WO2020009313A1 - Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent - Google Patents

Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent Download PDF

Info

Publication number
WO2020009313A1
WO2020009313A1 PCT/KR2019/003763 KR2019003763W WO2020009313A1 WO 2020009313 A1 WO2020009313 A1 WO 2020009313A1 KR 2019003763 W KR2019003763 W KR 2019003763W WO 2020009313 A1 WO2020009313 A1 WO 2020009313A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
mos
solvent
battery system
electrode
Prior art date
Application number
PCT/KR2019/003763
Other languages
French (fr)
Korean (ko)
Inventor
강용묵
장카이
양정훈
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2020009313A1 publication Critical patent/WO2020009313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery system including a molybdenum sulfide (MoS 2 ) electrode, and more particularly lithium ion with improved electrochemical characteristics through co-insertion of a lithium-electrolyte solvent through charge and discharge voltage and electrolyte control It relates to a secondary battery system.
  • MoS 2 molybdenum sulfide
  • LiCoO 2 for the positive electrode and carbon for the negative electrode.
  • carbon anode which is most used at present, it shows a voltage flat area close to 0V compared to the lithium reduction potential.
  • a cathode material having an alloying and conversion reaction mechanism in which much research is being conducted, also reacts to 0.1V or 0.01V relative to the lithium reduction potential.
  • Li 4 Ti 5 O 12 or TiO 2 when the negative electrode is charged near 0V, lithium metal precipitates, which is a problem in stability.
  • Ti-based anode materials such as Li 4 Ti 5 O 12 or TiO 2 has been made.
  • these Ti-based negative electrode materials have limitations such as low electronic conductivity and relatively low theoretical capacity (200 mAh / g or less). Therefore, there is a need for research on a new material having appropriate theoretical capacity, rapid charging characteristics and stability at the same time.
  • bicomponent sulfides are being studied as new materials that can replace carbon anodes and Ti-based anode materials.
  • MoS 2 is attracting attention as a cathode material to replace carbon cathodes with high theoretical capacity.
  • the molybdenum sulfide (MoS 2 ) is one of the sulfide-based materials having a layered structure, as shown below, during the charging process, lithium ions are inserted between the MoS 2 layers, after which lithium is combined with sulfur to form Li It has a reaction mechanism to form 2 S, the theoretical capacity is 670 mAh / g, has a high discharge capacity, is stable at room temperature, and does not use heavy metals, has an environmentally friendly advantage.
  • MoS 2 is difficult to be commercialized due to the decomposition of Mo and S in the process of low electrical conductivity and charging and discharging, resulting in a change in volume.
  • the present inventors were studying a method of controlling only insertion reaction of lithium ions to suppress the decomposition of MoS 2 , while controlling the charge and discharge voltage to 1.0 to 3.0V, and adjusting the solvent conditions of the electrolyte, ether As the charge / discharge cycle progresses when using the solvent, Li ions form a complex with the ether solvent and the electrochemical characteristics of the battery are improved by the co-intercalation effect of intercalating MoS 2 into the interlayer.
  • the present invention has been completed.
  • the present invention is to solve the above problems, an object of the present invention is to provide a secondary battery system comprising a molybdenum sulfide electrode, the electrochemical properties improved.
  • the present invention provides a lithium ion secondary battery comprising a MoS 2 electrode, a counter electrode material, a separator located between the MoS 2 electrode and the counter electrode material, and an electrolyte, and charge and discharge of the lithium ion secondary battery
  • a secondary battery system including a charge / discharge control unit controlled by voltage, wherein the electrolyte is a solution in which lithium salt is dissolved in an ether solvent, and the charge / discharge control unit controls the charge / discharge voltage to 1.0 to 3.0V.
  • a secondary battery system including a charge / discharge control unit controlled by voltage, wherein the electrolyte is a solution in which lithium salt is dissolved in an ether solvent, and the charge / discharge control unit controls the charge / discharge voltage to 1.0 to 3.0V.
  • lithium ions in the electrolyte may be co-intercalated into the MoS 2 electrode by forming a complex with the ether solvent.
  • the ether solvent is one or more selected from the group consisting of dimethyl ether (DME), diethylene glycol monomethyl ether (DGM) and triethylene glycol monomethyl ether (TGM), or a mixture thereof Can be everyday.
  • DME dimethyl ether
  • DGM diethylene glycol monomethyl ether
  • TGM triethylene glycol monomethyl ether
  • the ether solvent may be a mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM).
  • DME dimethyl ether
  • TGM triethylene glycol monomethyl ether
  • the mixing ratio of the mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM) may be 1: 9 to 9: 1 by volume ratio.
  • the lithium salt may be at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiTFSI, and LiCF 3 SO 3 , or a mixture thereof.
  • the concentration of the lithium salt may be 0.6 to 3 mol / L.
  • the MoS 2 electrode may include a MoS 2 active material, a conductive material and a binder.
  • the conductive material may be at least one carbon material selected from the group consisting of carbon nanofibers, carbon nanotubes, conductive graphite, acetylene black, Super P, KS6, and Vulcan XC-72, or a mixture thereof. have.
  • the binder may be carboxymethyl cellulose sodium salt (NaCMC) or poly (vinylidene fluoride) (PVDF).
  • NaCMC carboxymethyl cellulose sodium salt
  • PVDF poly (vinylidene fluoride)
  • the MoS 2 electrode may be made of 5-15 wt% of the conductive material, 5-10 wt% of the binder, and the remainder of the MoS 2 active material.
  • the binder may be used by dissolving in a solvent.
  • the solvent may be distilled water for NaCMC and N-methyl pyrrolidone (NMP) for PVdF.
  • the counter electrode material may be selected from the group consisting of Li, a metal of Na, or a mixture thereof.
  • the separator may be at least one microporous membrane selected from glass fibers, polyethylene (PE) and polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • the secondary battery system according to the present invention uses an ether solvent which can be co-inserted with lithium ions between MoS 2 layers as an electrolyte solvent, and controls the charging and discharging voltage conditions at 1.0 to 3.0 V, thereby controlling the rate-of-charge characteristics and lifetime of the battery. Electrochemical characteristics, such as a characteristic, can be improved.
  • XRD X-ray diffraction
  • Figure 3 is a (a) transmission electron microscope (TEM) and (b) high magnification transmission electron microscope (HRTEM) of MoS 2 synthesized for the production of Li / MoS 2 secondary battery according to an embodiment of the present invention.
  • TEM transmission electron microscope
  • HRTEM high magnification transmission electron microscope
  • FIG. 5 is a graph showing the rate characteristic of a secondary battery during charge / discharge at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in TGM according to an embodiment of the present invention.
  • a second electrode (a) the scan speed by cyclic voltammetry (CV) graph, (b) log i for log v graphs, (c) similar to the capacitive (Pseudocapacitive) histogram and (d) represents the ratio of the behavior similar capacity
  • a cyclic voltammetry (CV) graph showing the pseudocapacitive behavior is shown.
  • FIG. 17 illustrates a voltage range of 0.7 to 3.0 V in a Li / MoS 2 secondary battery including an electrolyte in which 1 M LiCF 3 SO 3 lithium salt is dissolved in tetraglycol dimethyl ether (TEGDME) electrolyte according to a comparative example of the present invention.
  • TEGDME tetraglycol dimethyl ether
  • a secondary battery at the time of charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in EC / DEC (v / v 1: 1) according to a comparative example of the present invention. It is a rate characteristic graph of a battery.
  • the present invention provides a secondary battery system including a lithium ion secondary battery including a MoS 2 electrode, and a charge and discharge control unit for controlling charge and discharge of the lithium ion secondary battery by voltage.
  • a secondary battery system specifically includes a lithium ion secondary battery including a MoS 2 electrode, a counter electrode material, a separator positioned between the MoS 2 electrode and the counter electrode material, and an electrolyte, and charge and discharge of the lithium ion secondary battery. It includes a charge and discharge control unit controlled by the voltage.
  • MoS 2 molybdenum sulfide
  • MoS 2 is one of the sulfide-based materials having a layered structure, as described below, during the charging process, lithium ions are inserted between the MoS 2 layers and thereafter.
  • Lithium has a reaction mechanism that combines with sulfur to form Li 2 S, and has a high discharge capacity with a theoretical capacity of 670 mAh / g.
  • the present inventors found that by controlling the voltage range of charge and discharge in the range of 1.0 to 3.0 V, only the insertion reaction of lithium ions can be controlled in the secondary battery including the MoS 2 electrode (Experimental Example 1 Reference).
  • the inventors have found that the electrochemical properties of MoS 2 materials vary depending on the solvent conditions of the electrolyte when the charge and discharge voltage is controlled to 1.0 to 3.0V in the secondary battery system. Specifically, since the conventional case, which typically use a carbonate-based solvent is used as is size is less Li ions only and inserted in the interlayer of MoS 2 as the solvent of the electrolyte is not greater the difference between the inter-layer spacing of MoS 2 in accordance with the cycles, capacity and The rate property also shows a low value, but when using an ether solvent, as the charge and discharge cycle proceeds, the interlayer spacing of MoS 2 increases and it is confirmed that the electrochemical properties such as the capacity and the rate property are improved (see Experimental Example 2). .
  • the present invention is controlled to a voltage range of 1.0 ⁇ 3.0V showing only the insertion reaction of lithium ions in the secondary battery system including the MoS 2 electrode, and the lithium ion by using an ether solvent as the electrolyte solvent in the voltage range It is characterized by improving the electrochemical characteristics of the battery due to co-intercalation into the MoS 2 electrode by complexing with an ether solvent.
  • the electrolyte may be a solution in which lithium salt is dissolved in an ether solvent as an electrolyte solvent.
  • the ether solvent may be at least one selected from the group consisting of dimethyl ether (DME), diethylene glycol monomethyl ether (DGM) and triethylene glycol monomethyl ether (TGM), or a mixed solvent thereof.
  • DME dimethyl ether
  • DGM diethylene glycol monomethyl ether
  • TGM triethylene glycol monomethyl ether
  • the ether solvent may be a mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM).
  • DME dimethyl ether
  • TGM triethylene glycol monomethyl ether
  • the DME is excellent for improving battery life
  • the TGM has been shown to be excellent for improving the rate characteristic of the battery
  • the mixed solvent of the two may improve both the life and rate characteristic of the battery.
  • the mixing ratio of the mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM) may be 1: 9 to 9: 1 by volume ratio.
  • the lithium salt may be used a lithium salt commonly used in the art, for example, at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiTFSI and LiCF 3 SO 3 , or a mixture thereof. have.
  • the concentration of the lithium salt is preferably in the range of 0.6 to 3 mol / L.
  • the concentration of the lithium salt is preferably in the range of 0.6 to 3 mol / L.
  • the MoS 2 electrode may include a MoS 2 active material, a conductive material and a binder.
  • the conductive material and the binder may be used commonly used in the art.
  • the conductive material may be at least one carbon material selected from the group consisting of carbon nanofibers, carbon nanotubes, conductive graphite, acetylene black, Super P, KS6, and Vulcan XC-72, or a mixture thereof. .
  • the binder may be carboxymethyl cellulose sodium salt (NaCMC) or poly (vinylidene fluoride) (PVDF).
  • NaCMC carboxymethyl cellulose sodium salt
  • PVDF poly (vinylidene fluoride)
  • the binder may be dissolved in a solvent, and the solvent may be distilled water for NaCMC, and N-methyl pyrrolidone (NMP) for PVdF.
  • solvent may be distilled water for NaCMC, and N-methyl pyrrolidone (NMP) for PVdF.
  • the MoS 2 electrode may be made of 5 to 15 wt% of the conductive material, 5 to 10 wt% of the binder, and the remainder of the MoS 2 active material, but is not limited thereto.
  • the MoS 2 electrode may be prepared by mixing a MoS 2 active material, a conductive material, and a binder with a solvent to prepare a slurry, and then applying and drying the slurry on a current collector.
  • the counter electrode material may be conventionally used in the art, and may be specifically selected from the group consisting of a metal of Li, Na, or a mixture thereof.
  • the separator may be one commonly used in the art, and may be one or more microporous membranes selected from glass fiber, polyethylene (PE) and polypropylene (PP).
  • a laminated separator in which a heat-resistant layer containing heat-resistant inorganic fillers such as silica, alumina and boehmite is formed on one or both surfaces of the microporous membrane.
  • the laminated electrode body is loaded into the exterior body, and the electrolyte is injected into the exterior body to immerse the electrode body in the electrolyte. It can be produced by sealing the opening of the exterior body.
  • an exterior body an exterior can made of steel, aluminum or aluminum alloy tubular can (eg, cylindrical or cylindrical), or an outer body composed of a laminated film on which metal is deposited can be used.
  • the lithium ion secondary battery of the present invention is used in a battery system having a charge and discharge control unit for controlling the charge and discharge of the battery by the voltage, wherein the rate-of-rate characteristics of the battery by controlling the charge and discharge voltage conditions to 1.0 ⁇ 3.0V, Electrochemical characteristics, such as a lifetime characteristic, can be improved.
  • the battery system of the present invention includes the lithium ion secondary battery of the present invention and the charge / discharge control unit.
  • the battery system of the present invention may be configured by various conventionally known battery systems. Applicable Specifically, the battery system may include, for example, a battery, a rack for fixing a battery pack or a battery module described later, a cooling fan, and the like.
  • adopted for the battery system known conventionally can be applied also to the said charge / discharge control part.
  • the battery system of the present invention may have one or two or more lithium ion secondary batteries of the present invention
  • the lithium ion secondary battery used in the secondary battery system of the present invention is a battery pack packaged in a plurality of
  • the battery pack may be in the form of a battery module having a plurality of such battery packs.
  • the prepared product was shown in FIG. 1 by X-ray diffraction (XRD).
  • the pattern of all peaks of the product was consistent with the literature value of MoS 2 (JCPDS no. 37-1492).
  • the peak seen at 14.2 ° is a peak corresponding to the (002) crystal plane and shows the layer structure characteristic, and no peak other than MoS 2 was found.
  • the prepared material was confirmed to be MoS 2 .
  • FIG. 2 is a photo scanning electron microscopy of the resulting MoS 2 (SEM)
  • Figure 3 (a) is a general transmission electron microscope (TEM) photograph of the resulting MoS 2
  • Figure 3 (b) is a high magnification of the resulting MoS 2 Transmission electron microscope (HRTEM) photographs.
  • the prepared MoS 2 exhibited the appearance of the corrugated nanoplates assembled.
  • the sheets of the layered structure can be confirmed, and the interlayer spacing was analyzed to be 0.64 nm.
  • a slurry was prepared by mixing 80 wt% MoS 2 powder, 10 wt% Super P conductive material and 10 wt% PVdF binder in N-methyl pyrrolidone (NMP) solvent. The slurry was uniformly coated on Cu foil and then vacuum dried at 110 ° C. for 12 hours to form a MoS 2 electrode.
  • the MoS 2 electrode material had a density of 2.0 mg / cm 2 and was cut into 10 mm diameter circles.
  • a battery was manufactured with a 2032 type coin cell. Specifically, lithium metal was prepared in a circular shape of 16 mm and used as a counter electrode and a reference electrode, and a MoS 2 electrode of Preparation Example 2 was used as a cathode, glass fiber was used as a separator, and 1M of A solution in which LiTFSI electrolyte salt was dissolved in a DME solvent was used as an electrolyte. This process was carried out in a glove box filled with argon.
  • the prepared battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V, and measured the life characteristics of the battery is shown in Figure 4.
  • the Li / MoS 2 secondary battery including DME, an ether solvent, as an electrolyte solvent was charged and discharged in a voltage range of 1.0 to 3.0 V, and the first discharge capacity was 228 mAh / g, and 160 after 40 cycles. It has been shown to remain constant at a capacity of mAh / g.
  • a lithium ion secondary battery was prepared in the same manner as in Preparation Example 3, except that a solution in which 1 M LiTFSI electrolyte salt was dissolved in a TGM solvent was used as an electrolyte.
  • the manufactured battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V, it is shown in Figure 5 by measuring the rate characteristic.
  • the Li / MoS 2 secondary battery including TGM which is an ether solvent, as an electrolyte solvent has a current density of 0.05 to 0.1, 0.2, 0.5 A / g when charged and discharged in a voltage range of 1.0 to 3.0 V.
  • the discharge capacity was measured at 251, 232, 218, 205 mAh / g, and increased to 1, 2, 5 A / g, and 189, 162, 102 mAh / g.
  • the Li / MoS 2 secondary battery according to the present invention includes an ether solvent as an electrolyte solvent, and the charge / discharge voltage range is limited to 1.0 to 3.0 V, thereby rapidly reducing the discharge capacity even when the current density increases by 1 A / g or more. It can be seen that it shows excellent rate property.
  • the manufactured battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V, measured the life characteristics of the battery is shown in Figure 6, the rate characteristic is shown in Figure 7 measured.
  • the first discharge capacity was 232 mAh / g, and after 40 cycles, the capacity was 242 mAh / g, which showed the effect of improving the life characteristics than the DME solvent alone.
  • Li / MoS 2 secondary batteries using a mixed solvent of DME and TGM, which are ether solvents, as an electrolyte solvent have a current density of 0.05 to 0.1 when charging and discharging in a voltage range of 1.0 to 3.0V.
  • the discharge capacities were increased to 253, 246, 236, 226, 214 mAh / g with increasing 0.2, 0.5, 1 A / g and at current densities of 2, 5, 10, 20, and 50 A / g.
  • the capacity of 194, 156, 128, 117, and 63 mAh / g shows excellent rate-rate characteristics because the discharge capacity does not drop rapidly even when the current density increases by 1 A / g or more, which is an improvement over TGM solvent alone. Indicated.
  • the prepared battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V, and measured in the life characteristics of the battery is shown in Figure 8, it is shown in Figure 9 by measuring the rate characteristic.
  • the discharge capacity was 221 mAh / g in the first cycle and 185 mAh / g after 40 cycles, thereby improving the lifespan characteristics than the dimethyl ether (DME) solvent alone.
  • the current density was increased from 0.05 to 0.1, 0.2, 0.5, 1 A / g, and the discharge capacity was measured at 236, 226, 221, 219, 214 mAh / g, 2, Capacities of 196, 170, 120, 100, and 40 mAh / g at current densities of 5, 10, 20, and 50 A / g ensure that the discharge capacity does not drop rapidly even when the current density increases by 1 A / g or more. Therefore, it exhibited excellent rate-of-velocity properties, which showed an improved value over triethylene glycol monomethyl ether (TGM) solvent alone.
  • TGM triethylene glycol monomethyl ether
  • the manufactured battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V.
  • the lifetime characteristics of the Li / MoS 2 secondary battery charged and discharged at a voltage range of 1.0 to 3.0 V and a current density of 100 mA / g are measured and shown in FIG. 10.
  • the Li / MoS 2 secondary battery was shown in FIG. 11 by measuring the discharge capacity while performing 2000 cycles under the condition of a current density of 1 A / g.
  • the Li / MoS 2 secondary battery according to the present invention discharges as the current density increases from 0.05 to 0.1, 0.2, 0.5, 1 A / g during charge and discharge in a voltage range of 1.0 to 3.0 V.
  • the capacity ranged from 243 to 233, 223, 218, 213 mAh / g, and the discharge capacity increased to 206, 187, 165, 134, 77 as the current density increased to 2, 5, 10, 20, 50 A / g. mAh / g.
  • the Li / MoS 2 secondary battery according to the present invention exhibits excellent rate-rate characteristics because the discharge capacity does not drop rapidly even when the current density increases by more than 1 A / g by limiting the charge / discharge voltage range to 1.0 to 3.0 V. have.
  • the state of the MoS 2 electrode of the Li / MoS 2 secondary battery charged / discharged at a voltage range of 1.0 to 3.0 V is determined by a high magnification transmission electron microscope for each cycle. Observations were made, and the interlayer spacing of the MoS 2 electrodes was measured and the results are shown in FIG. 14.
  • (a) is a CV curve for various scanning speeds of the MoS 2 electrode
  • (b) is a graph showing log i (current) vs. log V (voltage).
  • (c) is a bar graph showing the ratio of pseudocapacitive behavior
  • (d) is a CV graph showing pseudocapacitive behavior.
  • Equation 1 The relationship between the current i and the scanning speed v is shown in Equations 1 and 2 below.
  • a and b are adjustable variables. If b is 1, the electrochemical reaction follows pseudocapacitive behavior, and if b is 0.5, the electrochemical reaction results in ionic diffusion.
  • FIG. 15 (b) shows a log ( i ) vs. log ( v ) curve for each peak obtained from the CV graph of FIG. 15 (a), wherein the values of peaks 1, 2, and 3 are 0.79 and 0.84, respectively. And 0.84.
  • Equation (3) from k 1 and k 2 v v 0 .5 is the expression (4) represents the contribution of similar capacity and ion diffusion in each of the electrochemical reaction, k 1 represents the gradient of v 0.5.
  • the pseudocapacitive contributions at 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, and 2 mV / s through the above equations are 47.6%, 48.2%, and 51.7%, respectively. , 55.3%, 59.3%, 63.3%, 68.7%, and 75.2%.
  • MoS 2 shows the ion storage mechanism by co-intercalation reaction under the electrolyte condition of 1.0 ⁇ 3.0V.
  • This reaction mechanism inhibits the formation of LiS, and in particular, it is possible to prevent the formation of S due to repetitive charging and discharging, thereby preventing the deterioration of the rate characteristic and the degradation of the material.
  • the co-insertion reaction controls the formation of the SEI layer, thus contributing to increasing the rate property.
  • reaction mechanism of the secondary battery since the reaction mechanism of the secondary battery exhibits both quasi-capacitive behavior, which is a characteristic of a capacitor, and ion diffusion behavior, which is a characteristic of a battery, it may exhibit high rate-rate characteristics and lifetime characteristics.
  • Comparative Example 1 A lithium secondary battery including a MoS 2 electrode by a conventional method
  • a lithium ion secondary battery including a MoS2 electrode was manufactured by the method of Example 1 of Korean Patent Laid-Open Publication No. 10-2009-0092070.
  • MoS 2 powder was ball milled with a zirconia ball for 3 hours to reduce powder particle size.
  • the weight ratio of the ball and the powder was set to 20: 1.
  • N-methylpyrrolidone (NMP) which is a dispersion solvent, is added to a mixture of MoS 2 powder, which is the active material, acetylene carbon black, and binder PVdF-co-HFP, in a 60:20:20 weight ratio.
  • NMP N-methylpyrrolidone
  • Zrconia ball zirconia ball
  • a predetermined amount of the prepared slurry was cast on a glass plate to remove the solvent at room temperature, dried at 60 ° C. for 24 hours to prepare a MoS 2 electrode, and then stored in an argon atmosphere glove box.
  • the MoS 2 positive electrode prepared above and 1M LiCF 3 SO 3 lithium salt were used as a liquid electrolyte dissolved in a tetraglycol dimethyl ether (TEGDME) electrolyte solution, and a model number 2400 of celgard was used as a polarizing plate.
  • TEGDME tetraglycol dimethyl ether
  • a lithium molybdenum sulfide (Li / MoS 2 ) battery was prepared by laminating in a glove box using lithium foil as a negative electrode.
  • the prepared Li / MoS 2 batteries were charged / discharged at room temperature after 2 hours of rest at room temperature.
  • the current density during charging / discharging was 50 mA / g-MoS 2 , the charging end voltage was 3.0V, and the discharge end voltage was 0.7V.
  • the pause between charge and discharge gave 10 minutes.
  • the voltage range is 1.0 ⁇ 3.0 Cyclic characteristics in the case of adjusting to V and adjusting to 0.1 to 3.0 V were measured and shown in FIGS. 6 and 16, respectively.
  • the lithium ion secondary battery including the MoS 2 electrode is sensitively affected by the charge / discharge voltage range, and the voltage condition is preferably adjusted to 1.0V to 3.0V so that the conversion reaction does not occur. Able to know.
  • a lithium ion secondary battery was manufactured in the same manner as in Preparation Example 3, except that a solution in which 1 M LiTFSI electrolyte salt was dissolved in an ethyl carbonate (EC) / diethyl carbonate (DEC) solvent was used as an electrolyte.
  • EC ethyl carbonate
  • DEC diethyl carbonate
  • the manufactured battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V.
  • the manufactured battery was charged and discharged in the voltage range of 1.0 ⁇ 3.0V, measured the life characteristics of the battery is shown in Figure 18, and the rate characteristic is shown in Figure 19.
  • the discharge capacity was 177 mAh / g in the first cycle and 162 mAh / g after 40 cycles, thereby showing lower life characteristics than when using an ether solvent.
  • the current density was increased from 0.05 to 0.1, 0.2, 0.5 A / g, and the discharge capacity was measured at 181, 158, 140, 113 mAh / g, and 1, 2, 5,
  • the capacities of 89, 66, 35, 28, 17, and 5 mAh / g were significantly lower than when using ether solvents.
  • the secondary battery system according to the present invention uses an ether solvent that can be co-inserted between the layers of MoS 2 as the electrolyte solvent and by controlling the charging and discharging voltage conditions to 1.0 ⁇ 3.0V, such as the rate characteristics, life characteristics, etc. of the battery It is possible to improve the electrochemical properties of.

Abstract

The present invention relates to a lithium secondary battery system comprising a molybdenum sulfide (MoS2) electrode and, more specifically, to a lithium secondary battery system having electrochemical properties enhanced by the control of charge/discharge voltages and the co-insertion of lithium-electrolyte through solvent electrolyte control. In the secondary battery system according to the present invention, an ether-based solvent able to be co-inserted, together with lithium ions, into the interlayer of MoS2 is employed as an electrolyte solvent and the charge/discharge voltage condition is controlled to 1.0-3.0 V, thereby enhancing electrochemical properties of the battery, such as the battery's rate, lifespan, and so forth.

Description

리튬-전해질 용매의 공삽입을 통해 전기화학특성이 향상된 몰리브덴 설파이드 전극을 포함하는 이차전지 시스템Secondary battery system including molybdenum sulfide electrode with improved electrochemical properties through co-insertion of lithium-electrolyte solvent
본 발명은 몰리브덴 설파이드(MoS2) 전극을 포함하는 리튬이온 이차전지 시스템에 관한 것으로, 더욱 상세하게는 충방전 전압 및 전해질 제어를 통한 리튬-전해질 용매의 공삽입을 통해 전기화학특성이 향상된 리튬이온 이차전지 시스템에 관한 것이다.The present invention relates to a lithium ion secondary battery system including a molybdenum sulfide (MoS 2 ) electrode, and more particularly lithium ion with improved electrochemical characteristics through co-insertion of a lithium-electrolyte solvent through charge and discharge voltage and electrolyte control It relates to a secondary battery system.
최근 들어 전자, 통신, 컴퓨터산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC 등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬이온이차전지에 대한 수요가 나날이 증가하고 있다. 특히 내연기관과 리튬이차전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본 및 유럽 등에서 활발히 진행 중에 있다.Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and the demand for lithium ion secondary battery as a power source to drive these portable electronic information communication devices is increasing day by day It is increasing. In particular, research on power sources for electric vehicles by hybridizing internal combustion engines and lithium secondary batteries has been actively conducted in the US, Japan, and Europe.
현재 시판되는 소형 리튬이온이차전지는 양극에 LiCoO2를, 음극에 탄소를 사용한다. 현재 가장 많이 사용되는 탄소 음극의 경우에는 리튬 환원전위 대비 0V에 가까운 전압평탄구역을 나타낸다. 또한, 많은 연구가 이루어지고 있는 합금화(alloying) 및 전환(conversion) 반응 메커니즘을 가지는 음극 소재 역시 리튬 환원전위 대비 0.1V 또는 0.01V까지 반응이 일어난다. 하지만, 0V 가까이 음극을 충전하게 되면 리튬 금속이 석출되어 안정성에서 문제가 된다. 이러한 문제를 해결하기 위해서, Li4Ti5O12 또는 TiO2와 같은 Ti-기반의 음극소재에 대한 연구가 이루어지고 있다. 하지만, 이러한 Ti-기반의 음극소재는 낮은 전자전도도와 상대적으로 낮은 이론용량(200 mAh/g 이하)과 같은 한계를 가지고 있다. 따라서, 적절한 이론용량, 급속충전 특성 및 안정성을 동시에 가지는 새로운 소재에 대한 연구가 필요한 상황이다. Commercially available small lithium ion secondary batteries use LiCoO 2 for the positive electrode and carbon for the negative electrode. In the case of the carbon anode which is most used at present, it shows a voltage flat area close to 0V compared to the lithium reduction potential. In addition, a cathode material having an alloying and conversion reaction mechanism, in which much research is being conducted, also reacts to 0.1V or 0.01V relative to the lithium reduction potential. However, when the negative electrode is charged near 0V, lithium metal precipitates, which is a problem in stability. In order to solve this problem, research on Ti-based anode materials such as Li 4 Ti 5 O 12 or TiO 2 has been made. However, these Ti-based negative electrode materials have limitations such as low electronic conductivity and relatively low theoretical capacity (200 mAh / g or less). Therefore, there is a need for research on a new material having appropriate theoretical capacity, rapid charging characteristics and stability at the same time.
이에 탄소 음극, Ti-기반의 음극소재를 대체할 수 있는 새로운 물질로서 2성분 황화물이 연구되고 있으며, 특히 MoS2는 높은 이론적 용량으로 탄소 음극을 대체할 음극물질로서 주목받고 있다.Accordingly, bicomponent sulfides are being studied as new materials that can replace carbon anodes and Ti-based anode materials. In particular, MoS 2 is attracting attention as a cathode material to replace carbon cathodes with high theoretical capacity.
상기 몰리브덴 설파이드(MoS2)는 층상구조를 가지고 있는 황화물 계열 소재 중 하나로서, 하기와 같이, 충전과정에서 리튬 이온은 MoS2 층 사이에 삽입되는 반응을 보이며 그 이후에 리튬이 황과 결합하여 Li2S를 형성하는 반응 메커니즘을 가지고, 이론 용량이 670 mAh/g으로 높은 방전용량을 가지며, 상온에서 안정적이고, 중금속을 사용하지 않아 환경 친화적인 장점을 가지고 있다.The molybdenum sulfide (MoS 2 ) is one of the sulfide-based materials having a layered structure, as shown below, during the charging process, lithium ions are inserted between the MoS 2 layers, after which lithium is combined with sulfur to form Li It has a reaction mechanism to form 2 S, the theoretical capacity is 670 mAh / g, has a high discharge capacity, is stable at room temperature, and does not use heavy metals, has an environmentally friendly advantage.
- 첫번째 과정 : xLi + MoS2 → LixMoS2 (삽입(Insertion) 반응)First process: xLi + MoS 2 → Li x MoS 2 (Insertion reaction)
- 두번째 과정: LixMoS2 + (4-x)Li → Mo + 2Li2S (전환(Conversion) 반응)Second process: Li x MoS 2 + (4-x) Li → Mo + 2Li 2 S (conversion reaction)
일부 보고에 의하면, 이론적인 충전과정에 의해 형성된 Mo + 2Li2S는 방전과정에 의해서 다시 MoS2가 형성될 수 있다고 하지만, 전환 반응이 수반하는 큰 부피팽창은 구조에 영향을 미치기 때문에 MoS2의 형성보다는 Li + S ↔ Li2S의 반응이 이루어진다는 연구 결과가 보고되고 있다. 이러한 반응 메커니즘에서 형성된 황(S)의 경우에는 절연체 특성 및 폴리설파이드의 셔틀 효과는 느린 운동(kinetic)과 낮은 수명특성을 야기한다. 따라서, 0.01V 또는 0.1V까지의 충전을 하게 되면, 리튬 덴드라이트 형성 및 앞서 언급했던 황의 특성으로 인해 MoS2 음극으로 구성된 전지는 불안정하게 된다. 또한, MoS2의 율속특성은 높지가 않다.According to some report, because it affects the Mo + 2Li 2 S is said to be the MoS 2 is formed again by the discharge process, but large volume expansion for a conversion reaction involves the structure formed by the theoretical charging process of MoS 2 It is reported that the reaction of Li + S ↔ Li 2 S occurs rather than formation. In the case of sulfur (S) formed in this reaction mechanism, the insulator properties and the shuttle effect of polysulfide lead to slow kinetic and low lifespan characteristics. Therefore, when charged to 0.01V or 0.1V, the battery composed of the MoS 2 negative electrode becomes unstable due to the formation of lithium dendrite and the aforementioned characteristics of sulfur. In addition, the rate characteristic of MoS 2 is not high.
이와 같이, MoS2는 낮은 전기전도도 및 충방전 과정에서 Mo와 S의 분해가 발생하여 부피변화가 발생하고, 이러한 부피변화로 의하여 낮은 수명특성이 문제점으로 지적되고 있어 상용화하기 어려운 실정이다.As such, MoS 2 is difficult to be commercialized due to the decomposition of Mo and S in the process of low electrical conductivity and charging and discharging, resulting in a change in volume.
따라서, MoS2의 분해 발생을 억제시킴으로써 용량 감소를 완화시킬 수 있는 리튬이온 이차전지의 전기화학 특성 향상 방법에 대한 연구 개발이 시급한 실정이다.Therefore, there is an urgent need for research and development on a method for improving the electrochemical characteristics of a lithium ion secondary battery capable of alleviating the reduction of capacity by suppressing the decomposition of MoS 2 .
이에 본 발명자는 MoS2의 분해 발생을 억제시키기 위해 리튬 이온의 삽입 반응만 일어나도록 제어하는 방법을 연구하던 중, 충방전 전압을 1.0~3.0V로 제어하고, 전해질의 용매 조건을 조절하여, 에테르계 용매 사용시 충방전 사이클이 진행됨에 따라 Li 이온이 에테르계 용매와 착물을 형성하여 함께 MoS2의 층간으로 삽입되는 공-삽입(co-intercalation) 효과에 의해 전지의 전기화학특성이 향상됨을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors were studying a method of controlling only insertion reaction of lithium ions to suppress the decomposition of MoS 2 , while controlling the charge and discharge voltage to 1.0 to 3.0V, and adjusting the solvent conditions of the electrolyte, ether As the charge / discharge cycle progresses when using the solvent, Li ions form a complex with the ether solvent and the electrochemical characteristics of the battery are improved by the co-intercalation effect of intercalating MoS 2 into the interlayer. The present invention has been completed.
본 발명은 상기 문제를 해결하기 위한 것으로, 본 발명의 목적은 전기화학특성이 향상된, 몰리브덴 설파이드 전극을 포함하는 이차전지 시스템을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide a secondary battery system comprising a molybdenum sulfide electrode, the electrochemical properties improved.
상기 목적을 달성하기 위하여, 본 발명은 MoS2 전극, 상대 전극물질, MoS2 전극과 상대 전극물질 사이에 위치한 분리막, 및 전해질을 포함하는 리튬이온 이차전지와, 상기 리튬이온 이차전지의 충방전을 전압에 의해 제어하는 충방전 제어부를 포함하는 이차전지 시스템이되, 상기 전해질은 에테르계 용매에 리튬염이 용해된 용액이고, 상기 충방전 제어부는 충방전 전압을 1.0~3.0V로 제어하는 것을 특징으로 하는 이차전지 시스템을 제공한다.In order to achieve the above object, the present invention provides a lithium ion secondary battery comprising a MoS 2 electrode, a counter electrode material, a separator located between the MoS 2 electrode and the counter electrode material, and an electrolyte, and charge and discharge of the lithium ion secondary battery A secondary battery system including a charge / discharge control unit controlled by voltage, wherein the electrolyte is a solution in which lithium salt is dissolved in an ether solvent, and the charge / discharge control unit controls the charge / discharge voltage to 1.0 to 3.0V. Provided is a secondary battery system.
또한 바람직하게는, 상기 이차전지 시스템에서 충방전 전압을 1.0~3.0V로 제어시, 상기 전해질 내의 리튬 이온이 상기 에테르계 용매와 착물을 이루어 상기 MoS2 전극 내로 공삽입(co-intercalation)될 수 있다.Also preferably, when the charge and discharge voltage is controlled to 1.0 to 3.0V in the secondary battery system, lithium ions in the electrolyte may be co-intercalated into the MoS 2 electrode by forming a complex with the ether solvent. have.
또한 바람직하게는, 상기 에테르계 용매는 디메틸에테르 (DME), 디에틸렌 글리콜 모노메틸 에테르(DGM) 및 트리에틸렌 글리콜 모노메틸 에테르 (TGM)로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합 용매일 수 있다.Also preferably, the ether solvent is one or more selected from the group consisting of dimethyl ether (DME), diethylene glycol monomethyl ether (DGM) and triethylene glycol monomethyl ether (TGM), or a mixture thereof Can be everyday.
또한 바람직하게는, 상기 에테르계 용매는 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매일 수 있다.Also preferably, the ether solvent may be a mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM).
또한 바람직하게는, 상기 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매의 혼합 비율은 부피비로 1:9 ~ 9:1일 수 있다.Also preferably, the mixing ratio of the mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM) may be 1: 9 to 9: 1 by volume ratio.
또한 바람직하게는, 상기 리튬염은 LiPF6, LiClO4, LiTFSI 및 LiCF3SO3로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합물일 수 있다.Also preferably, the lithium salt may be at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiTFSI, and LiCF 3 SO 3 , or a mixture thereof.
또한 바람직하게는, 상기 리튬염의 농도는 0.6~3 mol/L일 수 있다.Also preferably, the concentration of the lithium salt may be 0.6 to 3 mol / L.
또한 바람직하게는, 상기 MoS2 전극은 MoS2 활물질, 도전재 및 바인더를 포함할 수 있다.Also preferably, the MoS 2 electrode may include a MoS 2 active material, a conductive material and a binder.
또한 바람직하게는, 상기 도전재는 탄소나노섬유, 탄소나노튜브, 전도성 흑연, 아세틸렌블랙, Super P, KS6, 및 Vulcan XC-72로 이루어지는 군으로부터 선택되는 1종 이상의 탄소재, 또는 이들의 혼합물일 수 있다.Also preferably, the conductive material may be at least one carbon material selected from the group consisting of carbon nanofibers, carbon nanotubes, conductive graphite, acetylene black, Super P, KS6, and Vulcan XC-72, or a mixture thereof. have.
또한 바람직하게는, 상기 바인더는 카르복시메틸 셀룰로스 나트륨 염(NaCMC) 또는 폴리(비닐리덴 플루오라이드)(PVDF)일 수 있다.Also preferably, the binder may be carboxymethyl cellulose sodium salt (NaCMC) or poly (vinylidene fluoride) (PVDF).
또한 바람직하게는, 상기 MoS2 전극은 도전재 5~15 중량%, 바인더 5~10 중량% 및 나머지는 MoS2 활물질로 이루어질 수 있다.Also preferably, the MoS 2 electrode may be made of 5-15 wt% of the conductive material, 5-10 wt% of the binder, and the remainder of the MoS 2 active material.
또한 바람직하게는, 상기 바인더는 용매에 용해시켜 사용하며, 상기 용매는 NaCMC의 경우 증류수를 사용하고, PVdF의 경우 N-메틸 피롤리돈(NMP)을 사용할 수 있다.Also preferably, the binder may be used by dissolving in a solvent. The solvent may be distilled water for NaCMC and N-methyl pyrrolidone (NMP) for PVdF.
또한 바람직하게는, 상기 상대 전극물질은 Li, Na의 금속, 또는 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.Also preferably, the counter electrode material may be selected from the group consisting of Li, a metal of Na, or a mixture thereof.
또한 바람직하게는, 상기 분리막은 유리섬유, 폴리에틸렌(PE) 및 폴리프로필렌(PP) 중 선택되는 하나 이상의 미세다공막일 수 있다.Also preferably, the separator may be at least one microporous membrane selected from glass fibers, polyethylene (PE) and polypropylene (PP).
본 발명에 따른 이차전지 시스템은 전해질 용매로서 MoS2의 층간에 리튬 이온과 공-삽입될 수 있는 에테르계 용매를 사용하고, 충방전 전압 조건을 1.0~3.0V로 제어함으로써 전지의 율속 특성, 수명 특성 등의 전기화학특성을 향상시킬 수 있다.The secondary battery system according to the present invention uses an ether solvent which can be co-inserted with lithium ions between MoS 2 layers as an electrolyte solvent, and controls the charging and discharging voltage conditions at 1.0 to 3.0 V, thereby controlling the rate-of-charge characteristics and lifetime of the battery. Electrochemical characteristics, such as a characteristic, can be improved.
도 1은 본 발명의 일 실시예에 따른 Li/MoS2 이차전지의 제조를 위해 합성된 MoS2의 X-선 회절분석(XRD) 그래프이다.1 is an X-ray diffraction (XRD) graph of MoS 2 synthesized for the production of a Li / MoS 2 secondary battery according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 Li/MoS2 이차전지의 제조를 위해 합성된 MoS2의 주사전자현미경(SEM) 사진이다.2 is a scanning electron microscope (SEM) photograph of MoS 2 synthesized for the production of a Li / MoS 2 secondary battery according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 Li/MoS2 이차전지의 제조를 위해 합성된 MoS2의 (a) 투과전자현미경(TEM) 사진 및 (b) 고배율 투과전자현미경(HRTEM) 사진이다.Figure 3 is a (a) transmission electron microscope (TEM) and (b) high magnification transmission electron microscope (HRTEM) of MoS 2 synthesized for the production of Li / MoS 2 secondary battery according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 DME 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g)4 is a graph showing the life characteristics of a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in a DME according to an embodiment of the present invention (current density = 100 mA / g)
도 5는 본 발명의 일 실시예에 따른 TGM 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 율속 특성 그래프이다.FIG. 5 is a graph showing the rate characteristic of a secondary battery during charge / discharge at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in TGM according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 1:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g).FIG. 6 is a secondary battery in charge / discharge of a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in DME / TGM (v / v = 1: 1) according to an embodiment of the present invention. It is a graph of the life characteristics of the battery (current density = 100 mA / g).
도 7은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 1:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 율속 특성 그래프이다.FIG. 7 is a secondary battery for charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 1: 1) according to an embodiment of the present invention. It is a rate characteristic graph of a battery.
도 8은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 9:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g).8 is a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 9: 1) according to an embodiment of the present invention. It is a graph of the life characteristics of the battery (current density = 100 mA / g).
도 9는 본 발명의 일실시예에 따른 DME/TGM (v/v = 9:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 율속 특성 그래프이다.9 is a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 9: 1) according to an embodiment of the present invention. It is a rate characteristic graph of a battery.
도 10은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g).10 is a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention. It is a graph of the life characteristics of the battery (current density = 100 mA / g).
도 11은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 1A/g).11 is a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention. It is a graph of the life characteristics of the battery (current density = 1A / g).
도 12는 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 율속 특성 그래프 및 충방전 그래프이다.12 is a secondary battery when charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention. It is a rate characteristic graph and a charge / discharge graph of a battery.
도 13은 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전해질 용매, 1.0 V까지 방전한 MoS2 전극 및 3.0 V까지 충전한 MoS2 전극의 FT-IR 스펙트럼을 나타낸다.13 is a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention, an electrolyte solvent, a MoS 2 electrode discharged to 1.0 V, and The FT-IR spectrum of the MoS 2 electrode charged up to 3.0 V is shown.
도 14는 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 사이클별 MoS2의 고배율 투과전자현미경 사진 및 층간 간격 데이터를 나타낸다.FIG. 14 is a cycle of charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention. High magnification transmission electron micrographs and interlayer spacing data of stars MoS 2 are shown.
도 15는 본 발명의 일 실시예에 따른 DME/TGM (v/v = 3:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 MoS2 전극의 (a) 주사 속도별 순환 전압 전류법(CV) 그래프, (b) log i 대 log v 그래프, (c) 유사용량성(Pseudocapacitive) 거동의 비율을 나타내는 막대그래프 및 (d) 유사용량성(Pseudocapacitive) 거동을 나타내는 순환 전압 전류법(CV) 그래프를 나타낸다.FIG. 15 illustrates a MoS during charge / discharge at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including 1M LiTFSI electrolyte in DME / TGM (v / v = 3: 1) according to an embodiment of the present invention. a second electrode (a) the scan speed by cyclic voltammetry (CV) graph, (b) log i for log v graphs, (c) similar to the capacitive (Pseudocapacitive) histogram and (d) represents the ratio of the behavior similar capacity A cyclic voltammetry (CV) graph showing the pseudocapacitive behavior is shown.
도 16은 본 발명의 일 비교예에 따른 DME/TGM (v/v = 1:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 0.1~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g)FIG. 16 is a secondary battery in charge / discharge at a voltage range of 0.1 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in DME / TGM (v / v = 1: 1) according to a comparative example of the present invention. Graph of battery life characteristics (current density = 100 mA / g)
도 17은 본 발명의 일 비교예에 따른 1M의 LiCF3SO3 리튬 염을 테트라글리콜디메틸에테르 (TEGDME) 전해액에 녹인 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 0.7~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 50 mA/g).FIG. 17 illustrates a voltage range of 0.7 to 3.0 V in a Li / MoS 2 secondary battery including an electrolyte in which 1 M LiCF 3 SO 3 lithium salt is dissolved in tetraglycol dimethyl ether (TEGDME) electrolyte according to a comparative example of the present invention. This is a graph of the life characteristics of secondary batteries during charge and discharge (current density = 50 mA / g).
도 18은 본 발명의 일 비교예에 따른 EC/DEC (v/v = 1:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 수명 특성 그래프이다(전류밀도 = 100 mA/g).18 is a secondary battery in charge / discharge at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1M LiTFSI electrolyte in EC / DEC (v / v = 1: 1) according to a comparative example of the present invention. It is a graph of the life characteristics of the battery (current density = 100 mA / g).
도 19는 본 발명의 일 비교예에 따른 EC/DEC (v/v = 1:1) 내의 1M LiTFSI 전해질을 포함하는 Li/MoS2 이차전지에서, 전압 범위를 1.0~3.0 V로 충방전시 이차전지의 율속 특성 그래프이다.19 is a secondary battery at the time of charging and discharging at a voltage range of 1.0 to 3.0 V in a Li / MoS 2 secondary battery including a 1 M LiTFSI electrolyte in EC / DEC (v / v = 1: 1) according to a comparative example of the present invention. It is a rate characteristic graph of a battery.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.While the invention allows for various modifications and variations, specific embodiments thereof are illustrated by way of example in the drawings and will be described in detail below. However, it is not intended to be exhaustive or to limit the invention to the precise forms disclosed, but rather the invention includes all modifications, equivalents, and alternatives consistent with the spirit of the invention as defined by the claims.
본 발명은 MoS2 전극을 포함하는 리튬이온 이차전지와, 상기 리튬이온 이차전지의 충방전을 전압에 의해 제어하는 충방전 제어부를 포함하는 이차전지 시스템을 제공한다.The present invention provides a secondary battery system including a lithium ion secondary battery including a MoS 2 electrode, and a charge and discharge control unit for controlling charge and discharge of the lithium ion secondary battery by voltage.
본 발명에 따른 이차전지 시스템은 구체적으로 MoS2 전극, 상대 전극물질, MoS2 전극과 상대 전극물질 사이에 위치한 분리막, 및 전해질을 포함하는 리튬이온 이차전지와, 상기 리튬이온 이차전지의 충방전을 전압에 의해 제어하는 충방전 제어부를 포함한다.A secondary battery system according to the present invention specifically includes a lithium ion secondary battery including a MoS 2 electrode, a counter electrode material, a separator positioned between the MoS 2 electrode and the counter electrode material, and an electrolyte, and charge and discharge of the lithium ion secondary battery. It includes a charge and discharge control unit controlled by the voltage.
상기 몰리브덴 설파이드(MoS2) 전극에 있어서, 상기 MoS2는 층상구조를 가지고 있는 황화물 계열 소재 중 하나로서, 하기와 같이, 충전과정에서 리튬 이온은 MoS2 층 사이에 삽입되는 반응을 보이며 그 이후에 리튬이 황과 결합하여 Li2S를 형성하는 반응 메커니즘을 가지고, 이론 용량이 670mAh/g으로 높은 방전용량을 가진다.In the molybdenum sulfide (MoS 2 ) electrode, MoS 2 is one of the sulfide-based materials having a layered structure, as described below, during the charging process, lithium ions are inserted between the MoS 2 layers and thereafter. Lithium has a reaction mechanism that combines with sulfur to form Li 2 S, and has a high discharge capacity with a theoretical capacity of 670 mAh / g.
- 첫번째 과정 : xLi + MoS2 → LixMoS2 (삽입(Insertion) 반응)First process: xLi + MoS 2 → Li x MoS 2 (Insertion reaction)
- 두번째 과정: LixMoS2 + (4-x)Li → Mo + 2Li2S (전환(Conversion) 반응)Second process: Li x MoS 2 + (4-x) Li → Mo + 2Li 2 S (conversion reaction)
이러한 반응 메커니즘에서 형성된 황(S)의 경우에는 절연체 특성 및 폴리설파이드의 셔틀 효과는 느린 운동(kinetic)과 낮은 수명특성을 야기한다. 따라서, 0.01V 또는 0.1V까지의 충전을 하게 되면, 리튬 덴드라이트 형성 및 앞서 언급했던 황의 특성으로 인해 MoS2 음극으로 구성된 전지는 불안정하게 된다. 또한, MoS2의 율속특성은 높지가 않다.In the case of sulfur (S) formed in this reaction mechanism, the insulator properties and the shuttle effect of polysulfide lead to slow kinetic and low lifespan characteristics. Therefore, when charged to 0.01V or 0.1V, the battery composed of the MoS 2 negative electrode becomes unstable due to the formation of lithium dendrite and the aforementioned characteristics of sulfur. In addition, the rate characteristic of MoS 2 is not high.
따라서, MoS2 전극을 포함하는 이차전지의 전기화학특성을 향상시키기 위해서는 전지의 부반응인 전환반응이 일어나지 않고, 리튬 이온의 삽입 반응만 일어나도록 제어하는 것이 중요하다. Therefore, in order to improve the electrochemical characteristics of the secondary battery including the MoS 2 electrode, it is important to control only the insertion reaction of lithium ions without the conversion reaction, which is a side reaction of the battery.
이에, 본 발명자들은 충방전의 전압 영역을 1.0~3.0V의 범위로 제어함으로써, 상기 MoS2 전극을 포함하는 이차전지에서 리튬 이온의 삽입 반응만 일어나도록 제어할 수 있음을 알아내었다(실험예 1 참조).Thus, the present inventors found that by controlling the voltage range of charge and discharge in the range of 1.0 to 3.0 V, only the insertion reaction of lithium ions can be controlled in the secondary battery including the MoS 2 electrode (Experimental Example 1 Reference).
또한, 본 발명자들은 상기 이차전지 시스템에서 충방전 전압을 1.0~3.0V로 제어시, 전해질의 용매 조건에 따라 MoS2 소재의 전기화학특성이 달라짐을 발견하였다. 구체적으로, 전해질의 용매로서 종래 통상적으로 사용되는 카보네이트계 용매를 사용하는 경우에는 크기가 작은 Li 이온만이 MoS2의 층간으로 삽입되므로 사이클에 따른 MoS2의 층간 간격의 차이가 크지 않고, 용량 및 율속 특성도 낮은 값을 나타내나, 에테르계 용매 사용시에는 충방전 사이클이 진행됨에 따라 MoS2의 층간 간격이 증가하며, 용량 및 율속 특성 등의 전기화학특성이 향상됨을 확인하였다(실험예 2 참조). 이로부터, 에테르계 용매인 경우에는 Li 이온이 에테르계 용매와 착물을 형성하여 함께 MoS2의 층간으로 삽입됨을 알 수 있으며, 이러한 공-삽입(co-intercalation)에 의해 전지의 전기화학특성이 향상됨을 확인하였다.In addition, the inventors have found that the electrochemical properties of MoS 2 materials vary depending on the solvent conditions of the electrolyte when the charge and discharge voltage is controlled to 1.0 to 3.0V in the secondary battery system. Specifically, since the conventional case, which typically use a carbonate-based solvent is used as is size is less Li ions only and inserted in the interlayer of MoS 2 as the solvent of the electrolyte is not greater the difference between the inter-layer spacing of MoS 2 in accordance with the cycles, capacity and The rate property also shows a low value, but when using an ether solvent, as the charge and discharge cycle proceeds, the interlayer spacing of MoS 2 increases and it is confirmed that the electrochemical properties such as the capacity and the rate property are improved (see Experimental Example 2). . From this, it can be seen that in the case of the ether solvent, Li ions are complexed with the ether solvent to be inserted into the interlayer of MoS 2 together, and the electrochemical characteristics of the battery are improved by such co-intercalation. It was confirmed.
따라서, 본 발명은 MoS2 전극을 포함하는 이차전지 시스템에서 리튬 이온의 삽입 반응만을 보이는 1.0~3.0V의 전압 영역으로 제어하고, 상기 전압 영역에서 전해질 용매로서 에테르계 용매를 사용하여 리튬 이온이 상기 에테르계 용매와 착물을 이루어 상기 MoS2 전극 내로 공삽입(co-intercalation)됨으로 인해 전지의 전기화학특성을 향상시키는 것에 특징이 있다.Accordingly, the present invention is controlled to a voltage range of 1.0 ~ 3.0V showing only the insertion reaction of lithium ions in the secondary battery system including the MoS 2 electrode, and the lithium ion by using an ether solvent as the electrolyte solvent in the voltage range It is characterized by improving the electrochemical characteristics of the battery due to co-intercalation into the MoS 2 electrode by complexing with an ether solvent.
본 발명에 따른 이차전지 시스템에 있어서, 상기 전해질은 전해질 용매로서 에테르계 용매에 리튬염을 용해시킨 용액을 사용할 수 있다.In the secondary battery system according to the present invention, the electrolyte may be a solution in which lithium salt is dissolved in an ether solvent as an electrolyte solvent.
이때, 상기 에테르계 용매로는 디메틸에테르 (DME), 디에틸렌 글리콜 모노메틸 에테르(DGM) 및 트리에틸렌 글리콜 모노메틸 에테르 (TGM)로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합 용매일 수 있다.In this case, the ether solvent may be at least one selected from the group consisting of dimethyl ether (DME), diethylene glycol monomethyl ether (DGM) and triethylene glycol monomethyl ether (TGM), or a mixed solvent thereof. have.
바람직하게는, 상기 에테르계 용매는 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매일 수 있다. 상기 DME는 전지 수명 향상에 탁월하며, 상기 TGM은 전지의 율속 특성 향상에 탁월한 것으로 나타난 바, 이 둘의 혼합 용매는 전지의 수명과 율속 특성을 모두 향상시킬 수 있다.Preferably, the ether solvent may be a mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM). The DME is excellent for improving battery life, and the TGM has been shown to be excellent for improving the rate characteristic of the battery, and the mixed solvent of the two may improve both the life and rate characteristic of the battery.
상기 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매의 혼합 비율은 부피비로 1:9 ~ 9:1일 수 있다.The mixing ratio of the mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM) may be 1: 9 to 9: 1 by volume ratio.
상기 리튬염은 당업계에서 통상적으로 사용하는 리튬염을 사용할 수 있으며, 예를 들면, LiPF6, LiClO4, LiTFSI 및 LiCF3SO3로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합물일 수 있다.The lithium salt may be used a lithium salt commonly used in the art, for example, at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiTFSI and LiCF 3 SO 3 , or a mixture thereof. have.
상기 리튬염의 농도는 0.6~3 mol/L인 것이 바람직한 바, 상기 농도 범위를 벗어나는 경우에는 전기화학특성이 충분히 발현되지 않는 문제가 있다.The concentration of the lithium salt is preferably in the range of 0.6 to 3 mol / L. When the lithium salt is out of the concentration range, there is a problem in that the electrochemical characteristic is not sufficiently expressed.
본 발명에 따른 이차전지 시스템에 있어서, 상기 MoS2 전극은 MoS2 활물질, 도전재 및 바인더를 포함할 수 있다.In the secondary battery system according to the present invention, the MoS 2 electrode may include a MoS 2 active material, a conductive material and a binder.
상기 도전재 및 바인더는 당업계에서 통상적으로 사용하는 것을 사용할 수 있다. The conductive material and the binder may be used commonly used in the art.
예를 들면, 상기 도전재는 탄소나노섬유, 탄소나노튜브, 전도성 흑연, 아세틸렌블랙, Super P, KS6, 및 Vulcan XC-72로 이루어지는 군으로부터 선택되는 1종 이상의 탄소재, 또는 이들의 혼합물일 수 있다.For example, the conductive material may be at least one carbon material selected from the group consisting of carbon nanofibers, carbon nanotubes, conductive graphite, acetylene black, Super P, KS6, and Vulcan XC-72, or a mixture thereof. .
상기 바인더는 카르복시메틸 셀룰로스 나트륨 염(NaCMC) 또는 폴리(비닐리덴 플루오라이드)(PVDF)일 수 있다.The binder may be carboxymethyl cellulose sodium salt (NaCMC) or poly (vinylidene fluoride) (PVDF).
상기 바인더는 용매에 용해시켜 사용하며, 상기 용매는 NaCMC의 경우 증류수를 사용하고, PVdF의 경우 N-메틸 피롤리돈(NMP)을 사용할 수 있다.The binder may be dissolved in a solvent, and the solvent may be distilled water for NaCMC, and N-methyl pyrrolidone (NMP) for PVdF.
상기 MoS2 전극은 도전재 5~15 중량%, 바인더 5~10 중량% 및 나머지는 MoS2 활물질로 이루어질 수 있으나, 이에 제한되는 것은 아니다.The MoS 2 electrode may be made of 5 to 15 wt% of the conductive material, 5 to 10 wt% of the binder, and the remainder of the MoS 2 active material, but is not limited thereto.
상기 MoS2 전극은 용매에 MoS2 활물질, 도전재 및 바인더를 혼합하여 슬러리를 제조한 후, 집전체 상에 도포하여 건조시킴으로써 제조할 수 있다.The MoS 2 electrode may be prepared by mixing a MoS 2 active material, a conductive material, and a binder with a solvent to prepare a slurry, and then applying and drying the slurry on a current collector.
본 발명에 따른 이차전지 시스템에 있어서, 상기 상대 전극물질은 당업계에서 통상적으로 사용하는 것을 사용할 수 있으며, 구체적으로 Li, Na의 금속, 또는 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.In the secondary battery system according to the present invention, the counter electrode material may be conventionally used in the art, and may be specifically selected from the group consisting of a metal of Li, Na, or a mixture thereof.
본 발명에 따른 이차전지 시스템에 있어서, 상기 분리막은 당업계에서 통상적으로 사용하는 것을 사용할 수 있으며, 유리섬유, 폴리에틸렌(PE) 및 폴리프로필렌(PP) 중 선택되는 하나 이상의 미세다공막일 수 있다.In the secondary battery system according to the present invention, the separator may be one commonly used in the art, and may be one or more microporous membranes selected from glass fiber, polyethylene (PE) and polypropylene (PP).
또한, 상기 미세다공막의 편면 또는 양면에, 실리카, 알루미나, 베마이트 등의 내열성의 무기 필러를 함유하는 내열층을 형성한 적층형의 분리막을 사용할 수 도 있다.In addition, it is also possible to use a laminated separator in which a heat-resistant layer containing heat-resistant inorganic fillers such as silica, alumina and boehmite is formed on one or both surfaces of the microporous membrane.
본 발명의 리튬이온 이차전지는 상술한 MoS2 전극 및 상대전극을 상기 분리막를 개재하여 적층한 적층 전극체를 외장체 내에 장전하고, 또한 외장체 내에 전해질을 주입하여 전해질 중에 전극체를 침지시킨 후, 외장체의 개구부를 밀봉시킴으로써 제조될 수 있다. In the lithium ion secondary battery of the present invention, after the above-mentioned MoS 2 electrode and the counter electrode are stacked with the separator, the laminated electrode body is loaded into the exterior body, and the electrolyte is injected into the exterior body to immerse the electrode body in the electrolyte. It can be produced by sealing the opening of the exterior body.
상기 외장체에는, 스틸제나 알루미늄제, 알루미늄 합금제의 통 형태(각통형이나 원통형 등)의 외장캔이나, 금속을 증착한 라미네이트 필름으로 구성되는 외장체 등을 사용할 수 있다.As the exterior body, an exterior can made of steel, aluminum or aluminum alloy tubular can (eg, cylindrical or cylindrical), or an outer body composed of a laminated film on which metal is deposited can be used.
본 발명의 리튬이온 이차전지는 이 전지의 충방전을 전압에 의해 제어하는 충방전 제어부를 구비한 전지 시스템에 사용되며, 이때, 충방전 전압 조건을 1.0~3.0V로 제어함으로써 전지의 율속 특성, 수명 특성 등의 전기화학특성을 향상시킬 수 있다.The lithium ion secondary battery of the present invention is used in a battery system having a charge and discharge control unit for controlling the charge and discharge of the battery by the voltage, wherein the rate-of-rate characteristics of the battery by controlling the charge and discharge voltage conditions to 1.0 ~ 3.0V, Electrochemical characteristics, such as a lifetime characteristic, can be improved.
즉, 본 발명의 전지 시스템은, 본 발명의 리튬이온 이차전지와, 상기 충방전 제어부를 구비한 것으로, 그 밖의 구성이나 구조에 대해서는, 종래 공지되어 있는 각종 전지 시스템에 채용되어 있는 구성 및 구조를 적용할 수 있다. 구체적으로는, 상기 전지 시스템은, 예를 들면, 전지나, 후술하는 전지 팩이나 전지 모듈을 고정하는 랙, 냉각 팬 등을 구비할 수 있다. 또한, 상기 충방전 제어부에도, 종래 공지되어 있는 전지 시스템에 채용되어 있는 리튬이온 이차전지용의 충방전 제어부와 동일한 것을 적용할 수 있다.That is, the battery system of the present invention includes the lithium ion secondary battery of the present invention and the charge / discharge control unit. For other configurations and structures, the battery system of the present invention may be configured by various conventionally known battery systems. Applicable Specifically, the battery system may include, for example, a battery, a rack for fixing a battery pack or a battery module described later, a cooling fan, and the like. In addition, the same thing as the charge / discharge control part for lithium ion secondary batteries employ | adopted for the battery system known conventionally can be applied also to the said charge / discharge control part.
또한, 본 발명의 전지 시스템은, 본 발명의 리튬이온 이차전지를 1개 또는 2개 이상 가지고 있을 수 있으며, 본 발명의 이차전지 시스템에 사용하는 리튬이온 이차전지는 복수 개가 하나로 패키지화된 전지 팩이나, 또한 이러한 전지 팩을 복수 개 가지는 전지 모듈의 형태일 수 있다.In addition, the battery system of the present invention may have one or two or more lithium ion secondary batteries of the present invention, the lithium ion secondary battery used in the secondary battery system of the present invention is a battery pack packaged in a plurality of In addition, the battery pack may be in the form of a battery module having a plurality of such battery packs.
이하, 본 발명의 이해를 돕기 위하여 바람직한 제조예(example)를 제시한다. 다만, 하기의 제조예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 제조예에 의해 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid the understanding of the present invention. However, the following preparation examples are only to aid the understanding of the present invention, the present invention is not limited by the following preparation examples.
<제조예 1> MoS2의 합성Preparation Example 1 Synthesis of MoS 2
0.2~0.4 g의 NaMoO4·2H2O와 0.3~0.5 g CS(NH2)2을 20~40 mL의 증류수에 넣고 투명한 용액이 되도록 용해하여 혼합 용액을 제조하였다. 다음으로, 0.5~1.5 mL의 염산 용액(30.0~37.0 %)을 상기 혼합 용액에 첨가한 후, 0.5~1시간 정도 교반하여 푸른색의 용액을 제조하였다. 이후, 상기 푸른색 용액을 50mL 테플론 라이닝 스테인리스강 오토클레이브(Teflon-lined stainless-steel autoclave)에 넣고 160~200 ℃에서 12~48시간 동안 가열하였다. 반응 후, 상온까지 식힌후, 증류수 및 에탄올을 이용하여 세척하고, 원심분리하여 생성물을 수득하여, 진공오븐에서 40~80 ℃에서 건조하였다. 이후, 건조된 분말을 아르곤 분위기의 퍼니스에서 600~800 ℃에서 2~6시간 열처리하여 최종 생성물을 획득하였다.0.2-0.4 g of NaMoO 4 .2H 2 O and 0.3-0.5 g CS (NH 2 ) 2 were dissolved in 20-40 mL of distilled water to prepare a mixed solution. Next, 0.5-1.5 mL of hydrochloric acid solution (30.0-37.0%) was added to the mixed solution, followed by stirring for 0.5-1 hour to prepare a blue solution. Thereafter, the blue solution was placed in a 50 mL Teflon-lined stainless-steel autoclave and heated at 160-200 ° C. for 12-48 hours. After the reaction, the mixture was cooled to room temperature, washed with distilled water and ethanol, and centrifuged to obtain a product, and dried at 40 to 80 ° C. in a vacuum oven. Thereafter, the dried powder was heat-treated at 600-800 ° C. for 2-6 hours in an argon atmosphere furnace to obtain a final product.
제조된 생성물을 X-선 회절분석(XRD)하여 도 1에 나타내었다.The prepared product was shown in FIG. 1 by X-ray diffraction (XRD).
도 1에 나타낸 바와 같이, 생성물의 모든 피크의 패턴은 MoS2의 문헌값(JCPDS no. 37-1492)과 일치하였다. 14.2°에서 보이는 피크는 (002) 결정면에 해당하는 피크로써 층상구조의 특성을 나타내며, MoS2 이외의 다른 피크는 발견되지 않았다. As shown in FIG. 1, the pattern of all peaks of the product was consistent with the literature value of MoS 2 (JCPDS no. 37-1492). The peak seen at 14.2 ° is a peak corresponding to the (002) crystal plane and shows the layer structure characteristic, and no peak other than MoS 2 was found.
따라서, 제조된 물질은 MoS2임을 확인하였다.Thus, the prepared material was confirmed to be MoS 2 .
또한, 생성물을 주사전자현미경(SEM) 및 투과전자현미경(TEM)으로 관찰하여 각각 도 2 및 도 3에 나타내었다.In addition, the product was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and shown in Figures 2 and 3, respectively.
도 2는 제조된 MoS2의 주사전자현미경(SEM) 사진이고, 도 3(a)는 제조된 MoS2의 일반 투과전자현미경(TEM) 사진이고, 도 3(b)는 제조된 MoS2의 고배율 투과전자현미경(HRTEM) 사진이다.2 is a photo scanning electron microscopy of the resulting MoS 2 (SEM), Figure 3 (a) is a general transmission electron microscope (TEM) photograph of the resulting MoS 2, 3 (b) is a high magnification of the resulting MoS 2 Transmission electron microscope (HRTEM) photographs.
도 2 및 도 3(a)에 나타낸 바와 같이, 제조된 MoS2는 주름진 나노플레이트가 조립된 모양을 나타내었다. 또한, 도 3(b)의 고배율 투과전자현미경 이미지에서는 층상구조의 시트들을 확인할 수 있으며, 층간 간격은 0.64 nm로 분석되었다. As shown in Figure 2 and 3 (a), the prepared MoS 2 exhibited the appearance of the corrugated nanoplates assembled. In addition, in the high magnification transmission electron microscope image of FIG. 3 (b), the sheets of the layered structure can be confirmed, and the interlayer spacing was analyzed to be 0.64 nm.
<제조예 2> MoS2 전극의 제조Preparation Example 2 Preparation of MoS 2 Electrode
N-메틸 피롤리돈(NMP) 용매에 80 wt%의 MoS2 분말, 10 wt%의 Super P 도전재 및 10 wt%의 PVdF 바인더를 혼합하여 슬러리를 제조하였다. 이 슬러리를 Cu 호일 위에 균일하게 바른 후, 110 ℃에서 12시간 동안 진공건조하여 MoS2 전극을 제작하였다. 상기 MoS2 전극 물질의 밀도는 2.0 mg/cm2였으며, 10mm 지름의 원형으로 잘라서 사용하였다.A slurry was prepared by mixing 80 wt% MoS 2 powder, 10 wt% Super P conductive material and 10 wt% PVdF binder in N-methyl pyrrolidone (NMP) solvent. The slurry was uniformly coated on Cu foil and then vacuum dried at 110 ° C. for 12 hours to form a MoS 2 electrode. The MoS 2 electrode material had a density of 2.0 mg / cm 2 and was cut into 10 mm diameter circles.
<제조예 3> MoS2 전극 및 에테르계 전해질 용매(DME)를 포함하는 리튬 이차전지의 제조Preparation Example 3 Fabrication of a Lithium Secondary Battery Comprising a MoS 2 Electrode and an Ether Electrolyte Solvent (DME)
2032 타입의 코인셀로 전지를 제조하였다. 구체적으로, 리튬 금속을 16 mm의 원형모양으로 준비하여 상대전극 및 기준전극으로 사용하였고, 음극으로서 제조예 2의 MoS2 전극을 사용하였으며, 유리 섬유(Glass fiber)를 분리막으로 사용하고, 1M의 LiTFSI 전해질염을 DME 용매에 용해한 용액을 전해질로 사용하였다. 이 과정은 아르곤으로 채워진 글러브박스 안에서 진행하였다.A battery was manufactured with a 2032 type coin cell. Specifically, lithium metal was prepared in a circular shape of 16 mm and used as a counter electrode and a reference electrode, and a MoS 2 electrode of Preparation Example 2 was used as a cathode, glass fiber was used as a separator, and 1M of A solution in which LiTFSI electrolyte salt was dissolved in a DME solvent was used as an electrolyte. This process was carried out in a glove box filled with argon.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였으며, 상기 전지의 수명 특성을 측정하여 도 4에 나타내었다.The prepared battery was charged and discharged in the voltage range of 1.0 ~ 3.0V, and measured the life characteristics of the battery is shown in Figure 4.
도 4에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 DME를 포함한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 첫번째 방전 용량은 228 mAh/g이었으며, 40 사이클 후에도 160 mAh/g의 용량으로 일정하게 유지되는 것으로 나타났다.As shown in FIG. 4, the Li / MoS 2 secondary battery including DME, an ether solvent, as an electrolyte solvent, was charged and discharged in a voltage range of 1.0 to 3.0 V, and the first discharge capacity was 228 mAh / g, and 160 after 40 cycles. It has been shown to remain constant at a capacity of mAh / g.
<제조예 4> MoS2 전극 및 에테르계 전해질 용매(TGM)를 포함하는 리튬 이차전지의 제조Preparation Example 4 Preparation of a Lithium Secondary Battery Comprising a MoS 2 Electrode and an Ether Electrolyte Solvent (TGM)
전해질로서 1M의 LiTFSI 전해질염을 TGM 용매에 용해한 용액을 사용하는 것을 제외하고는 제조예 3과 동일한 방법으로 리튬이온 이차전지를 제조하였다.A lithium ion secondary battery was prepared in the same manner as in Preparation Example 3, except that a solution in which 1 M LiTFSI electrolyte salt was dissolved in a TGM solvent was used as an electrolyte.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였으며, 율속 특성을 측정하여 도 5에 나타내었다.The manufactured battery was charged and discharged in the voltage range of 1.0 ~ 3.0V, it is shown in Figure 5 by measuring the rate characteristic.
도 5에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 TGM을 포함한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 전류밀도를 0.05부터 0.1, 0.2, 0.5 A/g으로 증가시킴에 따라서 방전 용량의 경우 251, 232, 218, 205 mAh/g 으로 측정되었고, 1, 2, 5 A/g으로 증가시킴에 따라 189, 162, 102 mAh/g을 나타내었다. 따라서, 본 발명에 따른 Li/MoS2 이차전지는 전해질 용매로서 에테르계 용매를 포함하고, 충방전 전압범위를 1.0~3.0V로 제한함으로써 전류밀도가 1A/g 이상 증가시에도 방전용량이 급격히 저하되지 않으므로 우수한 율속 특성을 나타냄을 알 수 있다.As shown in FIG. 5, the Li / MoS 2 secondary battery including TGM, which is an ether solvent, as an electrolyte solvent has a current density of 0.05 to 0.1, 0.2, 0.5 A / g when charged and discharged in a voltage range of 1.0 to 3.0 V. As it increased, the discharge capacity was measured at 251, 232, 218, 205 mAh / g, and increased to 1, 2, 5 A / g, and 189, 162, 102 mAh / g. Accordingly, the Li / MoS 2 secondary battery according to the present invention includes an ether solvent as an electrolyte solvent, and the charge / discharge voltage range is limited to 1.0 to 3.0 V, thereby rapidly reducing the discharge capacity even when the current density increases by 1 A / g or more. It can be seen that it shows excellent rate property.
<제조예 5> MoS2 전극 및 에테르계 전해질 용매(DME/TGM=1:1)를 포함하는 리튬 이차전지의 제조Preparation Example 5 Preparation of a Lithium Secondary Battery Comprising a MoS 2 Electrode and an Ether-Based Electrolyte Solvent (DME / TGM = 1: 1)
전해질로서 1M의 LiTFSI 전해질염을 DME/TGM(v/v=1:1) 용매에 용해한 용액을 사용하는 것을 제외하고는 제조예 3과 동일한 방법으로 리튬이온 이차전지를 제조하였다.A lithium ion secondary battery was manufactured in the same manner as in Preparation Example 3, except that a solution in which 1 M LiTFSI electrolyte salt was dissolved in a DME / TGM (v / v = 1: 1) solvent was used as an electrolyte.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였으며, 상기 전지의 수명 특성을 측정하여 도 6에 나타내었고, 율속 특성을 측정하여 도 7에 나타내었다.The manufactured battery was charged and discharged in the voltage range of 1.0 ~ 3.0V, measured the life characteristics of the battery is shown in Figure 6, the rate characteristic is shown in Figure 7 measured.
도 6에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 DME와 TGM의 혼합용매(v/v=1:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 첫번째 방전 용량은 232 mAh/g이었으며, 40 사이클 후에는 242 mAh/g의 용량을 나타냄으로써, DME 용매 단독보다 수명 특성이 향상된 효과를 나타내었다.As shown in FIG. 6, the Li / MoS 2 secondary battery using a mixed solvent (v / v = 1: 1) of an ether solvent DME and TGM as an electrolyte solvent was charged and discharged in a voltage range of 1.0 to 3.0 V. The first discharge capacity was 232 mAh / g, and after 40 cycles, the capacity was 242 mAh / g, which showed the effect of improving the life characteristics than the DME solvent alone.
또한, 도 7에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 DME와 TGM의 혼합용매를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 전류밀도를 0.05부터 0.1, 0.2, 0.5, 1 A/g으로 증가시킴에 따라서 방전 용량의 경우 253, 246, 236, 226, 214 mAh/g으로 측정되었고, 2, 5, 10, 20, 및 50 A/g의 전류밀도에서는 194, 156, 128, 117, 및 63 mAh/g의 용량을 나타냄으로써, 전류밀도가 1A/g 이상 증가시에도 방전용량이 급격히 저하되지 않으므로 우수한 율속 특성을 나타내며, 이는 TGM 용매 단독보다 향상된 값을 나타내었다.As shown in FIG. 7, Li / MoS 2 secondary batteries using a mixed solvent of DME and TGM, which are ether solvents, as an electrolyte solvent, have a current density of 0.05 to 0.1 when charging and discharging in a voltage range of 1.0 to 3.0V. The discharge capacities were increased to 253, 246, 236, 226, 214 mAh / g with increasing 0.2, 0.5, 1 A / g and at current densities of 2, 5, 10, 20, and 50 A / g. The capacity of 194, 156, 128, 117, and 63 mAh / g shows excellent rate-rate characteristics because the discharge capacity does not drop rapidly even when the current density increases by 1 A / g or more, which is an improvement over TGM solvent alone. Indicated.
<제조예 6> MoS2 전극 및 에테르계 전해질 용매(DME/TGM=9:1)를 포함하는 리튬 이차전지의 제조Preparation Example 6 Preparation of a Lithium Secondary Battery Comprising a MoS 2 Electrode and an Ether Electrolyte Solvent (DME / TGM = 9: 1)
전해질로서 1M의 LiTFSI 전해질염을 디메틸에테르(DME)/트리에틸렌글리콜모노메틸에테르(TGM)(v/v=9:1) 용매에 용해한 용액을 사용하는 것을 제외하고는 제조예 3과 동일한 방법으로 리튬 이차전지를 제조하였다.In the same manner as in Preparation Example 3, except that a solution of 1 M LiTFSI electrolyte salt dissolved in dimethyl ether (DME) / triethylene glycol monomethyl ether (TGM) (v / v = 9: 1) solvent was used as the electrolyte. A lithium secondary battery was prepared.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였으며, 상기 전지의 수명 특성을 측정하여 도 8에 나타내었고, 율속 특성을 측정하여 도 9에 나타내었다.The prepared battery was charged and discharged in the voltage range of 1.0 ~ 3.0V, and measured in the life characteristics of the battery is shown in Figure 8, it is shown in Figure 9 by measuring the rate characteristic.
도 8에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 디메틸에테르와 트리에틸렌글리콜모노메틸에테르의 혼합용매(v/v=9:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 방전 용량의 경우 첫번째 사이클에서 221 mAh/g을 나타냈으며 40 사이클 이후에는 185 mAh/g을 보임으로써, 디메틸에테르(DME) 용매 단독보다 수명 특성이 향상된 효과를 나타내었다.As shown in FIG. 8, a Li / MoS 2 secondary battery using a mixed solvent (v / v = 9: 1) of dimethyl ether and triethylene glycol monomethyl ether, which are ether solvents, as an electrolyte solvent, has a voltage of 1.0 to 3.0 V. In the range of charging and discharging, the discharge capacity was 221 mAh / g in the first cycle and 185 mAh / g after 40 cycles, thereby improving the lifespan characteristics than the dimethyl ether (DME) solvent alone.
또한, 도 9에 나타낸 바와 같이, 전해질 용매로서 에테르계 용매인 디메틸에테르와 트리에틸렌글리콜모노메틸에테르의 혼합용매(v/v=9:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 전류밀도를 0.05부터 0.1, 0.2, 0.5, 1 A/g으로 증가시킴에 따라서 방전 용량의 경우 236, 226, 221, 219, 214 mAh/g으로 측정되었고, 2, 5, 10, 20, 및 50 A/g의 전류밀도에서는 196, 170, 120, 100, 및 40 mAh/g의 용량을 나타냄으로써, 전류밀도가 1A/g 이상 증가시에도 방전용량이 급격히 저하되지 않으므로 우수한 율속 특성을 나타내며, 이는 트리에틸렌글리콜모노메틸에테르(TGM) 용매 단독보다 향상된 값을 나타내었다.As shown in FIG. 9, the Li / MoS 2 secondary battery using a mixed solvent (v / v = 9: 1) of dimethyl ether and triethylene glycol monomethyl ether, which are ether solvents, as the electrolyte solvent is 1.0 to 3.0 V. When charging and discharging in the voltage range of, the current density was increased from 0.05 to 0.1, 0.2, 0.5, 1 A / g, and the discharge capacity was measured at 236, 226, 221, 219, 214 mAh / g, 2, Capacities of 196, 170, 120, 100, and 40 mAh / g at current densities of 5, 10, 20, and 50 A / g ensure that the discharge capacity does not drop rapidly even when the current density increases by 1 A / g or more. Therefore, it exhibited excellent rate-of-velocity properties, which showed an improved value over triethylene glycol monomethyl ether (TGM) solvent alone.
<제조예 7> MoS2 전극 및 에테르계 전해질 용매(DME/TGM=3:1)를 포함하는 리튬 이차전지의 제조Preparation Example 7 Preparation of a Lithium Secondary Battery Comprising a MoS 2 Electrode and an Ether Electrolyte Solvent (DME / TGM = 3: 1)
전해질로서 1M의 LiTFSI 전해질염을 디메틸에테르(DME)/트리에틸렌글리콜모노메틸에테르(TGM)(v/v=3:1) 용매에 용해한 용액을 사용하는 것을 제외하고는 제조예 3과 동일한 방법으로 리튬 이차전지를 제조하였다.In the same manner as in Preparation Example 3, except that 1M LiTFSI electrolyte salt was dissolved in dimethyl ether (DME) / triethylene glycol monomethyl ether (TGM) (v / v = 3: 1) solvent. A lithium secondary battery was prepared.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였다.The manufactured battery was charged and discharged in the voltage range of 1.0 ~ 3.0V.
<분석><Analysis>
(1) 전지 수명 특성(1) battery life characteristics
1.0~3.0V의 전압범위 및 전류밀도 100 mA/g에서 충방전을 한 Li/MoS2 이차전지의 수명 특성을 측정하여 도 10에 나타내었다.The lifetime characteristics of the Li / MoS 2 secondary battery charged and discharged at a voltage range of 1.0 to 3.0 V and a current density of 100 mA / g are measured and shown in FIG. 10.
도 10에 나타낸 바와 같이, 본 발명에 따른 전해질 용매로서 에테르계 용매인 DME와 TGM의 혼합용매(v/v=3:1)를 사용한 Li/MoS2 이차전지의 첫번째 방전 용량은 228 mAh/g을 보였고, 40 사이클 후에 218 mAh/g의 용량을 유지함으로써, 우수한 사이클 특성을 나타냄을 알 수 있다.As shown in FIG. 10, the first discharge capacity of a Li / MoS 2 secondary battery using a mixed solvent (v / v = 3: 1) of an ether solvent DME and TGM as an electrolyte solvent according to the present invention is 228 mAh / g. It can be seen that excellent cycle characteristics are shown by maintaining a capacity of 218 mAh / g after 40 cycles.
이후, 상기 Li/MoS2 이차전지를 1A/g의 전류밀도의 조건하에서 2000 사이클을 수행하면서 방전 용량을 측정하여 도 11에 나타내었다.Subsequently, the Li / MoS 2 secondary battery was shown in FIG. 11 by measuring the discharge capacity while performing 2000 cycles under the condition of a current density of 1 A / g.
도 11에 나타낸 바와 같이, 본 발명에 따른 전해질 용매로서 에테르계 용매인 DME와 TGM의 혼합용매(v/v=3:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 1A/g의 전류밀도의 조건하에서 2000 사이클 후에도 193.1 mAh/g의 용량을 나타내었으며 이는 두번째 사이클의 용량 대비 103.7%의 유지율을 나타냄으로써 우수한 수명 특성을 나타냄을 알 수 있다.As shown in FIG. 11, a Li / MoS 2 secondary battery using a mixed solvent (v / v = 3: 1) of an ether solvent, DME and TGM, as an electrolyte solvent according to the present invention has a voltage range of 1.0 to 3.0 V. During charging and discharging, it showed a capacity of 193.1 mAh / g even after 2000 cycles under a current density of 1 A / g, which shows an excellent lifespan characteristic by showing a retention rate of 103.7% compared to the capacity of the second cycle.
(2) 율속 특성(2) rate characteristics
1.0~3.0V의 전압범위에서 충방전을 한 Li/MoS2 이차전지의 율속 특성을 측정하여 도 12에 나타내었다.The rate characteristics of the Li / MoS 2 secondary battery charged and discharged in the voltage range of 1.0 to 3.0V were measured and shown in FIG. 12.
도 12에 나타낸 바와 같이, 본 발명에 따른 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 전류밀도를 0.05부터 0.1, 0.2, 0.5, 1A/g으로 증가시킴에 따라서 방전 용량의 경우 243부터 233, 223, 218, 213 mAh/g을 보여주었고, 전류밀도가 2, 5, 10, 20, 50 A/g으로 증가함에 따라 방전용량은 206, 187, 165, 134, 77 mAh/g을 나타내었다. 따라서, 본 발명에 따른 Li/MoS2 이차전지는 충방전 전압범위를 1.0~3.0V로 제한함으로써 전류밀도가 1A/g 이상 증가시에도 방전용량이 급격히 저하되지 않으므로 우수한 율속 특성을 나타냄을 알 수 있다.As shown in FIG. 12, the Li / MoS 2 secondary battery according to the present invention discharges as the current density increases from 0.05 to 0.1, 0.2, 0.5, 1 A / g during charge and discharge in a voltage range of 1.0 to 3.0 V. The capacity ranged from 243 to 233, 223, 218, 213 mAh / g, and the discharge capacity increased to 206, 187, 165, 134, 77 as the current density increased to 2, 5, 10, 20, 50 A / g. mAh / g. Therefore, the Li / MoS 2 secondary battery according to the present invention exhibits excellent rate-rate characteristics because the discharge capacity does not drop rapidly even when the current density increases by more than 1 A / g by limiting the charge / discharge voltage range to 1.0 to 3.0 V. have.
(3) MoS2 전극의 FT-IR 분석(3) FT-IR analysis of MoS 2 electrode
1.0~3.0V의 전압범위에서 충방전을 한 Li/MoS2 이차전지의 MoS2 전극에 대하여, DME/TGM 용매에 녹인 리튬염 전해질과, 해당 전해질에서 1.0V까지 방전한 MoS2 전극과, 3.0V까지 충전한 MoS2 전극의 FT-IR 분석을 수행하여 그 결과를 도 13에 나타내었다.For a MoS 2 electrode of a Li / MoS 2 secondary battery charged and discharged in a voltage range of 1.0 to 3.0 V, a lithium salt electrolyte dissolved in a DME / TGM solvent, a MoS 2 electrode discharged to 1.0 V in the electrolyte, and 3.0 FT-IR analysis of the MoS2 electrode charged to V was performed and the results are shown in FIG. 13.
도 13에 나타낸 바와 같이, DME/TGM 용매에서 나타나는 C-O 결합에 대한 피크가, 1.0V까지 방전한 MoS2 전극과, 3.0V까지 충전한 MoS2 전극에도 나타나는 것으로 보아, 1.0V까지 방전한 MoS2 전극과 3.0V까지 충전한 MoS2 전극 모두에서 DME/TGM 용매의 삽입이 일어난다는 것을 확인하였다.As shown in Figure 13, DME / a peak of CO bonding appears in TGM solvent, MoS 2 and the electrode discharge to 1.0V, MoS discharge to be viewed, appear to 1.0V MoS 2 electrode was charged up to 3.0V 2 It was confirmed that the insertion of the DME / TGM solvent occurred in both the electrode and the MoS 2 electrode charged up to 3.0V.
(4) MoS2 전극의 고배율 투과전자현미경(HRTEM)(4) High magnification transmission electron microscope (HRTEM) of MoS 2 electrode
충방전시 MoS2 전극에 전해질 용매의 삽입이 일어남을 확인하기 위하여, 1.0~3.0V의 전압범위에서 충방전을 한 Li/MoS2 이차전지의 MoS2 전극의 상태를 사이클별로 고배율 투과전자현미경으로 관찰하고, MoS2 전극의 층간 간격을 측정하여 그 결과를 도 14에 나타내었다.In order to confirm that the electrolyte solvent is inserted into the MoS 2 electrode during charging and discharging, the state of the MoS 2 electrode of the Li / MoS 2 secondary battery charged / discharged at a voltage range of 1.0 to 3.0 V is determined by a high magnification transmission electron microscope for each cycle. Observations were made, and the interlayer spacing of the MoS 2 electrodes was measured and the results are shown in FIG. 14.
도 14에 나타낸 바와 같이, DME/TGM(v/v = 3:1) 용매에 녹인 리튬염 전해질에서 충방전을 진행한 MoS2의 경우에는 점차적으로 층간 간격이 증가하는 것을 확인하였다. 구체적으로, 100 사이클 이후에 측정한 층간 간격은 1 nm 이상으로 증가하였다. 이로부터 MoS2 층간 사이에 리튬염이 삽입되면서 DME/TGM(v/v = 3:1) 용매가 함께 삽입됨을 확인하였으며, 이러한 층간 간격의 변화는 전체 MoS2의 층수가 줄어들도록 하여 전체 표면적의 증가하도록 유도한다.As shown in FIG. 14, in the case of MoS 2 charged and discharged in a lithium salt electrolyte dissolved in a DME / TGM (v / v = 3: 1) solvent, the interlayer spacing gradually increased. Specifically, the interlayer spacing measured after 100 cycles increased to 1 nm or more. From this, it was confirmed that the DME / TGM (v / v = 3: 1) solvent was inserted together with the lithium salt inserted between the MoS 2 layers, and the change in the interlayer spacing reduced the number of layers of the entire MoS 2 so that Induce to increase.
(5) 순환 전압 전류법(Cyclic Voltammetry; CV)(5) Cyclic Voltammetry (CV)
1.0~3.0V의 전압범위에서 충방전을 한 Li/MoS2 이차전지의 MoS2 전극에 대하여, 순환 전압 전류법 분석을 하여, 그 결과를 도 15에 나타내었다.Cyclic voltammetry was performed on the MoS 2 electrode of the Li / MoS 2 secondary battery charged and discharged in the voltage range of 1.0 to 3.0 V, and the results are shown in FIG. 15.
도 15에서, (a)는 상기 MoS2 전극의 다양한 주사 속도별 CV 곡선이고, (b)는 log i(전류) 대 log V(전압)을 나타내는 그래프이다. 또한, (c)는 유사용량성(pseudocapacitive) 거동의 비율을 나타내는 막대그래프이고, (d)는 유사용량성 거동을 나타내는 CV 그래프이다.In FIG. 15, (a) is a CV curve for various scanning speeds of the MoS 2 electrode, and (b) is a graph showing log i (current) vs. log V (voltage). In addition, (c) is a bar graph showing the ratio of pseudocapacitive behavior, and (d) is a CV graph showing pseudocapacitive behavior.
도 15(a)에 나타낸 바와 같이, DME/TGM(v/v = 3:1) 용매에 녹인 리튬염 전해질에서 충방전을 진행한 MoS2의 경우 CV 평가 결과, 하나의 환원 피크와 두 개의 산화 피크가 관찰되었다.As shown in FIG. 15 (a), in the case of MoS 2 charged and discharged in a lithium salt electrolyte dissolved in a DME / TGM (v / v = 3: 1) solvent, the result of CV evaluation showed that one reduction peak and two oxidations were performed. Peaks were observed.
전류(i)와 주사속도(v)와의 관계는 하기 수학식 1 및 수학식 2와 같다.The relationship between the current i and the scanning speed v is shown in Equations 1 and 2 below.
[수학식 1][Equation 1]
i= av b i = a v b
[수학식 2] [Equation 2]
log(i) = b×long(v) + alog ( i ) = b × long ( v ) + a
상기 수학식에서 a와 b는 조절 가능한 변수이며, 만약에 b가 1이면, 전기화학반응이 유사용량성(pseudocapacitive) 거동을 따르며, 만약 b가 0.5이면, 전기화학반응이 이온 확산(ionic diffusion)을 따른다. In the above equations, a and b are adjustable variables. If b is 1, the electrochemical reaction follows pseudocapacitive behavior, and if b is 0.5, the electrochemical reaction results in ionic diffusion. Follow.
도 15(b)는 상기 도 15(a)의 CV 그래프에서 얻은 각각의 피크에 대한 log(i) 대 log(v) 곡선을 나타내며, 이때, 피크 1, 2, 3의 값은 각각 0.79, 0.84와 0.84를 나타냈다. FIG. 15 (b) shows a log ( i ) vs. log ( v ) curve for each peak obtained from the CV graph of FIG. 15 (a), wherein the values of peaks 1, 2, and 3 are 0.79 and 0.84, respectively. And 0.84.
이에 따르면, DME/TGM(v/v = 3:1) 용매에 녹인 리튬염 전해질에서 충방전을 진행한 MoS2의 경우 유사용량성 거동과 공-삽입 반응 거동이 혼재되어 반응이 이루어지며, 이에 따라 배터리의 높은 용량과 커패시터의 높은 율속 특성이 모두 보인다고 할 수 있다. According to this, in the case of MoS 2 charged and discharged in a lithium salt electrolyte dissolved in a DME / TGM (v / v = 3: 1) solvent, the reaction is performed by mixing the similar capacitive behavior and the co-insertion reaction behavior. Therefore, the high capacity of the battery and the high rate characteristics of the capacitor are both seen.
구체적인 유사용량성 거동은 하기 수학식 3 및 수학식 4에 의해 계산되었다.Specific pseudocapacitive behavior was calculated by the following equations (3) and (4).
[수학식 3] [Equation 3]
i = k1v + k2v0.5 i = k 1 v + k 2 v 0.5
[수학식 4][Equation 4]
Figure PCTKR2019003763-appb-I000001
Figure PCTKR2019003763-appb-I000001
상기 수학식 3에서 k1v 및 k2v0 .5는 각각 전기화학반응에서 유사용량성과 이온 확산의 기여를 나타내며, 상기 수학식 4에서, k1은 v0.5의 기울기를 나타낸다. In Equation (3) from k 1 and k 2 v v 0 .5 is the expression (4) represents the contribution of similar capacity and ion diffusion in each of the electrochemical reaction, k 1 represents the gradient of v 0.5.
도 15(c)에 나타낸 바와 같이, 상기 수학식을 통한 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, 그리고 2 mV/s에서의 유사용량성 기여율은 각각 47.6%, 48.2%, 51.7%, 55.3%, 59.3%, 63.3%, 68.7%, 및 75.2%로 계산되었다. As shown in FIG. 15 (c), the pseudocapacitive contributions at 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5, and 2 mV / s through the above equations are 47.6%, 48.2%, and 51.7%, respectively. , 55.3%, 59.3%, 63.3%, 68.7%, and 75.2%.
도 15(d)는 CV 곡선과 유사용량성 비율을 나타낸다.15 (d) shows the CV curve and pseudocapacitive ratio.
본 발명에 따른 전해질 용매로서 에테르계 용매인 DME와 TGM의 혼합용매(v/v=3:1)를 사용한 Li/MoS2 이차전지의 1.0~3.0V의 전압범위에서 충방전시 보여주는 높은 율속 특성과 수명 특성은 다음과 같은 요인에 의한 것으로 정리할 수 있다. High rate-rate characteristics during charging and discharging at a voltage range of 1.0 to 3.0 V of a Li / MoS 2 secondary battery using a mixed solvent (v / v = 3: 1) of an ether solvent DME and TGM as an electrolyte solvent according to the present invention. The overlife characteristics can be summarized based on the following factors.
첫째로, 해당 전해질 조건에서 MoS2는 1.0~3.0V의 전압 조건에서 공-삽입(co-intercalation) 반응에 의한 이온 저장 메커니즘을 보인다. 이 반응 메커니즘은 LiS의 생성을 억제하며, 특히 반복적인 충방전에 따른 S의 생성을 억제하여 이에 따른 율속 특성 저하 및 소재의 퇴화를 원천적으로 막을 수 있다. 뿐만 아니라, 상기 공-삽입 반응은 SEI 층의 형성을 제어함에 따라서, 율속 특성을 증가시키는데 기여한다. First, MoS 2 shows the ion storage mechanism by co-intercalation reaction under the electrolyte condition of 1.0 ~ 3.0V. This reaction mechanism inhibits the formation of LiS, and in particular, it is possible to prevent the formation of S due to repetitive charging and discharging, thereby preventing the deterioration of the rate characteristic and the degradation of the material. In addition, the co-insertion reaction controls the formation of the SEI layer, thus contributing to increasing the rate property.
두 번째로, 상기 이차전지의 반응 메커니즘이 커패시터의 특성인 유사용량성 거동과, 배터리의 특성인 이온 확산 거동을 모두 보이기 때문에 높은 율속 특성과 수명 특성을 나타낼 수 있다.Secondly, since the reaction mechanism of the secondary battery exhibits both quasi-capacitive behavior, which is a characteristic of a capacitor, and ion diffusion behavior, which is a characteristic of a battery, it may exhibit high rate-rate characteristics and lifetime characteristics.
<비교예 1> 종래 방법으로 MoS2 전극을 포함하는 리튬 이차전지 제조Comparative Example 1 A lithium secondary battery including a MoS 2 electrode by a conventional method
선행문헌인 대한민국 공개특허 제10-2009-0092070호의 실시예 1의 방법으로 MoS2 전극을 포함하는 리튬이온 이차전지를 제조하였다.A lithium ion secondary battery including a MoS2 electrode was manufactured by the method of Example 1 of Korean Patent Laid-Open Publication No. 10-2009-0092070.
구체적으로, MoS2 분말을 지르코니아 볼(zirconia ball)과 함께 3시간 동안 볼 밀링하여 분말 입자크기를 줄여서 사용하였다. 볼과 분말의 무게 비는 20:1로 하였다. 상기 활물질인 MoS2 분말과 도전재인 아세틸렌블랙(acetylene carbon black), 바인더 PVdF-co-HFP를 60:20:20 중량 비율로 혼합한 혼합물에 분산 용매인 N-메틸피롤리돈(NMP)을 첨가한 후, 지르코니아 볼(zirconia ball)과 함께 3시간 볼밀링하여 균일한 슬러리를 제조하였다. 제조된 일정량의 슬러리를 유리판 위에 캐스팅하여 상온에서 용매를 제거한 후 60℃에서 24시간 동안 건조하여 MoS2 전극을 제조한 후 아르곤 분위기의 글로브 박스(Glove box)에 보관하였다.Specifically, MoS 2 powder was ball milled with a zirconia ball for 3 hours to reduce powder particle size. The weight ratio of the ball and the powder was set to 20: 1. N-methylpyrrolidone (NMP), which is a dispersion solvent, is added to a mixture of MoS 2 powder, which is the active material, acetylene carbon black, and binder PVdF-co-HFP, in a 60:20:20 weight ratio. Then, ball milling with a zirconia ball (zirconia ball) for 3 hours to prepare a uniform slurry. A predetermined amount of the prepared slurry was cast on a glass plate to remove the solvent at room temperature, dried at 60 ° C. for 24 hours to prepare a MoS 2 electrode, and then stored in an argon atmosphere glove box.
상기에서 제조된 MoS2 양극과 1M의 LiCF3SO3 리튬 염을 테트라글리콜디메틸에테르(TEGDME) 전해액에 녹인 액체전해질로 사용하고, 분극판으로 셀가드사(celgard)의 모델넘버 2400을 사용하고, 음극으로 리튬 호일을 사용하여 글러브 박스(Glove box)에서 적층하여 리튬몰리브덴설파이드(Li/MoS2) 전지를 제조하였다.The MoS 2 positive electrode prepared above and 1M LiCF 3 SO 3 lithium salt were used as a liquid electrolyte dissolved in a tetraglycol dimethyl ether (TEGDME) electrolyte solution, and a model number 2400 of celgard was used as a polarizing plate. A lithium molybdenum sulfide (Li / MoS 2 ) battery was prepared by laminating in a glove box using lithium foil as a negative electrode.
제조된 Li/MoS2 전지는 상온에서 2시간 휴지 후 상온에서 충/방전실험을 하였다. 충/방전시 전류밀도는 50mA/g-MoS2로 하였으며, 충전 종지전압은 3.0V로 방전 종지 전압은 0.7V로 하였다. 충전과 방전 사이의 휴지 시간은 10분을 주었다.The prepared Li / MoS 2 batteries were charged / discharged at room temperature after 2 hours of rest at room temperature. The current density during charging / discharging was 50 mA / g-MoS 2 , the charging end voltage was 3.0V, and the discharge end voltage was 0.7V. The pause between charge and discharge gave 10 minutes.
<실험예 1> MoS2 전극을 포함하는 리튬 이차전지에서 충방전 전압범위가 전기화학특성에 미치는 영향Experimental Example 1 Effect of Charge and Discharge Voltage Range on Electrochemical Characteristics in Lithium Secondary Battery with MoS 2 Electrode
본 발명에 따른 MoS2 전극을 포함하는 리튬이온 이차전지에서 충방전 전압범위가 전기화학특성에 미치는 영향을 알아보기 위하여, 제조예 5에서 제조된 리튬이온 이차전지를 가지고, 전압범위를 1.0~3.0V로 조절한 경우와, 0.1~3.0 V로 조절한 경우의 사이클 특성을 측정하여 각각 도 6 및 도 16에 나타내었다.In order to determine the effect of the charge and discharge voltage range on the electrochemical characteristics in the lithium ion secondary battery including the MoS 2 electrode according to the present invention, having a lithium ion secondary battery prepared in Preparation Example 5, the voltage range is 1.0 ~ 3.0 Cyclic characteristics in the case of adjusting to V and adjusting to 0.1 to 3.0 V were measured and shown in FIGS. 6 and 16, respectively.
또한, 비교예 1에서 제조된 리튬이온 이차전지를 가지고 전압범위를 0.7~3 V로 조절한 경우의 사이클 특성을 도 17에 나타내었다.In addition, the cycle characteristics when the voltage range is adjusted to 0.7 to 3 V with the lithium ion secondary battery prepared in Comparative Example 1 is shown in FIG. 17.
도 6에 나타낸 바와 같이, 본 발명의 이차전지의 충방전 전압범위를 1.0~3.0V로 조절한 경우에는 40 사이클 후에도 200 mAh/g 정도의 일정한 용량으로 유지되었으나, 도 16에 나타낸 바와 같이, 0.1~3.0V로 확대한 경우에는 방전 용량의 경우, 첫번째 사이클에서 1148 mAh/g을 나타내었으나, 30 사이클 후에는 급격히 용량의 감소가 시작되었으며, 50 사이클 후에는 93 mAh/g의 용량값을 보여주었다. 이는 Li-S의 전환(conversion) 반응에 따른 소재의 열화에 의한 결과로 이해할 수 있다.As shown in FIG. 6, when the charge / discharge voltage range of the secondary battery of the present invention was adjusted to 1.0 to 3.0 V, the battery was maintained at a constant capacity of about 200 mAh / g even after 40 cycles, as shown in FIG. 16. In the case of the expansion to -3.0V, the discharge capacity was 1148 mAh / g in the first cycle, but after 30 cycles, the capacity began to decrease rapidly, and after 50 cycles, the capacity value was 93 mAh / g. . This can be understood as a result of the material deterioration due to the conversion reaction of Li-S.
또한, 비교예 1에서 제조된 리튬이온 이차전지에 있어서, 도 17에 나타낸 바와 같이, 전압범위를 0.7~3.0V로 조절한 경우, 첫번째 사이클의 용량은 높지만 이후 사이클부터는 용량이 거의 절반으로 감소하며, 10 사이클 후에는 100 mAh/g 이하의 용량값을 보여주었다. 이 역시 전환 반응이 일어날 때에 발생하는 비가역적인 용량으로 인한 결과이다.In addition, in the lithium ion secondary battery prepared in Comparative Example 1, as shown in Figure 17, when the voltage range is adjusted to 0.7 ~ 3.0V, the capacity of the first cycle is high, but the capacity is reduced by almost half from subsequent cycles After 10 cycles, the capacity value was less than 100 mAh / g. This is also the result of the irreversible capacity that occurs when the conversion reaction occurs.
이와 같이, MoS2 전극을 포함하는 리튬이온 이차전지는 충방전 전압범위에 민감하게 영향을 받음을 알 수 있으며, 상기 전환 반응이 일어나지 않도록 전압 조건은 1.0V~3.0V로 조절하는 것이 바람직함을 알 수 있다.As such, it can be seen that the lithium ion secondary battery including the MoS 2 electrode is sensitively affected by the charge / discharge voltage range, and the voltage condition is preferably adjusted to 1.0V to 3.0V so that the conversion reaction does not occur. Able to know.
<비교예 2> MoS2 전극 및 카보네이트계 전해질 용매(EC/DEC)를 포함하는 리튬 이차전지의 제조Comparative Example 2 Fabrication of Lithium Secondary Battery Comprising MoS 2 Electrode and Carbonate Electrolyte Solvent (EC / DEC)
전해질로서 1M의 LiTFSI 전해질염을 에틸 카보네이트(EC)/디에틸 카보네이트(DEC) 용매에 용해한 용액을 사용하는 것을 제외하고는 제조예 3과 동일한 방법으로 리튬이온 이차전지를 제조하였다.A lithium ion secondary battery was manufactured in the same manner as in Preparation Example 3, except that a solution in which 1 M LiTFSI electrolyte salt was dissolved in an ethyl carbonate (EC) / diethyl carbonate (DEC) solvent was used as an electrolyte.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였다.The manufactured battery was charged and discharged in the voltage range of 1.0 ~ 3.0V.
제조된 전지는 1.0~3.0V의 전압범위에서 충방전을 진행하였으며, 상기 전지의 수명 특성을 측정하여 도 18에 나타내었고, 율속 특성을 측정하여 도 19에 나타내었다.The manufactured battery was charged and discharged in the voltage range of 1.0 ~ 3.0V, measured the life characteristics of the battery is shown in Figure 18, and the rate characteristic is shown in Figure 19.
도 18에 나타낸 바와 같이, 전해질 용매로서 카보네이트계 용매인 에틸 카보네이트와 디에틸 카보네이트의 혼합용매(v/v=1:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 방전 용량의 경우 첫번째 사이클에서 177 mAh/g을 나타냈으며 40 사이클 이후에는 162 mAh/g을 보임으로써, 에테르계 용매를 사용할 때보다 낮은 수명 특성을 나타내었다.As shown in FIG. 18, a Li / MoS 2 secondary battery using a mixed solvent (v / v = 1: 1) of carbonate-based solvent, ethyl carbonate and diethyl carbonate, as an electrolyte solvent is charged in a voltage range of 1.0 to 3.0 V. At the time of discharge, the discharge capacity was 177 mAh / g in the first cycle and 162 mAh / g after 40 cycles, thereby showing lower life characteristics than when using an ether solvent.
또한, 도 19에 나타낸 바와 같이, 전해질 용매로서 전해질 용매로서 카보네이트계 용매인 에틸 카보네이트와 디에틸 카보네이트의 혼합용매(v/v=1:1)를 사용한 Li/MoS2 이차전지는 1.0~3.0V의 전압범위에서 충방전시, 전류밀도를 0.05부터 0.1, 0.2, 0.5 A/g으로 증가시킴에 따라서 방전 용량의 경우 181, 158, 140, 113 mAh/g으로 측정되었고, 1, 2, 5, 10, 20, 및 50 A/g의 전류밀도에서는 89, 66, 35, 28, 17, 및 5 mAh/g의 용량을 나타냄으로써, 에테르계 용매를 사용할 때보다 현저하게 낮은 값을 나타내었다.As shown in FIG. 19, the Li / MoS 2 secondary battery using a mixed solvent (v / v = 1: 1) of ethyl carbonate and diethyl carbonate, which are carbonate solvents, as an electrolyte solvent is 1.0 to 3.0 V. When charging and discharging in the voltage range of, the current density was increased from 0.05 to 0.1, 0.2, 0.5 A / g, and the discharge capacity was measured at 181, 158, 140, 113 mAh / g, and 1, 2, 5, At current densities of 10, 20, and 50 A / g, the capacities of 89, 66, 35, 28, 17, and 5 mAh / g were significantly lower than when using ether solvents.
<실험예 2> MoS2 전극을 포함하는 리튬 이차전지에서 전해질 용매가 MoS2 층간 삽입에 미치는 영향Experimental Example 2 Effect of Electrolyte Solvent on MoS 2 Interlayer Insertion in Lithium Secondary Battery with MoS 2 Electrode
본 발명에 따른 MoS2 전극을 포함하는 리튬 이차전지에서 전해질 용매가 MoS2 층간 삽입에 미치는 영향을 알아보기 위하여, 제조예 4 및 5에서 제조된 이차전지와 비교예 2에서 제조된 이차전지에 대하여 1.0~3.0V에서 충방전시 사이클별 MoS2의 층간 간격을 측정하여 하기 표 1에 나타내었다.In order to examine the effect of the electrolyte solvent on the MoS 2 interlayer insertion in the lithium secondary battery including the MoS 2 electrode according to the present invention, the secondary batteries prepared in Preparation Examples 4 and 5 and the secondary batteries prepared in Comparative Example 2 The interlayer spacing of MoS 2 for each cycle during charging and discharging at 1.0 to 3.0 V was measured and shown in Table 1 below.
사이클cycle MoS2의 층간 간격 (nm)Interlayer spacing of MoS 2 (nm)
제조예 4(TGM)Preparation Example 4 (TGM) 제조예 5(DME/TGM)Preparation Example 5 (DME / TGM) 비교예 2(EC/DEC)Comparative Example 2 (EC / DEC)
1 사이클 후After 1 cycle 0.820.82 0.640.64 0.640.64
10 사이클 후After 10 cycles 0.850.85 0.660.66 0.650.65
50 사이클 후After 50 cycles >1.0> 1.0 0.690.69 0.680.68
100 사이클 후After 100 cycles >1.0> 1.0 0.960.96 0.710.71
200 사이클 후After 200 cycles >1.0> 1.0
표 1에 나타낸 바와 같이, 전해질 용매로서 비교예 2의 카보네이트계 용매를 사용할 때에는 크기가 작은 Li 이온만이 MoS2의 층간으로 삽입되므로 사이클에 따른 MoS2의 층간 간격의 차이가 크지 않으나, 본 발명에 따른 제조예 4 및 제조예 5의 에테르계 용매 사용시에는 충방전 사이클이 진행됨에 따라 MoS2의 층간 간격이 증가하여 최종적으로 1.0 nm 이상 층간 간격이 벌어지는 것으로 나타났다. 이로부터 에테르계 용매인 경우에는 Li 이온이 에테르계 용매화 착물을 형성하여 함께 MoS2의 층간으로 삽입됨을 알 수 있으며, 이러한 공-삽입(co-intercalation)에 의해 전지의 전기화학특성이 향상될 수 있다.As shown in Table 1, as an electrolyte solvent when using a carbonate-based solvent of Comparative Example 2, since the size is smaller Li ion only and inserted in the interlayer of MoS 2, but the difference in inter-layer spacing of MoS 2 of the cycle larger, the present invention In the case of using the ether solvents of Preparation Example 4 and Preparation Example 5 according to the charging and discharging cycle was progressed, the interlayer spacing of MoS 2 was increased to finally open more than 1.0 nm interlayer spacing. From this, it can be seen that in the case of an ether solvent, Li ions form an ether-based solvated complex to be intercalated with MoS 2 , and the co-intercalation improves the electrochemical characteristics of the battery. Can be.
따라서, 본 발명에 따른 이차전지 시스템은 전해질 용매로서 MoS2의 층간에 공-삽입될 수 있는 에테르계 용매를 사용하고 충방전 전압 조건을 1.0~3.0V로 제어함으로써 전지의 율속 특성, 수명 특성 등의 전기화학특성을 향상시킬 수 있다.Therefore, the secondary battery system according to the present invention uses an ether solvent that can be co-inserted between the layers of MoS 2 as the electrolyte solvent and by controlling the charging and discharging voltage conditions to 1.0 ~ 3.0V, such as the rate characteristics, life characteristics, etc. of the battery It is possible to improve the electrochemical properties of.
이상 본 발명을 바람직한 실시예를 참조하여 설명하였지만, 본 발명은 상기 실시예에 제한되지 않는다는 것을 이해하여야 한다. 본 발명은 후술하는 특허청구범위 내에서 상기 실시예를 다양하게 변형 및 수정할 수 있으며, 이들은 모두 본 발명의 범위 내에 속하는 것이다. 따라서, 본 발명은 특허청구범위 및 그 균등물에 의해서만 제한된다.While the present invention has been described with reference to preferred embodiments, it is to be understood that the present invention is not limited to the above embodiments. The present invention can be variously modified and modified within the scope of the following claims, which are all within the scope of the invention. Accordingly, the invention is limited only by the claims and the equivalents thereof.

Claims (14)

  1. MoS2 전극, 상대 전극물질, MoS2 전극과 상대 전극물질 사이에 위치한 분리막, 및 전해질을 포함하는 리튬이온 이차전지와,A lithium ion secondary battery comprising a MoS 2 electrode, a counter electrode material, a separator positioned between the MoS 2 electrode and the counter electrode material, and an electrolyte,
    상기 리튬이온 이차전지의 충방전을 전압에 의해 제어하는 충방전 제어부를 포함하는 이차전지 시스템이되,A secondary battery system including a charge and discharge control unit for controlling the charge and discharge of the lithium ion secondary battery by the voltage,
    상기 전해질은 에테르계 용매에 리튬염이 용해된 용액이고,The electrolyte is a solution in which a lithium salt is dissolved in an ether solvent,
    상기 충방전 제어부는 충방전 전압을 1.0~3.0V로 제어하는 것을 특징으로 하는 이차전지 시스템.The charge and discharge controller is a secondary battery system, characterized in that for controlling the charge and discharge voltage to 1.0 ~ 3.0V.
  2. 제1항에 있어서,The method of claim 1,
    상기 이차전지 시스템에서 충방전 전압을 1.0~3.0V로 제어시, 상기 전해질 내의 리튬 이온이 상기 에테르계 용매와 착물을 이루어 상기 MoS2 전극 내로 공삽입(co-intercalation)되는 것을 특징으로 하는 이차전지 시스템.When the charge and discharge voltage is controlled to 1.0 ~ 3.0V in the secondary battery system, the lithium ion in the electrolyte is complexed with the ether solvent, the secondary battery characterized in that the co-intercalation into the MoS 2 electrode system.
  3. 제1항에 있어서,The method of claim 1,
    상기 에테르계 용매는 디메틸에테르 (DME), 디에틸렌 글리콜 모노메틸 에테르(DGM) 및 트리에틸렌 글리콜 모노메틸 에테르 (TGM)로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합 용매인 것을 특징으로 하는 이차전지 시스템.The ether solvent is at least one selected from the group consisting of dimethyl ether (DME), diethylene glycol monomethyl ether (DGM) and triethylene glycol monomethyl ether (TGM), or a mixed solvent thereof. Secondary Battery System.
  4. 제3항에 있어서,The method of claim 3,
    상기 에테르계 용매는 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매인 것을 특징으로 하는 이차전지 시스템.The ether solvent is a secondary battery system, characterized in that the mixed solvent of dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM).
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 디메틸에테르 (DME)와 트리에틸렌 글리콜 모노메틸 에테르 (TGM)의 혼합 용매의 혼합 비율은 부피비로 1:9 ~ 9:1인 것을 특징으로 하는 이차전지 시스템.The mixing ratio of the mixed solvent of the dimethyl ether (DME) and triethylene glycol monomethyl ether (TGM) is 1: 9 ~ 9: 1 by volume ratio.
  6. 제1항에 있어서,The method of claim 1,
    상기 리튬염은 LiPF6, LiClO4, LiTFSI 및 LiCF3SO3로 이루어지는 군으로부터 선택되는 1종 이상, 또는 이들의 혼합물인 것을 특징으로 하는 이차전지 시스템.The lithium salt is at least one selected from the group consisting of LiPF 6 , LiClO 4 , LiTFSI and LiCF 3 SO 3 , or a mixture thereof.
  7. 제1항에 있어서,The method of claim 1,
    상기 리튬염의 농도는 0.6~3 mol/L인 것을 특징으로 하는 이차전지 시스템.The concentration of the lithium salt is a secondary battery system, characterized in that 0.6 ~ 3 mol / L.
  8. 제1항에 있어서,The method of claim 1,
    상기 MoS2 전극은 MoS2 활물질, 도전재 및 바인더를 포함하는 것을 특징으로 하는 이차전지 시스템.The MoS 2 electrode is a secondary battery system comprising a MoS 2 active material, a conductive material and a binder.
  9. 제8항에 있어서,The method of claim 8,
    상기 도전재는 탄소나노섬유, 탄소나노튜브, 전도성 흑연, 아세틸렌블랙, Super P, KS6, 및 Vulcan XC-72로 이루어지는 군으로부터 선택되는 1종 이상의 탄소재, 또는 이들의 혼합물인 것을 특징으로 하는 이차전지 시스템.The conductive material is at least one carbon material selected from the group consisting of carbon nanofibers, carbon nanotubes, conductive graphite, acetylene black, Super P, KS6, and Vulcan XC-72, or a mixture thereof. system.
  10. 제8항에 있어서,The method of claim 8,
    상기 바인더는 카르복시메틸 셀룰로스 나트륨 염(NaCMC) 또는 폴리(비닐리덴 플루오라이드)(PVDF)인 것을 특징으로 하는 이차전지 시스템.The binder is a secondary battery system, characterized in that the carboxymethyl cellulose sodium salt (NaCMC) or poly (vinylidene fluoride) (PVDF).
  11. 제8항에 있어서, The method of claim 8,
    상기 MoS2 전극은 도전재 5~15 중량%, 바인더 5~10 중량% 및 나머지는 MoS2 활물질로 이루어진 것을 특징으로 하는 이차전지 시스템.The MoS 2 electrode is a secondary battery system, characterized in that 5 to 15% by weight of the conductive material, 5 to 10% by weight of the binder and the rest of the MoS 2 active material.
  12. 제10항에 있어서,The method of claim 10,
    상기 바인더는 용매에 용해시켜 사용하며, 상기 용매는 NaCMC의 경우 증류수를 사용하고, PVdF의 경우 N-메틸 피롤리돈(NMP)을 사용하는 것을 특징으로 하는 이차전지 시스템.The binder is dissolved in a solvent, the solvent is distilled water in the case of NaCMC, N-methyl pyrrolidone (NMP) in the case of PVdF, characterized in that the secondary battery system.
  13. 제1항에 있어서, The method of claim 1,
    상기 상대 전극물질은 Li, Na의 금속, 또는 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는 이차전지 시스템.The counter electrode material is a secondary battery system, characterized in that selected from the group consisting of a metal of Li, Na, or a mixture thereof.
  14. 제1항에 있어서,The method of claim 1,
    상기 분리막은 유리섬유, 폴리에틸렌(PE) 및 폴리프로필렌(PP) 중 선택되는 하나 이상의 미세다공막인 것을 특징으로 하는 이차전지 시스템.The separator is a secondary battery system, characterized in that at least one microporous membrane selected from glass fiber, polyethylene (PE) and polypropylene (PP).
PCT/KR2019/003763 2018-07-04 2019-04-01 Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent WO2020009313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180077840A KR102055067B1 (en) 2018-07-04 2018-07-04 MoS2 secondary battery system having enhanced electrochemical properties through co-intercalation of Li-electrolyte solvent
KR10-2018-0077840 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020009313A1 true WO2020009313A1 (en) 2020-01-09

Family

ID=69004182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/003763 WO2020009313A1 (en) 2018-07-04 2019-04-01 Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent

Country Status (2)

Country Link
KR (1) KR102055067B1 (en)
WO (1) WO2020009313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613263A (en) * 2024-01-22 2024-02-27 江苏中兴派能电池有限公司 Positive electrode material, positive electrode, preparation method of positive electrode and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980075990A (en) * 1997-04-03 1998-11-16 성재갑 Low Voltage Lithium Ion Battery
KR20090092070A (en) * 2008-02-26 2009-08-31 경상대학교산학협력단 A method for preparing molybdenum sulfide electrode with carbon nanotube
KR20120051993A (en) * 2010-11-15 2012-05-23 삼성전기주식회사 Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
WO2016068641A1 (en) * 2014-10-31 2016-05-06 주식회사 엘지화학 Lithium sulfur battery and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934608B1 (en) 2008-08-01 2010-09-17 Commissariat Energie Atomique SUPERFINISHING THIN FILM COATING, PROCESS FOR OBTAINING SAME, AND DEVICE COMPRISING SUCH A COATING.
KR101862510B1 (en) 2017-04-25 2018-05-29 숭실대학교산학협력단 Preparing method of MoS2-TiN thin film for improved electrochemical performance of lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980075990A (en) * 1997-04-03 1998-11-16 성재갑 Low Voltage Lithium Ion Battery
KR20090092070A (en) * 2008-02-26 2009-08-31 경상대학교산학협력단 A method for preparing molybdenum sulfide electrode with carbon nanotube
KR20120051993A (en) * 2010-11-15 2012-05-23 삼성전기주식회사 Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
WO2016068641A1 (en) * 2014-10-31 2016-05-06 주식회사 엘지화학 Lithium sulfur battery and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU , ZHE ET AL.: "MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries", INORGANIC CHEMISTRY FRONTIERS, vol. 3, no. 4, April 2016 (2016-04-01), pages 532 - 535, XP055673270 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613263A (en) * 2024-01-22 2024-02-27 江苏中兴派能电池有限公司 Positive electrode material, positive electrode, preparation method of positive electrode and battery
CN117613263B (en) * 2024-01-22 2024-03-19 江苏中兴派能电池有限公司 Positive electrode material, positive electrode, preparation method of positive electrode and battery

Also Published As

Publication number Publication date
KR102055067B1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019103463A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery which comprise same
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2021029652A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2021101281A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2019059647A2 (en) Positive electrode material for lithium secondary battery, method for manufacturing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2021040386A1 (en) Lithium secondary battery and method for manufacturing same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2022055258A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021049918A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2022092906A1 (en) Cathode active material and preparation method therefor
WO2019245286A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
WO2021141463A1 (en) Method for preparing cathode active material for lithium secondary battery, cathode for lithium secondary battery, comprising cathode active material prepared by preparation method, and lithium secondary battery
WO2021066574A1 (en) Positive electrode active material for lithium secondary battery and method for preparing positive electrode active material
WO2021096204A1 (en) Irreversible additive, cathode material comprising irreversible additive, and lithium secondary battery comprising cathode material
WO2021125873A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2022060138A1 (en) Negative electrode and secondary battery comprising same
WO2020122511A1 (en) Secondary battery cathode, manufacturing method therefor, and lithium secondary battery including same
WO2020009313A1 (en) Secondary battery system comprising molybdenum sulfide electrode with electrochemical property enhanced through co-insertion of lithium-electrolyte solvent
WO2019093864A2 (en) Lithium cobalt-based positive electrode active material, method for preparing same, positive electrode comprising same, and secondary battery
WO2021096265A1 (en) Cathode active material for lithium secondary battery, and method for preparing cathode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831472

Country of ref document: EP

Kind code of ref document: A1