
  • the first phosphorescent material-containing layer and the fluorescent material-containing layer emit light
  • the first phosphorescent material-containing layer emits light.
  • a method for manufacturing a display device includes: a first pixel that emits blue light; and a light that has a peak wavelength longer than the blue light.
  • the first pixel may include, as the light emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a first phosphorescent material-containing layer including the first phosphorescent material-containing layer.
  • a fluorescent light-emitting material-containing layer that includes a fluorescent light-emitting material that emits blue fluorescent light having a shorter peak wavelength than the cyan phosphorescence, and wherein the second pixel includes, as the light-emitting layer, A first phosphorescent material-containing layer;
  • the light material-containing layer is a common layer provided in common for the plurality of pixels, and in the first pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer each emit light, In two pixels, a method for manufacturing a display device in which the first phosphorescent material-containing layer emits light, wherein an anode forming step of forming the anode, an organic layer forming step of forming the organic layer, and forming the cathode The organic layer forming step, using a deposition mask having a mask opening common to the plurality of pixels, a common layer forming step of forming the common layer; Using a deposition mask provided with a corresponding mask opening, the first
  • a light emitting method of a display device emits a first pixel that emits blue light and a light that has a peak wavelength longer than the blue light.
  • the first pixel may include, as the light emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a first phosphorescent material-containing layer including the first phosphorescent material-containing layer.
  • a fluorescent light-emitting material-containing layer that includes a fluorescent light-emitting material that emits blue fluorescent light having a shorter peak wavelength than the cyan phosphorescence, and wherein the second pixel includes, as the light-emitting layer, A first phosphorescent material-containing layer;
  • the light material-containing layer is a common layer provided in common for the plurality of pixels, and in the first pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer each emit light, In the two pixels, the first phosphorescent material-containing layer emits light in a display device, wherein the first phosphorescent material-containing layer generates triplet excitons and emits the fluorescent light.
  • a singlet exciton is generated in the light-emitting material-containing layer, light generated when the triplet exciton generated in the first phosphorescent light-emitting material-containing layer returns to the ground state, and light generated in the fluorescent light-emitting material-containing layer. And light generated when the singlet exciton returns to the ground state.
  • the second pixel generates a triplet exciton in the first phosphorescent material-containing layer, and generates the first phosphorescent light.
  • Ground state of triplet exciton generated in material-containing layer It is characterized by emitting light that occurs when the back.
  • a plurality of colors including blue light and cyan light have a good balance between luminous efficiency and chromaticity, consume less power than a conventional device, and have a low power consumption.
  • FIG. 2 is a diagram schematically illustrating a schematic configuration of a light emitting layer unit of the organic EL display device according to the first embodiment together with a light emitting principle.
  • FIG. 2 is a diagram illustrating a light emitting mechanism in a blue pixel of the organic EL display device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a light emitting mechanism in a cyan pixel of the organic EL display device according to the first embodiment.
  • 2A is a diagram illustrating an energy band of a light emitting layer unit and each layer adjacent to the light emitting layer unit in a green pixel of the organic EL display device according to the first embodiment, and FIG. FIG.
  • FIG. 4 is a diagram illustrating energy bands of a light emitting layer unit and each layer adjacent to the light emitting layer unit in a red pixel R of the display device.
  • FIG. 3 is a diagram illustrating spectra of blue fluorescence, cyan phosphorescence, green phosphorescence, and red phosphorescence according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device according to the first embodiment.
  • FIGS. 3A to 3D are plan views illustrating a method of laminating each light-emitting material-containing layer constituting the light-emitting layer unit of the organic EL display device according to the first embodiment in the order of lamination.
  • FIG. 3 is a diagram illustrating energy bands of a light emitting layer unit and each layer adjacent to the light emitting layer unit in a red pixel R of the display device.
  • FIG. 3 is a diagram illustrating spectra of blue fluorescence, cyan phosphor
  • FIG. 5 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a second embodiment.
  • FIGS. 7A and 7B are plan views showing the steps of forming a hole transport layer and a hole transport layer of the organic EL display device according to Embodiment 2 in the order in which they are stacked.
  • 5A to 5D are plan views showing a method of laminating the respective light emitting material-containing layers constituting the light emitting layer unit of the organic EL display device according to Embodiment 2 in the order of stacking.
  • FIG. 4 is a diagram schematically illustrating a schematic configuration of a light emitting layer unit of an organic EL display device according to Embodiment 2 along with a light emission principle.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a second embodiment.
  • FIGS. 7A and 7B are plan views showing the steps of forming a hole transport
  • FIG. 9 is a diagram illustrating a light emitting mechanism in a cyan pixel of the organic EL display device according to the second embodiment.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a third embodiment. 13 is a cross-sectional view illustrating another schematic configuration of a main part of the organic EL display device according to Embodiment 3.
  • FIG. FIG. 14 is a diagram illustrating a light emitting mechanism in a blue pixel of the organic EL display device according to the fourth embodiment.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a fifth embodiment.
  • FIG. 15 is a plan view showing a hole block layer forming step in the manufacturing process of the organic EL display device according to the fifth embodiment.
  • FIG. 6 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the first embodiment.
  • the organic EL display device 1 will be described as an example of the display device.
  • the organic EL display device 1 has a plurality of pixels 3 that emit light of different colors (in other words, light having different peak wavelengths in the photoluminescence emission spectrum).
  • the plurality of pixels 3 include a blue pixel 3B (first pixel) that emits blue light and a cyan pixel 3C (second pixel) that emits light having a peak wavelength longer than the peak wavelength of blue light. And a pixel (third pixel) that emits light having a peak wavelength longer than the peak wavelength of cyan light.
  • a cyan phosphorescent material-containing layer 34PC (first phosphorescent material-containing layer) and a blue fluorescent light-emitting material-containing layer 34FB (fluorescent light-emitting material-containing layer) are provided as light-emitting layers.
  • the cyan phosphorescent material containing layer 34PC contains a cyan phosphorescent material (first phosphorescent material) that emits cyan phosphorescence.
  • the blue fluorescent light emitting material-containing layer 34FB includes a blue fluorescent light emitting material (fluorescent light emitting material) that emits blue fluorescent light having a peak wavelength shorter than that of cyan light.
  • the cyan pixel 3C is provided with a cyan phosphorescent material-containing layer 34PC as a light-emitting layer.
  • 3A third phosphorescent material-containing layer including a second phosphorescent material that emits phosphorescence having a peak wavelength longer than that of cyan light is provided as a light emitting layer in the third pixel.
  • these light emitting layers will be described later in detail.
  • the organic EL display device 1 has, as the third pixels, a green pixel 3G that emits green light and a red pixel 3R that emits red light. Thereby, the organic EL display device 1 displays a full-color image.
  • one pixel 2a is formed by the pixels 3 of three colors of the blue pixel 3B, the green pixel 3G, and the red pixel 3R.
  • one picture element 2b is formed by the three color pixels 3 of the cyan pixel 3C, the green pixel 3G, and the red pixel 3R.
  • a plurality of picture elements 2 including a picture element 2a and a picture element 2b are provided in a matrix in the display area 1a.
  • the ratio between the blue pixel 3B and the cyan pixel 3C included in the organic EL display device 1 is 1: 1. This is merely an example, and the ratio between the blue pixel 3B and the cyan pixel 3C can be an arbitrary ratio according to the product characteristics required for the organic EL display device 1.
  • a blue organic EL element 20B which is an organic EL element 20 that emits blue (B) light, is disposed in the blue pixel 3B.
  • a cyan organic EL element 20C which is an organic EL element 20 that emits cyan (C) light
  • a green organic EL element 20G which is an organic EL element 20 that emits green (G) light
  • a red organic EL element 20R which is an organic EL element 20 that emits red (R) light
  • the organic EL display device 1 has a configuration in which, for example, a plurality of the above-described organic EL elements 20 of a plurality of colors are provided on a TFT (Thin Film Transistor) substrate 10.
  • the plurality of organic EL elements 20 are covered with a sealing film 40.
  • a cover may be provided on the sealing film 40 via an adhesive layer (not shown), for example.
  • the TFT substrate 10 is a circuit substrate on which a TFT circuit including the TFT 12 (driving element) and the wiring 13 is formed.
  • the TFT substrate 10 includes a support 11 having an insulating property, a TFT circuit provided on the support 11, and a flattening film 14 covering the TFT circuit.
  • the support 11 may be, for example, a flexible laminated film in which a lower film (not shown), a resin layer, and a barrier layer are provided in this order, or may be a glass substrate, a plastic substrate, or a plastic film. Good.
  • the wiring 13 includes a plurality of gate wirings and a plurality of source wirings connected to the TFT 12.
  • the gate wiring and the source wiring are arranged to be orthogonal to each other.
  • a region surrounded by the gate wiring and the source wiring is the pixel 3.
  • the flattening film 14 is an organic insulating film made of a photosensitive resin such as an acrylic resin or a polyimide resin.
  • the flattening film 14 flattens irregularities on the TFT circuit.
  • the organic EL element 20 has a configuration in which an organic EL layer 22 is sandwiched between an anode 21 and a cathode 23.
  • the cathode 23 is used as a lower electrode
  • the anode 21 is used as an upper electrode
  • the cathode 23 is used as an upper electrode
  • the cathode 23, the organic EL layer 22, and the anode 21 are stacked in this order from the lower layer side. It may have a configuration. In this case, the stacking order or carrier transportability (hole transportability and electron transportability) of each functional layer constituting the organic EL layer 22 is reversed. Further, the materials forming the anode 21 and the cathode 23 are also inverted.
  • the anode 21 is an electrode (patterned anode) patterned in an island shape for each pixel 3.
  • the cathode 23 is a solid electrode (common cathode) provided commonly to all the pixels 3.
  • the end of the anode 21 is covered with an edge cover 24.
  • Each of the anodes 21 is connected to the TFT 12 via a contact hole 14a provided in the flattening film 14.
  • the edge cover 24 is an insulating layer and is made of, for example, a photosensitive resin.
  • the edge cover 24 prevents the concentration of the electrode and the thinning of the organic EL layer 22 at the end of the anode 21 to prevent a short circuit with the cathode 23.
  • the edge cover 24 also functions as a pixel separation film so that current does not leak to the adjacent pixels 3.
  • the edge cover 24 is provided with an opening 24 a for each pixel 3.
  • the exposed portion of the anode 21 and the organic EL layer 22 by the opening 24a is a light emitting region of each pixel 3, and the other region is a non-light emitting region.
  • a photosensitive resin can be used for the edge cover 24.
  • a transparent conductive film such as ITO (indium tin oxide) or IZO (indium zinc oxide), or a metal such as Au (gold), Pt (platinum), or Ni (nickel) is used.
  • the cathode 23 has a low work function metal such as Li (lithium), Ce (cerium), Ba (barium), and Al (aluminum), or a magnesium containing these metals. Alloys such as alloys (eg, MgAg) and aluminum alloys (eg, AlLi, AlCa, AlMg) are used.
  • each of the anode 21 and the cathode 23 may be formed as a single layer, or may have a laminated structure including a plurality of electrode materials.
  • the anode 21 may have a laminated structure of a reflective electrode 21a (reflective layer) and a translucent electrode 21b. Good.
  • the reflective electrode material examples include a black electrode material such as tantalum (Ta) or carbon (C), Al, Ag, gold (Au), an Al-Li alloy, an Al-neodymium (Nd) alloy, or an Al-silicon ( Reflective metal electrode materials such as Si) alloys;
  • a black electrode material such as tantalum (Ta) or carbon (C)
  • Al Ag, gold (Au), an Al-Li alloy, an Al-neodymium (Nd) alloy, or an Al-silicon
  • Reflective metal electrode materials such as Si
  • the translucent electrode for example, the above-described transparent conductive film may be used, or a translucent electrode having a semi-transmissive reflective layer made of the above-described metal thin film may be used.
  • the reflective electrode 21a is independently formed with the same film thickness for each pixel 3 so as to be connected to the drain electrode of the TFT 12 in each pixel 3.
  • the distance between the reflective electrode 21a (reflective layer) and the semi-transmissive reflective layer (cathode 23) is a distance that increases the intensity of the peak wavelength of light in the wavelength region of each color.
  • the thickness is formed according to the peak wavelength of light in the wavelength region of each color emitted from each pixel 3.
  • the distance between the reflective layer and the transflective layer is the optical path length at which the peak wavelength of the color light emitted from each pixel 3 resonates. Thereby, the color purity of light emitted from each pixel 3 is increased, and the chromaticity and luminous efficiency of light emission are improved.
  • the organic EL layer 22 is a functional layer including an organic layer, including at least a light emitting layer.
  • the layers provided between the anode 21 and the cathode 23 are collectively referred to as an organic EL layer 22.
  • the organic EL layer 22 includes, from the anode 21 side, a light emitting layer unit 33 including a hole injection layer 31 (HIL), a hole transporting layer 32 (HTL), a plurality of light emitting material containing layers 34, and an electron transporting layer 35 (ETL). , And an electron injection layer 36 (EIL) are stacked in this order.
  • HIL hole injection layer 31
  • HTL hole transporting layer 32
  • ETL electron transporting layer 35
  • EIL electron injection layer 36
  • the case where the lower electrode is the anode 21 and the upper electrode is the cathode 23 is shown as an example.
  • the present embodiment is not limited to this, and the lower electrode may be the cathode 23 and the upper electrode may be the anode 21.
  • the stacking order or carrier transportability (hole transportability and electron transportability) of each functional layer constituting the organic EL layer 22 is reversed.
  • the materials forming the anode 21 and the cathode 23 are also inverted.
  • the hole injection layer 31, the hole transport layer 32, the electron transport layer 35, and the electron injection layer 36 are, for example, common layers common to all the pixels 3, and straddle all the pixels 3 so as to cover the upper surface of the edge cover 24. Accordingly, the entire display area is formed in a solid shape. However, the present embodiment is not limited to this.
  • the hole injection layer 31, the hole transport layer 32, the electron transport layer 35, and the electron injection layer 36 may be provided in an island shape for each pixel 3.
  • the cyan phosphorescent material-containing layer 34PC is formed as a common layer common to all the pixels 3 so as to be solid over the entire display area over all the pixels 3.
  • the blue fluorescent light emitting material containing layer 34FB is laminated on the cyan phosphorescent light emitting material containing layer 34PC corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R so as to be adjacent to the cyan phosphorescent light emitting material containing layer 34PC. I have.
  • the blue fluorescent light emitting material containing layer 34FB is not provided in the cyan pixel 3C.
  • the light emitting layer unit 33 of the blue pixel 3B includes a light emitting material containing layer 34 composed of a cyan phosphorescent light emitting material containing layer 34PC (EML-PC) and a blue fluorescent light emitting material containing layer 34FB (EML-FB). Is formed.
  • the blue fluorescent light emitting material containing layer 34FB is provided on the cathode 23 side of the cyan phosphorescent light emitting material containing layer 34PC.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB emit light, respectively. That is, in the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers, respectively.
  • the light emitting layer unit 33 of the cyan pixel 3C is formed of a single light emitting material containing layer 34 composed of a cyan phosphorescent light emitting material containing layer 34PC.
  • the cyan phosphorescent material-containing layer 34PC emits light. That is, in the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC is used as a light emitting layer.
  • the green pixel 3G includes a common layer having a cyan phosphorescent material-containing layer 34PC and a blue fluorescent material-containing layer 34FB as a light-emitting layer, and a green phosphorescent material-containing layer 34PG (a second phosphorescent material-containing layer, EML). -PG).
  • the green phosphorescent material-containing layer 34PG is made of a green phosphorescent material (second phosphorescent material) that emits green phosphorescence having a peak wavelength longer than the peak wavelength of cyan phosphorescence and the peak wavelength of blue fluorescence. Contains.
  • the green phosphorescent material-containing layer 34PG is provided in an island shape for each green pixel 3G.
  • the red pixel 3R includes a common layer having a cyan phosphorescent material-containing layer 34PC and a blue fluorescent material-containing layer 34FB as a light-emitting layer, and a red phosphorescent material-containing layer 34PR (a second phosphorescent material-containing layer, EML). -PR).
  • the red phosphorescent material-containing layer 34PR is a red phosphorescent material that emits red phosphorescence having a peak wavelength of cyan phosphorescence, a peak wavelength of blue fluorescence, and a peak wavelength longer than the peak wavelength of green phosphorescence. (A second phosphorescent material).
  • the red phosphorescent material-containing layer 34PR is provided in an island shape for each red pixel 3R.
  • the green phosphorescent material-containing layer 34PG and the red phosphorescent material-containing layer 34PR are respectively located closer to the anode 21 than the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. It is provided adjacent to the layer 34PC and the blue fluorescent light emitting material containing layer 34FB.
  • the light emitting layer unit 33 of the green pixel 3G includes the green phosphorescent light emitting material containing layer 34PG, the cyan phosphorescent light emitting material containing layer 34PC, and the blue fluorescent light emitting material containing layer 34FB in this order from the anode 21 side. It has a configuration of being stacked adjacent to each other.
  • the light emitting layer unit 33 of the red pixel 3R includes a red phosphorescent light emitting material containing layer 34PR, a cyan phosphorescent light emitting material containing layer 34PC, and a blue fluorescent light emitting material containing layer 34FB in this order from the anode 21 side. It has a configuration in which it is stacked adjacently.
  • Each light emitting material containing layer 34 in the light emitting layer unit 33 is formed of a two-component system of a host material and a light emitting material (light emitting dopant material).
  • each light emitting material containing layer 34 may be formed of a light emitting material alone.
  • the material having the highest content ratio among the materials (components) in each light emitting material containing layer 34 may be a host material or a light emitting material.
  • the host material is capable of injecting holes and electrons, has a function of causing the light-emitting material to emit light by transporting the holes and electrons and recombining in the molecule.
  • the light emitting material containing layer 34 contains a host material
  • the host material has a carrier transport function and an exciton generation function
  • the light emitting material has a light emitting function.
  • the carrier transporting function and the light emitting function in the light emitting material containing layer 34 are functionally separated, and the light emitting material containing layer 34 is doped with a small amount of the light emitting material having a high emission quantum yield, so that the exciton transferred to the light emitting material is transferred to the light emitting material. Quickly emit light, and effective organic EL light emission is obtained.
  • the light emitting material is uniformly dispersed in the host material.
  • the host material of the cyan phosphorescent material-containing layer 34PC has a triplet excitation level (T 1 level) higher than that of the cyan phosphorescent material, and is higher than that of the cyan phosphorescent material. It is preferable to use a host material having a deepest highest occupied level (HOMO level). Similarly, it is preferable to use a host material having a higher T 1 level than the green phosphorescent material and a deeper HOMO level than the green phosphorescent material for the host material of the green phosphorescent material-containing layer 34PG. .
  • T 1 level triplet excitation level
  • HOMO level deepest highest occupied level
  • the host material of the red phosphorescent material containing layer 34PR has a high T 1 level position than the red phosphorescent light emitting material, it is preferable to use a host material having a deeper HOMO level than the red phosphorescent light-emitting material. Thereby, in each phosphorescent material-containing layer, holes can be efficiently injected into the phosphorescent material.
  • blue fluorescent material has high singlet excitation level (S 1 level position) than shallow lowest unoccupied molecular orbital level than blue fluorescent material ( It is preferable to use a host material having a LUMO level). Thereby, electrons can be efficiently injected into the blue fluorescent light emitting material in the blue fluorescent light emitting material containing layer 34FB.
  • the hole transport of each layer in the organic EL layer 22 is set such that excitons are generated in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, respectively. Properties and electron transport properties are regulated.
  • Examples of the hole-transporting host material include 4,4′-bis [N-phenyl-N- (3 ′′ -methylphenyl) amino] biphenyl (TPD) and 9,10-di (2-naphthyl) anthracene (ADN), 1,3-bis (carbazol-9-yl) benzene (mCP), 3,3′-di (9H-carbazol-9-yl) biphenyl (mCBP), 4,4 ′, 4 ′′ -tris And a hole transporting material such as-(N-carbazolyl) -triphenylamine (TCTA).
  • TPD 4,4′-bis [N-phenyl-N- (3 ′′ -methylphenyl) amino] biphenyl
  • ADN 9,10-di (2-naphthyl) anthracene
  • mCP 1,3-bis (carbazol-9-yl) benzene
  • mCBP 3,3′-di (9H-c
  • Examples of the electron transporting host material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), bis [(2-diphenylphosphoryl) phenyl] ether (DPEPO), and 4,4′- Bis (2,2-diphenylvinyl) -1,1′-biphenyl (DPVBi), 2,2 ′, 2 ′′-(1,3,5-benzindril) -tris (1-phenyl-1-H- Electron transporting materials such as benzimidazolyl) (TPBi) and bis (2-methyl-8-quinolinolate) -4- (phenylphenolate) aluminum (BAlq).
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • DPEPO bis [(2-diphenylphosphoryl) phenyl] ether
  • DPVBi 4,4′- Bis (2,2-diphenylvinyl) -1,1′-bipheny
  • Bipolar transport host materials include, for example, bipolar transport materials such as 4,4'-bis (9-carbazoyl) -biphenyl (CBP).
  • blue fluorescent light emitting materials examples include 2,5,8,11-tetra-tert-butylperylene (TBPe) and bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone (DMAC).
  • DMAC 2,5,8,11-tetra-tert-butylperylene
  • DMAC bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone
  • DMAC 2,5,8,11-tetra-tert-butylperylene
  • DMAC bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone
  • CzPN 4,5-bis (carbazol-9-yl) -1,2-dicyanobenzene
  • BCzVBi 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'-
  • red phosphorescent materials include tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3), bis (2-benzo [b] thiophen-2-yl-pyridine) (acetylacetonate) iridium (III) (Ir (btp) 2 (acac)), platinum (II) -octaethyl-porphyrin (PtOEP), bis (10-hydroxybenzo [h] quinolinate) beryllium (Bebq2) and the like.
  • Green phosphorescent materials include, for example, tris (2-phenylpyridyl) iridium (III) (Ir (PPy) 3), bis (2-phenylpyridine) (acetylacetonato) iridium (III) (Ir (PPy) 2 (Acac)) and the like.
  • cyan phosphorescent materials include oxadiazole dimer dye (Bis-DAPOXP) and spiro compound (2,2 ′, 7,7′-tetrakis (2,2′-diphenylvinyl) spiro-9,9 ′).
  • -Bifluorene spiro-DPVBi
  • TPB tetraphenylbutadiene
  • PPCP pentaphenylcyclopentadiene
  • TPA triphenylamine
  • bis [2- (4,6-difluorophenyl) pyridinate-N, C2 '] iridium Picolinate (Flrpic) bis [2- (4,6-difluorophenyl) pyridinate-N, C2 '] iridium Picolinate (Flrpic)).
  • the blue fluorescent light-emitting material-containing layer 34FB located on the cathode 23 side is the cyan phosphorescent material located on the anode 21 side. It is preferable to include a material having a HOMO level shallower than the light emitting material containing layer 34PC, and it is preferable to include a material having a LUMO level shallower than the cyan phosphorescent light emitting material containing layer 34PC.
  • the material contained in the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is a green phosphorescent material and a red phosphorescent material. It is desirable to have a deeper HOMO level.
  • the triplet excitation level of the cyan phosphorescent material contained in the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is It is desirable that the triplet excitation level of the green phosphorescent material is higher than the triplet excitation level of the red phosphorescent material.
  • the ratio (doping concentration) of each phosphorescent material in each phosphorescent material-containing layer can be arbitrarily set according to the type of the phosphorescent material, and is not particularly limited. It can be in the range of 1 to 40% by mass.
  • the ratio (doping concentration) of the blue fluorescent light-emitting material in the blue fluorescent light-emitting material-containing layer 34FB can be arbitrarily set according to the type of the blue fluorescent light-emitting material, and is not particularly limited. For example, it can be in the range of 1 to 40% by mass.
  • the functional layers other than the respective luminescent material-containing layers constituting the luminescent layer unit 33 are not essential layers as the organic EL layer 22, but may be appropriately formed according to the required characteristics of the organic EL element 20. Good.
  • the hole injection layer 31 is a layer containing a hole injection material and having a function of increasing the efficiency of hole injection into a light emitting material containing layer used as a light emitting layer.
  • the hole transport layer 32 is a layer that contains a hole transport material and has a function of increasing the efficiency of transporting holes to the light emitting layer.
  • the hole injection layer 31 and the hole transport layer 32 may be formed as layers independent of each other, or may be integrated as a hole injection layer and a hole transport layer. Further, it is not necessary to provide both the hole injection layer 31 and the hole transport layer 32, and only one of them (for example, only the hole transport layer 32) may be provided.
  • a known material can be used as the material of the hole injection layer 31, the hole transport layer 32, or the hole injection layer and the hole transport layer, that is, the hole injection material or the hole transport material.
  • these materials include naphthalene, anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzene, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, oxazole, polyarylalkane, phenylenediamine , Arylamines and their derivatives, thiophene-based compounds, polysilane-based compounds, vinylcarbazole-based compounds, aniline-based compounds, and other chain- or heterocyclic-conjugated monomers, oligomers, or polymers.
  • the hole injection layer 31, the hole transport layer 32, and the hole injection layer / hole transport layer may be an intrinsic hole injecting material or an intrinsic hole transporting material which is not doped with impurities. Impurities may be doped for reasons such as enhancing conductivity.
  • the electron injection layer 36 is a layer that contains an electron injecting material and has a function of increasing the efficiency of electron injection into the light emitting layer.
  • the electron transport layer 35 is a layer containing an electron transport material and having a function of increasing the efficiency of electron transport to the light emitting layer.
  • the electron injection layer 36 and the electron transport layer 35 may be formed as independent layers, or may be integrated as an electron injection layer and an electron transport layer. Further, it is not necessary to provide both the electron injection layer 36 and the electron transport layer 35, and only one (for example, only the electron transport layer 35) may be provided.
  • the electron injection layer 36, the electron transport layer 35, or the electron injection layer and the electron transport layer that is, a known material can be used as the electron injection material or the material used as the electron transport material.
  • these materials include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives and metal complexes thereof, lithium fluoride (LiF), and the like.
  • DPEPO bis [(2-diphenylphosphoryl) phenyl] ether
  • Bphen 4,7-diphenyl-1,10-phenanthroline
  • mCBP 3,3′-bis (9H-carbazole-9) -Yl) biphenyl
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI 1,3,5-tris
  • TPBI
  • a sealing film 40 for sealing the organic EL element 20 is provided on the cathode 23 of the organic EL element 20.
  • the sealing film 40 protects the cathode 23 serving as the upper electrode, and prevents oxygen and moisture from entering the organic EL elements 20 from the outside.
  • the sealing film 40 is provided so as to cover all the organic EL elements 20.
  • the sealing film 40 may be formed of an inorganic layer, and may include an inorganic layer (inorganic sealing layer) and an organic layer (organic sealing layer).
  • the sealing film 40 may include an organic layer, and a first inorganic layer and a second inorganic layer sandwiching the organic layer.
  • the inorganic layer has a moisture-proof function of preventing intrusion of moisture, and functions as a barrier layer for preventing the organic EL element 20 from being deteriorated by moisture or oxygen.
  • the organic layer is used as a buffer layer (stress relaxation layer). The organic layer performs stress relaxation of the inorganic layer having a large film stress, flattening by filling a step portion or a foreign substance on the surface of the organic EL element 20, and filling a hole of a pinhole.
  • Examples of the inorganic layer include a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and a stacked film thereof.
  • Examples of the organic layer include photosensitive resins such as an acrylic resin, an epoxy resin, and a silicone resin.
  • a cover body may be provided on the sealing film 40 via an adhesive layer (not shown).
  • the cover is a functional layer having at least one of a protection function, an optical compensation function, and a touch sensor function.
  • the cover body may be a protective film functioning as a support when a carrier substrate such as a glass substrate is peeled off, or may be a hard coat layer such as a hard coat film, or a polarizing film and a touch sensor film. It may be a functional film.
  • FIGS. 7A to 7D show the light emitting material containing layers 34 constituting the light emitting layer unit 33 of the organic EL display device 1 according to the first embodiment (that is, the red phosphorescent light emitting material containing layer 34PR, the green phosphorescent light emission). It is a top view which shows the lamination method of the material containing layer 34PG, the cyan phosphorescent material containing layer 34PC, and the blue fluorescent light emitting material containing layer 34FB) in lamination order. 7A to 7D, the number of the pixels 3 (that is, the blue pixel 3B, the cyan pixel 3C, the green pixel 3G, and the red pixel 3R) is omitted for convenience of illustration.
  • the manufacturing process of the organic EL display device 1 includes a TFT substrate manufacturing process of manufacturing the above-described TFT substrate 10 and an organic EL device manufacturing process of forming the organic EL device 20 on the TFT substrate 10 (organic layer formation). Step) and a sealing step of sealing the organic EL element 20 manufactured in the organic EL element manufacturing step with a sealing film 40.
  • the organic EL element manufacturing process includes, for example, an anode forming process, a hole injecting layer forming process, a hole transporting layer forming process, a red phosphorescent material-containing layer forming process (second phosphorescent material-containing layer forming process), and green.
  • Phosphorescent material-containing layer forming step (second phosphorescent material-containing layer forming step), cyan phosphorescent material-containing layer forming step (common layer forming step, first phosphorescent material-containing layer forming step), blue fluorescent light-emitting material containing It includes a layer forming step (a common layer forming step, a fluorescent light emitting material containing layer forming step), an electron transporting layer forming step, an electron injecting layer forming step, and a cathode forming step.
  • the organic EL element manufacturing process is performed, for example, in this order.
  • the cyan phosphorescent material-containing layer 34PC is closer to the cathode 23 than the green phosphorescent material-containing layer 34PG.
  • the process is performed continuously so as to be formed adjacent to the green phosphorescent material-containing layer 34PG.
  • the cyan phosphorescent material-containing layer forming step and the blue fluorescent light-emitting material-containing layer forming step are performed by laminating the cyan phosphorescent light-emitting material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB adjacent to each other. Is performed continuously.
  • each of the above-described steps will be described.
  • a photosensitive resin is applied on the support 11 on which the TFT circuit including the TFT 12 and the wiring 13 is formed, and is patterned by photolithography.
  • a flattening film 14 is formed.
  • a contact hole 13 a for electrically connecting the anode 21 to the TFT 12 is formed in the flattening film 14.
  • the TFT substrate 10 is manufactured (TFT substrate manufacturing process).
  • the organic EL element 20 is formed on the TFT substrate 10 thus formed (organic EL element manufacturing step).
  • the anode 21 is formed on the TFT substrate 10 (anode forming process).
  • the anode forming step according to the present embodiment includes a reflecting electrode forming step of forming the reflecting electrode 21a on the TFT substrate 10, and a light transmitting electrode forming step of forming the light transmitting electrode 21b on the reflecting electrode 21a. ing.
  • a reflective electrode 21a is formed on the TFT substrate 10 by a known method with a predetermined thickness.
  • a light-transmitting electrode 21b having a different thickness is pattern-formed for each pixel 3 on the reflective electrode 21a.
  • the organic EL device 20 is a microcavity (microresonator) type organic EL device.
  • the emitted light is multiple-reflected between the anode 21 and the cathode 23 and resonates, whereby the emission spectrum becomes steep and the emission intensity at a specific wavelength is amplified.
  • the optical path length is changed for each pixel 3 by setting the thickness of the translucent electrode 21b for each pixel 3.
  • the anodes 21 having a layer thickness corresponding to the display color of the pixels 3 are formed in a matrix on the TFT substrate 10 in this manner. Specifically, the anode 21 having the same layer thickness is formed in the blue pixel 3B and the cyan pixel 3C.
  • an anode 21 having a thickness different from that of the anode 21 forming the blue pixel 3B is formed in the green pixel 3G. Further, the anode 21 having a thickness different from both the thickness of the anode 21 forming the blue pixel 3B and the thickness of the anode 21 forming the green pixel 3G is formed in the red pixel 3R.
  • the edge cover 24 is patterned to cover the end of the anode 21. Through the above steps, the anode 21 separated by the edge cover 24 for each pixel 3 is manufactured.
  • the hole injection layer 31 and the hole transport layer 32 are vapor-deposited in this order over the entire display region 1a on the TFT substrate 10 on which the anode 21 is formed, using, for example, an open mask (the hole injection layer 31). Forming step, hole transport layer forming step).
  • the hole injection layer 31 and the hole transport layer 32 are not essential layers, and may be formed in an island shape for each pixel 3.
  • a red phosphorescent material-containing layer 34PR is formed in the red pixel 3R (a red phosphorescent material-containing layer forming step).
  • the red phosphorescent material-containing layer 34PR is formed in a striped island shape on the hole transport layer 32 of the red pixel 3R by separate deposition using a deposition mask 200R provided with a mask opening 201R corresponding to the red pixel 3R. Formed.
  • the green phosphorescent material-containing layer 34PG is formed in the green pixel 3G (green phosphorescent material-containing layer forming step).
  • the green phosphorescent material-containing layer 34PG is formed in a striped island shape on the hole transport layer 32 of the green pixel 3G by separate deposition using a deposition mask 200G provided with a mask opening 201G corresponding to the green pixel 3G. Is linearly deposited.
  • the red phosphorescent material-containing layer forming step and the green phosphorescent material-containing layer forming step may be performed in reverse order, but are preferably performed in this order.
  • the host material of the green phosphorescent material-containing layer 34PG EML-PG shown in FIG. If the material having the highest content ratio is a hole-transporting material, the red phosphorescent material enters the green pixel 3G by any chance, and the red phosphorescent material-containing layer 34PR is formed below the green phosphorescent material-containing layer 34PG. Even if formed, electrons do not reach the red phosphorescent material-containing layer 34PR. For this reason, red color mixture does not occur in the green pixel 3G. Therefore, in this case, the deposition margin for preventing color mixing can be reduced.
  • a cyan phosphorescent material-containing layer 34PC is formed on the entire display region 1a of the TFT substrate 10 (cyan phosphorescent material-containing layer forming step).
  • the cyan phosphorescent material-containing layer 34PC is formed as a common light-emitting layer extending over the plurality of pixels 3 as described above. Therefore, as shown in FIG. 6C, an open mask having a mask opening 201B1 common to the plurality of pixels 3 is used as the vapor deposition mask 200B1 for forming the cyan phosphorescent material-containing layer.
  • a blue fluorescent light emitting material containing layer 34FB is formed on the blue pixel 3B, green pixel 3G, and red pixel 3R so as to cover the cyan phosphorescent material containing layer 34PC.
  • the cyan phosphorescent material-containing layer 34PC is formed by separately applying vapor using a deposition mask 200C provided with a mask opening 201C corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R. Deposited on 34PC.
  • FIGS. 7A to 7D show an example in which the evaporation masks 200R, 200G, 200B, and 200C are evaporation masks for mask-fixed evaporation.
  • the present embodiment is not limited to this, and these deposition masks 200R, 200G, 200B, and 200C have a mask opening corresponding to a part of the light emitting material containing layer 34 to be formed. May be used.
  • the light emitting material containing layer 34 contains a host material
  • the light emitting material containing layer 34 is formed by co-evaporating the host material and the light emitting material (light emitting dopant material) constituting the light emitting material containing layer 34. Is done.
  • the deposition ratio of each material can be adjusted by, for example, the deposition rate.
  • the electron transport layer 35 and the electron injection layer 36 are displayed so as to cover the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC.
  • An electron transport layer forming step and an electron injection layer forming step are formed in this order over the entire surface of the region 1a.
  • the electron transport layer 35 and the electron injection layer 36 are not essential layers, and may be formed in an island shape for each pixel 3.
  • the cathode 23 is formed on the entire display area 1a of the TFT substrate 10 so as to cover the electron injection layer 36.
  • a vapor deposition method such as a vacuum deposition method, a CVD method, or a plasma CVD method may be used, or a sputtering method, a printing method, or the like may be used.
  • the inorganic layer can be formed, for example, by CVD.
  • the organic layer (organic sealing layer) can be formed, for example, by applying an ink material to a region surrounded by a bank (not shown) (not shown) by an inkjet method or the like, and by, for example, UV curing.
  • a functional film such as a polarizing film and a touch sensor film, or a cover such as a polarizing plate and a touch panel is attached.
  • the organic EL display device 1 performs color display by selectively emitting the organic EL element 20 in each pixel 3 at a desired luminance using the TFT 12.
  • a light emitting method (display method) of the organic EL display device 1 will be described with reference to FIGS.
  • FIG. 1 is a view schematically showing a schematic configuration of the light emitting layer unit 33 of the organic EL display device 1 according to the first embodiment together with a light emitting principle.
  • FIG. 2 is a diagram illustrating a light emitting mechanism in the blue pixel 3B of the organic EL display device 1 according to the first embodiment.
  • FIG. 3 is a diagram illustrating a light emitting mechanism in the cyan pixel 3C of the organic EL display device 1 according to the first embodiment.
  • FIG. 4A is a diagram illustrating an energy band of the light emitting layer unit 33 and each layer adjacent to the light emitting layer unit 33 in the green pixel 3G of the organic EL display device 1 according to the first embodiment, and FIG.
  • FIG. 3 is a diagram illustrating the energy bands of the light emitting layer unit 33 and each layer adjacent to the light emitting layer unit 33 in the red pixel 3R of the organic EL display device 1 according to the first embodiment.
  • FIG. 5 is a diagram illustrating spectra of blue fluorescence, cyan phosphorescence, green phosphorescence, and red phosphorescence according to the first embodiment. In FIG. 1, illustrations other than the light emitting layer unit 33 are omitted.
  • E ⁇ means that in the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB are respectively recombined to generate excitons.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are stacked in this order from the anode 21 side. Therefore, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is a hole transporting material or a hole transporting material. It is desirable to include a bipolar transport material containing a conductive material and an electron transport material, and it is desirable that the blue fluorescent light emitting material containing layer 34FB located on the cathode 23 side contains an electron transport material.
  • the host material in the cyan phosphorescent material containing layer 34PC is desirably a hole transporting material or a bipolar transporting material
  • the host material in the blue fluorescent light emitting material containing layer 34FB is an electron transporting material.
  • it is a material. In this case, holes and electrons are easily bonded to each other in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, and excitons are easily generated in the respective layers.
  • the cyan phosphorescent material-containing layer 34PC EML-FB
  • EML-PB blue fluorescent material-containing layer 34FB
  • the blue fluorescent light-emitting material-containing layer 34FB located on the cathode 23 side is formed.
  • a material having a LUMO level shallower than that of the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is included, electrons easily enter the cyan phosphorescent material-containing layer 34PC located on the anode 21 side.
  • the blue fluorescent light emitting material containing layer 34FB has a HOMO level and a LUMO level higher than the cyan phosphorescent material (Filpic) of the cyan phosphorescent material containing layer 34PC.
  • Table 1 shows the values of the HOMO level and LUMO level of the material of each layer shown in FIG. 4A used in this embodiment.
  • Table 2 shows the values of the HOMO level and LUMO level of the material of each layer shown in FIG. 4B used in this embodiment.
  • an exciton generated respectively in blue phosphorescent material containing layer 34PB and blue fluorescent material-containing layer 34FB is deactivated each light when returning to the ground state (S 0 state) to release I do.
  • cyan pixel 3C As shown in FIG. 3, when the excitons generated by the cyan color phosphorescent material containing layer 34PC triplet excited state (T 1 state) (triplet excitons) returns to S 0 state , And cyan light including cyan phosphorescent light is emitted.
  • the anode 21 side (in other words, the green phosphorescent light emitting material containing layer 34FB).
  • the material included in the cyan phosphorescent material-containing layer 34PC located on the 34PG side) has a HOMO level deeper than that of the green phosphorescent material (Ir (PPy) 3 in the example shown in FIG. 4A). Accordingly, the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the green phosphorescent material-containing layer 34PG.
  • the cyan phosphorescent material-containing layer 34PC located on the anode 21 side (green phosphorescent material-containing layer 34PG side) of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. Since the triplet excitation level of the cyan phosphorescent material contained in is higher than the triplet excitation level of the green phosphorescent material, the cyan phosphorescent material-containing layer 34PC and the blue phosphorescent material are contained from the green phosphorescent material. Energy is not easily transferred to the layer 34FB.
  • the holes injected from the anode 21 into the organic EL layer 22 and the electrons injected from the cathode 23 into the organic EL layer 22 cause the green pixel 3G to contain the green phosphorescent material. Recombination occurs only in the layer 34PG to generate excitons. As a result, the green pixel 3G, a green phosphorescent green phosphorescent material containing layer T 1 state generated by 34PG exciton (triplet excitons) occurs when returning to S 0 state is emitted.
  • the anode 21 side in the red pixel 3R, as shown in FIG. 4B, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, the anode 21 side (in other words, the red phosphorescent material-containing layer 34PC).
  • the material included in the cyan phosphorescent material-containing layer 34PC located on the layer 34PR side has a HOMO level deeper than that of the red phosphorescent material (Ir (pip) 3 in the example shown in FIG. 4B). By doing so, the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the red phosphorescent material-containing layer 34PR.
  • the cyan phosphorescent material-containing layer 34PC located on the anode 21 side (the red phosphorescent material-containing layer 34PR side) of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. Since the triplet excitation level of the cyan phosphorescent material contained in is higher than the triplet excitation level of the red phosphorescent material, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material Energy is not easily transferred to the layer 34FB.
  • the holes injected from the anode 21 into the organic EL layer 22 and the electrons injected from the cathode 23 into the organic EL layer 22 cause the red pixel 3R to contain the red phosphorescent material. Recombination occurs only in the layer 34PR to generate excitons. As a result, the red pixel 3R, red phosphorescent red phosphorescent material containing layer T 1 state generated by 34PR exciton (triplet excitons) occurs when returning to S 0 state is emitted.
  • the internal quantum efficiency is theoretically 100%, which is higher than that of the cyan phosphorescent material.
  • a fluorescent light emitting material having low internal quantum efficiency but deep blue chromaticity is laminated to emit light. Further, the cyan phosphorescent material emits light in the cyan pixel 3C.
  • the exciton is generated in each of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, so that the phosphorescent light emitted from the cyan phosphorescent material-containing layer 34PC is generated.
  • the mixed light with the fluorescent light emitted from the blue fluorescent light emitting material containing layer 34FB is emitted from the blue pixel 3B.
  • excitons from the cyan phosphorescent material-containing layer 34PC phosphorescence emitted from the cyan phosphorescent material-containing layer 34PC is emitted from the cyan pixel 3C.
  • blue chromaticity is inferior (that is, shallower) as compared with the case where the blue pixel 3B emits only blue fluorescent light
  • the blue color is compared with the case where the blue pixel 3B emits only cyan phosphorescent light. It is possible to provide the organic EL display device 1 having a high degree (that is, deep) and capable of reducing power consumption as compared with the case where the blue pixel 3B emits only blue fluorescent light.
  • the organic light emitting device in the blue pixel 3 ⁇ / b> B, can emit a plurality of lights including the blue light with a good balance between the luminous efficiency and the chromaticity, and with less power consumption than the related art.
  • An EL display device 1 can be provided.
  • the balance between the luminous efficiency and the chromaticity can be achieved by adjusting the ratio between the blue pixel 3B and the cyan pixel 3C. Therefore, device design according to product characteristics such as emphasis on power consumption and color gamut becomes possible.
  • the efficiency can be improved as compared with the case where only the blue fluorescent light emitting material is used as the blue light emitting material.
  • the cyan phosphorescent material-containing layer 34PC can be provided in common for each pixel 3, and it is easy to cope with higher definition of the display device. .
  • the blue pixel 3B is a probability of 25% that excitons in the blue fluorescent material-containing layer 34FB is generated as S 1 state, due to the poor internal quantum efficiency, it is desired to increase the possible opening.
  • the larger the opening is the smaller the vapor deposition margin is, and the accuracy of coating becomes a problem.
  • the aperture ratio of the blue pixel 3B can be increased, and the lifetime can be increased. Can be achieved.
  • the cyan phosphorescent material-containing layer 34PC is provided in common for the plurality of pixels 3 so that the cyan phosphorescent material-containing layer 34PC can be formed with high definition. It does not require a simple evaporation mask. In addition, it is technically difficult to separately apply RGBC using a very fine deposition mask. According to this embodiment, only the blue fluorescent light emitting material containing layer 34FB, the green phosphorescent light emitting material containing layer 34PG in the green pixel 3G, and the red phosphorescent light emitting material containing layer 34PR in the red pixel 3R need to be separately applied. Therefore, the number of times of application can be suppressed to three times. Therefore, the manufacture of the organic EL display device 1 is facilitated.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are The case where the layers are sequentially stacked has been described as an example.
  • the present embodiment is not limited to this, and the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC may be provided in this order from the anode 21 side.
  • the material included in the cyan phosphorescent material-containing layer 34PC has a deeper HOMO level than the green phosphorescent material and the red phosphorescent material, and the cyan phosphorescent material-containing layer 34PC has a green phosphorescent material. It functions as a hole blocking layer for the light emitting material containing layer 34PG and the red phosphorescent light emitting material containing layer 34PR.
  • the cyan phosphorescent material-containing layer 34PC As the host material in the cyan phosphorescent material-containing layer 34PC, a hole transporting material or a bipolar transporting material is used. Therefore, the cyan phosphorescent material-containing layer 34PC has a high hole-transport property.
  • the blue fluorescent light-emitting material-containing layer 34FB has an electron mobility higher than the hole mobility and has an electron transporting property. Therefore, the blue fluorescent light-emitting material-containing layer 34FB also functions as an electron transport layer, and electrons flow easily.
  • the host material and the light emitting material (light emitting dopant material) included in the cyan phosphorescent material containing layer 34PC are blue fluorescent light emitting.
  • the gap (band gap) between the HOMO level and the LUMO level of the host material and the light-emitting material (light-emitting dopant material) included in the material-containing layer 34FB is large. Therefore, electrons can be efficiently transferred from the blue fluorescent light emitting material containing layer 34FB to the cyan phosphorescent light emitting material containing layer 34PC, and the blue pixel 3B contains the blue fluorescent light emitting material from the cyan phosphorescent light emitting material containing layer 34PC. Holes can be efficiently moved to the layer 34FB.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB are stacked in this order from the anode 21 side.
  • the third pixel may be a pixel that emits light of a color having a peak wavelength longer than the peak wavelength of cyan light, such as yellow (Y) light, magenta (M) light, or the like.
  • Y yellow
  • M magenta
  • the picture element 2a and the picture element 2b do not necessarily need to be constituted by the pixels 3 of three colors, and may be constituted by the pixels 3 of two colors or four colors.
  • the cathode 23 may be provided on the surface on the TFT substrate 10 side, and the anode 21 may be provided on the sealing film 40 side.
  • FIG. 8 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the second embodiment.
  • the organic EL display device 1 includes a blue pixel 3B, a cyan pixel 3C, a green pixel 3G, and a red pixel 3R, as in the first embodiment.
  • the overall configuration of the organic EL display device 1 is substantially the same as the overall configuration of the organic EL display device 1 according to the first embodiment.
  • each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R is the same as each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R according to the first embodiment.
  • the configuration of the light emitting layer unit 33 of the cyan pixel 3C is different from the configuration of the light emitting layer unit 33 of the cyan pixel 3C according to the first embodiment.
  • the configuration of the light emitting layer included in the cyan pixel 3C is the same as the configuration of the light emitting layer included in the blue pixel 3B. Therefore, the cyan pixel 3C has a cyan phosphorescent material-containing layer 34PC as the light-emitting layer as in the first embodiment, and further has a blue fluorescent light-emitting material-containing layer 34FB different from the first embodiment.
  • the light emitting layer unit 33 of the cyan pixel 3C like the light emitting layer unit 33 of the blue pixel 3B, includes a cyan phosphorescent material containing layer 34PC and a blue fluorescent material containing layer 34FB.
  • the light-emitting material-containing layer 34 is formed.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB emit light, respectively. That is, in the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers, respectively.
  • the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC serve as a common layer common to all the pixels 3 and extend over all the pixels 3. The entire area is formed in a solid shape.
  • the common layer further includes the blue fluorescent light emitting material containing layer 34FB in addition to the cyan phosphorescent light emitting material containing layer 34PC.
  • the organic EL layer 22 has a hole transport layer 32B (first hole transport layer) and a hole transport layer 32C (first hole transport layer) provided separately for the blue pixel 3B and the cyan pixel 3C between the light emitting layer and the anode 21. (A second hole transport layer).
  • the hole transport layer 32B is provided commonly to the green pixel 3G and the red pixel 3R in addition to the blue pixel 3B.
  • the organic EL layer 22 may include a not-shown hole transport layer 32G (third hole transport layer) and a hole transport layer 32R (fourth hole transport layer) provided in the green pixel 3G and the red pixel 3R, respectively. ).
  • the thickness of the hole transport layer 32B is different from the thickness of the hole transport layer 32C. Specifically, the thickness of the hole transport layer 32C is larger than the thickness of the hole transport layer 32B. The difference between the thickness of the hole transport layer 32C and the thickness of the hole transport layer 32B is preferably 5 to 25 nm.
  • FIGS. 9A and 9B are plan views showing the steps of forming the hole transport layer 32B and the hole transport layer 32C of the organic EL display device 1 according to the second embodiment in the order in which they are stacked. 9A and 9B, the number of pixels 3 is omitted for convenience of illustration.
  • FIGS. 10A to 10D are plan views showing a method of laminating the respective light emitting material containing layers 34 constituting the light emitting layer unit 33 of the organic EL display device 1 according to the second embodiment in the order of stacking. In FIGS. 10A to 10D, the number of pixels 3 is omitted for convenience of illustration.
  • the manufacturing process of the organic EL display device 1 according to the present embodiment is the same as the manufacturing process of the organic EL display device 1 according to the first embodiment.
  • the present embodiment is different from the first embodiment in the hole transport layer forming step and the cyan phosphorescent material-containing layer forming step.
  • the hole transport layer forming step includes a step of forming the hole transport layer 32B (first hole transport layer forming step) and a step of subsequently forming the hole transport layer 32C (second hole transport layer).
  • Transport layer forming step When performing the hole transport layer forming step, first, a common hole transport layer 32B is formed for the blue pixel 3B, the green pixel 3G, and the red pixel 3R.
  • the hole transport layer 32B is formed by separate deposition using a deposition mask 210B provided with a mask opening 211B corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R as shown in FIG. Are formed on the hole injection layer 31 in a stripe island shape.
  • a hole transport layer 32C having a thickness larger than the thickness of the hole transport layer 32B is formed in the cyan pixel 3C.
  • the hole transport layer 32C is formed on the hole injection layer 31 by separate deposition using a deposition mask 210C provided with a mask opening 211C corresponding to the cyan pixel 3C as shown in FIG. 9B. Are formed in a stripe island shape.
  • the red phosphorescent material-containing layer 34PR and the green phosphorescent material-containing layer are formed using the evaporation masks 200R, 200G, and 200C shown in FIGS. 34PG and a cyan phosphorescent material-containing layer 34PC are formed.
  • a blue fluorescent light emitting material containing layer 34FB is formed on the entire display region 1a of the TFT substrate 10 as shown in FIG. 10D so as to cover the cyan phosphorescent light emitting material containing layer 34PC (blue fluorescent light emitting layer 34FB).
  • Material-containing layer forming step) the blue fluorescent light emitting material containing layer 34FB is formed as a common light emitting layer extending over a plurality of pixels 3. Therefore, as shown in FIG. 10D, an open mask having a mask opening 201B2 common to the plurality of pixels 3 is used as the vapor deposition mask 200B2 for forming the blue fluorescent light emitting material-containing layer.
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB have the same pattern in plan view. For this reason, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB may be continuously formed using the same evaporation mask as the evaporation mask 200C and the evaporation mask 200B2. It may be formed using a mask.
  • FIG. 11 is a diagram schematically illustrating a schematic configuration of the light emitting layer unit 33 of the organic EL display device 1 according to the second embodiment together with a light emitting principle.
  • FIG. 12 is a diagram illustrating a light emitting mechanism in the cyan pixel 3C of the organic EL display device 1 according to the second embodiment. In FIG. 11, illustrations other than the light emitting layer unit 33 are omitted.
  • the cyan phosphorescent light emitting material containing layer 34PC and the blue fluorescent light emitting material containing layer 34FB recombine with each other to generate excitons.
  • the cyan pixel 3C the excitons generated respectively in blue phosphorescent material containing layer 34PB and blue fluorescent material-containing layer 34FB, deactivated to the ground state (S 0 state) Each emits light when returning to.
  • a phosphorescent cyan excitons cyan phosphorescent material containing layer triplet excited state generated in the 34PC (T 1 state) (triplet excitons) occurs when returning to S 0 state , the light including the blue fluorescence produced when the blue fluorescent material exciton-containing layer singlet excited state generated in 34FB (S 1 state) (singlet excitons) returns to S 0 state, the emitted You.
  • the light emitting mechanism of the cyan pixel 3C is the same as the light emitting mechanism of the blue pixel 3B.
  • the intensity of the cyan phosphorescence generated in the cyan pixel 3C is lower than the intensity of the cyan phosphorescence generated in the blue pixel 3B. Higher than.
  • blue light including weaker cyan phosphorescence and blue fluorescence is emitted from the blue pixel 3B, while stronger cyan phosphorescence and blue fluorescence are emitted from the cyan pixel 3C. Cyan light is emitted.
  • the organic EL display device 1 having each pixel 3 of RBGC. Further, similarly to the first embodiment, by appropriately changing the ratio of the blue pixel 3B and the cyan pixel 3C, it is possible to realize the organic EL display device 1 flexibly corresponding to required product characteristics.
  • the thickness and the material of the hole transport layer 32B and the hole transport layer 32C may be different.
  • the material of the hole transport layer 32B and the material of the hole transport layer 32C may be different.
  • the material of the hole transport layer 32B is a general material for a hole transport layer such as ⁇ -NPD.
  • the material of the hole transport layer 32C is a material having a higher ionization potential energy (having a deeper HOMO level) than the material of the hole transport layer 32B, and is, for example, MTDATA or mCP.
  • a deep HOMO level is synonymous with a large negative value.
  • FIG. 13 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the third embodiment.
  • the organic EL display device 1 according to the second embodiment includes a blue pixel 3B, a cyan pixel 3C, a green pixel 3G, and a red pixel 3R, as in the second embodiment.
  • the overall configuration of the organic EL display device 1 is substantially the same as the overall configuration of the organic EL display device 1 according to the second embodiment.
  • each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R is the same as each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R according to the first embodiment.
  • the configuration of the cyan pixel 3C is different from the configuration of the cyan pixel 3C according to the second embodiment.
  • the light emitting layer of the cyan pixel 3C has both the cyan phosphorescent material containing layer 34PC and the blue fluorescent material containing layer 34FB. Therefore, in the cyan pixel 3C, similarly to the second embodiment, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers. Further, the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC are common layers common to all the pixels 3 and extend over all the pixels 3 as in the second embodiment. It is formed in a solid shape.
  • the configuration of the hole transport layer 32 is the same as that of the first embodiment. That is, the organic EL layer 22 has the hole transport layer 32 formed in a solid shape over the entire display region across the pixels 3 between the light emitting layer and the anode 21.
  • the thickness of the anode 21 is different from each other in the blue pixel 3B and the cyan pixel 3C.
  • the film thickness of the light-transmitting electrode 21b forming the cyan pixel 3C is larger than the film thickness of the light-transmitting electrode 21b forming the blue pixel 3B.
  • the difference between the thickness of the translucent electrode 21b forming the cyan pixel 3C and the thickness of the translucent electrode 21b forming the blue pixel 3B is preferably 5 to 10 nm.
  • the anodes 21 having different thicknesses are formed on the blue pixel 3B and the cyan pixel 3C, respectively. Specifically, the anode 21 having the first thickness is formed on the blue pixel 3B, and the anode 21 having the second thickness larger than the first thickness is formed on the cyan pixel 3C. Since the step of forming the cyan phosphorescent material-containing layer is the same as that of the second embodiment, the detailed description will not be repeated.
  • each pixel 3 is the same as that of the second embodiment, and thus the detailed description will not be repeated.
  • the light emitting mechanism of the cyan pixel 3C is the same as the light emitting mechanism of the blue pixel 3B.
  • the thickness of the anode 21 forming the cyan pixel 3C is larger than the thickness of the anode 21 forming the blue pixel 3B, the intensity of the cyan phosphorescence generated in the cyan pixel 3C is reduced in the blue pixel 3B. It is higher than the intensity of the resulting cyan phosphorescence.
  • FIG. 14 is a cross-sectional view illustrating another schematic configuration of a main part of the organic EL display device 1 according to the third embodiment.
  • the organic EL display device 1 may have a configuration in which the material of the anode 21 is different between the blue pixel 3B and the cyan pixel 3C. More specifically, in the organic EL display device 1 shown in FIG. 14, the anode 21 forming the blue pixel 3B has a reflective electrode 21a and a translucent electrode 21b, and the anode 21 forming the cyan pixel 3C is a reflective pixel. It has an electrode 21a, a translucent electrode 21b, and a translucent electrode 21c.
  • the cyan pixel 3C it is formed on the light transmitting electrodes 21c and 21b.
  • the anode 21 forming the blue pixel 3B has one layer of the light-transmitting electrode 21b
  • the anode 21 forming the cyan pixel 3C has two layers of the light-transmitting electrode 21b and the light-transmitting electrode. 21c.
  • the material of the translucent electrode 21c is different from the material of the translucent electrode 21b.
  • the material of the translucent electrode 21b is ITO
  • the material of the translucent electrode 21c is IZO.
  • the anode 21 forming the blue pixel 3B has a single-layer structure made of an ITO layer
  • the anode 21 forming the cyan pixel 3C has a laminated structure made of an ITO layer and an IZO layer.
  • the film thickness of the translucent electrode 21b is the same. Accordingly, the sum of the thickness of the light-transmitting electrode 21b constituting the cyan pixel 3C and the thickness of the light-transmitting electrode 21c is larger than the thickness of the light-transmitting electrode 21b constituting the blue pixel 3B. As described above, in the organic EL display device 1 shown in FIG. 14, both the film thickness and the material of the anode 21 are different between the blue pixel 3B and the cyan pixel 3C.
  • each pixel 3 in this modification is the same as that of the organic EL display device 1 shown in FIG. Also in this modification, similarly to the organic EL display device 1 shown in FIG. 13, blue light including weaker cyan phosphorescence and blue fluorescence is emitted from the blue pixel 3B, while the cyan pixel 3C Emits cyan light including stronger cyan phosphorescence and blue fluorescence. Therefore, according to the present modification, the organic EL display device 1 having each pixel 3 of RBGC can be realized. Further, similarly to the first embodiment, by appropriately changing the ratio of the blue pixel 3B and the cyan pixel 3C, it is possible to realize the organic EL display device 1 flexibly corresponding to required product characteristics.
  • the film thickness of the light-transmitting electrode 21b forming the anode 21 of the blue pixel 3B is determined by the film thickness of the light-transmitting electrode 21b forming the anode 21 of the cyan pixel 3C and the film thickness of the light-transmitting electrode 21c. May be equal to the sum of
  • the blue fluorescent light-emitting material in the blue fluorescent light-emitting material containing layer 34FB is changed from a triplet exciton to a singlet by a triplet-triplet annihilation (TTA) phenomenon.
  • TTA triplet-triplet annihilation
  • the thickness of the blue fluorescent light-emitting material-containing layer 34FB is determined by the energy transfer (Dexter transition) by the Dexter mechanism (electron exchange interaction). ) Is the same as the organic EL display device 1 according to the first embodiment except that it is within the range in which ()) occurs.
  • the blue delayed fluorescent material emits light by re-exciting from the T 1 level to the S 1 level in cooperation with the host material or alone by causing a TTA phenomenon by collisional fusion of triplet excitons. I do.
  • blue delayed fluorescent light emitting material examples include aromatic dimethylidin compounds such as 4,4'-bis (2,2'-diphenylvinyl) -biphenyl (DPVBi), distyrylamine derivatives such as distyryldiamine-based compounds, and pyrene.
  • aromatic dimethylidin compounds such as 4,4'-bis (2,2'-diphenylvinyl) -biphenyl (DPVBi)
  • distyrylamine derivatives such as distyryldiamine-based compounds
  • pyrene pyrene.
  • Derivatives fluoranthene derivatives, perylene and perylene derivatives, anthracene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, chrysene derivatives, phenanthrene derivatives, distyrylbenzene derivatives and the like.
  • T 1 level of the cyan phosphorescent material in cyan phosphorescent material containing layer 34PC is, T 1 level of the blue delayed fluorescence material Higher than that.
  • the layer thickness of the blue fluorescent light emitting material containing layer 34FB is preferably 2 nm or less, more preferably 1 nm or less.
  • FIG. 15 is a diagram illustrating a light emitting mechanism in the blue pixel 3B of the organic EL display device 1 according to the fourth embodiment.
  • the holes (h + ) injected from the anode 21 into the organic EL layer 22 and the electrons (e ⁇ ) injected from the cathode 23 into the organic EL layer 22 are:
  • the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are recombined with each other to generate excitons.
  • the probability of exciton in the blue fluorescent material-containing layer 34FB is generated as the singlet excited state (S 1 state) is 25%, it is generated as a triplet excited state (T 1 state) Probability is 75%. Also, the probability of excitons in cyan phosphorescent material containing layer 34PC is produced as a triplet excited state (T 1 state) is theoretically 100%.
  • triplet excitons generated in the cyan phosphorescent material-containing layer 34PC emit light in the cyan wavelength region (second wavelength region) when returning to the ground state (S 0 ).
  • the remaining part of the triplet excitons generated in the cyan phosphorescent material containing layer 34PC is a blue fluorescent material energy level of the lowest triplet excited state of the containing layer 34FB (T 1 level position), Dexter transition (TTET: Triplet-Triplet Energy Transfer).
  • the light emitted from the blue pixel 3B includes (i) cyan phosphorescence generated when the triplet exciton generated in the cyan phosphorescent material-containing layer 34PC returns to the ground state (S 0 ); (Ii) blue fluorescence generated when the singlet exciton generated in the blue fluorescent material-containing layer 34FB returns to the ground state (S 0 ); (iii) triple light generated in the cyan phosphorescent material-containing layer 34PC A part of the energy of the term exciton is transferred to the triplet exciton generated in the blue fluorescent material-containing layer 34FB by the Dexter mechanism, and the triplet exciton generated in the blue fluorescent material-containing layer 34FB by TTA. Blue fluorescence generated when the singlet exciton, which is generated by up-conversion from the exciton to the singlet exciton, returns to the ground state.
  • the light emitted from the blue pixel 3B is transferred from the blue fluorescent light emitting material containing layer 34FB by the energy transfer (Dexter transition) of the triplet exciton from the cyan phosphorescent material containing layer 34PC and the upconversion via TTA.
  • the internal quantum efficiency of the blue fluorescent light emitting material containing layer 34FB can theoretically be increased to 40%. For this reason, according to the present embodiment, the luminous efficiency of the blue pixel 3B can be further improved.
  • T 1 level of the host material may be smaller than the T 1 level of the blue fluorescent material.
  • S 1 level of the blue fluorescent material is preferably smaller than S 1 level of the host material.
  • Embodiment 5 In this embodiment, differences from Embodiments 1 and 4 will be described. Components having the same functions as the components described in the first or fourth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the organic EL display device 1 will be described as an example of the display device.
  • FIG. 16 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the fifth embodiment.
  • the blue pixel 3B of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, the blue The organic EL display according to Embodiment 1 or 4, except that a hole blocking layer 37 is provided between the fluorescent light emitting material containing layer 34FB and the cathode 23 and adjacent to the blue fluorescent light emitting material containing layer 34FB. It is the same as the device 1.
  • the organic EL layer 22 of the organic EL display device 1 includes, from the anode 21 side, a hole injection layer 31, a hole transport layer 32, a light emitting layer unit 33 including a plurality of light emitting material containing layers 34, and holes. It has a configuration in which a block layer 37, an electron transport layer 35, and an electron injection layer 36 are stacked in this order.
  • the hole blocking layer 37 is provided only in the blue pixel 3B among the plurality of pixels 3.
  • the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the green phosphorescent material-containing layer 34PG and the red phosphorescent material-containing layer 34PR. Therefore, it is not necessary to separately provide the hole blocking layer 37 for the green pixel 3G and the red pixel 3R.
  • the cyan pixel 3C does not include the blue fluorescent light emitting material containing layer 34FB, it is not necessary to separately provide the hole blocking layer 37 in the cyan pixel 3C.
  • the hole blocking layer 37 is provided on the cathode 23 side of the blue fluorescent light emitting material containing layer 34FB.
  • the hole blocking layer 37 is a layer adjacent to the hole blocking layer 37 among the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB (the blue fluorescent light-emitting material-containing layer 34FB in the example shown in FIG. 16). May be formed of a material having a HOMO level deeper than the materials (host material and light-emitting material) contained in, and the thickness thereof is not particularly limited.
  • an electron transporting material can be used as the material of the hole blocking layer 37.
  • the electric transporting material for example, the materials exemplified above can be used.
  • FIG. 17 is a plan view illustrating a hole blocking layer forming step in the manufacturing process of the organic EL display device 1 according to the fifth embodiment.
  • the organic EL element manufacturing process forms the hole blocking layer 37 provided on the blue pixel 3B on the side of the cathode 23 in the blue fluorescent light emitting material containing layer 34FB (lamination). This is the same as the manufacturing process of the organic EL display device 1 according to the first embodiment except that a hole blocking layer forming process is performed.
  • the hole blocking layer forming step shown in FIG. 17 includes the blue fluorescent light emitting material containing layer 34FB and the hole blocking layer 37. Are successively performed in the blue fluorescent light emitting material containing layer forming step shown in FIG.
  • the stripe-shaped islands are formed on the blue fluorescent light emitting material-containing layer 34FB by separate deposition using a deposition mask 200HB provided with a mask opening 201HB corresponding to the blue pixel 3B.
  • a hole-blocking layer 37 is formed.
  • FIG. 17 shows an example in which the evaporation mask 200HB is an evaporation mask for mask fixed evaporation.
  • the deposition mask 200HB may be a deposition mask for scan deposition having a mask opening corresponding to a part of the hole blocking layer 37 to be formed. Good.
  • the organic EL display device 1 shown in FIG. 16 can be manufactured by performing the electron transport layer forming step, the electron injection layer forming step, the cathode forming step, and the sealing step in the same manner as in the first embodiment.
  • the positive electrode is disposed adjacent to the blue fluorescent light emitting material containing layer 34 FB.
  • the display device according to the present disclosure is not limited to the organic EL display device 1 described above, and may be realized as various display devices.
  • the display device includes a plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light.
  • a display device comprising, for each pixel, an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode, wherein the first pixel includes the light-emitting layer
  • a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light; and a shorter wavelength than the cyan phosphorescent light provided on the cathode side in the first phosphorescent material-containing layer.
  • the first phosphorescent material-containing layer is common to the plurality of pixels.
  • the second pixel further includes the fluorescent light emitting material-containing layer as the light emitting layer, and the common layer includes the fluorescent light emitting material.
  • the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer may emit light.
  • the display device is the display device according to aspect 2, wherein the organic layer is provided between the light-emitting layer and the anode, the first pixel and the first pixel being individually provided for the second pixel and the second pixel, respectively. It may have a hole transport layer and a second hole transport layer, and at least one of the thickness and the material of the first hole transport layer and the second hole transport layer may be different from each other.
  • the thickness of the second hole transport layer may be larger than the thickness of the first hole transport layer.
  • the difference between the film thickness of the second hole transport layer and the film thickness of the first hole transport layer is 5 to 25 nm. It may be configured.
  • the display device in any one of the aspects 3 to 5, wherein the material of the second hole transport layer has a higher ionization potential energy than the material of the first hole transport layer. It may be configured.
  • the display device in any one of aspects 3 to 6, wherein the material of the first hole transport layer is N, N′-di (naphthalen-1-yl) -N, N '-Diphenyl-benzidine ( ⁇ -NPD), and the material of the second hole transport layer is 4,4', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenyl
  • the structure may be amine (MTDATA) or 1,3-bis (carbazol-9-yl) benzene (mCP).
  • a display device in any one of the first to seventh aspects, may be configured such that at least one of the thickness and the material of the anode is different between the first pixel and the second pixel. .
  • the thickness of the anode forming the second pixel may be larger than the thickness of the anode forming the first pixel.
  • the difference between the film thickness of the anode forming the second pixel and the film thickness of the anode forming the first pixel is 5 to 5.
  • the configuration may be 10 nm.
  • the display device in any one of aspects 8 to 10, wherein the material of the anode forming the first pixel is ITO, and the material of the anode forming the second pixel is May be ITO and IZO.
  • the display device according to aspect 12 of the present invention, according to any one of aspects 1 to 11, wherein the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state in the first pixel. And the fluorescence generated when the singlet exciton generated in the fluorescent light emitting material-containing layer returns to the ground state is emitted, and the second pixel contains the first phosphorescent light emitting material. Phosphorescence generated when the triplet exciton generated in the layer returns to the ground state may be emitted.
  • the display device is the display device according to aspect 12, wherein the fluorescent material includes a delayed fluorescent material that generates a singlet exciton from a triplet exciton by a triplet-triplet annihilation phenomenon;
  • the triplet excitation level of the first phosphorescent material is higher than the triplet excitation level of the delayed fluorescent material, and the thickness of the fluorescent material-containing layer is within a range where energy transfer by the Dexter mechanism occurs.
  • the fluorescent material includes a delayed fluorescent material that generates a singlet exciton from a triplet exciton by a triplet-triplet annihilation phenomenon
  • the triplet excitation level of the first phosphorescent material is higher than the triplet excitation level of the delayed fluorescent material, and the thickness of the fluorescent material-containing layer is within a range where energy transfer by the Dexter mechanism occurs.
  • the fluorescent material includes a delayed fluorescent material that generates a singlet exciton from a triplet exciton by a triplet-triplet annihilation
  • Fluorescence may further comprise configure occurring when singlet excitons return to their ground state.
  • the display device is the display device according to any one of the aspects 1 to 13, wherein the plurality of pixels emit light having a longer peak wavelength than light emitted from the second pixel.
  • the pixel further includes three pixels, wherein the third pixel includes, as the light-emitting layer, the common layer having the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and a peak having a longer wavelength than the cyan phosphorescence.
  • a second phosphorescent material-containing layer containing a second phosphorescent material that emits phosphorescence having a wavelength, wherein the second phosphorescent material-containing layer emits light in the third pixel.
  • the second phosphorescent material-containing layer is provided on the anode side in the first phosphorescent material-containing layer constituting the third pixel. Configuration.
  • the display device in the Aspect 14 or 15, wherein in the third pixel, the phosphorescence generated when the triplet exciton generated in the second phosphorescent material-containing layer returns to the ground state. May be emitted.
  • the display device in any one of aspects 14 to 16, wherein the first phosphorescent material has a HOMO level deeper than the second phosphorescent material. Good.
  • the triplet excitation level of the first phosphorescent material may be higher than the triplet excitation level of the second phosphorescent material.
  • the fluorescent material-containing layer includes a material having a HOMO level shallower than the first phosphorescent material-containing layer. And a material having a LUMO level shallower than the first phosphorescent material-containing layer.
  • the display according to an aspect 20 of the present invention is the display device according to any one of the aspects 16 to 19, wherein the first phosphorescent material-containing layer comprises a hole-transporting material, or a hole-transporting material and an electron-transporting material.
  • a bipolar transport material containing an organic material, and the fluorescent light emitting material-containing layer may include an electron transport material.
  • the display device according to Aspect 21 of the present invention is the display device according to Aspect 19 or 20, wherein the organic layer in the first pixel is provided between the fluorescent-emitting material-containing layer and the cathode, in the fluorescent-luminescent material-containing layer.
  • a configuration in which a hole blocking layer is provided adjacently may be employed.
  • a display device is the display device according to any one of the aspects 1 to 21, wherein one of the anode and the cathode has a reflective layer, and the other electrode has a transflective layer.
  • the distance between the reflective layer and the semi-transmissive reflective layer may be an optical path length at which the peak wavelength of the color light emitted from each pixel resonates.
  • the method for manufacturing a display device includes a plurality of pixels including: a first pixel that emits blue light; and a second pixel that emits light having a peak wavelength longer than the blue light.
  • a first pixel that emits blue light
  • a second pixel that emits light having a peak wavelength longer than the blue light.
  • the first pixel includes: A first phosphorescent material-containing layer that includes a first phosphorescent material that emits cyan phosphorescent light; and a first phosphorescent material-containing layer that is provided on the cathode side of the first phosphorescent material-containing layer.
  • said first phosphorescent material-containing layer comprises A common layer provided in common to the pixels, wherein the first pixel emits light from the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and the second pixel emits the first phosphorescent light from the first pixel.
  • a method for manufacturing a display device in which a material-containing layer emits light including an anode forming step of forming the anode, an organic layer forming step of forming the organic layer, and a cathode forming step of forming the cathode.
  • the organic layer forming step includes a common layer forming step of forming the common layer using a deposition mask having a mask opening common to the plurality of pixels, and a vapor deposition in which a mask opening corresponding to the first pixel is provided. Forming a fluorescent light emitting material-containing layer in the first pixel using a mask; and forming the first phosphorescent light emitting material-containing layer in the common layer forming step.
  • First phosphorescence The method comprising material-containing layer forming step.
  • the anode in the aspect 23 or 24, in the anode forming step, is formed in the first pixel, and the first pixel is formed in the second pixel.
  • a method may be used in which the anode is different from the anode forming the pixel in at least one of a material and a film thickness.
  • the method for manufacturing a display device according to Aspect 26 of the present invention is the method according to any one of Aspects 23 to 25, wherein the first phosphorescent material-containing layer forming step and the fluorescent light-emitting material-containing layer forming step are the first A method may be adopted in which the phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer are continuously stacked so as to be adjacently stacked.
  • the organic layer forming step is provided on the first pixel on the cathode side in the fluorescent material-containing layer.
  • a method may be adopted in which the material-containing layer forming step and the hole blocking layer forming step are performed continuously so that the fluorescent light emitting material containing layer and the hole blocking layer are stacked adjacent to each other.
  • a light emitting method of a display device includes a plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light.
  • a first pixel that emits blue light
  • a second pixel that emits light having a peak wavelength longer than the blue light.
  • the first pixel includes: A first phosphorescent material-containing layer that includes a first phosphorescent material that emits cyan phosphorescent light; and a first phosphorescent material-containing layer that is provided on the cathode side of the first phosphorescent material-containing layer.
  • said first phosphorescent material-containing layer comprises A common layer provided in common to the pixels, wherein the first pixel emits light from the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and the second pixel emits the first phosphorescent light from the first pixel.
  • a light emitting method for a display device in which a material-containing layer emits light wherein, in the first pixel, a triplet exciton is generated in the first phosphorescent material-containing layer, and a singlet exciton is generated in the fluorescent light-emitting material-containing layer. And the light generated when the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state and the singlet exciton generated in the fluorescent light-emitting material-containing layer return to the ground state
  • the second pixel generates a triplet exciton in the first phosphorescent material-containing layer, and the triplet generated in the first phosphorescent material-containing layer in the second pixel. Emits light when excitons return to the ground state It is a method.
  • the singlet exciton is moved from the triplet exciton generated in the fluorescent light emitting material-containing layer to the triplet exciton generated in the fluorescent light emitting material-containing layer by a triplet-triplet annihilation phenomenon.
  • a method may be used in which the singlet exciton generated by up-conversion to a state of returning to the ground state further emits fluorescence.
  • Organic EL display device (display device) 3B blue pixel (first pixel) 3C cyan pixel (second pixel) 3G green pixel (third pixel) 3R red pixel (third pixel) 20B Blue organic EL element 20C Cyan organic EL element 20G Green organic EL element 20R Red organic EL element 21 Anode 21a Reflection electrode (reflection layer) 21b Translucent electrode 21c Translucent electrode 22 Organic EL layer (organic layer) Reference Signs 23 cathode 24 edge cover 32 hole transport layer 32B hole transport layer (first hole transport layer) 32C hole transport layer (second hole transport layer) 33 light emitting layer unit 34FB Blue fluorescent light emitting material containing layer (fluorescent light emitting material containing layer) 34PC Cyan phosphorescent material-containing layer (first phosphorescent material-containing layer) 34PG Green phosphorescent material-containing layer (second phosphorescent material-containing layer) 34PR Red phosphorescent material-containing layer (second phosphorescent material-containing layer) 37 Hole

Abstract

A display device (1) including a blue pixel (3B) and a cyan pixel (3C) that emits light which has a peak wavelength that is longer than that of blue light, wherein the blue pixel (3B) has a blue phosphorescent light emitting material-containing layer (34PB) and a blue fluorescent light emitting material-containing layer (34FB) as common layers common to the plurality of pixels (3), and the cyan pixel (3C) has the blue phosphorescent light emitting material-containing layer (34PB) as a light emitting layer.

Description

表示装置およびその製造方法並びにその発光方法Display device, method of manufacturing the same, and method of emitting the same
 本発明は、表示装置およびその製造方法並びにその発光方法に関する。 The present invention relates to a display device, a manufacturing method thereof, and a light emitting method thereof.
 従来、有機EL表示装置では色が重視されている。このため、色域が広い蛍光発光材料を発光材料に用いた有機EL表示装置が広く使用されている。しかしながら、蛍光発光材料は、25%の一重項励起子しか発光に利用できない。 Conventionally, color has been emphasized in organic EL display devices. Therefore, an organic EL display device using a fluorescent light emitting material having a wide color gamut as a light emitting material is widely used. However, fluorescent materials can only utilize 25% of singlet excitons for emission.
 一方、燐光発光材料の内部量子効率は、理論上100%である。このため、近年、例えば白色発光型のデバイスとして、燐光発光材料を発光材料に用いた表示装置の開発も行われている(例えば、特許文献1参照)。 On the other hand, the internal quantum efficiency of the phosphorescent material is theoretically 100%. Therefore, in recent years, for example, as a white light emitting device, a display device using a phosphorescent light emitting material as a light emitting material has been developed (for example, see Patent Document 1).
日本国公開特許公報「特開2014-241405号公報(2014年12月25日公開)」Japanese Unexamined Patent Publication "JP-A-2014-241405 (published on December 25, 2014)"
 しかしながら、青色燐光発光材料は、青色色度が浅く、青色の光を発光する表示装置の発光材料に使用するには、色純度に課題がある。現在、低消費電力と広い色域とを両立できる青色の発光材料は知られていない。 However, the blue phosphorescent light-emitting material has a problem in color purity when it is used as a light-emitting material of a display device that emits blue light with a low blue chromaticity. At present, there is no known blue light-emitting material capable of achieving both low power consumption and a wide color gamut.
 本発明は、問題点に鑑みなされたものであり、その目的は、青色の光を発光する画素において、発光効率と色度とのバランスが良く、従来よりも少ない消費電力で、青色の光およびシアン色の光を含む複数の色の光を発光することができる表示装置およびその製造方法並びにその発光方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a pixel that emits blue light, which has a good balance between luminous efficiency and chromaticity, consumes less power than before, and emits blue light and An object of the present invention is to provide a display device capable of emitting light of a plurality of colors including cyan light, a manufacturing method thereof, and a light emitting method thereof.
 本発明の一態様に係る表示装置は、前記の課題を解決するために、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光することを特徴としている。 In order to solve the above problem, a display device according to one embodiment of the present invention includes a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light. Pixel, comprising a plurality of pixels including, each pixel, an anode, a cathode, formed between the anode and the cathode, a display device provided with an organic layer including a light-emitting layer, The first pixel is provided as a light-emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a cathode side of the first phosphorescent material-containing layer, A fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescent light having a peak wavelength shorter than the cyan phosphorescence, and the second pixel includes the first pixel as the light-emitting layer. A phosphorescent material-containing layer, wherein the first phosphorescent material is contained; The layer is a common layer provided in common for the plurality of pixels. In the first pixel, the first phosphorescent material-containing layer and the fluorescent material-containing layer emit light, and in the second pixel, The first phosphorescent material-containing layer emits light.
 本発明の一態様に係る表示装置の製造方法は、前記の課題を解決するために、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の製造方法であって、前記陽極を形成する陽極形成工程と、前記有機層を形成する有機層形成工程と、前記陰極を形成する陰極形成工程と、を含み、前記有機層形成工程は、前記複数の画素に共通するマスク開口を有する蒸着マスクを用いて、前記共通層を形成する共通層形成工程と、前記第1画素に対応するマスク開口が設けられた蒸着マスクを用いて、前記第1画素に、前記蛍光発光材料含有層を形成する蛍光発光材料含有層形成工程と、を含み、前記共通層形成工程は、前記第1燐光発光材料含有層を形成する第1燐光発光材料含有層形成工程を含むことを特徴としている。 In order to solve the above problem, a method for manufacturing a display device according to one embodiment of the present invention includes: a first pixel that emits blue light; and a light that has a peak wavelength longer than the blue light. A plurality of pixels including a second pixel, and each pixel is provided with an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode. The first pixel may include, as the light emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a first phosphorescent material-containing layer including the first phosphorescent material-containing layer. A fluorescent light-emitting material-containing layer that includes a fluorescent light-emitting material that emits blue fluorescent light having a shorter peak wavelength than the cyan phosphorescence, and wherein the second pixel includes, as the light-emitting layer, A first phosphorescent material-containing layer; The light material-containing layer is a common layer provided in common for the plurality of pixels, and in the first pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer each emit light, In two pixels, a method for manufacturing a display device in which the first phosphorescent material-containing layer emits light, wherein an anode forming step of forming the anode, an organic layer forming step of forming the organic layer, and forming the cathode The organic layer forming step, using a deposition mask having a mask opening common to the plurality of pixels, a common layer forming step of forming the common layer; Using a deposition mask provided with a corresponding mask opening, the first pixel includes a fluorescent light emitting material-containing layer forming step of forming the fluorescent light emitting material-containing layer, and the common layer forming step includes: 1 phosphorescent material It is characterized by comprising a first phosphorescent material containing layer forming step of forming a chromatic layer.
 本発明の一態様に係る表示装置の発光方法は、前記の課題を解決するために、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の発光方法であって、前記第1画素では、前記第1燐光発光材料含有層で三重項励起子を生成すると共に、前記蛍光発光材料含有層で一重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光と、前記蛍光発光材料含有層で生成された一重項励起子が基底状態に戻る際に生じる光と、を含む光を発光し、前記第2画素では、前記第1燐光発光材料含有層で三重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光を発光することを特徴としている。 In order to solve the above problem, a light emitting method of a display device according to one embodiment of the present invention emits a first pixel that emits blue light and a light that has a peak wavelength longer than the blue light. A plurality of pixels including a second pixel, and each pixel is provided with an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode. The first pixel may include, as the light emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light, and a first phosphorescent material-containing layer including the first phosphorescent material-containing layer. A fluorescent light-emitting material-containing layer that includes a fluorescent light-emitting material that emits blue fluorescent light having a shorter peak wavelength than the cyan phosphorescence, and wherein the second pixel includes, as the light-emitting layer, A first phosphorescent material-containing layer; The light material-containing layer is a common layer provided in common for the plurality of pixels, and in the first pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer each emit light, In the two pixels, the first phosphorescent material-containing layer emits light in a display device, wherein the first phosphorescent material-containing layer generates triplet excitons and emits the fluorescent light. A singlet exciton is generated in the light-emitting material-containing layer, light generated when the triplet exciton generated in the first phosphorescent light-emitting material-containing layer returns to the ground state, and light generated in the fluorescent light-emitting material-containing layer. And light generated when the singlet exciton returns to the ground state. The second pixel generates a triplet exciton in the first phosphorescent material-containing layer, and generates the first phosphorescent light. Ground state of triplet exciton generated in material-containing layer It is characterized by emitting light that occurs when the back.
 本発明の一態様によれば、青色の光を発光する画素において、発光効率と色度とのバランスが良く、従来よりも少ない消費電力で、青色の光およびシアン色の光を含む複数の色の光を発光することができる表示装置およびその製造方法並びにその発光方法を提供することができる。 According to one embodiment of the present invention, in a pixel that emits blue light, a plurality of colors including blue light and cyan light have a good balance between luminous efficiency and chromaticity, consume less power than a conventional device, and have a low power consumption. , A method of manufacturing the same, and a method of emitting the same.
実施形態1に係る有機EL表示装置の発光層ユニットの概略構成を、発光原理と合わせて模式的に示す図である。FIG. 2 is a diagram schematically illustrating a schematic configuration of a light emitting layer unit of the organic EL display device according to the first embodiment together with a light emitting principle. 実施形態1に係る有機EL表示装置の青色画素における発光機構を説明する図である。FIG. 2 is a diagram illustrating a light emitting mechanism in a blue pixel of the organic EL display device according to the first embodiment. 実施形態1に係る有機EL表示装置のシアン色画素における発光機構を説明する図である。FIG. 3 is a diagram illustrating a light emitting mechanism in a cyan pixel of the organic EL display device according to the first embodiment. (a)は、実施形態1に係る有機EL表示装置の緑色画素における発光層ユニットおよび発光層ユニットに隣接する各層のエネルギーバンドを示す図であり、(b)は、実施形態1に係る有機EL表示装置の赤色画素Rにおける発光層ユニットおよび発光層ユニットに隣接する各層のエネルギーバンドを示す図である。2A is a diagram illustrating an energy band of a light emitting layer unit and each layer adjacent to the light emitting layer unit in a green pixel of the organic EL display device according to the first embodiment, and FIG. FIG. 4 is a diagram illustrating energy bands of a light emitting layer unit and each layer adjacent to the light emitting layer unit in a red pixel R of the display device. 実施形態1に係る青色蛍光、シアン色燐光、緑色燐光、および赤色燐光の各スペクトルを示す図である。FIG. 3 is a diagram illustrating spectra of blue fluorescence, cyan phosphorescence, green phosphorescence, and red phosphorescence according to the first embodiment. 実施形態1に係る有機EL表示装置の要部の概略構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device according to the first embodiment. (a)~(d)は、実施形態1に係る有機EL表示装置の発光層ユニットを構成する各発光材料含有層の積層方法を、積層順に示す平面図である。FIGS. 3A to 3D are plan views illustrating a method of laminating each light-emitting material-containing layer constituting the light-emitting layer unit of the organic EL display device according to the first embodiment in the order of lamination. 実施形態2に係る有機EL表示装置の要部の概略構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a second embodiment. (a)および(b)は、実施形態2に係る有機EL表示装置の正孔輸送層および正孔輸送層の形成工程を、これらの積層順に示す平面図である。FIGS. 7A and 7B are plan views showing the steps of forming a hole transport layer and a hole transport layer of the organic EL display device according to Embodiment 2 in the order in which they are stacked. (a)~(d)は、実施形態2に係る有機EL表示装置の発光層ユニットを構成する各発光材料含有層の積層方法を、積層順に示す平面図である。5A to 5D are plan views showing a method of laminating the respective light emitting material-containing layers constituting the light emitting layer unit of the organic EL display device according to Embodiment 2 in the order of stacking. 実施形態2に係る有機EL表示装置の発光層ユニットの概略構成を、発光原理と合わせて模式的に示す図である。FIG. 4 is a diagram schematically illustrating a schematic configuration of a light emitting layer unit of an organic EL display device according to Embodiment 2 along with a light emission principle. 実施形態2に係る有機EL表示装置のシアン色画素における発光機構を説明する図である。FIG. 9 is a diagram illustrating a light emitting mechanism in a cyan pixel of the organic EL display device according to the second embodiment. 実施形態3に係る有機EL表示装置の要部の概略構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a third embodiment. 実施形態3に係る有機EL表示装置の要部の他の概略構成を示す断面図である。13 is a cross-sectional view illustrating another schematic configuration of a main part of the organic EL display device according to Embodiment 3. FIG. 実施形態4に係る有機EL表示装置の青色画素における発光機構を説明する図である。FIG. 14 is a diagram illustrating a light emitting mechanism in a blue pixel of the organic EL display device according to the fourth embodiment. 実施形態5に係る有機EL表示装置の要部の概略構成を示す断面図である。FIG. 15 is a cross-sectional view illustrating a schematic configuration of a main part of an organic EL display device according to a fifth embodiment. 実施形態5に係る有機EL表示装置の製造工程における正孔ブロック層形成工程を示す平面図である。FIG. 15 is a plan view showing a hole block layer forming step in the manufacturing process of the organic EL display device according to the fifth embodiment.
 〔実施形態1〕
 <有機EL表示装置の概略構成>
 図6は、実施形態1に係る有機EL表示装置1の要部の概略構成を示す断面図である。以下では、表示装置の一例として、有機EL表示装置1について説明する。
[Embodiment 1]
<Schematic Configuration of Organic EL Display>
FIG. 6 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the first embodiment. Hereinafter, the organic EL display device 1 will be described as an example of the display device.
 図6に示すように、有機EL表示装置1は、異なる色の光(言い換えれば、フォトルミネセンス発光スペクトルのピーク波長が異なる光)を出射する複数の画素3を有している。複数の画素3は、青色の光を出射する青色画素3B(第1画素)と、青色の光のピーク波長よりも長波長のピーク波長を有する光を出射するシアン色画素3C(第2画素)と、シアン色の光のピーク波長よりも長波長のピーク波長を有する光を出射する画素(第3画素)と、を含んでいる。 (6) As shown in FIG. 6, the organic EL display device 1 has a plurality of pixels 3 that emit light of different colors (in other words, light having different peak wavelengths in the photoluminescence emission spectrum). The plurality of pixels 3 include a blue pixel 3B (first pixel) that emits blue light and a cyan pixel 3C (second pixel) that emits light having a peak wavelength longer than the peak wavelength of blue light. And a pixel (third pixel) that emits light having a peak wavelength longer than the peak wavelength of cyan light.
 青色画素3Bには、発光層として、シアン色燐光発光材料含有層34PC(第1燐光発光材料含有層)と、青色蛍光発光材料含有層34FB(蛍光発光材料含有層)と、が設けられている。シアン色燐光発光材料含有層34PCは、シアン色の燐光を発光するシアン色燐光発光材料(第1燐光発光材料)を含んでいる。青色蛍光発光材料含有層34FBは、シアン色の光よりも短波長のピーク波長を有する青色の蛍光を発光する青色蛍光発光材料(蛍光発光材料)を含んでいる。 In the blue pixel 3B, a cyan phosphorescent material-containing layer 34PC (first phosphorescent material-containing layer) and a blue fluorescent light-emitting material-containing layer 34FB (fluorescent light-emitting material-containing layer) are provided as light-emitting layers. . The cyan phosphorescent material containing layer 34PC contains a cyan phosphorescent material (first phosphorescent material) that emits cyan phosphorescence. The blue fluorescent light emitting material-containing layer 34FB includes a blue fluorescent light emitting material (fluorescent light emitting material) that emits blue fluorescent light having a peak wavelength shorter than that of cyan light.
 シアン色画素3Cには、発光層として、シアン色燐光発光材料含有層34PCが設けられている。 The cyan pixel 3C is provided with a cyan phosphorescent material-containing layer 34PC as a light-emitting layer.
 第3画素には、発光層として、シアン色の光よりも長波長のピーク波長を有する燐光を発光する第2燐光発光材料を含む第2燐光発光材料含有層が設けられている。なお、これら発光層については、後で詳述する。 3A third phosphorescent material-containing layer including a second phosphorescent material that emits phosphorescence having a peak wavelength longer than that of cyan light is provided as a light emitting layer in the third pixel. In addition, these light emitting layers will be described later in detail.
 本実施形態に係る有機EL表示装置1は、第3画素として、緑色の光を出射する緑色画素3Gと、赤色の光を出射する赤色画素3Rと、を有している。これにより、有機EL表示装置1は、フルカラー画像を表示する。 有機 The organic EL display device 1 according to the present embodiment has, as the third pixels, a green pixel 3G that emits green light and a red pixel 3R that emits red light. Thereby, the organic EL display device 1 displays a full-color image.
 本実施形態では、青色画素3Bと、緑色画素3Gと、赤色画素3Rと、の3色の画素3で、1つの絵素2aが形成されている。さらに、シアン色画素3Cと、緑色画素3Gと、赤色画素3Rと、の3色の画素3で、1つの絵素2bが形成されている。後述する図7の(a)に示すように、表示領域1aには、絵素2aおよび絵素2bを含む複数の絵素2が、マトリクス状に設けられている。 In the present embodiment, one pixel 2a is formed by the pixels 3 of three colors of the blue pixel 3B, the green pixel 3G, and the red pixel 3R. Further, one picture element 2b is formed by the three color pixels 3 of the cyan pixel 3C, the green pixel 3G, and the red pixel 3R. As shown in FIG. 7A described later, a plurality of picture elements 2 including a picture element 2a and a picture element 2b are provided in a matrix in the display area 1a.
 本実施形態では、有機EL表示装置1に含まれる青色画素3Bとシアン色画素3Cとの比率は、1対1である。これは一例に過ぎず、青色画素3Bとシアン色画素3Cとの比率は、有機EL表示装置1に求められる商品特性に応じた任意の比率とすることができる。 In the present embodiment, the ratio between the blue pixel 3B and the cyan pixel 3C included in the organic EL display device 1 is 1: 1. This is merely an example, and the ratio between the blue pixel 3B and the cyan pixel 3C can be an arbitrary ratio according to the product characteristics required for the organic EL display device 1.
 青色画素3Bには、発光色が青(B)色の有機EL素子20である青色有機EL素子20Bが配置されている。シアン色画素3Cには、発光色がシアン(C)色の有機EL素子20であるシアン色有機EL素子20Cが配置されている。緑色画素3Gには、発光色が緑(G)色の有機EL素子20である緑色有機EL素子20Gが配置されている。赤色画素3Rには、発光色が赤(R)色の有機EL素子20である赤色有機EL素子20Rが配置されている。 青色 A blue organic EL element 20B, which is an organic EL element 20 that emits blue (B) light, is disposed in the blue pixel 3B. In the cyan pixel 3C, a cyan organic EL element 20C, which is an organic EL element 20 that emits cyan (C) light, is arranged. In the green pixel 3G, a green organic EL element 20G, which is an organic EL element 20 that emits green (G) light, is disposed. In the red pixel 3R, a red organic EL element 20R, which is an organic EL element 20 that emits red (R) light, is arranged.
 有機EL表示装置1は、例えばTFT(Thin Film Transistor:薄膜トランジスタ)基板10上に、上述した複数の各色の有機EL素子20が設けられた構成を有している。これら複数の有機EL素子20は、封止膜40で覆われている。なお、封止膜40上には、例えば、図示しない接着剤層を介して、図示しないカバー体が設けられていてもよい。 The organic EL display device 1 has a configuration in which, for example, a plurality of the above-described organic EL elements 20 of a plurality of colors are provided on a TFT (Thin Film Transistor) substrate 10. The plurality of organic EL elements 20 are covered with a sealing film 40. Note that a cover (not shown) may be provided on the sealing film 40 via an adhesive layer (not shown), for example.
 TFT基板10は、TFT12(駆動素子)および配線13を含むTFT回路が形成された回路基板である。TFT基板10は、絶縁性を有する支持体11と、支持体11上に設けられたTFT回路と、TFT回路を覆う平坦化膜14と、を備えている。 (4) The TFT substrate 10 is a circuit substrate on which a TFT circuit including the TFT 12 (driving element) and the wiring 13 is formed. The TFT substrate 10 includes a support 11 having an insulating property, a TFT circuit provided on the support 11, and a flattening film 14 covering the TFT circuit.
 支持体11は、例えば、図示しない下面フィルムと樹脂層とバリア層とがこの順に設けられた可撓性を有する積層フィルムであってもよく、ガラス基板、プラスチック基板、あるいはプラスチックフィルムであってもよい。 The support 11 may be, for example, a flexible laminated film in which a lower film (not shown), a resin layer, and a barrier layer are provided in this order, or may be a glass substrate, a plastic substrate, or a plastic film. Good.
 TFT12には、公知のTFTを用いることができる。配線13は、TFT12に接続された、複数のゲート配線および複数のソース配線を含んでいる。ゲート配線とソース配線とは、互いに直交するように配置されている。ゲート配線とソース配線とによって囲まれた領域が画素3である。 公 知 A known TFT can be used as the TFT 12. The wiring 13 includes a plurality of gate wirings and a plurality of source wirings connected to the TFT 12. The gate wiring and the source wiring are arranged to be orthogonal to each other. A region surrounded by the gate wiring and the source wiring is the pixel 3.
 平坦化膜14は、アクリル樹脂またはポリイミド樹脂等の感光性樹脂からなる有機絶縁膜である。平坦化膜14は、TFT回路上の凹凸を平坦化する。 The flattening film 14 is an organic insulating film made of a photosensitive resin such as an acrylic resin or a polyimide resin. The flattening film 14 flattens irregularities on the TFT circuit.
 図6に示すように、有機EL素子20は、それぞれ、陽極21と陰極23とで有機EL層22が挟持された構成を有している。 (6) As shown in FIG. 6, the organic EL element 20 has a configuration in which an organic EL layer 22 is sandwiched between an anode 21 and a cathode 23.
 なお、以下では、陽極21を下層電極とし、陰極23を上層電極とし、陽極21、有機EL層22、陰極23が、下層側からこの順に積層されている場合を例に挙げて説明する。しかしながら、本実施形態は、これに限定されるものではなく、陰極23を下層電極とし、陽極21を上層電極とし、陰極23、有機EL層22、陽極21が、下層側からこの順に積層された構成を有していてもよい。この場合、有機EL層22を構成する各機能層の積層順あるいはキャリア輸送性(正孔輸送性および電子輸送性)が反転する。また、陽極21および陰極23を構成する材料も反転する。 In the following, an example in which the anode 21 is a lower electrode, the cathode 23 is an upper electrode, and the anode 21, the organic EL layer 22, and the cathode 23 are stacked in this order from the lower layer will be described. However, the present embodiment is not limited to this, and the cathode 23 is used as a lower electrode, the anode 21 is used as an upper electrode, and the cathode 23, the organic EL layer 22, and the anode 21 are stacked in this order from the lower layer side. It may have a configuration. In this case, the stacking order or carrier transportability (hole transportability and electron transportability) of each functional layer constituting the organic EL layer 22 is reversed. Further, the materials forming the anode 21 and the cathode 23 are also inverted.
 本実施形態では、陽極21は、画素3毎に島状にパターン形成された電極(パターン陽極)である。また、陰極23は、全画素3に共通に設けられた、ベタ状の電極(共通陰極)である。 In the present embodiment, the anode 21 is an electrode (patterned anode) patterned in an island shape for each pixel 3. The cathode 23 is a solid electrode (common cathode) provided commonly to all the pixels 3.
 陽極21の端部は、エッジカバー24で覆われている。陽極21は、それぞれ、平坦化膜14に設けられたコンタクトホール14aを介してTFT12と接続されている。エッジカバー24は絶縁層であり、例えば感光性樹脂で構成されている。エッジカバー24は、陽極21の端部で、電極集中や有機EL層22が薄くなって陰極23と短絡することを防止する。また、エッジカバー24は、隣り合う画素3に電流が漏れないように、画素分離膜としても機能している。 端 The end of the anode 21 is covered with an edge cover 24. Each of the anodes 21 is connected to the TFT 12 via a contact hole 14a provided in the flattening film 14. The edge cover 24 is an insulating layer and is made of, for example, a photosensitive resin. The edge cover 24 prevents the concentration of the electrode and the thinning of the organic EL layer 22 at the end of the anode 21 to prevent a short circuit with the cathode 23. The edge cover 24 also functions as a pixel separation film so that current does not leak to the adjacent pixels 3.
 エッジカバー24には、画素3毎に開口部24aが設けられている。この開口部24aによる陽極21および有機EL層22の露出部が、各画素3の発光領域であり、それ以外の領域は非発光領域である。 The edge cover 24 is provided with an opening 24 a for each pixel 3. The exposed portion of the anode 21 and the organic EL layer 22 by the opening 24a is a light emitting region of each pixel 3, and the other region is a non-light emitting region.
 エッジカバー24には、感光性樹脂を使用することができる。陽極21には、例えば、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)等の透明導電膜、あるいは、Au(金)、Pt(白金)、Ni(ニッケル)等の金属が使用される。陰極23には、発光層に電子を注入する目的で、Li(リチウム)、Ce(セリウム)、Ba(バリウム)、Al(アルミニウム)等の仕事関数の小さい金属、またはこれらの金属を含有するマグネシウム合金(MgAg等)、アルミニウム合金(AlLi、AlCa、AlMg等)等の合金が使用される。 感光 A photosensitive resin can be used for the edge cover 24. For the anode 21, for example, a transparent conductive film such as ITO (indium tin oxide) or IZO (indium zinc oxide), or a metal such as Au (gold), Pt (platinum), or Ni (nickel) is used. You. For the purpose of injecting electrons into the light emitting layer, the cathode 23 has a low work function metal such as Li (lithium), Ce (cerium), Ba (barium), and Al (aluminum), or a magnesium containing these metals. Alloys such as alloys (eg, MgAg) and aluminum alloys (eg, AlLi, AlCa, AlMg) are used.
 発光層で発生させた光は、陽極21および陰極23のうちいずれか一方の側から取り出される。光を取り出す側の電極(他方の電極)には、透明もしくは半透明の透光性電極を使用する。光を取り出さない側の電極(一方の電極)には、反射電極を使用する。反射電極は、反射電極材料で形成されていてもよく、反射層を有する電極であってもよい。また、陽極21および陰極23は、それぞれ、単層で形成されていてもよく、複数の電極材料からなる積層構造を有していてもよい。 (4) Light generated in the light emitting layer is extracted from one of the anode 21 and the cathode 23. As the electrode on the side from which light is extracted (the other electrode), a transparent or translucent translucent electrode is used. A reflective electrode is used for the electrode (one electrode) on the side from which light is not extracted. The reflective electrode may be formed of a reflective electrode material, or may be an electrode having a reflective layer. Further, each of the anode 21 and the cathode 23 may be formed as a single layer, or may have a laminated structure including a plurality of electrode materials.
 したがって、有機EL素子20がトップエミッション型の有機EL素子である場合、図6に示すように、陽極21を、反射電極21a(反射層)と、透光性電極21bと、の積層構造としてもよい。 Therefore, when the organic EL element 20 is a top emission type organic EL element, as shown in FIG. 6, the anode 21 may have a laminated structure of a reflective electrode 21a (reflective layer) and a translucent electrode 21b. Good.
 反射電極材料としては、例えば、タンタル(Ta)または炭素(C)等の黒色電極材料、Al、Ag、金(Au)、Al-Li合金、Al-ネオジウム(Nd)合金、またはAl-シリコン(Si)合金等の反射性金属電極材料等が挙げられる。また、透光性電極には、例えば、上述した透明導電膜を用いてもよいし、上述した金属の薄膜からなる半透過反射層を有する半透明電極を用いてもよい。 Examples of the reflective electrode material include a black electrode material such as tantalum (Ta) or carbon (C), Al, Ag, gold (Au), an Al-Li alloy, an Al-neodymium (Nd) alloy, or an Al-silicon ( Reflective metal electrode materials such as Si) alloys; Further, as the translucent electrode, for example, the above-described transparent conductive film may be used, or a translucent electrode having a semi-transmissive reflective layer made of the above-described metal thin film may be used.
 反射電極21aは、各画素3におけるTFT12のドレイン電極と接続されるように、画素3毎に同じ膜厚で独立して形成されている。一方、透光性電極21bは、反射電極21a(反射層)と、半透過反射層(陰極23)との間の距離が、各色の波長領域の光のピーク波長の強度を増強させる距離となるように、各画素3から出射される各色の波長領域の光のピーク波長に応じた厚みに形成されている。言い換えれば、反射層と半透過反射層との間の距離は、各画素3から出射される色の光のピーク波長が共振する光路長となっている。これにより、各画素3から出射される光の色純度が高められ、発光の色度や発光効率が向上する。 The reflective electrode 21a is independently formed with the same film thickness for each pixel 3 so as to be connected to the drain electrode of the TFT 12 in each pixel 3. On the other hand, in the translucent electrode 21b, the distance between the reflective electrode 21a (reflective layer) and the semi-transmissive reflective layer (cathode 23) is a distance that increases the intensity of the peak wavelength of light in the wavelength region of each color. As described above, the thickness is formed according to the peak wavelength of light in the wavelength region of each color emitted from each pixel 3. In other words, the distance between the reflective layer and the transflective layer is the optical path length at which the peak wavelength of the color light emitted from each pixel 3 resonates. Thereby, the color purity of light emitted from each pixel 3 is increased, and the chromaticity and luminous efficiency of light emission are improved.
 有機EL層22は、少なくとも発光層を含む、有機層からなる機能層である。本実施形態では、陽極21と陰極23との間に設けられた層を総称して有機EL層22と称する。 The organic EL layer 22 is a functional layer including an organic layer, including at least a light emitting layer. In the present embodiment, the layers provided between the anode 21 and the cathode 23 are collectively referred to as an organic EL layer 22.
 有機EL層22は、陽極21側から、正孔注入層31(HIL)、正孔輸送層32(HTL)、複数の発光材料含有層34からなる発光層ユニット33、電子輸送層35(ETL)、電子注入層36(EIL)が、この順に積層された構成を有している。 The organic EL layer 22 includes, from the anode 21 side, a light emitting layer unit 33 including a hole injection layer 31 (HIL), a hole transporting layer 32 (HTL), a plurality of light emitting material containing layers 34, and an electron transporting layer 35 (ETL). , And an electron injection layer 36 (EIL) are stacked in this order.
 なお、図6では、下層電極が陽極21であり、上層電極が陰極23である場合を例に挙げて図示している。しかしながら、本実施形態はこれに限定されるものではなく、下層電極が陰極23であり、上層電極が陽極21であってもよい。この場合、有機EL層22を構成する各機能層の積層順あるいはキャリア輸送性(正孔輸送性および電子輸送性)が反転する。同様に、陽極21および陰極23を構成する材料も反転する。 In FIG. 6, the case where the lower electrode is the anode 21 and the upper electrode is the cathode 23 is shown as an example. However, the present embodiment is not limited to this, and the lower electrode may be the cathode 23 and the upper electrode may be the anode 21. In this case, the stacking order or carrier transportability (hole transportability and electron transportability) of each functional layer constituting the organic EL layer 22 is reversed. Similarly, the materials forming the anode 21 and the cathode 23 are also inverted.
 正孔注入層31、正孔輸送層32、電子輸送層35、電子注入層36は、例えば、全画素3に共通する共通層として、エッジカバー24の上面を覆うように、全画素3に跨がって、表示領域全体にベタ状に形成されている。但し、本実施形態は、これに限定されるものではない。これら正孔注入層31、正孔輸送層32、電子輸送層35、電子注入層36は、画素3毎に、島状に設けられていてもよい。 The hole injection layer 31, the hole transport layer 32, the electron transport layer 35, and the electron injection layer 36 are, for example, common layers common to all the pixels 3, and straddle all the pixels 3 so as to cover the upper surface of the edge cover 24. Accordingly, the entire display area is formed in a solid shape. However, the present embodiment is not limited to this. The hole injection layer 31, the hole transport layer 32, the electron transport layer 35, and the electron injection layer 36 may be provided in an island shape for each pixel 3.
 シアン色燐光発光材料含有層34PCは、全画素3に共通する共通層として、全画素3に跨がって、表示領域全体にベタ状に形成されている。青色蛍光発光材料含有層34FBは、青色画素3B、緑色画素3G、および赤色画素3Rに対応するシアン色燐光発光材料含有層34PC上に、シアン色燐光発光材料含有層34PCに隣接して積層されている。青色蛍光発光材料含有層34FBは、シアン色画素3Cには設けられない。 The cyan phosphorescent material-containing layer 34PC is formed as a common layer common to all the pixels 3 so as to be solid over the entire display area over all the pixels 3. The blue fluorescent light emitting material containing layer 34FB is laminated on the cyan phosphorescent light emitting material containing layer 34PC corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R so as to be adjacent to the cyan phosphorescent light emitting material containing layer 34PC. I have. The blue fluorescent light emitting material containing layer 34FB is not provided in the cyan pixel 3C.
 青色画素3Bの発光層ユニット33は、シアン色燐光発光材料含有層34PC(EML‐PC)と、青色蛍光発光材料含有層34FB(EML‐FB)と、からなる2層の発光材料含有層34で形成されている。青色蛍光発光材料含有層34FBは、シアン色燐光発光材料含有層34PCにおける陰極23側に設けられている。青色画素3Bでは、これらシアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBと、がそれぞれ発光する。すなわち、青色画素3Bでは、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBと、が、それぞれ発光層として用いられる。 The light emitting layer unit 33 of the blue pixel 3B includes a light emitting material containing layer 34 composed of a cyan phosphorescent light emitting material containing layer 34PC (EML-PC) and a blue fluorescent light emitting material containing layer 34FB (EML-FB). Is formed. The blue fluorescent light emitting material containing layer 34FB is provided on the cathode 23 side of the cyan phosphorescent light emitting material containing layer 34PC. In the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB emit light, respectively. That is, in the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers, respectively.
 シアン色画素3Cの発光層ユニット33は、シアン色燐光発光材料含有層34PCからなる1層の発光材料含有層34で形成されている。シアン色画素3Cでは、シアン色燐光発光材料含有層34PCが発光する。すなわち、シアン色画素3Cでは、シアン色燐光発光材料含有層34PCが発光層として用いられる。 The light emitting layer unit 33 of the cyan pixel 3C is formed of a single light emitting material containing layer 34 composed of a cyan phosphorescent light emitting material containing layer 34PC. In the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC emits light. That is, in the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC is used as a light emitting layer.
 また、緑色画素3Gは、発光層として、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBを有する共通層と、緑色燐光発光材料含有層34PG(第2燐光発光材料含有層、EML‐PG)とを有している。緑色燐光発光材料含有層34PGは、シアン色の燐光のピーク波長および青色の蛍光のピーク波長よりも長波長のピーク波長を有する緑色の燐光を発光する緑色燐光発光材料(第2燐光発光材料)を含んでいる。緑色燐光発光材料含有層34PGは、緑色画素3G毎に島状に設けられている。 The green pixel 3G includes a common layer having a cyan phosphorescent material-containing layer 34PC and a blue fluorescent material-containing layer 34FB as a light-emitting layer, and a green phosphorescent material-containing layer 34PG (a second phosphorescent material-containing layer, EML). -PG). The green phosphorescent material-containing layer 34PG is made of a green phosphorescent material (second phosphorescent material) that emits green phosphorescence having a peak wavelength longer than the peak wavelength of cyan phosphorescence and the peak wavelength of blue fluorescence. Contains. The green phosphorescent material-containing layer 34PG is provided in an island shape for each green pixel 3G.
 また、赤色画素3Rは、発光層として、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBを有する共通層と、赤色燐光発光材料含有層34PR(第2燐光発光材料含有層、EML‐PR)とを有している。赤色燐光発光材料含有層34PRは、シアン色の燐光のピーク波長、青色の蛍光のピーク波長、および緑色の燐光のピーク波長よりも長波長のピーク波長を有する赤色の燐光を発光する赤色燐光発光材料(第2燐光発光材料)を含んでいる。赤色燐光発光材料含有層34PRは、赤色画素3R毎に島状に設けられている。 The red pixel 3R includes a common layer having a cyan phosphorescent material-containing layer 34PC and a blue fluorescent material-containing layer 34FB as a light-emitting layer, and a red phosphorescent material-containing layer 34PR (a second phosphorescent material-containing layer, EML). -PR). The red phosphorescent material-containing layer 34PR is a red phosphorescent material that emits red phosphorescence having a peak wavelength of cyan phosphorescence, a peak wavelength of blue fluorescence, and a peak wavelength longer than the peak wavelength of green phosphorescence. (A second phosphorescent material). The red phosphorescent material-containing layer 34PR is provided in an island shape for each red pixel 3R.
 これら緑色燐光発光材料含有層34PGおよび赤色燐光発光材料含有層34PRは、それぞれ、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBよりも陽極21側に、これらシアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBに隣接して設けられている。 The green phosphorescent material-containing layer 34PG and the red phosphorescent material-containing layer 34PR are respectively located closer to the anode 21 than the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. It is provided adjacent to the layer 34PC and the blue fluorescent light emitting material containing layer 34FB.
 このため、緑色画素3Gの発光層ユニット33は、緑色燐光発光材料含有層34PGと、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとが、陽極21側から、この順に、互いに隣接して積層された構成を有している。 Therefore, the light emitting layer unit 33 of the green pixel 3G includes the green phosphorescent light emitting material containing layer 34PG, the cyan phosphorescent light emitting material containing layer 34PC, and the blue fluorescent light emitting material containing layer 34FB in this order from the anode 21 side. It has a configuration of being stacked adjacent to each other.
 また、赤色画素3Rの発光層ユニット33は、赤色燐光発光材料含有層34PRと、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとが、陽極21側から、この順に、互いに隣接して積層された構成を有している。 The light emitting layer unit 33 of the red pixel 3R includes a red phosphorescent light emitting material containing layer 34PR, a cyan phosphorescent light emitting material containing layer 34PC, and a blue fluorescent light emitting material containing layer 34FB in this order from the anode 21 side. It has a configuration in which it is stacked adjacently.
 発光層ユニット33における各発光材料含有層34は、ホスト材料と、発光材料(発光ドーパント材料)との2成分系で形成されている。但し、本実施形態は、これに限定されるものではなく、各発光材料含有層34は、発光材料単独で形成されていてもよい。また、各発光材料含有層34中の材料(成分)のうち含有比率の最も多い材料は、ホスト材料であってもよく、発光材料であってもよい。 各 Each light emitting material containing layer 34 in the light emitting layer unit 33 is formed of a two-component system of a host material and a light emitting material (light emitting dopant material). However, the present embodiment is not limited to this, and each light emitting material containing layer 34 may be formed of a light emitting material alone. The material having the highest content ratio among the materials (components) in each light emitting material containing layer 34 may be a host material or a light emitting material.
 ホスト材料は、正孔および電子の注入が可能であり、正孔と電子とが輸送され、その分子内で再結合することで発光材料を発光させる機能を有している。発光材料含有層34がホスト材料を含む場合、ホスト材料は、キャリア輸送機能と励起子生成機能とを有し、発光材料は、発光機能を有する。このように発光材料含有層34におけるキャリア輸送機能と発光機能とを機能分離し、発光量子収率の高い発光材料を発光材料含有層34に少量ドーピングすることによって、発光材料にエネルギー移動した励起子が速やかに発光し、効果的な有機EL発光が得られる。ホスト材料を使用する場合、発光材料は、ホスト材料に均一に分散される。 The host material is capable of injecting holes and electrons, has a function of causing the light-emitting material to emit light by transporting the holes and electrons and recombining in the molecule. When the light emitting material containing layer 34 contains a host material, the host material has a carrier transport function and an exciton generation function, and the light emitting material has a light emitting function. As described above, the carrier transporting function and the light emitting function in the light emitting material containing layer 34 are functionally separated, and the light emitting material containing layer 34 is doped with a small amount of the light emitting material having a high emission quantum yield, so that the exciton transferred to the light emitting material is transferred to the light emitting material. Quickly emit light, and effective organic EL light emission is obtained. When a host material is used, the light emitting material is uniformly dispersed in the host material.
 ホスト材料を使用する場合、シアン色燐光発光材料含有層34PCのホスト材料には、シアン色燐光発光材料よりも高い三重項励起準位(T準位)を有し、シアン色燐光発光材料よりも深い最高被占準位(HOMO準位)を有するホスト材料を用いることが好ましい。同様に、緑色燐光発光材料含有層34PGのホスト材料には、緑色燐光発光材料よりも高いT準位を有し、緑色燐光発光材料よりも深いHOMO準位を有するホスト材料を用いることが好ましい。また、赤色燐光発光材料含有層34PRのホスト材料には、赤色燐光発光材料よりも高いT準位を有し、赤色燐光発光材料よりも深いHOMO準位を有するホスト材料を用いることが好ましい。これにより、各燐光発光材料含有層において、正孔を効率良く燐光発光材料に注入することができる。 When a host material is used, the host material of the cyan phosphorescent material-containing layer 34PC has a triplet excitation level (T 1 level) higher than that of the cyan phosphorescent material, and is higher than that of the cyan phosphorescent material. It is preferable to use a host material having a deepest highest occupied level (HOMO level). Similarly, it is preferable to use a host material having a higher T 1 level than the green phosphorescent material and a deeper HOMO level than the green phosphorescent material for the host material of the green phosphorescent material-containing layer 34PG. . In addition, the host material of the red phosphorescent material containing layer 34PR, has a high T 1 level position than the red phosphorescent light emitting material, it is preferable to use a host material having a deeper HOMO level than the red phosphorescent light-emitting material. Thereby, in each phosphorescent material-containing layer, holes can be efficiently injected into the phosphorescent material.
 また、青色蛍光発光材料含有層34FBのホスト材料には、青色蛍光発光材料よりも高い一重項励起準位(S準位)を有し、青色蛍光発光材料よりも浅い最低空軌道準位(LUMO準位)を有するホスト材料を用いることが好ましい。これにより、青色蛍光発光材料含有層34FBにおいて、電子を効率良く青色蛍光発光材料に注入することができる。 In addition, the host material of the blue fluorescent material-containing layer 34FB, blue fluorescent material has high singlet excitation level (S 1 level position) than shallow lowest unoccupied molecular orbital level than blue fluorescent material ( It is preferable to use a host material having a LUMO level). Thereby, electrons can be efficiently injected into the blue fluorescent light emitting material in the blue fluorescent light emitting material containing layer 34FB.
 また、本実施形態では、青色画素3Bにおいて、シアン色燐光発光材料含有層34PCと青色蛍光発光材料含有層34FBとでそれぞれ励起子が生成されるように、有機EL層22における各層の正孔輸送性および電子輸送性が調節される。 In the present embodiment, in the blue pixel 3B, the hole transport of each layer in the organic EL layer 22 is set such that excitons are generated in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, respectively. Properties and electron transport properties are regulated.
 正孔輸送性のホスト材料としては、例えば、4,4’-ビス[N-フェニル-N-(3”-メチルフェニル)アミノ]ビフェニル(TPD)、9,10-ジ(2-ナフチル)アントラセン(ADN)、1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、3,3’-ジ(9H-カルバゾール-9-イル)ビフェニル(mCBP)、4,4’,4”-トリス-(N-カルバゾリル)-トリフェニルアミン(TCTA)等の正孔輸送性材料が挙げられる。 Examples of the hole-transporting host material include 4,4′-bis [N-phenyl-N- (3 ″ -methylphenyl) amino] biphenyl (TPD) and 9,10-di (2-naphthyl) anthracene (ADN), 1,3-bis (carbazol-9-yl) benzene (mCP), 3,3′-di (9H-carbazol-9-yl) biphenyl (mCBP), 4,4 ′, 4 ″ -tris And a hole transporting material such as-(N-carbazolyl) -triphenylamine (TCTA).
 電子輸送性のホスト材料としては、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、ビス[(2-ジフェニルホスホリル)フェニル]エーテル(DPEPO)、4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル(DPVBi)、2,2’,2’’-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾリル)(TPBi)、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノレート)アルミニウム(BAlq)等の電子輸送性材料が挙げられる。 Examples of the electron transporting host material include 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), bis [(2-diphenylphosphoryl) phenyl] ether (DPEPO), and 4,4′- Bis (2,2-diphenylvinyl) -1,1′-biphenyl (DPVBi), 2,2 ′, 2 ″-(1,3,5-benzindril) -tris (1-phenyl-1-H- Electron transporting materials such as benzimidazolyl) (TPBi) and bis (2-methyl-8-quinolinolate) -4- (phenylphenolate) aluminum (BAlq).
 バイポーラ輸送性のホスト材料としては、例えば、4,4’-ビス(9-カルバゾイル)-ビフェニル(CBP)等のバイポーラ輸送性材料が挙げられる。 ホ ス ト Bipolar transport host materials include, for example, bipolar transport materials such as 4,4'-bis (9-carbazoyl) -biphenyl (CBP).
 青色蛍光発光材料としては、例えば、2,5,8,11-テトラ-tert-ブチルペリレン(TBPe)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]サルホン(DMAC-DPS)、ペリレン、4,5-ビス(カルバゾール-9-イル)-1,2-ジシアノベンゼン(2CzPN)、4,4’-ビス(9-エチル-3-カルバゾビニレン)-1,1’-ビフェニル(BCzVBi)等、青色発光する蛍光発光材料を用いることができる。 Examples of blue fluorescent light emitting materials include 2,5,8,11-tetra-tert-butylperylene (TBPe) and bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone (DMAC). -DPS), perylene, 4,5-bis (carbazol-9-yl) -1,2-dicyanobenzene (2CzPN), 4,4'-bis (9-ethyl-3-carbazovinylene) -1,1'- A fluorescent material that emits blue light, such as biphenyl (BCzVBi), can be used.
 赤色燐光発光材料としては、例えば、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq)3)、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)(Ir(btp)2(acac))、プラチナム(II)-オクタエチル-ポルフィリン(PtOEP)、ビス(10-ヒドロキシベンゾ[h]キノリネート)ベリリウム(Bebq2)等が挙げられる。 Examples of red phosphorescent materials include tris (1-phenylisoquinoline) iridium (III) (Ir (piq) 3), bis (2-benzo [b] thiophen-2-yl-pyridine) (acetylacetonate) iridium (III) (Ir (btp) 2 (acac)), platinum (II) -octaethyl-porphyrin (PtOEP), bis (10-hydroxybenzo [h] quinolinate) beryllium (Bebq2) and the like.
 緑色燐光発光材料としては、例えば、トリス(2-フェニルピリジル)イリジウム(III)(Ir(PPy)3)、ビス(2-フェニルピリジン)(アセチルアセトナト)イリジウム(III)(Ir(PPy)2(acac))等が挙げられる。 Green phosphorescent materials include, for example, tris (2-phenylpyridyl) iridium (III) (Ir (PPy) 3), bis (2-phenylpyridine) (acetylacetonato) iridium (III) (Ir (PPy) 2 (Acac)) and the like.
 シアン色燐光発光材料としては、例えば、オキサジアゾールダイマー染料(Bis-DAPOXP)、スピロ化合物(2,2’,7,7’-テトラキス(2,2’-ジフェニルビニル)スピロ-9,9’-ビフルオレン(Spiro-DPVBi)、テトラフェニルブタジエン(TPB)、ペンタフェニルシクロペンタジエン(PPCP)、トリフェニルアミン(TPA)、ビス[2-(4,6-ジフルオロフェニル)ピリジナート-N,C2’]イリジウムピコリネート(Flrpic))等が挙げられる。 Examples of cyan phosphorescent materials include oxadiazole dimer dye (Bis-DAPOXP) and spiro compound (2,2 ′, 7,7′-tetrakis (2,2′-diphenylvinyl) spiro-9,9 ′). -Bifluorene (spiro-DPVBi), tetraphenylbutadiene (TPB), pentaphenylcyclopentadiene (PPCP), triphenylamine (TPA), bis [2- (4,6-difluorophenyl) pyridinate-N, C2 '] iridium Picolinate (Flrpic)).
 また、本実施形態において、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陰極23側に位置する青色蛍光発光材料含有層34FBは、陽極21側に位置するシアン色燐光発光材料含有層34PCよりも浅いHOMO準位を有する材料を含んでいることが望ましく、シアン色燐光発光材料含有層34PCよりも浅いLUMO準位を有する材料を含んでいることが望ましい。 In the present embodiment, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, the blue fluorescent light-emitting material-containing layer 34FB located on the cathode 23 side is the cyan phosphorescent material located on the anode 21 side. It is preferable to include a material having a HOMO level shallower than the light emitting material containing layer 34PC, and it is preferable to include a material having a LUMO level shallower than the cyan phosphorescent light emitting material containing layer 34PC.
 また、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側に位置するシアン色燐光発光材料含有層34PCに含まれる材料は、緑色燐光発光材料および赤色燐光発光材料よりも深いHOMO準位を有していることが望ましい。 Among the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, the material contained in the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is a green phosphorescent material and a red phosphorescent material. It is desirable to have a deeper HOMO level.
 また、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側に位置するシアン色燐光発光材料含有層34PCに含まれるシアン色燐光発光材料の三重項励起準位は、緑色燐光発光材料の三重項励起準位および赤色燐光発光材料の三重項励起準位よりも高いことが望ましい。 Further, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, the triplet excitation level of the cyan phosphorescent material contained in the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is It is desirable that the triplet excitation level of the green phosphorescent material is higher than the triplet excitation level of the red phosphorescent material.
 なお、各燐光発光材料含有層中の各燐光発光材料の割合(ドープ濃度)は、燐光発光材料の種類等に応じて任意に設定することができ、特に限定されるものではないが、例えば、1~40質量%の範囲内とすることができる。また、青色蛍光発光材料含有層34FBの中の青色蛍光発光材料の割合(ドープ濃度)は、青色蛍光発光材料の種類等に応じて任意に設定することができ、特に限定されるものではないが、例えば、1~40質量%の範囲内とすることができる。 The ratio (doping concentration) of each phosphorescent material in each phosphorescent material-containing layer can be arbitrarily set according to the type of the phosphorescent material, and is not particularly limited. It can be in the range of 1 to 40% by mass. The ratio (doping concentration) of the blue fluorescent light-emitting material in the blue fluorescent light-emitting material-containing layer 34FB can be arbitrarily set according to the type of the blue fluorescent light-emitting material, and is not particularly limited. For example, it can be in the range of 1 to 40% by mass.
 本実施形態において、発光層ユニット33を構成する各発光材料含有層以外の機能層は、有機EL層22として必須の層ではなく、要求される有機EL素子20の特性に応じて適宜形成すればよい。 In the present embodiment, the functional layers other than the respective luminescent material-containing layers constituting the luminescent layer unit 33 are not essential layers as the organic EL layer 22, but may be appropriately formed according to the required characteristics of the organic EL element 20. Good.
 正孔注入層31は、正孔注入性材料を含み、発光層として用いられる発光材料含有層への正孔注入効率を高める機能を有する層である。また、正孔輸送層32は、正孔輸送性材料を含み、発光層への正孔輸送効率を高める機能を有する層である。正孔注入層31と正孔輸送層32とは、互いに独立した層として形成されていてもよく、正孔注入層兼正孔輸送層として一体化されていてもよい。また、正孔注入層31と正孔輸送層32とが両方設けられている必要はなく、一方のみ(例えば正孔輸送層32のみ)が設けられていてもよい。 (4) The hole injection layer 31 is a layer containing a hole injection material and having a function of increasing the efficiency of hole injection into a light emitting material containing layer used as a light emitting layer. The hole transport layer 32 is a layer that contains a hole transport material and has a function of increasing the efficiency of transporting holes to the light emitting layer. The hole injection layer 31 and the hole transport layer 32 may be formed as layers independent of each other, or may be integrated as a hole injection layer and a hole transport layer. Further, it is not necessary to provide both the hole injection layer 31 and the hole transport layer 32, and only one of them (for example, only the hole transport layer 32) may be provided.
 正孔注入層31、正孔輸送層32、あるいは正孔注入層兼正孔輸送層の材料、すなわち、正孔注入性材料あるいは正孔輸送性材料には、既知の材料を用いることができる。これらの材料としては、例えば、ナフタレン、アントラセン、アザトリフェニレン、フルオレノン、ヒドラゾン、スチルベン、トリフェニレン、ベンジン、スチリルアミン、トリフェニルアミン、ポルフィリン、トリアゾール、イミダゾール、オキサジアゾール、オキザゾール、ポリアリールアルカン、フェニレンジアミン、アリールアミン、およびこれらの誘導体、チオフェン系化合物、ポリシラン系化合物、ビニルカルバゾール系化合物、アニリン系化合物等の鎖状式あるいは複素環式共役系のモノマー、オリゴマー、またはポリマー等が挙げられる。より具体的には、例えば、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(HAT-CN)、1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)、ジ-[4-(N,N-ジトリル-アミノ)-フェニル]シクロヘキサン(TAPC)、9,10-ジフェニルアントラセン-2-スルフォネート(DPAS)、N,N’-ジフェニル-N,N’-(4-(ジ(3-トリル)アミノ)フェニル)-1,1’-ビフェニル-4,4’-ジアミン(DNTPD)、イリジウム(III)トリス[N,N’-ジフェニルベンズイミダゾル-2-イリデン-C2,C2’](Ir(dpbic)3)、4,4’,4”-トリス-(N-カルバゾリル)-トリフェニルアミン(TCTA)、2,2-ビス(p-トリメリットオキシフェニル)プロパン酸無水物(BTPD)、ビス[4-(p,p-ジトリルアミノ)フェニル]ジフェニルシラン(DTASi)、およびトリフェニルアミンユニットが3つスターバースト型に連結された4,4’,4”-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が用いられる。 材料 A known material can be used as the material of the hole injection layer 31, the hole transport layer 32, or the hole injection layer and the hole transport layer, that is, the hole injection material or the hole transport material. Examples of these materials include naphthalene, anthracene, azatriphenylene, fluorenone, hydrazone, stilbene, triphenylene, benzene, styrylamine, triphenylamine, porphyrin, triazole, imidazole, oxadiazole, oxazole, polyarylalkane, phenylenediamine , Arylamines and their derivatives, thiophene-based compounds, polysilane-based compounds, vinylcarbazole-based compounds, aniline-based compounds, and other chain- or heterocyclic-conjugated monomers, oligomers, or polymers. More specifically, for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (α-NPD), 2,3,6,7,10,11-hexacyano- 1,4,5,8,9,12-hexaazatriphenylene (HAT-CN), 1,3-bis (carbazol-9-yl) benzene (mCP), di- [4- (N, N-ditolyl- Amino) -phenyl] cyclohexane (TAPC), 9,10-diphenylanthracene-2-sulfonate (DPAS), N, N′-diphenyl-N, N ′-(4- (di (3-tolyl) amino) phenyl) -1,1'-biphenyl-4,4'-diamine (DNTPD), iridium (III) tris [N, N'-diphenylbenzimidazol-2-ylidene-C2, C2 '] (Ir (dpbic) 3 , 4,4 ', 4 "-tris- (N-carbazolyl) -triphenylamine (TCTA), 2,2-bis (p-trimellitooxyphenyl) propanoic anhydride (BTPD), bis [4- ( p, p-ditolylamino) phenyl] diphenylsilane (DTASi) and 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N- Phenylamino] triphenylamine (MTDATA) and the like.
 なお、正孔注入層31、正孔輸送層32、正孔注入層兼正孔輸送層は、不純物がドープされていない真性正孔注入性材料あるいは真性正孔輸送性材料であってもよいし、導電性を高める等の理由で不純物がドープされていても構わない。 In addition, the hole injection layer 31, the hole transport layer 32, and the hole injection layer / hole transport layer may be an intrinsic hole injecting material or an intrinsic hole transporting material which is not doped with impurities. Impurities may be doped for reasons such as enhancing conductivity.
 電子注入層36は、電子注入性材料を含み、発光層への電子注入効率を高める機能を有する層である。また、電子輸送層35は、電子輸送性材料を含み、発光層への電子輸送効率を高める機能を有する層である。なお、電子注入層36と電子輸送層35とは、互いに独立した層として形成されていてもよく、電子注入層兼電子輸送層として一体化されていてもよい。また、電子注入層36と電子輸送層35とが両方設けられている必要もなく、一方のみ(例えば電子輸送層35のみ)が設けられていてもよい。 The electron injection layer 36 is a layer that contains an electron injecting material and has a function of increasing the efficiency of electron injection into the light emitting layer. Further, the electron transport layer 35 is a layer containing an electron transport material and having a function of increasing the efficiency of electron transport to the light emitting layer. The electron injection layer 36 and the electron transport layer 35 may be formed as independent layers, or may be integrated as an electron injection layer and an electron transport layer. Further, it is not necessary to provide both the electron injection layer 36 and the electron transport layer 35, and only one (for example, only the electron transport layer 35) may be provided.
 電子注入層36、電子輸送層35、あるいは電子注入層兼電子輸送層の材料、すなわち、電子注入性材料あるいは電子輸送性材料として用いられる材料としては、既知の材料を用いることができる。これらの材料としては、例えば、キノリン、ペリレン、フェナントロリン、ビススチリル、ピラジン、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、およびこれらの誘導体や金属錯体、フッ化リチウム(LiF)等が挙げられる。より具体的には、例えば、ビス[(2-ジフェニルホスホリル)フェニル]エーテル(DPEPO)、4,7-ジフェニル-1,10-フェナントロリン(Bphen)、3,3’-ビス(9H-カルバゾール-9-イル)ビフェニル(mCBP)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、1,3,5-トリス(N-フェニルベンズイミダゾル-2-イル)ベンゼン(TPBI)、3-フェニル-4(1’-ナフチル)-5-フェニル-1,2,4-トリアゾール(TAZ)、1,10-フェナントロリン、Alq(トリス(8-ヒドロキシキノリン)アルミニウム)、LiF等が挙げられる。 As the material of the electron injection layer 36, the electron transport layer 35, or the electron injection layer and the electron transport layer, that is, a known material can be used as the electron injection material or the material used as the electron transport material. Examples of these materials include quinoline, perylene, phenanthroline, bisstyryl, pyrazine, triazole, oxazole, oxadiazole, fluorenone, and derivatives and metal complexes thereof, lithium fluoride (LiF), and the like. More specifically, for example, bis [(2-diphenylphosphoryl) phenyl] ether (DPEPO), 4,7-diphenyl-1,10-phenanthroline (Bphen), 3,3′-bis (9H-carbazole-9) -Yl) biphenyl (mCBP), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene ( TPBI), 3-phenyl-4 (1'-naphthyl) -5-phenyl-1,2,4-triazole (TAZ), 1,10-phenanthroline, Alq (tris (8-hydroxyquinoline) aluminum), LiF, etc. Is mentioned.
 有機EL素子20における陰極23上には、有機EL素子20を封止する封止膜40が設けられている。封止膜40は、上側電極である陰極23を保護し、酸素や水分が外部から各有機EL素子20内に浸入することを阻止する。封止膜40は、全ての有機EL素子20を覆うように設けられている。 封 止 On the cathode 23 of the organic EL element 20, a sealing film 40 for sealing the organic EL element 20 is provided. The sealing film 40 protects the cathode 23 serving as the upper electrode, and prevents oxygen and moisture from entering the organic EL elements 20 from the outside. The sealing film 40 is provided so as to cover all the organic EL elements 20.
 封止膜40は、無機層で形成されていてもよく、無機層(無機封止層)と有機層(有機封止層)とを含んでいてもよい。例えば、一例として、封止膜40は、有機層と、有機層を挟持する第1の無機層と第2の無機層と、を含んでいてもよい。無機層は、水分の浸入を防ぐ防湿機能を有し、水分や酸素による有機EL素子20の劣化を防止するバリア層として機能する。有機層は、バッファ層(応力緩和層)として使用される。有機層は、膜応力が大きい無機層の応力緩和や、有機EL素子20の表面の段差部や異物を埋めることによる平坦化やピンホールの穴埋めを行う。 The sealing film 40 may be formed of an inorganic layer, and may include an inorganic layer (inorganic sealing layer) and an organic layer (organic sealing layer). For example, as an example, the sealing film 40 may include an organic layer, and a first inorganic layer and a second inorganic layer sandwiching the organic layer. The inorganic layer has a moisture-proof function of preventing intrusion of moisture, and functions as a barrier layer for preventing the organic EL element 20 from being deteriorated by moisture or oxygen. The organic layer is used as a buffer layer (stress relaxation layer). The organic layer performs stress relaxation of the inorganic layer having a large film stress, flattening by filling a step portion or a foreign substance on the surface of the organic EL element 20, and filling a hole of a pinhole.
 無機層としては、例えば、酸化シリコン膜、窒化シリコン膜、酸窒化シリコン膜、それらの積層膜が挙げられる。有機層としては、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂等の感光性樹脂が挙げられる。 Examples of the inorganic layer include a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and a stacked film thereof. Examples of the organic layer include photosensitive resins such as an acrylic resin, an epoxy resin, and a silicone resin.
 なお、前述したように、封止膜40上には、図示しない接着剤層を介して図示しないカバー体が設けられていてもよい。カバー体は、保護機能、光学補償機能、タッチセンサ機能の少なくとも1つを有する機能層である。カバー体は、ガラス基板等のキャリア基板を剥離したときの支持体として機能する保護フィルムであってもよく、ハードコートフィルム等のハードコート層であってもよく、偏光フィルムおよびタッチセンサフィルム等の機能性フィルムであってもよい。 As described above, a cover body (not shown) may be provided on the sealing film 40 via an adhesive layer (not shown). The cover is a functional layer having at least one of a protection function, an optical compensation function, and a touch sensor function. The cover body may be a protective film functioning as a support when a carrier substrate such as a glass substrate is peeled off, or may be a hard coat layer such as a hard coat film, or a polarizing film and a touch sensor film. It may be a functional film.
 <有機EL表示装置1の製造方法>
 次に、有機EL表示装置1の製造方法について、図6および図7の(a)~(d)を参照して以下に説明する。
<Manufacturing method of organic EL display device 1>
Next, a method for manufacturing the organic EL display device 1 will be described below with reference to FIGS. 6 and 7A to 7D.
 図7の(a)~(d)は、実施形態1に係る有機EL表示装置1の発光層ユニット33を構成する各発光材料含有層34(つまり、赤色燐光発光材料含有層34PR、緑色燐光発光材料含有層34PG、シアン色燐光発光材料含有層34PC、青色蛍光発光材料含有層34FB)の積層方法を、積層順に示す平面図である。なお、図7の(a)~(d)では、図示の便宜上、画素3(つまり、青色画素3B、シアン色画素3C、緑色画素3G、および赤色画素3R)の数を省略している。 FIGS. 7A to 7D show the light emitting material containing layers 34 constituting the light emitting layer unit 33 of the organic EL display device 1 according to the first embodiment (that is, the red phosphorescent light emitting material containing layer 34PR, the green phosphorescent light emission). It is a top view which shows the lamination method of the material containing layer 34PG, the cyan phosphorescent material containing layer 34PC, and the blue fluorescent light emitting material containing layer 34FB) in lamination order. 7A to 7D, the number of the pixels 3 (that is, the blue pixel 3B, the cyan pixel 3C, the green pixel 3G, and the red pixel 3R) is omitted for convenience of illustration.
 本実施形態に係る有機EL表示装置1の製造工程は、上述したTFT基板10を作製するTFT基板作製工程と、TFT基板10上に有機EL素子20を形成する有機EL素子作製工程(有機層形成工程)と、有機EL素子作製工程で作製した有機EL素子20を封止膜40で封止する封止工程と、を備えている。 The manufacturing process of the organic EL display device 1 according to the present embodiment includes a TFT substrate manufacturing process of manufacturing the above-described TFT substrate 10 and an organic EL device manufacturing process of forming the organic EL device 20 on the TFT substrate 10 (organic layer formation). Step) and a sealing step of sealing the organic EL element 20 manufactured in the organic EL element manufacturing step with a sealing film 40.
 また、有機EL素子作製工程は、例えば、陽極形成工程、正孔注入層形成工程、正孔輸送層形成工程、赤色燐光発光材料含有層形成工程(第2燐光発光材料含有層形成工程)、緑色燐光発光材料含有層形成工程(第2燐光発光材料含有層形成工程)、シアン色燐光発光材料含有層形成工程(共通層形成工程、第1燐光発光材料含有層形成工程)、青色蛍光発光材料含有層形成工程(共通層形成工程、蛍光発光材料含有層形成工程)、電子輸送層形成工程、電子注入層形成工程、陰極形成工程を含んでいる。 The organic EL element manufacturing process includes, for example, an anode forming process, a hole injecting layer forming process, a hole transporting layer forming process, a red phosphorescent material-containing layer forming process (second phosphorescent material-containing layer forming process), and green. Phosphorescent material-containing layer forming step (second phosphorescent material-containing layer forming step), cyan phosphorescent material-containing layer forming step (common layer forming step, first phosphorescent material-containing layer forming step), blue fluorescent light-emitting material containing It includes a layer forming step (a common layer forming step, a fluorescent light emitting material containing layer forming step), an electron transporting layer forming step, an electron injecting layer forming step, and a cathode forming step.
 本実施形態では、有機EL素子作製工程を、例えば、この順に行う。本実施形態では、例えば、緑色燐光発光材料含有層形成工程とシアン色燐光発光材料含有層形成工程とが、シアン色燐光発光材料含有層34PCが、緑色燐光発光材料含有層34PGよりも陰極23側に、緑色燐光発光材料含有層34PGに隣接して形成されるように連続して行われる。また、本実施形態では、シアン色燐光発光材料含有層形成工程と青色蛍光発光材料含有層形成工程とが、シアン色燐光発光材料含有層34PCと青色蛍光発光材料含有層34FBとが隣接して積層されるように連続して行われる。以下に、前記した各工程について説明する。 In the present embodiment, the organic EL element manufacturing process is performed, for example, in this order. In this embodiment, for example, in the green phosphorescent material-containing layer forming step and the cyan phosphorescent material-containing layer forming step, the cyan phosphorescent material-containing layer 34PC is closer to the cathode 23 than the green phosphorescent material-containing layer 34PG. The process is performed continuously so as to be formed adjacent to the green phosphorescent material-containing layer 34PG. In this embodiment, the cyan phosphorescent material-containing layer forming step and the blue fluorescent light-emitting material-containing layer forming step are performed by laminating the cyan phosphorescent light-emitting material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB adjacent to each other. Is performed continuously. Hereinafter, each of the above-described steps will be described.
 まず、図6に示すように、TFT12および配線13を含むTFT回路が形成された支持体11上に、感光性樹脂を塗布し、フォトリソグラフィ技術によりパターニングを行うことで、支持体11上に、平坦化膜14を形成する。次に、平坦化膜14に、陽極21をTFT12に電気的に接続するためのコンタクトホール13aを形成する。これによりTFT基板10が作製される(TFT基板作製工程)。 First, as shown in FIG. 6, a photosensitive resin is applied on the support 11 on which the TFT circuit including the TFT 12 and the wiring 13 is formed, and is patterned by photolithography. A flattening film 14 is formed. Next, a contact hole 13 a for electrically connecting the anode 21 to the TFT 12 is formed in the flattening film 14. Thus, the TFT substrate 10 is manufactured (TFT substrate manufacturing process).
 次いで、このようにして形成されたTFT基板10上に、有機EL素子20を形成する(有機EL素子作製工程)。 Next, the organic EL element 20 is formed on the TFT substrate 10 thus formed (organic EL element manufacturing step).
 有機EL素子作製工程では、まず、TFT基板10上に、陽極21を形成する(陽極形成工程)。本実施形態に係る陽極形成工程は、TFT基板10上に反射電極21aを形成する反射電極形成工程と、反射電極21a上に透光性電極21bを形成する透光性電極形成工程と、を備えている。 In the organic EL element manufacturing process, first, the anode 21 is formed on the TFT substrate 10 (anode forming process). The anode forming step according to the present embodiment includes a reflecting electrode forming step of forming the reflecting electrode 21a on the TFT substrate 10, and a light transmitting electrode forming step of forming the light transmitting electrode 21b on the reflecting electrode 21a. ing.
 反射電極形成工程では、TFT基板10上に、反射電極21aを、公知の方法により、所定の厚みでパターン形成する。透光性電極形成工程では、反射電極21a上に、画素3毎に、異なる厚みの透光性電極21bをパターン形成する。 In the reflective electrode forming step, a reflective electrode 21a is formed on the TFT substrate 10 by a known method with a predetermined thickness. In the light-transmitting electrode forming step, a light-transmitting electrode 21b having a different thickness is pattern-formed for each pixel 3 on the reflective electrode 21a.
 本実施形態に係る有機EL素子20は、マイクロキャビティ(微小共振器)方式の有機EL素子である。このような有機EL素子では、発光した光が陽極21と陰極23との間で多重反射し、共振することで発光スペクトルが急峻になり、特定波長の発光強度が増幅される。図6に示す例では、画素3毎に透光性電極21bの厚みを設定することで、画素3毎に光路長を変更している。本実施形態では、このように、TFT基板10上に、画素3毎に画素3の表示色に応じた層厚を有する陽極21を、マトリクス状に形成する。具体的には、青色画素3Bおよびシアン色画素3Cに、同一の層厚を有する陽極21を形成する。さらに、緑色画素3Gに、青色画素3Bを構成する陽極21の膜厚と異なる膜厚を有する陽極21を形成する。さらに、赤色画素3Rに、青色画素3Bを構成する陽極21の膜厚および緑色画素3Gを構成する陽極21の膜厚の双方と異なる膜厚を有する陽極21を形成する。 The organic EL device 20 according to the present embodiment is a microcavity (microresonator) type organic EL device. In such an organic EL device, the emitted light is multiple-reflected between the anode 21 and the cathode 23 and resonates, whereby the emission spectrum becomes steep and the emission intensity at a specific wavelength is amplified. In the example shown in FIG. 6, the optical path length is changed for each pixel 3 by setting the thickness of the translucent electrode 21b for each pixel 3. In this embodiment, the anodes 21 having a layer thickness corresponding to the display color of the pixels 3 are formed in a matrix on the TFT substrate 10 in this manner. Specifically, the anode 21 having the same layer thickness is formed in the blue pixel 3B and the cyan pixel 3C. Further, an anode 21 having a thickness different from that of the anode 21 forming the blue pixel 3B is formed in the green pixel 3G. Further, the anode 21 having a thickness different from both the thickness of the anode 21 forming the blue pixel 3B and the thickness of the anode 21 forming the green pixel 3G is formed in the red pixel 3R.
 次に、陽極21の端部を覆うようにエッジカバー24をパターン形成する。以上の工程により、画素3毎にエッジカバー24で分離された陽極21が作製される。 Next, the edge cover 24 is patterned to cover the end of the anode 21. Through the above steps, the anode 21 separated by the edge cover 24 for each pixel 3 is manufactured.
 次いで、正孔注入層31、および正孔輸送層32を、例えば、オープンマスクを用いて、陽極21が形成されたTFT基板10上における表示領域1a全面に、この順に蒸着する(正孔注入層形成工程、正孔輸送層形成工程)。但し、前述したように、これら正孔注入層31および正孔輸送層32は、必須の層ではなく、また、画素3毎に島状に形成されていてもよい。 Next, the hole injection layer 31 and the hole transport layer 32 are vapor-deposited in this order over the entire display region 1a on the TFT substrate 10 on which the anode 21 is formed, using, for example, an open mask (the hole injection layer 31). Forming step, hole transport layer forming step). However, as described above, the hole injection layer 31 and the hole transport layer 32 are not essential layers, and may be formed in an island shape for each pixel 3.
 次に、図7の(a)に示すように、赤色画素3Rに、赤色燐光発光材料含有層34PRを形成する(赤色燐光発光材料含有層形成工程)。赤色燐光発光材料含有層34PRは、赤色画素3Rに対応したマスク開口201Rが設けられた蒸着マスク200Rを用いた塗り分け蒸着により、赤色画素3Rの正孔輸送層32上に、ストライプ状の島状に形成される。 Next, as shown in FIG. 7A, a red phosphorescent material-containing layer 34PR is formed in the red pixel 3R (a red phosphorescent material-containing layer forming step). The red phosphorescent material-containing layer 34PR is formed in a striped island shape on the hole transport layer 32 of the red pixel 3R by separate deposition using a deposition mask 200R provided with a mask opening 201R corresponding to the red pixel 3R. Formed.
 その後、図7の(b)に示すように、緑色画素3Gに、緑色燐光発光材料含有層34PGを形成する(緑色燐光発光材料含有層形成工程)。緑色燐光発光材料含有層34PGは、緑色画素3Gに対応したマスク開口201Gが設けられた蒸着マスク200Gを用いた塗り分け蒸着により、緑色画素3Gの正孔輸送層32上に、ストライプ状の島状に線形蒸着される。 {After that, as shown in FIG. 7B, the green phosphorescent material-containing layer 34PG is formed in the green pixel 3G (green phosphorescent material-containing layer forming step). The green phosphorescent material-containing layer 34PG is formed in a striped island shape on the hole transport layer 32 of the green pixel 3G by separate deposition using a deposition mask 200G provided with a mask opening 201G corresponding to the green pixel 3G. Is linearly deposited.
 なお、赤色燐光発光材料含有層形成工程と、緑色燐光発光材料含有層形成工程とは、逆順に行われても構わないが、この順に行うことが好ましい。これらの工程をこの順に行った場合、例えば図7の(a)に示す、緑色燐光発光材料含有層34PG(EML-PG)のホスト材料のように、緑色燐光発光材料含有層34PG中の材料のうち含有比率の最も多い材料が正孔輸送性材料であれば、万一、赤色燐光発光材料が緑色画素3Gに侵入し、緑色燐光発光材料含有層34PGの下に赤色燐光発光材料含有層34PRが形成されたとしても、赤色燐光発光材料含有層34PRまで電子が届かない。このため、緑色画素3Gで赤色混色が発生することはない。したがって、この場合、混色防止の蒸着マージンを低減させることができる。 The red phosphorescent material-containing layer forming step and the green phosphorescent material-containing layer forming step may be performed in reverse order, but are preferably performed in this order. When these steps are performed in this order, for example, the host material of the green phosphorescent material-containing layer 34PG (EML-PG) shown in FIG. If the material having the highest content ratio is a hole-transporting material, the red phosphorescent material enters the green pixel 3G by any chance, and the red phosphorescent material-containing layer 34PR is formed below the green phosphorescent material-containing layer 34PG. Even if formed, electrons do not reach the red phosphorescent material-containing layer 34PR. For this reason, red color mixture does not occur in the green pixel 3G. Therefore, in this case, the deposition margin for preventing color mixing can be reduced.
 次いで、赤色燐光発光材料含有層34PR、緑色燐光発光材料含有層34PG、これら赤色燐光発光材料含有層34PRおよび緑色燐光発光材料含有層34PGで覆われていない正孔輸送層32を覆うように、図7の(c)に示すようにTFT基板10における表示領域1a全面に、シアン色燐光発光材料含有層34PCを形成する(シアン色燐光発光材料含有層形成工程)。シアン色燐光発光材料含有層34PCは、前述したように、複数の画素3に跨がる共通発光層として形成される。このため、図6の(c)に示すように、シアン色燐光発光材料含有層形成用の蒸着マスク200B1には、複数の画素3に共通するマスク開口201B1を有するオープンマスクが使用される。 Next, the red phosphorescent material-containing layer 34PR, the green phosphorescent material-containing layer 34PG, and the hole transport layer 32 that are not covered with the red phosphorescent material-containing layer 34PR and the green phosphorescent material-containing layer 34PG are covered. As shown in FIG. 7C, a cyan phosphorescent material-containing layer 34PC is formed on the entire display region 1a of the TFT substrate 10 (cyan phosphorescent material-containing layer forming step). The cyan phosphorescent material-containing layer 34PC is formed as a common light-emitting layer extending over the plurality of pixels 3 as described above. Therefore, as shown in FIG. 6C, an open mask having a mask opening 201B1 common to the plurality of pixels 3 is used as the vapor deposition mask 200B1 for forming the cyan phosphorescent material-containing layer.
 続いて、図7の(d)に示すように、青色画素3B、緑色画素3G、および赤色画素3Rに、シアン色燐光発光材料含有層34PCを覆うように青色蛍光発光材料含有層34FBを形成する(青色蛍光発光材料含有層形成工程)。シアン色燐光発光材料含有層34PCは、青色画素3B、緑色画素3G、および赤色画素3Rに対応したマスク開口201Cが設けられた蒸着マスク200Cを用いた塗り分け蒸着により、シアン色燐光発光材料含有層34PC上に蒸着される。 Subsequently, as shown in FIG. 7D, a blue fluorescent light emitting material containing layer 34FB is formed on the blue pixel 3B, green pixel 3G, and red pixel 3R so as to cover the cyan phosphorescent material containing layer 34PC. (Blue fluorescent light emitting material containing layer forming step). The cyan phosphorescent material-containing layer 34PC is formed by separately applying vapor using a deposition mask 200C provided with a mask opening 201C corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R. Deposited on 34PC.
 なお、図7の(a)~(d)では、蒸着マスク200R・200G・200B・200Cが、マスク固定蒸着用の蒸着マスクである場合を例に挙げて図示している。しかしながら、本実施形態は、これに限定されるものではなく、これら蒸着マスク200R・200G・200B・200Cは、形成される発光材料含有層34の一部に対応したマスク開口を有する、スキャン蒸着用の蒸着マスクであってもよい。 FIGS. 7A to 7D show an example in which the evaporation masks 200R, 200G, 200B, and 200C are evaporation masks for mask-fixed evaporation. However, the present embodiment is not limited to this, and these deposition masks 200R, 200G, 200B, and 200C have a mask opening corresponding to a part of the light emitting material containing layer 34 to be formed. May be used.
 また、これら発光材料含有層34がホスト材料を含む場合、これら発光材料含有層34は、これら発光材料含有層34を構成するホスト材料と発光材料(発光ドーパント材料)とを共蒸着することによって形成される。各材料の蒸着比率は、例えば蒸着速度によって調整することができる。 When the light emitting material containing layer 34 contains a host material, the light emitting material containing layer 34 is formed by co-evaporating the host material and the light emitting material (light emitting dopant material) constituting the light emitting material containing layer 34. Is done. The deposition ratio of each material can be adjusted by, for example, the deposition rate.
 その後、例えば、オープンマスクを用いて、図6に示すように、電子輸送層35および電子注入層36を、青色蛍光発光材料含有層34FBおよびシアン色燐光発光材料含有層34PCを覆うように、表示領域1a全面に、この順に形成する(電子輸送層形成工程、電子注入層形成工程)。但し、前述したように、これら電子輸送層35および電子注入層36は、必須の層ではなく、また、画素3毎に島状に形成されていてもよい。 Then, for example, using an open mask, as shown in FIG. 6, the electron transport layer 35 and the electron injection layer 36 are displayed so as to cover the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC. An electron transport layer forming step and an electron injection layer forming step are formed in this order over the entire surface of the region 1a. However, as described above, the electron transport layer 35 and the electron injection layer 36 are not essential layers, and may be formed in an island shape for each pixel 3.
 次に、陰極23を、電子注入層36を覆うように、TFT基板10における表示領域1a全面に形成する。陰極23の形成には、真空蒸着法、CVD法、プラズマCVD法等の蒸着法を用いてもよく、スパッタリング法、あるいは印刷法等を用いてもよい。 Next, the cathode 23 is formed on the entire display area 1a of the TFT substrate 10 so as to cover the electron injection layer 36. For forming the cathode 23, a vapor deposition method such as a vacuum deposition method, a CVD method, or a plasma CVD method may be used, or a sputtering method, a printing method, or the like may be used.
 次いで、有機EL素子20を封止膜40で封止する。無機層(無機封止層)は、例えば、CVDにより形成することができる。有機層(有機封止層)は、例えばインクジェット法等により、インク材を、図示しないバンク(凸部)で囲まれた領域内に塗布し、例えばUV硬化させることで形成することができる。 Next, the organic EL element 20 is sealed with the sealing film 40. The inorganic layer (inorganic sealing layer) can be formed, for example, by CVD. The organic layer (organic sealing layer) can be formed, for example, by applying an ink material to a region surrounded by a bank (not shown) (not shown) by an inkjet method or the like, and by, for example, UV curing.
 その後、必要に応じて、偏光フィルムおよびタッチセンサフィルム等の機能性フィルム、あるいは、偏光板およびタッチパネル等のカバー体が貼り合わされる。 (5) Then, if necessary, a functional film such as a polarizing film and a touch sensor film, or a cover such as a polarizing plate and a touch panel is attached.
 <有機EL表示装置1の発光方法>
 有機EL表示装置1は、TFT12を用いて各画素3における有機EL素子20を選択的に所望の輝度で発光することにより、カラー表示を行う。以下では、図1~図6を参照して、有機EL表示装置1の発光方法(表示方法)について、説明する。
<Light Emitting Method of Organic EL Display Device 1>
The organic EL display device 1 performs color display by selectively emitting the organic EL element 20 in each pixel 3 at a desired luminance using the TFT 12. Hereinafter, a light emitting method (display method) of the organic EL display device 1 will be described with reference to FIGS.
 図1は、実施形態1に係る有機EL表示装置1の発光層ユニット33の概略構成を、発光原理と合わせて模式的に示す図である。図2は、実施形態1に係る有機EL表示装置1の青色画素3Bにおける発光機構を説明する図である。図3は、実施形態1に係る有機EL表示装置1のシアン色画素3Cにおける発光機構を説明する図である。図4の(a)は、実施形態1に係る有機EL表示装置1の緑色画素3Gにおける発光層ユニット33および発光層ユニット33に隣接する各層のエネルギーバンドを示す図であり、図4の(b)は、実施形態1に係る有機EL表示装置1の赤色画素3Rにおける発光層ユニット33および発光層ユニット33に隣接する各層のエネルギーバンドを示す図である。図5は、実施形態1に係る青色蛍光、シアン色燐光、緑色燐光、および赤色燐光の各スペクトルを示す図である。なお、図1では、発光層ユニット33以外の図示を省略している。 FIG. 1 is a view schematically showing a schematic configuration of the light emitting layer unit 33 of the organic EL display device 1 according to the first embodiment together with a light emitting principle. FIG. 2 is a diagram illustrating a light emitting mechanism in the blue pixel 3B of the organic EL display device 1 according to the first embodiment. FIG. 3 is a diagram illustrating a light emitting mechanism in the cyan pixel 3C of the organic EL display device 1 according to the first embodiment. FIG. 4A is a diagram illustrating an energy band of the light emitting layer unit 33 and each layer adjacent to the light emitting layer unit 33 in the green pixel 3G of the organic EL display device 1 according to the first embodiment, and FIG. 3) is a diagram illustrating the energy bands of the light emitting layer unit 33 and each layer adjacent to the light emitting layer unit 33 in the red pixel 3R of the organic EL display device 1 according to the first embodiment. FIG. 5 is a diagram illustrating spectra of blue fluorescence, cyan phosphorescence, green phosphorescence, and red phosphorescence according to the first embodiment. In FIG. 1, illustrations other than the light emitting layer unit 33 are omitted.
 図1に示すように、本実施形態に係る有機EL表示装置1において、陽極21から有機EL層22に注入された正孔(h)と、陰極23から有機EL層22に注入された電子(e)とは、青色画素3Bにおいて、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとで、それぞれ再結合して、それぞれ励起子が生成する。 As shown in FIG. 1, in the organic EL display device 1 according to the present embodiment, holes (h + ) injected from the anode 21 into the organic EL layer 22 and electrons injected from the cathode 23 into the organic EL layer 22. (E ) means that in the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB are respectively recombined to generate excitons.
 本実施形態では、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとは、陽極21側から、この順に積層されている。このため、これらシアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側に位置するシアン色燐光発光材料含有層34PCは、正孔輸送性材料、または、正孔輸送性材料と電子輸送性材料とを含むバイポーラ輸送性材料を含むことが望ましく、陰極23側に位置する青色蛍光発光材料含有層34FBは、電子輸送性材料を含むことが望ましい。より具体的には、シアン色燐光発光材料含有層34PCにおけるホスト材料は、正孔輸送性材料またはバイポーラ輸送性材料であることが望ましく、青色蛍光発光材料含有層34FBにおけるホスト材料は、電子輸送性材料であることが望ましい。この場合、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBで、それぞれ正孔と電子とが結合し易く、それぞれの層で励起子が生成し易い。 In the present embodiment, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are stacked in this order from the anode 21 side. Therefore, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is a hole transporting material or a hole transporting material. It is desirable to include a bipolar transport material containing a conductive material and an electron transport material, and it is desirable that the blue fluorescent light emitting material containing layer 34FB located on the cathode 23 side contains an electron transport material. More specifically, the host material in the cyan phosphorescent material containing layer 34PC is desirably a hole transporting material or a bipolar transporting material, and the host material in the blue fluorescent light emitting material containing layer 34FB is an electron transporting material. Desirably, it is a material. In this case, holes and electrons are easily bonded to each other in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, and excitons are easily generated in the respective layers.
 また、図4の(a)・(b)に示すように、シアン色燐光発光材料含有層34PC(EML‐FB)および青色蛍光発光材料含有層34FB(EML‐PB)のうち、陰極23側に位置する青色蛍光発光材料含有層34FBが、陽極21側に位置するシアン色燐光発光材料含有層34PCよりも浅いHOMO準位を有する材料を含んでいると、陰極23側に位置する青色蛍光発光材料含有層34FBに正孔が入り易い。 Further, as shown in FIGS. 4A and 4B, the cyan phosphorescent material-containing layer 34PC (EML-FB) and the blue fluorescent material-containing layer 34FB (EML-PB) When the blue fluorescent light-emitting material-containing layer 34FB located on the anode 21 side contains a material having a HOMO level shallower than the cyan phosphorescent light-emitting material-containing layer 34PC located on the anode 21 side, the blue fluorescent light-emitting material located on the cathode 23 side Holes easily enter the containing layer 34FB.
 また、図4の(a)・(b)に示すように、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陰極23側に位置する青色蛍光発光材料含有層34FBが、陽極21側に位置するシアン色燐光発光材料含有層34PCよりも浅いLUMO準位を有する材料を含んでいると、陽極21側に位置するシアン色燐光発光材料含有層34PCに電子が入り易い。 In addition, as shown in FIGS. 4A and 4B, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, the blue fluorescent light-emitting material-containing layer 34FB located on the cathode 23 side is formed. When a material having a LUMO level shallower than that of the cyan phosphorescent material-containing layer 34PC located on the anode 21 side is included, electrons easily enter the cyan phosphorescent material-containing layer 34PC located on the anode 21 side.
 図4の(a)・(b)に示す例では、青色蛍光発光材料含有層34FBは、シアン色燐光発光材料含有層34PCのシアン色燐光発光材料(Filpic)よりもHOMO準位およびLUMO準位が浅い青色蛍光発光材料(BCzVBi)を含んでいる。 In the examples shown in FIGS. 4A and 4B, the blue fluorescent light emitting material containing layer 34FB has a HOMO level and a LUMO level higher than the cyan phosphorescent material (Filpic) of the cyan phosphorescent material containing layer 34PC. Contains a shallow blue fluorescent light emitting material (BCzVBi).
 このため、青色画素3Bでは、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBで、それぞれ励起子が生成し易い。 Therefore, in the blue pixel 3B, excitons are easily generated in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB.
 本実施形態で用いた、図4の(a)に示す各層の材料のHOMO準位およびLUMO準位の値を表1に示す。また、本実施形態で用いた、図4の(b)に示す各層の材料のHOMO準位およびLUMO準位の値を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the values of the HOMO level and LUMO level of the material of each layer shown in FIG. 4A used in this embodiment. Table 2 shows the values of the HOMO level and LUMO level of the material of each layer shown in FIG. 4B used in this embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図2に示すように、青色燐光発光材料含有層34PBおよび青色蛍光発光材料含有層34FBでそれぞれ生成された励起子は、失活して基底状態(S状態)に戻る際にそれぞれ光を放出する。
Figure JPOXMLDOC01-appb-T000002
As shown in FIG. 2, an exciton generated respectively in blue phosphorescent material containing layer 34PB and blue fluorescent material-containing layer 34FB is deactivated each light when returning to the ground state (S 0 state) to release I do.
 このため、青色画素3Bでは、シアン色燐光発光材料含有層34PCで生成された三重項励起状態(T状態)の励起子(三重項励起子)がS状態に戻る際に生じるシアン色の燐光と、青色蛍光発光材料含有層34FBで生成された一重項励起状態(S状態)の励起子(一重項励起子)がS状態に戻る際に生じる青色の蛍光と、を含む青色の光が出射される。 Therefore, the blue pixel 3B, cyan phosphorescent material containing layer triplet excited state generated in the 34PC of (T 1 state) exciton (triplet excitons) of cyan caused when returning to S 0 state and phosphorescence, blue fluorescent material exciton-containing layer singlet excited state generated in 34FB (S 1 state) (singlet excitons) is blue; and a blue fluorescence generated when returning to S 0 state Light is emitted.
 シアン色画素3Cでは、図3に示すように、シアン色燐光発光材料含有層34PCで生成された三重項励起状態(T状態)の励起子(三重項励起子)がS状態に戻る際に生じるシアン色の燐光を含むシアン色の光が出射される。 In cyan pixel 3C, as shown in FIG. 3, when the excitons generated by the cyan color phosphorescent material containing layer 34PC triplet excited state (T 1 state) (triplet excitons) returns to S 0 state , And cyan light including cyan phosphorescent light is emitted.
 一方、緑色画素3Gでは、図4の(a)に示すように、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側(言い換えれば、緑色燐光発光材料含有層34PG側)に位置するシアン色燐光発光材料含有層34PCに含まれる材料が、緑色燐光発光材料(図4の(a)に示す例ではIr(PPy)3)よりも深いHOMO準位を有していることで、シアン色燐光発光材料含有層34PCは、緑色燐光発光材料含有層34PGに対する正孔ブロック層として機能する。 On the other hand, in the green pixel 3G, as shown in FIG. 4A, of the cyan phosphorescent light emitting material containing layer 34PC and the blue fluorescent light emitting material containing layer 34FB, the anode 21 side (in other words, the green phosphorescent light emitting material containing layer 34FB). The material included in the cyan phosphorescent material-containing layer 34PC located on the 34PG side) has a HOMO level deeper than that of the green phosphorescent material (Ir (PPy) 3 in the example shown in FIG. 4A). Accordingly, the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the green phosphorescent material-containing layer 34PG.
 また、緑色画素3Gでは、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側(緑色燐光発光材料含有層34PG側)に位置するシアン色燐光発光材料含有層34PCに含まれるシアン色燐光発光材料の三重項励起準位が緑色燐光発光材料の三重項励起準位よりも高いことで、緑色燐光発光材料からシアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBにエネルギーが移動し難い。 In the green pixel 3G, the cyan phosphorescent material-containing layer 34PC located on the anode 21 side (green phosphorescent material-containing layer 34PG side) of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. Since the triplet excitation level of the cyan phosphorescent material contained in is higher than the triplet excitation level of the green phosphorescent material, the cyan phosphorescent material-containing layer 34PC and the blue phosphorescent material are contained from the green phosphorescent material. Energy is not easily transferred to the layer 34FB.
 このため、図1に示すように、陽極21から有機EL層22に注入された正孔と、陰極23から有機EL層22に注入された電子とは、緑色画素3Gにおいて、緑色燐光発光材料含有層34PGでのみ再結合して励起子が生成する。この結果、緑色画素3Gでは、緑色燐光発光材料含有層34PGで生成されたT状態の励起子(三重項励起子)がS状態に戻る際に生じる緑色の燐光が出射される。 For this reason, as shown in FIG. 1, the holes injected from the anode 21 into the organic EL layer 22 and the electrons injected from the cathode 23 into the organic EL layer 22 cause the green pixel 3G to contain the green phosphorescent material. Recombination occurs only in the layer 34PG to generate excitons. As a result, the green pixel 3G, a green phosphorescent green phosphorescent material containing layer T 1 state generated by 34PG exciton (triplet excitons) occurs when returning to S 0 state is emitted.
 同様に、赤色画素3Rでは、図4の(b)に示すように、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側(言い換えれば、赤色燐光発光材料含有層34PR側)に位置するシアン色燐光発光材料含有層34PCに含まれる材料が、赤色燐光発光材料(図4の(b)に示す例ではIr(pip)3)よりも深いHOMO準位を有していることで、シアン色燐光発光材料含有層34PCは、赤色燐光発光材料含有層34PRに対する正孔ブロック層として機能する。 Similarly, in the red pixel 3R, as shown in FIG. 4B, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, the anode 21 side (in other words, the red phosphorescent material-containing layer 34PC). The material included in the cyan phosphorescent material-containing layer 34PC located on the layer 34PR side has a HOMO level deeper than that of the red phosphorescent material (Ir (pip) 3 in the example shown in FIG. 4B). By doing so, the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the red phosphorescent material-containing layer 34PR.
 また、赤色画素3Rでは、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陽極21側(赤色燐光発光材料含有層34PR側)に位置するシアン色燐光発光材料含有層34PCに含まれるシアン色燐光発光材料の三重項励起準位が赤色燐光発光材料の三重項励起準位よりも高いことで、赤色燐光発光材料からシアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBにエネルギーが移動し難い。 In the red pixel 3R, the cyan phosphorescent material-containing layer 34PC located on the anode 21 side (the red phosphorescent material-containing layer 34PR side) of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB. Since the triplet excitation level of the cyan phosphorescent material contained in is higher than the triplet excitation level of the red phosphorescent material, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material Energy is not easily transferred to the layer 34FB.
 このため、図1に示すように、陽極21から有機EL層22に注入された正孔と、陰極23から有機EL層22に注入された電子とは、赤色画素3Rにおいて、赤色燐光発光材料含有層34PRでのみ再結合して励起子が生成する。この結果、赤色画素3Rでは、赤色燐光発光材料含有層34PRで生成されたT状態の励起子(三重項励起子)がS状態に戻る際に生じる赤色の燐光が出射される。 For this reason, as shown in FIG. 1, the holes injected from the anode 21 into the organic EL layer 22 and the electrons injected from the cathode 23 into the organic EL layer 22 cause the red pixel 3R to contain the red phosphorescent material. Recombination occurs only in the layer 34PR to generate excitons. As a result, the red pixel 3R, red phosphorescent red phosphorescent material containing layer T 1 state generated by 34PR exciton (triplet excitons) occurs when returning to S 0 state is emitted.
 このように、緑色画素3Gおよび赤色画素3Rでは、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBで励起子が生成せず、シアン色燐光発光材料および青色蛍光発光材料は発光しない。この結果、緑色画素3Gでは、緑色燐光発光材料のみが発光し、赤色画素3Rでは、赤色燐光発光材料のみが発光する。 As described above, in the green pixel 3G and the red pixel 3R, no exciton is generated in the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, and the cyan phosphorescent material and the blue fluorescent material do not emit light. . As a result, in the green pixel 3G, only the green phosphorescent material emits light, and in the red pixel 3R, only the red phosphorescent material emits light.
 <効果>
 シアン色燐光発光材料の内部量子効率が理論上100%であるのに対し、青色蛍光発光材料は、内部量子効率が25%と低効率である。このため、青色蛍光は、シアン色燐光と比較して、発光のピーク強度が極めて低い。一方で、青色蛍光は、シアン色燐光と比較して短波長であり、青色色度が深い。波長が短いほど、ホワイトバランスをとるときに輝度が少なくて済む。
<Effect>
The internal quantum efficiency of a cyan phosphorescent material is theoretically 100%, whereas the internal quantum efficiency of a blue fluorescent light-emitting material is as low as 25%. For this reason, the peak intensity of emission of blue fluorescent light is extremely lower than that of cyan phosphorescent light. On the other hand, blue fluorescence has a shorter wavelength and deeper blue chromaticity than cyan phosphorescence. The shorter the wavelength, the less luminance is required for white balance.
 そこで、本実施形態では、上述したように、青色画素3Bでは、シアン色色度は浅いが、内部量子効率が理論上100%と高効率のシアン色燐光発光材料と、シアン色燐光発光材料よりも内部量子効率が劣るが、青色色度が深い蛍光発光材料と、を積層してそれぞれ発光させる。さらに、シアン色画素3Cでは、シアン色燐光発光材料を発光させる。 Therefore, in the present embodiment, as described above, in the blue pixel 3B, although the cyan chromaticity is shallow, the internal quantum efficiency is theoretically 100%, which is higher than that of the cyan phosphorescent material. A fluorescent light emitting material having low internal quantum efficiency but deep blue chromaticity is laminated to emit light. Further, the cyan phosphorescent material emits light in the cyan pixel 3C.
 本実施形態では、上述したように、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBでそれぞれ励起子を生成することで、シアン色燐光発光材料含有層34PCから発光される燐光と、青色蛍光発光材料含有層34FBから発光される蛍光との混合光を、青色画素3Bから出射する。一方、シアン色燐光発光材料含有層34PCから励起子を生成することで、シアン色燐光発光材料含有層34PCから発光される燐光を、シアン色画素3Cから出射させる。 In the present embodiment, as described above, the exciton is generated in each of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB, so that the phosphorescent light emitted from the cyan phosphorescent material-containing layer 34PC is generated. The mixed light with the fluorescent light emitted from the blue fluorescent light emitting material containing layer 34FB is emitted from the blue pixel 3B. On the other hand, by generating excitons from the cyan phosphorescent material-containing layer 34PC, phosphorescence emitted from the cyan phosphorescent material-containing layer 34PC is emitted from the cyan pixel 3C.
 これらにより、青色画素3Bが青色蛍光のみを出射する場合と比較すれば、青色色度が劣る(つまり、浅くなる)ものの、青色画素3Bがシアン色燐光のみを出射する場合と比較すれば青色色度が良く(つまり、深く)、青色画素3Bが青色蛍光のみを出射する場合と比較して、消費電力を低減することができる有機EL表示装置1を提供することができる。 Thus, although blue chromaticity is inferior (that is, shallower) as compared with the case where the blue pixel 3B emits only blue fluorescent light, the blue color is compared with the case where the blue pixel 3B emits only cyan phosphorescent light. It is possible to provide the organic EL display device 1 having a high degree (that is, deep) and capable of reducing power consumption as compared with the case where the blue pixel 3B emits only blue fluorescent light.
 このように、本実施形態によれば、青色画素3Bにおいて、発光効率と色度とのバランスが良く、従来よりも少ない消費電力で、青色の光を含む複数の光を出射することができる有機EL表示装置1を提供することができる。また、本実施形態によれば、青色画素3Bとシアン色画素3Cとの比率を調節することによって、発光効率と色度とのバランスを図ることができる。したがって、消費電力重視、色域重視等、商品特性に応じたデバイス設計が可能になる。 As described above, according to the present embodiment, in the blue pixel 3 </ b> B, the organic light emitting device can emit a plurality of lights including the blue light with a good balance between the luminous efficiency and the chromaticity, and with less power consumption than the related art. An EL display device 1 can be provided. Further, according to the present embodiment, the balance between the luminous efficiency and the chromaticity can be achieved by adjusting the ratio between the blue pixel 3B and the cyan pixel 3C. Therefore, device design according to product characteristics such as emphasis on power consumption and color gamut becomes possible.
 また、本実施形態によれば、上述したように、青色発光材料として青色蛍光発光材料のみを使用する場合と比較して高効率化を図ることができることから、RGBCの高精細塗分けにおいて、上述したようにシアン色燐光発光材料含有層34PCを各画素3に対して共通して設けたとしても、このように共通化することによる消費電力の増加を抑制することができる。このため、本実施形態によれば、上述したように、シアン色燐光発光材料含有層34PCを各画素3に対して共通して設けることが可能であり、表示装置の高精細化に対応し易い。 According to the present embodiment, as described above, the efficiency can be improved as compared with the case where only the blue fluorescent light emitting material is used as the blue light emitting material. As described above, even if the cyan phosphorescent material-containing layer 34PC is provided in common for each pixel 3, an increase in power consumption due to the common use can be suppressed. For this reason, according to this embodiment, as described above, the cyan phosphorescent material-containing layer 34PC can be provided in common for each pixel 3, and it is easy to cope with higher definition of the display device. .
 また、特に、青色画素3Bは、青色蛍光発光材料含有層34FBにおいて励起子がS状態として生成される確率が25%と、内部量子効率が悪いため、できるだけ開口を大きくしたい。しかしながら、開口を大きくすればするほど、蒸着マージンが小さくなり、塗り分け精度が問題となる。しかしながら、本実施形態によれば、上述したように、シアン色燐光発光材料含有層34PCを複数の画素3に共通して設けることで、青色画素3Bの開口率を大きくすることができ、長寿命化を図ることができる。また、本実施形態によれば、上述したように、シアン色燐光発光材料含有層34PCを、複数の画素3に共通して設けることで、シアン色燐光発光材料含有層34PCの形成に、高精細な蒸着マスクを必要としない。また、RGBCを非常に高精細な蒸着マスクを使用して塗り分けることは、技術的に難しい。本実施形態によれば、青色蛍光発光材料含有層34FBと、緑色画素3Gにおける緑色燐光発光材料含有層34PGおよび赤色画素3Rにおける赤色燐光発光材料含有層34PRとのみ、塗り分けを行えばよい。このため、塗り分け回数を、3回に抑えることができる。このため、有機EL表示装置1の製造が容易になる。 In particular, the blue pixel 3B is a probability of 25% that excitons in the blue fluorescent material-containing layer 34FB is generated as S 1 state, due to the poor internal quantum efficiency, it is desired to increase the possible opening. However, the larger the opening is, the smaller the vapor deposition margin is, and the accuracy of coating becomes a problem. However, according to the present embodiment, as described above, by providing the cyan phosphorescent material-containing layer 34PC in common for the plurality of pixels 3, the aperture ratio of the blue pixel 3B can be increased, and the lifetime can be increased. Can be achieved. Further, according to the present embodiment, as described above, the cyan phosphorescent material-containing layer 34PC is provided in common for the plurality of pixels 3 so that the cyan phosphorescent material-containing layer 34PC can be formed with high definition. It does not require a simple evaporation mask. In addition, it is technically difficult to separately apply RGBC using a very fine deposition mask. According to this embodiment, only the blue fluorescent light emitting material containing layer 34FB, the green phosphorescent light emitting material containing layer 34PG in the green pixel 3G, and the red phosphorescent light emitting material containing layer 34PR in the red pixel 3R need to be separately applied. Therefore, the number of times of application can be suppressed to three times. Therefore, the manufacture of the organic EL display device 1 is facilitated.
 <変形例1>
 本実施形態では、図1~図4の(a)・(b)および図5に示すように、シアン色燐光発光材料含有層34PCと青色蛍光発光材料含有層34FBとが、陽極21側からこの順に積層されている場合を例に挙げて説明した。しかしながら、本実施形態は、これに限定されるものではなく、陽極21側から、青色蛍光発光材料含有層34FB、シアン色燐光発光材料含有層34PCの順に設けられていてもよい。
<Modification 1>
In this embodiment, as shown in FIGS. 1 to 4A and FIG. 4B and FIG. 5, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are The case where the layers are sequentially stacked has been described as an example. However, the present embodiment is not limited to this, and the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC may be provided in this order from the anode 21 side.
 但し、前述したように、シアン色燐光発光材料含有層34PCに含まれる材料は、緑色燐光発光材料および赤色燐光発光材料よりもHOMO準位が深く、シアン色燐光発光材料含有層34PCは、緑色燐光発光材料含有層34PGおよび赤色燐光発光材料含有層34PRに対し、正孔ブロック層として機能する。 However, as described above, the material included in the cyan phosphorescent material-containing layer 34PC has a deeper HOMO level than the green phosphorescent material and the red phosphorescent material, and the cyan phosphorescent material-containing layer 34PC has a green phosphorescent material. It functions as a hole blocking layer for the light emitting material containing layer 34PG and the red phosphorescent light emitting material containing layer 34PR.
 また、シアン色燐光発光材料含有層34PCにおけるホスト材料には、正孔輸送性材料またはバイポーラ輸送性材料が使用される。このため、シアン色燐光発光材料含有層34PCは、正孔輸送性が高い。 (4) As the host material in the cyan phosphorescent material-containing layer 34PC, a hole transporting material or a bipolar transporting material is used. Therefore, the cyan phosphorescent material-containing layer 34PC has a high hole-transport property.
 一方、青色蛍光発光材料含有層34FBは、電子移動度が正孔移動度よりも高く、電子輸送性を有する。このため、青色蛍光発光材料含有層34FBは、電子輸送層としても機能し、電子が流れ易い。 On the other hand, the blue fluorescent light-emitting material-containing layer 34FB has an electron mobility higher than the hole mobility and has an electron transporting property. Therefore, the blue fluorescent light-emitting material-containing layer 34FB also functions as an electron transport layer, and electrons flow easily.
 また、表1および表2並びに図4の(a)・(b)に示したように、シアン色燐光発光材料含有層34PCに含まれるホスト材料および発光材料(発光ドーパント材料)は、青色蛍光発光材料含有層34FBに含まれるホスト材料および発光材料(発光ドーパント材料)HOMO準位とLUMO準位とのギャップ(バンドギャップ)が大きい。このため、青色蛍光発光材料含有層34FBからシアン色燐光発光材料含有層34PCに効率良く電子を移動させることができると共に、青色画素3Bにおいて、シアン色燐光発光材料含有層34PCから青色蛍光発光材料含有層34FBに効率良く正孔を移動させることができる。 Further, as shown in Tables 1 and 2 and FIGS. 4A and 4B, the host material and the light emitting material (light emitting dopant material) included in the cyan phosphorescent material containing layer 34PC are blue fluorescent light emitting. The gap (band gap) between the HOMO level and the LUMO level of the host material and the light-emitting material (light-emitting dopant material) included in the material-containing layer 34FB is large. Therefore, electrons can be efficiently transferred from the blue fluorescent light emitting material containing layer 34FB to the cyan phosphorescent light emitting material containing layer 34PC, and the blue pixel 3B contains the blue fluorescent light emitting material from the cyan phosphorescent light emitting material containing layer 34PC. Holes can be efficiently moved to the layer 34FB.
 このため、シアン色燐光発光材料含有層34PCと青色蛍光発光材料含有層34FBとは、陽極21側からこの順に積層されていることがより望ましい。 Therefore, it is more preferable that the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB are stacked in this order from the anode 21 side.
 <変形例2>
 また、本実施形態では、第3画素として、緑色画素3Gおよび赤色画素3Rが設けられている場合を例に挙げて説明したが、本実施形態は、これに限定されるものではない。第3画素としては、例えば、イエロー(Y)色の光、マゼンタ(M)色の光等、シアン色の光のピーク波長よりも長波長のピーク波長を有する色の光を発光する画素であれば、特に限定されない。また、絵素2aおよび絵素2bは、3色の画素3で構成されている必要は必ずしもなく、2色または4色の画素3で構成されていてもよい。
<Modification 2>
Further, in the present embodiment, the case where the green pixel 3G and the red pixel 3R are provided as the third pixel has been described as an example, but the present embodiment is not limited to this. The third pixel may be a pixel that emits light of a color having a peak wavelength longer than the peak wavelength of cyan light, such as yellow (Y) light, magenta (M) light, or the like. There is no particular limitation. Further, the picture element 2a and the picture element 2b do not necessarily need to be constituted by the pixels 3 of three colors, and may be constituted by the pixels 3 of two colors or four colors.
 <変形例3>
 有機EL表示装置1では、陰極23がTFT基板10側の表面に設けられ、陽極21が封止膜40側に設けられる構成であってもよい。
<Modification 3>
In the organic EL display device 1, the cathode 23 may be provided on the surface on the TFT substrate 10 side, and the anode 21 may be provided on the sealing film 40 side.
 〔実施形態2〕
 本実施形態では、実施形態1との相違点について説明する。実施形態1で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。また、以下では、表示装置の一例として、有機EL表示装置1について説明する。
[Embodiment 2]
In the present embodiment, differences from the first embodiment will be described. Components having the same functions as the components described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, the organic EL display device 1 will be described as an example of the display device.
 <有機EL表示装置の概略構成>
 図8は、実施形態2に係る有機EL表示装置1の要部の概略構成を示す断面図である。
<Schematic Configuration of Organic EL Display>
FIG. 8 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the second embodiment.
 図8に示すように、実施形態2に係る有機EL表示装置1は、実施形態1と同様に、青色画素3B、シアン色画素3C、緑色画素3G、および赤色画素3Rを含んでいる。有機EL表示装置1の全体的な構成は、実施形態1に係る有機EL表示装置1の全体的な構成とほぼ同一である。例えば、青色画素3B、緑色画素3G、および赤色画素3Rの各構成は、実施形態1に係る青色画素3B、緑色画素3G、および赤色画素3Rの各構成と同一である。しかし、本実施形態では、シアン色画素3Cの発光層ユニット33の構成が、実施形態1に係るシアン色画素3Cの発光層ユニット33の構成と異なる。 As shown in FIG. 8, the organic EL display device 1 according to the second embodiment includes a blue pixel 3B, a cyan pixel 3C, a green pixel 3G, and a red pixel 3R, as in the first embodiment. The overall configuration of the organic EL display device 1 is substantially the same as the overall configuration of the organic EL display device 1 according to the first embodiment. For example, each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R is the same as each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R according to the first embodiment. However, in the present embodiment, the configuration of the light emitting layer unit 33 of the cyan pixel 3C is different from the configuration of the light emitting layer unit 33 of the cyan pixel 3C according to the first embodiment.
 本実施形態では、シアン色画素3Cに含まれる発光層の構成は、青色画素3Bに含まれる発光層の構成と同一である。したがって、シアン色画素3Cは、発光層として、実施形態1と同様にシアン色燐光発光材料含有層34PCを有し、かつ、実施形態1とは異なり青色蛍光発光材料含有層34FBをさらに有する。 In the present embodiment, the configuration of the light emitting layer included in the cyan pixel 3C is the same as the configuration of the light emitting layer included in the blue pixel 3B. Therefore, the cyan pixel 3C has a cyan phosphorescent material-containing layer 34PC as the light-emitting layer as in the first embodiment, and further has a blue fluorescent light-emitting material-containing layer 34FB different from the first embodiment.
 本実施形態では、シアン色画素3Cの発光層ユニット33は、青色画素3Bの発光層ユニット33と同様に、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBと、からなる2層の発光材料含有層34で形成されている。これにより、シアン色画素3Cでは、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBと、がそれぞれ発光する。すなわち、シアン色画素3Cでは、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBと、が、それぞれ発光層として用いられる。 In the present embodiment, the light emitting layer unit 33 of the cyan pixel 3C, like the light emitting layer unit 33 of the blue pixel 3B, includes a cyan phosphorescent material containing layer 34PC and a blue fluorescent material containing layer 34FB. The light-emitting material-containing layer 34 is formed. Thereby, in the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB emit light, respectively. That is, in the cyan pixel 3C, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers, respectively.
 本実施形態に係る有機EL表示装置1において、青色蛍光発光材料含有層34FBおよびシアン色燐光発光材料含有層34PCは、全画素3に共通する共通層として、全画素3に跨がって、表示領域全体にベタ状に形成されている。言い換えれば、共通層には、シアン色燐光発光材料含有層34PCに加えて、青色蛍光発光材料含有層34FBがさらに含まれる。 In the organic EL display device 1 according to the present embodiment, the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC serve as a common layer common to all the pixels 3 and extend over all the pixels 3. The entire area is formed in a solid shape. In other words, the common layer further includes the blue fluorescent light emitting material containing layer 34FB in addition to the cyan phosphorescent light emitting material containing layer 34PC.
 有機EL層22は、発光層と陽極21との間において、青色画素3Bおよびシアン色画素3Cにそれぞれ個別に設けられる正孔輸送層32B(第1正孔輸送層)および正孔輸送層32C(第2正孔輸送層)を有する。正孔輸送層32Bは、青色画素3Bに加えて、さらに緑色画素3Gおよび赤色画素3Rに対して共通に設けられる。これに限らず、有機EL層22は、緑色画素3Gおよび赤色画素3Rにそれぞれ設けられる図示しない正孔輸送層32G(第3正孔輸送層)および正孔輸送層32R(第4正孔輸送層)を有しても良い。 The organic EL layer 22 has a hole transport layer 32B (first hole transport layer) and a hole transport layer 32C (first hole transport layer) provided separately for the blue pixel 3B and the cyan pixel 3C between the light emitting layer and the anode 21. (A second hole transport layer). The hole transport layer 32B is provided commonly to the green pixel 3G and the red pixel 3R in addition to the blue pixel 3B. Not limited to this, the organic EL layer 22 may include a not-shown hole transport layer 32G (third hole transport layer) and a hole transport layer 32R (fourth hole transport layer) provided in the green pixel 3G and the red pixel 3R, respectively. ).
 本実施形態では、正孔輸送層32Bの膜厚は、正孔輸送層32Cの膜厚と異なっている。詳細には、正孔輸送層32Cの膜厚は、正孔輸送層32Bの膜厚よりも大きい。正孔輸送層32Cの膜厚と正孔輸送層32Bの膜厚との差は、好ましくは5~25nmである。 で は In the present embodiment, the thickness of the hole transport layer 32B is different from the thickness of the hole transport layer 32C. Specifically, the thickness of the hole transport layer 32C is larger than the thickness of the hole transport layer 32B. The difference between the thickness of the hole transport layer 32C and the thickness of the hole transport layer 32B is preferably 5 to 25 nm.
 <有機EL表示装置1の製造方法>
 図9の(a)および(b)は、実施形態2に係る有機EL表示装置1の正孔輸送層32Bおよび正孔輸送層32Cの形成工程を、これらの積層順に示す平面図である。なお、図9の(a)および(b)では、図示の便宜上、画素3の数を省略している。図10の(a)~(d)は、実施形態2に係る有機EL表示装置1の発光層ユニット33を構成する各発光材料含有層34の積層方法を、積層順に示す平面図である。なお、図10の(a)~(d)では、図示の便宜上、画素3の数を省略している。
<Manufacturing method of organic EL display device 1>
FIGS. 9A and 9B are plan views showing the steps of forming the hole transport layer 32B and the hole transport layer 32C of the organic EL display device 1 according to the second embodiment in the order in which they are stacked. 9A and 9B, the number of pixels 3 is omitted for convenience of illustration. FIGS. 10A to 10D are plan views showing a method of laminating the respective light emitting material containing layers 34 constituting the light emitting layer unit 33 of the organic EL display device 1 according to the second embodiment in the order of stacking. In FIGS. 10A to 10D, the number of pixels 3 is omitted for convenience of illustration.
 本実施形態に係る有機EL表示装置1の製造工程の大半は、実施形1に係る有機EL表示装置1の製造工程と同一である。しかし、本実施形態では、正孔輸送層形成工程およびシアン色燐光発光材料含有層形成工程が、実施形態1と異なっている。 Most of the manufacturing process of the organic EL display device 1 according to the present embodiment is the same as the manufacturing process of the organic EL display device 1 according to the first embodiment. However, the present embodiment is different from the first embodiment in the hole transport layer forming step and the cyan phosphorescent material-containing layer forming step.
 本実施形態では、正孔輸送層形成工程は、正孔輸送層32Bを形成する工程(第1正孔輸送層形成工程)と、その後に正孔輸送層32Cを形成する工程(第2正孔輸送層形成工程)とを含んでいる。正孔輸送層形成工程を実施する際、まず、青色画素3B、緑色画素3G、および赤色画素3Rに、共通の正孔輸送層32Bを形成する。正孔輸送層32Bは、図9の(a)に示すような、青色画素3B、緑色画素3G、および赤色画素3Rに対応したマスク開口211Bが設けられた蒸着マスク210Bを用いた塗り分け蒸着により、正孔注入層31上に、ストライプ状の島状に形成される。 In this embodiment, the hole transport layer forming step includes a step of forming the hole transport layer 32B (first hole transport layer forming step) and a step of subsequently forming the hole transport layer 32C (second hole transport layer). Transport layer forming step). When performing the hole transport layer forming step, first, a common hole transport layer 32B is formed for the blue pixel 3B, the green pixel 3G, and the red pixel 3R. The hole transport layer 32B is formed by separate deposition using a deposition mask 210B provided with a mask opening 211B corresponding to the blue pixel 3B, the green pixel 3G, and the red pixel 3R as shown in FIG. Are formed on the hole injection layer 31 in a stripe island shape.
 次に、シアン色画素3Cに、正孔輸送層32Bの膜厚よりも大きい膜厚を有する正孔輸送層32Cを形成する。正孔輸送層32Cは、図9の(b)に示すような、シアン色画素3Cに対応したマスク開口211Cが設けられた蒸着マスク210Cを用いた塗り分け蒸着により、正孔注入層31上に、ストライプ状の島状に形成される。 Next, a hole transport layer 32C having a thickness larger than the thickness of the hole transport layer 32B is formed in the cyan pixel 3C. The hole transport layer 32C is formed on the hole injection layer 31 by separate deposition using a deposition mask 210C provided with a mask opening 211C corresponding to the cyan pixel 3C as shown in FIG. 9B. Are formed in a stripe island shape.
 本実施形態では、図10の(a)~(c)に示す蒸着マスク200R、200G、および200Cを用いて、実施形態1と同様に、赤色燐光発光材料含有層34PR、緑色燐光発光材料含有層34PG、およびシアン色燐光発光材料含有層34PCをそれぞれ形成する。続いて、シアン色燐光発光材料含有層34PCを覆うように、図10の(d)に示すようにTFT基板10における表示領域1a全面に、青色蛍光発光材料含有層34FBを形成する(青色蛍光発光材料含有層形成工程)。本実施形態では、青色蛍光発光材料含有層34FBは、複数の画素3に跨がる共通発光層として形成される。このため、図10の(d)に示すように、青色蛍光発光材料含有層形成用の蒸着マスク200B2には、複数の画素3に共通するマスク開口201B2を有するオープンマスクが使用される。 In this embodiment, the red phosphorescent material-containing layer 34PR and the green phosphorescent material-containing layer are formed using the evaporation masks 200R, 200G, and 200C shown in FIGS. 34PG and a cyan phosphorescent material-containing layer 34PC are formed. Subsequently, a blue fluorescent light emitting material containing layer 34FB is formed on the entire display region 1a of the TFT substrate 10 as shown in FIG. 10D so as to cover the cyan phosphorescent light emitting material containing layer 34PC (blue fluorescent light emitting layer 34FB). Material-containing layer forming step). In the present embodiment, the blue fluorescent light emitting material containing layer 34FB is formed as a common light emitting layer extending over a plurality of pixels 3. Therefore, as shown in FIG. 10D, an open mask having a mask opening 201B2 common to the plurality of pixels 3 is used as the vapor deposition mask 200B2 for forming the blue fluorescent light emitting material-containing layer.
 なお、シアン色燐光発光材料含有層34PCと青色蛍光発光材料含有層34FBとは、平面視で同じパターンを有している。このため、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBは、蒸着マスク200Cと蒸着マスク200B2とに同じ蒸着マスクを用いて連続して形成してもよく、それぞれに専用の蒸着マスクを用いて形成してもよい。 The cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB have the same pattern in plan view. For this reason, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB may be continuously formed using the same evaporation mask as the evaporation mask 200C and the evaporation mask 200B2. It may be formed using a mask.
 <有機EL表示装置1の発光方法>
 図11は、実施形態2に係る有機EL表示装置1の発光層ユニット33の概略構成を、発光原理と合わせて模式的に示す図である。図12は、実施形態2に係る有機EL表示装置1のシアン色画素3Cにおける発光機構を説明する図である。なお、図11では、発光層ユニット33以外の図示を省略している。
<Light Emitting Method of Organic EL Display Device 1>
FIG. 11 is a diagram schematically illustrating a schematic configuration of the light emitting layer unit 33 of the organic EL display device 1 according to the second embodiment together with a light emitting principle. FIG. 12 is a diagram illustrating a light emitting mechanism in the cyan pixel 3C of the organic EL display device 1 according to the second embodiment. In FIG. 11, illustrations other than the light emitting layer unit 33 are omitted.
 青色画素3B、緑色画素3G、および赤色画素3Rにおける発光機構は、実施形態1のそれと同一である。そのため、詳細な説明を繰り返さない。 発 光 The light emission mechanism of the blue pixel 3B, the green pixel 3G, and the red pixel 3R is the same as that of the first embodiment. Therefore, detailed description will not be repeated.
 図11に示すように、陽極21から有機EL層22に注入された正孔(h)と、陰極23から有機EL層22に注入された電子(e)とは、シアン色画素3Cにおいて、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとで、それぞれ再結合して、それぞれ励起子が生成する。 As shown in FIG. 11, the holes (h + ) injected from the anode 21 into the organic EL layer 22 and the electrons (e ) injected from the cathode 23 into the organic EL layer 22 in the cyan pixel 3C. The cyan phosphorescent light emitting material containing layer 34PC and the blue fluorescent light emitting material containing layer 34FB recombine with each other to generate excitons.
 また、図12に示すように、シアン色画素3Cにおいて、青色燐光発光材料含有層34PBおよび青色蛍光発光材料含有層34FBでそれぞれ生成された励起子は、失活して基底状態(S状態)に戻る際にそれぞれ光を放出する。シアン色画素3Cでは、シアン色燐光発光材料含有層34PCで生成された三重項励起状態(T状態)の励起子(三重項励起子)がS状態に戻る際に生じるシアン色の燐光と、青色蛍光発光材料含有層34FBで生成された一重項励起状態(S状態)の励起子(一重項励起子)がS状態に戻る際に生じる青色の蛍光と、を含む光が出射される。 Further, as shown in FIG. 12, the cyan pixel 3C, the excitons generated respectively in blue phosphorescent material containing layer 34PB and blue fluorescent material-containing layer 34FB, deactivated to the ground state (S 0 state) Each emits light when returning to. In cyan pixel 3C, a phosphorescent cyan excitons cyan phosphorescent material containing layer triplet excited state generated in the 34PC (T 1 state) (triplet excitons) occurs when returning to S 0 state , the light including the blue fluorescence produced when the blue fluorescent material exciton-containing layer singlet excited state generated in 34FB (S 1 state) (singlet excitons) returns to S 0 state, the emitted You.
 このように、シアン色画素3Cにおける発光機構は、青色画素3Bにおける発光機構と同一である。しかし、正孔輸送層32Cの膜厚が正孔輸送層32Bの膜厚よりも大きいことから、シアン色画素3Cにおいて生じるシアン色の燐光の強度は、青色画素3Bにおいて生じるシアン色の燐光の強度よりも高い。これにより、青色画素3Bからは、より弱いシアン色の燐光と青色の蛍光とを含む青色の光が出射され、一方、シアン色画素3Cからは、より強いシアン色の燐光と青色の蛍光とを含むシアン色の光が出射される。したがって、本実施形態によれば、RBGCの各画素3を有する有機EL表示装置1を実現することができる。さらに、実施形態1と同様に、青色画素3Bおよびシアン色画素3Cの比率を適宜変更することによって、求められる商品特性に柔軟に応じた有機EL表示装置1を実現することもできる。 As described above, the light emitting mechanism of the cyan pixel 3C is the same as the light emitting mechanism of the blue pixel 3B. However, since the thickness of the hole transport layer 32C is larger than the thickness of the hole transport layer 32B, the intensity of the cyan phosphorescence generated in the cyan pixel 3C is lower than the intensity of the cyan phosphorescence generated in the blue pixel 3B. Higher than. Thereby, blue light including weaker cyan phosphorescence and blue fluorescence is emitted from the blue pixel 3B, while stronger cyan phosphorescence and blue fluorescence are emitted from the cyan pixel 3C. Cyan light is emitted. Therefore, according to the present embodiment, it is possible to realize the organic EL display device 1 having each pixel 3 of RBGC. Further, similarly to the first embodiment, by appropriately changing the ratio of the blue pixel 3B and the cyan pixel 3C, it is possible to realize the organic EL display device 1 flexibly corresponding to required product characteristics.
 本実施形態では、正孔輸送層32Bおよび正孔輸送層32Cの膜厚および材料のうち少なくとも一方が異なっていれば良い。例えば、正孔輸送層32Bの材料と正孔輸送層32Cの材料とが異なっていても良い。正孔輸送層32Bの材料は、α-NPDなどの正孔輸送層用の一般的な材料である。一方、正孔輸送層32Cの材料は、正孔輸送層32Bの材料よりもイオン化ポテンシャルエネルギーがより大きい(HOMO準位がより深い)材料であり、例えばMTDATAまたはmCPなどである。この場合も、正孔輸送層32Cの膜厚が正孔輸送層32Bの膜厚と異なる場合と同様の効果が得られる。HOMO準位が深いことは、マイナスの値が大きいことと同義である。 In the present embodiment, at least one of the thickness and the material of the hole transport layer 32B and the hole transport layer 32C may be different. For example, the material of the hole transport layer 32B and the material of the hole transport layer 32C may be different. The material of the hole transport layer 32B is a general material for a hole transport layer such as α-NPD. On the other hand, the material of the hole transport layer 32C is a material having a higher ionization potential energy (having a deeper HOMO level) than the material of the hole transport layer 32B, and is, for example, MTDATA or mCP. Also in this case, the same effect as when the thickness of the hole transport layer 32C is different from the thickness of the hole transport layer 32B can be obtained. A deep HOMO level is synonymous with a large negative value.
 〔実施形態3〕
 本実施形態では、実施形態2との相違点について説明する。実施形態1で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。また、以下では、表示装置の一例として、有機EL表示装置1について説明する。
[Embodiment 3]
In the present embodiment, differences from the second embodiment will be described. Components having the same functions as the components described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, the organic EL display device 1 will be described as an example of the display device.
 <有機EL表示装置の概略構成>
 図13は、実施形態3に係る有機EL表示装置1の要部の概略構成を示す断面図である。図13に示すように、実施形態2に係る有機EL表示装置1は、実施形態2と同様に、青色画素3B、シアン色画素3C、緑色画素3G、および赤色画素3Rを含んでいる。有機EL表示装置1の全体的な構成は、実施形態2に係る有機EL表示装置1の全体的な構成とほぼ同一である。例えば、青色画素3B、緑色画素3G、および赤色画素3Rの各構成は、実施形態1に係る青色画素3B、緑色画素3G、および赤色画素3Rの各構成と同一である。しかし、本実施形態では、シアン色画素3Cの構成が、実施形態2に係るシアン色画素3Cの構成と異なる。
<Schematic Configuration of Organic EL Display>
FIG. 13 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the third embodiment. As shown in FIG. 13, the organic EL display device 1 according to the second embodiment includes a blue pixel 3B, a cyan pixel 3C, a green pixel 3G, and a red pixel 3R, as in the second embodiment. The overall configuration of the organic EL display device 1 is substantially the same as the overall configuration of the organic EL display device 1 according to the second embodiment. For example, each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R is the same as each configuration of the blue pixel 3B, the green pixel 3G, and the red pixel 3R according to the first embodiment. However, in the present embodiment, the configuration of the cyan pixel 3C is different from the configuration of the cyan pixel 3C according to the second embodiment.
 シアン色画素3Cの発光層は、実施形態2と同様に、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBの双方を有する。したがって、シアン色画素3Cでは、実施形態2と同様に、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBが、それぞれ発光層として用いられる。また、青色蛍光発光材料含有層34FBおよびシアン色燐光発光材料含有層34PCは、実施形態2と同様に、全画素3に共通する共通層として、全画素3に跨がって、表示領域全体にベタ状に形成されている。 Similarly to the second embodiment, the light emitting layer of the cyan pixel 3C has both the cyan phosphorescent material containing layer 34PC and the blue fluorescent material containing layer 34FB. Therefore, in the cyan pixel 3C, similarly to the second embodiment, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are used as light-emitting layers. Further, the blue fluorescent light emitting material containing layer 34FB and the cyan phosphorescent light emitting material containing layer 34PC are common layers common to all the pixels 3 and extend over all the pixels 3 as in the second embodiment. It is formed in a solid shape.
 正孔輸送層32の構成は、実施形態1と同様である。すなわち、有機EL層22は、発光層と陽極21との間において、全画素3に跨がって、表示領域全体にベタ状に形成される正孔輸送層32を有する。 構成 The configuration of the hole transport layer 32 is the same as that of the first embodiment. That is, the organic EL layer 22 has the hole transport layer 32 formed in a solid shape over the entire display region across the pixels 3 between the light emitting layer and the anode 21.
 本実施形態では、青色画素3Bおよびシアン色画素3Cにおいて、陽極21の膜厚が互いに異なっている。詳細には、シアン色画素3Cを構成する透光性電極21bの膜厚が、青色画素3Bを構成する透光性電極21bの膜厚よりも大きい。シアン色画素3Cを構成する透光性電極21bの膜厚と、青色画素3Bを構成する透光性電極21bの膜厚との差は、5~10nmであることが好ましい。 で は In the present embodiment, the thickness of the anode 21 is different from each other in the blue pixel 3B and the cyan pixel 3C. Specifically, the film thickness of the light-transmitting electrode 21b forming the cyan pixel 3C is larger than the film thickness of the light-transmitting electrode 21b forming the blue pixel 3B. The difference between the thickness of the translucent electrode 21b forming the cyan pixel 3C and the thickness of the translucent electrode 21b forming the blue pixel 3B is preferably 5 to 10 nm.
 <有機EL表示装置1の製造方法>
 本実施形態に係る有機EL表示装置1の製造工程の大半は、実施形態1に係る有機EL表示装置1の製造工程と同一である。しかし、本実施形態では、陽極形成工程およびシアン色燐光発光材料含有層形成工程が、実施形態1と異なっている。
<Manufacturing method of organic EL display device 1>
Most of the manufacturing process of the organic EL display device 1 according to the present embodiment is the same as the manufacturing process of the organic EL display device 1 according to the first embodiment. However, in this embodiment, the anode forming step and the cyan phosphorescent material-containing layer forming step are different from those of the first embodiment.
 本実施形態に係る陽極形成工程では、青色画素3Bおよびシアン色画素3Cに、膜厚が異なる陽極21をそれぞれ形成する。詳細には、第1膜厚を有する陽極21を青色画素3Bに形成すると共に、第1膜厚よりも大きい第2膜厚を有する陽極21をシアン色画素3Cに形成する。シアン色燐光発光材料含有層形成工程は、実施形態2と同一であるため、詳細な説明を繰り返さない。 In the anode forming step according to the present embodiment, the anodes 21 having different thicknesses are formed on the blue pixel 3B and the cyan pixel 3C, respectively. Specifically, the anode 21 having the first thickness is formed on the blue pixel 3B, and the anode 21 having the second thickness larger than the first thickness is formed on the cyan pixel 3C. Since the step of forming the cyan phosphorescent material-containing layer is the same as that of the second embodiment, the detailed description will not be repeated.
 <有機EL表示装置1の発光方法>
 本実施形態に係る各画素3の発光機構は、実施形態2のそれと同一であるため、詳細な説明を繰り返さない。本実施形態では、シアン色画素3Cにおける発光機構は、青色画素3Bにおける発光機構と同一である。しかし、シアン色画素3Cを構成する陽極21の膜厚が、青色画素3Bを構成する陽極21膜厚よりも大きいことから、シアン色画素3Cにおいて生じるシアン色の燐光の強度は、青色画素3Bにおいて生じるシアン色の燐光の強度よりも高い。これにより、青色画素3Bからは、より弱いシアン色の燐光と青色の蛍光とを含む青色の光が出射され、一方、シアン色画素3Cからは、より強いシアン色の燐光と青色の蛍光とを含むシアン色の光が出射される。したがって、本実施形態によれば、RBGCの各画素3を有する有機EL表示装置1を実現することができる。さらに、実施形態1と同様に、青色画素3Bおよびシアン色画素3Cの比率を適宜変更することによって、求められる商品特性に柔軟に応じた有機EL表示装置1を実現することもできる。
<Light Emitting Method of Organic EL Display Device 1>
The light emitting mechanism of each pixel 3 according to the present embodiment is the same as that of the second embodiment, and thus the detailed description will not be repeated. In the present embodiment, the light emitting mechanism of the cyan pixel 3C is the same as the light emitting mechanism of the blue pixel 3B. However, since the thickness of the anode 21 forming the cyan pixel 3C is larger than the thickness of the anode 21 forming the blue pixel 3B, the intensity of the cyan phosphorescence generated in the cyan pixel 3C is reduced in the blue pixel 3B. It is higher than the intensity of the resulting cyan phosphorescence. Thereby, blue light including weaker cyan phosphorescence and blue fluorescence is emitted from the blue pixel 3B, while stronger cyan phosphorescence and blue fluorescence are emitted from the cyan pixel 3C. Cyan light is emitted. Therefore, according to the present embodiment, it is possible to realize the organic EL display device 1 having each pixel 3 of RBGC. Further, similarly to the first embodiment, by appropriately changing the ratio of the blue pixel 3B and the cyan pixel 3C, it is possible to realize the organic EL display device 1 flexibly corresponding to required product characteristics.
 <変形例>
 図14は、実施形態3に係る有機EL表示装置1の要部の他の概略構成を示す断面図である。有機EL表示装置1は、図14に示すように、青色画素3Bおよびシアン色画素3Cにおいて、陽極21の材料が異なる構成であってもよい。詳細には、図14に示す有機EL表示装置1では、青色画素3Bを構成する陽極21は、反射電極21aおよび透光性電極21bを有し、シアン色画素3Cを構成する陽極21は、反射電極21a、透光性電極21b、および透光性電極21cを有する。シアン色画素3Cにおいて、透光性電極21c、透光性電極21bの上に形成される。このように、青色画素3Bを構成する陽極21は、1層の透光性電極21bを有し、シアン色画素3Cを構成する陽極21は、2層の透光性電極21bおよび透光性電極21cを有する。
<Modification>
FIG. 14 is a cross-sectional view illustrating another schematic configuration of a main part of the organic EL display device 1 according to the third embodiment. As shown in FIG. 14, the organic EL display device 1 may have a configuration in which the material of the anode 21 is different between the blue pixel 3B and the cyan pixel 3C. More specifically, in the organic EL display device 1 shown in FIG. 14, the anode 21 forming the blue pixel 3B has a reflective electrode 21a and a translucent electrode 21b, and the anode 21 forming the cyan pixel 3C is a reflective pixel. It has an electrode 21a, a translucent electrode 21b, and a translucent electrode 21c. In the cyan pixel 3C, it is formed on the light transmitting electrodes 21c and 21b. As described above, the anode 21 forming the blue pixel 3B has one layer of the light-transmitting electrode 21b, and the anode 21 forming the cyan pixel 3C has two layers of the light-transmitting electrode 21b and the light-transmitting electrode. 21c.
 図14では、透光性電極21cの材料は、透光性電極21bの材料と異なる。例えば、透光性電極21bの材料はITOであり、透光性電極21cの材料はIZOである。このように、青色画素3Bを構成する陽極21は、ITO層からなる単層構造を有し、シアン色画素3Cを構成する陽極21は、ITO層およびIZO層からなる積層構造を有する。 In FIG. 14, the material of the translucent electrode 21c is different from the material of the translucent electrode 21b. For example, the material of the translucent electrode 21b is ITO, and the material of the translucent electrode 21c is IZO. As described above, the anode 21 forming the blue pixel 3B has a single-layer structure made of an ITO layer, and the anode 21 forming the cyan pixel 3C has a laminated structure made of an ITO layer and an IZO layer.
 青色画素3Bおよびシアン色画素3Cにおいて、透光性電極21bの膜厚は同一である。したがって、シアン色画素3Cを構成する透光性電極21bの膜厚と透光性電極21cの膜厚の合計は、青色画素3Bを構成する透光性電極21bの膜厚よりも大きい。このように、図14に示す有機EL表示装置1では、青色画素3Bおよびシアン色画素3Cにおいて、陽極21の膜厚および材料の双方が異なっている。 膜厚 In the blue pixel 3B and the cyan pixel 3C, the film thickness of the translucent electrode 21b is the same. Accordingly, the sum of the thickness of the light-transmitting electrode 21b constituting the cyan pixel 3C and the thickness of the light-transmitting electrode 21c is larger than the thickness of the light-transmitting electrode 21b constituting the blue pixel 3B. As described above, in the organic EL display device 1 shown in FIG. 14, both the film thickness and the material of the anode 21 are different between the blue pixel 3B and the cyan pixel 3C.
 本変形例における各画素3の発光機構は、図13に示す有機EL表示装置1と同一である。本変形例でも、図13に示す有機EL表示装置1と同様に、青色画素3Bからは、より弱いシアン色の燐光と青色の蛍光とを含む青色の光が出射され、一方、シアン色画素3Cからは、より強いシアン色の燐光と青色の蛍光とを含むシアン色の光が出射される。したがって、本変形例によれば、RBGCの各画素3を有する有機EL表示装置1を実現することができる。さらに、実施形態1と同様に、青色画素3Bおよびシアン色画素3Cの比率を適宜変更することによって、求められる商品特性に柔軟に応じた有機EL表示装置1を実現することもできる。 発 光 The light emission mechanism of each pixel 3 in this modification is the same as that of the organic EL display device 1 shown in FIG. Also in this modification, similarly to the organic EL display device 1 shown in FIG. 13, blue light including weaker cyan phosphorescence and blue fluorescence is emitted from the blue pixel 3B, while the cyan pixel 3C Emits cyan light including stronger cyan phosphorescence and blue fluorescence. Therefore, according to the present modification, the organic EL display device 1 having each pixel 3 of RBGC can be realized. Further, similarly to the first embodiment, by appropriately changing the ratio of the blue pixel 3B and the cyan pixel 3C, it is possible to realize the organic EL display device 1 flexibly corresponding to required product characteristics.
 本実施形態では、青色画素3Bおよびシアン色画素3Cにおいて、陽極21の材料および膜厚のうち少なくとも一方が異なって入ればよい。したがって、例えば、青色画素3Bの陽極21を構成する透光性電極21bの膜厚は、シアン色画素3Cの陽極21を構成する透光性電極21bの膜厚と透光性電極21cの膜厚との合計に一致してもよい。 In the present embodiment, at least one of the material and the thickness of the anode 21 may be different between the blue pixel 3B and the cyan pixel 3C. Therefore, for example, the film thickness of the light-transmitting electrode 21b forming the anode 21 of the blue pixel 3B is determined by the film thickness of the light-transmitting electrode 21b forming the anode 21 of the cyan pixel 3C and the film thickness of the light-transmitting electrode 21c. May be equal to the sum of
 <組み合わせ例>
 実施形態1~3に係る各構成は、任意に組み合わせ可能である。したがって、実施形態1~3に係る各構成を任意に組み合わせて得られる有機EL表示装置1も、本開示の技術範囲に含まれる。
<Combination example>
Each configuration according to the first to third embodiments can be arbitrarily combined. Therefore, the organic EL display device 1 obtained by arbitrarily combining the configurations according to the first to third embodiments is also included in the technical scope of the present disclosure.
 〔実施形態4〕
 本実施形態では、実施形態1との相違点について説明するものとし、実施形態1で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。また、以下では、表示装置の一例として、有機EL表示装置1について説明する。
[Embodiment 4]
In the present embodiment, differences from the first embodiment will be described. Components having the same functions as the components described in the first embodiment will be denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, the organic EL display device 1 will be described as an example of the display device.
 <有機EL表示装置1の概略構成>
 本実施形態に係る有機EL表示装置1は、青色蛍光発光材料含有層34FBにおける青色蛍光発光材料が、三重項-三重項消滅(TTA(Triplet-Triplet-Annihilation))現象により三重項励起子から一重項励起子を生成する青色遅延蛍光発光材料(青色TTA材料、遅延蛍光発光材料)を含むと共に、青色蛍光発光材料含有層34FBの厚みが、デクスター機構(電子交換相互作用)によるエネルギー移動(デクスター遷移)が起こる範囲内である点を除けば、実施形態1に係る有機EL表示装置1と同じである。
<Schematic Configuration of Organic EL Display Device 1>
In the organic EL display device 1 according to the present embodiment, the blue fluorescent light-emitting material in the blue fluorescent light-emitting material containing layer 34FB is changed from a triplet exciton to a singlet by a triplet-triplet annihilation (TTA) phenomenon. In addition to containing a blue delayed fluorescent light-emitting material (blue TTA material, delayed fluorescent light-emitting material) that generates a term exciton, the thickness of the blue fluorescent light-emitting material-containing layer 34FB is determined by the energy transfer (Dexter transition) by the Dexter mechanism (electron exchange interaction). ) Is the same as the organic EL display device 1 according to the first embodiment except that it is within the range in which ()) occurs.
 青色遅延蛍光発光材料は、三重項励起子の衝突融合によりTTA現象を生じさせることで、ホスト材料と協働して、もしくは単独で、T準位からS準位へ再励起して発光する。 The blue delayed fluorescent material emits light by re-exciting from the T 1 level to the S 1 level in cooperation with the host material or alone by causing a TTA phenomenon by collisional fusion of triplet excitons. I do.
 青色遅延蛍光発光材料としては、例えば、4,4’-ビス(2,2’-ジフェニルビニル)-ビフェニル(DPVBi)等の芳香族ジメチリディン化合物、ジスチリルジアミン系化合物等のジスチリルアミン誘導体、ピレン誘導体、フルオランテン誘導体、ペリレンおよびペリレン誘導体、アントラセン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、クリセン誘導体、フェナントレン誘導体、ジスチリルベンゼン誘導体等が挙げられる。 Examples of the blue delayed fluorescent light emitting material include aromatic dimethylidin compounds such as 4,4'-bis (2,2'-diphenylvinyl) -biphenyl (DPVBi), distyrylamine derivatives such as distyryldiamine-based compounds, and pyrene. Derivatives, fluoranthene derivatives, perylene and perylene derivatives, anthracene derivatives, benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, chrysene derivatives, phenanthrene derivatives, distyrylbenzene derivatives and the like.
 なお、このように青色蛍光発光材料が青色遅延蛍光発光材料を含む場合、シアン色燐光発光材料含有層34PCにおけるシアン色燐光発光材料のT準位は、青色遅延蛍光発光材料のT準位よりも高いことが望ましい。 In the case where this manner blue fluorescent material comprises a blue delayed fluorescence material, T 1 level of the cyan phosphorescent material in cyan phosphorescent material containing layer 34PC is, T 1 level of the blue delayed fluorescence material Higher than that.
 デクスター遷移は、隣接している分子同士の間でのみ生じる。このため、青色蛍光発光材料含有層34FBの層厚が厚いと、発光効率が低下するおそれがある。したがって、このようにデクスター遷移を利用する場合、青色蛍光発光材料含有層34FBの層厚は、5nm以下とすることが望ましい。また、青色蛍光発光材料含有層34FB内でTTAを効率良く起こすためには、青色蛍光発光材料含有層34FBの厚さを、2nm以下とすることが望ましく、1nm以下とすることがより望ましい。 Dexter transition occurs only between adjacent molecules. Therefore, when the layer thickness of the blue fluorescent light emitting material containing layer 34FB is large, the luminous efficiency may be reduced. Therefore, when utilizing the Dexter transition in this way, it is desirable that the layer thickness of the blue fluorescent light emitting material containing layer 34FB be 5 nm or less. In order to efficiently generate TTA in the blue fluorescent light emitting material containing layer 34FB, the thickness of the blue fluorescent light emitting material containing layer 34FB is preferably 2 nm or less, more preferably 1 nm or less.
 <有機EL表示装置1の発光方法>
 図15は、実施形態4に係る有機EL表示装置1の青色画素3Bにおける発光機構を説明する図である。
<Light Emitting Method of Organic EL Display Device 1>
FIG. 15 is a diagram illustrating a light emitting mechanism in the blue pixel 3B of the organic EL display device 1 according to the fourth embodiment.
 図15に示すように、本実施形態でも、陽極21から有機EL層22に注入された正孔(h)と、陰極23から有機EL層22に注入された電子(e)とは、青色画素3Bにおいて、シアン色燐光発光材料含有層34PCと、青色蛍光発光材料含有層34FBとで、それぞれ再結合して、それぞれ励起子が生成する。 As shown in FIG. 15, also in the present embodiment, the holes (h + ) injected from the anode 21 into the organic EL layer 22 and the electrons (e ) injected from the cathode 23 into the organic EL layer 22 are: In the blue pixel 3B, the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB are recombined with each other to generate excitons.
 なお、本実施形態でも、青色蛍光発光材料含有層34FBにおいて励起子が一重項励起状態(S状態)として生成される確率は25%であり、三重項励起状態(T状態)として生成される確率は75%である。また、シアン色燐光発光材料含有層34PCにおいて励起子が三重項励起状態(T状態)として生成される確率は理論的には100%である。 Also in this embodiment, the probability of exciton in the blue fluorescent material-containing layer 34FB is generated as the singlet excited state (S 1 state) is 25%, it is generated as a triplet excited state (T 1 state) Probability is 75%. Also, the probability of excitons in cyan phosphorescent material containing layer 34PC is produced as a triplet excited state (T 1 state) is theoretically 100%.
 シアン色燐光発光材料含有層34PCで生成された三重項励起子の一部は、基底状態(S)に戻る際に、シアン色の波長領域(第2波長領域)の光を放出する。シアン色燐光発光材料含有層34PCで生成された三重項励起子の残りの一部は、青色蛍光発光材料含有層34FBの最低三重項励起状態のエネルギー準位(T準位)に、デクスター遷移(TTET:Triplet-Triplet Energy Transfer)する。 Some of the triplet excitons generated in the cyan phosphorescent material-containing layer 34PC emit light in the cyan wavelength region (second wavelength region) when returning to the ground state (S 0 ). The remaining part of the triplet excitons generated in the cyan phosphorescent material containing layer 34PC is a blue fluorescent material energy level of the lowest triplet excited state of the containing layer 34FB (T 1 level position), Dexter transition (TTET: Triplet-Triplet Energy Transfer).
 そして、このようにシアン色燐光発光材料含有層34PCのT準位から青色蛍光発光材料含有層34FBのT準位にデクスター遷移された励起子は、TTAを経て、シアン色燐光発光材料含有層34PCのS準位および青色蛍光発光材料含有層34FBのT準位よりも高いエネルギー準位を有する青色蛍光発光材料含有層34FBのS準位にアップコンバージョンされる。 And thus excitons from T 1 level position of cyan phosphorescent material containing layer 34PC was Dexter transition to T 1 level position of the blue fluorescent material-containing layer 34FB undergoes a TTA, containing cyan phosphorescent material It is up-converted to S 1 level of the blue fluorescent material-containing layer 34FB having a higher energy level than the T 1 level of the S 1 level position and a blue fluorescent material-containing layer 34FB layer 34PC.
 この結果、青色画素3Bから出射される光には、(i)シアン色燐光発光材料含有層34PCで生成された三重項励起子が基底状態(S)に戻る際に生じるシアン色の燐光、(ii)青色蛍光発光材料含有層34FBで生成された一重項励起子が基底状態(S)に戻る際に生じる青色の蛍光、(iii)シアン色燐光発光材料含有層34PCで生成された三重項励起子のエネルギーの一部が、デクスター機構により、青色蛍光発光材料含有層34FBで生成された三重項励起子に移動し、TTAにより、青色蛍光発光材料含有層34FBで生成された三重項励起子から一重項励起子にアップコンバージョンすることで生成された一重項励起子が基底状態に戻る際に生じる青色の蛍光、が含まれる。 As a result, the light emitted from the blue pixel 3B includes (i) cyan phosphorescence generated when the triplet exciton generated in the cyan phosphorescent material-containing layer 34PC returns to the ground state (S 0 ); (Ii) blue fluorescence generated when the singlet exciton generated in the blue fluorescent material-containing layer 34FB returns to the ground state (S 0 ); (iii) triple light generated in the cyan phosphorescent material-containing layer 34PC A part of the energy of the term exciton is transferred to the triplet exciton generated in the blue fluorescent material-containing layer 34FB by the Dexter mechanism, and the triplet exciton generated in the blue fluorescent material-containing layer 34FB by TTA. Blue fluorescence generated when the singlet exciton, which is generated by up-conversion from the exciton to the singlet exciton, returns to the ground state.
 このように、青色画素3Bから出射される光が、シアン色燐光発光材料含有層34PCからの三重項励起子のエネルギー移動(デクスター遷移)およびTTAを経たアップコンバージョンにより青色蛍光発光材料含有層34FBから発光される蛍光をさらに含むことで、青色蛍光発光材料含有層34FBの内部量子効率を、理論上40%にまで高めることができる。このため、本実施形態によれば、青色画素3Bの発光効率をさらに向上させることができる。 As described above, the light emitted from the blue pixel 3B is transferred from the blue fluorescent light emitting material containing layer 34FB by the energy transfer (Dexter transition) of the triplet exciton from the cyan phosphorescent material containing layer 34PC and the upconversion via TTA. By further including the emitted fluorescent light, the internal quantum efficiency of the blue fluorescent light emitting material containing layer 34FB can theoretically be increased to 40%. For this reason, according to the present embodiment, the luminous efficiency of the blue pixel 3B can be further improved.
 なお、青色蛍光発光材料含有層34FBがホスト材料を含む場合、ホスト材料のT準位は、青色蛍光発光材料のT準位よりも小さくてもよい。これにより、三重項励起子がホスト材料に集中し、三重項励起子の密度が高まる。この結果、三重項励起子同士が効率的に衝突し、一重項励起子が効率的に生成される。 Incidentally, if the blue fluorescent material-containing layer 34FB comprises a host material, T 1 level of the host material may be smaller than the T 1 level of the blue fluorescent material. Thereby, the triplet excitons are concentrated on the host material, and the density of the triplet excitons is increased. As a result, triplet excitons collide efficiently, and singlet excitons are efficiently generated.
 また、青色蛍光発光材料のS準位は、ホスト材料のS準位よりも小さいことが好ましい。これにより、TTAによって生成されたホスト材料の一重項励起子が青色蛍光発光材料にエネルギー移動し、青色蛍光発光材料が蛍光発光する。 Further, S 1 level of the blue fluorescent material is preferably smaller than S 1 level of the host material. Thereby, the singlet exciton of the host material generated by TTA transfers energy to the blue fluorescent light emitting material, and the blue fluorescent light emitting material emits fluorescent light.
 〔実施形態5〕
 本実施形態では、実施形態1および4との相違点について説明する。実施形態1または4で説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。また、以下では、表示装置の一例として、有機EL表示装置1について説明する。
[Embodiment 5]
In this embodiment, differences from Embodiments 1 and 4 will be described. Components having the same functions as the components described in the first or fourth embodiment are denoted by the same reference numerals, and description thereof will be omitted. Hereinafter, the organic EL display device 1 will be described as an example of the display device.
 <有機EL表示装置の概略構成>
 図16は、実施形態5に係る有機EL表示装置1の要部の概略構成を示す断面図である。
<Schematic Configuration of Organic EL Display>
FIG. 16 is a cross-sectional view illustrating a schematic configuration of a main part of the organic EL display device 1 according to the fifth embodiment.
 図16に示すように、本実施形態に係る有機EL表示装置1は、青色画素3Bにおいて、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、陰極23側に位置する青色蛍光発光材料含有層34FBと陰極23との間に、青色蛍光発光材料含有層34FBに隣接して正孔ブロック層37を有している点を除けば、実施形態1または4に係る有機EL表示装置1と同じである。 As shown in FIG. 16, in the organic EL display device 1 according to the present embodiment, in the blue pixel 3B, of the cyan phosphorescent material-containing layer 34PC and the blue fluorescent material-containing layer 34FB, the blue The organic EL display according to Embodiment 1 or 4, except that a hole blocking layer 37 is provided between the fluorescent light emitting material containing layer 34FB and the cathode 23 and adjacent to the blue fluorescent light emitting material containing layer 34FB. It is the same as the device 1.
 本実施形態に係る有機EL表示装置1の有機EL層22は、陽極21側から、正孔注入層31、正孔輸送層32、複数の発光材料含有層34からなる発光層ユニット33、正孔ブロック層37、電子輸送層35、電子注入層36が、この順に積層された構成を有している。 The organic EL layer 22 of the organic EL display device 1 according to this embodiment includes, from the anode 21 side, a hole injection layer 31, a hole transport layer 32, a light emitting layer unit 33 including a plurality of light emitting material containing layers 34, and holes. It has a configuration in which a block layer 37, an electron transport layer 35, and an electron injection layer 36 are stacked in this order.
 本実施形態において、正孔ブロック層37は、複数の画素3のうち青色画素3Bのみに設けられている。実施形態1で説明したように、シアン色燐光発光材料含有層34PCは、緑色燐光発光材料含有層34PGおよび赤色燐光発光材料含有層34PRに対する正孔ブロック層として機能する。このため、緑色画素3Gおよび赤色画素3Rに、正孔ブロック層37を別途設ける必要はない。また、本実施形態では、シアン色画素3Cは青色蛍光発光材料含有層34FBを含まないので、シアン色画素3Cに、正孔ブロック層37を別途設ける必要はない。 In the present embodiment, the hole blocking layer 37 is provided only in the blue pixel 3B among the plurality of pixels 3. As described in the first embodiment, the cyan phosphorescent material-containing layer 34PC functions as a hole blocking layer for the green phosphorescent material-containing layer 34PG and the red phosphorescent material-containing layer 34PR. Therefore, it is not necessary to separately provide the hole blocking layer 37 for the green pixel 3G and the red pixel 3R. In the present embodiment, since the cyan pixel 3C does not include the blue fluorescent light emitting material containing layer 34FB, it is not necessary to separately provide the hole blocking layer 37 in the cyan pixel 3C.
 正孔ブロック層37は、青色蛍光発光材料含有層34FBにおける陰極23側に設けられる。正孔ブロック層37は、シアン色燐光発光材料含有層34PCおよび青色蛍光発光材料含有層34FBのうち、正孔ブロック層37に隣接する層(図16に示す例では青色蛍光発光材料含有層34FB)に含まれる材料(ホスト材料および発光材料)よりも深いHOMO準位を有する材料で形成されていればよく、その膜厚は、特に限定されない。 The hole blocking layer 37 is provided on the cathode 23 side of the blue fluorescent light emitting material containing layer 34FB. The hole blocking layer 37 is a layer adjacent to the hole blocking layer 37 among the cyan phosphorescent material-containing layer 34PC and the blue fluorescent light-emitting material-containing layer 34FB (the blue fluorescent light-emitting material-containing layer 34FB in the example shown in FIG. 16). May be formed of a material having a HOMO level deeper than the materials (host material and light-emitting material) contained in, and the thickness thereof is not particularly limited.
 正孔ブロック層37の材料には、例えば、電子輸送性材料を用いることができる。電気輸送性材料としては、例えば、前記例示の材料を用いることができる。 電子 As the material of the hole blocking layer 37, for example, an electron transporting material can be used. As the electric transporting material, for example, the materials exemplified above can be used.
 <有機EL表示装置1の製造方法>
 図17は、実施形態5に係る有機EL表示装置1の製造工程における正孔ブロック層形成工程を示す平面図である。
<Manufacturing method of organic EL display device 1>
FIG. 17 is a plan view illustrating a hole blocking layer forming step in the manufacturing process of the organic EL display device 1 according to the fifth embodiment.
 本実施形態に係る有機EL表示装置1の製造工程は、有機EL素子作製工程が、青色画素3Bに、青色蛍光発光材料含有層34FBにおける陰極23側に設けられる正孔ブロック層37を形成(積層)する正孔ブロック層形成工程を含む点を除けば、実施形態1に係る有機EL表示装置1の製造工程と同じである。 In the manufacturing process of the organic EL display device 1 according to the present embodiment, the organic EL element manufacturing process forms the hole blocking layer 37 provided on the blue pixel 3B on the side of the cathode 23 in the blue fluorescent light emitting material containing layer 34FB (lamination). This is the same as the manufacturing process of the organic EL display device 1 according to the first embodiment except that a hole blocking layer forming process is performed.
 本実施形態に係る有機EL表示装置1として図16に示す有機EL表示装置1を製造する場合、図17に示す正孔ブロック層形成工程は、青色蛍光発光材料含有層34FBと正孔ブロック層37とが隣接して積層されるように、図7の(d)に示す青色蛍光発光材料含有層形成工程に連続して行われる。 When the organic EL display device 1 shown in FIG. 16 is manufactured as the organic EL display device 1 according to the present embodiment, the hole blocking layer forming step shown in FIG. 17 includes the blue fluorescent light emitting material containing layer 34FB and the hole blocking layer 37. Are successively performed in the blue fluorescent light emitting material containing layer forming step shown in FIG.
 図17に示す正孔ブロック層形成工程では、青色画素3Bに対応したマスク開口201HBが設けられた蒸着マスク200HBを用いた塗り分け蒸着により、青色蛍光発光材料含有層34FB上に、ストライプ状の島状の正孔ブロック層37を形成する。 In the hole block layer forming step shown in FIG. 17, the stripe-shaped islands are formed on the blue fluorescent light emitting material-containing layer 34FB by separate deposition using a deposition mask 200HB provided with a mask opening 201HB corresponding to the blue pixel 3B. A hole-blocking layer 37 is formed.
 なお、図7の(a)~(d)と同じく、図17では、蒸着マスク200HBが、マスク固定蒸着用の蒸着マスクである場合を例に挙げて図示している。しかしながら、本実施形態は、これに限定されるものではなく、蒸着マスク200HBは、形成される正孔ブロック層37の一部に対応したマスク開口を有する、スキャン蒸着用の蒸着マスクであってもよい。 Note that, similarly to FIGS. 7A to 7D, FIG. 17 shows an example in which the evaporation mask 200HB is an evaporation mask for mask fixed evaporation. However, the present embodiment is not limited to this, and the deposition mask 200HB may be a deposition mask for scan deposition having a mask opening corresponding to a part of the hole blocking layer 37 to be formed. Good.
 その後、実施形態1と同様にして、電子輸送層形成工程、電子注入層形成工程、陰極形成工程、封止工程を行うことで、図16に示す有機EL表示装置1を製造することができる。 Then, the organic EL display device 1 shown in FIG. 16 can be manufactured by performing the electron transport layer forming step, the electron injection layer forming step, the cathode forming step, and the sealing step in the same manner as in the first embodiment.
 本実施形態によれば、上述したように、青色画素3Bにおいて、陰極23側に位置する青色蛍光発光材料含有層34FBと陰極23との間に、青色蛍光発光材料含有層34FBに隣接して正孔ブロック層37を設けることで、青色画素3Bにおいて、青色蛍光発光材料含有層34FBからの正孔漏れを防止することができる。 According to the present embodiment, as described above, in the blue pixel 3 </ b> B, between the blue fluorescent light emitting material containing layer 34 FB located on the cathode 23 side and the cathode 23, the positive electrode is disposed adjacent to the blue fluorescent light emitting material containing layer 34 FB. By providing the hole blocking layer 37, it is possible to prevent holes from leaking from the blue fluorescent light emitting material containing layer 34FB in the blue pixel 3B.
 このため、本実施形態によれば、各画素3において、正孔漏れによる発光効率の低下を抑制することができる。 Therefore, according to the present embodiment, it is possible to suppress a decrease in luminous efficiency due to hole leakage in each pixel 3.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成できる。 The present disclosure is not limited to the embodiments described above, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present disclosure. Further, new technical features can be formed by combining the technical means disclosed in each embodiment.
 本開示に係る表示装置は、上述した有機EL表示装置1に限らず、各種の表示装置としても実現され得る。 The display device according to the present disclosure is not limited to the organic EL display device 1 described above, and may be realized as various display devices.
 〔まとめ〕
 本発明の態様1に係る表示装置は、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する構成である。
[Summary]
The display device according to the first aspect of the present invention includes a plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light. A display device comprising, for each pixel, an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode, wherein the first pixel includes the light-emitting layer A first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescent light; and a shorter wavelength than the cyan phosphorescent light provided on the cathode side in the first phosphorescent material-containing layer. A fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescence having a peak wavelength of, and the second pixel has the first phosphorescent light-emitting material-containing layer as the light-emitting layer, The first phosphorescent material-containing layer is common to the plurality of pixels. A common layer provided in the first pixel, wherein the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer emit light, and in the second pixel, the first phosphorescent material-containing layer emits light. Configuration.
 本発明の態様2に係る表示装置は、前記の態様1において、前記第2画素は、前記発光層として、前記蛍光発光材料含有層をさらに有し、前記共通層には、前記前記蛍光発光材料含有層がさらに含まれ、前記第2画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光する構成としてもよい。 In the display device according to an aspect 2 of the present invention, in the aspect 1, the second pixel further includes the fluorescent light emitting material-containing layer as the light emitting layer, and the common layer includes the fluorescent light emitting material. In the second pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer may emit light.
 本発明の態様3に係る表示装置は、前記の態様2において、前記有機層は、前記発光層と前記陽極との間において、前記第1画素および前記第2画素にそれぞれ個別に設けられる第1正孔輸送層および第2正孔輸送層を有し、前記第1正孔輸送層および前記第2正孔輸送層の膜厚および材料の少なくとも一方が互いに異なる構成としてもよい。 The display device according to aspect 3 of the present invention is the display device according to aspect 2, wherein the organic layer is provided between the light-emitting layer and the anode, the first pixel and the first pixel being individually provided for the second pixel and the second pixel, respectively. It may have a hole transport layer and a second hole transport layer, and at least one of the thickness and the material of the first hole transport layer and the second hole transport layer may be different from each other.
 本発明の態様4に係る表示装置は、前記の態様3において、前記第2正孔輸送層の膜厚は、前記第1正孔輸送層との膜厚よりも大きい構成としてもよい。 In the display device according to the fourth aspect of the present invention, in the third aspect, the thickness of the second hole transport layer may be larger than the thickness of the first hole transport layer.
 本発明の態様5に係る表示装置は、前記の態様4において、前記第2正孔輸送層の膜厚と、前記第1正孔輸送層との膜厚との差は、5~25nmである構成としてもよい。 In the display device according to a fifth aspect of the present invention, in the fourth aspect, the difference between the film thickness of the second hole transport layer and the film thickness of the first hole transport layer is 5 to 25 nm. It may be configured.
 本発明の態様6に係る表示装置は、前記の態様3~5のいずれかにおいて、前記第2正孔輸送層の材料は、前記第1正孔輸送層の材料よりも高いイオン化ポテンシャルエネルギーを有する構成としてもよい。 The display device according to an aspect 6 of the present invention, in any one of the aspects 3 to 5, wherein the material of the second hole transport layer has a higher ionization potential energy than the material of the first hole transport layer. It may be configured.
 本発明の態様7に係る表示装置は、前記の態様3~6のいずれかにおいて、前記第1正孔輸送層の材料は、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)であり、前記第2正孔輸送層の材料は、4,4’,4”-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)またはである1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)である構成としてもよい。 The display device according to aspect 7 of the present invention, in any one of aspects 3 to 6, wherein the material of the first hole transport layer is N, N′-di (naphthalen-1-yl) -N, N '-Diphenyl-benzidine (α-NPD), and the material of the second hole transport layer is 4,4', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenyl The structure may be amine (MTDATA) or 1,3-bis (carbazol-9-yl) benzene (mCP).
 本発明の態様8に係る表示装置は、前記の態様1~7のいずれかにおいて、前記第1画素および前記第2画素において、前記陽極の膜厚および材料のうち少なくとも一方が異なる構成としてもよい。 A display device according to an eighth aspect of the present invention, in any one of the first to seventh aspects, may be configured such that at least one of the thickness and the material of the anode is different between the first pixel and the second pixel. .
 本発明の態様9に係る表示装置は、前記の態様8において、前記第2画素を構成する前記陽極の膜厚は、前記第1画素を構成する前記陽極の膜厚よりも大きい構成としてもよい。 In the display device according to an aspect 9 of the present invention, in the aspect 8, the thickness of the anode forming the second pixel may be larger than the thickness of the anode forming the first pixel. .
 本発明の態様10に係る表示装置は、前記の態様9において、前記第2画素を構成する前記陽極の膜厚と、前記第1画素を構成する前記陽極の膜厚との差は、5~10nmである構成としてもよい。 The display according to an aspect 10 of the present invention, in the aspect 9, the difference between the film thickness of the anode forming the second pixel and the film thickness of the anode forming the first pixel is 5 to 5. The configuration may be 10 nm.
 本発明の態様11に係る表示装置は、前記の態様8~10のいずれかにおいて、前記第1画素を構成する前記陽極の材料は、ITOであり、前記第2画素を構成する前記陽極の材料は、ITOおよびIZOである構成としてもよい。 The display device according to aspect 11 of the present invention, in any one of aspects 8 to 10, wherein the material of the anode forming the first pixel is ITO, and the material of the anode forming the second pixel is May be ITO and IZO.
 本発明の態様12に係る表示装置は、前記の態様1~11のいずれかにおいて、前記第1画素では、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光と、前記蛍光発光材料含有層で生成された一重項励起子が基底状態に戻る際に生じる蛍光と、を含む光が出射され、前記第2画素では、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光が出射される構成としてもよい。 The display device according to aspect 12 of the present invention, according to any one of aspects 1 to 11, wherein the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state in the first pixel. And the fluorescence generated when the singlet exciton generated in the fluorescent light emitting material-containing layer returns to the ground state is emitted, and the second pixel contains the first phosphorescent light emitting material. Phosphorescence generated when the triplet exciton generated in the layer returns to the ground state may be emitted.
 本発明の態様13に係る表示装置は、前記の態様12において、前記蛍光発光材料は、三重項-三重項消滅現象により三重項励起子から一重項励起子を生成する遅延蛍光発光材料を含み、前記第1燐光発光材料の三重項励起準位は、前記遅延蛍光発光材料の三重項励起準位よりも高く、前記蛍光発光材料含有層の厚みは、デクスター機構によるエネルギー移動が起こる範囲内であり、前記第1画素から出射される光は、前記第1燐光発光材料含有層で生成された三重項励起子のエネルギーの一部が、前記デクスター機構により、前記蛍光発光材料含有層で生成された三重項励起子に移動し、前記三重項-三重項消滅現象により、前記蛍光発光材料含有層で生成された三重項励起子から前記一重項励起子にアップコンバージョンすることで生成された一重項励起子が基底状態に戻る際に生じる蛍光をさらに含む構成としてもよい。 The display device according to aspect 13 of the present invention is the display device according to aspect 12, wherein the fluorescent material includes a delayed fluorescent material that generates a singlet exciton from a triplet exciton by a triplet-triplet annihilation phenomenon; The triplet excitation level of the first phosphorescent material is higher than the triplet excitation level of the delayed fluorescent material, and the thickness of the fluorescent material-containing layer is within a range where energy transfer by the Dexter mechanism occurs. In the light emitted from the first pixel, a part of the energy of the triplet exciton generated in the first phosphorescent material-containing layer is generated in the fluorescent light-emitting material-containing layer by the Dexter mechanism. It moves to a triplet exciton and is converted by the triplet-triplet annihilation phenomenon from the triplet exciton generated in the fluorescent material-containing layer to the singlet exciton, thereby producing a singlet exciton. Fluorescence may further comprise configure occurring when singlet excitons return to their ground state.
 本発明の態様14に係る表示装置は、前記の態様1~13のいずれかにおいて、前記複数の画素は、前記第2画素が出射する光よりも長波長のピーク波長を有する光を出射する第3画素をさらに含み、前記第3画素は、前記発光層として、前記第1燐光発光材料含有層および前記蛍光発光材料含有層を有する前記共通層と、前記シアン色の燐光よりも長波長のピーク波長を有する燐光を発光する第2燐光発光材料を含む第2燐光発光材料含有層とを有し、前記第3画素では、前記第2燐光発光材料含有層が発光する構成としてもよい。 The display device according to an aspect 14 of the present invention is the display device according to any one of the aspects 1 to 13, wherein the plurality of pixels emit light having a longer peak wavelength than light emitted from the second pixel. The pixel further includes three pixels, wherein the third pixel includes, as the light-emitting layer, the common layer having the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and a peak having a longer wavelength than the cyan phosphorescence. A second phosphorescent material-containing layer containing a second phosphorescent material that emits phosphorescence having a wavelength, wherein the second phosphorescent material-containing layer emits light in the third pixel.
 本発明の態様15に係る表示装置は、前記の態様14において、前記第2燐光発光材料含有層は、前記第3画素を構成する前記第1燐光発光材料含有層における前記陽極側に設けられている構成としてもよい。 In the display device according to an aspect 15 of the present invention, in the aspect 14, the second phosphorescent material-containing layer is provided on the anode side in the first phosphorescent material-containing layer constituting the third pixel. Configuration.
 本発明の態様16に係る表示装置は、前記の態様14または15において、前記第3画素では、前記第2燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光が出射される構成としてもよい。 The display device according to Aspect 16 of the present invention, in the Aspect 14 or 15, wherein in the third pixel, the phosphorescence generated when the triplet exciton generated in the second phosphorescent material-containing layer returns to the ground state. May be emitted.
 本発明の態様17に係る表示装置は、前記の態様14~16のいずれかにおいて、前記第1燐光発光材料は、前記第2燐光発光材料よりも深いHOMO準位を有している構成としてもよい。 The display device according to aspect 17 of the present invention, in any one of aspects 14 to 16, wherein the first phosphorescent material has a HOMO level deeper than the second phosphorescent material. Good.
 本発明の態様18に係る表示装置は、前記の態様17において、前記第1燐光発光材料の三重項励起準位は、前記第2燐光発光材料の三重項励起準位よりも高い構成としてもよい。 The display device according to an aspect 18 of the present invention, in the aspect 17, the triplet excitation level of the first phosphorescent material may be higher than the triplet excitation level of the second phosphorescent material. .
 本発明の態様19に係る表示装置は、前記の態様16~18のいずれかにおいて、前記蛍光発光材料含有層は、前記第1燐光発光材料含有層よりも浅いHOMO準位を有する材料を含むと共に、前記第1燐光発光材料含有層よりも浅いLUMO準位を有する材料を含む構成としてもよい。 The display device according to aspect 19 of the present invention, according to any one of aspects 16 to 18, wherein the fluorescent material-containing layer includes a material having a HOMO level shallower than the first phosphorescent material-containing layer. And a material having a LUMO level shallower than the first phosphorescent material-containing layer.
 本発明の態様20に係る表示装置は、前記の態様16~19のいずれか1項において、前記第1燐光発光材料含有層は、正孔輸送性材料、または、正孔輸送性材料と電子輸送性材料とを含むバイポーラ輸送性材料を含み、前記蛍光発光材料含有層は、電子輸送性材料を含む構成としてもよい。 The display according to an aspect 20 of the present invention is the display device according to any one of the aspects 16 to 19, wherein the first phosphorescent material-containing layer comprises a hole-transporting material, or a hole-transporting material and an electron-transporting material. A bipolar transport material containing an organic material, and the fluorescent light emitting material-containing layer may include an electron transport material.
 本発明の態様21に係る表示装置は、前記の態様19または20において、前記第1画素における前記有機層は、前記蛍光発光材料含有層と前記陰極との間に、前記蛍光発光材料含有層に隣接して正孔ブロック層を有している構成としてもよい。 The display device according to Aspect 21 of the present invention is the display device according to Aspect 19 or 20, wherein the organic layer in the first pixel is provided between the fluorescent-emitting material-containing layer and the cathode, in the fluorescent-luminescent material-containing layer. A configuration in which a hole blocking layer is provided adjacently may be employed.
 本発明の態様22に係る表示装置は、前記の態様1~21のいずれか1項において、前記陽極および前記陰極のうち一方の電極は反射層を有し、他方の電極は半透過反射層を有し、前記反射層と前記半透過反射層との間の距離は、各画素から出射される色の光のピーク波長が共振する光路長となっている構成としてもよい。 A display device according to an aspect 22 of the present invention is the display device according to any one of the aspects 1 to 21, wherein one of the anode and the cathode has a reflective layer, and the other electrode has a transflective layer. The distance between the reflective layer and the semi-transmissive reflective layer may be an optical path length at which the peak wavelength of the color light emitted from each pixel resonates.
 本発明の態様23に係る表示装置の製造方法は、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の製造方法であって、前記陽極を形成する陽極形成工程と、前記有機層を形成する有機層形成工程と、前記陰極を形成する陰極形成工程と、を含み、前記有機層形成工程は、前記複数の画素に共通するマスク開口を有する蒸着マスクを用いて、前記共通層を形成する共通層形成工程と、前記第1画素に対応するマスク開口が設けられた蒸着マスクを用いて、前記第1画素に、前記蛍光発光材料含有層を形成する蛍光発光材料含有層形成工程と、を含み、前記共通層形成工程は、前記第1燐光発光材料含有層を形成する第1燐光発光材料含有層形成工程を含む方法である。 The method for manufacturing a display device according to aspect 23 of the present invention includes a plurality of pixels including: a first pixel that emits blue light; and a second pixel that emits light having a peak wavelength longer than the blue light. Comprising a pixel, an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode, wherein the first pixel includes: A first phosphorescent material-containing layer that includes a first phosphorescent material that emits cyan phosphorescent light; and a first phosphorescent material-containing layer that is provided on the cathode side of the first phosphorescent material-containing layer. A fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescence having a short wavelength peak wavelength, and wherein the second pixel includes the first phosphorescent light-emitting material-containing layer as the light-emitting layer. Wherein said first phosphorescent material-containing layer comprises A common layer provided in common to the pixels, wherein the first pixel emits light from the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and the second pixel emits the first phosphorescent light from the first pixel. A method for manufacturing a display device in which a material-containing layer emits light, including an anode forming step of forming the anode, an organic layer forming step of forming the organic layer, and a cathode forming step of forming the cathode. The organic layer forming step includes a common layer forming step of forming the common layer using a deposition mask having a mask opening common to the plurality of pixels, and a vapor deposition in which a mask opening corresponding to the first pixel is provided. Forming a fluorescent light emitting material-containing layer in the first pixel using a mask; and forming the first phosphorescent light emitting material-containing layer in the common layer forming step. First phosphorescence The method comprising material-containing layer forming step.
 本発明の態様24に係る表示装置の製造方法は、前記の態様23において、前記有機層形成工程は、材料および膜厚のうち少なくとも一方が互いに異なる第1正孔輸送層および第2正孔輸送層を形成する正孔輸送層形成工程をさらに含み、前記正孔輸送層形成工程は、前記第1画素に対応するマスク開口を有する蒸着マスクを用いて、前記第1画素に、前記第1正孔輸送層を形成する第1正孔輸送層形成工程と、前記第2画素に対応するマスク開口を有する蒸着マスクを用いて、前記第2画素に、前記第2正孔輸送層を形成する第2正孔輸送層形成工程と、を含む方法としてもよい。 In the method for manufacturing a display device according to Aspect 24 of the present invention, in the Aspect 23, in the organic layer forming step, the first hole transport layer and the second hole transport layer in which at least one of a material and a film thickness are different from each other. A hole transport layer forming step of forming a layer, wherein the hole transport layer forming step includes applying a first hole to the first pixel using a deposition mask having a mask opening corresponding to the first pixel. A first hole transport layer forming step of forming a hole transport layer, and a step of forming the second hole transport layer in the second pixel using a deposition mask having a mask opening corresponding to the second pixel. And (2) a hole transport layer forming step.
 本発明の態様25に係る表示装置の製造方法は、前記の態様23または24において、前記陽極形成工程において、前記第1画素に、前記陽極を形成すると共に、前記第2画素に、前記第1画素を構成する前記陽極とは材料および膜厚のうち少なくとも一方が異なる前記陽極を形成する方法としてもよい。 In the method for manufacturing a display device according to aspect 25 of the present invention, in the aspect 23 or 24, in the anode forming step, the anode is formed in the first pixel, and the first pixel is formed in the second pixel. A method may be used in which the anode is different from the anode forming the pixel in at least one of a material and a film thickness.
 本発明の態様26に係る表示装置の製造方法は、前記の態様23~25のいずれかにおいて、前記第1燐光発光材料含有層形成工程と前記蛍光発光材料含有層形成工程とが、前記第1燐光発光材料含有層と前記蛍光発光材料含有層とが隣接して積層されるように連続して行われる方法としてもよい。 The method for manufacturing a display device according to Aspect 26 of the present invention is the method according to any one of Aspects 23 to 25, wherein the first phosphorescent material-containing layer forming step and the fluorescent light-emitting material-containing layer forming step are the first A method may be adopted in which the phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer are continuously stacked so as to be adjacently stacked.
 本発明の態様27に係る表示装置の製造方法は、前記の態様23~26のいずれかにおいて、前記有機層形成工程は、前記第1画素に、前記蛍光発光材料含有層における前記陰極側に設けられる正孔ブロック層を形成する正孔ブロック層形成工程を含み、前記正孔ブロック層形成工程は、前記蛍光発光材料含有層形成工程と前記陰極形成工程との間で行われると共に、前記蛍光発光材料含有層形成工程と前記正孔ブロック層形成工程とが、前記蛍光発光材料含有層と前記正孔ブロック層とが隣接して積層されるように連続して行われる方法としてもよい。 In the method for manufacturing a display device according to Aspect 27 of the present invention, in any one of Aspects 23 to 26, the organic layer forming step is provided on the first pixel on the cathode side in the fluorescent material-containing layer. A hole blocking layer forming step of forming a hole blocking layer to be formed, wherein the hole blocking layer forming step is performed between the fluorescent light emitting material containing layer forming step and the cathode forming step, and the fluorescent light emitting layer is formed. A method may be adopted in which the material-containing layer forming step and the hole blocking layer forming step are performed continuously so that the fluorescent light emitting material containing layer and the hole blocking layer are stacked adjacent to each other.
 本発明の態様28に係る表示装置の発光方法は、青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の発光方法であって、前記第1画素では、前記第1燐光発光材料含有層で三重項励起子を生成すると共に、前記蛍光発光材料含有層で一重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光と、前記蛍光発光材料含有層で生成された一重項励起子が基底状態に戻る際に生じる光と、を含む光を発光し、前記第2画素では、前記第1燐光発光材料含有層で三重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光を発光する方法である。 A light emitting method of a display device according to an aspect 28 of the present invention includes a plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light. Comprising a pixel, an anode, a cathode, and an organic layer including a light-emitting layer formed between the anode and the cathode, wherein the first pixel includes: A first phosphorescent material-containing layer that includes a first phosphorescent material that emits cyan phosphorescent light; and a first phosphorescent material-containing layer that is provided on the cathode side of the first phosphorescent material-containing layer. A fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescence having a short wavelength peak wavelength, and wherein the second pixel includes the first phosphorescent light-emitting material-containing layer as the light-emitting layer. Wherein said first phosphorescent material-containing layer comprises A common layer provided in common to the pixels, wherein the first pixel emits light from the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and the second pixel emits the first phosphorescent light from the first pixel. A light emitting method for a display device in which a material-containing layer emits light, wherein, in the first pixel, a triplet exciton is generated in the first phosphorescent material-containing layer, and a singlet exciton is generated in the fluorescent light-emitting material-containing layer. And the light generated when the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state and the singlet exciton generated in the fluorescent light-emitting material-containing layer return to the ground state The second pixel generates a triplet exciton in the first phosphorescent material-containing layer, and the triplet generated in the first phosphorescent material-containing layer in the second pixel. Emits light when excitons return to the ground state It is a method.
 本発明の態様29に係る表示装置の発光方法は、前記の態様28において、前記第1画素では、前記第1燐光発光材料含有層で生成された三重項励起子のエネルギーの一部を、デクスター機構により、前記蛍光発光材料含有層で生成された三重項励起子に移動させ、三重項-三重項消滅現象により、前記蛍光発光材料含有層で生成された三重項励起子から前記一重項励起子にアップコンバージョンすることで生成された一重項励起子が基底状態に戻る際に生じる蛍光をさらに発光させる方法としてもよい。 In the light emitting method for a display device according to aspect 29 of the present invention, in the aspect 28, in the first pixel, a part of the energy of the triplet exciton generated in the first phosphorescent material-containing layer is converted to Dexter. By the mechanism, the singlet exciton is moved from the triplet exciton generated in the fluorescent light emitting material-containing layer to the triplet exciton generated in the fluorescent light emitting material-containing layer by a triplet-triplet annihilation phenomenon. A method may be used in which the singlet exciton generated by up-conversion to a state of returning to the ground state further emits fluorescence.
  1    有機EL表示装置(表示装置)
  3B   青色画素(第1画素)
  3C   シアン色画素(第2画素)
  3G   緑色画素(第3画素)
  3R   赤色画素(第3画素)
 20B   青色有機EL素子
 20C   シアン色有機EL素子
 20G   緑色有機EL素子
 20R   赤色有機EL素子
 21    陽極
 21a   反射電極(反射層)
 21b   透光性電極
 21c   透光性電極
 22    有機EL層(有機層)
 23    陰極
 24    エッジカバー
 32    正孔輸送層
 32B   正孔輸送層(第1正孔輸送層)
 32C   正孔輸送層(第2正孔輸送層)
 33    発光層ユニット
 34FB  青色蛍光発光材料含有層(蛍光発光材料含有層)
 34PC  シアン色燐光発光材料含有層(第1燐光発光材料含有層)
 34PG  緑色燐光発光材料含有層(第2燐光発光材料含有層)
 34PR  赤色燐光発光材料含有層(第2燐光発光材料含有層)
 37    正孔ブロック層
 200B、200B2、200C、200G、200R、210B、210C  蒸着マスク
 201B、201B2、201C、201G、201R、211B、211C  マスク開口
1 Organic EL display device (display device)
3B blue pixel (first pixel)
3C cyan pixel (second pixel)
3G green pixel (third pixel)
3R red pixel (third pixel)
20B Blue organic EL element 20C Cyan organic EL element 20G Green organic EL element 20R Red organic EL element 21 Anode 21a Reflection electrode (reflection layer)
21b Translucent electrode 21c Translucent electrode 22 Organic EL layer (organic layer)
Reference Signs 23 cathode 24 edge cover 32 hole transport layer 32B hole transport layer (first hole transport layer)
32C hole transport layer (second hole transport layer)
33 light emitting layer unit 34FB Blue fluorescent light emitting material containing layer (fluorescent light emitting material containing layer)
34PC Cyan phosphorescent material-containing layer (first phosphorescent material-containing layer)
34PG Green phosphorescent material-containing layer (second phosphorescent material-containing layer)
34PR Red phosphorescent material-containing layer (second phosphorescent material-containing layer)
37 Hole blocking layer 200B, 200B2, 200C, 200G, 200R, 210B, 210C Evaporation mask 201B, 201B2, 201C, 201G, 201R, 211B, 211C Mask opening

Claims (29)

  1.  青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、
     前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、
     前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、
     前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、
     前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光することを特徴とする表示装置。
    A plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light, wherein each pixel has an anode, a cathode, A display device provided with an organic layer including a light-emitting layer, formed between the anode and the cathode,
    The first pixel is provided as a light-emitting layer, a first phosphorescent material-containing layer including a first phosphorescent material that emits cyan phosphorescence, and a cathode side of the first phosphorescent material-containing layer, A fluorescent light-emitting material-containing layer containing a fluorescent light-emitting material that emits blue fluorescence having a shorter peak wavelength than the cyan phosphorescence,
    The second pixel has the first phosphorescent material-containing layer as the light-emitting layer,
    The first phosphorescent material-containing layer is a common layer provided in common to the plurality of pixels,
    In the first pixel, the first phosphorescent material-containing layer and the fluorescent material-containing layer emit light, and in the second pixel, the first phosphorescent material-containing layer emits light. .
  2.  前記第2画素は、前記発光層として、前記蛍光発光材料含有層をさらに有し、
     前記共通層には、前記蛍光発光材料含有層がさらに含まれ、
     前記第2画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光することを特徴とする請求項1に記載の表示装置。
    The second pixel further includes the fluorescent light-emitting material-containing layer as the light-emitting layer,
    The common layer further includes the fluorescent light emitting material-containing layer,
    The display device according to claim 1, wherein, in the second pixel, the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer each emit light.
  3.  前記有機層は、前記発光層と前記陽極との間において、前記第1画素および前記第2画素にそれぞれ個別に設けられる第1正孔輸送層および第2正孔輸送層を有し、
     前記第1正孔輸送層および前記第2正孔輸送層の膜厚および材料の少なくとも一方が互いに異なることを特徴とする請求項2に記載の表示装置。
    The organic layer has a first hole transport layer and a second hole transport layer separately provided for the first pixel and the second pixel between the light emitting layer and the anode,
    The display device according to claim 2, wherein at least one of a film thickness and a material of the first hole transport layer and the second hole transport layer are different from each other.
  4.  前記第2正孔輸送層の膜厚は、前記第1正孔輸送層との膜厚よりも大きいことを特徴とする請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the thickness of the second hole transport layer is larger than the thickness of the first hole transport layer.
  5.  前記第2正孔輸送層の膜厚と、前記第1正孔輸送層との膜厚との差は、5~25nmであることを特徴とする請求項4に記載の表示装置。 The display device according to claim 4, wherein the difference between the thickness of the second hole transport layer and the thickness of the first hole transport layer is 5 to 25 nm.
  6.  前記第2正孔輸送層の材料は、前記第1正孔輸送層の材料よりも高いイオン化ポテンシャルエネルギーを有することを特徴とする請求項3~5のいずれか1項に記載の表示装置。 The display device according to any one of claims 3 to 5, wherein the material of the second hole transport layer has a higher ionization potential energy than the material of the first hole transport layer.
  7.  前記第1正孔輸送層の材料は、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)であり、
     前記第2正孔輸送層の材料は、4,4’,4”-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)またはである1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP)であることを特徴とする請求項3~6のいずれか1項に記載の表示装置。
    The material of the first hole transport layer is N, N′-di (naphthalen-1-yl) -N, N′-diphenyl-benzidine (α-NPD),
    The material of the second hole transport layer is 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) or 1,3-bis ( The display device according to any one of claims 3 to 6, wherein the display device is (carbazol-9-yl) benzene (mCP).
  8.  前記第1画素および前記第2画素において、前記陽極の膜厚および材料のうち少なくとも一方が異なることを特徴とする請求項1~7のいずれか1項に記載の表示装置。 8. The display device according to claim 1, wherein at least one of the thickness and the material of the anode is different between the first pixel and the second pixel.
  9.  前記第2画素を構成する前記陽極の膜厚は、前記第1画素を構成する前記陽極の膜厚よりも大きいことを特徴とする請求項8に記載の表示装置。 The display device according to claim 8, wherein the thickness of the anode forming the second pixel is larger than the thickness of the anode forming the first pixel.
  10.  前記第2画素を構成する前記陽極の膜厚と、前記第1画素を構成する前記陽極の膜厚との差は、5~10nmであることを特徴とする請求項9に記載の表示装置。 The display device according to claim 9, wherein the difference between the thickness of the anode forming the second pixel and the thickness of the anode forming the first pixel is 5 to 10 nm.
  11.  前記第1画素を構成する前記陽極の材料は、ITOであり、
     前記第2画素を構成する前記陽極の材料は、ITOおよびIZOであることを特徴とする請求項8~10のいずれか1項に記載の表示装置。
    The material of the anode constituting the first pixel is ITO,
    The display device according to any one of claims 8 to 10, wherein a material of the anode forming the second pixel is ITO or IZO.
  12. ※17J00658の請求項2の一部
     前記第1画素では、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光と、前記蛍光発光材料含有層で生成された一重項励起子が基底状態に戻る際に生じる蛍光と、を含む光が出射され、
     前記第2画素では、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光が出射されることを特徴とする請求項1~11のいずれか1項に記載の表示装置。
    * Part of claim 2 of 17J00658 In the first pixel, the phosphorescence generated when the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state, and the phosphorescent light generated in the fluorescent light-emitting material-containing layer. And the fluorescence generated when the singlet exciton returned to the ground state is emitted,
    12. The device according to claim 1, wherein the second pixel emits phosphorescence generated when a triplet exciton generated in the first phosphorescent material-containing layer returns to a ground state. A display device according to claim 1.
  13.  前記蛍光発光材料は、三重項-三重項消滅現象により三重項励起子から一重項励起子を生成する遅延蛍光発光材料を含み、
     前記第1燐光発光材料の三重項励起準位は、前記遅延蛍光発光材料の三重項励起準位よりも高く、
     前記蛍光発光材料含有層の厚みは、デクスター機構によるエネルギー移動が起こる範囲内であり、
     前記第1画素から出射される光は、前記第1燐光発光材料含有層で生成された三重項励起子のエネルギーの一部が、前記デクスター機構により、前記蛍光発光材料含有層で生成された三重項励起子に移動し、前記三重項-三重項消滅現象により、前記蛍光発光材料含有層で生成された三重項励起子から前記一重項励起子にアップコンバージョンすることで生成された一重項励起子が基底状態に戻る際に生じる蛍光をさらに含むことを特徴とする請求項12に記載の表示装置。
    The fluorescent material includes a delayed fluorescent material that generates a singlet exciton from a triplet exciton by a triplet-triplet annihilation phenomenon;
    The triplet excitation level of the first phosphorescent material is higher than the triplet excitation level of the delayed fluorescent light-emitting material,
    The thickness of the fluorescent light-emitting material-containing layer is within a range in which energy transfer by the Dexter mechanism occurs,
    In the light emitted from the first pixel, a part of the energy of the triplet exciton generated in the first phosphorescent material-containing layer is converted into the triplet exciton generated in the fluorescent light-emitting material-containing layer by the Dexter mechanism. Singlet exciton that is generated by up-conversion from the triplet exciton generated in the layer containing the fluorescent material to the singlet exciton due to the triplet-triplet annihilation phenomenon. 13. The display device according to claim 12, further comprising fluorescence generated when the light source returns to the ground state.
  14.  前記複数の画素は、前記第2画素が出射する光よりも長波長のピーク波長を有する光を出射する第3画素をさらに含み、
     前記第3画素は、前記発光層として、前記第1燐光発光材料含有層および前記蛍光発光材料含有層を有する前記共通層と、前記シアン色の燐光よりも長波長のピーク波長を有する燐光を発光する第2燐光発光材料を含む第2燐光発光材料含有層とを有し、
     前記第3画素では、前記第2燐光発光材料含有層が発光することを特徴とする請求項1~13のいずれか1項に記載の表示装置。
    The plurality of pixels further include a third pixel that emits light having a longer peak wavelength than the light emitted by the second pixel,
    The third pixel emits, as the light-emitting layer, the common layer having the first phosphorescent material-containing layer and the fluorescent light-emitting material-containing layer, and phosphorescence having a peak wavelength longer than the cyan phosphorescence. A second phosphorescent material-containing layer containing a second phosphorescent material,
    14. The display device according to claim 1, wherein in the third pixel, the second phosphorescent material-containing layer emits light.
  15.  前記第2燐光発光材料含有層は、前記第3画素を構成する前記第1燐光発光材料含有層における前記陽極側に設けられていることを特徴とする請求項14に記載の表示装置。 The display device according to claim 14, wherein the second phosphorescent material-containing layer is provided on the anode side in the first phosphorescent material-containing layer constituting the third pixel.
  16. ※17J00658の請求項2の一部
     前記第3画素では、前記第2燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる燐光が出射されることを特徴とする請求項14または15に記載の表示装置。
    * A part of claim 2 of 17J00658 The third pixel emits phosphorescence generated when triplet excitons generated in the second phosphorescent material-containing layer return to the ground state. Item 16. The display device according to Item 14 or 15.
  17.  前記第1燐光発光材料は、前記第2燐光発光材料よりも深いHOMO準位を有していることを特徴とする請求項14~16のいずれか1項に記載の表示装置。 The display device according to any one of claims 14 to 16, wherein the first phosphorescent material has a HOMO level deeper than the second phosphorescent material.
  18. ※17J00658の請求項5
     前記第1燐光発光材料の三重項励起準位は、前記第2燐光発光材料の三重項励起準位よりも高いことを特徴とする請求項17に記載の表示装置。
    * Claim 5 of 17J00658
    The display device according to claim 17, wherein a triplet excitation level of the first phosphorescent material is higher than a triplet excitation level of the second phosphorescent material.
  19.  前記蛍光発光材料含有層は、前記第1燐光発光材料含有層よりも浅いHOMO準位を有する材料を含むと共に、前記第1燐光発光材料含有層よりも浅いLUMO準位を有する材料を含むことを特徴とする請求項16~18のいずれか1項に記載の表示装置。 The fluorescent light emitting material containing layer includes a material having a HOMO level shallower than the first phosphorescent light emitting material containing layer, and includes a material having a LUMO level shallower than the first phosphorescent light emitting material containing layer. The display device according to any one of claims 16 to 18, characterized in that:
  20.  前記第1燐光発光材料含有層は、正孔輸送性材料、または、正孔輸送性材料と電子輸送性材料とを含むバイポーラ輸送性材料を含み、
     前記蛍光発光材料含有層は、電子輸送性材料を含むことを特徴とする請求項16~19のいずれか1項に記載の表示装置。
    The first phosphorescent material-containing layer includes a hole transporting material, or a bipolar transporting material including a hole transporting material and an electron transporting material,
    The display device according to any one of claims 16 to 19, wherein the fluorescent light emitting material containing layer contains an electron transporting material.
  21.  前記第1画素における前記有機層は、前記蛍光発光材料含有層と前記陰極との間に、前記蛍光発光材料含有層に隣接して正孔ブロック層を有していることを特徴とする請求項19または20に記載の表示装置。 The organic layer in the first pixel, further comprising a hole blocking layer between the fluorescent material-containing layer and the cathode, adjacent to the fluorescent material-containing layer. 21. The display device according to 19 or 20.
  22.  前記陽極および前記陰極のうち一方の電極は反射層を有し、他方の電極は半透過反射層を有し、
     前記反射層と前記半透過反射層との間の距離は、各画素から出射される色の光のピーク波長が共振する光路長となっていることを特徴とする請求項1~21のいずれか1項に記載の表示装置。
    One of the anode and the cathode has a reflective layer, the other electrode has a transflective reflective layer,
    The distance between the reflective layer and the semi-transmissive reflective layer is an optical path length at which a peak wavelength of light of a color emitted from each pixel resonates. The display device according to claim 1.
  23.  青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の製造方法であって、
     前記陽極を形成する陽極形成工程と、
     前記有機層を形成する有機層形成工程と、
     前記陰極を形成する陰極形成工程と、を含み、
     前記有機層形成工程は、
      前記複数の画素に共通するマスク開口を有する蒸着マスクを用いて、前記共通層を形成する共通層形成工程と、
      前記第1画素に対応するマスク開口が設けられた蒸着マスクを用いて、前記第1画素に、前記蛍光発光材料含有層を形成する蛍光発光材料含有層形成工程と、を含み、
     前記共通層形成工程は、前記第1燐光発光材料含有層を形成する第1燐光発光材料含有層形成工程を含むことを特徴とする表示装置の製造方法。
    A plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light, wherein each pixel has an anode, a cathode, A display device provided with an organic layer including a light emitting layer formed between the anode and the cathode, wherein the first pixel emits cyan phosphorescent light as the light emitting layer. A first phosphorescent material-containing layer containing a phosphorescent material, and a blue phosphor having a peak wavelength shorter than that of the cyan phosphorescent light, which is provided on the cathode side of the first phosphorescent material-containing layer. A fluorescent light emitting material-containing layer containing a fluorescent light emitting material, wherein the second pixel has the first phosphorescent light emitting material containing layer as the light emitting layer, and wherein the first phosphorescent light emitting material containing layer is A common layer provided in common to a plurality of pixels; The pixel, the first phosphorescent material containing layer and the fluorescent material-containing layer emits light, respectively, in the second pixel, the first phosphorescent material containing layer is a method of manufacturing a display device that emits light,
    An anode forming step of forming the anode,
    An organic layer forming step of forming the organic layer,
    A cathode forming step of forming the cathode,
    The organic layer forming step,
    Using a deposition mask having a mask opening common to the plurality of pixels, a common layer forming step of forming the common layer,
    A fluorescent light emitting material-containing layer forming step of forming the fluorescent light emitting material-containing layer on the first pixel using an evaporation mask provided with a mask opening corresponding to the first pixel;
    The method of manufacturing a display device, wherein the common layer forming step includes a first phosphorescent material-containing layer forming step of forming the first phosphorescent material-containing layer.
  24.  前記有機層形成工程は、材料および膜厚のうち少なくとも一方が互いに異なる第1正孔輸送層および第2正孔輸送層を形成する正孔輸送層形成工程をさらに含み、
     前記正孔輸送層形成工程は、
      前記第1画素に対応するマスク開口を有する蒸着マスクを用いて、前記第1画素に、前記第1正孔輸送層を形成する第1正孔輸送層形成工程と、
      前記第2画素に対応するマスク開口を有する蒸着マスクを用いて、前記第2画素に、前記第2正孔輸送層を形成する第2正孔輸送層形成工程と、を含むことを特徴とする請求項23に記載の表示装置の製造方法。
    The organic layer forming step further includes a hole transport layer forming step of forming a first hole transport layer and a second hole transport layer having at least one of a material and a film thickness different from each other,
    The hole transport layer forming step,
    A first hole transport layer forming step of forming the first hole transport layer on the first pixel using a deposition mask having a mask opening corresponding to the first pixel;
    A second hole transport layer forming step of forming the second hole transport layer in the second pixel using a deposition mask having a mask opening corresponding to the second pixel. A method for manufacturing a display device according to claim 23.
  25.  前記陽極形成工程において、前記第1画素に、前記陽極を形成すると共に、前記第2画素に、前記第1画素を構成する前記陽極とは材料および膜厚のうち少なくとも一方が異なる前記陽極を形成することを特徴とする請求項23または24に記載の表示装置の製造方法。 In the anode forming step, the anode is formed on the first pixel, and the anode having at least one of a material and a film thickness different from that of the anode constituting the first pixel is formed on the second pixel. The method for manufacturing a display device according to claim 23, wherein the method comprises:
  26.  前記第1燐光発光材料含有層形成工程と前記蛍光発光材料含有層形成工程とが、前記第1燐光発光材料含有層と前記蛍光発光材料含有層とが隣接して積層されるように連続して行われることを特徴とする請求項23~25のいずれか1項に記載の表示装置の製造方法。 The first phosphorescent material-containing layer forming step and the fluorescent light-emitting material-containing layer forming step are continuously performed so that the first phosphorescent light-emitting material-containing layer and the fluorescent light-emitting material-containing layer are stacked adjacent to each other. The method for manufacturing a display device according to any one of claims 23 to 25, wherein the method is performed.
  27.  前記有機層形成工程は、前記第1画素に、前記蛍光発光材料含有層における前記陰極側に設けられる正孔ブロック層を形成する正孔ブロック層形成工程を含み、
     前記正孔ブロック層形成工程は、前記蛍光発光材料含有層形成工程と前記陰極形成工程との間で行われると共に、
     前記蛍光発光材料含有層形成工程と前記正孔ブロック層形成工程とが、前記蛍光発光材料含有層と前記正孔ブロック層とが隣接して積層されるように連続して行われることを特徴とする請求項23~26のいずれか1項に記載の表示装置の製造方法。
    The organic layer forming step includes, in the first pixel, a hole blocking layer forming step of forming a hole blocking layer provided on the cathode side of the fluorescent light emitting material-containing layer,
    The hole blocking layer forming step is performed between the fluorescent light emitting material containing layer forming step and the cathode forming step,
    The fluorescent light emitting material-containing layer forming step and the hole blocking layer forming step are performed continuously so that the fluorescent light emitting material containing layer and the hole blocking layer are stacked adjacent to each other. The method for manufacturing a display device according to any one of claims 23 to 26.
  28.  青色の光を出射する第1画素と、前記青色の光よりも長波長のピーク波長を有する光を出射する第2画素と、を含む複数の画素を含み、各画素に、陽極と、陰極と、前記陽極と前記陰極との間に形成された、発光層を含む有機層が設けられた表示装置であって、前記第1画素は、前記発光層として、シアン色の燐光を発光する第1燐光発光材料を含む第1燐光発光材料含有層と、前記第1燐光発光材料含有層における前記陰極側に設けられ、前記シアン色の燐光よりも短波長のピーク波長を有する青色の蛍光を発光する蛍光発光材料を含む蛍光発光材料含有層と、を有し、前記第2画素は、前記発光層として、前記第1燐光発光材料含有層を有し、前記第1燐光発光材料含有層は、前記複数の画素に共通して設けられた共通層であり、前記第1画素では、前記第1燐光発光材料含有層および前記蛍光発光材料含有層がそれぞれ発光し、前記第2画素では、前記第1燐光発光材料含有層が発光する表示装置の発光方法であって、
     前記第1画素では、前記第1燐光発光材料含有層で三重項励起子を生成すると共に、前記蛍光発光材料含有層で一重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光と、前記蛍光発光材料含有層で生成された一重項励起子が基底状態に戻る際に生じる光と、を含む光を発光し、
     前記第2画素では、前記第1燐光発光材料含有層で三重項励起子を生成し、前記第1燐光発光材料含有層で生成された三重項励起子が基底状態に戻る際に生じる光を発光することを特徴とする表示装置の発光方法。
    A plurality of pixels including a first pixel that emits blue light and a second pixel that emits light having a peak wavelength longer than the blue light, wherein each pixel has an anode, a cathode, A display device provided with an organic layer including a light emitting layer formed between the anode and the cathode, wherein the first pixel emits cyan phosphorescence as the light emitting layer. A first phosphorescent material-containing layer containing a phosphorescent material, and a blue phosphor having a shorter peak wavelength than the cyan phosphorescent light, which is provided on the cathode side of the first phosphorescent material-containing layer. A fluorescent light emitting material-containing layer containing a fluorescent light emitting material, wherein the second pixel has the first phosphorescent light emitting material containing layer as the light emitting layer, and wherein the first phosphorescent light emitting material containing layer is A common layer provided in common to a plurality of pixels; The pixel, the first phosphorescent material containing layer and the fluorescent material-containing layer emits light, respectively, in the second pixel, the first phosphorescent material containing layer is a light-emitting method of a display device that emits light,
    In the first pixel, a triplet exciton is generated in the first phosphorescent material-containing layer and a singlet exciton is generated in the fluorescent light-emitting material-containing layer, and the singlet exciton is generated in the first phosphorescent material-containing layer. Light generated when the triplet exciton returned to the ground state, and light generated when the singlet exciton generated in the fluorescent light emitting material-containing layer returns to the ground state, emits light including:
    In the second pixel, a triplet exciton is generated in the first phosphorescent material-containing layer, and light generated when the triplet exciton generated in the first phosphorescent material-containing layer returns to the ground state is emitted. A light emitting method for a display device.
  29.  前記第1画素では、前記第1燐光発光材料含有層で生成された三重項励起子のエネルギーの一部を、デクスター機構により、前記蛍光発光材料含有層で生成された三重項励起子に移動させ、三重項-三重項消滅現象により、前記蛍光発光材料含有層で生成された三重項励起子から前記一重項励起子にアップコンバージョンすることで生成された一重項励起子が基底状態に戻る際に生じる蛍光をさらに発光させることを特徴とする請求項28に記載の表示装置の発光方法。 In the first pixel, part of the energy of the triplet exciton generated in the first phosphorescent material-containing layer is transferred to the triplet exciton generated in the fluorescent light-emitting material-containing layer by the Dexter mechanism. Due to the triplet-triplet annihilation phenomenon, when the singlet exciton generated by up-conversion from the triplet exciton generated in the fluorescent material-containing layer to the singlet exciton returns to the ground state, The method according to claim 28, wherein the generated fluorescence is further emitted.
PCT/JP2018/026377 2018-07-12 2018-07-12 Display device, method of manufacturing same, and method of emitting light therefor WO2020012610A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026377 WO2020012610A1 (en) 2018-07-12 2018-07-12 Display device, method of manufacturing same, and method of emitting light therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026377 WO2020012610A1 (en) 2018-07-12 2018-07-12 Display device, method of manufacturing same, and method of emitting light therefor

Publications (1)

Publication Number Publication Date
WO2020012610A1 true WO2020012610A1 (en) 2020-01-16

Family

ID=69141338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026377 WO2020012610A1 (en) 2018-07-12 2018-07-12 Display device, method of manufacturing same, and method of emitting light therefor

Country Status (1)

Country Link
WO (1) WO2020012610A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300075A (en) * 2006-04-05 2007-11-15 Canon Inc Organic el display
JP2009093982A (en) * 2007-10-11 2009-04-30 Seiko Epson Corp Organic electroluminescent device, and electronic equipment
JP2009521095A (en) * 2005-12-23 2009-05-28 ドゥサン コーポレーション White light emitting organic electroluminescent device
US20130105778A1 (en) * 2011-11-01 2013-05-02 Lg Display Co., Ltd. Organic light-emitting diode display device
JP2013214523A (en) * 2007-10-19 2013-10-17 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
CN104409470A (en) * 2014-10-31 2015-03-11 京东方科技集团股份有限公司 Pixel unit and preparation method thereof, OLED array substrate and display device
CN104600094A (en) * 2014-12-31 2015-05-06 北京维信诺科技有限公司 Organic electroluminescent device with four-color sub-pixels
WO2015072143A1 (en) * 2013-11-15 2015-05-21 株式会社Joled Organic el display panel, display device using same, and method for producing organic el display panel
JP2015523675A (en) * 2012-05-04 2015-08-13 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic light emitting device and method
JP2015185728A (en) * 2014-03-25 2015-10-22 凸版印刷株式会社 organic EL light-emitting device
WO2016052152A1 (en) * 2014-10-01 2016-04-07 ソニー株式会社 Display device and electronic apparatus
US20160336381A1 (en) * 2015-05-13 2016-11-17 Samsung Display Co., Ltd. Organic light emitting diode display
US20160372525A1 (en) * 2015-02-06 2016-12-22 Boe Technology Group Co., Ltd. Display substrate, fabricating method thereof and display apparatus
US20170084857A1 (en) * 2015-09-22 2017-03-23 Samsung Display Co., Ltd. Organic light emitting device, display device having the same, and method of manufacturing display device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521095A (en) * 2005-12-23 2009-05-28 ドゥサン コーポレーション White light emitting organic electroluminescent device
JP2007300075A (en) * 2006-04-05 2007-11-15 Canon Inc Organic el display
JP2009093982A (en) * 2007-10-11 2009-04-30 Seiko Epson Corp Organic electroluminescent device, and electronic equipment
JP2013214523A (en) * 2007-10-19 2013-10-17 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
US20130105778A1 (en) * 2011-11-01 2013-05-02 Lg Display Co., Ltd. Organic light-emitting diode display device
JP2015523675A (en) * 2012-05-04 2015-08-13 ケンブリッジ ディスプレイ テクノロジー リミテッド Organic light emitting device and method
WO2015072143A1 (en) * 2013-11-15 2015-05-21 株式会社Joled Organic el display panel, display device using same, and method for producing organic el display panel
JP2015185728A (en) * 2014-03-25 2015-10-22 凸版印刷株式会社 organic EL light-emitting device
WO2016052152A1 (en) * 2014-10-01 2016-04-07 ソニー株式会社 Display device and electronic apparatus
CN104409470A (en) * 2014-10-31 2015-03-11 京东方科技集团股份有限公司 Pixel unit and preparation method thereof, OLED array substrate and display device
CN104600094A (en) * 2014-12-31 2015-05-06 北京维信诺科技有限公司 Organic electroluminescent device with four-color sub-pixels
US20160372525A1 (en) * 2015-02-06 2016-12-22 Boe Technology Group Co., Ltd. Display substrate, fabricating method thereof and display apparatus
US20160336381A1 (en) * 2015-05-13 2016-11-17 Samsung Display Co., Ltd. Organic light emitting diode display
US20170084857A1 (en) * 2015-09-22 2017-03-23 Samsung Display Co., Ltd. Organic light emitting device, display device having the same, and method of manufacturing display device

Similar Documents

Publication Publication Date Title
JP6637594B2 (en) Display device and method of manufacturing the same
JP4123106B2 (en) Organic EL device
KR102092077B1 (en) Display device and manufacturing method thereof
JP6538271B2 (en) Display device and method of manufacturing the same
KR101702155B1 (en) Radiation-emitting device
WO2017008487A1 (en) Organic light emitting device
TWI539590B (en) Organic light emitting display device and method of manufacturing the same
CN106898630B (en) Organic light emitting display device
US10777103B2 (en) Display apparatus and method for manufacturing same
WO2018062058A1 (en) Display device and production method for same
JP2005100921A (en) Organic el element and display
US8941102B2 (en) Organic electroluminescent element
US10892432B2 (en) Organic EL display device, manufacturing method thereof, and light-emission method thereof
EP2874471B1 (en) Organic electroluminescent element
US11264584B2 (en) Display device and method for manufacturing same
WO2020012610A1 (en) Display device, method of manufacturing same, and method of emitting light therefor
KR102467769B1 (en) Organic light emitting device
KR101536568B1 (en) Blue phosphorescent organic light emitting diode device having improved efficiency by suppressing triplet exciton quenching
KR102574241B1 (en) Organic Light Emitting Device and Organic Light Emitting Display Device Using the Same
JP5879526B2 (en) Organic electroluminescence device
KR20160003463A (en) Blue phosphorescent organic light emitting diode device having improved color coordinates and efficiency
JP2013084620A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP