WO2020011187A1 - 能量转换装置 - Google Patents

能量转换装置 Download PDF

Info

Publication number
WO2020011187A1
WO2020011187A1 PCT/CN2019/095386 CN2019095386W WO2020011187A1 WO 2020011187 A1 WO2020011187 A1 WO 2020011187A1 CN 2019095386 W CN2019095386 W CN 2019095386W WO 2020011187 A1 WO2020011187 A1 WO 2020011187A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
energy conversion
air box
conversion device
box
Prior art date
Application number
PCT/CN2019/095386
Other languages
English (en)
French (fr)
Inventor
宋延军
Original Assignee
宋延军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821086890.2U external-priority patent/CN208416632U/zh
Priority claimed from CN201821087783.1U external-priority patent/CN208718737U/zh
Priority claimed from CN201810751314.3A external-priority patent/CN110700910A/zh
Priority claimed from CN201810752339.5A external-priority patent/CN110700912A/zh
Priority claimed from CN201821088356.5U external-priority patent/CN208718738U/zh
Priority claimed from CN201821088333.4U external-priority patent/CN208456770U/zh
Application filed by 宋延军 filed Critical 宋延军
Publication of WO2020011187A1 publication Critical patent/WO2020011187A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/02Other machines or engines using hydrostatic thrust
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention belongs to the technical field of energy conversion, and particularly relates to an energy conversion device.
  • turbo-generator The most representative energy conversion device in the prior art is a turbo-generator.
  • Turbine generators have high power and are suitable for large-scale energy conversion, which also results in certain limitations in their use.
  • the turbo generator occupies a large area and requires a large amount of space for gas emissions.
  • the coordination of the connected components is complex, which makes the overall space requirements higher, which also limits its flexibility to a certain extent;
  • the working temperature is high, the high-pressure steam temperature driving it is at least 300 °C, the working environment is harsh, the operation safety is difficult to guarantee, and the harsh use environment also limits its occasions, making its use environment strictly restricted;
  • the structure of the turbine generator It is complicated and the operation process is complex.
  • the operation requires a high degree of professional manual control and requires a high level of technical skills from the user.
  • the turbo-generator runs violently, and the contact time between the high-pressure steam and the turbo-generator blade is short during operation. As a result, the energy conversion rate is low, and the temperature and pressure of the gas overflowed by the turbo-generator are high. This part of the energy cannot be efficiently converted in a short time.
  • the thermoelectric conversion efficiency of the conventional turbo-generator does not generally exceed 60%, the energy conversion process is accompanied by significant energy loss. At the same time, it is difficult to store high temperature steam. Once it is generated, if it is not used in a timely manner, the subsequent transportation process will be accompanied by a temperature decline, which is not conducive to energy conservation. higher requirement.
  • the energy conversion devices in the prior art have obvious problems such as large equipment space occupation, severe equipment working environment, high equipment labor requirements, large energy loss, low energy conversion sustainability, difficult energy transmission, and the like.
  • the above problems severely limit the use of energy conversion devices in the prior art, and are not conducive to resource conservation. In severe cases, they can also cause irreversible environmental pollution and threaten the personal safety of operators and people in the surrounding environment.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art, provide an energy conversion device, and design and improve the structure of the air box and the conveying device; the design of the double pressure air box makes the air box inflate faster, ensuring that The charging efficiency improves the energy conversion efficiency of the equipment; and the conversion device can greatly improve the energy conversion efficiency of compressed air and can be used for power generation.
  • An energy conversion device includes a rotating device rotating around its center, a ring-shaped gas box assembly provided along a circumferential direction of the rotating device, a conveying device for conveying gas, and an intake air for controlling the on-off of the conveying device.
  • the high-pressure air tank is disposed on a wall of at least one side of the low-pressure air tank; the air outlet end of the conveying device is located at the lower part of the energy conversion device and is capable of introducing air into the air tank, and the rotary device At least a portion is immersed in a buoyant medium, the density of which is greater than the density of air.
  • the rotating device is wheel-shaped, and the rotating device includes a first rotating device at least partially above the buoyant medium and a second rotating device immersed in the buoyant medium, The radial directions of the first rotating device and the second rotating device are in the same plane; the intake air delivery switch is disposed on the second rotating device.
  • the intake air delivery switch includes a high-pressure air delivery switch corresponding to a high-pressure air tank and a low-pressure air delivery switch corresponding to a low-pressure air tank; the volume of the high-pressure air tank is smaller than the volume of the low-pressure air tank .
  • the air box is provided with a pressure switch corresponding to the intake air delivery switch; and the rotary device is provided with a pressure switch corresponding to the pressure switch that controls the pressure switch to be turned on / off Switch control.
  • the energy conversion device includes an auxiliary guide rail
  • the auxiliary guide rail is provided on the other side of the air box with respect to the first rotation device
  • the auxiliary guide rail faces the first rotation axis.
  • the distance of one side of the rotating device from the outside of the first rotating device is greater than or equal to the size of the air tank after being inflated; one side of the auxiliary guide facing away from the rotating direction of the first rotating device The distance outside the first rotating device is equal to the size of the air box after it is exhausted.
  • the air box is provided with an auxiliary rod which is slidably engaged with the auxiliary guide rail.
  • the energy conversion device includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; The device is connected to the motor.
  • the invention is further provided that the generator is connected to the intake air delivery switch.
  • the energy conversion device includes a generator connected to the rotating device, and a power storage device connected to the generator.
  • the invention is further provided that the radial size of the first rotating device is larger than the size of the radial second rotating device, and the connecting line between the centers of the two is at an angle with the vertical direction, and the range of the angle is 0 ° ⁇ 45 °.
  • the invention also provides an energy conversion device.
  • the energy conversion device is disposed in a vertical plane, and includes a rotation device rotating around a center thereof, an air box provided along a circumferential direction of the rotation device, and a control air box. Internal and external pressure switches, guide rails to assist the deformation of the air box, a conveying device that communicates with the inside of the air box and introduces air into the air box, the conveying device includes a high-pressure conveying device that conveys high-pressure air And a normal-pressure conveying device for conveying normal-pressure air, the high-pressure conveying device is in communication with a high-pressure air source, the normal-pressure conveying device is in communication with the atmosphere, and the pressure switch includes a high-pressure switch connected to the high-pressure conveying device and The atmospheric pressure switch connected to the atmospheric pressure conveying device; the air outlet of the conveying device is connected to the air box and is located at the lower part of the energy conversion device.
  • the invention is further provided that at least a part of the rotating device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of high-pressure air; the rotating device includes an upper rotating device located above the buoyant medium and immersed in The lower rotation device in the buoyancy medium; the intake air delivery switch is disposed on the lower rotation device.
  • the guide rail is ring-shaped, and is disposed on an outer peripheral side of the energy conversion device; on a side where the air box moves downward, a distance between the guide rail and the rotation device is equal to the distance The size of the air box when it is not inflated; on the side where the air box moves upward, the distance between the guide rail and the rotation device is greater than the size of the air box when it is not inflated, and less than or equal to size of.
  • the guide rail is arc-shaped and includes a first guide rail provided on an upper side of the energy conversion device and a second guide rail provided on a lower side of the energy conversion device;
  • the side on which the air box moves downwards is at a distance from the rotary device equal to the size when the air box is not inflated; on the side on which the air box moves upwards, the distance from the rotary device is greater than
  • the size of the air box when it is not inflated is less than or equal to the size of the air box after it is inflated.
  • the air box includes at least one structural member supporting the air box in one direction, the structural member includes two first structural members arranged in a cross, and the two first structural members are in a middle portion thereof.
  • the rotation center is hinged;
  • the structural member includes a second structural member connected to the air box, the second structural member is plate-shaped, and a slide rail perpendicular to the telescopic direction of the air box is provided thereon;
  • One end of the first structural member is slidably connected to the slide rail, and the other end is rotatably connected to the air box.
  • the guide rail includes a gear-shaped first auxiliary device connected to the rotating device and rotatable around its center, and a second auxiliary device provided outside the air box, and the first
  • the second auxiliary device is in the shape of a shift lever, and is connected with the gear-shaped groove of the first auxiliary device in cooperation.
  • the guide rail includes a compression guide rail provided on an upper side of the energy conversion device and moving upward on the air box, and a side of the compression guide rail opposite to the rotation device is spaced from the rotation The distance outside the device is greater than or equal to the size when the air tank is not inflated.
  • the guide rail includes an expansion guide provided at a lower part of the energy conversion device and on a side where the air box moves downward, and a side of the expansion guide far from the rotation device is spaced from the rotation The distance on the outside of the device is less than or equal to the size of the air tank after inflation.
  • the energy conversion device includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; The device is connected to the motor.
  • the invention is further provided that the number of the gas tanks is plural, and the plurality of the gas tanks are periodically arranged along the outside of the energy conversion device.
  • the air box includes at least one structural member supporting the air box in one direction, the structural member includes two first structural members arranged in a cross, and the two first structural members are in a middle portion thereof.
  • the rotation center is hinged;
  • the structural member includes a second structural member connected to the telescopic air box, the second structural member is plate-shaped, and a slide rail perpendicular to the telescopic direction of the telescopic air box is provided thereon,
  • the number of the second structural members is at least two, and at least two of the second structural members are respectively disposed on opposite sides in the deformation direction of the air box, and two ends of the first structural member are in contact with the two Slide rail slide connection.
  • the present invention is further configured to include a rotating device rotating around its center, a ring-shaped gas box assembly provided along a circumferential direction of the rotating device, a conveying device for conveying gas, and an on-off air supply for controlling the conveying device.
  • the high-pressure air box is disposed on a wall of at least one side of the normal-pressure air box; an air outlet end of the conveying device is located at a lower portion of the energy conversion device and is capable of introducing air into the air box, At least a part of the moving device is immersed in a buoyant medium, the density of the buoyant medium is greater than the density of air, and the airbag is made of a deformable material.
  • the invention also provides an energy conversion device, comprising a rotating device rotating around its center, and a ring-shaped air box arranged along a circumferential direction of the rotating device, which communicates with the inside of the air box and directs the air to the air.
  • a conveying device for introducing air into the box; an air box switch for controlling the internal and external connections of the air box to assist the deformation of the air box; a fixing device provided at least on one side of the energy conversion device, the auxiliary guide and The fixing device is connected;
  • the air box is radially divided into a plurality of continuous units by a spacer, and each of the units is provided with at least one of the air box switches;
  • the spacer is made of an elastic material, Extending towards the middle of the device, at least a part of the rotating device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of air.
  • the rotating device is wheel-shaped, and the rotating device includes a first rotating device at least partially above the buoyant medium and a second rotating device immersed in the buoyant medium, The radial directions of the first rotating device and the second rotating device are in the same plane.
  • the auxiliary guide is arc-shaped and includes a first auxiliary guide provided on the upper side of the energy conversion device and a second auxiliary guide provided on the lower side of the energy conversion device; the first auxiliary guide and the second The auxiliary guide rails are oppositely arranged; the side of the first auxiliary guide rail and the second auxiliary guide rail on the side where the air box moves downwards, and the distance from the rotary device is equal to the size when the air box is not inflated; The side on which the air box moves upwards, the distance from the rotating device is larger than the size of the air box when it is not inflated, and is smaller than or equal to the size of the air box after it is inflated.
  • the air box is provided with a slide bar to assist the deformation of the air box, and the extending direction of the slide bar is perpendicular to the deformation direction of the air box;
  • the auxiliary guide is a sliding fit with the slide bar Rail structure.
  • an opening device for controlling the opening of the air box switch is provided on a side of the second auxiliary guide rail adjacent to the downward movement of the air box, and a setting height of the opening device is smaller than the second rotation The height of the device center.
  • the present invention is further provided that: a closing device for controlling the closing of the gas box switch is provided on a side of the second auxiliary guide rail adjacent to the upward movement of the gas box, and a setting height of the closing device is smaller than that of the second rotating device The height of the center.
  • an opening device for controlling the opening of the air box switch is provided along the circumference of the first rotation device, and the opening device and the first rotation device are fixedly connected.
  • the opening device rotates following the first rotating device, and the number of the opening devices is plural, and the line distance between two adjacent opening devices is equal to the line between two adjacent gas box switches. distance.
  • the conveying device includes an air inlet duct with one end in communication with a high-pressure air source, a ring-shaped air duct that is annular and connected to the transmission device, and the other end of the air inlet duct is connected to the air inlet conveying
  • a switch the inside of the annular air pipe is a pipe shape for high-pressure airflow, and the annular air pipe is provided with an output device for injecting high-pressure gas into the air box at a position corresponding to the air box;
  • An annular air duct is rotatably connected to the intake delivery switch through a delivery pipe.
  • the side on which the intake conveyance switch makes an upward movement toward the air box is an opening, which communicates with the intake duct; and the intake conveyance switch makes a downward movement toward the air box.
  • One side is a closed portion, which is disconnected from the air inlet duct and blocks one end of the conveying pipe connected thereto.
  • the invention is further provided that the intake duct is disposed on the same side as the fixing device.
  • the invention is further provided that the intake duct is provided on the opposite side of the energy conversion device from the fixing device.
  • the invention further provides that the buoyant medium includes water, oil, and mercury.
  • the energy conversion device includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; The device is connected to the motor.
  • the present invention further provides an energy conversion device, including a rotation device rotating around a center thereof, a plurality of telescopic air boxes that can be deformed in a direction pointing to the center of the energy conversion device, in at least one direction
  • a support device for supporting the telescopic air box a conveying device capable of communicating with the interior of the telescopic air box and introducing air into the telescopic air box, and controlling an on / off air delivery switch of the delivery device;
  • An air outlet end of the device connected to the telescopic air box is located at a lower portion of the energy conversion device, and a plurality of the telescopic air boxes are sequentially connected and arranged in a ring shape along a circumferential direction of the rotary device.
  • the invention is further provided that: the supporting device is disposed inside the telescopic air box; at least a part of the rotating device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of air.
  • the device includes a guide rail that provides guidance for deformation of the telescopic air box, the guide rail is arc-shaped, and the guide rail includes a first segment and a second segment that are connected; the first segment is provided at On the upper side of the energy conversion device, the distance that the gas box moves downward from the rotation device is equal to the size of the gas box when it is not inflated; The distance of the moving device is greater than the size of the air box when it is not inflated, and is less than or equal to the size of the air box after it is inflated; the second section is provided on the side of the energy conversion device that moves downwards of the air box The distance from the tangent line on the same side of the rotary device is equal to the size of the air tank when it is not inflated.
  • the supporting device includes a first supporting device provided along a deformation direction of the air box and a second supporting device provided along an outer contour of the device, and one end of the first supporting device faces the air box.
  • One side of the rotation device is hinged, and the other end of the first support device is hinged with the second support device.
  • the number of the supporting devices is at least two, and at least two of the supporting devices are evenly disposed with respect to the telescopic air box.
  • each of the second supporting devices corresponds to at least two first supporting devices, and the first supporting devices are evenly disposed with respect to the second supporting devices.
  • the first support device includes a control switch for controlling its movement, and at least a part of the control switch is provided on the telescopic air box in a manner that can be protruded / retracted along the telescopic direction of the telescopic air box.
  • the control switch for controlling its movement, and at least a part of the control switch is provided on the telescopic air box in a manner that can be protruded / retracted along the telescopic direction of the telescopic air box.
  • the present invention further provides that the number of the control switches is at least two, and at least two of the control switches are provided in a one-to-one correspondence with the at least two first support devices.
  • the invention is further provided that a pressure switch corresponding to the conveying device is provided on the telescopic air box.
  • the energy conversion device includes a fixing device for fixing the air box
  • the fixing device is a rope / belt shape, and one end of the fixing device is hinged to the telescopic air box away from the rotating device
  • One side and the other end of the telescopic air box are hinged to the side of the telescoping device
  • the extending direction of the fixing device is at an angle with the telescoping direction of the telescopic air box
  • the fixing device is a flexible material be made of.
  • the rotating device is wheel-shaped, and the rotating device includes a first rotating device located above the buoyant medium and a second rotating device immersed in the buoyant medium.
  • the radial directions of the rotary device and the second rotary device are in the same plane; the intake air delivery switch is disposed on the second rotary device.
  • the energy conversion device includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; The device is connected to the motor.
  • the present invention further introduces an energy conversion device, including a rotation device rotating around its center, and a telescopic airbag made of a plurality of flexible materials disposed along a circumferential direction of the rotation device, supporting the expansion and contraction in at least one direction.
  • the airbag support device is a conveying device capable of communicating with the interior of the telescopic airbag and introducing air into the telescopic airbag, and controlling an on / off air delivery switch of the conveying device; the conveying device is connected to the telescopic airbag.
  • the air outlet is located at the lower part of the energy conversion device.
  • a plurality of the telescopic airbags are connected and arranged in a ring shape in sequence.
  • the airbag is provided with an airbag opening for controlling air outlet.
  • the airbag openings are provided at a plurality of adjacent positions of the telescopic airbags, the airbag openings of the plurality of the telescopic airbags are located at the same position, and the airbag openings are made of a flexible material.
  • the airbag opening is a tubular structure protruding from the contour of the telescopic airbag, the airbag opening is provided toward the outside of the device, and the airbag opening is provided in a direction away from the movement direction of the telescopic airbag. Set on one side.
  • an energy conversion device again including:
  • the rotary device includes a rotary shaft that rotates around its axis, and a rotary wheel provided at both ends of the rotary shaft and rotating with the rotary shaft to support and position the rotary shaft.
  • a rotary support which is connected to the rotary shaft;
  • a transmission device the transmission device is ring-shaped, and is arranged along a contour formed on the outer peripheral side of the rotating wheel; a side of the transmission device facing the rotating wheel is engaged with the outer peripheral side of the rotating wheel;
  • An air box the number of which is a plurality, which is periodically arranged along the transmission device, and an opening is provided on a side of the air box facing away from the moving direction of the transmission device;
  • a conveying device comprising a ventilation duct with one end in communication with a high-pressure air source, which is annular and connected to the transmission device;
  • An air outlet device for injecting high-pressure gas into the air tank is provided at a position of the air guide ring corresponding to the opening, and the air guide ring and the ventilation pipe are rotatably connected through a pipeline.
  • the energy conversion device is disposed in a vertical plane
  • the number of the rotation devices is plural
  • the extension directions of the rotation axes of the plurality of rotation devices are the same
  • a plurality of the rotation axes The ends of the rotating shaft of the rotating device are in the same vertical plane, and the rotating wheels of the plurality of rotating devices form a convex polygon in the vertical plane.
  • the invention is further provided that the plurality of rotation supports of the plurality of rotation devices intersect at one point and are connected at the point.
  • the number of the rotation devices is four
  • the extension directions of the rotation axes of the four rotation devices are the same
  • the ends of the rotation axes of the four rotation devices are the same
  • the rotation wheels of the four rotation devices form a quadrangle in the vertical plane.
  • the invention is further provided that the rotating wheels are polygonal, and a certain angle is formed between the symmetry axes / diagonal lines of the rotating wheels of the plurality of rotating devices.
  • the outer circumferential side of the rotating wheel is provided with a convex groove protruding outward / inwardly recessed, and the side of the transmission device facing the rotating wheel is provided with the card. Convex / slot fit.
  • the invention is further provided that the conveying device is disposed on one side of a plane formed by the transmission device, the energy conversion device is at least partially immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of the high-pressure gas, and
  • the buoyant medium includes water.
  • the energy conversion device includes a motor provided on the rotating device, a generator connected to the transmission device, and a power storage device connected to the generator; the power storage device Connected to the motor.
  • the air box is provided with an intake air delivery switch for controlling the opening and closing of the opening of the air box
  • the bottom of the device is provided with an opening structure that controls the opening of the air delivery switch and controls the intake air Closed structure with delivery switch closed.
  • the energy conversion device includes a fixing mechanism
  • the fixing mechanism includes a first fixing mechanism provided on the same side as the conveying device, and a second fixing mechanism provided on the other side; the fixing One end of the mechanism is connected to the rotation support or the rotation device, and the other end of the fixing mechanism is connected to the ground.
  • the present invention further provides an energy conversion device, which includes a rotary device rotating around a center thereof, an air box having a certain accommodating space inside and arranged along the rotary device, and the air box moves to A conveying device that communicates with the inside of the air box at a certain position and introduces air into the air box; the number of the air boxes is multiple, and a plurality of the air boxes are on both sides and adjacent to the air box A plurality of air inlet conveying switches which are arranged in one-to-one correspondence with a plurality of the air tanks, the air inlet conveying switches are used to control the on-off between the interior of the air tank and the conveying device, and the air box is far from the rotating device
  • One side of the air box is made of hard material; the part of the air box adjacent to the rotating device is made of a deformable material / deformable structure and deformed by the squeezing action of the air box adjacent to it; A side of the air box facing away from the moving direction of
  • the energy conversion device further includes a transmission device, the transmission device is arranged along a track formed by the rotation device, and is rotated by the rotation device; One side of the transmission device is provided, and the side of the air box far from the rotation device or the side adjacent to the rotation device is connected to the transmission device.
  • the transmission device includes a plurality of chain links connected in sequence, and the chain links include a plate-shaped body and connecting members provided on both sides of the body, each of the chain links And the adjacent links are connected by connecting pieces.
  • the air box has a rectangular structure, and at least a part of the side of the air box near the rotating device is a deformed part made of a deformable material / deformable structure, and is connected to the deformed part.
  • One side is a flip part connected to the side opposite to the deformed part through a hinge, the flip part is turned around the side opposite to the deformed part, and the side of the air box near the rotating device is changed shape.
  • the air box includes a matching deformation guide grid and a deformation guide rod; the deformation guide grid and the deformation guide rod are disposed on a side of the deformed portion facing the inside of the air box, and the deformation guide One side of the grid is connected to the turning part, and is moved by the turning part.
  • the deformation guide grid is provided with a plurality of grids arranged along the deformation direction.
  • the deformation guide bar is provided at the deformation part.
  • the number of the deformation guide rods is plural, and a plurality of the deformation guide rods are arranged corresponding to the grid, and are deformed along with Said grid sliding.
  • the deformed portion is made of waterproof cloth / rubber / elastic plastic / silicone / elastic composite material.
  • the invention is further provided that a plurality of cross-supporting members are provided inside the air box, the support members are arranged along the non-deformed direction of the air box, and the extending direction of the support member is in the direction of the side wall of the air box. Must be at an angle.
  • the invention is further provided that the number of the rotation devices is two, two of the rotation devices are arranged along the direction of gravity, and the two rotation devices collectively constitute the movement track of the air box, and are located above
  • the rotating device at least protrudes from the upper surface of the buoyant medium, which is a liquid.
  • one of the two rotating devices is an active rotating device and the other is a passive rotating device; and two generators connected to the energy storage device are respectively provided on the two rotating devices;
  • the active rotation device is connected to the energy storage device, and a part of its power source is electric energy stored in the energy storage device.
  • the delivery device includes a first-stage air pipe with one end in communication with a high-pressure air source, a second-stage air pipe that is annular and connected to the transmission device in a rotation direction, the first-stage air pipe and the second-stage air pipe It is connected through a three-stage air pipe, and the number of the three-stage air pipes is multiple, and the second-stage air pipe is provided with an air outlet for injecting high-pressure gas into the air tank at a position corresponding to the intake delivery switch.
  • the present invention provides an energy conversion device.
  • the energy conversion device includes at least four runners that rotate around their centers, and a plurality of close-packed air boxes that move along the trajectory formed by the outer sides of the runners.
  • a gas supply device for introducing gas inside the gas box, to assist in adjusting devices for adjusting the relative angle between the multiple gas boxes; the surface connecting two adjacent gas boxes is the same shape, size, and flat surface;
  • the air box is made of hard material; the at least four runners are arranged in the same vertical plane, the relative heights of the at least four runners are different, and the adjusting device includes two arranged on the upper side An upper adjusting device between the runners and a lower adjusting device provided between the two runners located on the lower side, the adjusting device directs a trajectory formed between the two runners adjacent to the runner to the energy conversion device. Outside extension.
  • the invention is further provided that the gas box is periodically arranged along the trajectory, and a side for gas / liquid inflow / outflow is provided on a side of the gas box facing away from the moving direction of the transmission chain, and the gas box is arranged along the The trajectory moves clockwise / counterclockwise.
  • the air supply device includes a main air inlet pipe with one end in communication with a high-pressure air source, which is annular and connected to the transmission chain, and the annular air passage corresponds to the port
  • a ventilation control device for injecting high-pressure gas into the inside of the air tank is provided at the position of the air tank, and the annular air passage is rotatably connected to the main intake pipe through a transition pipe.
  • an opening device for controlling the opening of the ventilation control device is provided on a lower side of the energy conversion device adjacent to the downward movement of the air tank, and when the ventilation control device passes the opening device, the opening device The ventilation control is turned on and the air is injected into the air tank.
  • the invention is further provided that: a closing device for controlling the closing of the ventilation control device is provided on a side of the energy conversion device adjacent to the upward movement of the air box, and the ventilation is performed when the ventilation control device passes the closing device.
  • the control is turned off and stops injecting air into the gas tank.
  • the present invention is further provided that the adjusting device is an arched structure protruding to the outside of the energy conversion device, so that the tracks located on the upper and lower sides of the device protrude outward.
  • the air box is rectangular
  • the extending direction of the track of one side of the air box moving up / down is the vertical direction
  • the contact between two adjacent air boxes in this direction is Surface contact.
  • the invention is further provided that at least one of the at least four runners protrudes out of the liquid surface setting, and at least one of the at least four runners is immersed in the liquid surface setting
  • the runner is a symmetrical polygon structure, and the side length of the polygon is equal to the side length of the side of the air box near the runner, so that the corners of the polygon can be snapped into adjacent sides. Within the angle between the two air tanks.
  • the invention further provides that the cross section of the runner along its axial direction is triangular or quadrangular or pentagonal or hexagonal.
  • the energy conversion device includes a transmission chain disposed along the trajectory, the transmission chain is disposed between the runner and the air box, and the transmission chain is in a belt shape end to end Structure, the transmission chain is connected to the air box, and follows the air box to move along the trajectory;
  • the device includes a generator connected to the runner, and a power storage device connected to the generator A device, the power storage device is connected to the transmission chain, and provides at least a part of energy for the movement of the transmission chain.
  • the invention is further provided that, among the at least four runners, the radial size of the runner on the upper side is larger than the radial size of the runner on the lower side, and the size of the runner protruding from the liquid surface is larger than the other The size of the runner; the size of the runner submerged in the liquid surface is smaller than the size of other runners.
  • the present invention is further configured to include at least four runners respectively rotating around the center thereof, a plurality of closely-spaced gas tanks continuously moving along a trajectory formed on the outer side of the runners, and introducing gas to the interior of the gas tank.
  • the present invention has the following beneficial effects compared with the prior art.
  • the energy conversion device introduced by the present invention can improve the energy conversion rate of high-pressure gas.
  • the high-pressure gas generated by a thermal power station still maintains a large internal energy after passing through a steam turbine, and releases the high-pressure gas to The atmosphere will cause a waste of this part of the energy. Recovery and utilization of such high-pressure gas can improve the energy conversion rate of the high-pressure gas.
  • a high-pressure gas box and a low-pressure gas box are set in cooperation, and the pressure of the gas filled in both is higher than the atmospheric pressure, but the pressure in the high-pressure gas box is higher,
  • the air box is arranged on at least one side wall of the low-pressure air box.
  • the air box can be supported at a faster inflation speed, which is beneficial to increase the inflation speed of the air box and to the low-pressure air box. Inflatable effect.
  • the energy conversion device introduced by the present invention has a small footprint and flexible structure design.
  • the size of the equipment can be designed according to the needs.
  • the energy conversion device introduced by the present invention has a simple structure and does not require manual operation or complicated maintenance operations.
  • a motor is added to the installation for providing at least part of the power for the rotation of the rotating device.
  • This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the high-pressure conveying device and the atmospheric pressure conveying device are arranged in cooperation.
  • the pressure of the gas charged in the two is different, but the pressure in the high-pressure conveying device is higher.
  • the gas box can be supported at a relatively fast inflation speed, which is conducive to increasing the inflation speed of the gas box and is beneficial to the inflation effect of the atmospheric pressure gas box.
  • the lower part of the energy conversion device is immersed in water, and the telescopic air box is moved in a circumferential direction around the rotary device.
  • the telescopic air box moves to the lower side, it is filled with gas, and the telescopic air box is It is propped up and floats upward under the action of buoyancy.
  • the air box switch is turned on, the gas in the telescopic air box is discharged, the telescopic air box shrinks and deforms, and is driven by the rotating device. Under exercise, immerse in water again.
  • the lower part of the energy conversion device is immersed in water, and the telescopic air box is moved in a circumferential direction around the rotation device.
  • the telescopic air box moves to the bottom, it is filled with gas, and the telescopic air box is It is propped up and floats upward under the action of buoyancy.
  • the pressure switch is turned on, the gas in the telescopic air box is discharged, the telescopic air box shrinks and deforms, and is driven downward by the rotation device. Exercise and immerse in water again.
  • the structure of the air box, the structure of the conveying device, and the cooperation relationship between the two are improved, so that the structure and volume of the air box will not vary with the location of the device when it is used.
  • the change of position greatly simplifies the structural design of the gas tank.
  • the material of the gas box is a hard material, which increases the pressure resistance and deformation resistance of the gas box, which is beneficial to extending the service life of the gas box and the structural protection of the gas box.
  • the air pressure in the conveying device is not high. It is only required that the air pressure can meet the conditions for gas transportation, which improves the applicability to gas pressure.
  • FIG. 1 is a schematic diagram of an overall structure of an energy conversion device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a gas box in a front view according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a gas box in a right direction according to an embodiment of the present invention.
  • 4 to 9 are schematic diagrams of an arrangement manner of a rotation device of an energy conversion device in different embodiments of the present invention.
  • 10 to 12 are schematic structural diagrams of parts of an energy conversion device in different embodiments of the present invention.
  • 11 to 16 are schematic structural diagrams of parts of an energy conversion device in different embodiments of the present invention.
  • 17 to 19 are front views of the overall structure of a telescopic air box in different embodiments of the present invention.
  • FIG. 20 is a schematic structural diagram of an airbag in a front direction according to an embodiment of the present invention.
  • 21 is a schematic diagram of a structure of an airbag in a left direction according to an embodiment of the present invention.
  • 22 is a front view of the overall structure of an energy conversion device according to an embodiment of the present invention.
  • FIG. 23 is a left side view of the overall structure of an energy conversion device according to an embodiment of the present invention.
  • 24 is a front view of the overall structure of an energy conversion device in another embodiment of the present invention.
  • 25 is a left side view of the overall structure of an energy conversion device in another embodiment of the present invention.
  • 26 is a front view of an expanded state of an overall structure of a telescopic air box according to an embodiment of the present invention.
  • FIG. 27 is a front view of a compressed state of the overall structure of the telescopic air box in one embodiment of the present invention.
  • FIG. 28 is a front view of an expanded state of an overall structure of a telescopic air box in an embodiment of the present invention.
  • 29 is a schematic structural diagram of a part of an energy conversion device according to an embodiment of the present invention.
  • FIGS. 30 and 31 are schematic structural diagrams of telescopic airbags in different embodiments of the present invention.
  • 32 is a front view of the overall structure of an energy conversion device in an embodiment of the present invention.
  • 33 is a left side view of the overall structure of an energy conversion device in an embodiment of the present invention.
  • 35 is a top view of a rotary shaft and a rotary wheel in an embodiment of the present invention after being connected;
  • 36 is a front view of a spinning wheel in an embodiment of the present invention.
  • FIG. 37, FIG. 39, FIG. 40, and FIG. 42 are schematic structural diagrams of a gas tank in a front view in different embodiments of the present invention.
  • FIG. 38 is a schematic structural view of a gas box in a left direction according to an embodiment of the present invention.
  • 41 and 43 are schematic structural diagrams of a gas box in a right direction in different embodiments of the present invention.
  • 45 is a schematic structural diagram of an adjusting device of an energy conversion device according to an embodiment of the present invention.
  • 46 and 47 are schematic structural diagrams of energy conversion devices in different embodiments of the present invention.
  • the energy conversion device in this embodiment includes a rotating device rotating around its center, a ring-shaped air box assembly 2 provided along the circumferential direction of the rotating device, and the inside of the air box 2 Conveying device 3 that communicates and introduces air into the air box; intake air conveying switch 5 that controls the continuity of the conveying device; the air conveying switch 5 is arranged on the rotating device; Multiple; the air box 2 includes a high-pressure air box 21 and a low-pressure air box 22, the high-pressure air box 21 is provided on at least one side wall of the low-pressure air box 22, or the low-pressure air box 22 is wrapped in the high-pressure air box 21; a conveying device 3 The air outlet end connected to the air tank 2 is located at the lower part of the energy conversion device. At least a part of the rotary device is immersed in the buoyant medium, and the density of the buoyant medium is greater than the density of the air.
  • the buoyant medium is a liquid such as water.
  • the energy conversion device introduced in this embodiment can improve the energy conversion rate of high-pressure gas.
  • the high-pressure gas generated by a thermal power station still maintains a large internal energy after passing through a steam turbine, and releases the high-pressure gas to the atmosphere. This will result in a waste of energy in this part. Recovery and utilization of such high-pressure gas can improve the energy conversion rate of the high-pressure gas.
  • the rotating device in this embodiment is wheel-shaped.
  • the rotating device includes a first rotating device 11 located above the buoyant medium and a second rotating device 12 immersed in the buoyant medium.
  • the first rotating device 11 It is in the same plane as the radial direction of the second rotating device 12; the intake air delivery switch 5 is disposed on the second rotating device 12, and the line A in FIG. 1 is the immersion height of the buoyant medium.
  • the arrow B indicates the operation direction of the energy conversion device.
  • the energy conversion device in this embodiment operates clockwise.
  • the first rotating device 11 and the second rotating device 12 in this embodiment have the same size.
  • the lower part of the energy conversion device is immersed in water, and the gas box rotates around the rotating device.
  • the gas box When the gas box moves to the bottom, it is filled with gas, the gas box is supported, and it floats upward under the action of buoyancy.
  • the pressure switch When the tank rises to the surface of the water, the pressure switch is turned on, and the gas in the air tank is discharged. The air tank shrinks and deforms, and moves downwards under the driving of the rotary device, and is submerged in the water again.
  • the intake air delivery switch includes a high-pressure air delivery switch corresponding to the high-pressure air tank and a low-pressure air delivery switch corresponding to the low-pressure air tank; the volume of the high-pressure air tank is smaller than the low-pressure air tank
  • the capacity of the high-pressure gas tank is higher than that of the low-pressure gas tank, so the high-pressure gas tank can provide support for the low-pressure gas tank.
  • the high-pressure gas box and the low-pressure gas box are set together, and the pressure of the gas charged in both is higher than the atmospheric pressure atmosphere, but the pressure in the high-pressure gas box is higher.
  • the high-pressure gas box is arranged on at least one side of the low-pressure gas box. On the wall, when the high-pressure gas tank is filled with gas, the gas tank can be supported at a relatively fast inflation speed, which is conducive to increasing the inflation speed of the gas tank and to the inflation effect of the low-pressure gas tank.
  • a pressure switch 6 corresponding to the intake air delivery switch 5 is provided on the air tank.
  • the pressure switch 6 is connected to the intake air delivery switch 5. Since no gas is in the low pressure in the gas box 2, the delivery device 3 is connected to the air source. The internal air pressure is relatively high.
  • the air inlet delivery switch 5 is turned on, and the pressure switch 6 corresponding to the air inlet delivery switch 5 is turned on at the same time, so as to inject air into the air tank 2.
  • the pressure also increases.
  • the inflation amount in the gas tank reaches a threshold, the intake delivery switch 5 and the corresponding pressure switch 6 are rotated to a separation attitude, and the two are separated, and the two Are closed at the same time.
  • the first rotary device 11 is provided with a switch control member 63 corresponding to the pressure switch 6.
  • the switch control member 63 is fixedly connected to the first rotating device 11 and rotates with the first rotating device 11.
  • the switch control member 63 contacts the pressure switch 6 and opens the pressure switch 6 under the squeeze action, thereby realizing the deflation process of the air tank 2.
  • the area C shown in FIG. 1 is a state in which the air tank is being deflated after the switch controller 63 turns on the pressure switch 6.
  • the switch control member 63 As the device continues to run, when the switch control member 63 is separated from the pressure switch 6, its control effect on the pressure switch stops immediately.
  • the energy conversion device in this embodiment is different from the above embodiment in that the energy conversion device includes an auxiliary guide rail 7 that is disposed on the other side of the air tank 2 relative to the first rotation device 11 ;
  • the distance of the side of the auxiliary guide rail 7 facing the first rotating device 11 from the outside of the first rotating device 11 is greater than or equal to the size of the air tank 2 after being inflated;
  • the auxiliary guide 7 faces away from the first rotating device 11
  • the distance from one side of the rotation direction to the outside of the first rotating device 11 is equal to the size of the air tank 2 after being exhausted.
  • the air box 2 of this embodiment is provided with an auxiliary rod 8 that is slidably engaged with the auxiliary guide rail 7. In the energy conversion device shown in FIG.
  • the air box rotates in a clockwise direction.
  • the auxiliary rod 8 is caught in the auxiliary guide rail 7, and the air box starts to exhaust.
  • the air box leaves the control range of the auxiliary guide rail 7, the gas inside it is basically discharged, and the compressed air box re-enters the buoyancy medium along the movement track.
  • the auxiliary rod 8 in this embodiment is provided with a bearing to assist its movement, so that its movement is smoother and frictional resistance is reduced.
  • the energy conversion device of this embodiment is different from the above embodiment in that the energy conversion device includes a motor (not shown in the figure) provided on the rotation device, and a generator connected to the rotation device 9.
  • a power storage device (not shown in the figure) connected to the generator 9; the power storage device is connected to the motor.
  • the rotating device drives the generator 9 through rotation to generate electricity, and the generated electric energy is introduced into the power storage device and stored.
  • the generator in this embodiment is connected to an intake air delivery switch.
  • the electrical energy generated by the generator provides energy to the intake delivery switch.
  • the energy conversion device in this embodiment includes a generator connected to the rotating device and a power storage device connected to the generator.
  • a motor is added to the setting to provide at least part of the power for the rotation of the rotary device.
  • This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the energy conversion device of this embodiment is different from the above embodiment in that the size of the first rotating device 11 is larger than that of the second rotating device 12, and the connection between the center of the two and the vertical The straight direction is at an angle, and the angle ranges from 0 ° to 45 °.
  • the energy conversion device of this embodiment is different from the foregoing embodiment in that the number of the first rotating device 11 is one, the number of the second rotating device 12 is two, and the two first The two rotation devices 12 are at the same horizontal height.
  • This design can increase the walking distance of the gas tank during the intake phase, extend the intake time, and ensure the adequacy of the intake. This design can effectively reduce equipment operating costs.
  • the energy conversion device in this embodiment operates clockwise in the structure as shown in FIG. 7 and FIG. 8.
  • the opposite of the second rotation device 12 on the left side of the figure is opposite.
  • the position is higher or slightly higher than the second rotating device 12 on the right side of the figure.
  • the trajectory of the air box between the two second rotary devices 12 is to climb upward.
  • the energy conversion device in this embodiment is different from the above embodiment in that the size of the first rotating device 11 is smaller than the size of the second rotating device 12, and the connection between the centers of the two is vertical. At a certain angle, the angle ranges from 0 ° to 45 °.
  • This design can increase the walking distance of the air box in the intake stage without increasing the number of rotating devices, and extend the intake time to ensure the adequacy of the intake. Then effectively reduce the equipment operation cost.
  • the energy conversion device introduced in this embodiment has a small footprint, flexible structure design, and the size of the equipment can be designed according to needs. Moreover, the energy conversion device described in the present invention has a simple structure without manual operation or complicated maintenance operations.
  • the energy conversion device of this embodiment includes a wheel-shaped first rotating device 11 and a second rotating device 12 that rotate around its center, and an air tank 2 provided along the circumferential direction of the rotating device controls.
  • a pressure switch 6 that connects and disconnects the inside of the air box, an auxiliary guide rail 7 that provides pressure / tension for opening / closing the pressure switch 6, a conveying device 3 that communicates with the inside of the air box 2 and introduces air into the air box.
  • the conveying device 3 includes A high-pressure conveying device for conveying high-pressure air and a normal-pressure conveying device for conveying normal-pressure air.
  • the high-pressure conveying device is in communication with a high-pressure air source, and the normal-pressure conveying device is in communication with the atmosphere.
  • the pressure switch includes a first pressure switch connected to the high-pressure conveying device and a The second pressure switch connected to the atmospheric pressure conveying device; the air outlet end of the conveying device connected to the air box is located at the lower part of the energy conversion device.
  • the air box includes a low-pressure air box corresponding to a normal-pressure conveying device and a high-pressure air box corresponding to a high-pressure conveying device.
  • the rotating device of the energy conversion device in this embodiment is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of the high-pressure air;
  • the rotating device includes a first rotating device located above the buoyant medium and immersed in buoyancy.
  • the second rotating device in the medium; the air inlet conveying switch is arranged on the second rotating device.
  • the second rotating device is completely immersed in the buoyant medium.
  • the pressure switch When the air box rises to the surface, the pressure switch is turned on, the gas in the air box is discharged, the air box shrinks and deforms, and moves downwards under the driving of the rotary device, and is submerged in water again.
  • the high-pressure conveying device and the normal-pressure conveying device are set in cooperation.
  • the pressure of the gas charged in the two is different, but the pressure in the high-pressure conveying device is higher.
  • the high-pressure gas tank When the high-pressure gas tank is filled with high-pressure gas, the gas tank can be faster.
  • the inflation speed is propped up, which is conducive to increasing the inflation speed of the air tank and is beneficial to the inflation effect of the low-pressure air tank.
  • the energy conversion device of this embodiment is different from the above embodiment in that the auxiliary guide rail 7 is ring-shaped and is arranged outside the air tank 2; on the side where the air tank 2 moves downward, the auxiliary guide rail 7 is spaced apart.
  • the distance of the rotary device is equal to the size of the gas box 2 when it is not inflated.
  • the distance from the auxiliary guide rail 7 to the rotary device is greater than the size of the gas box when it is not inflated, and less than or equal to that after the gas box is inflated. size of.
  • the air box continues to compress along the track of the auxiliary guide until the gas is basically discharged. When the air box moves to the low end of the device, the pressure switch is turned on to inflate the air box. Repeatedly.
  • the energy conversion device of this embodiment is different from the above embodiment in that the auxiliary guide rail is arc-shaped and includes a first auxiliary guide rail 71 provided on the upper side of the energy conversion device and an under the energy conversion device.
  • the second auxiliary guide 72 on the side; the side on which the first auxiliary guide 71 and the second auxiliary guide 72 move downward on the air tank 2 is equal to the size of the air tank 2 when it is not inflated;
  • the distance from the moving side to the rotating device is greater than the size of the air tank when it is not inflated, and less than or equal to the size of the air tank after it is inflated.
  • the structural design of the auxiliary guide rail in this embodiment significantly reduces the size of the auxiliary guide rail, and when the shape change of the air tank is not required, the auxiliary guide rail is vacant there to avoid causing resistance to the movement of the air tank.
  • the energy conversion device of this embodiment is different from the above embodiment in that the auxiliary guide includes a first auxiliary gear that is rotatable and gear-shaped and is connected to the rotation device.
  • the device 71 and a second assisting device 72 provided outside the air box 2 are in the shape of a lever and are connected to the gear-shaped grooves of the first assisting device 71 in cooperation.
  • the auxiliary guide rail in this embodiment includes a compressed first auxiliary guide rail 711 provided on an upper side of the energy conversion device and moving upward on the side of the air box, and a side of the compressed first auxiliary guide rail 711 opposite to the rotation device is rotated away from The distance outside the moving device is greater than or equal to the size when the air tank is not inflated.
  • the auxiliary guide rail in this embodiment includes an expanded first auxiliary guide rail 712 provided on a lower side of the energy conversion device and moving downward on the air tank, and a side of the expanded first auxiliary guide rail 711 away from the rotation device is rotated away from the rotary device.
  • the distance outside the moving device is less than or equal to the size of the air tank after inflation.
  • the energy conversion device of this embodiment is different from the foregoing embodiment in that the energy conversion device includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; the power storage device Connected to the motor.
  • a motor is added to the setting to provide at least part of the power for the rotation of the rotary device.
  • This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the number of the air tanks 2 in this embodiment is multiple, and the multiple air tanks 2 are periodically arranged along the outside of the energy conversion device.
  • the energy conversion device in this embodiment includes a rotating device rotating around the center thereof, and a ring-shaped gas box assembly provided along a circumferential direction of the rotating device to convey gas.
  • An air delivery switch that controls the on-off of the delivery device; the air inlet delivery switch is provided on the rotating device; the air box assembly is separated by spacers into multiple air boxes that are not connected to each other ;
  • the air box includes a high pressure air box 21 and a low pressure air box 22, the high pressure air box 21 is disposed on a wall of at least one side of the low pressure air box 22, and the high pressure air box 21 faces at least one side of the low pressure air box It plays a supporting role.
  • the high-pressure gas tank 21 is wrapped around the low-pressure gas tank, and the volume of the high-pressure gas tank is smaller than the volume of the low-pressure gas tank.
  • the high-pressure gas tank 21 is controlled by a first pressure switch 61 for its inlet and exhaust outlets, and the low-pressure gas tank 21 is controlled by its second pressure switch for its inlet and exhaust outlets.
  • the outlet end of the conveying device is located at the lower part of the energy conversion device and can introduce air into the air tank. At least a part of the rotating device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of air.
  • the airbag is made of a deformable material.
  • the energy conversion device of this embodiment is different from the above embodiment in that the structural member in the present invention includes two first structural members 41 arranged in a crosswise manner, the first structural member is rod-shaped, and two The first structural member 41 is hinged at the center of rotation 43 at the center, and is arranged crosswise; the structural member includes a second structural member 42 connected to the telescopic air box, and the second structural member 42 is plate-shaped, and a vertical air box is provided thereon 2 The slide rail 44 in the telescopic direction. One end of the first structural member 41 is slidably connected to the slide rail 44 and the other end is rotatably connected to the telescopic air box 2.
  • the trigger end 101 of the control switch 10 in the present invention is disposed on the side close to the rotary device, and the control switch 10 is telescopically disposed on the side of the telescopic air box 2 perpendicular to the telescopic direction under the control of the rotary device.
  • the control switch 10 and the rotary device are contacted and connected through the conducting device 102.
  • the control switch 10 in the present invention can be protruded / retracted on the slide rail 44 along the telescopic direction of the telescopic air box 2.
  • the number of the control switches 10 in the present invention is at least two, and the at least two control switches 10 are arranged one-to-one corresponding to the supporting device.
  • the design of the control switch is to increase the control function of the deformation stage of the air box through the rotary device.
  • the conduction device is connected to the circuit through the rotary device, and the control switch starts to perform extension. Out / retract operation.
  • an energy conversion device introduced in the present invention includes a rotating device rotating around its center, a ring-shaped gas box 2 provided along the circumferential direction of the rotating device, and the inside of the gas box 2
  • a conveying device that communicates and introduces air into the air box 2
  • an air box switch 4 that controls the on-off of the air box to the outside, and an auxiliary guide rail that provides pressure / tension for opening / closing the air box switch; at least on the side of the energy conversion device
  • the pressure switch 6, the auxiliary guide rail is connected to the pressure switch 6;
  • the air box 2 is divided into continuous multiple units by a high pressure air box 21 in the radial direction, and each of the units is provided with at least one of the air box switches;
  • the high-pressure air box is made of an elastic material, and at least a part of the rotating device extending toward the middle of the device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of air.
  • the gas tank switch is a pressure-sensitive switch
  • the rotating device in the present invention is wheel-shaped.
  • the rotating device includes a first rotating device 11 located above the buoyant medium and a second rotating device 12 submerged in the buoyant medium.
  • the first rotating device 11 and The radial directions of the second rotating device 12 are in the same plane.
  • the two rotating devices in the present invention have the same size.
  • the auxiliary rail is arc-shaped and includes a first rail 71 provided on the upper side of the energy conversion device and a second rail 71 provided on the lower side of the energy conversion device; the first rail 71 and the second rail 72
  • the distance from the rotary device is equal to the size when the gas box 2 is not inflated; on the side where the gas tank 2 moves upward, the distance from the rotary device is greater than that of the gas box 2
  • the size at the time is not greater than the size of the air tank 2 after inflation.
  • the device in the present invention rotates clockwise in the position shown in FIGS. 1 and 3.
  • the air box 2 is provided with an auxiliary rod 8 for assisting the deformation of the air box 2, and the extending direction of the auxiliary rod 8 is perpendicular to the deformation direction of the air box 2; the auxiliary guide rail slides with the auxiliary rod 8.
  • the extending direction of the auxiliary rail is the same as that of the auxiliary rail.
  • a side of the second guide rail adjacent to the downward movement of the air box is provided with a first structural member that controls the air box switch 4 to be turned on.
  • the setting height is smaller than the height of the center of the second rotating device.
  • a side of the second rail adjacent to the upward movement of the air box is provided with a second structural member 42 that controls the closing of the air box switch, and the second structural member 42 Set the height to be less than the height of the water surface.
  • a rotation center 43 for controlling the opening of the air tank switch 4 is provided along an outer side of the first rotation device, and the rotation center 43 and the first rotation The devices are fixedly connected, and the rotation center rotates following the first rotation device.
  • the number of the rotation centers is multiple, and the line distance between two adjacent rotation centers is equal to that of two adjacent rotation centers.
  • the gas box switch 4 is turned on under the trigger of the rotation center 43 to realize exhaust. When the two are separated, the gas box switch 4 is turned off.
  • the conveying device includes an intake duct 31 having one end in communication with a high-pressure air source, and the other end of the intake duct 31 is connected to an intake conveying switch in a ring shape and connected to a transmission device.
  • the air guide pipe 33 and the annular air guide pipe 33 are in the shape of a pipe through which high-pressure air can flow.
  • the corresponding position of the annular air guide pipe 33 is provided with an output device for injecting high-pressure gas into the air tank.
  • the intake delivery switch is rotatably connected through a delivery pipe 34.
  • the side of the intake conveying switch in the present invention that moves upward toward the air tank is an open portion, which is in communication with the intake duct; the side of the intake conveying switch that moves downward in the air tank is a closed portion, and communicates with the intake air.
  • the pipe is disconnected, blocking the end of the delivery pipe to which it is connected.
  • the circular structure connected to the four conveying pipes 34 is the intake conveying switch, and the left side of the intake conveying switch is the opening portion. It is in communication with the air inlet duct 31, and on the left side of the device, the opening portion is always open.
  • the clockwise movement of the air box along the device is in the rising phase, and the air box is always in communication with the air source. Inflated.
  • the right side of the air inlet switch is a closed portion, which is a disconnected structure. When the air tank is in a downward movement state, it is always disconnected from the air source and cannot be inflated.
  • the intake duct 31 in the present invention is provided on the same side as the position of the pressure switch 6.
  • the intake duct 31 in the present invention is provided on the other side of the energy conversion device opposite to the pressure switch 6.
  • the buoyant medium in the present invention includes water, oil, and mercury.
  • the energy conversion device in the present invention includes a motor provided on the rotating device, a generator connected to the rotating device, and a power storage device connected to the generator; the power storage device is connected to the motor.
  • a motor is added to the arrangement for providing at least part of the power for the rotation of the rotating device.
  • This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. When the equipment needs external power At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • an energy conversion device in the present invention includes a rotation device that rotates around its center.
  • the rotation device includes a first rotation device 11 located above the device and a position below the device.
  • the second rotating device 12 of the present invention the two rotating devices are located in the same vertical plane, and a plurality of air boxes 2 arranged along the circumferential direction of the rotating device, and the supporting device supporting the air box 2 in at least one direction, Supporting and retracting function, the air bag isolates water vapor from the outside, and the air bag serves as an opening.
  • There is an opening at the bottom of this gas box as long as the opening is below and there is a supporting device, our machine works within 20 meters of water depth without problems.
  • the shape of the airbag in this embodiment is rectangular, and the supporting device is disposed inside the supporting device.
  • the supporting device includes a first structural member 41 and a second structural member 42.
  • the pressure switch 6 is connected to the conveying device 3, and the gas enters the air box, so that the volume of the air bag covered by the air box is gradually expanded, and the supporting device inside is expanded.
  • the relative position of the air tank and the water surface changes under the driving of the rotating device, and the relative position of the bottom gradually increases, and the airbag opening 80 is gradually adjusted to the position of the upper part of the air tank. Under the action of water pressure, the airbag opening 80 starts to vent, and the airbag contraction drives the support device to retract.
  • the energy conversion device includes a fixing device for fixing the air box structure.
  • the fixing device is a rope / belt shape.
  • One end of the fixing device is rotatably connected to the side of the gas box facing the outside of the device, and the other end can be
  • the side of the air box that is connected to the inside of the device is rotatably connected; the extending direction of the fixing device is at an angle with the telescopic direction of the air box; the fixing device is made of a flexible material.
  • the air boxes are connected by sprocket pieces 90.
  • the air outlet end of the 2 connection is located at the lower part of the energy conversion device, and a plurality of air tanks 2 are connected and arranged in a ring shape in order.
  • the second rotating device is completely immersed in the buoyant medium. Through the energy conversion device introduced in the present invention, the lower part of the energy conversion device is immersed in water, and the air box rotates around the rotating device to make a circumferential movement.
  • the supporting device 4 in the present invention is disposed inside the air tank 2; at least a part of the rotary device is immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of air.
  • the buoyancy medium is water.
  • the first rotating device 11 is exposed to the air placed on the buoyant medium, and the second rotating device 12 is immersed in the buoyant medium.
  • the supporting device in the present invention includes two first structural members 41 arranged in parallel.
  • the two first structural members 41 are hinged at one end with the second structural member 42 and the other end with the air box facing one of the rotating device.
  • the side structure is hinged;
  • the second structural member 42 is plate-shaped, and the second structural member can move downward with respect to the side of the air box facing the rotating device along the structure shown in FIG. 28, and then compress the air box to discharge the gas therein ; Or reverse action to inflate the air box.
  • the number of the supporting devices in the present invention is at least two, and the at least two supporting devices are evenly disposed with respect to the air tank 2.
  • the design of the support device in the present invention enables the deformation of the air tank to be completed under the control of either the expansion or contraction mean support device, so that the air tank can be deformed in a strict deformation direction, so that the air tank can move when it is in water. Smoother, reducing drag caused by water.
  • the number of the fixing devices 110 in the present invention is at least two, and the at least two fixing devices 110 and the supporting device are arranged one-to-one correspondingly.
  • the design of the control switch is to increase the control function of the deformation stage of the air box through the rotary device.
  • the control switch When the control switch is in contact with the rotary device, the conduction device is connected to the circuit through the rotary device, and the control switch starts to perform extension. Out / retract operation.
  • the air box 2 in the present invention is provided with a pressure switch 6 corresponding to the conveying device.
  • the energy conversion device introduced by the present invention can improve the energy conversion rate of high-pressure gas.
  • the high-pressure gas generated by a thermal power station still maintains a large internal energy after passing through a steam turbine, and releases the high-pressure gas into the atmosphere. This will result in a waste of energy in this part.
  • Recovery and utilization of such high-pressure gas can improve the energy conversion rate of the high-pressure gas.
  • a motor is added to the setting to provide at least part of the power for the rotation of the rotary device. This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the device includes a guide rail for guiding the deformation of the air box, the guide rail is arc-shaped, and the guide rail includes a first section 73 and a second section 74 that are connected; the first section 73 is provided on the upper side of the energy conversion device, On the side where the gas box moves downward, the distance from the rotary device is equal to the size when the gas box is not inflated.
  • the second section is set on the side where the energy conversion device moves downwards, and the distance from the tangent to the same side of the rotary device is equal to the size of the air tank when it is not inflated.
  • the energy conversion device introduced in the present invention includes: a rotation device.
  • the rotation device includes a rotation shaft 111 located at a rotation center, and a rotation wheel provided at both ends of the rotation shaft and rotating around the rotation shaft.
  • the rotation support 13 for supporting and positioning the rotation shaft, the rotation support 13 is connected to the rotation shaft 111;
  • the transmission device 40, the transmission device 40 is ring-shaped, and is arranged along the contour formed by the outer peripheral side of the rotation wheel, and the transmission device faces the rotation One side of the moving wheel is engaged with the outer peripheral side of the rotating wheel 121;
  • the air box 2, which is a plurality of air boxes 2, is periodically arranged along the transmission device, and the side of the air box 2 facing away from the moving direction of the transmission device is provided with an opening;
  • a conveying device which includes an air inlet duct 31 with one end in communication with a high-pressure air source, a ring-shaped air guide ring 33 that is ring-shaped and connected to the transmission device, and the inside of the ring-shaped air guide ring 33 is available for A high-pressure airflow duct is formed, and the annular air guide ring 33 is provided with a gas outlet device for injecting high-pressure gas into the air tank 2 at a position corresponding to the
  • the annular air guide ring 33 is rotatably connected to the intake duct 31 through a delivery pipe 34.
  • the A line shown in Figure 1 is the water level line, and the air tank runs clockwise along the equipment.
  • the number of the rotation devices is plural, the extension directions of the rotation axes of the plurality of rotation devices are the same, and the ends of the rotation axes 111 of the plurality of rotation devices are the same.
  • the rotating wheels of the plurality of rotating devices form a convex polygon in the vertical plane.
  • the plurality of rotation supports 13 of the plurality of rotation devices intersect at one point and are connected at that point.
  • the air box is a rectangle with the same structure. When the air box moves relatively upward, the opening position of the air box faces downward. When the air box moves vertically upward or downward, due to the movement The direction is vertical.
  • the tops of two adjacent gas tanks just seal the bottom end of the gas tanks connected to them, and the openings are sealed to prevent gas from flowing out.
  • the air box moves to the top of the device, the air box starts to move relatively to the lower left in Figure 32. Because the air boxes are at an angle, the low end of the air box is tilted upward, and the opening is exposed to a certain degree.
  • the gas in the tank is exhausted and filled with water to fill the interior of the tank.
  • the gas box moves to the bottom of the device, the gas box starts to move to the upper right, and the gas box is in the rising phase.
  • the conveying device fills the gas into the gas box again, and the pressure of the gas discharges the water in the gas box. Repeatedly.
  • the number of the rotation devices in the present invention is four, the extension directions of the rotation axes 111 of the four rotation devices are the same, and the ends of the rotation axes 111 of the four rotation devices are in the same vertical plane. Inside, the rotation wheels 121 of the four rotation devices form a quadrangle in a vertical plane.
  • the rotation wheel 121 is polygonal, and a certain angle is formed between the symmetry axes / diagonal lines of the rotation wheels 121 of the plurality of rotation devices, so that the relative heights of different rotation devices are different. .
  • an outwardly protruding latching protrusion 51 is provided on the outer peripheral side of the rotating wheel 121, and a latching groove matching the latching protrusion 51 is provided on a side of the transmission device facing the rotating wheel.
  • the snap-on design can increase the driving ability of the rotating device to the transmission device, so that there is no relative displacement between the two, and the uniformity of the movement is guaranteed.
  • the conveying device in the present invention is disposed on one side of a plane formed by the transmission device, the energy conversion device is at least partially immersed in a buoyant medium, and the density of the buoyant medium is greater than the density of the high-pressure gas.
  • the energy conversion device in the present invention includes a motor (not shown in the figure) provided on the rotating device, a generator (not shown in the figure) connected to the transmission device, and a power storage device connected to the generator. Device; power storage device is connected to the motor.
  • a motor is added to the arrangement for providing at least part of the power for the rotation of the rotating device.
  • This equipment aims to convert the internal energy contained in the compressed gas into electric energy. In the process, energy loss caused by friction resistance and other factors will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the air box in the present invention is provided with an air inlet delivery switch for controlling the on-off between the air box and the delivery device; an opening structure 321 and a control station for controlling the opening of the air inlet delivery switch are provided at the bottom of the device.
  • the closed structure 322 conveying pipe 34 of the closed intake conveying switch is made of elastic material.
  • the energy conversion device in the present invention includes a fixing mechanism.
  • the fixing mechanism includes a first fixing mechanism 61 provided on the same side as the conveying device, and a second fixing mechanism 62 provided on the other side.
  • the rotation support or the rotation device is connected.
  • an energy conversion device introduced in the present invention includes a rotary device that rotates around its center, an air box 2 having a certain accommodating space inside and arranged along the rotary device.
  • a conveying device that communicates with the interior of the air box 2 and introduces air into the air box 2 when moving to a certain position; the number of the air boxes 2 is multiple, and the multiple air boxes 2 are connected to the adjacent air box 2 on both sides thereof
  • the side is made of hard material; the part of the air box 2 adjacent to the rotating device is made of a variable material / deformable structure and deformed by the squeezing action of the air box 2 adjacent to it; the air box 2 faces away from the transmission device
  • One side of the movement direction is provided to allow gas to pass through the opening; the trajectory formed by the plurality of air boxes around the rotation device moves clockwise / counterclockwise.
  • the rotating device in the present invention includes a first rotating device and a second rotating device arranged in a vertical direction. The first rotating device is located on the upper side of the device, and the second rotating device is located on the lower side of the device. The structure of the moving device and the second rotating device are the same, they are wheel-shaped and can rotate around their centers. Two rotating devices are arranged along the direction of gravity.
  • the line A in FIG. 37 is a water level line.
  • the air box moves clockwise along its set trajectory.
  • the air box is a rectangle with the same structure.
  • the middle air box is moving relatively upward, the opening position of the air box is facing downward.
  • the air box is moving vertically upward or downward, the adjacent two The top of the gas box just seals the bottom end of the gas box connected to it, then the opening is sealed to prevent gas from flowing out.
  • the gas box moves to the top of the device, the low end of the gas box is tilted upward due to a certain angle between the gas boxes. If the opening is exposed to a certain degree, the gas in the gas box is discharged and filled with water to fill the gas box. internal.
  • the conveying device fills the gas into the gas box again, and the pressure of the gas discharges the water in the gas box. Repeatedly.
  • the energy conversion device in the present invention further includes a transmission device, the transmission device is arranged along a track formed by the rotation device, and is rotated by the rotation device; the air box 2 is disposed along one side of the transmission device, and the air box 2 is away from One side of the rotary device or a side adjacent to the rotary device is connected to the transmission device.
  • the transmission device is an endless belt, which is set along the running track of the energy transfer device.
  • the air box is driven along the track by the driving device. .
  • the transmission device in the present invention includes a plurality of chain links connected in sequence, and the chain links include a plate-shaped body 81 and connecting members 82 provided on both sides of the body 81, and the sum of each link is adjacent to it.
  • the chain links are connected by a connecting member 82.
  • the air box 2 has a rectangular structure. At least a part of the side of the air box 2 near the rotating device is a deformable part 222 made of a deformable material / deformable structure.
  • the side connected to the deformed part 222 is The hinge portion 223 is connected to the flip portion 24 on the side opposite to the deformed portion, and the flip portion 24 is turned around the side opposite to the deformed portion 222 to change the shape of the air box near the rotating device.
  • the air box in the present invention includes a matching deformation guide grid 25 and a deformation guide rod 26; the deformation guide grid 25 and the deformation guide rod 26 are disposed on a side of the deformation portion 22 facing the inside of the air box, and one side of the deformation guide grid 25 and The turning part 24 is connected and moved by the turning part 24.
  • the deformation guide grid 25 is provided with a plurality of grids arranged in the deformation direction.
  • the deformation guide rod 26 is provided at the deformation part 22 and the air box 2 near the rotating device. In the connection position on the side, the number of the deformation guide rods 26 is plural, and the plurality of deformation guide rods 26 are arranged corresponding to the grid, and slide along the grid during deformation.
  • the deformed portion 222 is made of waterproof cloth / rubber / elastic plastic / silicone / elastic composite material.
  • the gas box 2 is provided with a plurality of intersecting support members 27, the support members 27 are arranged along the non-deformed direction of the gas box, and the extending direction of the support member 27 forms a certain angle with the side wall direction of the gas box 2 .
  • the number of the rotation devices is two, and the two rotation devices are arranged along the direction of gravity.
  • the two rotation devices collectively constitute the movement trajectory of the air box, and the above-mentioned rotation devices at least partially protrude.
  • the upper surface of the buoyant medium is a liquid.
  • one of the two rotary devices in the present invention is an active rotary device, and the other is a passive rotary device; the two rotary devices are respectively provided with a generator 9 connected to the energy storage device; the active rotary device
  • the device is connected to an energy storage device, and part of its power source is electric energy stored in the energy storage device.
  • a motor is added to the arrangement for providing at least part of the power for the rotation of the rotating device.
  • the purpose of this equipment is to convert the internal energy contained in the compressed gas into electrical energy. In the process, energy loss caused by friction resistance will inevitably occur.
  • the motor is set up to store the energy generated by the energy conversion device. When the equipment needs external power At that time, a part of the energy is provided by the power storage device to the rotating device to provide power for its rotation, thereby ensuring the continuity of equipment use.
  • the delivery device in the present invention includes a first-stage air pipe with one end in communication with the high-pressure air source, a second-stage air pipe 331 that is annular and connected to the transmission device in the rotation direction, and the first-stage air pipe and the second-stage air pipe 331 pass through the third-stage air pipe.
  • the number of the three-stage air pipe is multiple, and the second-stage air pipe is provided with an air outlet for injecting high-pressure gas into the inside of the air box corresponding to the position of the intake delivery switch.
  • the energy conversion device introduced in the present invention includes at least four runners 1 that rotate around their centers, a plurality of air tanks 2 that move along a trajectory formed on the outer side of the runners, and the air tank 2
  • the adjustment device includes a setting An upper adjusting device 441 between the two wheels located on the upper side and a lower adjusting device 442 provided between the two wheels located on the lower side. The adjustment device will form a trajectory between the two wheels adjacent to it. Extends to the outside of the energy conversion device.
  • the air box moves clockwise along its set trajectory.
  • the air box is a rectangle with the same structure.
  • the middle air box is moving relatively upward, the opening position of the air box is facing downward.
  • the adjacent two The top of the gas box just seals the bottom end of the gas box connected to it, then the opening is sealed to prevent gas from flowing out.
  • the gas box moves to the top of the device, the low end of the gas box is tilted upward due to a certain angle between the gas boxes. If the opening is exposed to a certain degree, the gas in the gas box is discharged and filled with water to fill the gas box. internal.
  • the conveying device fills the gas into the gas box again, and the pressure of the gas discharges the water in the gas box. Repeatedly.
  • the air box 2 is periodically arranged along the track.
  • the side of the air box 2 facing away from the direction of movement of the transmission chain is provided with a gas / liquid inflow / outflow port 221. Clockwise / counterclockwise.
  • the material of the air box is a hard material, which increases the pressure resistance and deformation resistance of the air box, which is conducive to extending the service life of the air box and the structural protection of the air box.
  • the air supply device includes an air inlet pipe 31 with one end in communication with a high-pressure air source, and a ring-shaped air pipe 33 which is annular and connected to the transmission chain, and the ring-shaped air pipe 33 corresponds to the port A position 21 is provided with a ventilation control device for injecting high-pressure gas into the inside of the air box, and the annular air guide pipe 33 and the air intake pipe 31 are rotatably connected through a conveying pipe 34.
  • the design of the ring-shaped air duct is added, so that the entire process of the air box ascending movement can be used to inflate the interior of the air box to ensure the effect of inflation.
  • the adjustment device is an arched structure that protrudes to the outside of the energy conversion device, so that the tracks located on the upper and lower sides of the device protrude outward.
  • the air box 3 is rectangular, and the extending direction of the trajectory on the side of the air box 3 moving up / down is the vertical direction, and between two adjacent air boxes in this direction
  • the contact is surface contact.
  • At least one of the at least four runners is provided protruding from the liquid surface, and at least one of the at least four runners is immersed in the liquid surface.
  • the runner is a symmetrically structured polygon structure, and the side length of the polygon is equal to the side length of the side of the gas box near the runner, so that the corner of the polygon can be caught in the adjacent two gas boxes. Angle.
  • the cross section of the runner along its axial direction is triangular or quadrangular or pentagonal or hexagonal.
  • the energy conversion device introduced in the present invention includes a transmission chain 800 arranged along a trajectory, the transmission chain 800 is disposed between the runner and the air box, and the transmission chain 800 is a belt-shaped structure connected end to end.
  • the transmission chain 800 is connected to the air box 2 and moves along the track along with the air box 2;
  • the device includes a generator (not shown in the figure) connected to the runner 1 and a power storage device (not shown in the figure) connected to the generator ),
  • the power storage device is connected to a motor (not shown) provided on the transmission chain, and provides at least a part of energy for the movement of the transmission chain.
  • the radial size of the upper-side runner is larger than the radial size of the lower-side runner among at least four runners, and the size of the runner protruding from the liquid surface is greater than The size of other runners; the size of the runner immersed in the liquid surface is smaller than the size of other runners.
  • an opening device 60 on the lower side of the energy conversion device adjacent to the downward movement of the air tank 2 is provided with an opening device 60 that controls the opening of the ventilation control device 220.
  • the ventilation control device 220 passes the opening device 60, The ventilation control device 220 is turned on and injects air into the air tank 2.
  • the energy conversion device introduced in the present invention is provided with a closing device 50 on the upper side of the energy conversion device adjacent to the upward movement of the air box 2 to control the closing of the ventilation control device 220.
  • a closing device 50 on the upper side of the energy conversion device adjacent to the upward movement of the air box 2 to control the closing of the ventilation control device 220.
  • ventilation control device 220 passes the closing device 50, ventilation is performed.
  • the control device 220 is turned off and stops injecting air into the gas tank 2.
  • the present invention further introduces another energy conversion device, which includes at least four runners respectively rotating around the center thereof, and a plurality of densely arranged gas tanks 2 continuously moving along the trajectory formed on the outer side of the wheel are introduced into the air tank 2
  • the gas supply device 220 is an adjustment device that assists the adjustment of the angle of the trajectory of multiple gas tanks; multiple gas tanks are made of deformable materials; at least four runners 1 are arranged in the same vertical plane, at least four revolutions The relative heights of the wheels are different.
  • the adjusting device includes an upper adjusting device disposed between the two wheels on the upper side and a lower adjusting device disposed between the two wheels on the lower side. The trajectory formed between the two runners extends to the outside of the energy conversion device, so that the adjustment device has an arc structure. Then the continuous air box changes the trajectory under the adjustment of the adjusting device to provide conditions for exhaust and intake.
  • an air outlet is provided on one side of the plurality of air tanks away from the direction of movement, and the air outlets are provided on the surface of the air tank to the outside of the energy conversion device, and the air outlets are pipe-shaped.
  • the air outlet faces the direction opposite to the running direction of the energy conversion device, and the air outlet process does not cause resistance to the operation of the air tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种能量转换装置,包括绕其中心旋转的旋动装置,沿旋动装置的周向设置的环状的气箱组件(2),输送气体的输送装置(3),控制输送装置(3)通断的进气输送开关(5);进气输送开关(5)设置在旋动装置上;气箱组件(2)由间隔件(23)分隔为互不相通的多个气箱(2);气箱(2)包括高压气箱(21)和低压气箱(22),高压气箱(21)设置于低压气箱(22)至少一侧的壁上;输送装置(3)的出气端位于能量转换装置的下部并能够向气箱(2)中导入空气,旋动装置至少一部分浸没于浮力介质中,浮力介质的密度大于空气密度。

Description

能量转换装置 技术领域
本发明属于能量转换技术领域,具体地说,涉及一种能量转换装置。
背景技术
现有技术中的能量转换装置最具代表性的为汽轮发电机。汽轮发电机功率大,适合大规模的能量转换,这也导致其使用时具有一定的限制。比如,汽轮发电机占地大,气体排放亦需要较大的空间,配合连接的部件复杂,使得其整体对使用空间要求较高,一定程度的也限制了其使用灵活性;汽轮发电机工作温度高,推动其运转的高压蒸汽温度至少为300℃,工作环境恶劣,运行安全保障难度较大,恶劣的使用环境也限制了其场合,使得其使用环境受到严格限制;汽轮发电机结构复杂,运转过程复杂,其运转过程中需要专业程度较高的人工控制,对用户的技术水平要求较高;汽轮发电机运转剧烈,运转过程中高压蒸汽与汽轮发电机叶片接触时间短,导致能量转换率低,并且,汽轮发电机溢出的气体温度、压力均较高,该部分能量无法在短时间内有效转换,现有技术中的汽轮发电机的热电转换效率一般不会超过60%,能量转换过程中伴随着明显的能量损失。同时,高温蒸汽储存难度较大,一旦生成,若不及时使用,则后续的运输过程伴随着温度下降,不利于能量保持;另一方面,也对配合的高温蒸汽发生装置的运行协同性提出了更高的要求。可见,现有技术中的能量转换装置存在明显的设备占地空间大、设备工作环境恶劣、设备运行人工要求较高、能量损耗大、能量转换可持续性低、能量输送困难等等问题。上述各问题严重限制了现有技术中的能量转换装置的使用,并且不利于资源的节约,严重时,还会造成不可逆转的环境污染,威胁操作人员及周边环境的人的人身安全。
有鉴于此特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,提供一种能量转换装置,对气箱、输送装置的结构进行了设计和改进;通过双压气箱的设计使得气箱充气更快,保证充气效率,提高设备的能量转化效率;且转换装置能够较大程度的提高压缩空气的能量转化效率,可用于发电。
为解决上述技术问题,本发明采用技术方案的基本构思是:
一种能量转换装置,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱组件,输送气体的输送装置,控制所述输送装置通断的进气输送开关;所述进气输送开关设置在所述旋动装置上;所述气箱组件由间隔件分隔为互不相通的多个气箱;所述气箱包括高压气箱和低压气箱,所述高压气箱设置于所述低压气箱至少一侧的壁上;所述输送装置的出气端位于所述能量转换装置的下部并能够向所述气箱中导入空气,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
本发明进一步设置为:所述旋动装置为轮状,所述旋动装置包括至少部分位于所述浮力介质上方的第一旋动装置和浸没于所述浮力介质中的第二旋动装置,第一旋动装置和第二旋动装置的径向处于同一平面内;所述进气输送开关设置于所述第二旋动装置上。
本发明进一步设置为:所述进气输送开关包括对应于高压气箱的高压进气输送开关和对应于低压气箱的低压进气输送开关;所述高压气箱的容积小于低压气箱的容积。
本发明进一步设置为:所述气箱上设置有与所述进气输送开关对应的压力开关;所述旋动装置上设置有与所述压力开关对应的、控制所述压力开关开启/关闭的开关控制件。
本发明进一步设置为:所述能量转换装置包括辅助导轨,所述辅助导轨设置于所述气箱相对于所述第一旋动装置的另一侧;所述辅助导轨迎向所述第一旋动装置的转动方向的一侧距所述第一旋动装置外侧的距离大于等于所述气箱充气后的尺寸;所述辅助导轨背向所述第一旋动装置的转动方向的一侧距所述第一旋动装置外侧的距离等于所述气箱排气后的尺寸。
本发明进一步设置为:所述气箱上设置有与所述辅助导轨滑动配合卡接的辅助杆。
本发明进一步设置为:所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
本发明进一步设置为:所述发电机与所述进气输送开关连接。
本发明进一步设置为:所述能量转换装置包括与所述旋动装置连接的发电机,以及与所述发电机连接的蓄电装置。
本发明进一步设置为:所述第一旋动装置的径向尺寸大于所述径向第二旋动装置的尺寸,两者中心的连线与竖直方向呈一定角度,所述角度的范围为0°~45°。
本发明还提供了一种能量转换装置,所述能量转换装置设置于竖直平面内,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的气箱,控制气箱内部与外界通断的压力开关,辅助所述气箱变形的导轨,与所述气箱内部连通并向所述气箱内导入空气的输送装置,所述输送装置包括输送高压空气的高压输送装置和输送常压空气的常压输送装置,所述高压输送装置与高压气源连通,所述常压输送装置与大气连通;所述压力开关包括与所述高压输送装置连接的高压开关和与所述常压输送装置连接的常压开关;所述输送装置的出气端与所述气箱连接并位于所述能量转换装置的下部。
本发明进一步设置为:所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于高压空气密度;所述旋动装置包括位于所述浮力介质上方的上旋动装置和浸没于所述浮力介质中的下旋动装置;所述进气输送开关设置于所述下旋动装置上。
本发明进一步设置为:所述导轨为环状,设置于所述能量转换装置的外周侧;在所述气箱向下运动的一侧,所述导轨距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,所述导轨距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
本发明进一步设置为:所述导轨为弧状,包括设置于所述能量转换装置上侧的第一导轨和设置于所述能量转换装置下侧第二导轨;所述第一导轨、第二导轨在所述气箱向下运动的一侧,距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
本发明进一步设置为:所述气箱包括至少一个方向上支撑所述气箱的结构件,所述结构件包括交叉设置的两个第一结构件,两个所述第一结构件在其中部的旋转中心处铰接;所述结构件包括与所述气箱连接第二结构件,所述第二结构件为板状,其上设置有垂直于所述气箱伸缩方向的滑轨,所述第一结构件的一端与所述滑轨滑动连接,另一端与所述气箱可旋转的连接。
本发明进一步设置为:所述导轨包括与所述旋动装置连接的、可绕其中心旋转的、齿轮状的第一辅助装置以及设置于所述气箱外侧的第二助装置,所述第二助装置为拨杆状,与所述第一辅助装置的齿轮状的凹槽配合连接。
本发明进一步设置为:所述导轨包括设置在能量转换装置上部并且在所述气箱向上运动的一侧的压缩导轨,所述压缩导轨与所述旋动装置相对的一侧距所述旋动装置外侧的距离大于等于所述气箱未充气时的尺寸。
本发明进一步设置为:所述导轨包括设置在能量转换装置下部并且在所述气箱向下运动的一侧的扩张导轨,所述扩张导轨远离所述旋动装置的一侧距所述旋动装置外侧的距离小于等于所述气箱充气后的尺寸。
本发明进一步设置为:所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
本发明进一步设置为:所述气箱的数量为多个,多个所述气箱呈周期性沿所述能量转换装置的外侧设置。
本发明进一步设置为:所述气箱包括至少一个方向上支撑所述气箱的结构件,所述结构件包括交叉设置的两个第一结构件,两个所述第一结构件在其中部的旋转中心处铰接;所述结构件包括与所述伸缩气箱连接第二结构件,所述第二结构件为板状,其上设置有垂直于所述伸缩气箱伸缩方向的滑轨,所述第二结 构件的数量为至少两个,至少两个所述第二结构件分别设置在所述气箱的变形方向上相对的两侧,所述第一结构件的两端与所述滑轨滑动连接。
本发明进一步设置为:包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱组件,输送气体的输送装置,控制所述输送装置通断的进气输送开关;所述进气输送开关设置在所述旋动装置上;所述气箱组件由间隔件分隔为互不相通的多个气箱;所述气箱包括高压气箱和常压气箱,所述高压气箱设置于所述常压气箱至少一侧的壁上;所述输送装置的出气端位于所述能量转换装置的下部并能够向所述气箱中导入空气,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度,所述气囊由可变形的材料制得。
本发明又提供了一种能量转换装置,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱,与所述气箱内部连通并向所述气箱内导入空气的输送装置;控制气箱内部与外界通断的气箱开关,辅助所述气箱变形的辅助导轨;至少设置在所述能量转换装置一侧的固定装置,所述辅助导轨与所述固定装置连接;所述气箱由间隔件沿径向分隔为连续的多个单元,每个所述单元上设置有至少一个所述气箱开关;所述间隔件由弹性材料制得,并向设备的中间延伸,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
本发明进一步设置为:所述旋动装置为轮状,所述旋动装置包括至少部分位于所述浮力介质上方的第一旋动装置和浸没于所述浮力介质中的第二旋动装置,第一旋动装置和第二旋动装置的径向处于同一平面内。
本发明进一步设置为:所述辅助导轨为弧状,包括设置于所述能量转换装置上侧的第一辅助导轨和设置于所述能量转换装置下侧第二辅助导轨;第一辅助导轨和第二辅助导轨相对设置;所述第一辅助导轨、第二辅助导轨在所述气箱向下运动的一侧,距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
本发明进一步设置为:所述气箱上设置有辅助气箱变形的滑杆,所述滑杆的延伸方向垂直于所述气箱的变形方向;所述辅助导轨为与所述滑杆滑动配合的导轨结构。
本发明进一步设置为:所述第二辅助导轨临近所述气箱向下运动的一侧设置有控制所述气箱开关开启的开启装置,所述开启装置的设置高度小于所述第二旋动装置中心的高度。
本发明进一步设置为:所述第二辅助导轨临近所述气箱向上运动的一侧设置有控制所述气箱开关关闭的关闭装置,所述关闭装置的设置高度小于所述第二旋动装置中心的高度。
本发明进一步设置为:所述第一旋动装置外侧沿其周向设置有控制所述气箱开关打开的打开装置,所述打开装置与所述第一旋动装置之间为固定连接,所述打开装置跟随所述第一旋动装置转动,所述打开装置的数量为多个,相邻两个所述打开装置之间的线距离等于相邻两个所述气箱开关之间的线距离。
本发明进一步设置为:所述输送装置包括一端与高压气源连通的进气管道,呈环状并与所述传动装置连接的环状导气管,所述进气管道的另一端连接进气输送开关,所述环状导气管内部为可供高压气流通的管道状,所述环状导气管对应于所述气箱的位置设置有向所述气箱内部注入高压气的输出装置,所述环状导气管与所述进气输送开关通过输送管可转动地连接。
本发明进一步设置为:所述进气输送开关朝向所述气箱做上升运动的一侧为开启部,与所述进气管道连通;所述进气输送开关朝向所述气箱做下降运动的一侧为封闭部,与所述进气管道断开,堵塞所述输送管与其连接的一端。
本发明进一步设置为:所述进气管道设置于与所述固定装置位置相同的一侧。
本发明进一步设置为:所述进气管道设置于所述能量转换装置与所述固定装置相对的另一侧。
本发明进一步设置为:所述浮力介质包括水、油、水银。
本发明进一步设置为:所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
本发明为实现上述发明目的进一步提供了一种能量转换装置,包括绕其中心旋转的旋动装置,多个可沿指向所述能量转换装置的中心的方向变形的伸缩气箱,在至少一个方向上支撑所述伸缩气箱的支撑装置,能够与所述伸缩气箱内部连通并向所述伸缩气箱内导入空气的输送装置,控制所述输送装置通断的进气输送开关;所述输送装置与所述伸缩气箱连接的出气端位于所述能量转换装置的下部,多个所述伸缩气箱沿所述旋动装置的周向设置依次连接排列呈环状。
本发明进一步设置为:所述支撑装置设置于所述伸缩气箱的内部;所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
本发明进一步设置为:所述设备包括对所述伸缩气箱的变形提供引导的导轨,所述导轨为弧状,所述导轨包括连接的第一段和第二段;所述第一段设置于所述能量转换装置上侧,所述气箱向下运动的一侧距所述旋动装置的距离等于所述气箱未充气时的尺寸;所述气箱向上运动的一侧距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸;所述第二段设置于所述能量转换装置在所述气箱向下运动的一侧,距所述旋动装置同一侧切线的距离等于所述气箱未充气时的尺寸。
本发明进一步设置为:所述支撑装置包括沿所述气箱变形方向设置的第一支撑装置以及沿设备外部轮廓设置的第二支撑装置,所述第一支撑装置的一端与所述气箱朝向所述旋动装置的一侧铰接,所述第一支撑装置的另一端与所述第二支撑装置铰接。
本发明进一步设置为:所述支撑装置的数量为至少两个,至少两个所述支撑装置相对于所述伸缩气箱均匀设置。
本发明进一步设置为:每个所述第二支撑装置对应至少两个第一支撑装置,所述第一支撑装置相对于所述第二支撑装置均匀设置。
本发明进一步设置为:所述第一支撑装置包括控制其动作的控制开关,所述控制开关的至少部分沿所述伸缩气箱的伸缩方向可凸出/缩回的设置于所述伸缩气箱朝向旋动装置的一侧。
本发明进一步设置为:所述控制开关的数量为至少两个,至少两个所述控制开关与所述至少两个第一支撑装置一一对应设置。
本发明进一步设置为:所述伸缩气箱上设置有与所述输送装置对应的压力开关。
本发明进一步设置为:所述能量转换装置包括固定所述气箱的固定装置,所述固定装置为绳状/带状,所述固定装置的一端铰接所述伸缩气箱远离所述旋动装置的一侧,另一端铰接所述伸缩气箱的靠近所述旋动装置的一侧;所述固定装置的延伸方向与所述伸缩气箱的伸缩方向呈一定角度;所述固定装置为柔性材料制得。
本发明进一步设置为:所述旋动装置为轮状,所述旋动装置包括位于所述浮力介质上方的第一旋动装置和浸没于所述浮力介质中的第二旋动装置,第一旋动装置和第二旋动装置的径向处于同一平面内;所述进气输送开关设置于所述第二旋动装置上。
本发明进一步设置为:所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
本发明进一步介绍一种能量转换装置,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的多个柔性材料制得的伸缩气囊,在至少一个方向上支撑所述伸缩气囊的支撑装置,能够与所述伸缩气囊内部连通并向所述伸缩气囊内导入空气的输送装置,控制所述输送装置通断的进气输送开关;所述输送装置与所述伸缩气囊连接的出气端位于所述能量转换装置的下部,多个所述伸缩气囊依次连接排列呈环状,所述气囊上设有控制出气的气囊开口。
本发明进一步设置为:所述气囊开口设置于多个所述伸缩气囊相邻位置处,多个所述伸缩气囊的气囊开口设置位置相同,所述气囊开口由柔性材料制得。
本发明进一步设置为:所述气囊开口为突出于所述伸缩气囊轮廓的管状结构,所述气囊开口朝向所述设备的外侧设置,所述气囊开口设置于背向所述伸缩气囊的运动方向的一侧设置。
本发明为实现上述发明目的再次提出了一种能量转换装置,包括:
旋动装置,所述旋动装置包括绕其轴向旋转的旋动轴,设置于所述旋动轴两端并随所述旋动轴旋转的旋动轮,支撑、定位所述旋动轴的旋动支撑,所述旋动支撑与所述旋动轴连接;
传动装置,所述传动装置为环状,沿所述旋动轮外周侧构成的轮廓设置,所述传动装置朝向所述旋动轮的一侧与所述旋动轮的外周侧配合的卡接;
气箱,所述气箱的数量为多个,沿所述传动装置周期性设置,所述气箱背离所述传动装置运动方向的一侧设置有开口;
输送装置,所述输送装置包括一端与高压气源连通的通气管道,呈环状并与所述传动装置连接的导气环,所述导气环内部为可供高压气流通的管道状,所述导气环对应于所述开口的位置设置有向所述气箱内部注入高压气的出气装置,所述导气环与所述通气管道通过管路可转动地连接。
本发明进一步设置为:所述能量转换装置设置于竖直平面内,所述旋动装置的数量为多个,多个所述旋动装置的旋动轴的延伸方向相同,并且多个所述旋动装置的旋动轴的端部处于同一竖直平面内,多个所述旋动装置的旋动轮在竖直平面内构成凸多边形。
本发明进一步设置为:多个所述旋动装置的多个旋动支撑交于一点,并在该点处连接。
本发明进一步设置为:所述旋动装置的数量为四个,四个所述旋动装置的旋动轴的延伸方向相同,并且四个所述旋动装置的旋动轴的端部处于同一竖直平面内,四个所述旋动装置的旋动轮在竖直平面内构成四边形。
本发明进一步设置为:所述旋动轮为多边形,多个所述旋动装置的旋动轮的对称轴/对角线之间呈一定夹角。
本发明进一步设置为:所述旋动轮的外周侧上设置有向外凸起的卡凸/向内凹陷的卡槽,所述传动装置朝向所述旋动轮的一侧上设置有与所述卡凸/卡槽配合的卡槽/卡凸。
本发明进一步设置为:所述输送装置设置于所述传动装置构成的平面的一侧,所述能量转换装置至少部分浸没于浮力介质中,所述浮力介质的密度大于高压气的密度,所述浮力介质包括水。
本发明进一步设置为:所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述传动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
本发明进一步设置为:所述气箱上设置有用于控制气箱的开口通断的进气输送开关;所述设备底部设置有控制所述进气输送开关开启的开启结构和控制所述进气输送开关关闭的封闭结构。
本发明进一步设置为:所述能量转换装置包括固定机构,所述固定机构包括设置于与所述输送装置同一侧的第一固定机构,以及设置于另一侧的第二固定机构;所述固定机构的一端与所述旋动支撑或所述旋动装置连接,所述固定机构的另一端与地面连接。
本发明为实现发明目的又提供了一种能量转换装置,包括绕其中心旋转的旋动装置,内部具有一定容置空间并沿所述旋动装置设置的气箱,在所述气箱运动到一定位置时与所述气箱内部连通并向所述气箱内导入空气的输送装置;所述气箱的数量为多个,多个所述气箱在其两侧和与之临近的气箱连接,与多个所述气箱一一对应设置的多个进气输送开关,进气输送开关用于控制气箱内部与输送装置之间的通断,所述气箱远离所述旋动装置的一侧为硬质材料制得;所述气箱临近所述旋动装置的部分为可变性材料制得/可变形的结构,并在与其临近的气箱的挤压作用下变形;所述气箱背离所述传动装置运动方向的一侧设置有允许气体通过开口;多个所述气箱绕所述旋动装置构成的轨迹呈顺时针/逆时针运动。
本发明进一步设置为:所述能量转换装置还包括传动装置,所述传动装置沿所述旋动装置构成的轨迹设置,并在所述旋动装置的带动下旋转;所述气箱沿所述传动装置的一侧设置,所述气箱远离所述旋动装置的一侧或临近所述旋动装置的一侧与所述传动装置连接。
本发明进一步设置为:所述传动装置包括多个依次连接为环状的链节,所述链节包括呈板状的本体和设置在所述本体两侧的连接件,每个所述链节的和与之临近的链节通过连接件连接。
本发明进一步设置为:所述气箱为矩形结构,所述气箱靠近所述旋动装置一侧的至少部分为可变性材 料/可变形的结构制得的变形部,与所述变形部连接的一侧为通过合页与所述变形部相对的一侧连接的翻转部,所述翻转部绕与所述变形部相对的一侧翻转,改变所述气箱靠近所述旋动装置一侧的形状。
本发明进一步设置为:所述气箱包括配合的变形导向栅和变形导向杆;所述变形导向栅和变形导向杆设置于所述变形部朝向所述气箱内部的一侧,所述变形导向栅的一边与所述翻转部连接,并在所述翻转部的带动下移动,所述变形导向栅上设置有多个沿变形方向设置的栅格;所述变形导向杆设置于所述变形部与所述气箱靠近所述旋动装置一侧的连接位置上,所述变形导向杆的数量为多个,多个所述变形导向杆与所述栅格对应设置,并在变形时沿所述栅格滑动。
本发明进一步设置为:所述变形部由防水布料/橡胶/弹性塑料/硅胶/弹性复合材料制得。
本发明进一步设置为:所述气箱内部设有多个交叉设置的支撑件,所述支撑件沿气箱非变形方向设置,所述支撑件的延伸方向与所述气箱的侧壁方向呈一定夹角。
本发明进一步设置为:所述旋动装置的数量为两个,两个所述旋动装置沿重力方向设置,两个所述旋动装置共同构成所述气箱的运动轨迹,并且,位于上方的旋动装置至少部分凸出于浮力介质的上表面,所述浮力介质为液体。
本发明进一步设置为:两个所述旋动装置中的一个为主动旋动装置,另一个为被动旋动装置;两个所述旋动装置上分别设置有与储能装置连接的发电机;所述主动旋动装置与所述储能装置连接,其部分动力来源为储存在所述储能装置中的电能。
本发明进一步设置为:所述输送装置包括一端与高压气源连通的一级气管,呈环状并在转动方向上与所述传动装置连接的二级气管,所述一级气管和二级气管通过三级气管连接,三级气管的数量为多个,所述二级气管对应于所述进气输送开关的位置设置有向所述气箱内部注入高压气的出气口。
本发明为实现上述发明目的再一次提供了一种能量转换装置,包括分别绕其中心旋转的至少四个转轮,沿所述转轮外侧构成的轨迹运动的多个密排设置气箱,向所述气箱内部导入气体的送气装置,辅助多个所述气箱之间调整相对角度的调整装置;相邻两个所述气箱连接的面为形状、尺寸相同,并且平整的平面;所述气箱由硬质材质制得;所述至少四个转轮在同一竖直平面内设置,所述至少四个转轮的相对高度不同,所述调整装置包括设置在位于上侧的两个转轮之间的上调整装置以及设置在位于下侧的两个转轮之间的下调整装置,所述调整装置将与其临近的两个转轮之间形成的轨迹向所述能量转换装置的外侧延伸。
本发明进一步设置为:所述气箱沿所述轨迹周期性设置,所述气箱背离所述传动链运动方向的一侧设置有供气体/液体流入/流出通口,所述气箱沿所述轨迹做顺时针/逆时针运动。
本发明进一步设置为:所述送气装置包括一端与高压气源连通的主进气管,呈环状并与所述传动链连接的环状气道,所述环状气道对应于所述通口的位置设置有向所述气箱内部注入高压气的通气控制装置,所述环状气道与所述主进气管通过过度管可转动地连接。
本发明进一步设置为:所述能量转换装置下侧临近所述气箱向下运动的一侧设置有控制所述通气控制装置开启的开启装置,当通气控制装置经过所述开启装置时,所述通气控制装置开启,并向气箱内部注气。
本发明进一步设置为:所述能量转换装置上侧临近所述气箱向上运动的一侧设置有控制所述通气控制装置关闭的关闭装置,当通气控制装置经过所述关闭装置时,所述通气控制装置关闭,并停止向气箱内部注气。
本发明进一步设置为:所述调整装置为向所述能量转换装置外侧凸起的拱形结构,使得位于所述设备上侧和下侧轨迹向外侧凸出。
本发明进一步设置为:所述气箱为矩形,所述气箱向上/向下运动一侧的轨迹的延伸方向为竖直方向,在该方向上相邻的两个气箱之间的接触为面接触。
本发明进一步设置为:所述至少四个转轮中的至少一个凸出于液面设置,并且所述至少四个转轮中的至少一个浸没于所述液面设置
本发明进一步设置为:所述转轮为结构对称的多边形结构,所述多边形的边长等于所述气箱靠近所述转轮一侧的边长,使得所述多边形的角能够卡入相邻两个气箱之间的夹角内。
本发明进一步设置为:所述转轮沿其轴向的断面为三角形或四边形或五边形或六边形。
本发明进一步设置为:所述能量转换装置包括沿所述轨迹设置的传动链,所述传动链设置于所述转轮与所述气箱之间,所述传动链为首尾相接的带状结构,所述传动链与所述气箱连接,并跟随所述气箱一起沿所述轨迹运动;所述设备包括与所述转轮连接的发电机,以及与所述发电机连接的蓄电装置,所述蓄电装置与所述传动链连接,为所述传动链的运动提供至少一部分能量。
本发明进一步设置为:所述至少四个转轮中位于上侧的转轮的径向尺寸大于位于下侧的转轮的径向尺寸,所述凸出于液面的转轮的尺寸大于其他转轮的尺寸;所述浸没于所述液面的转轮的尺寸小于其他转轮的尺寸。
本发明进一步设置为:包括分别绕其中心旋转的至少四个转轮,沿所述转轮外侧构成的轨迹运动的多个密排连续设置的气箱,向所述气箱内部导入气体的送气装置,辅助多个所述气箱调整运行轨迹的角度的调整装置;多个所述气箱均为可变形材质制得;所述至少四个转轮在同一竖直平面内设置,所述至少四个转轮的相对高度不同,所述调整装置包括设置在位于上侧的两个转轮之间的上调整装置以及设置在位于下侧的两个转轮之间的下调整装置,所述调整装置将与其临近的两个转轮之间形成的轨迹向所述能量转换装置的外侧延伸。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
1、通过本发明介绍的能量转换装置,能够提高对高压气体的能量的转换率,通常情况下,火力发电站产生的高压气体通过汽轮机之后仍然保持较大的内能,将该高压气体释放到大气中将导致该部分能量的浪费。将此种高压气体回收并加以利用能够提高高压气体的能量转换率。
2、通过本发明介绍的能量转换装置,将高压气箱和低压气箱配合设置,两者中充入的气体的压力均高于常压大气,但高压气箱中的气压更高,将高压气箱设置于低压气箱的至少一个侧壁上,当高压气箱中充入气体时气箱能够以较快的充气速度被撑起,有利于提高气箱的充气速度,有利于低压气箱的充气效果。
3、通过本发明介绍的能量转换装置,占地面积小,结构设计灵活,可根据需要设计设备的大小,并且本发明介绍的能量转换装置结构简单,无需人工操作或复杂的维护操作。
4、通过本发明介绍的能量转换装置,为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
5、通过本发明介绍的能量转换装置,将高压输送装置和常压输送装置配合设置,两者中充入的气体的压力不同,但高压输送装置中的气压更高,当高压气箱中充入高压气体时气箱能够以较快的充气速度被撑起,有利于提高气箱的充气速度,有利于常压气箱的充气效果。
6、通过本发明介绍的能量转换装置,将能量转换装置的下部浸没于水中,伸缩气箱绕旋动装置做周向运动,当伸缩气箱运动到下方时被充入气体,伸缩气箱被撑起,在浮力的作用下向上浮起,当伸缩气箱浮出水面时,气箱开关开启,伸缩气箱内的气体被排出,伸缩气箱收缩变形,并在旋动装置的带动下向下运动,再次浸没于水中。
7、通过本发明介绍的能量转换装置,将能量转换装置的下部浸没于水中,伸缩气箱绕旋动装置做周向运动,当伸缩气箱运动到下方时被充入气体,伸缩气箱被撑起,在浮力的作用下向上浮起,当伸缩气箱浮出水面时,压力开关开启,伸缩气箱内的气体被排出,伸缩气箱收缩变形,并在旋动装置的带动下向下运动,再次浸没于水中。
8、通过本发明介绍的能量转换装置,对气箱的结构和输送装置的结构以及两者之间的配合关系进行了改进,使得设备使用时气箱的结构、容积不会随其所处的位置发生变化,则极大程度的简化了对气箱的结构设计。
9、通过本发明介绍的能量转换装置,气箱的材质为硬质材料,使得气箱的抗压、抗变形能力增加,有利于延长气箱的使用寿命以及气箱结构性的保护。
10、通过本发明介绍的能量转换装置,对输送装置内的气压要求不高,仅要求气压能够满足气体输送的条件即可,提高了对气体压力的适用性。
下面结合附图对本发明的具体实施方式作进一步详细的描述。
附图说明
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:
图1是本发明一个实施例中的能量转换装置整体结构示意图;
图2是本发明一个实施例中的气箱主视方向结构示意图;
图3是本发明一个实施例中的气箱右视方向结构示意图;
图4至图9是本发明不同实施例中的能量转换装置的旋动装置排布方式示意图;
图10至图12是本发明不同实施例中的能量转换装置部分结构示意图;
图11至图16是本发明不同实施例中的能量转换装置部分结构示意图;
图17至图19是本发明不同实施例中的伸缩气箱整体结构主视图;
图20是本发明实施例中的气囊主视方向结构示意图;
图21是本发明一个实施例中的气囊左视方向结构示意图;
图22是本发明一个实施例中的能量转换装置整体结构主视图;
图23是本发明一个实施例中的能量转换装置整体结构左视图;
图24是本发明另一个实施例中的能量转换装置整体结构主视图;
图25是本发明另一个实施例中的能量转换装置整体结构左视图;
图26是本发明一个实施例中的伸缩气箱整体结构展开状态主视图;
图27是本发明一个实施例中的伸缩气箱整体结构压缩状态主视图;
图28是本发明一个实施例中的伸缩气箱整体结构展开状态主视图;
图29是本发明一个实施例中的能量转换装置部分结构示意图;
图30和图31是本发明不同实施例中的伸缩气囊结构示意图;
图32是本发明某个实施例中的能量转换装置整体结构主视图;
图33是本发明某个实施例中的能量转换装置整体结构左视图;
图34是本发明某个实施例中的能量转换装置整体结构俯视图;
图35是本发明某个实施例中的旋动轴、旋动轮连接后的俯视图;
图36是本发明某个实施例中的旋动轮主视图;
图37、图39、图40、图42是本发明不同实施例中的气箱主视方向结构示意图;
图38是本发明一个实施例中的气箱左视方向结构示意图;
图41和图43是本发明不同实施例中的气箱右视方向结构示意图;
图44是本发明一个实施例中的能量转换装置结构示意图;
图45是本发明一个实施例中的能量转换装置的调整装置结构示意图;
图46和图47是本发明不同实施例中的能量转换装置结构示意图。
图中:11、第一旋动装置;12、第二旋动装置;111、旋动轴;121、旋动轮;13、旋动支撑;2、气箱;21、高压气箱;22、低压气箱;23、间隔件;24、翻转部;25、变形导向栅;26、变形导向杆;27、支撑件;3、输送装置;31、进气管道;321、开启结构;322、封闭结构;33、环状导气管;34、输送管;4、气箱开关;40、传动装置;41、第一结构件;42、第二结构件;43、旋转中心;44、滑轨;5、进气输送开关;51、卡凸;6、压力开关;61、第一压力开关;62、第二压力开关;63、开关控制件;7、辅助导轨;71、第一导轨;72、第二导轨;73、第一段;74、第二段;8、辅助杆;81、本体;82、连接件;9、发电机;10、控制开关;101、触发端;102、导通装置;110、固定装置;80、气囊开口;90、链轮片;211、进气输送开关;222、变形部;223、合页;331、二级气管;10、转轮;221、通口;220、通气控制装置;400、出气口;441、上调整装置;442、下调整装置;50、关闭装置;60、开启装置;800、传动链。
需要说明的是,这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例一
如图1至图3所示,本实施例中的能量转换装置,包括绕其中心旋转的旋动装置,沿旋动装置的周向设置的环状的气箱组件2,与气箱2内部连通并向气箱内导入空气的输送装置3;控制输送装置通断的进气输送开关5;进气输送开关5设置在旋动装置上;气箱2由间隔件23分隔为互不相通的多个;气箱2包括高压气箱21和低压气箱22,高压气箱21设置于低压气箱22至少一侧的壁上,或者将低压气箱22包裹在高压气箱21内;输送装置3与气箱2连接的出气端位于能量转换装置的下部,旋动装置至少一部分浸没于浮力介质中,浮力介质的密度大于空气密度。浮力介质为水等液体。
通过本实施例介绍的能量转换装置,能够提高对高压气体的能量的转换率,通常情况下,火力发电站产生的高压气体通过汽轮机之后仍然保持较大的内能,将该高压气体释放到大气中将导致该部分能量的浪费。将此种高压气体回收并加以利用能够提高高压气体的能量转换率。
进一步地,本实施例中的旋动装置为轮状,旋动装置包括位于浮力介质上方的第一旋动装置11和浸没于浮力介质中的第二旋动装置12,第一旋动装置11和第二旋动装置12的径向处于同一平面内;进气输送开关5设置于第二旋动装置12上,图1中的A线为浮力介质的浸没高度。B箭头为能量转换装置的运转方向,本实施例中的能量转换装置为顺时针运转。本实施例中的第一旋动装置11和第二旋动装置12尺寸相同。将能量转换装置的下部浸没于水中,气箱绕旋动装置做周向运动,当气箱运动到下方时被充入气体,气箱被撑起,在浮力的作用下向上浮起,当气箱浮出水面时,压力开关开启,气箱内的气体被排出,气箱收缩变形,并在旋动装置的带动下向下运动,再次浸没于水中。
进一步地,本实施例中的能量转换装置,进气输送开关包括对应于高压气箱的高压进气输送开关和对应于低压气箱的低压进气输送开关;高压气箱的容积小于低压气箱的容积,高压气箱充气速度高于低压气箱的充气速度,则高压气箱能够为低压气箱提供支撑。将高压气箱和低压气箱配合设置,两者中充入的气体的压力均高于常压大气,但高压气箱中的气压更高,将高压气箱设置于低压气箱的至少一个侧壁上,当 高压气箱中充入气体时气箱能够以较快的充气速度被撑起,有利于提高气箱的充气速度,有利于低压气箱的充气效果。
进一步地,本实施例中的能量转换装置,气箱上设置有与进气输送开关5对应的压力开关6。随着旋动装置的旋转,当气箱转到设备的下侧时,压力开关6与进气输送开关5对接,由于气箱2内此时没有气体处于低压,输送装置3与气源连接,其内部气压较高,此时进气输送开关5开启,并且,与进气输送开关5对应的压力开关6同时开启,进而向气箱2内部注气。当气箱2内部的气体足够时压力也随之增加,当气箱中的充气量达到阈值时,进气输送开关5和与之对应的压力开关6旋转至分离姿态,两者分离,并且两者同时关闭。
进一步地,本实施例中的能量转换装置,第一旋动装置11上设置有与压力开关6对应的开关控制件63。开关控制件63与第一旋动装置11为固定连接,并在第一旋动装置11的带动下随之旋转。当旋转至一定位置时,开关控制件63与压力开关6接触,并在挤压作用下将压力开关6打开,进而实现气箱2的放气进程。如图1所示的C区域,为开关控制件63开启压力开关6后,气箱正在放气的状态。随着设备继续运行,当开关控制件63与压力开关6分离时,其对压力开关的控制作用随即停止。
实施例二
如图1所示,本实施例中的能量转换装置与上述实施例的区别在于:能量转换装置包括辅助导轨7,辅助导轨7设置于气箱2相对于第一旋动装置11的另一侧;辅助导轨7迎向第一旋动装置11的转动方向的一侧距第一旋动装置11外侧的距离大于等于气箱2充气后的尺寸;辅助导轨7背向第一旋动装置11的转动方向的一侧距第一旋动装置11外侧的距离等于气箱2排气后的尺寸。本实施例的气箱2上设置有与辅助导轨7滑动配合卡接的辅助杆8。如图1所示的能量转换装置中,气箱沿顺时针方向旋转,当气箱充气后在浮力的作用下向上运动,进而辅助杆8卡入辅助导轨7中,气箱开始排气。当气箱脱离辅助导轨7的控制范围时,其内部的气体基本排出,压缩后的气箱重新沿运动轨迹进入浮力介质中。进一步地,本实施例中的辅助杆8上设置有辅助其运动的轴承,使得其运动更加流畅,减小摩擦阻力。
实施例三
如图1所示,本实施例的能量转换装置与上述实施例的区别在于:能量转换装置包括设置于旋动装置上的电机(图中未示出),以及与旋动装置连接的发电机9,与发电机9连接的蓄电装置(图中未示出);蓄电装置与电机连接。旋动装置通过旋转带动发电机9,进而发电,并将产生的电能导入蓄电装置中储存起来。
进一步地,本实施例中的发电机与进气输送开关连接。通过发电机产生的电能为进气输送开关提供能量。
进一步地,本实施例中的能量转换装置包括与旋动装置连接的发电机,以及与发电机连接的蓄电装置。为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
实施例四
如图4至图6所示,本实施例的能量转换装置与上述实施例的区别在于:第一旋动装置11的尺寸大于第二旋动装置12的尺寸,两者中心的连线与竖直方向呈一定角度,角度的范围为0°~45°。
实施例五
如图7、图8所示,本实施例的能量转换装置与上述实施例的区别在于:第一旋动装置11的数量为一个,第二旋动装置12的数量为两个,两个第二旋动装置12处于同一水平高度。该设计能够增加气箱在进气阶段的行走路程,延长进气时间,保证进气的充分性。该设计能够有效的减小设备运行成本。
或者,本实施例中的能量转换装置在如图7、图8所示结构呈顺时针方向运转是,两个第二旋动装置12中靠近图示左侧的第二旋动装置12的相对位置高于或略高于图示右侧的第二旋动装置12。使得气箱在 两个第二旋动装置12之间的运动轨迹为向上爬坡。
实施例六
如图9所示,本实施例中的能量转换装置与上述实施例的区别在于:第一旋动装置11的尺寸小于第二旋动装置12的尺寸,两者中心的连线与竖直方向呈一定角度,角度的范围为0°~45°。该设计能够在不增加旋动装置的数量的基础上增加气箱在进气阶段的行走路程,延长进气时间,保证进气的充分性。进而有效的减小设备运行成本。
过本实施例介绍的能量转换装置,占地面积小,结构设计灵活,可根据需要设计设备的大小,并且本发明介绍的能量转换装置结构简单,无需人工操作或复杂的维护操作。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。
实施例七
如图10所示,本实施例的能量转换装置,包括绕其中心旋转的轮状第一旋动装置11和第二旋动装置12,沿旋动装置的周向设置的气箱2,控制气箱内部与外界通断的压力开关6,对压力开关6开启/闭合提供压力/拉力的辅助导轨7,与气箱2内部连通并向气箱内导入空气的输送装置3,输送装置3包括输送高压空气的高压输送装置和输送常压空气的常压输送装置,高压输送装置与高压气源连通,常压输送装置与大气连通;压力开关包括与高压输送装置连接的第一压力开关和与常压输送装置连接的第二压力开关;输送装置与气箱连接的出气端位于能量转换装置的下部。相对应的,所述气箱包括与常压输送装置对应的低压气箱和与高压输送装置对应的高压气箱。
进一步地,本实施例中的能量转换装置的旋动装置至少一部分浸没于浮力介质中,浮力介质的密度大于高压空气密度;旋动装置包括位于浮力介质上方的第一旋动装置和浸没于浮力介质中的第二旋动装置;进气输送开关设置于第二旋动装置上。其中,第二旋动装置完全浸没于浮力介质中。通过本实施例介绍的能量转换装置,将能量转换装置的下部浸没于水中,气箱绕旋动装置做周向运动,当气箱运动到下方时被充入气体,气箱被撑起,在浮力的作用下向上浮起,当气箱浮出水面时,压力开关开启,气箱内的气体被排出,气箱收缩变形,并在旋动装置的带动下向下运动,再次浸没于水中。将高压输送装置和常压输送装置配合设置,两者中充入的气体的压力不同,但高压输送装置中的气压更高,当高压气箱中充入高压气体时气箱能够以较快的充气速度被撑起,有利于提高气箱的充气速度,有利于低压气箱的充气效果。
实施例八
如图10所示,本实施例的能量转换装置与上述实施例的区别在于:辅助导轨7为环状,设置于气箱2外侧;在气箱2向下运动的一侧,辅助导轨7距旋动装置的距离等于气箱2未充气时的尺寸;在气箱2向上运动的一侧,辅助导轨7距旋动装置的距离大于气箱未充气时的尺寸,并小于等于气箱充气后的尺寸。气箱沿辅助导轨的轨迹继续压缩,直至气体基本排出。当气箱运动到设备低端时,压力开关开启,对气箱进行充气。周而复始。
实施例九
如图11、图12所示,本实施例的能量转换装置与上述实施例的区别在于:辅助导轨为弧状,包括设置于能量转换装置上侧的第一辅助导轨71和设置于能量转换装置下侧第二辅助导轨72;第一辅助导轨71、第二辅助导轨72在气箱2向下运动的一侧,距旋动装置的距离等于气箱2未充气时的尺寸;在气箱2向上运动的一侧,距旋动装置的距离大于气箱未充气时的尺寸,并小于等于气箱充气后的尺寸。
本实施例中的辅助导轨结构设计明显减小了辅助导轨的尺寸,在不需要对气箱做形状改变时则辅助导轨在该处为空缺,避免对气箱的运动造成阻力。
实施例十
如图13、图14、图15、图16所示,本实施例的能量转换装置与上述实施例的区别在于:辅助导轨包括与旋动装置连接的、可旋转的、齿轮状的第一辅助装置71以及设置于气箱2外侧的第二助装置72,第二助装置72为拨杆状,与第一辅助装置71的齿轮状凹槽配合连接。
进一步地,本实施例中的辅助导轨包括设置在能量转换装置上部并且在气箱向上运动的一侧的压缩第一辅助导轨711,压缩第一辅助导轨711与旋动装置相对的一侧距旋动装置外侧的距离大于等于气箱未充气时的尺寸。
进一步地,本实施例中的辅助导轨包括设置在能量转换装置下部并且在气箱向下运动的一侧的扩张第一辅助导轨712,扩张第一辅助导轨711远离旋动装置的一侧距旋动装置外侧的距离小于等于气箱充气后的尺寸。
实施例十一
本实施例的能量转换装置与上述实施例的区别在于:能量转换装置包括设置于旋动装置上的电机,以及与旋动装置连接的发电机,与发电机连接的蓄电装置;蓄电装置与电机连接。为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
进一步地,如图13所示,本实施例中的气箱2的数量为多个,多个气箱2呈周期性沿能量转换装置的外侧设置。
进一步地,如图20和图21所示,本实施例中的能量转换装置包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱组件,输送气体的输送装置,控制所述输送装置通断的进气输送开关;所述进气输送开关设置在所述旋动装置上;所述气箱组件由间隔件分隔为互不相通的多个气箱;所述气箱包括高压气箱21和低压气箱22,所述高压气箱21设置于所述低压气箱22至少一侧的壁上,高压气箱21至少在低压气箱的一侧对其起到支撑的作用,优选地,高压气箱21在低压气箱的四周对其进行包裹,高压气箱的容积小于低压气箱的容积。高压气箱21由第一压力开关61控制其进、排气的出口,低压气箱由第二压力开关控制其进、排气的出口。所述输送装置的出气端位于所述能量转换装置的下部并能够向所述气箱中导入空气,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度,所述气囊由可变形的材料制得。
实施例十二
如图17至19所示,本实施例的能量转换装置与上述实施例的区别在于:本发明中的结构件包括交叉设置的两个第一结构件41,第一结构件为棒状,两个第一结构件41在其中部的旋转中心43处铰接,交叉设置;结构件包括与伸缩气箱连接第二结构件42,第二结构件42为板状,其上设置有垂直于伸缩气箱2伸缩方向的滑轨44,第一结构件41的一端与滑轨44滑动连接,另一端与伸缩气箱2可旋转的连接。进一步地,本发明中的控制开关10的触发端101设置于靠近旋动装置的一侧,控制开关10在旋动装置的控制下可伸缩的设置于伸缩气箱2垂直于伸缩方向的一侧,控制开关10与旋动装置通过导通装置102接触连接。进一步地,本发明中的控制开关10沿伸缩气箱2的伸缩方向可凸出/缩回的设置于滑轨44上。进一步地,本发明中的控制开关10的数量为至少两个,至少两个控制开关10与支撑装置一一对应设置。控制开关的设计则是通过旋动装置增加了对气箱变形阶段的控制功能,当控制开关与旋动装置接触时,则导通装置通过旋动装置接入电路中,则控制开关开始执行伸出/缩回操作。
实施例十三
如图22至图25所示,本发明介绍的一种能量转换装置,包括绕其中心旋转的旋动装置,沿旋动装置的周向设置的环状的气箱2,与气箱2内部连通并向气箱2内导入空气的输送装置;控制气箱内部与外界通断的气箱开关4,对气箱开关开启/闭合提供压力/拉力的辅助导轨;至少设置在能量转换装置一侧的压力开关6,辅助导轨与压力开关6连接;气箱2由高压气箱21沿径向分隔为连续的多个单元,每个所述单元上设置有至少一个所述气箱开关;所述高压气箱由弹性材料制得,并向设备的中间延伸旋动装置至少一部分浸没于浮力介质中,浮力介质的密度大于空气密度。气箱开关为压力感应开关,当其一侧的压力高于 临界值时,则开关打开,当其一侧的压力小于临界值时,则气箱开关关闭。
进一步地,本发明中的旋动装置为轮状,旋动装置包括位于浮力介质上方的第一旋动装置11和浸没于浮力介质中的第二旋动装置12,第一旋动装置11和第二旋动装置12的径向处于同一平面内。本发明中的两个旋动装置尺寸相同。
进一步地,本发明中的能量转换装置,辅助导轨为弧状,包括设置于能量转换装置上侧的第一导轨71和设置于能量转换装置下侧第二导轨71;第一导轨71、第二导轨72在气箱2向下运动的一侧,距旋动装置的距离等于气箱2未充气时的尺寸;在气箱2向上运动的一侧,距旋动装置的距离大于气箱2未充气时的尺寸,并小于等于气箱2充气后的尺寸。本发明中的设备在图1和图3所示的位置中为顺时针的旋转。
进一步地,本发明中的能量转换装置,气箱2上设置有辅助气箱2变形的辅助杆8,辅助杆8的延伸方向垂直于气箱2的变形方向;辅助导轨为与辅助杆8滑动配合的辅助导轨结构,辅助导轨的延伸方向与辅助导轨的延伸方向相同。则当气箱运动到与辅助导轨相应的位置时,辅助杆8滑入辅助导轨中,并沿辅助导轨滑动,由于导轨距旋动装置的距离逐渐变化,则气箱在该由辅助导轨构成的空间中运动,其体积被压缩/被拉伸,进而改变其中的气压,进而控制气箱开关的开启/关闭。气箱开关开启时,则气箱内部的气体被排出。
进一步地,本发明中的能量转换装置,所述第二导轨临近所述气箱向下运动的一侧设置有控制所述气箱开关4开启的第一结构件,所述第一结构件的设置高度小于所述第二旋动装置中心的高度。当气箱在下降运动过程中经过第一结构件41时,第一结构件41触发气箱开关4,气箱开关开启,使得气箱内部与环状导气管33连通,环状导气管33内部的气体进入气箱中,实现气箱充气。
进一步地,本发明中的能量转换装置,所述第二导轨临近所述气箱向上运动的一侧设置有控制所述气箱开关关闭的第二结构件42,所述第二结构件42的设置高度小于水面的高度。当气箱在上升运动过程中经过第二结构件42时,第二结构件42触发气箱开关4,气箱开关关闭,使得气箱内部与其他部件隔绝,实现气箱封闭。
进一步地,本发明中的能量转换装置,所述第一旋动装置外侧沿其周向设置有控制所述气箱开关4打开的旋转中心43,所述旋转中心43与所述第一旋动装置之间为固定连接,所述旋转中心跟随所述第一旋动装置转动,所述旋转中心的数量为多个,相邻两个所述旋转中心之间的线距离等于相邻两个所述气箱开关之间的线距离。气箱开关4在旋转中心43的触发下开启,实现排气,当两则分离时,气箱开关4关闭。
进一步地,本发明中的能量转换装置,输送装置包括一端与高压气源连通的进气管道31,进气管道31的另一端连接进气输送开关,呈环状并与传动装置连接的环状导气管33,环状导气管33内部为可供高压气流通的管道状,环状导气管33对应于通气口的位置设置有向气箱内部注入高压气的输出装置,环状导气管33与进气输送开关通过输送管34可转动地连接。
进一步地,本发明中的进气输送开关朝向气箱做上升运动的一侧为开启部,与进气管道连通;进气输送开关朝向气箱做下降运动的一侧为封闭部,与进气管道断开,堵塞输送管与其连接的一端。如图1和图3中所示的位置,与四根输送管34连接的圆形结构即为进气输送开关,进气输送开关中左侧即为开启部,该部分结构,将输送管34与进气管道31导通,并且,在设备的左侧,该开启部始终为开启状态,进而,气箱沿设备做顺时针运动过程中,中处于上升阶段,气箱始终与气源连通,处于充气状态。相对地,进气输送开关的右侧即为封闭部,该处为断开的结构,使得气箱处于向下运动的状态时,其与气源始终断开,无法进行充气。
进一步地,本发明中的进气管道31设置于与压力开关6位置相同的一侧。
进一步地,本发明中的进气管道31设置于能量转换装置与压力开关6相对的另一侧。
进一步地,本发明中的浮力介质包括水、油、水银。
进一步地,本发明中的能量转换装置包括设置于旋动装置上的电机,以及与旋动装置连接的发电机,与发电机连接的蓄电装置;蓄电装置与电机连接。
通过本发明介绍的能量转换装置,为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本 设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
实施例十四
如图10、图26、图27所示,本发明中的一种能量转换装置,包括绕其中心旋转的旋动装置,旋动装置包括位于设备上方的第一旋动装置11和位于设备下方的第二旋动装置12,两个旋动装置位于同一竖直平面内,沿旋动装置的周向设置的多个气箱2,在至少一个方向上支撑气箱2的支撑装置,起到支撑和收放的作用,外面为气囊隔离水气,气囊为开口。这种气箱底部有开口,只要开口在下方,又有支撑装置,我们机器工作20米水深内没有问题。进一步地,本实施例中的气囊形状为矩形,支撑装置设置于其内部,支撑装置包括第一结构件41和第二结构件42。气箱在充气过程中,压力开关6与输送装置3接通,气体进入气箱,使得气箱外部包覆的气囊的体积逐渐膨胀,带动其内部的的支撑装置展开。反之,在气箱放气过程中,气箱在旋动装置的带动下与水面的相对位置发生变化,其底部的相对位置逐渐升高,气囊开口80的逐渐调整为位于气箱上部的位置,在水压的作用下,气囊开口80开始排气,气囊收缩则带动支撑装置收回。
如图28至图31所示,能量转换装置包括固定气箱结构的固定装置,固定装置为绳状/带状,固定装置的一端可旋转地连接气箱朝向设备外部的一侧,另一端可旋转地连接气箱的朝向设备内部的一侧;固定装置的延伸方向与气箱的伸缩方向呈一定角度;固定装置为柔性材料制得。气箱之间通过链轮片90连接。置在气箱上控制气箱变形的固定装置110,与气箱2内部连通并向气箱内导入空气的输送装置3,控制输送装置3通断的进气输送开关5;输送装置3气箱2连接的出气端位于能量转换装置的下部,多个气箱2依次连接排列呈环状。其中,第二旋动装置完全浸没于浮力介质中。通过本发明介绍的能量转换装置,将能量转换装置的下部浸没于水中,气箱绕旋动装置做周向运动,当气箱运动到下方时被充入伸缩气体,气箱被撑起,在浮力的作用下向上浮起,当气箱浮出水面时,压力开关开启,气箱内的气体被排出,气箱收缩变形,并在旋动装置的带动下向下运动,再次浸没于水中。图10中所示的设备使用时沿顺时针方向旋转。
进一步地,本发明中的支撑装置4设置于气箱2的内部;旋动装置至少一部分浸没于浮力介质中,浮力介质的密度大于空气密度。浮力介质为水。优选地,第一旋动装置11暴露于浮力介质放上的空气中,第二旋动装置12浸没于浮力介质中。
进一步地,本发明中的支撑装置包括平行设置的两个第一结构件41,两个第一结构件41在其一端与第二结构件42铰接,另一端与气箱朝向旋动装置的一侧铰接;第二结构件42为板状,第二结构件可相对于气箱朝向所述旋动装置的一侧沿图28所示结构向下移动,进而压缩气箱,将其中的气体排出;或者反向动作进而使得气箱充气。
进一步地,本发明中的支撑装置的数量为至少两个,至少两个支撑装置相对于气箱2均匀设置。本发明中的支撑装置的设计,使得气箱的变形过程中,无论是扩展还是收缩均值支撑装置的控制下完成,使得气箱能够按照严格的变形方向进行变形,使得气箱在水中运动时能够更加顺畅,减小水造成的阻力。
进一步地,本发明中的固定装置110的数量为至少两个,至少两个固定装置110与支撑装置一一对应设置。控制开关的设计则是通过旋动装置增加了对气箱变形阶段的控制功能,当控制开关与旋动装置接触时,则导通装置通过旋动装置接入电路中,则控制开关开始执行伸出/缩回操作。
进一步地,本发明中的气箱2上设置有与输送装置对应的压力开关6。
通过本发明介绍的能量转换装置,能够提高对高压气体的能量的转换率,通常情况下,火力发电站产生的高压气体通过汽轮机之后仍然保持较大的内能,将该高压气体释放到大气中将导致该部分能量的浪费。将此种高压气体回收并加以利用能够提高高压气体的能量转换率。为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
如图29所示,设备包括对所述气箱的变形提供引导的导轨,导轨为弧状,导轨包括连接的第一段73和第二段74;第一段73设置于能量转换装置上侧,在气箱向下运动的一侧,距旋动装置的距离等于气箱未充气时的尺寸,在气箱向上运动的一侧,距旋动装置的距离大于气箱未充气时的尺寸,并小于等于气箱充气后的尺寸;第二段设置于能量转换装置在气箱向下运动的一侧,距旋动装置同一侧切线的距离等于气箱未充气时的尺寸。
实施例十五
如图32至图36所示,本发明介绍的能量转换装置包括:旋动装置,旋动装置包括位于旋转中心的旋动轴111,设置于旋动轴两端并绕所其旋转的旋动轮121,支撑、定位旋动轴的旋动支撑13,旋动支撑13与旋动轴111连接;传动装置40,传动装置40为环状,沿旋动轮外周侧构成的轮廓设置,传动装置朝向旋动轮的一侧与旋动轮121的外周侧配合卡接;气箱2,气箱2的数量为多个,沿传动装置周期性设置,气箱2背离传动装置运动方向的一侧设置有开口;输送装置,所述输送装置包括一端与高压气源连通的进气管道31,呈环状并与所述传动装置连接的环状导气环33,所述环状导气环33内部为可供高压气流通的管道状,所述环状导气环33对应于所述开口的位置设置有向所述气箱2内部注入高压气的出气装置。环状导气环33与进气管道31通过输送管34可转动地连接。图1中所示的A线为水位线,气箱沿设备顺时针方向运行。通过本发明介绍的能量转换装置,对气箱的结构和输送装置的结构以及两者之间的配合关系进行了改进,使得设备使用时气箱的结构、容积不会随其所处的位置发生变化,则极大程度的简化了对气箱的结构设计。
进一步地,本发明中的能量转换装置,旋动装置的数量为多个,多个旋动装置的旋动轴的延伸方向相同,并且多个旋动装置的旋动轴111的端部处于同一竖直平面内,多个旋动装置的旋动轮在竖直平面内构成凸多边形。多个旋动装置的多个旋动支撑13交于一点,并在该点处连接。本发明中的能量转化设备,气箱为结构相同的矩形,当气箱处于相对向上运动时,气箱的开口位置朝下,当气箱处于竖直向上或竖直向下运动时,由于运动方向垂直,相邻的两个气箱的顶端正好封住与其连接的气箱的底端,则将开口封住,防止气体流出。当气箱运动到设备最上方时,气箱开始相对向图32中的左下运动,由于气箱之间呈一定的角度,则气箱的低端向上方倾斜,开口一定程度的暴露,则气箱内的气体排出,并且灌入水填充气箱的内部。当气箱运动到设备的最下方后,气箱开始相对向右上运动,则气箱处于上升阶段,此时输送装置将气体再次充入气箱中,气体的压力将气箱内的水排出。周而复始。
进一步地,本发明中的旋动装置的数量为四个,四个旋动装置的旋动轴111的延伸方向相同,并且四个旋动装置的旋动轴111的端部处于同一竖直平面内,四个旋动装置的旋动轮121在竖直平面内构成四边形。
进一步地,本发明中的能量转换装置,旋动轮121为多边形,多个旋动装置的旋动轮121的对称轴/对角线之间呈一定夹角,使得不同的旋动装置的相对高度不同。
进一步地,本发明中的能量转换装置,旋动轮121的外周侧上设置有向外凸起的卡凸51,传动装置朝向旋动轮的一侧上设置有与卡凸51配合的卡槽。卡接的设计能够增加旋动装置对传动装置的带动能力,使得两者之间无相对位移,保证运动的均匀性。
进一步地,本发明中的输送装置设置于传动装置构成的平面的一侧,能量转换装置至少部分浸没于浮力介质中,浮力介质的密度大于高压气的密度。
进一步地,本发明中的能量转换装置包括设置于旋动装置上的电机(图中未示出),以及与传动装置连接的发电机(图中未示出),与发电机连接的蓄电装置;蓄电装置与电机连接。通过本发明介绍的能量转换装置,为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗,电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
进一步地,本发明中的气箱上设置有用于控制气箱与所述输送装置之间通断的进气输送开关;设备底部设置有控制所述进气输送开关开启的开启结构321和控制所述进气输送开关关闭的封闭结构322输送管 34为弹性材质制得。
进一步地,本发明中的能量转换装置包括固定机构,固定机构包括设置于与输送装置同一侧的第一固定机构61,以及设置于另一侧的第二固定机构62;所述固定机构与所述旋动支撑或所述旋动装置连接。
实施例十六
如图37至图43所示,本发明介绍的一种能量转换装置,包括绕其中心旋转的旋动装置,内部具有一定容置空间并沿旋动装置设置的气箱2,在气箱2运动到一定位置时与气箱2内部连通并向气箱2内导入空气的输送装置;气箱2的数量为多个,多个气箱2在其两侧和与之临近的气箱2连接,与多个气箱2一一对应设置的多个进气输送开关211,进气输送开关211用于控制气箱2内部与输送装置之间的通断,气箱2远离旋动装置的一侧为硬质材料制得;气箱2临近旋动装置的部分为可变性材料制得/可变形的结构,并在与其临近的气箱2的挤压作用下变形;气箱2背离传动装置运动方向的一侧设置有允许气体通过开口;多个气箱绕旋动装置构成的轨迹呈顺时针/逆时针运动。本发明中的旋动装置包括竖直方向设置的第一旋动装置和第二旋动装置,第一旋动装置位于设备的上侧,第二旋动装置位于设备的下侧,第一旋动装置和第二旋动装置的结构尺寸相同,为轮状,能够绕其中心旋转。两个旋动装置沿重力方向设置。图37中的A线为水位线。
如图37所示的设备中,气箱沿其设置轨迹做顺时针运动。气箱为结构相同的矩形,中气箱处于相对向上运动时,气箱的开口位置朝下,当气箱处于竖直向上或竖直向下运动时,由于运动方向垂直,相邻的两个气箱的顶端正好封住与其连接的气箱的底端,则将开口封住,防止气体流出。当气箱运动到设备上方时,由于气箱之间呈一定的角度,则气箱的低端向上方倾斜,开口一定程度的暴露,则气箱内的气体排出,并且灌入水填充气箱的内部。当气箱运动到设备的右侧时,则气箱处于上升阶段,此时输送装置将气体再次充入气箱中,气体的压力将气箱内的水排出。周而复始。
进一步地,本发明中能量转换装置还包括传动装置,传动装置沿旋动装置构成的轨迹设置,并在旋动装置的带动下旋转;气箱2沿传动装置的一侧设置,气箱2远离旋动装置的一侧或临近旋动装置的一侧与传动装置连接,传动装置为环状带,沿所述能量转装置的运转轨迹设置,气箱在传动装置的带动下沿所述轨迹运转。
进一步地,本发明中传动装置包括多个依次连接为环状的链节,链节包括呈板状的本体81和设置在本体81两侧的连接件82,每个链节的和与之临近的链节通过连接件82连接。
进一步地,本发明中气箱2为矩形结构,气箱2靠近旋动装置一侧的至少部分为可变性材料/可变形的结构制得的变形部222,与变形部222连接的一侧为通过合页223与变形部相对的一侧连接的翻转部24,翻转部24绕与变形部222相对的一侧翻转,改变气箱靠近旋动装置一侧的形状。
进一步地,本发明中气箱包括配合的变形导向栅25和变形导向杆26;变形导向栅25和变形导向杆26设置于变形部22朝向气箱内部的一侧,变形导向栅25的一边与翻转部24连接,并在翻转部24的带动下移动,变形导向栅25上设置有多个沿变形方向设置的栅格;变形导向杆26设置于变形部22与气箱2靠近旋动装置一侧的连接位置上,变形导向杆26的数量为多个,多个变形导向杆26与栅格对应设置,并在变形时沿栅格滑动。
进一步地,本发明中变形部222由防水布料/橡胶/弹性塑料/硅胶/弹性复合材料制得。
进一步地,本发明中气箱2内部设有多个交叉设置的支撑件27,支撑件27沿气箱非变形方向设置,支撑件27的延伸方向与气箱2的侧壁方向呈一定夹角。
进一步地,本发明中旋动装置的数量为两个,两个旋动装置沿重力方向设置,两个旋动装置共同构成气箱的运动轨迹,并且,位于上方的旋动装置至少部分凸出于浮力介质的上表面,浮力介质为液体。
进一步地,本发明中两个旋动装置中的一个为主动旋动装置,另一个为被动旋动装置;两个旋动装置上分别设置有与储能装置连接的发电机9;主动旋动装置与储能装置连接,其部分动力来源为储存在储能装置中的电能。通过本发明介绍的能量转换装置,为设置增加了电机,用于为旋动装置的旋转提供至少部分动力。本设备旨在将压缩气体内蕴含的内能转化为电能,该过程中难免出现摩擦阻力等导致的能量损耗, 电机的设置有利于将能量转换装置产生的能量储存起来,当设备需要外界提供动力时,则由蓄电装置将一部分能量提供给旋动装置用于为其转动提供动力,保证设备使用的连续性。
进一步地,本发明中输送装置包括一端与高压气源连通的一级气管,呈环状并在转动方向上与传动装置连接的二级气管331,一级气管和二级气管331通过三级气管连接,三级气管的数量为多个,二级气管对应于进气输送开关的位置设置有向气箱内部注入高压气的出气口。
实施例十七
如图44至图47所示,本发明介绍的能量转换装置,包括分别绕其中心旋转的至少四个转轮1,沿转轮外侧构成的轨迹运动的多个气箱2,向气箱2内部导入气体的送气装置,辅助多个气箱之间调整相对角度的调整装置;至少四个转轮10在同一竖直平面内设置,至少四个转轮10的相对高度不同,调整装置包括设置在位于上侧的两个转轮之间的上调整装置441以及设置在位于下侧的两个转轮之间的下调整装置442,调整装置将与其临近的两个转轮之间形成的轨迹向能量转换装置的外侧延伸。如图44所示的设备中,气箱沿其设置轨迹做顺时针运动。气箱为结构相同的矩形,中气箱处于相对向上运动时,气箱的开口位置朝下,当气箱处于竖直向上或竖直向下运动时,由于运动方向垂直,相邻的两个气箱的顶端正好封住与其连接的气箱的底端,则将开口封住,防止气体流出。当气箱运动到设备上方时,由于气箱之间呈一定的角度,则气箱的低端向上方倾斜,开口一定程度的暴露,则气箱内的气体排出,并且灌入水填充气箱的内部。当气箱运动到设备的右侧时,则气箱处于上升阶段,此时输送装置将气体再次充入气箱中,气体的压力将气箱内的水排出。周而复始。
进一步地,本发明介绍的能量转换装置,气箱2沿轨迹周期性设置,气箱2背离传动链运动方向的一侧设置有供气体/液体流入/流出通口221,气箱2沿轨迹做顺时针/逆时针运动。通过本发明介绍的能量转换装置,对气箱的结构和输送装置的结构以及两者之间的配合关系进行了改进,使得设备使用时气箱的结构、容积不会随其所处的位置发生变化,则极大程度的简化了对气箱的结构设计。气箱的材质为硬质材料,使得气箱的抗压、抗变形能力增加,有利于延长气箱的使用寿命以及气箱结构性的保护。
进一步地,本发明介绍的能量转换装置,送气装置包括一端与高压气源连通的进气管道31,呈环状并与传动链连接的环状导气管33,环状导气管33对应于通口21的位置设置有向气箱内部注入高压气的通气控制装置,环状导气管33与进气管道31通过输送管34可转动地连接。通过本发明介绍的能量转换装置,增加了环状导气管的设计,使得在气箱上升运动的整个过程均能对气箱内部进行充气,保证了充气的效果。
进一步地,本发明介绍的能量转换装置,调整装置为向能量转换装置外侧凸起的拱形结构,使得位于设备上侧和下侧轨迹向外侧凸出。
进一步地,本发明介绍的能量转换装置,气箱3为矩形,气箱3向上/向下运动一侧的轨迹的延伸方向为竖直方向,在该方向上相邻的两个气箱之间的接触为面接触。
进一步地,本发明介绍的能量转换装置,至少四个转轮中的至少一个凸出于液面设置,并且至少四个转轮中的至少一个浸没于液面设置
进一步地,本发明介绍的能量转换装置,转轮为结构对称的多边形结构,多边形的边长等于气箱靠近转轮一侧的边长,使得多边形的角能够卡入相邻两个气箱之间的夹角内。
进一步地,本发明介绍的能量转换装置,转轮沿其轴向的断面为三角形或四边形或五边形或六边形。
进一步地,本发明介绍的能量转换装置,能量转换装置包括沿轨迹设置的传动链800,传动链800设置于转轮与气箱之间,传动链800为首尾相接的带状结构,传动链800与气箱2连接,并跟随气箱2一起沿轨迹运动;设备包括与转轮1连接的发电机(图中未示出),以及与发电机连接的蓄电装置(图中未示出),蓄电装置与设置于传动链上的电机(图中未示出)连接,为传动链的运动提供至少一部分能量。
进一步地,本发明介绍的能量转换装置,至少四个转轮中位于上侧的转轮的径向尺寸大于位于下侧的转轮的径向尺寸,凸出于液面的转轮的尺寸大于其他转轮的尺寸;浸没于液面的转轮的尺寸小于其他转轮的尺寸。
进一步地,本发明介绍的能量转换装置,能量转换装置下侧临近气箱2向下运动的一侧设置有控制通 气控制装置220开启的开启装置60,当通气控制装置220经过开启装置60时,通气控制装置220开启,并向气箱2内部注气。
进一步地,本发明介绍的能量转换装置,能量转换装置上侧临近气箱2向上运动的一侧设置有控制通气控制装置220关闭的关闭装置50,当通气控制装置220经过关闭装置50时,通气控制装置220关闭,并停止向气箱2内部注气。
本发明进一步介绍另外一种能量转换装置,包括分别绕其中心旋转的至少四个转轮,沿转轮外侧构成的轨迹运动的多个密排连续设置的气箱2,向气箱2内部导入气体的送气装置220,辅助多个气箱调整运行轨迹的角度的调整装置;多个气箱均为可变形材质制得;至少四个转轮1在同一竖直平面内设置,至少四个转轮的相对高度不同,调整装置包括设置在位于上侧的两个转轮之间的上调整装置以及设置在位于下侧的两个转轮之间的下调整装置,调整装置将与其临近的两个转轮之间形成的轨迹向能量转换装置的外侧延伸,使得调整装置为弧形结构。则连续的气箱在调整装置的调整下改变轨迹,为排气、进气提供条件。
进一步地,本发明介绍的能量转换装置,多个气箱的远离运动方向的一侧设置有出气口,出气口向能量转换装置外侧突出于气箱表面设置,出气口为管道状。并且出气口朝向能量转换装置运转方向的反方向,其出气过程不会对气箱运转造成阻力。
以上所述仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专利的技术人员在不脱离本发明技术方案范围内,当可利用上述提示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明方案的范围内。

Claims (81)

  1. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱组件,输送气体的输送装置,控制所述输送装置通断的进气输送开关;所述进气输送开关设置在所述旋动装置上;所述气箱组件由间隔件分隔为互不相通的多个气箱;所述气箱包括高压气箱和低压气箱,所述高压气箱设置于所述低压气箱至少一侧的壁上;所述输送装置的出气端位于所述能量转换装置的下部并能够向所述气箱中导入空气,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
  2. 根据权利要求1所述的能量转换装置,其特征在于,所述旋动装置为轮状,所述旋动装置包括至少部分位于所述浮力介质上方的第一旋动装置和浸没于所述浮力介质中的第二旋动装置,第一旋动装置和第二旋动装置的径向处于同一平面内;所述进气输送开关设置于所述第二旋动装置上。
  3. 根据权利要求1或2所述的能量转换装置,其特征在于,所述进气输送开关包括对应于高压气箱的高压进气输送开关和对应于低压气箱的低压进气输送开关;所述高压气箱的容积小于低压气箱的容积。
  4. 根据权利要求1所述的能量转换装置,其特征在于,所述气箱上设置有与所述进气输送开关对应的压力开关;所述旋动装置上设置有与所述压力开关对应的、控制所述压力开关开启/关闭的开关控制件。
  5. 根据权利要求2所述的能量转换装置,其特征在于,所述能量转换装置包括辅助导轨,所述辅助导轨设置于所述气箱相对于所述第一旋动装置的另一侧;所述辅助导轨迎向所述第一旋动装置的转动方向的一侧距所述第一旋动装置外侧的距离大于等于所述气箱充气后的尺寸;所述辅助导轨背向所述第一旋动装置的转动方向的一侧距所述第一旋动装置外侧的距离等于所述气箱排气后的尺寸。
  6. 根据权利要求5所述的能量转换装置,其特征在于,所述气箱上设置有与所述辅助导轨滑动配合卡接的辅助杆。
  7. 根据权利要求2所述的能量转换装置,其特征在于,所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
  8. 根据权利要求7所述的能量转换装置,其特征在于,所述发电机与所述进气输送开关连接。
  9. 根据权利要求1所述的能量转换装置,其特征在于,所述能量转换装置包括与所述旋动装置连接的发电机,以及与所述发电机连接的蓄电装置。
  10. 据权利要求2所述的能量转换装置,其特征在于,所述第一旋动装置的径向尺寸大于所述径向第二旋动装置的尺寸,两者中心的连线与竖直方向呈一定角度,所述角度的范围为0°~45°。
  11. 一种能量转换装置,其特征在于,所述能量转换装置设置于竖直平面内,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的气箱,控制气箱内部与外界通断的压力开关,辅助所述气箱变形的导轨,与所述气箱内部连通并向所述气箱内导入空气的输送装置,所述输送装置包括输送高压空气的高压输送装置和输送常压空气的常压输送装置,所述高压输送装置与高压气源连通,所述常压输送装置与大气连通;所述压力开关包括与所述高压输送装置连接的高压开关和与所述常压输送装置连接的常压开关;所述输送装置的出气端与所述气箱连接并位于所述能量转换装置的下部。
  12. 根据权利要求11所述的能量转换装置,其特征在于,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于高压空气密度;所述旋动装置包括位于所述浮力介质上方的上旋动装置和浸没于所述浮力介质中的下旋动装置;所述进气输送开关设置于所述下旋动装置上。
  13. 根据权利要求11所述的能量转换装置,其特征在于,所述导轨为环状,设置于所述能量转换装置的外周侧;在所述气箱向下运动的一侧,所述导轨距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,所述导轨距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
  14. 根据权利要求11所述的能量转换装置,其特征在于,所述导轨为弧状,包括设置于所述能量转换装置上侧的第一导轨和设置于所述能量转换装置下侧第二导轨;所述第一导轨、第二导轨在所述气箱向下运动的一侧,距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,距所 述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
  15. 根据权利要求11所述的能量转换装置,其特征在于,所述气箱包括至少一个方向上支撑所述气箱的结构件,所述结构件包括交叉设置的两个第一结构件,两个所述第一结构件在其中部的旋转中心处铰接;所述结构件包括与所述气箱连接第二结构件,所述第二结构件为板状,其上设置有垂直于所述气箱伸缩方向的滑轨,所述第一结构件的一端与所述滑轨滑动连接,另一端与所述气箱可旋转的连接。
  16. 根据权利要求11所述的能量转换装置,其特征在于,所述导轨包括与所述旋动装置连接的、可绕其中心旋转的、齿轮状的第一辅助装置以及设置于所述气箱外侧的第二助装置,所述第二助装置为拨杆状,与所述第一辅助装置的齿轮状的凹槽配合连接。
  17. 根据权利要求16所述的能量转换装置,其特征在于,所述导轨包括设置在能量转换装置上部并且在所述气箱向上运动的一侧的压缩导轨,所述压缩导轨与所述旋动装置相对的一侧距所述旋动装置外侧的距离大于等于所述气箱未充气时的尺寸。
  18. 根据权利要求16所述的能量转换装置,其特征在于,所述导轨包括设置在能量转换装置下部并且在所述气箱向下运动的一侧的扩张导轨,所述扩张导轨远离所述旋动装置的一侧距所述旋动装置外侧的距离小于等于所述气箱充气后的尺寸。
  19. 根据权利要求11所述的能量转换装置,其特征在于,所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述旋动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
  20. 根据权利要求11至19任一项所述的能量转换装置,其特征在于,所述气箱的数量为多个,多个所述气箱呈周期性沿所述能量转换装置的外侧设置。
  21. 根据权利要求11所述的能量转换装置,其特征在于,所述气箱包括至少一个方向上支撑所述气箱的结构件,所述结构件包括交叉设置的两个第一结构件,两个所述第一结构件在其中部的旋转中心处铰接;所述结构件包括与所述伸缩气箱连接第二结构件,所述第二结构件为板状,其上设置有垂直于所述伸缩气箱伸缩方向的滑轨,所述第二结构件的数量为至少两个,至少两个所述第二结构件分别设置在所述气箱的变形方向上相对的两侧,所述第一结构件的两端与所述滑轨滑动连接。
  22. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱组件,输送气体的输送装置,控制所述输送装置通断的进气输送开关;所述进气输送开关设置在所述旋动装置上;所述气箱组件由间隔件分隔为互不相通的多个气箱;所述气箱包括高压气箱和常压气箱,所述高压气箱设置于所述常压气箱至少一侧的壁上;所述输送装置的出气端位于所述能量转换装置的下部并能够向所述气箱中导入空气,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度,所述气囊由可变形的材料制得。
  23. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的环状的气箱,与所述气箱内部连通并向所述气箱内导入空气的输送装置;控制气箱内部与外界通断的气箱开关,辅助所述气箱变形的辅助导轨;至少设置在所述能量转换装置一侧的固定装置,所述辅助导轨与所述固定装置连接;所述气箱由间隔件沿径向分隔为连续的多个单元,每个所述单元上设置有至少一个所述气箱开关;所述间隔件由弹性材料制得,并向设备的中间延伸,所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
  24. 根据权利要求23所述的能量转换装置,其特征在于,所述旋动装置为轮状,所述旋动装置包括至少部分位于所述浮力介质上方的第一旋动装置和浸没于所述浮力介质中的第二旋动装置,第一旋动装置和第二旋动装置的径向处于同一平面内。
  25. 根据权利要求23所述的能量转换装置,其特征在于,所述辅助导轨为弧状,包括设置于所述能量转换装置上侧的第一辅助导轨和设置于所述能量转换装置下侧第二辅助导轨;第一辅助导轨和第二辅助导轨相对设置;所述第一辅助导轨、第二辅助导轨在所述气箱向下运动的一侧,距所述旋动装置的距离等于所述气箱未充气时的尺寸;在所述气箱向上运动的一侧,距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸。
  26. 根据权利要求25所述的能量转换装置,其特征在于,所述气箱上设置有辅助气箱变形的滑杆,所述滑杆的延伸方向垂直于所述气箱的变形方向;所述辅助导轨为与所述滑杆滑动配合的导轨结构。
  27. 根据权利要求25所述的能量转换装置,其特征在于,所述第二辅助导轨临近所述气箱向下运动的一侧设置有控制所述气箱开关开启的开启装置,所述开启装置的设置高度小于所述第二旋动装置中心的高度。
  28. 根据权利要求27所述的能量转换装置,其特征在于,所述第二辅助导轨临近所述气箱向上运动的一侧设置有控制所述气箱开关关闭的关闭装置,所述关闭装置的设置高度小于所述第二旋动装置中心的高度。
  29. 根据权利要求24所述的能量转换装置,其特征在于,所述第一旋动装置外侧沿其周向设置有控制所述气箱开关打开的打开装置,所述打开装置与所述第一旋动装置之间为固定连接,所述打开装置跟随所述第一旋动装置转动,所述打开装置的数量为多个,相邻两个所述打开装置之间的线距离等于相邻两个所述气箱开关之间的线距离。
  30. 根据权利要求23所述的能量转换装置,其特征在于,所述输送装置包括一端与高压气源连通的进气管道,呈环状并与所述传动装置连接的环状导气管,所述进气管道的另一端连接进气输送开关,所述环状导气管内部为可供高压气流通的管道状,所述环状导气管对应于所述气箱的位置设置有向所述气箱内部注入高压气的输出装置,所述环状导气管与所述进气输送开关通过输送管可转动地连接。
  31. 根据权利要求30所述的能量转换装置,其特征在于,所述进气输送开关朝向所述气箱做上升运动的一侧为开启部,与所述进气管道连通;所述进气输送开关朝向所述气箱做下降运动的一侧为封闭部,与所述进气管道断开,堵塞所述输送管与其连接的一端。
  32. 根据权利要求30所述的能量转换装置,其特征在于,所述进气管道设置于与所述固定装置位置相同的一侧。
  33. 根据权利要求30所述的能量转换装置,其特征在于,所述进气管道设置于所述能量转换装置与所述固定装置相对的另一侧。
  34. 根据权利要求23所述的能量转换装置,其特征在于,所述浮力介质包括水、油、水银。
  35. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,多个可沿指向所述能量转换装置的中心的方向变形的伸缩气箱,在至少一个方向上支撑所述伸缩气箱的支撑装置,能够与所述伸缩气箱内部连通并向所述伸缩气箱内导入空气的输送装置,控制所述输送装置通断的进气输送开关;所述输送装置与所述伸缩气箱连接的出气端位于所述能量转换装置的下部,多个所述伸缩气箱沿所述旋动装置的周向设置依次连接排列呈环状。
  36. 根据权利要求35所述的能量转换装置,其特征在于,所述支撑装置设置于所述伸缩气箱的内部;所述旋动装置至少一部分浸没于浮力介质中,所述浮力介质的密度大于空气密度。
  37. 根据权利要求35所述的能量转换装置,其特征在于,所述设备包括对所述伸缩气箱的变形提供引导的导轨,所述导轨为弧状,所述导轨包括连接的第一段和第二段;所述第一段设置于所述能量转换装置上侧,所述气箱向下运动的一侧距所述旋动装置的距离等于所述气箱未充气时的尺寸;所述气箱向上运动的一侧距所述旋动装置的距离大于所述气箱未充气时的尺寸,并小于等于所述气箱充气后的尺寸;所述第二段设置于所述能量转换装置在所述气箱向下运动的一侧,距所述旋动装置同一侧切线的距离等于所述气箱未充气时的尺寸。
  38. 根据权利要求35所述的能量转换装置,其特征在于,所述支撑装置包括沿所述气箱变形方向设置的第一支撑装置以及沿设备外部轮廓设置的第二支撑装置,所述第一支撑装置的一端与所述气箱朝向所述旋动装置的一侧铰接,所述第一支撑装置的另一端与所述第二支撑装置铰接。
  39. 根据权利要求35所述的能量转换装置,其特征在于,所述支撑装置的数量为至少两个,至少两个所述支撑装置相对于所述伸缩气箱均匀设置。
  40. 根据权利要求38所述的能量转换装置,其特征在于,每个所述第二支撑装置对应至少两个第一 支撑装置,所述第一支撑装置相对于所述第二支撑装置均匀设置。
  41. 根据权利要求40所述的能量转换装置,其特征在于,所述第一支撑装置包括控制其动作的控制开关,所述控制开关的至少部分沿所述伸缩气箱的伸缩方向可凸出/缩回的设置于所述伸缩气箱朝向旋动装置的一侧。
  42. 根据权利要求41所述的能量转换装置,其特征在于,所述控制开关的数量为至少两个,至少两个所述控制开关与所述至少两个第一支撑装置一一对应设置。
  43. 根据权利要求35所述的能量转换装置,其特征在于,所述伸缩气箱上设置有与所述输送装置对应的压力开关。
  44. 根据权利要求35所述的能量转换装置,其特征在于,所述能量转换装置包括固定所述气箱的固定装置,所述固定装置为绳状/带状,所述固定装置的一端铰接所述伸缩气箱远离所述旋动装置的一侧,另一端铰接所述伸缩气箱的靠近所述旋动装置的一侧;所述固定装置的延伸方向与所述伸缩气箱的伸缩方向呈一定角度;所述固定装置为柔性材料制得。
  45. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,沿所述旋动装置的周向设置的多个柔性材料制得的伸缩气囊,在至少一个方向上支撑所述伸缩气囊的支撑装置,能够与所述伸缩气囊内部连通并向所述伸缩气囊内导入空气的输送装置,控制所述输送装置通断的进气输送开关;所述输送装置与所述伸缩气囊连接的出气端位于所述能量转换装置的下部,多个所述伸缩气囊依次连接排列呈环状,所述气囊上设有控制出气的气囊开口。
  46. 根据权利要求45所述的能量转换装置,其特征在于,所述气囊开口设置于多个所述伸缩气囊相邻位置处,所述气囊开口由柔性材料制得。
  47. 根据权利要求46所述的能量转换装置,其特征在于,所述气囊开口为突出于所述伸缩气囊轮廓的管状结构,所述气囊开口设置于背向所述伸缩气囊的运动方向的一侧设置。
  48. 一种能量转换装置,其特征在于,包括:
    旋动装置,所述旋动装置包括绕其轴向旋转的旋动轴,设置于所述旋动轴两端并随所述旋动轴旋转的旋动轮,支撑、定位所述旋动轴的旋动支撑,所述旋动支撑与所述旋动轴连接;
    传动装置,所述传动装置为环状,沿所述旋动轮外周侧构成的轮廓设置,所述传动装置朝向所述旋动轮的一侧与所述旋动轮的外周侧配合的卡接;
    气箱,所述气箱的数量为多个,沿所述传动装置周期性设置,所述气箱背离所述传动装置运动方向的一侧设置有开口;
    输送装置,所述输送装置包括一端与高压气源连通的通气管道,呈环状并与所述传动装置连接的导气环,所述导气环内部为可供高压气流通的管道状,所述导气环对应于所述开口的位置设置有向所述气箱内部注入高压气的出气装置,所述导气环与所述通气管道通过管路可转动地连接。
  49. 根据权利要求48所述的能量转换装置,其特征在于,所述能量转换装置设置于竖直平面内,所述旋动装置的数量为多个,多个所述旋动装置的旋动轴的延伸方向相同,并且多个所述旋动装置的旋动轴的端部处于同一竖直平面内,多个所述旋动装置的旋动轮在竖直平面内构成凸多边形。
  50. 根据权利要求49所述的能量转换装置,其特征在于,多个所述旋动装置的多个旋动支撑交于一点,并在该点处连接。
  51. 根据权利要求48所述的能量转换装置,其特征在于,所述旋动装置的数量为四个,四个所述旋动装置的旋动轴的延伸方向相同,并且四个所述旋动装置的旋动轴的端部处于同一竖直平面内,四个所述旋动装置的旋动轮在竖直平面内构成四边形。
  52. 根据权利要求49所述的能量转换装置,其特征在于,所述旋动轮为多边形,多个所述旋动装置的旋动轮的对称轴/对角线之间呈一定夹角。
  53. 根据权利要求48所述的能量转换装置,其特征在于,所述旋动轮的外周侧上设置有向外凸起的 卡凸/向内凹陷的卡槽,所述传动装置朝向所述旋动轮的一侧上设置有与所述卡凸/卡槽配合的卡槽/卡凸。
  54. 根据权利要求48所述的能量转换装置,其特征在于,所述输送装置设置于所述传动装置构成的平面的一侧,所述能量转换装置至少部分浸没于浮力介质中,所述浮力介质的密度大于高压气的密度,所述浮力介质包括水。
  55. 根据权利要求48所述的能量转换装置,其特征在于,所述能量转换装置包括设置于所述旋动装置上的电机,以及与所述传动装置连接的发电机,与所述发电机连接的蓄电装置;所述蓄电装置与所述电机连接。
  56. 根据权利要求48所述的能量转换装置,其特征在于,所述气箱上设置有用于控制气箱的开口通断的进气输送开关;所述设备底部设置有控制所述进气输送开关开启的开启结构和控制所述进气输送开关关闭的封闭结构。
  57. 根据权利要求54所述的能量转换装置,其特征在于,所述能量转换装置包括固定机构,所述固定机构包括设置于与所述输送装置同一侧的第一固定机构,以及设置于另一侧的第二固定机构;所述固定机构的一端与所述旋动支撑或所述旋动装置连接,所述固定机构的另一端与地面连接。
  58. 一种能量转换装置,其特征在于,包括绕其中心旋转的旋动装置,内部具有一定容置空间并沿所述旋动装置设置的气箱,在所述气箱运动到一定位置时与所述气箱内部连通并向所述气箱内导入空气的输送装置;所述气箱的数量为多个,多个所述气箱在其两侧和与之临近的气箱连接,与多个所述气箱一一对应设置的多个进气输送开关,进气输送开关用于控制气箱内部与输送装置之间的通断,所述气箱远离所述旋动装置的一侧为硬质材料制得;所述气箱临近所述旋动装置的部分为可变性材料制得/可变形的结构,并在与其临近的气箱的挤压作用下变形;所述气箱背离所述传动装置运动方向的一侧设置有允许气体通过开口;多个所述气箱绕所述旋动装置构成的轨迹呈顺时针/逆时针运动。
  59. 根据权利要求58所述的能量转换装置,其特征在于,所述能量转换装置还包括传动装置,所述传动装置沿所述旋动装置构成的轨迹设置,并在所述旋动装置的带动下旋转;所述气箱沿所述传动装置的一侧设置,所述气箱远离所述旋动装置的一侧或临近所述旋动装置的一侧与所述传动装置连接。
  60. 根据权利要求59所述的能量转换装置,其特征在于,所述传动装置包括多个依次连接为环状的链节,所述链节包括呈板状的本体和设置在所述本体两侧的连接件,每个所述链节的和与之临近的链节通过连接件连接。
  61. 根据权利要求58所述的能量转换装置,其特征在于,所述气箱为矩形结构,所述气箱靠近所述旋动装置一侧的至少部分为可变性材料/可变形的结构制得的变形部,与所述变形部连接的一侧为通过合页与所述变形部相对的一侧连接的翻转部,所述翻转部绕与所述变形部相对的一侧翻转,改变所述气箱靠近所述旋动装置一侧的形状。
  62. 根据权利要求61所述的能量转换装置,其特征在于,所述气箱包括配合的变形导向栅和变形导向杆;所述变形导向栅和变形导向杆设置于所述变形部朝向所述气箱内部的一侧,所述变形导向栅的一边与所述翻转部连接,并在所述翻转部的带动下移动,所述变形导向栅上设置有多个沿变形方向设置的栅格;所述变形导向杆设置于所述变形部与所述气箱靠近所述旋动装置一侧的连接位置上,所述变形导向杆的数量为多个,多个所述变形导向杆与所述栅格对应设置,并在变形时沿所述栅格滑动。
  63. 根据权利要求61所述的能量转换装置,其特征在于,所述变形部由防水布料/橡胶/弹性塑料/硅胶/弹性复合材料制得。
  64. 根据权利要求58所述的能量转换装置,其特征在于,所述气箱内部设有多个交叉设置的支撑件,所述支撑件沿气箱非变形方向设置,所述支撑件的延伸方向与所述气箱的侧壁方向呈一定夹角。
  65. 根据权利要求58所述的能量转换装置,其特征在于,所述旋动装置的数量为两个,两个所述旋动装置沿重力方向设置,两个所述旋动装置共同构成所述气箱的运动轨迹,并且,位于上方的旋动装置至少部分凸出于浮力介质的上表面,所述浮力介质为液体。
  66. 根据权利要求65所述的能量转换装置,其特征在于,两个所述旋动装置中的一个为主动旋动装置,另一个为被动旋动装置;两个所述旋动装置上分别设置有与储能装置连接的发电机;所述主动旋动装 置与所述储能装置连接,其部分动力来源为储存在所述储能装置中的电能。
  67. 根据权利要求59所述的能量转换装置,其特征在于,所述输送装置包括一端与高压气源连通的一级气管,呈环状并在转动方向上与所述传动装置连接的二级气管,所述一级气管和二级气管通过三级气管连接,三级气管的数量为多个,所述二级气管对应于所述进气输送开关的位置设置有向所述气箱内部注入高压气的出气口。
  68. 一种能量转换装置,其特征在于,包括分别绕其中心旋转的至少四个转轮,沿所述转轮外侧构成的轨迹运动的多个密排设置气箱,向所述气箱内部导入气体的送气装置,辅助多个所述气箱之间调整相对角度的调整装置;相邻两个所述气箱连接的面为形状、尺寸相同,并且平整的平面;所述气箱由硬质材质制得;所述至少四个转轮在同一竖直平面内设置,所述至少四个转轮的相对高度不同,所述调整装置包括设置在位于上侧的两个转轮之间的上调整装置以及设置在位于下侧的两个转轮之间的下调整装置,所述调整装置将与其临近的两个转轮之间形成的轨迹向所述能量转换装置的外侧延伸。
  69. 根据权利要求68所述的能量转换装置,其特征在于,所述气箱沿所述轨迹周期性设置,所述气箱背离所述传动链运动方向的一侧设置有供气体/液体流入/流出通口,所述气箱沿所述轨迹做顺时针/逆时针运动。
  70. 根据权利要求69所述的能量转换装置,其特征在于,所述送气装置包括一端与高压气源连通的主进气管,呈环状并与所述传动链连接的环状气道,所述环状气道对应于所述通口的位置设置有向所述气箱内部注入高压气的通气控制装置,所述环状气道与所述主进气管通过过度管可转动地连接。
  71. 根据权利要求70所述的能量转换装置,其特征在于,所述能量转换装置下侧临近所述气箱向下运动的一侧设置有控制所述通气控制装置开启的开启装置,当通气控制装置经过所述开启装置时,所述通气控制装置开启,并向气箱内部注气。
  72. 根据权利要求71所述的能量转换装置,其特征在于,所述能量转换装置上侧临近所述气箱向上运动的一侧设置有控制所述通气控制装置关闭的关闭装置,当通气控制装置经过所述关闭装置时,所述通气控制装置关闭,并停止向气箱内部注气。
  73. 根据权利要求68所述的能量转换装置,其特征在于,所述调整装置为向所述能量转换装置外侧凸起的拱形结构,使得位于所述设备上侧和下侧轨迹向外侧凸出。
  74. 根据权利要求68所述的能量转换装置,其特征在于,所述气箱为矩形,所述气箱向上/向下运动一侧的轨迹的延伸方向为竖直方向,在该方向上相邻的两个气箱之间的接触为面接触。
  75. 根据权利要求68所述的能量转换装置,其特征在于,所述至少四个转轮中的至少一个凸出于液面设置,并且所述至少四个转轮中的至少一个浸没于所述液面设置。
  76. 根据权利要求68所述的能量转换装置,其特征在于,所述转轮为结构对称的多边形结构,所述多边形的边长等于所述气箱靠近所述转轮一侧的边长,使得所述多边形的角能够卡入相邻两个气箱之间的夹角内。
  77. 根据权利要求74所述的能量转换装置,其特征在于,所述转轮沿其轴向的断面为三角形或四边形或五边形或六边形。
  78. 根据权利要求68所述的能量转换装置,其特征在于,所述能量转换装置包括沿所述轨迹设置的传动链,所述传动链设置于所述转轮与所述气箱之间,所述传动链为首尾相接的带状结构,所述传动链与所述气箱连接,并跟随所述气箱一起沿所述轨迹运动;所述设备包括与所述转轮连接的发电机,以及与所述发电机连接的蓄电装置,所述蓄电装置与所述传动链连接,为所述传动链的运动提供至少一部分能量。
  79. 根据权利要求73所述的能量转换装置,其特征在于,所述至少四个转轮中位于上侧的转轮的径向尺寸大于位于下侧的转轮的径向尺寸,所述凸出于液面的转轮的尺寸大于其他转轮的尺寸;所述浸没于所述液面的转轮的尺寸小于其他转轮的尺寸。
  80. 一种能量转换装置,其特征在于,包括分别绕其中心旋转的至少四个转轮,沿所述转轮外侧构成的轨迹运动的多个密排连续设置的气箱,向所述气箱内部导入气体的送气装置,辅助多个所述气箱调整运 行轨迹的角度的调整装置;多个所述气箱均为可变形材质制得;所述至少四个转轮在同一竖直平面内设置,所述至少四个转轮的相对高度不同,所述调整装置包括设置在位于上侧的两个转轮之间的上调整装置以及设置在位于下侧的两个转轮之间的下调整装置,所述调整装置将与其临近的两个转轮之间形成的轨迹向所述能量转换装置的外侧延伸。
  81. 根据权利要求80所述的能量转换装置,其特征在于,所述多个气箱的远离运动方向的一侧设置有出气口,所述出气口向所述能量转换装置外侧突出于所述气箱表面设置,所述出气口为管道状。
PCT/CN2019/095386 2018-07-10 2019-07-10 能量转换装置 WO2020011187A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201810752339.5 2018-07-10
CN201821086890.2U CN208416632U (zh) 2018-07-10 2018-07-10 能量转换装置
CN201821086888.5 2018-07-10
CN201810751314.3 2018-07-10
CN201821088333.4 2018-07-10
CN201821087783.1U CN208718737U (zh) 2018-07-10 2018-07-10 能量转换装置
CN201810751314.3A CN110700910A (zh) 2018-07-10 2018-07-10 能量转换装置
CN201821087783.1 2018-07-10
CN201810752339.5A CN110700912A (zh) 2018-07-10 2018-07-10 能量转换装置
CN201821088356.5U CN208718738U (zh) 2018-07-10 2018-07-10 能量转换装置
CN201821086890.2 2018-07-10
CN201821088356.5 2018-07-10
CN201821088333.4U CN208456770U (zh) 2018-07-10 2018-07-10 能量转换装置
CN201821086888 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020011187A1 true WO2020011187A1 (zh) 2020-01-16

Family

ID=69142118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095386 WO2020011187A1 (zh) 2018-07-10 2019-07-10 能量转换装置

Country Status (1)

Country Link
WO (1) WO2020011187A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624962A (zh) * 2009-08-07 2010-01-13 何顺帆 一种浮力发电机
KR20130063999A (ko) * 2011-12-07 2013-06-17 홍기철 부력발전설비
CN205277682U (zh) * 2015-12-23 2016-06-01 段炳元 一种静水压力发电系统
CN208416632U (zh) * 2018-07-10 2019-01-22 宋延军 能量转换装置
CN208456770U (zh) * 2018-07-10 2019-02-01 宋延军 能量转换装置
CN208718737U (zh) * 2018-07-10 2019-04-09 宋延军 能量转换装置
CN208718738U (zh) * 2018-07-10 2019-04-09 宋延军 能量转换装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624962A (zh) * 2009-08-07 2010-01-13 何顺帆 一种浮力发电机
KR20130063999A (ko) * 2011-12-07 2013-06-17 홍기철 부력발전설비
CN205277682U (zh) * 2015-12-23 2016-06-01 段炳元 一种静水压力发电系统
CN208416632U (zh) * 2018-07-10 2019-01-22 宋延军 能量转换装置
CN208456770U (zh) * 2018-07-10 2019-02-01 宋延军 能量转换装置
CN208718737U (zh) * 2018-07-10 2019-04-09 宋延军 能量转换装置
CN208718738U (zh) * 2018-07-10 2019-04-09 宋延军 能量转换装置

Similar Documents

Publication Publication Date Title
CN205277682U (zh) 一种静水压力发电系统
US20140197642A1 (en) Gravity and bouyancy engine driven generator
CN103485971A (zh) 用于海洋孤岛波浪能发电装置
WO2020011187A1 (zh) 能量转换装置
BR112015027948B1 (pt) Aparelho gerador hidroelétrico submersível
CN108418516A (zh) 一种荒漠光伏电站技术
CN109779825A (zh) 矩形环管式振荡水柱对称翼透平发电装置
CN206280181U (zh) 气动压缩式水轮机及发电机
CN208718737U (zh) 能量转换装置
CN110439738A (zh) 一种波浪能发电装置
CN110485500B (zh) 一种可移动便携式库区清淤装置及其清淤方法
CN208416632U (zh) 能量转换装置
CN208456770U (zh) 能量转换装置
CN208718738U (zh) 能量转换装置
CN205901126U (zh) 一种电力柜快速冷却降温装置
CN107386225A (zh) 一种漂浮推进式油污驱离装置
CN110700912A (zh) 能量转换装置
CN210621807U (zh) 一种可移动便携式库区清淤装置
CN110700910A (zh) 能量转换装置
CN103982369A (zh) 一种悬浮旋转式水压力能转换动力输出装置
CN208885652U (zh) 一种水动力高压抽水装置
CN110886677B (zh) 能量转换设备
CN110056474A (zh) 一种静态动力发电设备
CN105003384A (zh) 柔性胶囊波能发电装置
CN209414671U (zh) 一种方便维修的球阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833903

Country of ref document: EP

Kind code of ref document: A1