WO2020009387A1 - 순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 - Google Patents
순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 Download PDFInfo
- Publication number
- WO2020009387A1 WO2020009387A1 PCT/KR2019/007945 KR2019007945W WO2020009387A1 WO 2020009387 A1 WO2020009387 A1 WO 2020009387A1 KR 2019007945 W KR2019007945 W KR 2019007945W WO 2020009387 A1 WO2020009387 A1 WO 2020009387A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood pressure
- neural network
- biosignal
- feature information
- estimating
- Prior art date
Links
- 230000036772 blood pressure Effects 0.000 title claims abstract description 293
- 238000000034 method Methods 0.000 title claims abstract description 127
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 35
- 230000000306 recurrent effect Effects 0.000 title claims abstract description 9
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000000605 extraction Methods 0.000 claims abstract description 9
- 238000012360 testing method Methods 0.000 claims description 33
- 230000000747 cardiac effect Effects 0.000 claims description 25
- 230000003287 optical effect Effects 0.000 claims description 12
- 238000012706 support-vector machine Methods 0.000 claims description 9
- 238000002604 ultrasonography Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 230000010349 pulsation Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 25
- 230000008569 process Effects 0.000 description 25
- 230000006870 function Effects 0.000 description 15
- 230000002123 temporal effect Effects 0.000 description 7
- 206010020772 Hypertension Diseases 0.000 description 5
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000010801 machine learning Methods 0.000 description 4
- 230000004872 arterial blood pressure Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 238000010606 normalization Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000035485 pulse pressure Effects 0.000 description 3
- 230000035488 systolic blood pressure Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000003205 diastolic effect Effects 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 1
- 208000005434 White Coat Hypertension Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/021—Measuring pressure in heart or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1102—Ballistocardiography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
Definitions
- the present invention relates to a method and apparatus for estimating segmental blood pressure using a circulatory neural network, and more particularly, in estimating segmental blood pressure using a circulatory neural network.
- the present invention relates to a method and apparatus for accurately estimating a persistent blood pressure at a future point of time based on a biosignal measured in the present invention.
- cardiovascular disease affects 37% of the total population and is the leading cause of death.
- cardiovascular diseases especially high blood pressure, early diagnosis and prevention are important. Therefore, in order to diagnose and treat various cardiovascular diseases including hypertension early, it is necessary for patients or potential patients to continuously monitor their blood pressure and changes in cardiovascular diseases.
- the conventional blood pressure estimation method estimates blood pressure without considering any biosignal for estimating blood pressure, changes over time of parameters, and personal characteristics of a blood pressure measurement object. Since the deviation of the parameter for blood pressure estimation varies widely from person to person, and the baseline value representing the normal range of blood pressure varies greatly from person to person, the future blood pressure is estimated using only the current value as in the known method. There is a limit to expecting low accuracy.
- Recurrent Neural Network is known as a core tool among deep learning techniques, so it is introduced as an artificial Neural Network (ANN).
- ANN Artificial Neural Network
- the conventional ANN receives a parameter of a predetermined time point as an input and estimates an output value corresponding to the time.
- the RNN receives a time series parameter as input data and outputs time series data. Structurally, it is a technique devised in consideration of the fact that the input of an hour affects not only the time but also several points in the future.
- 1 is a view for explaining an example of the operation of the circulatory neural network.
- the circulatory neural network includes an embedding layer 110, a hidden layer 130, and an output layer 150. More specifically, FIG. 1 illustrates that when a user completes a sentence up to 'you will never believe' in the process of typing through a keyboard, the RNN is driven to estimate what word is to be typed next. A diagram schematically showing the operation.
- the circulatory neural network used in FIG. 1 is a bi-directional RNN.
- the embedding layer 110 is a layer for receiving time series input data, and in FIG. 1, the embedding layer 110 shows that you, will, never, believe, or more than four words are accepted as time series input data. have.
- the time series data input from the embedding layer 110 is labeled and transferred to the hidden layer 130.
- the hidden layer 130 is a layer that receives time series input data and analyzes it according to viewpoints and learns about adjacent viewpoints. The input of the highest priority at t-4 will be input at the next time t-3. It is learned to affect the never entered at time t-2.
- the hidden layer 130 is composed of a forward layer and a backward layer, and is designed to learn time series data, and is repeatedly learned to minimize the value of a cost function set internally. trained and tested.
- the output layer 150 is a layer that outputs the final output value through the optimized result value in the hidden layer 130.
- the output layer 150 may output words such as what, how, and where in response to the time series parameter input to the embedding layer 110.
- the low compliance of the user means that the frequency of measuring the blood pressure of the general user is not very high, and even if the user measures blood pressure, the blood pressure can be accurately measured by white coat hypertension.
- the user's blood pressure varies over a day, and thus, blood pressure measurement and estimation techniques are required that consider personal characteristics and temporal changes more than conventionally known techniques.
- the technical problem to be solved by the present invention is to accurately estimate the change in blood pressure continuously in the future in consideration of both the temporal change of the parameter used to estimate the blood pressure and the unique characteristics of the object for measuring the blood pressure.
- the present invention provides a method and an apparatus.
- the method for solving the technical problem, receives a user's bio-signals measured in at least one method in the past period, and analyzes the received bio-signals to measure the bio-signals Feature information extraction step of extracting feature information for each time point; A parameter calculating step of calculating a blood pressure related parameter for the past period based on the extracted feature information; And a blood pressure estimation control step of controlling the output of the estimated blood pressure of the user in a future period including a current time point by inputting the calculated blood pressure related parameter in a recurrent neural network (RNN).
- RNN recurrent neural network
- a device for receiving a biosignal of a user measured in at least one or more methods in a past period is analyzed, and the biosignal is analyzed by analyzing the received biosignal.
- a feature information extraction unit for extracting feature information for each measured time point;
- a parameter calculation unit calculating a blood pressure related parameter for the past period based on the extracted feature information;
- a blood pressure estimation control unit for inputting the calculated blood pressure related parameter to a recurrent neural network (RNN) in time series so as to output the estimated blood pressure of the user in a future period including a current time point.
- RNN recurrent neural network
- An embodiment of the present invention provides a computer-readable recording medium storing a program for implementing a method for estimating section blood pressure using a circulatory neural network.
- the blood pressure can be accurately estimated through the bio signals collected through the non-invasive method.
- 1 is a view for explaining an example of the operation of the circulatory neural network.
- FIG. 2 is a diagram schematically showing an example of a process of estimating segmental blood pressure through the RNN according to the present invention.
- FIG. 3 is a diagram schematically illustrating a method for estimating interval blood pressure according to the present invention.
- FIG. 4 is a block diagram of an example of an apparatus for estimating interval blood pressure according to the present invention.
- FIG. 5 is a view for explaining a process of normalizing the blood pressure-related parameters.
- FIG. 6 is a diagram schematically illustrating a process of applying a blood pressure related parameter calculated from a biosignal of a 90 cardiac cardiac cycle to an RNN.
- FIG. 7 is a diagram for explaining blood pressure related parameters calculated from bio signals through ECG and PPG.
- FIG. 8 is a diagram for describing a function performed by a classifier.
- FIG. 9 is a diagram further illustrating a waveform of blood pressure estimated by the classifying method in FIG. 8.
- 10A is an example of a diagram schematically showing the accuracy of the estimation method according to the present invention.
- 10B and 10C are diagrams showing diagrams corresponding to systolic and diastolic, as a result of applying the present invention.
- FIG. 11 is another example of the diagram schematically illustrating the accuracy of the estimation method according to the present invention.
- FIG. 13 is a flowchart illustrating an example of a method for estimating interval blood pressure according to the present invention.
- the method for solving the technical problem, receives a user's bio-signals measured in at least one method in the past period, and analyzes the received bio-signals to measure the bio-signals Feature information extraction step of extracting feature information for each time point; A parameter calculating step of calculating a blood pressure related parameter for the past period based on the extracted feature information; And a blood pressure estimation control step of controlling the output of the estimated blood pressure of the user in a future period including a current time point by inputting the calculated blood pressure related parameter in a recurrent neural network (RNN).
- RNN recurrent neural network
- the extracting of the feature information may include extracting the feature information by applying an ensemble average to the biosignal.
- the extracting of the feature information may include removing noise from the extracted feature information through a support vector machine (SVM) or detecting a section in which the noise is greater than or equal to a preset value. Can be.
- SVM support vector machine
- the bio-signal is at least one of electrocardiogram (ECG), seismic rhythm curve test, impedance test, optical volume pulse wave test (PPG), cardioballistic test (BCG), fingerprint volumetric wave test, ultrasound test It may be characterized in that the biological signal measured by the above method.
- ECG electrocardiogram
- PPG optical volume pulse wave test
- BCG cardioballistic test
- fingerprint volumetric wave test ultrasound test It may be characterized in that the biological signal measured by the above method.
- the bio-signal is a user's bio-signal measured by ECG and optical volume pulse wave (PPG), and the parameter calculation step, characterized in that the characteristic information of the bio-signal according to the ECG
- PPG optical volume pulse wave
- the difference between the characteristic information of the biological signal according to the optical volume pulse wave test may be calculated as the blood pressure related parameter.
- the bio-signal is a user's bio-signal measured by ECG and optical volume pulse wave test (PPG), and the parameter calculation step, from the characteristic information of the bio-signal according to the ECG test
- PPG optical volume pulse wave test
- the time difference of the pulse wave transmission time calculated from the calculated pulse transit time (PTT) and the characteristic information of the biosignal according to the optical volume pulse wave test may be calculated as the blood pressure related parameter.
- the biosignal includes a biosignal of a user measured through a PPV
- the parameter calculating step includes eight kinds of characteristic information of the biosignal according to the OPB.
- the blood pressure related parameter can be calculated from the above.
- the method may include: normalizing blood pressure at each time point in the past period to calculate a normalized blood pressure, and classifying the normalized blood pressure into at least two classes according to the value of the normalized blood pressure.
- the blood pressure estimation control step may further include repeating until the cross entropy calculated based on the softmax of the class reaches a minimum value, and outputs the estimated blood pressure of the user. It can be characterized by.
- the bio-signal may be a bio-signal for 90 cardiac cycles.
- the biosignal may be a biosignal for a cardiac cycle of 60 or more and 90 or less.
- the bio-signal may be a bio-signal for 150 cardiac cycles.
- the bio-signal may be a bio-signal measured for a time of 45 seconds or more and 90 seconds or less.
- An apparatus for solving the technical problem, receives a user's bio-signals measured in at least one method in the past period, and analyzes the received bio-signals to measure the bio-signals
- a feature information extraction unit for extracting feature information for each time point
- a parameter calculation unit calculating a blood pressure related parameter for the past period based on the extracted feature information
- a blood pressure estimation control unit for inputting the calculated blood pressure related parameter to a recurrent neural network (RNN) in time series so as to output the estimated blood pressure of the user in a future period including a current time point.
- RNN recurrent neural network
- the apparatus classifies the normalized blood pressures at each time point in the past period to calculate a normalized blood pressure, and classifies the normalized blood pressures into at least two classes according to the value of the normalized blood pressure.
- the blood pressure estimation control unit may further include repeating until the cross entropy calculated based on the softmax of the class reaches a minimum value, thereby controlling the estimated blood pressure of the user to be output. It can be characterized.
- the bio-signal may be a bio-signal for 90 cardiac cycles.
- An embodiment of the present invention provides a computer-readable recording medium storing a program for implementing a method for estimating section blood pressure using a circulatory neural network.
- a specific process order may be performed differently from the described order.
- two processes described in succession may be performed substantially simultaneously or in the reverse order of the described order.
- FIG. 2 is a diagram schematically showing an example of a process of estimating segmental blood pressure through the RNN according to the present invention.
- the heart rate (HR) of the user from t-4 to t-1 is input to the embedding layer as time series data.
- the time t is considered as the current time
- the time t-4 to t-1 are regarded as the past time. Since the RNN receives the time series data and outputs the time series data, if the input time series data is the data for the heart rate of t-4 to t-1, the data for the heart rate after t and t should be output.
- Preprocessing is required to be able to print.
- section blood pressure is referred to collectively as a series of blood pressure values for a certain time period rather than a specific fixed time point.
- Table 1 shows an example of the blood pressure function at time t, which is the current time of user A and user B.
- the blood pressure at time t which is the current time
- the slope may be multiplied and defined in such a manner as to add an offset.
- the parameters constituting the blood pressure function at time t have a positive slope and an offset, but their magnitudes have different characteristics.
- the current blood pressure has a characteristic that is finally determined by being affected by the blood pressure of several past time before the current time.
- the blood pressure function at time t may be configured as a function according to other biosignals in addition to the blood pressure function before time t.
- FIG. 3 is a diagram schematically illustrating a method for estimating interval blood pressure according to the present invention.
- the method for estimating interval blood pressure aims at accurately estimating the interval blood pressure of a user after the current time point from non-invasive and continuous biosignals.
- the primary information 310 includes non-invasive and continuous raw biosignals.
- a biosignal that may be included in the primary information 310 an electrocardiogram (ECG), an electrocardiogram, a seismocardiogram, an impedance cardiogram, a photoplethysmogram (PPG), and a ballistic test (PPG) BCG:
- ECG electrocardiogram
- PPG photoplethysmogram
- PPG ballistic test
- the present invention without any limitation as long as it can provide meaningful information to measure and estimate the blood pressure of the user to be measured. It is obvious that it can be applied.
- the secondary information 330 refers to information that can be derived by processing the primary information 310. Since the primary information 310 is information about the waveform of the biosignal itself, the amount of information is excessive and the noise is also mixed in estimating blood pressure, so the secondary information 330 accurately estimates the blood pressure. In order to minimize the amount of computation through the computer can be calculated by extracting only the information that can be seen as a feature from the raw data (raw data).
- the information included in the secondary information 330 may include a pulse transit time (PTT), a pulse arrival time (PAT), a large artery stiffness index (LASI), and the like.
- the RNN When the secondary information 330 is obtained from the primary information 310, the RNN receives the secondary information 330 as input data and finally outputs blood pressure.
- the blood pressure output as the output value of the RNN is the blood pressure of the future time point including the current time point, and becomes the interval blood pressure due to the characteristics of the RNN in which the input data and the output data are represented as time series data.
- FIG. 4 is a block diagram of an example of an apparatus for estimating interval blood pressure according to the present invention.
- the interval blood pressure estimating apparatus 400 includes a feature information extractor 410, a parameter calculator 430, a classifier 450, and a blood pressure estimation controller 470. Able to know. Hereinafter, for convenience of description, it will be described with reference to FIGS. 2 and 3.
- the feature information extractor 410 receives a user's biosignal measured in at least one method in the past period, and analyzes the received biosignal to extract feature information for each time point at which the biosignal is measured.
- the one or more methods means an electrocardiogram test (ECG), a light volume pulse wave test (PPG), or the like described in the primary information 310 of FIG. 3.
- the feature information is information obtained from a biosignal, and means information necessary for estimating a blood pressure of the user, and the secondary information 330 of FIG. 3 may be feature information.
- the past period means a period in the past based on the present time t, as in the time points t-4 to t-1 described with reference to FIG. 2.
- the interval between t-2 and t-1 time points may be one cardiac cycle. For example, if the user's heart goes through four contractions at time t-4, that time is considered t. According to an embodiment, unlike the above, the time interval may be simply 1 second or 5 seconds.
- the feature information extractor 410 may extract feature information by applying an ensemble average method to a waveform of a biosignal. Since the user's biosignals include various slopes, as the gender and age of the population (to which a plurality of users belong) vary, the characteristic information does not tend to be properly extracted from the biosignals. The blood pressure characteristic of the user included in the biosignal is extracted through the method. Through the ensemble averaging method, information that meaningfully reflects the magnitude of the waveform and the deformation characteristic of the waveform may be extracted.
- the feature information extractor 410 may apply a support vector machine (SVM) to the feature information extracted by the above process to remove the noise or detect a section in which the noise exists above a preset value.
- SVM support vector machine
- the preset value may be changed to increase the accuracy of blood pressure estimation with a predefined value of the support vector machine.
- the ensemble average and support vector machine methods are well known techniques, and the specific application methods of the techniques are not further described in this specification, and noise, such as a denoising auto-encoder, It will be apparent to those skilled in the art that the above-described process of the present invention can be implemented by other programs or algorithms other than the ensemble averaging method and the support vector machine, if the method can extract features from many bio signals. Do.
- the parameter calculator 430 calculates a blood pressure related parameter for each time point in the past period based on the feature information extracted by the feature information extractor 410.
- the parameter calculation unit 430 stores parameter calculation criteria for calculating blood pressure related parameters in advance.
- the parameter calculating unit 430 defines and calculates a difference between the characteristic information of the biosignals measured by ECG and PPG as the blood pressure related parameter. can do.
- the parameter calculating unit 430 may define and calculate a gap of the pulse wave propagation time (PTT) calculated from the characteristic information of the bio signals measured by the ECG and the PPG as a blood pressure related parameter.
- PTT pulse wave propagation time
- the parameter calculator 430 may define and calculate a blood pressure related parameter by multiplying a difference of pulse wave propagation time calculated from ECG and PPG characteristic information by a certain integer.
- any integer may be four.
- the parameter calculator 430 may calculate blood pressure related parameters from eight pieces of characteristic information of the biosignal measured by PPG. Since PPG is the result of the waveform of arterial blood pressure (ABP), the eight characteristic information of PPG is very similar to the characteristic information of ABP waveform.
- blood pressure related parameters include a heart rate (HR), LASI, AI, a1, a2, PPGarea, t1, t2.
- the large artery stiffness index (LASI) is a parameter that indicates vascular elasticity, such as PAT, and refers to a temporal difference between a forward wave and a backward wave reflected from the end of a vessel. do. The LASI will be described later with reference to FIG.
- HR and LASI can be used as a characteristic information and at the same time as a blood pressure related parameter, when used as a blood pressure related parameter, labeling or numbering to distinguish it from other blood pressure related parameters can be applied. have.
- Blood pressure related parameters calculated through the above-described method may be processed through a normalization process.
- FIG. 5 is a view for explaining a process of normalizing the blood pressure-related parameters.
- blood pressure-related parameters for various time points in the past period may be projected onto a normalized distribution curve through a normalization process, and the normalized parameter may be more efficient in estimating normalized segmental blood pressure. More specifically, through normalization, the user-dependent slope / offset effect, as described in Table 1, no longer adversely affects the user's blood pressure estimation. .
- the temporal length of the biosignal for calculating the blood pressure related parameter may be a fixed value related to the heart rate of the user.
- the parameter calculator 430 may calculate the blood pressure related parameter based on the characteristic information of the biosignal for the 90 cardiac cycle.
- An appropriate time length biosignal allows the RNN to accurately estimate blood pressure and can significantly reduce the time it takes for the computational unit to process the computation.
- the section blood pressure output by insufficient information is very inaccurate.
- information that is not necessary for estimating blood pressure is cumulatively applied to not only inaccurate interval blood pressure is estimated but also the amount of computation that the computing device must process is exponential. There is a drawback to the time-consuming increase.
- the temporal length of the biosignal required to calculate the blood pressure related parameter can be defined as 90 cardiac cycles, so that both fast operation speed and accuracy of estimation of section blood pressure can be expected.
- the cardiac cycle which is added each time the heart beats, is a value associated with the user's heart rate and can be measured in advance with a time length unique to each user.
- the temporal length of the biosignal for calculating blood pressure related parameters may be 60 cardiac cycles, 60 to 90 cardiac cycles, or 150 cardiac cycles. Increasing the cardiac cycle makes it possible to estimate the blood pressure without losing the accuracy even if the number of types of feature information is reduced more than the case of shortening the cardiac cycle.
- the length of the cardiac cycle may be changed within a reasonable range to accurately estimate the blood pressure of the user.
- FIG. 6 is a diagram schematically illustrating a process of applying a blood pressure related parameter calculated from a biosignal of a 90 cardiac cardiac cycle to an RNN.
- the current time is considered to be time t
- the estimated blood pressure 610 at time t may be output as the final result of the RNN.
- the blood pressure related parameter for each time point from t-90 to t-1 is input to the RNN as the 90 cardiac cycle is limited to the temporal length of the biosignal.
- the blood pressure at the time t can be estimated by repeating the learning and the test in consideration of the influence of the data at each time point on each other.
- FIG. 7 is a diagram for explaining blood pressure related parameters calculated from bio signals through ECG and PPG.
- the parameter calculator 430 defines a PTT or LASI in the feature information based on a pre-stored parameter calculation criterion. And calculate.
- the length of the PTT and the length of the LASI may vary according to the detailed criteria stored in the parameter calculator 430.
- an exemplary embodiment of the parameter calculator 430 of FIG. 4 will be described with reference to FIG. 7 to describe what a1, a2, a3, AI, PPGarea, t1 and t2 mean. .
- t1 and t2 are parameters for determining how fast a pulse wave of blood pressure rises, and according to experimental results, it is determined that the parameter is related to blood pressure and is a blood pressure related parameter adopted in the present invention.
- t1 is the time taken to reach a position corresponding to 40% of the highest point at the lowest point of the pulse waves of the same period
- t2 is the maximum point reached at the lowest point of the pulse waves of the same period. It can be seen that the time taken to subtract t1.
- a1 and a2 are factors related to pulse pressure, which is an element of blood pressure. As experimentally found, the values of a1 and a2 tend to have a high correlation with the magnitude of the pulse pressure. Referring to FIG. 7, a1 may be defined as the gap between the lowest point of the pulse wave and the pulse wave when time passes by t1, and a2 may be defined as the gap between the highest point and the lowest point of the pulse wave.
- a3 is a blood pressure related parameter that can be additionally calculated by a1 and a2, and is not a blood pressure related parameter that the parameter calculating unit 430 processes and calculates as an input value of the RNN, but calculates a blood pressure related parameter called AI. It is necessary auxiliary parameter. Referring to FIG. 7, it can be seen that a3 means a pulse wave value when a time elapsed by LASI at t2.
- AI is a blood pressure related parameter directly related to LASI, which means the ratio of the magnitude of the forward wave and the reflex wave. More specifically, since AI reflects the magnitude of the pulse wave reflected by the elasticity of blood vessels, AI can be regarded as a parameter related to vascular elasticity. A3 divided by a2.
- PPGarea photoplethysmogram area
- PPGarea means the integral (width) of the graph of the pulse wave integrated for one period when the pulse wave reaches the highest point from the lowest point and then returns to the lowest point.
- the parameter may be calculated by the parameter calculation unit 430 of the present invention as a parameter related to the pulse pressure.
- PTT1, PTT2, and PTT3 used to calculate t1 and t2 are defined as various pulse wave propagation times, and may be replaced with pulse arrival times (Pulse Arrival Time) instead of pulse wave propagation times. It may be.
- PTT pulse wave delivery time
- PAT pulse wave arrival time
- PTT pulse wave delivery time
- PTT3 pulse wave arrival time
- It is defined as the sum of pre-ejection time, and since it is a parameter that is not related to vascular elasticity, it is assumed that pulse wave delivery time and pulse wave arrival time are related to blood pressure and have the same tendency to be related to blood pressure. Because it is self-explanatory.
- FIG. 4 will be described again.
- the classifier 450 calculates normalized blood pressure by normalizing blood pressures at each time point in the past period, and at least two or more normalized blood pressures according to a normalized blood pressure value. Classify as a class.
- the classifier 450 classifies the normalized blood pressures of the past time into at least two classes, so that the correlation between the segmental blood pressure estimated according to the present invention and the actual blood pressure is clearly revealed. Therefore, the difference between the estimated interval blood pressure and future blood pressure can be minimized.
- the class classifier 450 may be omitted according to an exemplary embodiment.
- the description of the class classified by the class classifier 450 may include the blood pressure estimating controller 470. ) Will be described further.
- the blood pressure estimation controller 470 inputs the blood pressure related parameters of the past period calculated by the parameter calculator 430 into the RNN in a time series so that the estimated blood pressure of the user in the future period including the current time point is output. To control. More specifically, the blood pressure estimation controller 470 collectively controls the machine learning process of repeating the training and the test so that an appropriate section blood pressure can be estimated using the blood pressure related parameter as an input value.
- FIG. 8 is a diagram for describing a function performed by a classifier.
- the user's actual blood pressure changes dynamically over time.
- the blood pressure 830 estimated by the regression method has a constant constant value regardless of the passage of time.
- blood pressure maintains a large average value and changes around the mean, and this is a result of neural network thinking that the cost function is optimized when the neural network estimates the average.
- the blood pressure estimation controller 470 After inputting the data of the past period into the RNN, the blood pressure estimation controller 470 and the estimated value in order to end the process of learning and testing the input data. Repeat until the MSE (Mean Square Error) with the actual value is minimized. Unless regression is used in conventional blood pressure estimation techniques, it will be apparent to those skilled in the art that various cost functions may be used in addition to the MSE described above.
- MSE Mel Square Error
- Equation 1 represents an equation of MSE used in a conventional machine learning process.
- Equation 1 y means the actual blood pressure value, y ⁇ means the estimated blood pressure value.
- the blood pressure estimation controller 470 estimates the interval blood pressure by repeating the process of minimizing the MSE, the estimated blood pressure is generally expressed as a constant value regardless of the passage of time. In other words, since the actual blood pressure is a time-varying function, but the estimated blood pressure is expressed as a time-invariant function, there is a limit that the correlation between the estimated blood pressure and the actual blood pressure cannot be revealed at all at each time point.
- FIG. 9 is a diagram further illustrating a waveform of blood pressure estimated by the classifying method in FIG. 8.
- the blood pressure estimation controller 470 estimates the interval blood pressure using the class classification method as follows.
- the classifier 450 calculates normalized blood pressure by normalizing blood pressure values for each time point in the past period, and at least the normalized blood pressures according to the normalized blood pressure value. Classify into two or more classes.
- the classifier 450 normalizes and projects blood pressure values of each time point in the past period on the normal distribution curve as shown in FIG. 5, and then classifies blood pressure values of different sections in class 1, class 2, and class 3, respectively. Can be categorized to belong.
- the number of classes is at least two.
- Table 2 shows an example in which classes are classified.
- the number of classes is limited to three. However, when the present invention is actually implemented, the number of classes may be greater than three.
- the blood pressure estimation controller 470 repeats until the cross entropy calculated based on the softmax of the class becomes a minimum value, and controls to output the blood pressure at the time when the minimum value is the estimated blood pressure of the user. .
- Equation 2 is an equation representing the softmax.
- x is a feature of the target value for obtaining a softmax value
- i is an order of features (i-th)
- j is the total number of features.
- the blood pressure estimation controller 470 In order for the blood pressure estimation controller 470 to repeat the learning and stop the output, and output the result value, it is necessary to know how accurate the estimated value is. In addition, even if the value estimated by the blood pressure estimation controller 470 is accurate due to the characteristics of the machine learning, an estimated value of whether the estimated value is 50% or 70% is finally required. 470 is an expected value to output a specific value through Equation 2 according to the definition of softmax, and controls to output a value between 0 and 1.
- Equation 3 is an equation representing cross entropy.
- H denotes cross entropy
- L denotes a real classification value
- S denotes a result of SoftMax
- i denotes a class number.
- the blood pressure estimation controller 470 sets the cross-entropy as a classification loss function and repeats the process of minimizing it, thereby controlling the output of the estimated section blood pressure similar to the actual blood pressure.
- the present invention by repeating the process of learning and testing the RNN in the form of dividing the blood pressure by step level, estimating the interval blood pressure that changes over time unlike the results of the conventional regression estimation
- the estimated interval blood pressure is very similar to the actual blood pressure.
- the estimated segmental blood pressure is changed over time, and is distinguished from the prior art in that the correlation between the estimated segmental blood pressure and the actual blood pressure can be numerically confirmed.
- 10A is an example of a diagram schematically showing the accuracy of the estimation method according to the present invention.
- FIG. 10A is a diagram illustrating a result of estimating blood pressure using biosignals (ECG, optical volume pulse wave) of critical patients in a MIMIC of a physionet, which is one of a biosignal database. More specifically, FIG. 10A shows the results of estimating systolic blood pressure, and the Association for The Advancement of Medical Instrumentation (AAMI) standard and BHS, which are widely known differences between the estimated systolic blood pressure and actual blood pressure. (British Hypertension Society) standards are satisfied.
- ECG optical volume pulse wave
- FIG. 10A illustrates a class and estimation of a true blood pressure (True BP) when calculating normalized blood pressure according to the present invention and classifying the calculated normalized blood pressures into at least two classes according to values of the normalized blood pressure. Predicted BP is shown simultaneously. In FIG. 10A, each of the numbers divided into a total of 100 boxes represents a ratio of the estimated class.
- True BP true blood pressure
- the box corresponding to the actual blood pressure 1 and the estimated blood pressure 1 of FIG. 10A includes 0.49, where the numerical value 0.49 is applied to the present invention when there are 100 samples having the actual blood pressure of Class 1. This means that we estimated 49 as Class 1. Therefore, the sum of all the horizontal ratios can always yield 1.
- the box value of actual blood pressure 0 and estimated blood pressure 9 in FIG. 10A is 0.021. If there are 1000 actual blood pressure samples classified as class 0, 21 of them are estimated as class 9 when applied to the present invention. I mean. According to the above-described features of the present invention, when the number of specimens is adjusted to an appropriate number and the blood pressure related biosignal collected during the appropriate time becomes the first input data, a MIMIC diagram having a higher degree of estimation than that of FIG. 10A can be calculated. have.
- 10B and 10C are diagrams illustrating MIMIC diagrams corresponding to systolic and diastolic phases as a result of applying the present invention.
- FIG. 10B is an example of a result of estimating diastolic blood pressure
- FIG. 10C is an example of a result of estimating systolic blood pressure as shown in FIG. 10A. See FIGS. 10B and 10C.
- a high estimator for class 0 and 9 is shown, and that the sum of values of adjacent classes in the other classes also shows a high estimator according to class 0 and class 9.
- the similar estimates for each class can be interpreted to mean that the actual blood pressure values are well estimated within the allowable error range, and accordingly, according to FIGS. 10A to 10C,
- the blood pressure of the user can be accurately estimated with a high probability without being limited to a specific class.
- FIG. 11 is another example of the diagram schematically illustrating the accuracy of the estimation method according to the present invention.
- FIG. 11 schematically shows that there is little difference between the actual blood pressure and the estimated interval blood pressure indicating a large variance due to a large variation in blood pressure over time.
- the horizontal axis (x axis) indicates a cardiac cycle
- the vertical axis (y axis) indicates a blood pressure value.
- FIG. 12 schematically shows that there is almost no difference between the actual blood pressure which is severely fluctuated over time and the estimated interval blood pressure as in FIG. 11.
- interval blood pressure estimation method according to the present invention is well applied regardless of the width or rate of change of the actual blood pressure.
- FIG. 13 is a flowchart illustrating an example of a method for estimating interval blood pressure according to the present invention.
- FIG. 13 may be implemented by the interval blood pressure estimating apparatus 400 according to FIG. 4, which will be described with reference to FIG. 4. In the following, a description duplicated with that described with reference to FIG. 4 will be omitted.
- the feature information extractor 410 receives a user's biosignal measured in at least one method in the past period, and analyzes the received biosignal to extract feature information for each time point at which the biosignal is measured (S1310).
- the parameter calculator 430 calculates a blood pressure related parameter for a past period based on the feature information extracted in step S1310 (S1330).
- the classifier 450 calculates normalized blood pressure by normalizing blood pressures at each time point in the past period, and at least two or more normalized blood pressures according to a normalized blood pressure value. Classified as a class (S1350).
- the blood pressure estimation controller 470 inputs the blood pressure related parameters of the past period calculated by the parameter calculator 430 into the RNN in a time series so that the estimated blood pressure of the user in the future period including the current time point is output. To control. More specifically, the blood pressure estimation controller 470 collectively controls the machine learning process of repeating the training and the test so that the appropriate section blood pressure can be estimated using the blood pressure related parameter as an input value (S1370). ).
- the present invention it is possible to accurately estimate blood pressure at a future time from various bio signals of a user by preprocessing data input to the RNN through a series of processes in order to estimate the blood pressure. It is possible. More specifically, the present invention normalizes the feature information extracted from the biosignal, calculates blood pressure related parameters from the normalized feature information according to a predetermined criterion, and uses a classification process based on a class rather than a regression. By repeatedly performing the learning of the RNN, blood pressure can be estimated more accurately than any conventional biosignal-based blood pressure estimation technique known in the art.
- Embodiments according to the present invention described above may be implemented in the form of a computer program that can be executed through various components on a computer, such a computer program may be recorded in a computer-readable medium.
- the media may be magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs and DVDs, magneto-optical media such as floptical disks, and ROMs.
- the computer program may be specially designed and configured for the present invention, or may be known and available to those skilled in the computer software field.
- Examples of computer programs may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter or the like.
- connection or connection members of the lines between the components shown in the drawings are illustrative of the functional connection and / or physical or circuit connections as an example, in the actual device replaceable or additional various functional connections, physical It may be represented as a connection, or circuit connections.
- such as "essential”, “important” may not be a necessary component for the application of the present invention.
- the present invention can be applied to the production of various medical devices for accurately estimating blood pressure through biometric signals collected through a non-invasive manner.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Artificial Intelligence (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Vascular Medicine (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
본 발명의 일 실시 예는, 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단계; 상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출단계; 및 상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어단계를 포함하는 순환신경망을 이용한 구간혈압 추정 방법을 제공한다.
Description
본 발명은 순환신경망을 이용한 구간혈압 추정 방법 및 그 장치에 관한 것으로서, 보다 구체적으로는, 순환신경망을 이용하여 구간혈압을 추정하는 데에 있어서, 순환신경망의 입력데이터를 정제 및 전처리함으로써, 과거시점에 측정된 생체신호를 기반으로 하여 미래시점의 지속적 혈압을 정확하게 추정하는 방법 및 그 장치에 관한 것이다.
최근 고혈압 및 저혈압 환자가 증가하고 있으며, 혈압과 관련된 질환을 앓고 있는 환자가 아니라고 해도 갑작스러운 혈압의 증가 또는 감소로 인한 후유장애는 영구적인 특성을 가지므로, 혈압의 변화를 파악하고 미래시점의 혈압을 추정하는 방식에 대한 많은 연구가 진행되어 왔다.
통계에 따르면, 심혈관계질환(Cardiovascular disease)은 전체인구의 37%에 영향을 미치며, 가장 주요한 사망요인이다. 심혈관계질환 중에서도 특히 고혈압 같은 경우는 조기진단과 예방이 중요시된다. 따라서 고혈압을 비롯한 각종심혈관계 질병을 조기에 진단하고 치료하기 위해서는, 환자 또는 잠정적 환자들이 자신의 혈압 및 심혈관계 질환의 변화를 지속적으로 모니터링할 필요가 있다.
종래에 알려진 혈압추정방법은 혈압 추정용 생체신호, 파라미터의 시간에 따른 변화 및 혈압측정대상의 개인적 특성을 전혀 고려하지 않고 혈압을 추정하였다. 혈압추정을 위한 파라미터의 편차가 사람에 따라서 천차만별이고, 정상범위의 혈압을 나타내는 기본혈압(baseline value)도 사람에 따라서 편차가 매우 크기 때문에, 종래에 알려진 방법처럼 현재 값만 사용하여 미래의 혈압을 추정하면 낮은 정확도를 기대할 수 밖에 없는 한계점이 있다.
순환신경망(RNN: Recurrent Neural Network)은 기억력이 있는 인공신경망(ANN: Artificial Neural Network)으로 소개될 정도로, 딥러닝 기법 중에서도 핵심적인 도구로 알려져 있다. 기존의 ANN는 정해진 한 시점의 파라미터를 입력으로 받아서 그 시간에 대응되는 출력값을 추정하지만, RNN은 시계열 파라미터를 입력데이터로 받아서 시계열 데이터를 출력하는 특성을 갖는다. 구조적으로 보면, 한 시간의 입력이 그 시간뿐만 아니라 미래의 여러 시점에도 각각 영향을 준다는 점을 고려하여 고안된 기법이라고 볼 수 있다.
도 1은 순환신경망이 동작하는 일 예를 설명하기 위한 도면이다.
도 1을 참조하면, 순환신경망은 임베딩레이어(110), 히든레이어(130) 및 아웃풋레이어(150)로 구성된다는 것을 알 수 있다. 보다 구체적으로, 도 1은 사용자가 키보드를 통해 타이핑을 하는 과정에서 'you will never believe'까지 문장을 완성하였을 때, 그 다음에 타이핑되는 단어가 어떤 단어가 될 것 인지 추정하기 위해 RNN이 구동되는 동작을 도식적으로 나타낸 도면이다. 도 1에서 사용된 순환신경망은 바이 디렉셔널 순환신경망(bi-directional RNN)이다.
임베딩레이어(110)는 시계열 입력데이터를 받아들이는 층(layer)으로서, 도 1에서 임베딩레이어(110)는 시계열 입력데이터로서 you, will, never, believe, 이상 4개의 단어를 받아들였다는 것을 알 수 있다. 임베딩레이어(110)에서 입력된 시계열 데이터는 라벨링되어 히든레이어(130)에 전달된다.
히든레이어(130)는 시계열 입력데이터를 전달받아 시점별로 분석하고 인접한 시점에 대해서 학습하는 층으로서, 가장 최우선인 t-4시점에 입력된 you는 그 다음 시점인 t-3시점에 입력된 will 및 t-2시점에 입력된 never에 영향을 주도록 학습된다. 히든레이어(130)는 포워드레이어(forward layer)와 백워드레이어(backward layer)로 구성되어 시계열 데이터를 학습하도록 설계되어 있고, 내부적으로 설정된 비용함수(cost function)의 값을 최소화시키기 위해서 반복적으로 학습(training)및 시험(test)된다.
아웃풋레이어(150)는 히든레이어(130)에서 최적화된 결과값을 통해서 최종적인 출력값을 출력하는 층이다. 도 1에서 아웃풋레이어(150)는 임베딩레이어(110)에 입력된 시계열 파라미터에 대응하여, what, how, where 등의 단어를 출력할 수 있다.
한편, 비침습적으로 혈압을 측정하는 방법으로서, 커프(cuff)를 상완, 종아리, 허벅지에 둘러서 측정하는 방법(sphygmogram)이 가장 널리 이용되고 있으나, 사용자의 순응도가 낮아서 빈번한 측정에는 적합하지 않은 특성이 있는바, 빈번한 측정이 용이하면서 과거시점의 혈압의 변화 및 개개인의 혈압변화특성을 고려하여 혈압을 추정할 수 있는 방법이 필요한 시점이다.
여기서, 사용자의 순응도가 낮다는 의미는 일반인인 사용자가 혈압을 측정하는 빈도수가 그다지 높지 않은 경향을 의미하고, 모처럼 사용자가 혈압을 측정한다고 하더라도 백의고혈압(white coat hypertension)에 의해서 혈압을 정확하게 측정하기 어려운 상황에 놓이기 쉬울 뿐만 아니라, 사용자의 혈압은 하루에 걸쳐서 다양한 변화하기 때문에 더욱 더 종래에 알려진 기술보다 개인의 특성 및 시간적 변화를 고려한 혈압측정 및 추정 기술이 필요하다.
본 발명이 해결하고자 하는 기술적 과제는, 혈압을 추정하는 데에 이용되는 파라미터의 시간적인 변화 및 혈압을 측정하기 위한 대상의 고유한 특성을 모두 고려하여, 미래시점의 지속적인 혈압의 변화를 정확하게 추정할 수 있는 방법 및 그 장치를 제공하는 데에 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 방법은, 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단계; 상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출단계; 및 상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어단계를 포함한다.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 일 실시 예에 따른 장치는, 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단부; 상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출부; 및 상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어부를 포함한다.
본 발명의 일 실시 예는 순환신경망을 이용한 구간혈압 추정 방법을 구현하기 위한 프로그램을 저장하고 있는 컴퓨터 판독가능한 기록매체를 제공한다.
본 발명에 따르면 비침습적인 방식을 통해 수집된 생체신호를 통해서 혈압을 정확하게 추정할 수 있다.
도 1은 순환신경망이 동작하는 일 예를 설명하기 위한 도면이다.
도 2는 본 발명에 따라 RNN을 통해서 구간혈압을 추정하는 과정의 일 예를 도식적으로 나타내는 도면이다.
도 3은 본 발명에 따른 구간혈압 추정 방법을 도식적으로 설명하는 도면이다.
도 4는 본 발명에 따른 구간혈압 추정 장치의 일 예의 블록도를 도시한 도면이다.
도 5는 혈압관련파라미터가 정규화되는 과정을 설명하기 위한 도면이다.
도 6은 90 심주기 카디악 사이클의 생체신호로부터 산출된 혈압관련파라미터가 RNN에 적용되는 과정을 도식적으로 나타내는 도면이다.
도 7은 ECG 및 PPG를 통한 생체신호로부터 산출된 혈압관련파라미터를 설명하기 위한 도면이다.
도 8은 클래스분류부가 수행하는 기능을 설명하기 위한 도면이다.
도 9는 도 8에서 클래스분류방식으로 추정된 혈압의 파형을 추가로 도시하고 있는 도면이다.
도 10a는 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 일 예이다.
도 10b 및 도 10c는 본 발명을 적용한 결과로서, 수축기 및 이완기에 해당하는 도표를 나타낸 도면이다.
도 11은 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 다른 일 예이다.
도 12는 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 또 다른 일 예이다.
도 13은 본 발명에 따른 구간혈압 추정방법의 일 예의 흐름도를 도시한 도면이다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 방법은, 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단계; 상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출단계; 및 상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어단계를 포함한다.
상기 방법에 있어서, 상기 특징정보추출단계는, 상기 생체신호에 앙상블 평균(ensemble average)을 적용하여 상기 특징정보를 추출하는 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 특징정보추출단계는, 상기 추출된 특징정보에 서포트 벡터 머신(SVM: Support Vector Machine)을 통해서 노이즈를 제거하거나 노이즈가 기설정값 이상 존재하는 구간을 검출하는 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 심전도검사(ECG), 지진박동곡선검사, 임피던스검사, 광용적맥파검사(PPG), 심장탄도검사(BCG), 지첨용적매파검사, 초음파검사 중 적어도 한 가지 이상의 방법을 통해 측정된 생체신호인 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 심전도검사(ECG) 및 광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호이고, 상기 파라미터산출단계는, 상기 심전도검사에 따른 생체신호의 특징정보와 상기 광용적맥파검사에 따른 생체신호의 특징정보와의 격차를 상기 혈압관련파라미터로 산출하는 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 심전도검사(ECG) 및 광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호이고, 상기 파라미터산출단계는, 상기 심전도검사에 따른 생체신호의 특징정보로부터 산출된 맥파전달시간(PTT: pulse transit time) 및 상기 광용적맥파검사에 따른 생체신호의 특징정보로부터 산출된 맥파전달시간의 시점별 격차를 상기 혈압관련파라미터로 산출하는 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호를 포함하고, 상기 파라미터산출단계는, 상기 광용적맥파검사에 따른 생체신호의 여덟 가지의 특징정보로부터 상기 혈압관련파라미터를 산출하는 것을 특징으로 할 수 있다.
상기 방법은, 상기 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 상기 정규화된 혈압들을 상기 정규화된 혈압의 값에 따라 적어도 두 가지 이상의 클래스로 분류하는 클래스분류단계를 더 포함하고, 상기 혈압추정제어단계는, 상기 클래스의 소프트맥스(softmax)를 기초로 산출되는 크로스 엔트로피(cross entropy)가 최소값이 될 때까지 반복하여, 상기 사용자의 추정혈압이 출력되도록 제어하는 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 90 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 60 이상 90 이하의 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 150 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 할 수 있다.
상기 방법에 있어서, 상기 생체신호는, 45초 이상 90초 이하의 시간동안 측정된 생체신호인 것을 특징으로 할 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시 예에 따른 장치는, 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단부; 상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출부; 및 상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어부를 포함한다.
상기 장치는, 상기 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 상기 정규화된 혈압들을 상기 정규화된 혈압의 값에 따라 적어도 두 가지 이상의 클래스로 분류하는 클래스분류부를 더 포함하고, 상기 혈압추정제어부는, 상기 클래스의 소프트맥스(softmax)를 기초로 산출되는 크로스 엔트로피(cross entropy)가 최소값이 될 때까지 반복하여, 상기 사용자의 추정혈압이 출력되도록 제어하는 것을 특징으로 할 수 있다.
상기 장치에 있어서, 상기 생체신호는, 90 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 할 수 있다.
본 발명의 일 실시 예는 순환신경망을 이용한 구간혈압 추정 방법을 구현하기 위한 프로그램을 저장하고 있는 컴퓨터 판독가능한 기록매체를 제공한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시 예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시 예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시 예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징을 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
어떤 실시 예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도 2는 본 발명에 따라 RNN을 통해서 구간혈압을 추정하는 과정의 일 예를 도식적으로 나타내는 도면이다.
도 2에서는, 도 1에서 설명한 RNN을 기초로 하여 결과값이 출력되므로, 이하에서는, 도 1에서 설명한 것과 중복되는 설명은 생략하기로 한다.
도 2에서 임베딩레이어에는 시계열 데이터로서, t-4시점부터 t-1시점까지의 사용자의 심박수(HR: Heart Rate)가 입력된다. 여기서, t시점을 현재 시점이라고 간주하고, t-4 내지 t-1시점은 과거 시점으로 간주한다. RNN은 시계열 데이터를 입력받아서 시계열 데이터를 출력하므로, 입력된 시계열 데이터가 t-4 내지 t-1시점의 심박수에 대한 데이터라면, t시점 및 t시점 이후의 심박수에 대한 데이터를 출력할 수 있어야 하나, 전술한 것과 같이, 비침습적인 생체신호로부터 사람의 혈압을 추정하기 위해서는 파라미터의 시간에 따른 변화 및 대상이 되는 사람의 고유특성을 모두 고려해야 하므로, RNN에 입력되는 데이터가 RNN을 통해 적절한 출력값을 출력할 수 있게끔 전처리(preprocessing)과정이 필요하다.
종래에도 RNN을 통해서 혈압을 추정하려고 했던 시도는 있었으나, RNN에 입력되는 데이터가 정확한 혈압을 추정할 수 있도록 가공되지 않아서 정확도가 매우 낮은 문제점이 있었다. 본 발명에 따르면, RNN에 입력되는 데이터를 효과적으로 전처리하여 현재시점을 포함한 미래시점의 혈압을 정확하게 추정할 수 있게 된다. 이하에서, 구간혈압은 특정한 고정시점이 아닌 일정한 시간동안의 일련의 혈압값을 통칭하는 것으로 간주한다.
표 1은 사용자 A 및 사용자 B의 현재 시점인 t시점의 혈압함수의 일 예를 나타낸다.표 1과 같이 현재시점인 t시점의 혈압은 t-4 내지 t-1 시점의 혈압함수에 서로 다른 슬로프(slope)가 곱해지고, 오프셋(offset)을 더하는 방식으로 정의될 수 있다. 위와 같이, t시점의 혈압함수를 구성하는 파라미터는 양(positive)의 슬로프 및 오프셋을 갖고 있으나, 그 크기(magnitude)는 각각 다른 특성을 갖는다. 표 1과 같이, 현재시점의 혈압은 현재시점 이전의 여러 과거시점의 혈압에 영향을 받아서 최종적으로 결정되는 특성을 갖고 있다.
전술한 것과 같이, 표 1은 혈압함수의 일 예에 불과하므로, t시점의 혈압함수는 t시점 이전의 혈압함수 외에도 다른 생체신호에 따른 함수로 구성될 수도 있다.
도 3은 본 발명에 따른 구간혈압 추정 방법을 도식적으로 설명하는 도면이다.
본 발명에 따른 구간혈압 추정 방법은, 비침습적(Non-invasive)이고, 연속적인(continuous)인 생체신호들(biosignals)로부터 현재시점 이후의 사용자의 구간혈압을 정확하게 추정하는 것을 목적으로 한다.
먼저, 1차정보(310)는 비침습적이고 연속적인 비가공 생체신호(Raw Biosignal)를 포함한다. 1차정보(310)에 포함될 수 있는 생체신호로서, 심전도검사 ECG: electrocardiogram), 지진박동곡선검사(seismocardiogram), 임피던스검사(impedance cardiogram), 광용적맥파검사(PPG: photoplethysmogram), 심장탄도검사(BCG: ballistocardiogram), 지첨용적매파검사(plethysmogram), 초음파검사(ultrasound)에 의해 측정된 생체신호가 있다. 전술한 검사는 절개를 동반하지 않는 비침습적검사이지만, 측정대상이 되는 사용자의 혈압을 측정하고 추정하는 데에 있어서 의미있는 정보를 제공하는 특성을 갖는다.
또한, 전술한 검사의 종류에 포함되지 않더라도, 비침습적이고 연속적인 신호로서, 측정대상이 되는 사용자의 혈압을 측정하고 추정하는 데에 의미있는 정보를 제공할 수 있는 검사라면 아무런 제한없이 본 발명이 적용될 수 있음은 자명하다.
2차정보(330)는 1차정보(310)를 가공하여 도출될 수 있는 정보를 의미한다. 1차정보(310)는 생체신호의 파형 그 자체에 대한 정보이므로, 정보량이 지나치게 많고 혈압을 추정하는 데에 있어서 잡음(noise)도 상당히 많이 섞여 있어서, 2차정보(330)는 정확하게 혈압을 추정하고 컴퓨터를 통한 연산량을 최소화하기 위해서 원본데이터(raw data)에서 특징이라고 볼 수 있는 정보만을 추출하는 방식으로 산출될 수 있다. 2차정보(330)에 포함되는 정보로서, 맥파전달시간(PTT: Pulse Transit Time), 맥파도착시간(PAT: Pulse Arrival Time), LASI(Large Artery Stiffness Index) 등이 포함될 수 있다.
2차정보(330)가 1차정보(310)로부터 획득되면, RNN은 2차정보(330)를 입력데이터로 전달받아서 최종적으로 혈압(blood pressure)을 출력한다. 이때, RNN의 출력값으로 나오는 혈압은 현재시점을 포함하는 미래시점의 혈압으로서, 입력데이터 및 출력데이터가 시계열 데이터로 나오는 RNN의 특성상 구간혈압이 된다
도 4는 본 발명에 따른 구간혈압 추정 장치의 일 예의 블록도를 도시한 도면이다.
도 4를 참조하면, 본 발명에 따른 구간혈압 추정 장치(400)는 특징정보추출부(410), 파라미터산출부(430), 클래스분류부(450) 및 혈압추정제어부(470)를 포함하는 것을 알 수 있다. 이하에서는, 설명의 편의를 위해서, 도 2 및 도 3을 참조하여 설명하기로 한다.
특징정보추출부(410)는 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 수신된 생체신호를 분석하여 생체신호가 측정된 시점별로 특징정보를 추출한다. 여기서, 한 가지 이상의 방식이라고 함은, 도 3의 1차정보(310)에서 설명한 심전도검사(ECG), 광용적맥파검사(PPG) 등을 의미한다. 또한, 특징정보는 생체신호로부터 획득된 정보로서, 사용자의 혈압을 추정하기 위해서 필요한 정보를 의미하고, 도 3의 2차정보(330)가 특징정보가 될 수 있다. 과거기간은 도 2에서 설명한 t-4 내지 t-1시점과 같이, 현재시점 t를 기준으로 하여 과거인 기간을 의미한다.
본 발명에서 t-2와 t-1시점의 간격은 하나의 카디악 사이클(cardiac cycle)일 수 있다. 예를 들어, t-4시점에서 사용자의 심장이 네 번의 수축이완기를 거치면 그 시점을 t시점으로 간주한다. 실시 예에 따라서, 전술한 것과 달리, 시점별 간격은 단순히 1초나 5초 단위일 수도 있다.
선택적 일 실시 예로서, 특징정보추출부(410)는 생체신호의 파형(waveform)에 앙상블 평균(ensemble average)방식을 적용하여 특징정보를 추출할 수 있다. 사용자의 생체신호는 다양한 슬로프(slope)를 포함하고 있어서, 모집단(복수의 사용자가 속한)의 성별 및 나이가 다양해질수록 생체신호로부터 특징정보가 제대로 추출되지 않는 경향이 있으므로, 본 발명에서는 앙상블 평균방식을 통해서 생체신호에 포함된 사용자의 혈압특징을 추출한다. 앙상블 평균방식을 통해서 생체신호의 파형의 크기(magnitude) 및 파형의 변형특성(feature)을 의미있게 반영하는 정보가 추출될 수 있다.
특징정보추출부(410)는 위와 같은 과정으로 추출된 특징정보에 추가적으로 서포트벡터머신(SVM: Support Vector Machine)을 적용하여 노이즈를 제거하거나 노이즈가 기설정값 이상 존재하는 구간을 검출할 수 있다. 여기서 기설정값은 서포트벡터머신의 미리 정의된 값으로 혈압추정의 정확도를 높이기 위해서 변경될 수도 있다.
앙상블 평균 및 서포트벡터머신 방법은 이미 널리 알려져 있는 공지의 기술로서, 그 기술의 구체적인 적용방법은 본 명세서에서 추가적으로 설명하지 않는 것으로 하며, 또한, 디노이징 오토인코더(denoising auto-encoder)와 같이 노이즈가 많은 생체신호에서 특징(feature)을 잘 추출해낼 수 있는 방식이라면 앙상블 평균 방식과 서포트 벡터 머신 외에 다른 프로그램이나 알고리즘을 통해 본 발명의 전술한 과정이 구현될 수 있음은 이 분야의 통상의 기술자에게 자명하다.
파라미터산출부(430)는 특징정보추출부(410)가 추출한 특징정보를 기초로 하여, 과거기간의 시점별로 혈압관련파라미터를 산출한다. 파라미터산출부(430)는 혈압관련파라미터를 산출하기 위한 파라미터산출기준을 미리 저장하고 있다.
파라미터산출부(430)가 산출하는 혈압관련파라미터의 선택적 일 실시 예로서, 파라미터산출부(430)는 ECG 및 PPG로 측정한 생체신호의 특징정보의 격차(difference)를 혈압관련파라미터로서 정의하고 산출할 수 있다.
다른 선택적 일 실시 예로서, 파라미터산출부(430)는 ECG 및 PPG로 측정한 생체신호의 특징정보로부터 산출된 맥파전달시간(PTT)의 격차를 혈압관련파라미터로 정의하고 산출할 수 있다.
또 다른 선택적 실시 예로서, 파라미터산출부(430)는 ECG 및 PPG로 측정한 생체신호의 특징정보로부터 산출된 맥파전달시간의 격차에 임의의 정수를 곱한 값을 혈압관련파라미터로 정의하고 산출할 수도 있다. 여기서, 임의의 정수는 4가 될 수 있다.
전술한 예와 또 다른 선택적 일 실시 예로서, 파라미터산출부(430)는 PPG로 측정한 생체신호의 여덟 가지의 특징정보로부터 혈압관련파라미터를 산출할 수도 있다. PPG는 동맥압(ABP: Arterial Blood Pressure)의 파형의 결과이므로, PPG의 여덟 가지의 특징정보는 ABP 파형의 특징정보와 극히 유사하다. 본 선택적 일 실시 예에는 따른 혈압관련파라미터에는 심박수(HR: Heart Rate), LASI, AI, a1, a2, PPGarea, t1, t2가 포함된다. LASI(large artery stiffness index)는 PAT와 같이 혈관 탄성을 나타내는 파라미터로서, 시점을 기준으로 앞으로 진행되는 전진맥파(forward wave)와 혈관 끝에서 반사되어 돌아오는 반사맥파(backward wave)의 시간적 격차를 의미한다. LASI에 대해서는 도 7에서 후술한다. 특히, 본 발명에서 HR 및 LASI는 특징정보이면서 동시에 혈압관련파라미터로 이용될 수 있으며, 혈압관련파라미터로 이용되는 경우에는 다른 혈압관련파라미터와 구분하기 위한 라벨링(labelling) 또는 넘버링(numbering)이 적용될 수 있다.
설명의 편의를 위해서, HR 및 LASI를 제외한 나머지 여섯가지 혈압관련파라미터에 대해서는 후술하는 도 7과 함께 설명하기로 한다.
전술한 방식을 통해서 산출된 혈압관련파라미터는 정규화(normalization)과정을 통해 가공될 수 있다.
도 5는 혈압관련파라미터가 정규화되는 과정을 설명하기 위한 도면이다.
도 5와 같이, 과거기간의 여러 시점별 혈압관련파라미터는 정규화과정을 거쳐서 정규화분포곡선에 투영될 수 있으며, 정규화를 거친 파라미터는 정규화된 구간혈압을 추정하는 데에 있어 더 효율적인 특징을 갖는다. 보다 구체적으로, 정규화과정을 거침으로써, 표 1에서 설명한 것과 같은 사용자의존적인 슬로프/오프셋 효과(Subject-dependent slope/offset effect)가 사용자의 혈압을 추정하는 데에 있어서, 더 이상 악영향을 미치지 않게 된다.
선택적 일 실시 예로서, 혈압관련파라미터를 산출하기 위한 생체신호의 시간적 길이는 사용자의 심박수와 관련된 고정값일 수 있다. 예를 들어, 파라미터산출부(430)는 90 카디악 사이클에 대한 생체신호의 특징정보를 기초로 하여 혈압관련파라미터를 산출할 수 있다. 적절한 시간적 길이의 생체신호는 RNN이 혈압을 정확하게 추정할 수 있게 해주며, 연산장치가 연산을 처리하는 데에 걸리는 시간도 대폭 줄여줄 수 있다. 지나치게 짧은 길이의 생체신호로부터 혈압관련파라미터를 산출하는 경우, 부족한 정보에 의해서 출력되는 구간혈압이 매우 부정확할 수 밖에 없다. 또한, 지나치게 긴 길이의 생체신호로부터 혈압관련파라미터를 산출하는 경우, 혈압을 추정하는 데에 필요하지 않은 정보가 누적적용되어 부정확한 구간혈압이 추정될 뿐만 아니라 연산장치가 처리해야 하는 연산량이 기하급수적으로 늘어나서 시간이 많이 소요되는 단점이 있다.
본 발명에 따르면, 혈압관련파라미터를 산출하는 데에 필요한 생체신호의 시간적 길이를 90 카디악 사이클로 정의하여, 빠른 연산속도 및 구간혈압의 추정의 정확성을 모두 기대할 수 있다. 심장이 한 번씩 뛸 때마다 가산되는 카디악 사이클은 사용자의 심박수와 관련된 값으로서, 각각의 사용자마다 고유한 시간길이로 사전에 측정될 수 있다. 전술한 것 외에도, 혈압관련파라미터를 산출하기 위한 생체신호의 시간적 길이는 60 카디악 사이클일 수도 있고, 60 이상 90 이하의 카디악 사이클일 수도 있을 뿐만 아니라, 150 카디악 사이클일 수도 있다. 카디악 사이클을 길게 하면 특징정보의 종류의 수를 카디악 사이클을 짧게 하는 경우보다 더 줄이더라도 정확도가 하락되지 않은 상태에서 혈압을 추정하는 것이 가능하게 된다. 전술한 구체적인 수치 외에도 카디악 사이클의 길이는 사용자의 혈압을 정확하게 추정하기 위해서 합리적인 범위내에서 변경될 수 있다.
도 6은 90 심주기 카디악 사이클의 생체신호로부터 산출된 혈압관련파라미터가 RNN에 적용되는 과정을 도식적으로 나타내는 도면이다.
도 6에서 현재 시점은 t시점이라고 간주되며, RNN의 최종 결과로서 t시점의 추정혈압(610)이 출력될 수 있다. 도 6을 참조하면, 혈압관련파라미터를 산출하기 위해서 90 카디악 사이클을 생체신호의 시간적 길이로 한정함에 따라서, t-90시점부터 t-1시점까지의 시점별 혈압관련파라미터가 RNN에 입력되고, RNN의 히든레이어에서는 각 시점별 데이터가 서로에게 영향을 미치는 것을 고려하여, 학습 및 시험을 반복함으로써, t시점의 혈압을 추정할 수 있게 된다.
도 7은 ECG 및 PPG를 통한 생체신호로부터 산출된 혈압관련파라미터를 설명하기 위한 도면이다.
도 7의 상단에는 ECG에 따른 생체신호의 파형, 하단에는 PPG에 따른 생체신호의 파형이 도시되어 있다. 특징정보추출부(410)가 각 생체신호에서 의미있는 값을 갖는 지점(특징정보)을 추출하면, 파라미터산출부(430)는 미리 저장된 파라미터산출기준을 기초로 하여 특징정보에서 PTT나 LASI를 정의하고 산출한다. 파라미터산출부(430)에 저장된 세부기준에 따라서 PTT의 길이, LASI의 길이는 달라질 수 있다. 이하에서는, 도 4의 파라미터산출부(430)의 선택적 일 실시 예에 대한 설명으로서, 도 7을 참조하여, a1, a2, a3, AI, PPGarea, t1 및 t2가 무엇을 의미하는지 설명하기로 한다.
먼저, t1, t2는 혈압의 맥파(pulse wave)가 얼마나 빨리 올라가는 지를 파악하기 위한 파라미터로서, 실험적으로 밝혀진 바에 따르면, 혈압과 관계가 있는 파라미터라고 판단되어 본 발명에서 채택된 혈압관련파라미터이다. 도 7을 참조하면, t1은 같은 주기의 맥파의 최저점에서 최고점의 40%에 해당하는 위치에 도달하는 데에 소요되는 시간이라는 것을 알 수 있으며, t2는 같은 주기의 맥파의 최저점에서 최고점에 도달하는 데에 소요되는 시간에서 t1만큼 뺀 시간이라는 것을 알 수 있다.
또한, a1, a2는 혈압의 요소인 맥압(pulse pressure)와 관련있는 요소로서, 실험적으로 밝혀진 바에 따르면, a1, a2의 값은 맥압의 크기와 높은 상관성을 갖는 경향성이 있다. 도 7을 참조하면, a1는 맥파의 최저점과 t1만큼 시간이 경과했을 때의 맥파와의 격차로 정의될 수 있고, a2는 맥파의 최고점과 최저점과의 격차로 정의될 수 있다.
a3는 a1, a2에 의해서 추가적으로 산출될 수 있는 혈압관련파라미터로서, 본 발명에서 파라미터산출부(430)가 RNN의 입력값으로서 가공하고 산출하는 혈압관련파라미터는 아니지만, AI라는 혈압관련파라미터를 산출하는 데에 필요한 보조파라미터이다. 도 7을 참조하면, a3는 t2에서 LASI만큼의 시간이 경과한 때의 맥파값을 의미한다는 것을 알 수 있다.
AI(augmentation index)는 LASI와 직접적으로 관련있는 혈압관련파라미터로서, 전진맥파와 반사맥파의 크기의 비율을 의미한다. 보다 구체적으로, AI는 반사되는 맥파의 크기는 혈관의 탄성에 의해 맥파의 크기감쇠(amplitude damping)가 얼마나 일어나는지에 따라 달라지기 때문에, AI도 혈관탄성과 관련있는 파라미터라고 볼 수 있으며, AI는 수학적으로 a3를 a2로 나눈 값이 된다.
마지막으로, PPGarea(photoplethysmogram area)는 맥파가 최저점에서 최고점에 도달했다가 다시 최저점으로 돌아오게 되어 한 주기가 경과하면, 그 한 주기에 대해서 적분한 맥파의 그래프의 적분값(넓이)을 의미하고, a1, a2와 마찬가지로 맥압과 관련있는 파라미터로서 본 발명의 파라미터산출부(430)에 의해 산출될 수 있다.
도 7에서 t1, t2을 산출하는 데에 이용되는 PTT1, PTT2, PTT3는 맥파전달시간을 여러 가지로 정의한 것으로서, 실시 예에 따라서, 맥파전달시간이 아닌 맥파도착시간(Pulse Arrival Time)으로 대체될 수도 있다. 맥파도착시간이 맥파도달시간을 대체할 수 있는 이유는, 맥파전달시간(PTT)이 혈관길이를 맥파전달속도로 나눔으로써 산출될 수 있고, 맥파도착시간(PAT)은 맥파전달시간(PTT)과 구혈전기(Pre-ejection time)의 합으로 정의되며, 구혈전기가 혈관탄성과 관계가 없는 파라미터이므로, 맥파전달시간과 맥파도착시간이 혈압과 관계가 있는 같은 경향성을 갖고 혈압과 관련있는 요소라는 것이 자명하기 때문이다.
이하에서는, 다시 도 4를 이어서 설명하기로 한다.
클래스분류부(450)는 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 정규화된 혈압들을 정규화된 혈압의 값(normalized blood pressure value)에 따라 적어도 두 가지 이상의 클래스로 분류한다.
본 발명에 따르면, 클래스분류부(450)가 과거시점의 정규화된 혈압들을 적어도 두 가지 이상의 클래스로 분류함으로써, 본 발명에 따라 추정한 구간혈압과 실제 혈압간의 상관성(correlation)이 명확하게 드러날 뿐만 아니라, 추정한 구간혈압과 미래시점의 실제혈압의 차이가 최소화될 수 있다.
본 발명에 따른 추정장치(400)에서 클래스분류부(450)는 실시 예에 따라 생략될 수도 있으며, 설명의 편의를 위해서 클래스분류부(450)에서 분류되는 클래스에 대한 설명은 혈압추정제어부(470)에 대한 설명에서 추가적으로 설명하기로 한다.
혈압추정제어부(470)는 파라미터산출부(430)가 산출한 과거기간의 혈압관련파라미터를 순환신경망(RNN)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 사용자의 추정혈압이 출력되도록 제어한다. 보다 구체적으로는, 혈압추정제어부(470)는 혈압관련파라미터를 입력값으로 하여 적절한 구간혈압이 추정될 수 있도록 학습(training) 및 시험(test)을 반복하는 머신러닝 과정을 총괄적으로 제어한다.
도 8은 클래스분류부가 수행하는 기능을 설명하기 위한 도면이다.
도 8에서 사용자의 실제 혈압의 파형(810)을 참조하면, 사용자의 실제 혈압은 시간의 흐름에 따라서 동적으로(dynamically) 변화한다. 반면, 도 8을 참조하면, 종래의 혈압추정기법에 따라 사용자의 혈압을 추정할 경우, 회귀방식으로 추정된 혈압(830)은 시간의 흐름과 상관없이 일정한 상수값을 갖게 되는 것을 알 수 있다. 일반적으로 혈압은 평균값을 많이 유지하고 평균 위주로 변화가 있으므로, 신경망을 학습시킬 때 신경망이 평균을 추정하면 비용함수가 최적화 된다고 착각하는 경향이 있어서 발생되는 결과이다.
종래의 혈압추정기법에 따라서 사용자의 혈압을 추정하는 방식에 따르면, RNN에 과거기간의 데이터를 입력하고 난 뒤, 혈압추정제어부(470)는 입력데이터를 학습 및 시험하는 과정을 종료하기 위해서 추정값과 실제값과의 MSE(Mean Square Error)가 최소화될 때까지 반복한다. 종래의 혈압추정기법에서 회귀(regression)를 이용하는 것이 아니라면, 전술한 MSE 외에도 다양한 비용함수가 이용될 수 있음은 이 분야의 통상의 기술자에게 자명할 것이다.
수학식 1은 종래의 머신러닝 과정에서 사용되는 MSE의 수학식을 나타낸다.
수학식 1에서 y는 실제 혈압값을 의미하고, y^은 추정 혈압값을 의미한다.
수학식 1의 수학적인 특성상 혈압추정제어부(470)가 MSE를 최소화시키는 과정을 반복함으로써 구간혈압을 추정하게 되면, 추정혈압은 시간의 흐름에 상관없이 일정한 상수값으로 표현되는 것이 일반적이다. 다시 말해, 실제 혈압은 시변함수이지만 추정 혈압은 시불변함수로 표현되므로, 각각의 시점별로 추정혈압과 실제혈압간의 상관성(correlation)이 전혀 그래프로 드러날 수 없는 한계가 있다.
도 9는 도 8에서 클래스분류방식으로 추정된 혈압의 파형을 추가로 도시하고 있는 도면이다.
도 9에서 클래스분류방식으로 추정된 혈압의 파형(850)을 참조하면, 사용자의 실제 혈압과 극히 유사하게 시간의 흐름에 따라서 동적으로(dynamically) 변화하는 것을 알 수 있다. 도 9와 같이, 혈압추정제어부(470)가 클래스분류방식으로 구간혈압을 추정하는 방법은 다음과 같다.
먼저, 클래스분류부(450)는 과거기간의 각 시점별 혈압값들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 정규화된 혈압들을 정규화된 혈압의 값(normalized blood pressure value)에 따라 적어도 두 가지 이상의 클래스로 분류한다.
예를 들어, 클래스분류부(450)는 도 5와 같은 정규분포곡선에 과거기간의 각 시점별 혈압값들을 정규화시켜서 투영한 후, 클래스 1, 클래스 2, 클래스 3에 각각 서로 다른 구간의 혈압값들이 속하도록 분류할 수 있다. 여기서, 클래스의 개수는 적어도 두 개 이상이다.
표 2는 클래스가 분류되는 일 예를 나타낸 표이다.표 2에서는 클래스를 세 개로 한정하였으나, 본 발명이 실제로 구현될 때에는 클래스의 수는 세 개보다 더 많을 수 있다.
혈압추정제어부(470)는 클래스의 소프트맥스(softmax)를 기초로 산출되는 크로스 엔트로피(cross entropy)가 최소값이 될 때까지 반복하여, 최소값이 되는 시점의 혈압을 사용자의 추정혈압으로 출력하도록 제어한다.
수학식 2는 소프트맥스를 나타내는 수학식이다. 수학식 2에서, x는 소프트맥스값을 구하기 위한 대상값의 특징(feature)이며, i는 특징의 순서(i번째), j는 특징의 전체 수를 의미한다.
혈압추정제어부(470)가 학습을 반복하다가 중단하고 결과값을 출력하려면, 추정값이 얼마나 정확한 값인지 알아야 한다. 또한, 머신러닝의 특성상 혈압추정제어부(470)가 추정한 값이 정확하다고 하더라도, 그 추정한 값을 최종적으로 출력할 가능성이 50%인지 또는 70%인지에 대한 예상수치가 필요한데, 혈압추정제어부(470)는 소프트맥스(softmax)의 정의에 따라 수학식 2를 통해서 특정값을 출력할 예상수치로서, 0과 1사이의 값이 출력되도록 제어한다.
수학식 3은 크로스 엔트로피를 나타내는 수학식이다. 수학식 3에서 H는 크로스 엔트로피, L은 실제 분류값이며, S는 소프트맥스의 결과값을 의미하고, i는 클래스의 번호를 의미한다.
혈압추정제어부(470)는 크로스 엔트로피를 분류손실함수(classification loss function)로 놓고, 이를 최소화하는 과정을 반복함으로써, 실제 혈압과 유사한 추정된 구간혈압이 출력되도록 제어한다.
소프트맥스 및 크로스 엔트로피에 대한 계산방법은 널리 알려진 방법에 의하며, 본 명세서에서는 생략하도록 한다.
위와 같이, 본 발명에 따르면, 혈압을 단계레벨로 나눠서 분류화하는 형식으로 RNN을 학습시키고 시험하는 과정을 반복함으로써, 종래의 회귀추정에 따른 결과와 달리 시간의 흐름에 따라 변화하는 구간혈압을 추정할 수 있게 되며, 추정된 구간혈압은 실제 혈압과 매우 유사한 양상을 보이게 된다. 또한, 추정된 구간혈압은 시간에 따라 변화하게 되어, 추정된 구간혈압과 실제 혈압과의 상관성(correlation)을 수치적으로 확인할 수 있다는 점에서 종래의 기술과 구분된다.
도 10a는 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 일 예이다.
도 10a는 생체신호 데이터베이스 중 하나인 피지오넷(physionet)의 MIMIC에서 중환자들의 생체신호(심전도, 광용적맥파)를 이용하여 혈압을 추정한 결과를 나타내는 도면이다. 보다 구체적으로는, 도 10a는 수축기혈압(systolic blood pressure)을 추정한 결과를 나타내며, 추정된 수축기혈압과 실제 혈압과의 차이가 널리 알려진 기준인 AAMI(Association for The Advancement of Medical Instrumentation) 기준 및 BHS(British Hypertension Society) 기준을 만족하는 것을 나타내고 있다.
도 10a는 본 발명에 따라 정규화된 혈압을 산출하여, 산출된 정규화된 혈압들을 정규화된 혈압의 값(value)에 따라서 적어도 두 가지 이상의 클래스로 분류하였을 때, 실제 혈압(True BP)의 클래스와 추정 혈압(Predicted BP)을 동시에 나타낸다. 도 10a에서 총 100개의 박스(box)로 구분되어 있는 각 수치들은 추정 클래스의 비율을 의미한다.
예를 들어, 도 10a의 실제 혈압 1 및 추정 혈압 1에 해당하는 박스에는 0.49가 포함되어 있으며, 여기서 0.49라는 수치는 실제 혈압이 클래스 1인 표본이 100개 있을 때, 본 발명을 적용하여 그 중 49개를 클래스 1로 추정했다는 것을 의미한다. 따라서, 가로에 있는 비율을 모두 합산하면 언제나 1이 산출될 수 있다.
다른 예로서, 도 10a의 실제 혈압 0 및 추정 혈압 9인 박스값은 0.021인데, 클래스 0으로 분류된 실제 혈압 표본이 총 1000개 있으면, 본 발명에 적용했을 때 그 중에서 21개를 클래스 9로 추정했다는 것을 의미한다. 전술한 본 발명의 특징에 따라서, 표본의 수가 적절한 수로 조절되고, 적절한 시간동안 수집된 혈압관련 생체신호가 최초 입력데이터가 되면 도 10a보다 더 높은 추정도를 갖는 MIMIC 도표(diagram)가 산출될 수 있다.
도 10b 및 도 10c는 본 발명을 적용한 결과로서, 수축기 및 이완기에 해당하는 MIMIC 도표를 나타낸 도면이다.
도 10b는 이완기(diastolic blood pressure)을 추정한 결과의 일 예이고, 도 10c는 도 10a와 같은 수축기혈압(systolic blood pressure)을 추정한 결과의 일 예를 나타내고 있으며, 도 10b 및 도 10c를 참조하면, 클래스 0과 클래스 9에 대해서 높은 추정률을 보이고, 나머지 클래스에서도 인접한 클래스의 수치를 합산하면, 클래스 0과 클래스 9에 준하는 높은 추정률을 보이는 것을 알 수 있다. 인접한 클래스의 수치까지 합산했을 때 클래스별로 모두 비슷한 추정률 나타낸다는 것은 허용가능한 오류범위 내에서 실제 혈압값을 잘 추정했다는 의미로 해석될 수 있으며, 결국, 도 10a 내지 도 10c에 따르면, 본 발명이 혈압을 추정하는 데에 있어서, 특정한 클래스에 한정되지 않고 높은 확률로 사용자의 혈압을 정확하게 추정할 수 있다는 것을 알 수 있다.
도 11은 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 다른 일 예이다.
도 11은 시간의 흐름에 따른 혈압변화폭이 커서 큰 분산(variance)을 나타내는 실제 혈압과 추정된 구간혈압과의 차이가 거의 없다는 것을 도식적으로 나타낸다. 도 11에서 가로축(x축)은 카디악 사이클을 의미하고, 세로축(y축)은 혈압값을 의미한다.
도 12는 본 발명에 따른 추정방법의 정확도를 도식적으로 나타내는 도면의 또 다른 일 예이다.
도 12는 시간의 흐름에 따라서 파동이 심한 실제 혈압과 추정된 구간혈압과의 차이도 도 11과 마찬가지로 거의 없다는 것을 도식적으로 나타낸다.
도 11 및 도 12를 종합하면, 실제 혈압의 변화의 폭이나 변화율과 상관없이 본 발명에 따른 구간혈압 추정방법이 잘 적용된다는 것을 알 수 있다.
도 13은 본 발명에 따른 구간혈압 추정방법의 일 예의 흐름도를 도시한 도면이다.
도 13은 도 4에 따른 구간혈압 추정장치(400)에 의해 구현될 수 있으므로, 도 4를 참조하여 설명하기로 하며, 이하에서, 도 4에서 설명한 것과 중복된 설명은 생략하기로 한다.
특징정보추출부(410)는 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 수신된 생체신호를 분석하여 생체신호가 측정된 시점별로 특징정보를 추출한다(S1310).
파라미터산출부(430)는 단계 S1310에서 추출된 특징정보를 기초로 과거기간에 대한 혈압관련파라미터를 산출한다(S1330).
클래스분류부(450)는 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 정규화된 혈압들을 정규화된 혈압의 값(normalized blood pressure value)에 따라 적어도 두 가지 이상의 클래스로 분류한다(S1350).
혈압추정제어부(470)는 파라미터산출부(430)가 산출한 과거기간의 혈압관련파라미터를 순환신경망(RNN)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 사용자의 추정혈압이 출력되도록 제어한다. 보다 구체적으로는, 혈압추정제어부(470)는 혈압관련파라미터를 입력값으로 하여 적절한 구간혈압이 추정될 수 있도록 학습(training) 및 시험(test)을 반복하는 머신러닝 과정을 총괄적으로 제어한다(S1370).
전술한 것과 같이 본 발명에 따르면, 혈압을 추정하기 위해서 순환신경망(RNN)에 입력하는 데이터를 일련의 과정을 통해 전처리(preprocessing)함으로써, 사용자의 각종 생체신호로부터 미래시점의 혈압을 정확하게 추정하는 것이 가능하다. 보다 구체적으로, 본 발명에서는 생체신호로부터 추출한 특징정보를 정규화하고, 정규화된 특징정보로부터 혈압관련파라미터를 미리 설정된 기준에 따라서 산출할 뿐만 아니라, 회귀가 아닌 클래스를 기반으로 하는 분류화 과정을 이용하여 RNN의 학습을 반복적으로 수행함으로써, 종래에 알려진 그 어떠한 생체신호기반 혈압추정기법에 비해서 정확하게 혈압을 추정할 수 있다.
이상 설명된 본 발명에 따른 실시 예는 컴퓨터상에서 다양한 구성요소를 통하여 실행될 수 있는 컴퓨터 프로그램의 형태로 구현될 수 있으며, 이와 같은 컴퓨터 프로그램은 컴퓨터로 판독 가능한 매체에 기록될 수 있다. 이때, 매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다.
한편, 상기 컴퓨터 프로그램은 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 프로그램의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함될 수 있다.
본 발명에서 설명하는 특정 실행들은 일 실시 예들로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, “필수적인”, “중요하게” 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.
본 발명의 명세서(특히 특허청구범위에서)에서 “상기”의 용어 및 이와 유사한 지시 용어의 사용은 단수 및 복수 모두에 해당하는 것일 수 있다. 또한, 본 발명에서 범위(range)를 기재한 경우 상기 범위에 속하는 개별적인 값을 적용한 발명을 포함하는 것으로서(이에 반하는 기재가 없다면), 발명의 상세한 설명에 상기 범위를 구성하는 각 개별적인 값을 기재한 것과 같다. 마지막으로, 본 발명에 따른 방법을 구성하는 단계들에 대하여 명백하게 순서를 기재하거나 반하는 기재가 없다면, 상기 단계들은 적당한 순서로 행해질 수 있다. 반드시 상기 단계들의 기재 순서에 따라 본 발명이 한정되는 것은 아니다. 본 발명에서 모든 예들 또는 예시적인 용어(예들 들어, 등등)의 사용은 단순히 본 발명을 상세히 설명하기 위한 것으로서 특허청구범위에 의해 한정되지 않는 이상 상기 예들 또는 예시적인 용어로 인해 본 발명의 범위가 한정되는 것은 아니다. 또한, 당업자는 다양한 수정, 조합 및 변경이 부가된 특허청구범위 또는 그 균등물의 범주 내에서 설계 조건 및 팩터에 따라 구성될 수 있음을 알 수 있다.
본 발명은 비침습적인 방식을 통해 수집된 생체신호를 통해서 혈압을 정확하게 추정하는 각종 의료장치의 생산에 적용될 수 있다.
Claims (16)
- 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단계;상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출단계; 및상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어단계를 포함하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 특징정보추출단계는,상기 생체신호에 앙상블 평균(ensemble average)을 적용하여 상기 특징정보를 추출하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 특징정보추출단계는,상기 추출된 특징정보에 서포트 벡터 머신(SVM: Support Vector Machine)을 통해서 노이즈를 제거하거나 노이즈가 기설정값 이상 존재하는 구간을 검출하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,심전도검사(ECG), 지진박동곡선검사, 임피던스검사, 광용적맥파검사(PPG), 심장탄도검사(BCG), 지첨용적매파검사, 초음파검사 중 적어도 한 가지 이상의 방법을 통해 측정된 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,심전도검사(ECG) 및 광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호이고,상기 파라미터산출단계는,상기 심전도검사에 따른 생체신호의 특징정보와 상기 광용적맥파검사에 따른 생체신호의 특징정보와의 격차를 상기 혈압관련파라미터로 산출하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,심전도검사(ECG) 및 광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호이고,상기 파라미터산출단계는,상기 심전도검사에 따른 생체신호의 특징정보로부터 산출된 맥파전달시간(PTT: pulse transit time) 및 상기 광용적맥파검사에 따른 생체신호의 특징정보로부터 산출된 맥파전달시간의 시점별 격차를 상기 혈압관련파라미터로 산출하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,광용적맥파검사(PPG)를 통해 측정된 사용자의 생체신호를 포함하고,상기 파라미터산출단계는,상기 광용적맥파검사에 따른 생체신호의 여덟 가지의 특징정보로부터 상기 혈압관련파라미터를 산출하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 방법은,상기 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 상기 정규화된 혈압들을 상기 정규화된 혈압의 값에 따라 적어도 두 가지 이상의 클래스로 분류하는 클래스분류단계를 더 포함하고,상기 혈압추정제어단계는,상기 클래스의 소프트맥스(softmax)를 기초로 산출되는 크로스 엔트로피(cross entropy)가 최소값이 될 때까지 반복하여, 상기 사용자의 추정혈압이 출력되도록 제어하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법
- 제1항에 있어서,상기 생체신호는,90 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,60 이상 90 이하의 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,150 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항에 있어서,상기 생체신호는,45초 이상 90초 이하의 시간동안 측정된 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 방법.
- 제1항 내지 제12항 중 어느 한 항에 따른 방법을 구현하기 위한 프로그램을 저장하고 있는 컴퓨터 판독가능한 기록매체.
- 과거기간에 적어도 한 가지 이상의 방식으로 측정된 사용자의 생체신호를 수신하고, 상기 수신된 생체신호를 분석하여 상기 생체신호가 측정된 시점별로 특징정보를 추출하는 특징정보추출단부;상기 추출된 특징정보를 기초로 상기 과거기간에 대한 혈압관련파라미터를 산출하는 파라미터산출부; 및상기 산출된 혈압관련파라미터를 순환신경망(RNN: Recurrent Neural Network)에 시계열적으로 입력하여 현재시점을 포함하는 미래기간에서의 상기 사용자의 추정혈압이 출력되도록 제어하는 혈압추정제어부를 포함하는 순환신경망을 이용한 구간혈압 추정 장치.
- 제14항에 있어서,상기 장치는,상기 과거기간의 각 시점별 혈압들을 정규화시켜서 정규화된 혈압(normalized blood pressure)을 산출하고, 상기 정규화된 혈압들을 상기 정규화된 혈압의 값에 따라 적어도 두 가지 이상의 클래스로 분류하는 클래스분류부를 더 포함하고,상기 혈압추정제어부는,상기 클래스의 소프트맥스(softmax)를 기초로 산출되는 크로스 엔트로피(cross entropy)가 최소값이 될 때까지 반복하여, 상기 사용자의 추정혈압이 출력되도록 제어하는 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 장치.
- 제14항에 있어서,상기 생체신호는,90 카디악 사이클(cardiac cycle)에 대한 생체신호인 것을 특징으로 하는 순환신경망을 이용한 구간혈압 추정 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0077820 | 2018-07-04 | ||
KR1020180077820A KR102154652B1 (ko) | 2018-07-04 | 2018-07-04 | 순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020009387A1 true WO2020009387A1 (ko) | 2020-01-09 |
Family
ID=69059385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007945 WO2020009387A1 (ko) | 2018-07-04 | 2019-07-01 | 순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102154652B1 (ko) |
WO (1) | WO2020009387A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021205185B3 (de) | 2021-05-20 | 2022-11-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren und System zur Bestimmung eines ABP-Signals |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102426291B1 (ko) * | 2020-07-28 | 2022-07-29 | 주식회사 소프트웨어융합연구소 | 머신러닝을 이용한 고혈압 예측시스템에서 수행되는 고혈압 예측방법 및 시스템, 이를 수행하는 컴퓨터 프로그램 |
KR102395962B1 (ko) * | 2020-08-12 | 2022-05-11 | 한국표준과학연구원 | 커프 압력신호 및 혈관음을 활용한 혈압 측정 방법 |
KR102612049B1 (ko) * | 2021-03-16 | 2023-12-11 | 한국전자통신연구원 | 딥러닝 기반의 비침습 동맥혈압 추정 방법 및 시스템 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150106683A (ko) * | 2014-03-12 | 2015-09-22 | 삼성전자주식회사 | 병렬 생체 신호 프로세서 및 병렬 생체 신호 프로세서의 제어 방법 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK0621104T3 (da) | 1993-04-23 | 1996-02-19 | Balcke Duerr Ag | Fremgangsmåde og indretning til fremstilling af varmevekslerelementer såvel som tilhørende ribberør |
US9767557B1 (en) | 2016-06-23 | 2017-09-19 | Siemens Healthcare Gmbh | Method and system for vascular disease detection using recurrent neural networks |
-
2018
- 2018-07-04 KR KR1020180077820A patent/KR102154652B1/ko active IP Right Grant
-
2019
- 2019-07-01 WO PCT/KR2019/007945 patent/WO2020009387A1/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150106683A (ko) * | 2014-03-12 | 2015-09-22 | 삼성전자주식회사 | 병렬 생체 신호 프로세서 및 병렬 생체 신호 프로세서의 제어 방법 |
Non-Patent Citations (4)
Title |
---|
DING, XIAORONG ET AL.: "Long-term Blood Pressure Prediction with Deep Recurrent Neural Network", IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS(BHI), 4 March 2018 (2018-03-04), pages 323 - 328, XP033345142 * |
FEFILATYEV, SERGIY ET AL.: "Label-noise reduction with support vector machines", 21ST INTERNATIONAL CONFERENCE ON PATTERN RECONGITION (ICPR 2012, November 2012 (2012-11-01), pages 3504 - 3508, XP032330101 * |
LAN, HAIHAN: "The Softmax Function, Neural Net Outputs as Probabilities, and Ensemble Classifiers", TOWARDS DATA SCIENCE, 13 November 2017 (2017-11-13), pages 1 - 8, XP055673077, Retrieved from the Internet <URL:https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932> * |
NATARAJAN, KEERTHANA ET AL.: "Central Blood Pressure Monitoring via a Standard Automatic Arm Cuff", SCIENTIFIC REPORTS, vol. 7, no. 1, 14 November 2017 (2017-11-14), pages 1 - 12, XP009512181 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021205185B3 (de) | 2021-05-20 | 2022-11-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Verfahren und System zur Bestimmung eines ABP-Signals |
WO2022243535A1 (de) | 2021-05-20 | 2022-11-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und system zur bestimmung eines abp-signals und computerprogrammprodukt |
Also Published As
Publication number | Publication date |
---|---|
KR20200004667A (ko) | 2020-01-14 |
KR102154652B1 (ko) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020009387A1 (ko) | 순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 | |
Rajpurkar et al. | Cardiologist-level arrhythmia detection with convolutional neural networks | |
Dey et al. | InstaBP: cuff-less blood pressure monitoring on smartphone using single PPG sensor | |
EP3626167B1 (en) | A method of generating a model for heart rate estimation from a photoplethysmography signal and a method and a device for heart rate estimation | |
EP3589199B1 (en) | Deep learning algorithms for heartbeats detection | |
KR102202029B1 (ko) | 순환신경망을 이용한 구간혈압 추정 방법 및 그 방법을 구현하기 위한 구간 혈압 추정 장치 | |
Argha et al. | Blood pressure estimation from time-domain features of oscillometric waveforms using long short-term memory recurrent neural networks | |
WO2012128407A1 (ko) | 다중 생체 신호 측정을 이용하여 손목혈압의 정확도를 향상시키는 방법 및 장치 | |
CA2569730A1 (en) | Non-invasive measurement of second heart sound components | |
WO2022119155A1 (ko) | 설명 가능한 다중 심전도 부정맥 진단 장치 및 방법 | |
Vijaya et al. | Artificial neural network based wave complex detection in electrocardiograms | |
WO2016171476A1 (ko) | 동맥 혈압 파형의 특징점을 이용한 두개내압 파형의 피크 검출 장치 및 방법 | |
WO2023080697A1 (ko) | 심장 신호 분할 방법 및 이를 이용한 심장 신호 분할용 디바이스 | |
Banerjee et al. | Non-invasive detection of coronary artery disease based on clinical information and cardiovascular signals: A two-stage classification approach | |
Tanc et al. | Hypertension classification using PPG signals | |
WO2023042991A1 (ko) | 심폐소생술 중 예측 혈압을 제공하는 장치 및 그 방법 | |
Jovanovic et al. | QRS complex detection based ECG signal artefact discrimination | |
WO2019190185A1 (ko) | 인공지능을 이용한 시계열 데이터 학습 및 분석 방법 | |
KR20220104583A (ko) | 인공지능을 통한 2차원 심전도의 3차원 심전도로의 변환 전처리 및 심장질환 예측 시스템 | |
WO2022235129A1 (ko) | 근감소증 진단 시스템 및 근전도 신호를 사용하는 기능성 전기자극 치료 시스템 | |
WO2022075670A1 (ko) | 생리학적 이상 상태 분석 방법 및 장치 | |
WO2024010422A1 (ko) | 생체 신호 데이터 품질 판단 장치 및 방법 | |
Jia et al. | A method to detect the onsets and ends of paroxysmal atrial fibrillation episodes based on sliding window and coding | |
KR102627743B1 (ko) | 광용적맥파를 이용한 연령 추정 방법 및 장치 | |
KR20220095827A (ko) | 구간 선형화 방법을 사용한 실시간 혈압 추정 방법 및 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19830450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19830450 Country of ref document: EP Kind code of ref document: A1 |