WO2020010841A1 - Autonomous vacuum cleaner positioning method and device employing gyroscope calibration based on visual loop closure detection - Google Patents

Autonomous vacuum cleaner positioning method and device employing gyroscope calibration based on visual loop closure detection Download PDF

Info

Publication number
WO2020010841A1
WO2020010841A1 PCT/CN2019/073757 CN2019073757W WO2020010841A1 WO 2020010841 A1 WO2020010841 A1 WO 2020010841A1 CN 2019073757 W CN2019073757 W CN 2019073757W WO 2020010841 A1 WO2020010841 A1 WO 2020010841A1
Authority
WO
WIPO (PCT)
Prior art keywords
picture
frame picture
gyroscope
visual
information
Prior art date
Application number
PCT/CN2019/073757
Other languages
French (fr)
Chinese (zh)
Inventor
周毕兴
张立新
Original Assignee
深圳市沃特沃德股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃特沃德股份有限公司 filed Critical 深圳市沃特沃德股份有限公司
Publication of WO2020010841A1 publication Critical patent/WO2020010841A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Navigation (AREA)

Abstract

Provided are an autonomous vacuum cleaner positioning method and device using gyroscope calibration based on visual loop closure detection. The method comprises: acquiring, according to gyroscope information and odometer information correspondingly obtained between two key image frames of adjacent time points, actual location information with respect to a current image frame and a target historical image frame, and completing positioning. The actual location information of the current image frame can be quickly calculated on the basis of visual loop closure detection, thereby reducing computational complexity, and completing updating of the gyroscope and odometer information while achieving accurate positioning.

Description

一种基于视觉回环校准陀螺仪的扫地机定位方法及装置Positioning method and device of sweeper based on visual loop calibration gyroscope 技术领域Technical field
本申请涉及扫地机技术领域,具体为一种基于视觉回环校准陀螺仪的扫地机定位方法及装置。The present application relates to the technical field of sweepers, and in particular to a sweeper positioning method and device based on a visual loop calibration gyroscope.
背景技术Background technique
扫地机作为一种智能家用电器,能够凭借一定的人工智能自动在房间内完成地板清理工作,被广大消费者所喜爱。现有的扫地机通过传感器感知环境和自身状态,进而实现在有障碍物的环境中自主运动。而由于扫地机自身陀螺仪与里程计传感器误差的存在,扫地机无可避免地会出现定位不准确的现象。因此,如何快捷地校准扫地机陀螺仪,实现准确定位对扫地机的智能化具有重要的意义。As a kind of intelligent household appliances, the sweeper can automatically complete the floor cleaning work in the room by virtue of certain artificial intelligence, which is loved by consumers. The existing sweeper senses the environment and its own state through sensors, and then realizes autonomous movement in an environment with obstacles. Due to the existence of errors between the sweeper's own gyroscope and the odometer sensor, the sweeper will inevitably experience inaccurate positioning. Therefore, how to quickly calibrate the sweeper gyroscope and achieve accurate positioning is of great significance to the intelligence of the sweeper.
技术问题technical problem
本申请的目的旨在于提供一种基于视觉回环校准陀螺仪的扫地机定位方法及装置,纠正扫地机在工作过程中产生的定位误差,降低计算复杂度。The purpose of this application is to provide a positioning method and device for a sweeper based on a visual loop calibration gyroscope, to correct a positioning error generated during the work of the sweeper, and to reduce calculation complexity.
技术解决方案Technical solutions
为实现上述目的,本申请提供一种基于视觉回环校准陀螺仪的扫地机定位方法,包括:To achieve the above objective, the present application provides a positioning method for a sweeper based on a visual loop calibration gyroscope, including:
采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;Collect a picture of the current environment and choose to save the key frame picture in the picture of the current environment;
获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息;Acquiring and saving the corresponding gyroscope information and odometer information between two key frame pictures at adjacent times;
寻找与当前帧图片相似的历史帧图片,以形成视觉回环;Find historical frame pictures similar to the current frame picture to form a visual loop;
通过所述陀螺仪信息和所述里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息,所述目标历史帧图片为所述历史帧图片中与所述当前帧图片形成视觉回环的图片;Obtain the real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information, and the target historical frame picture is formed from the current frame picture in the historical frame picture Visual loopback pictures;
根据所述真实位置信息更新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位。Update the gyroscope data and odometer data corresponding to the current frame picture according to the real position information to complete positioning.
本申请还提供了一种基于视觉回环校准陀螺仪的扫地机定位装置,包括:The present application also provides a positioning device for a sweeper based on a visual loop calibration gyroscope, including:
采集模块,用于通过视觉传感器根据预设频率采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;An acquisition module, configured to acquire a picture of the current environment according to a preset frequency through a visual sensor, and select to save a key frame picture in the picture of the current environment;
获取模块,用于采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;An acquisition module for collecting a picture of the current environment and selecting a key frame picture in the picture of the current environment;
检测模块,用于获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息;A detection module, configured to acquire and save gyroscope information and odometer information corresponding to two key frame pictures at adjacent times;
计算模块,用于通过所述陀螺仪信息和所述里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息;A calculation module, configured to obtain real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information;
更新模块,用于根据所述真实位置信息跟新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位。An update module is configured to complete positioning according to the gyroscope data and odometer data corresponding to the current frame picture and the real position information.
本申请还提供一种计算机设备,其包括处理器、存储器及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的基于视觉回环校准陀螺仪的扫地机定位方法。The present application also provides a computer device including a processor, a memory, and a computer program stored on the memory and executable on the processor. When the processor executes the computer program, any one of the foregoing is implemented. The positioning method of the sweeper based on the visual loop calibration gyroscope.
有益效果Beneficial effect
本申请提供了一种基于视觉回环校准陀螺仪的扫地机定位方法及装置,能够基于视觉回环快速计算得到当前帧的真实位置信息,在保证扫地机定位精度的前提下,用更加简单的方式来校正扫地机的陀螺仪,减少计算复杂度,纠正扫地机在运动过程中所产生的误差,实现准确定位。The present application provides a positioning method and device for a sweeper based on a visual loop calibration gyroscope, which can quickly calculate the real position information of the current frame based on the visual loop. Under the premise of ensuring the positioning accuracy of the sweeper, a simpler method is used. Calibrate the gyro of the sweeper, reduce the computational complexity, correct the errors generated by the sweeper during its movement, and achieve accurate positioning.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请一实施例的基于视觉回环校准陀螺仪的扫地机定位方法的流程示意图;FIG. 1 is a schematic flowchart of a positioning method of a sweeper based on a visual loop calibration gyroscope according to an embodiment of the present application; FIG.
图2为本申请一实施例的基于视觉回环校准陀螺仪的扫地机定位装置的结构框图;2 is a structural block diagram of a positioning device for a sweeper based on a visual loop calibration gyroscope according to an embodiment of the present application;
图3为本申请一实施例的计算模块的结构框图;3 is a structural block diagram of a calculation module according to an embodiment of the present application;
图4为本申请一实施例的更新模块的结构框图;4 is a structural block diagram of an update module according to an embodiment of the present application;
图5为本申请一实施例的采集模块的结构框图;5 is a structural block diagram of an acquisition module according to an embodiment of the present application;
图6为本申请一实施例的检测模块的结构框图;6 is a structural block diagram of a detection module according to an embodiment of the present application;
图7是本申请一实施例的计算机设备的结构示意框图。FIG. 7 is a schematic block diagram of a computer device according to an embodiment of the present application.
本发明的最佳实施方式Best Mode of the Invention
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described herein are only used to explain the application, and are not used to limit the application.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。Those skilled in the art will understand that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this application belongs. It should also be understood that terms such as those defined in the general dictionary should be understood to have meanings consistent with the meanings in the context of the prior art, and unless specifically defined like this, they would not be idealized or overly Formal meaning to explain.
参照图1,为本申请一实施例中的一种基于视觉回环校准陀螺仪的扫地机定位方法,包括:Referring to FIG. 1, a method for positioning a sweeper based on a visual loop calibration gyroscope according to an embodiment of the present application includes:
S1:采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片。S1: Collect a picture of the current environment and choose to save the key frame picture in the picture of the current environment.
本实施例中,扫地机的视觉传感器在扫地机开始运动时就开始对周围环境进行图片采集,并且选择具有丰富参照物可作为特征的图片作为关键帧图片保存。由于扫地机最开始的时候还没有运动,因此此时的关键帧图片的陀螺仪信息和里程计信息没有产生误差。In this embodiment, the vision sensor of the sweeper starts to collect pictures of the surrounding environment when the sweeper starts to move, and selects a picture with rich reference objects as features to save as a key frame picture. Because the sweeper did not move at the beginning, there was no error in the gyroscope information and odometer information of the key frame picture at this time.
S2:获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息。S2: Obtain and save the corresponding gyroscope information and odometer information between two key frame pictures at adjacent times.
本实施例中扫地机在采集关键帧图片的同时,会同时记录相邻时间的两个关键帧图片之间的陀螺仪信息和里程计信息,以保证不会因为所采集的关键帧图片之间相隔时间太长导致误差过大。In this embodiment, the sweeper will simultaneously record the gyroscope information and odometer information between two key frame pictures at the same time while collecting key frame pictures, so as to ensure that The interval is too long and the error is too large.
S3:寻找与当前帧图片相似的历史帧图片。S3: Find historical frame pictures similar to the current frame picture.
本实施例中建立词袋模型加速特征匹配,将关键帧图片中的各特征一一对应训练成视觉词典,计算当前帧图片特征点在视觉词典中的DBOW映射,利用视觉词典即可找到与当前帧图片最相似的关键帧图片,判断形成视觉回环。In this embodiment, a bag-of-words model is established to accelerate feature matching, and each feature in a key frame picture is trained one-to-one into a visual dictionary, and the DBOW mapping of the feature points of the current frame picture in the visual dictionary is calculated. The key frame picture with the most similar frame picture is judged to form a visual loop.
S4:通过所述陀螺仪信息和里程计信息获得所述当前帧图片和与目标历史帧图片之间的真实位置信息,所述目标历史帧图片为所述历史帧图片中与所述当前帧图片形成视觉回环的图片。S4: Obtain the real position information between the current frame picture and the target historical frame picture through the gyroscope information and odometer information. The target historical frame picture is the historical frame picture and the current frame picture. A picture that forms a visual loop.
本实施例中,由于各相邻历史帧图片之间的图片位置信息和里程计信息之间存在一个特定的失真系数,通过计算即可得到系数S。再根据当前帧图片和与当前帧图片以形成视觉回环的历史帧图片之间的图片位置信息,可以快速计算得到两者之间的真实位置信息。In this embodiment, since there is a specific distortion coefficient between picture position information and odometer information between adjacent historical frame pictures, the coefficient S can be obtained through calculation. Based on the picture position information between the current frame picture and the historical frame picture that forms a visual loop with the current frame picture, the real position information between the two can be quickly calculated.
S5:根据所述真实位置信息更新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位。S5: Update gyroscope data and odometer data corresponding to the current frame picture according to the real position information to complete positioning.
本实施例中,扫地机在检测到当前帧图片和历史帧图片形成视觉回环时会自动完成校准。比如扫地机在检测到第一个视觉回环时,与当前帧图片形成视觉回环的历史帧图片其实就是扫地机最初始时的位置信息,不会有误差产生。根据计算得到的真实位置信息和历史帧的陀螺仪信息来更新当前帧图片的里程计数据和陀螺仪数据,扫地机可以校正误差,实现精准定位。In this embodiment, the sweeper automatically completes calibration when it detects that the current frame picture and the historical frame picture form a visual loop. For example, when the sweeper detects the first visual loop, the historical frame picture that forms a visual loop with the current frame picture is actually the initial position information of the sweeper without error. The odometry data and gyroscope data of the current frame picture are updated according to the calculated real position information and the gyroscope information of the historical frame. The sweeper can correct errors and achieve accurate positioning.
通过所述陀螺仪信息和里程计信息获得当前帧图片和与目标历史帧图片之间的真实位置信息的步骤,包括:The step of obtaining the real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information includes:
S401:获取与所述当前帧图片相邻的指定数量的所述历史帧图片之间的图片位置信息和里程计信息;S401: Acquire picture position information and odometer information between a specified number of the historical frame pictures adjacent to the current frame picture;
S402:获取所述当前帧图片和所述目标历史帧图片之间的图片位置信息;S402: Acquire picture position information between the current frame picture and the target historical frame picture;
S403:通过如下公式计算得到所述当前帧图片和所述目标历史帧图片之间的真实位置信息:S403: The true position information between the current frame picture and the target historical frame picture is calculated by the following formula:
真实位置关系=所述当前帧图片和所述目标历史帧图片之间的图片位置信息×S;Real position relationship = picture position information between the current frame picture and the target historical frame picture × S;
其中,S=所述指定数量的所述历史帧图片之间的里程计信息/所述指定数量的所述历史帧图片之间的图片位置信息。Wherein, S = the odometer information between the specified number of the historical frame pictures / picture position information between the specified number of the historical frame pictures.
本实施例中,计算模块通过对扫地机的当前帧图片和历史帧图片进行特征匹配,当检测到两帧图片形成回环时,调用单目摄像头拍摄到的当前帧图片相邻的指定数量的历史帧图片之间的图片位置信息和扫地机经过这几个图片的位置的里程计信息。由于单目摄像头直接通过图片计算得到的数据存在失真,而里程计信息所记录的是扫地机的实际运动路径,代表图片之间的真实距离信息。图片计算出来的图片位置信息与真实距离信息之间存在特定的比例,将这几帧图片之间的图片位置信息与里程计信息进行比较就可以得到它们之间的比例系数。再根据当前帧图片和与其形成视觉回环的历史帧图片之间的图片位置关系,就可以得到扫地机的真实位置信息。In this embodiment, the calculation module performs feature matching on the current frame picture and the historical frame picture of the sweeper. When two frames of pictures are detected to form a loop, the current number of adjacent frames of the current frame picture captured by the monocular camera is called. The picture position information between the frame pictures and the odometer information of the position where the sweeper passes these pictures. Because the data calculated by the monocular camera directly from the picture is distorted, the odometer information records the actual motion path of the sweeper, which represents the true distance information between the pictures. There is a specific ratio between the calculated picture position information and the real distance information of the pictures, and the picture position information between these frames of pictures and the odometer information can be compared to obtain the proportionality coefficient between them. Then according to the picture position relationship between the current frame picture and the historical frame picture that forms a visual loop, the real position information of the sweeper can be obtained.
根据所述真实位置信息更新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位的步骤,包括:Updating the gyroscope data and odometer data corresponding to the current frame picture according to the real position information, and completing the positioning step includes:
S501:获取所述目标历史帧的陀螺仪信息,以此更新所述当前帧图片的陀螺仪数据;S501: Obtain gyroscope information of the target historical frame to update the gyroscope data of the current frame picture;
S502:将所述当前帧图片对应的里程计数据替换为所述真实位置;S502: Replace the odometer data corresponding to the current frame picture with the real position;
S503:综合所述当前帧图片对应的陀螺仪数据和里程计数据,重新完成定位。S503: Integrate gyroscope data and odometer data corresponding to the current frame picture, and complete positioning again.
本实施例中,由于扫地机在运动过程中陀螺仪和里程计信息会逐渐出现误差,而首次与当前帧图片形成视觉回环的历史帧图片所记录的陀螺仪信息实质上就是扫地机最开始时的位姿信息,并不会产生误差,可以直接用来更新当前帧图片的陀螺仪数据。当前帧和与当前帧图片形成视觉回环的历史帧图片之间所计算得到的真实位置信息误差最小,直接替换当前帧图片的里程计数据即可完成更新。当前帧图片的陀螺仪数据和里程计数据相结合可以精准完成定位。In this embodiment, since the information of the gyroscope and the odometer will gradually appear during the movement of the sweeper, the gyroscope information recorded in the historical frame picture that first forms a visual loop with the current frame picture is essentially the beginning of the sweeper The pose information does not cause errors, and can be directly used to update the gyroscope data of the current frame picture. The calculated actual position information error between the current frame and the historical frame picture that forms a visual loop with the current frame picture has the smallest error, and the odometer data of the current frame picture can be directly replaced to complete the update. The combination of gyroscope data and odometer data of the current frame picture can accurately complete the positioning.
通过视觉传感器根据预设频率采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片步骤,包括:The steps of collecting a picture of the current environment through a visual sensor according to a preset frequency and selecting a key frame picture in the picture of the current environment include:
S101:判断通过视觉传感器采集的当前环境的图片中的第一图片,是否具有达到预设数量的特征;S101: Determine whether the first picture in the picture of the current environment collected by the visual sensor has a feature that reaches a preset number;
S102:若具有,则判定所述第一图片为所述关键帧图片;S102: if yes, determine that the first picture is the key frame picture;
S103:保存所述关键帧图片。S103: Save the key frame picture.
本实施例中,因为图像占用空间比较大,为了减少数据冗余,扫地机会自动筛选采集特征比较丰富的图像作为关键帧,比如参照物、区别物达到设定的数量的图片。In this embodiment, because the image occupies a relatively large space, in order to reduce data redundancy, the sweeping machine automatically selects and collects images with rich features as key frames, such as pictures with reference objects and differences reaching a set number.
寻找与当前帧图片相似的历史帧图片的步骤,包括:Steps to find a historical frame picture similar to the current frame picture, including:
S301:把采集到的所述图片中的各特征一一对应成各单词,将各所述单词汇总成单词树型的视觉字典。S301: One-to-one correspondence of each feature in the collected picture into words, and the words are summarized into a word tree-type visual dictionary.
本实施例中,寻找相似帧的关键在于如何判断两帧图片之间的相似度,而最直观的做法就是特征匹配,比较特征点匹配的数量是否足够多。由于特征匹配非常耗时,回环检测需要与过去所有关键帧匹配,这个运算量对于扫地机配置的计算模块来说是绝对没法承受的。因此需要使用词袋模型来加速特征匹配的速度。字典的训练其实是一个聚类的过程。假设所有图片中共提取了10,000,000个特征,可以使用K-means方法把它们聚成100,000个单词。但是,如果只是用这100,000个单词来匹配的话效率还是太低,因为每个特征需要比较100,000次才能找到自己对应的单词。为了提高效率,字典在训练的过程中构建了一个k个分支,深度为d的树。直观上看,上层结点提供了粗分类,下层结点提供了细分类,直到叶子结点。利用这个树,就可以将时间复杂度降低到对数级别,大大加速了特征匹配。In this embodiment, the key to finding similar frames is how to determine the similarity between the two frames of pictures. The most intuitive way is to use feature matching, and compare whether the number of feature point matches is sufficient. Because feature matching is very time-consuming, loop detection needs to match all past key frames. This amount of calculation is absolutely unbearable for the calculation module configured by the sweeper. Therefore, a bag-of-words model is needed to accelerate the speed of feature matching. Dictionary training is actually a clustering process. Assuming a total of 10,000,000 features are extracted from all the pictures, they can be aggregated into 100,000 words using the K-means method. However, it is still too inefficient to match only these 100,000 words, because each feature needs to be compared 100,000 times to find its own corresponding word. In order to improve the efficiency, the dictionary constructs a tree with k branches and a depth of d during the training process. Intuitively, the upper nodes provide coarse classification and the lower nodes provide fine classification up to the leaf nodes. Using this tree, the time complexity can be reduced to the logarithmic level, which greatly speeds up feature matching.
S302:计算所述当前帧图片的特征在所述视觉字典中的DBOW映射;S302: Calculate a DBOW mapping of the features of the current frame picture in the visual dictionary;
S303:通过比对所述DBOW映射,找到与所述当前帧图片最相似的历史帧图片,以形成视觉回环。S303: Find the historical frame picture most similar to the current frame picture by comparing the DBOW mapping to form a visual loop.
本实施例中,DBOW提供了两种计算相似性的方式,第一种是直接对两张图片比较;第二种是把图片集构造成一个数据库,再与另一张图片比较。图片越相似,评分越接近1,我们可以根据这个评分来判断两张图片是否是同一场景从而形成回环。In this embodiment, DBOW provides two methods for calculating similarity. The first is to directly compare two pictures; the second is to construct a picture set into a database and then compare it with another picture. The more similar the pictures are, the closer the score is to 1. We can use this score to determine whether the two pictures are the same scene and form a loop.
参照图2,本申请还提供了一种基于视觉回环校准陀螺仪的扫地机定位装置,包括:Referring to FIG. 2, the present application further provides a positioning device for a sweeper based on a visual loop calibration gyroscope, including:
采集模块1,用于采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片。An acquisition module 1 is configured to collect a picture of the current environment and select a key frame picture in the picture of the current environment.
进一步的,所述装置还包括:Further, the device further includes:
判断模块,用于判断当前是否开始运动;A judging module, which is used for judging whether the current movement is started;
生成模块,用于生成采集当前环境的图片的指令。A generating module for generating an instruction for collecting a picture of the current environment.
本实施例中视觉传感器在扫地机开始运动时就开始对周围环境进行图片采集,并且选择具有丰富参照物可作为特征的图片作为关键帧图片保存。由于扫地机最开始的时候还没有运动,因此此时的关键帧图片的陀螺仪信息和里程计信息没有产生误差。In this embodiment, the vision sensor starts to collect pictures of the surrounding environment when the sweeper starts to move, and selects pictures with rich reference objects as features to save as key frame pictures. Because the sweeper did not move at the beginning, there was no error in the gyroscope information and odometer information of the key frame picture at this time.
获取模块2,用于获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息。The obtaining module 2 is configured to obtain and save gyroscope information and odometer information corresponding to two key frame pictures at adjacent times.
本实施例中扫地机在采集关键帧图片的同时,会同时记录相邻时间的两个关键帧图片之间的陀螺仪信息和里程计信息,以保证不会因为所采集的关键帧图片之间相隔时间太长导致误差过大。In this embodiment, the sweeper will simultaneously record the gyroscope information and odometer information between two key frame pictures at the same time while collecting key frame pictures, so as to ensure that The interval is too long and the error is too large.
检测模块3,用于寻找与当前帧图片相似的历史帧图片。The detection module 3 is configured to find a historical frame picture similar to the current frame picture.
本实施例中建立词袋模型加速特征匹配,将关键帧图片中的各特征一一对应训练成视觉词典,计算当前帧图片特征点在视觉词典中的DBOW映射,利用视觉词典即可找到与当前帧图片最相似的关键帧图片,判断形成视觉回环。In this embodiment, a bag-of-words model is established to accelerate feature matching, and each feature in a key frame picture is trained one-to-one into a visual dictionary, and the DBOW mapping of feature points in the current frame picture in the visual dictionary is calculated. The key frame picture with the most similar frame picture is judged to form a visual loop.
计算模块4,用于通过所述陀螺仪信息和里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息。A calculation module 4 is configured to obtain real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information.
本实施例中,由于各相邻历史帧图片之间的图片位置信息和里程计信息之间存在一个特定的失真系数,通过计算即可得到系数S。再根据当前帧图片和与当前帧图片以形成视觉回环的历史帧图片之间的图片位置信息,可以快速计算得到两者之间的真实位置信息。In this embodiment, since there is a specific distortion coefficient between picture position information and odometer information between adjacent historical frame pictures, the coefficient S can be obtained through calculation. Based on the picture position information between the current frame picture and the historical frame picture that forms a visual loop with the current frame picture, the real position information between the two can be quickly calculated.
更新模块5,用于根据所述真实位置信息跟新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位。An update module 5 is configured to complete positioning according to the gyroscope data and odometer data corresponding to the current frame picture and the real position information.
本实施例中,扫地机在检测到当前帧图片和历史帧图片形成视觉回环时会自动完成校准。比如扫地机在检测到第一个视觉回环时,与当前帧图片形成视觉回环的历史帧图片其实就是扫地机最初始时的位置信息,不会有误差产生。根据计算得到的真实位置信息和历史帧的陀螺仪信息来更新当前帧图片的里程计数据和陀螺仪数据,扫地机可以校正误差,实现精准定位。In this embodiment, the sweeper automatically completes calibration when it detects that the current frame picture and the historical frame picture form a visual loop. For example, when the sweeper detects the first visual loop, the historical frame picture that forms a visual loop with the current frame picture is actually the initial position information of the sweeper without error. The odometry data and gyroscope data of the current frame picture are updated according to the calculated real position information and the gyroscope information of the historical frame. The sweeper can correct errors and achieve accurate positioning.
参照图3,计算模块4,包括:Referring to FIG. 3, the calculation module 4 includes:
第一获取单元,用于获取与所述当前帧图片相邻的指定数量的所述历史帧图片之间的图片位置信息和里程计信息;A first obtaining unit, configured to obtain picture position information and odometer information between a specified number of the historical frame pictures adjacent to the current frame picture;
第二获取单元,用于获取所述当前帧图片和所述目标历史帧图片之间的图片位置信息;A second obtaining unit, configured to obtain picture position information between the current frame picture and the target historical frame picture;
计算单元,用于计算得到所述当前帧图片和所述目标历史帧图片之间的真实位置信息。A calculation unit is configured to calculate and obtain real position information between the current frame picture and the target historical frame picture.
本实施例中,计算模块通过对扫地机的当前帧图片和历史帧图片进行特征匹配,当检测到两帧图片形成回环时,第一获取单元401调用单目摄像头拍摄到的当前帧图片相邻的指定数量的历史帧图片之间的图片位置信息和扫地机经过这几个图片的位置的里程计信息。由于单目摄像头直接通过图片计算得到的数据存在失真,而里程计信息所记录的是扫地机的实际运动路径,代表图片之间的真实距离信息。图片计算出来的图片位置信息与真实距离信息之间存在特定的比例,将这几帧图片之间的图片位置信息与里程计信息进行比较就可以得到它们之间的比例系数。第二获取单元402再根据当前帧图片和与其形成视觉回环的历史帧图片之间的图片位置关系,就可以得到扫地机的真实位置信息。In this embodiment, the calculation module performs feature matching on the current frame picture and historical frame picture of the sweeper. When detecting that two frames form a loop, the first obtaining unit 401 calls the current frame picture captured by the monocular camera to be adjacent. A specified number of historical frame pictures between the picture position information and the odometer information of the position where the sweeper passed these pictures. Because the data calculated by the monocular camera directly from the picture is distorted, the odometer information records the actual motion path of the sweeper, which represents the true distance information between the pictures. There is a specific ratio between the calculated picture position information and the real distance information of the pictures, and the picture position information between these frames of pictures and the odometer information can be compared to obtain the proportionality coefficient between them. The second obtaining unit 402 can obtain the real position information of the sweeper according to the picture position relationship between the current frame picture and the historical frame picture that forms a visual loop.
参照图4,更新模块5,包括:Referring to FIG. 4, the update module 5 includes:
调用单元501,用于获取所述目标历史帧的陀螺仪信息,以此更新所述当前帧图片的陀螺仪数据;A calling unit 501, configured to obtain gyroscope information of the target historical frame, and thereby update the gyroscope data of the current frame picture;
替换单元,用于将所述当前帧图片对应的里程计数据替换为所述真实位置信息;A replacement unit, configured to replace the odometer data corresponding to the current frame picture with the real position information;
定位单元502,用于综合所述当前帧图片对应的陀螺仪数据和里程计数据,重新完成定位。The positioning unit 502 is configured to integrate gyroscope data and odometer data corresponding to the current frame picture, and complete positioning again.
本实施例中,由于扫地机在运动过程中陀螺仪和里程计信息会逐渐出现误差,而首次与当前帧图片形成视觉回环的历史帧图片所记录的陀螺仪信息实质上就是扫地机最开始时的位姿信息,并不会产生误差,可以直接用来更新当前帧图片的陀螺仪数据。当前帧和与当前帧图片形成视觉回环的历史帧图片之间所计算得到的真实位置信息误差最小,直接替换当前帧图片的里程计数据即可完成更新。当前帧图片的陀螺仪数据和里程计数据相结合可以精准完成定位。In this embodiment, since the information of the gyroscope and the odometer will gradually appear during the movement of the sweeper, the gyroscope information recorded in the historical frame picture that first forms a visual loop with the current frame picture is essentially the beginning of the sweeper The pose information does not cause errors, and can be directly used to update the gyroscope data of the current frame picture. The calculated actual position information error between the current frame and the historical frame picture that forms a visual loop with the current frame picture has the smallest error, and the odometer data of the current frame picture can be directly replaced to complete the update. The combination of gyroscope data and odometer data of the current frame picture can accurately complete the positioning.
参照图5,采集模块1,包括:Referring to FIG. 5, the acquisition module 1 includes:
判断单元101,用于判断通过视觉传感器采集的当前环境的图片中的第一图片,是否具有达到预设数量的特征;A judging unit 101, configured to judge whether a first picture in a picture of a current environment collected by a visual sensor has a feature that reaches a preset number;
判定单元102,用于当前环境的图片中的第一图片具有达到预设数量的特征,判定所述第一图片为所述关键帧图片;A determining unit 102, configured to determine that the first picture in the picture of the current environment has a preset number of features, and determine that the first picture is the key frame picture;
保存单元103,用于保存所述关键帧图片。The saving unit 103 is configured to save the key frame picture.
进一步的,所述采集模块1还包括:Further, the acquisition module 1 further includes:
删除单元,用于判定所述第一图片不是所述关键帧图片,并删除所述第一图片,以实现减少数据冗余。A deleting unit is configured to determine that the first picture is not the key frame picture and delete the first picture to reduce data redundancy.
本实施例中,因为图像占用空间比较大,为了减少数据冗余,扫地机会自动筛选采集特征比较丰富的图像作为关键帧,比如参照物、区别物达到设定的数量的图片。In this embodiment, because the image occupies a relatively large space, in order to reduce data redundancy, the sweeping machine automatically selects and collects images with rich features as key frames, such as pictures with reference objects and differences reaching a set number.
参照图6,检测模块3,包括:Referring to FIG. 6, the detection module 3 includes:
汇总单元301,用于把采集到的所述图片中的各特征一一对应成各单词,将各所述单词汇总成单词树型的视觉字典。A summary unit 301 is configured to map each feature in the collected picture into a word one by one, and to summarize each word into a word tree-type visual dictionary.
本实施例中,寻找相似帧的关键在于如何判断两帧图片之间的相似度,而最直观的做法就是特征匹配,比较特征点匹配的数量是否足够多。由于特征匹配非常耗时,回环检测需要与过去所有关键帧匹配,这个运算量对于扫地机配置的计算模块来说是绝对没法承受的。因此需要使用词袋模型来加速特征匹配的速度。字典的训练其实是一个聚类的过程。假设所有图片中共提取了10,000,000个特征,可以使用K-means方法把它们聚成100,000个单词。但是,如果只是用这100,000个单词来匹配的话效率还是太低,因为每个特征需要比较100,000次才能找到自己对应的单词。为了提高效率,字典在训练的过程中构建了一个k个分支,深度为d的树。直观上看,上层结点提供了粗分类,下层结点提供了细分类,直到叶子结点。利用这个树,就可以将时间复杂度降低到对数级别,大大加速了特征匹配。In this embodiment, the key to finding similar frames is how to determine the similarity between the two frames of pictures. The most intuitive way is to use feature matching, and compare whether the number of feature point matches is sufficient. Because feature matching is very time-consuming, loop detection needs to match all past key frames. This amount of calculation is absolutely unbearable for the calculation module configured by the sweeper. Therefore, a bag-of-words model is needed to accelerate the speed of feature matching. Dictionary training is actually a clustering process. Assuming a total of 10,000,000 features are extracted from all the pictures, they can be aggregated into 100,000 words using the K-means method. However, it is still too inefficient to match only these 100,000 words, because each feature needs to be compared 100,000 times to find its own corresponding word. In order to improve the efficiency, the dictionary constructs a tree with k branches and a depth of d during the training process. Intuitively, the upper nodes provide coarse classification and the lower nodes provide fine classification up to the leaf nodes. Using this tree, the time complexity can be reduced to the logarithmic level, which greatly speeds up feature matching.
映射单元302,用于计算所述当前帧图片的特征在所述视觉字典中的DBOW映射;A mapping unit 302, configured to calculate a DBOW mapping of the features of the current frame picture in the visual dictionary;
比对单元303,用于通过比对所述DBOW映射,找到与所述当前帧图片最相似的历史帧图片,以形成视觉回环。A comparison unit 303 is configured to find a historical frame picture most similar to the current frame picture by comparing the DBOW mapping to form a visual loop.
本实施例中,DBOW提供了两种计算相似性的方式,第一种是直接对两张图片比较;第二种是把图片集构造成一个数据库,再与另一张图片比较。图片越相似,评分越接近1,我们可以根据这个评分来判断两张图片是否是同一场景从而形成回环。In this embodiment, DBOW provides two methods for calculating similarity. The first is to directly compare two pictures; the second is to construct a picture set into a database and then compare it with another picture. The more similar the pictures are, the closer the score is to 1. We can use this score to determine whether the two pictures are the same scene and form a loop.
扫地机在清扫过程中通过单目摄像头对外界环境进行信息采集,信息采集包括拍摄特征点丰富的图片作为关键帧图片保存在存储器中,再通过三轴陀螺仪采集扫地机运动的角度和体位、记录里程计传感器的里程计信息对扫地机实现定位,所以扫地机能在有障碍物的环境中自主运动。计算模块在扫地机的清扫过程中会调用存储器中的历史帧图片与单目摄像头拍摄到的当前帧图片,通过词袋模型快速进行特诊匹配。当检测到当前帧图片与历史帧图片形成回环时,计算模块会基于算法计算出两帧之间的位姿关系,也就是计算得到当前帧的真实位置关系,并根据真实位置关系自动更新扫地机陀螺仪和里程计数据,完成定位。在扫地机工作过程中,客户也可以主动通过遥控器主动给扫地机发送更新指令。扫地机通过信号接收器接收到指令信息后,会优先进行陀螺仪数据和里程计数据的更新,实现重新定位。During the cleaning process, the sweeper collects information about the external environment through a monocular camera. The information collection includes taking pictures with rich feature points as key frame pictures and storing them in memory, and then using a three-axis gyroscope to collect the sweeper ’s movement angle and position, Record the odometer information of the odometer sensor to locate the sweeper, so the sweeper can move autonomously in an environment with obstacles. During the cleaning process of the sweeping machine, the calculation module will call the historical frame pictures in the memory and the current frame pictures taken by the monocular camera, and quickly perform special diagnosis matching through the bag of words model. When a loop is detected between the current frame picture and the historical frame picture, the calculation module calculates the pose relationship between the two frames based on the algorithm, that is, the real position relationship of the current frame is calculated, and the sweeper is automatically updated according to the real position relationship. Gyro and odometer data to complete positioning. During the operation of the sweeper, the customer can also actively send an update instruction to the sweeper through the remote control. After the sweeper receives the command information through the signal receiver, it will update the gyroscope data and odometer data first to realize repositioning.
本申请提供了一种基于视觉回环校准陀螺仪的扫地机定位方法及系统,能够基于视觉回环快速计算得到当前帧的真实位置信息,在保证扫地机定位精度的前提下,用更加简单的方式来校正扫地机的陀螺仪,减少计算复杂度,纠正扫地机在运动过程中所产生的误差,实现准确定位。The present application provides a method and system for positioning a sweeper based on a visual loop calibration gyroscope, which can quickly calculate the real position information of the current frame based on the visual loop. Under the premise of ensuring the positioning accuracy of the sweeper, a simpler method is used. Calibrate the gyro of the sweeper, reduce the computational complexity, correct the errors generated by the sweeper during its movement, and achieve accurate positioning.
本申请实施例中还提供一种计算机设备,其内部结构可以如图7所示。该计步设备包括存储器、处理器和至少一个被存储在存储器中并被配置为由所述处理器执行的应用程序,所述应用程序被配置为用于执行上述任一实施例中的扫地机定位方法。A computer device is also provided in the embodiment of the present application, and its internal structure may be as shown in FIG. 7. The step counting device includes a memory, a processor, and at least one application program stored in the memory and configured to be executed by the processor, the application program being configured to execute the sweeper in any one of the above embodiments. Positioning method.
本领域技术人员可以理解,本发明所述的计算机设备和上述所涉及用于执行本申请中所述方法中的一项或多项的设备。这些设备可以为所需的目的而专门设计和制造,或者也可以包括通用计算机中的已知设备。这些设备具有存储在其内的计算机程序或应用程序,这些计算机程序选择性地激活或重构。这样的计算机程序可以被存储在设备(例如,计算机)可读介质中或者存储在适于存储电子指令并分别耦联到总线的任何类型的介质中,所述计算机可读介质包括但不限于任何类型的盘(包括软盘、硬盘、光盘、CD-ROM、和磁光盘)、ROM(Read-Only Memory,只读存储器)、RAM(Random Access Memory,随机存储器)、EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、EEPROM(Electrically Erasable Programmable Read-Only Memory,电可擦可编程只读存储器)、闪存、磁性卡片或光线卡片。也就是,可读介质包括由设备(例如,计算机)以能够读的形式存储或传输信息的任何介质。Those skilled in the art can understand that the computer device according to the present invention and the above-mentioned device for performing one or more of the methods described in the present application. These devices may be specially designed and manufactured for the required purpose, or they may include known devices in general-purpose computers. These devices have computer programs or applications stored therein that are selectively activated or reconstructed. Such a computer program may be stored in a device (eg, a computer) readable medium or in any type of medium suitable for storing electronic instructions and coupled to a bus, respectively, including, but not limited to, any Types of disks (including floppy disks, hard disks, CD-ROMs, CD-ROMs, and magneto-optical disks), ROM (Read-Only Memory), RAM (Random Access Memory (random memory), EPROM (Erasable Programmable Read-Only Memory (EEPROM), EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, magnetic card or optical card. That is, a readable medium includes any medium that stores or transfers information in a readable form by a device (eg, a computer).
尽管已经示出和描述了本申请的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本申请的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由所附权利要求及其等同物限定。Although the embodiments of the present application have been shown and described, it will be understood by those skilled in the art that various changes, modifications, and replacements of these embodiments can be made without departing from the principle and spirit of the present application. And variations, the scope of the application is defined by the appended claims and their equivalents.

Claims (16)

  1. 一种基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,包括:A positioning method of a sweeper based on a visual loop calibration gyroscope, characterized in that it includes:
    采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;Collect a picture of the current environment and choose to save the key frame picture in the picture of the current environment;
    获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息;Acquiring and saving the corresponding gyroscope information and odometer information between two key frame pictures at adjacent times;
    寻找与当前帧图片相似的历史帧图片,以形成视觉回环;Find historical frame pictures similar to the current frame picture to form a visual loop;
    通过所述陀螺仪信息和所述里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息,所述目标历史帧图片为所述历史帧图片中与所述当前帧图片形成视觉回环的图片;Obtain the real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information, and the target historical frame picture is formed from the current frame picture in the historical frame picture Visual loopback pictures;
    根据所述真实位置信息更新所述当前帧图片对应的所述陀螺仪数据和所述里程计数据,完成定位。Update the gyroscope data and the odometer data corresponding to the current frame picture according to the real position information to complete positioning.
  2. 根据权利要求1所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述通过所述陀螺仪信息和所述里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息的步骤,包括:The positioning method of a sweeper based on a visual loop calibration gyroscope according to claim 1, wherein the obtaining between the current frame picture and the target historical frame picture is performed by using the gyroscope information and the odometer information. Steps for real location information, including:
    获取与所述当前帧图片相邻的指定数量的所述历史帧图片之间的图片位置信息和里程计信息;Acquiring picture position information and odometer information between a specified number of the historical frame pictures adjacent to the current frame picture;
    获取所述当前帧图片和所述目标历史帧图片之间的图片位置信息;Acquiring picture position information between the current frame picture and the target historical frame picture;
    通过如下公式计算得到所述当前帧图片和所述目标历史帧图片之间的真实位置信息:The true position information between the current frame picture and the target historical frame picture is calculated by the following formula:
    真实位置关系=所述当前帧图片和所述目标历史帧图片之间的图片位置信息×S;Real position relationship = picture position information between the current frame picture and the target historical frame picture × S;
    其中,S=所述指定数量的所述历史帧图片之间的里程计信息/所述指定数量的所述历史帧图片之间的图片位置信息。Wherein, S = the odometer information between the specified number of the historical frame pictures / picture position information between the specified number of the historical frame pictures.
  3. 根据权利要求1所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述根据所述真实位置信息更新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位的步骤,包括:The positioning method for a sweeper based on a visual loop calibration gyroscope according to claim 1, wherein the updating of the gyroscope data and odometer data corresponding to the current frame picture according to the real position information completes the positioning Steps, including:
    获取所述目标历史帧的陀螺仪信息,以此更新所述当前帧图片的陀螺仪数据;Acquiring gyroscope information of the target historical frame, thereby updating the gyroscope data of the current frame picture;
    将所述当前帧图片对应的里程计数据替换为所述真实位置信息;Replacing the odometer data corresponding to the current frame picture with the real position information;
    综合所述当前帧图片对应的陀螺仪数据和里程计数据,重新完成定位。Integrate gyroscope data and odometer data corresponding to the current frame picture, and complete positioning again.
  4. 根据权利要求1所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片的步骤,包括:The method for positioning a sweeper based on a visual loop calibration gyroscope according to claim 1, wherein the step of collecting a picture of the current environment and selecting a key frame picture in the picture of the current environment comprises:
    判断通过视觉传感器采集的当前环境的图片中的第一图片,是否具有达到预设数量的特征;Judging whether the first picture in the picture of the current environment collected by the visual sensor has a feature that reaches a preset number;
    若具有,则判定所述第一图片为所述关键帧图片;If so, determine that the first picture is the key frame picture;
    保存所述关键帧图片。Save the key frame picture.
  5. 根据权利要求4所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述判断通过视觉传感器采集的当前环境的图片中的第一图片,是否具有达到预设数量的特征的步骤之后,包括:The positioning method of a sweeper based on a visual loop calibration gyroscope according to claim 4, wherein the judgment is performed on whether the first picture among the pictures of the current environment collected by the vision sensor has a preset number of features. After the steps, include:
    若不具有达到预设数量的特征,则判定所述第一图片不是所述关键帧图片,并删除所述第一图片。If there are no features that reach a preset number, it is determined that the first picture is not the key frame picture, and the first picture is deleted.
  6. 根据权利要求1所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述寻找与当前帧图片相似的历史帧图片的步骤,包括:The positioning method of a sweeper based on a visual loop calibration gyroscope according to claim 1, wherein the step of finding a historical frame picture similar to the current frame picture comprises:
    把采集到的所述图片中的各特征一一对应成各单词,将各所述单词汇总成单词树型的视觉字典;Map each feature in the collected picture into words one by one, and summarize each word into a word tree visual dictionary;
    计算所述当前帧图片的特征在所述视觉字典中的DBOW映射;Calculating a DBOW mapping of the features of the current frame picture in the visual dictionary;
    通过比对所述DBOW映射,找到与所述当前帧图片最相似的历史帧图片,以形成视觉回环。By comparing the DBOW mapping, a historical frame picture most similar to the current frame picture is found to form a visual loop.
  7. 根据权利要求6所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述把采集到的所述图片中的各特征一一对应成各单词的步骤包括:The method for positioning a sweeper based on a visual loop calibration gyroscope according to claim 6, wherein the step of one-to-one mapping each feature in the collected picture into each word comprises:
    使用K-means算法将所述图片中的各特征一一对应成各所述单词,将各所述单词汇总成单词树型的视觉字典。A K-means algorithm is used to correspond each feature in the picture to each of the words, and the words are summarized into a word tree-type visual dictionary.
  8. 根据权利要求1所述的基于视觉回环校准陀螺仪的扫地机定位方法,其特征在于,所述采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片的步骤之前,包括:The method for positioning a sweeper based on a visual loop calibration gyroscope according to claim 1, wherein before the step of collecting a picture of the current environment and selecting to save a key frame picture in the picture of the current environment, comprising:
    判断所述扫地机当前是否开始运动;Determine whether the sweeper is currently moving;
    若开始运动,则生成采集当前环境的图片的指令。If motion is started, an instruction to collect a picture of the current environment is generated.
  9. 一种基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,包括:A positioning device for a sweeper based on a visual loop calibration gyroscope, which comprises:
    采集模块,用于通过视觉传感器根据预设频率采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;An acquisition module, configured to acquire a picture of the current environment according to a preset frequency through a visual sensor, and select to save a key frame picture in the picture of the current environment;
    获取模块,用于采集当前环境的图片,并选择保存当前环境的图片中的关键帧图片;An acquisition module for collecting a picture of the current environment and selecting a key frame picture in the picture of the current environment;
    检测模块,用于获取并保存相邻时间的两个所述关键帧图片之间对应的陀螺仪信息和里程计信息;A detection module, configured to acquire and save gyroscope information and odometer information corresponding to two key frame pictures at adjacent times;
    计算模块,用于通过所述陀螺仪信息和所述里程计信息获得所述当前帧图片和目标历史帧图片之间的真实位置信息;A calculation module, configured to obtain real position information between the current frame picture and the target historical frame picture through the gyroscope information and the odometer information;
    更新模块,用于根据所述真实位置信息跟新所述当前帧图片对应的陀螺仪数据和里程计数据,完成定位。An update module is configured to complete positioning according to the gyroscope data and odometer data corresponding to the current frame picture and the real position information.
  10. 根据权利要求9所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述计算模块,包括:The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 9, wherein the calculation module comprises:
    第一获取单元,用于获取与所述当前帧图片相邻的指定数量的所述历史帧图片之间的图片位置信息和里程计信息;A first obtaining unit, configured to obtain picture position information and odometer information between a specified number of the historical frame pictures adjacent to the current frame picture;
    第二获取单元,用于获取所述当前帧图片和所述目标历史帧图片之间的图片位置信息;A second obtaining unit, configured to obtain picture position information between the current frame picture and the target historical frame picture;
    计算单元,用于计算得到所述当前帧图片和所述目标历史帧图片之间的真实位置信息。A calculation unit is configured to calculate and obtain real position information between the current frame picture and the target historical frame picture.
  11. 根据权利要求9所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述更新模块,包括:The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 9, wherein the update module comprises:
    调用单元,用于获取所述目标历史帧的陀螺仪信息,以此更新所述当前帧图片的陀螺仪数据;A calling unit, configured to obtain the gyroscope information of the target historical frame, thereby updating the gyroscope data of the current frame picture;
    替换单元,用于将所述当前帧图片对应的里程计数据替换为所述真实位置信息;A replacement unit, configured to replace the odometer data corresponding to the current frame picture with the real position information;
    定位单元,用于综合所述当前帧图片对应的陀螺仪数据和里程计数据,重新完成定位。A positioning unit is configured to synthesize gyroscope data and odometer data corresponding to the current frame picture, and complete positioning again.
  12. 根据权利要求9所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述采集模块,包括:The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 9, wherein the acquisition module comprises:
    判断单元,用于判断通过视觉传感器采集的当前环境的图片中的第一图片,是否具有达到预设数量的特征;A judging unit, configured to judge whether the first picture among the pictures of the current environment collected by the visual sensor has a feature that reaches a preset number;
    判定单元,用于当前环境的图片中的第一图片具有达到预设数量的特征,判定所述第一图片为所述关键帧图片;A determining unit, configured to determine that the first picture in the current environment has a preset number of features, and determine that the first picture is the key frame picture;
    保存单元,用于保存所述关键帧图片。A saving unit, configured to save the key frame picture.
  13. 根据权利要求12所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述采集模块还包括:The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 12, wherein the acquisition module further comprises:
    删除单元,用于判定所述第一图片不是所述关键帧图片,并删除所述第一图片,以实现减少数据冗余。A deleting unit is configured to determine that the first picture is not the key frame picture and delete the first picture to reduce data redundancy.
  14. 根据权利要求9所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述检测模块,包括:The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 9, wherein the detection module comprises:
    汇总单元,用于把采集到的所述图片中的各特征一一对应成各单词,将各所述单词汇总成单词树型的视觉字典;A summary unit, configured to map each feature in the collected picture into words one by one, and summarize each word into a word tree visual dictionary;
    映射单元,用于计算所述当前帧图片的特征在所述视觉字典中的DBOW映射;A mapping unit, configured to calculate a DBOW mapping of features of the current frame picture in the visual dictionary;
    比对单元,用于通过比对所述DBOW映射,找到与所述当前帧图片最相似的历史帧图片,以形成视觉回环。A comparison unit is configured to find a historical frame picture most similar to the current frame picture by comparing the DBOW mapping to form a visual loop.
  15. 根据权利要求14所述的基于视觉回环校准陀螺仪的扫地机定位装置,其特征在于,所述汇总单元具体用于使用K-means算法将所述图片中的各特征一一对应成各所述单词,将各所述单词汇总成单词树型的视觉字典。The positioning device for a sweeper based on a visual loop calibration gyroscope according to claim 14, wherein the summary unit is specifically configured to use a K-means algorithm to map each feature in the picture to each of the one-to-one The words are summarized into a word tree visual dictionary.
  16. 一种计算机设备,其特征在于,其包括处理器、存储器及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1~8任一项所述的基于视觉回环校准陀螺仪的扫地机定位方法。A computer device, characterized in that it comprises a processor, a memory, and a computer program stored on the memory and executable on the processor, and the processor implements the computer program as claimed in claim 1 when executing the computer program. The positioning method of a sweeper based on a visual loop calibration gyroscope according to any one of -8.
PCT/CN2019/073757 2018-07-10 2019-01-29 Autonomous vacuum cleaner positioning method and device employing gyroscope calibration based on visual loop closure detection WO2020010841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810752620.9A CN109141395B (en) 2018-07-10 2018-07-10 Sweeper positioning method and device based on visual loopback calibration gyroscope
CN201810752620.9 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020010841A1 true WO2020010841A1 (en) 2020-01-16

Family

ID=64800295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073757 WO2020010841A1 (en) 2018-07-10 2019-01-29 Autonomous vacuum cleaner positioning method and device employing gyroscope calibration based on visual loop closure detection

Country Status (2)

Country Link
CN (1) CN109141395B (en)
WO (1) WO2020010841A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141395B (en) * 2018-07-10 2020-06-09 深圳市无限动力发展有限公司 Sweeper positioning method and device based on visual loopback calibration gyroscope
CN110216678A (en) * 2019-06-25 2019-09-10 韦云智 A kind of method of the indoor positioning navigation of robot
CN110443887B (en) * 2019-07-31 2023-06-16 广州市百果园信息技术有限公司 Feature point positioning method, device, reconstruction method, system, equipment and medium
CN110646231B (en) * 2019-09-25 2022-01-11 深圳巴诺机器人有限公司 Floor sweeping robot testing method and device
CN111145634B (en) * 2019-12-31 2022-02-22 深圳市优必选科技股份有限公司 Method and device for correcting map
CN113552864A (en) * 2020-04-15 2021-10-26 深圳市镭神智能系统有限公司 Positioning method and device of self-moving body, self-moving body and storage medium
CN112989999A (en) * 2021-03-11 2021-06-18 深圳市无限动力发展有限公司 Sweeper positioning method, device, equipment and medium based on visual loopback
CN113932808B (en) * 2021-11-02 2024-04-02 湖南格兰博智能科技有限责任公司 Visual and gyroscope fusion correction algorithm applicable to visual navigation floor sweeping robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316380A1 (en) * 2013-07-16 2015-11-05 Honeywell International Inc. Fiber optic gyroscope dead band error suppression
CN105411490A (en) * 2015-10-26 2016-03-23 曾彦平 Real-time positioning method of mobile robot and mobile robot
CN106250504A (en) * 2016-08-03 2016-12-21 苏州美房云客软件科技股份有限公司 The method by gyroscope loadingsequence frame picture based on Android
CN107314773A (en) * 2017-08-18 2017-11-03 广东宝乐机器人股份有限公司 The map creating method of mobile robot and the paths planning method based on the map
CN107742303A (en) * 2017-09-29 2018-02-27 南京阿凡达机器人科技有限公司 A kind of target image display processing method and system based on robot
CN107869989A (en) * 2017-11-06 2018-04-03 东北大学 A kind of localization method and system of the fusion of view-based access control model inertial navigation information
CN109141395A (en) * 2018-07-10 2019-01-04 深圳市沃特沃德股份有限公司 A kind of the sweeper localization method and device of view-based access control model winding calibration gyroscope

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106384383B (en) * 2016-09-08 2019-08-06 哈尔滨工程大学 A kind of RGB-D and SLAM scene reconstruction method based on FAST and FREAK Feature Correspondence Algorithm
CN107300917B (en) * 2017-05-23 2019-07-09 北京理工大学 A kind of rear end vision SLAM optimization method based on layer architecture
CN107160395B (en) * 2017-06-07 2020-10-16 中国人民解放军装甲兵工程学院 Map construction method and robot control system
CN107833236B (en) * 2017-10-31 2020-06-26 中国科学院电子学研究所 Visual positioning system and method combining semantics under dynamic environment
CN107885871A (en) * 2017-11-24 2018-04-06 南京华捷艾米软件科技有限公司 Synchronous superposition method, system, interactive system based on cloud computing
CN108108716A (en) * 2017-12-29 2018-06-01 中国电子科技集团公司信息科学研究院 A kind of winding detection method based on depth belief network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150316380A1 (en) * 2013-07-16 2015-11-05 Honeywell International Inc. Fiber optic gyroscope dead band error suppression
CN105411490A (en) * 2015-10-26 2016-03-23 曾彦平 Real-time positioning method of mobile robot and mobile robot
CN106250504A (en) * 2016-08-03 2016-12-21 苏州美房云客软件科技股份有限公司 The method by gyroscope loadingsequence frame picture based on Android
CN107314773A (en) * 2017-08-18 2017-11-03 广东宝乐机器人股份有限公司 The map creating method of mobile robot and the paths planning method based on the map
CN107742303A (en) * 2017-09-29 2018-02-27 南京阿凡达机器人科技有限公司 A kind of target image display processing method and system based on robot
CN107869989A (en) * 2017-11-06 2018-04-03 东北大学 A kind of localization method and system of the fusion of view-based access control model inertial navigation information
CN109141395A (en) * 2018-07-10 2019-01-04 深圳市沃特沃德股份有限公司 A kind of the sweeper localization method and device of view-based access control model winding calibration gyroscope

Also Published As

Publication number Publication date
CN109141395B (en) 2020-06-09
CN109141395A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020010841A1 (en) Autonomous vacuum cleaner positioning method and device employing gyroscope calibration based on visual loop closure detection
CN114847803B (en) Positioning method and device of robot, electronic equipment and storage medium
CN107179086B (en) Drawing method, device and system based on laser radar
US10939791B2 (en) Mobile robot and mobile robot control method
WO2022262152A1 (en) Map construction method and apparatus, electronic device, storage medium and computer program product
WO2020107772A1 (en) Map building method and localization method for robot
Grisetti et al. Improved techniques for grid mapping with rao-blackwellized particle filters
CN109974722B (en) Map updating control method and map updating control system of visual robot
KR20210116576A (en) How to use a visual robot-based map of the past
CN113674416B (en) Three-dimensional map construction method and device, electronic equipment and storage medium
WO2020125499A9 (en) Operation prompting method and glasses
WO2020248458A1 (en) Information processing method and apparatus, and storage medium
CN111328017B (en) Map transmission method and device
JP2020021257A (en) Autonomous mobile device, autonomous mobile method, and program
WO2020019115A1 (en) Fusion mapping method, related device and computer readable storage medium
CN113916243A (en) Vehicle positioning method, device, equipment and storage medium for target scene area
CN111161412A (en) Three-dimensional laser mapping method and system
WO2019136613A1 (en) Indoor locating method and device for robot
US20240028044A1 (en) Ranging method and apparatus, robot, and storage medium
KR20190075622A (en) A moving-robot and a controlling method for the same
US20220175208A1 (en) Robot cleaner using artificial intelligence and control method thereof
Sim et al. Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters
WO2022222345A1 (en) Positioning correction method and apparatus for mobile robot, storage medium, and electronic apparatus
KR20200052388A (en) Controlling method for Artificial intelligence Moving robot
WO2024007807A1 (en) Error correction method and apparatus, and mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834743

Country of ref document: EP

Kind code of ref document: A1