WO2020009192A1 - Clutch device - Google Patents

Clutch device Download PDF

Info

Publication number
WO2020009192A1
WO2020009192A1 PCT/JP2019/026689 JP2019026689W WO2020009192A1 WO 2020009192 A1 WO2020009192 A1 WO 2020009192A1 JP 2019026689 W JP2019026689 W JP 2019026689W WO 2020009192 A1 WO2020009192 A1 WO 2020009192A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
groove
drive cam
driven cam
driven
Prior art date
Application number
PCT/JP2019/026689
Other languages
French (fr)
Japanese (ja)
Inventor
高木 章
石橋 亮
巧美 杉浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019106249A external-priority patent/JP7275874B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112019003441.3T priority Critical patent/DE112019003441T5/en
Priority to CN201980042180.0A priority patent/CN112313422B/en
Publication of WO2020009192A1 publication Critical patent/WO2020009192A1/en
Priority to US17/137,726 priority patent/US11940012B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/08Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion
    • F16H25/12Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion with reciprocation along the axis of rotation, e.g. gearings with helical grooves and automatic reversal or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms

Definitions

  • the present disclosure relates to a clutch device.
  • the rolling element cam that rotates the driven cam by the torque of the prime mover decelerated by the speed reducer and rolls the cam groove of the driving cam and the driven cam, thereby relatively moving the driven cam relative to the driving cam in the axial direction.
  • the first transmission unit and the second transmission unit are provided with a rolling element cam, and by changing the state of the clutch between an engaged state and a disengaged state in accordance with an axial relative position of the driven cam with respect to the driving cam.
  • a clutch device that allows or interrupts transmission of torque between the clutch device and the clutch device.
  • the rolling element cam described in Patent Literature 1 can change the state of the clutch to an engaged state or a disengaged state by applying the rolling element cam to a clutch device.
  • An object of the present disclosure is to provide a clutch device that can continue driving even when a winding set of a prime mover is disconnected.
  • the clutch device includes a first transmission unit, a prime mover, a driving cam, a rolling element, a driven cam, a second transmission unit, and a clutch.
  • the prime mover has two winding sets, and can output torque by energizing the winding sets.
  • the drive cam has a plurality of drive cam grooves formed on one end surface, and is rotatable by torque output from the prime mover.
  • the rolling element is provided so as to roll in each of the plurality of drive cam grooves.
  • the driven cam has a plurality of driven cam grooves formed on one end surface so as to sandwich the rolling element between the driven cam groove and the driven cam, and forms a rolling element cam together with the driving cam and the rolling element. When rotated, it moves relative to the drive cam in the axial direction.
  • the second transmission unit transmits torque to and from the first transmission unit.
  • the clutch changes to an engaged state or a non-engaged state according to the axial position of the driven cam with respect to the driving cam, and when the engaged state is engaged, the first transmission unit and the second transmission unit And transmission of torque between the first transmission unit and the second transmission unit is interrupted in the non-engaged and non-engaged state.
  • the drive cam groove has a normal drive cam groove and an emergency drive cam groove.
  • the normal drive cam groove extends from the drive cam specific position, which is a specific position of the drive cam, to one side in the circumferential direction of the drive cam, and has a depth from the drive cam specific position to one side in the circumferential direction of the drive cam.
  • the groove bottom is formed to be inclined with respect to one end face of the drive cam so as to be shallow.
  • the emergency drive cam groove extends from the drive cam specific position to the other side in the circumferential direction of the drive cam, and one of the drive cams has a depth decreasing from the drive cam specific position to the other side in the circumferential direction of the drive cam.
  • the groove bottom is formed to be inclined with respect to the end face, and the inclination angle of the groove bottom with respect to one end face of the drive cam is smaller than the inclination angle of the groove bottom of the normal drive cam groove.
  • the driven cam groove has a normal driven cam groove and an emergency driven cam groove.
  • the normal driven cam groove extends from the specific position of the driven cam, which is a specific position of the driven cam, to one side in the circumferential direction of the driven cam, and has a depth from the specific position of the driven cam toward one side in the circumferential direction of the driven cam.
  • the groove bottom is formed to be inclined with respect to one end face of the driven cam so as to be shallow.
  • the emergency follower cam groove extends from the follower cam specific position to the other side in the circumferential direction of the follower cam, and has one of the follower cams whose depth decreases from the follower cam specific position to the other side in the circumferential direction of the follower cam.
  • the groove bottom is formed to be inclined with respect to the end surface, and the inclination angle of the groove bottom with respect to one end surface of the driven cam is smaller than the inclination angle of the groove bottom of the normal driven cam groove.
  • the other motor when one of the two winding sets of the prime mover is disconnected, the other motor is energized to output torque from the prime mover and rotate the drive cam. Therefore, even if the winding set of the prime mover is disconnected, the driving of the clutch device can be continued.
  • the inclination angles of the groove bottoms of the emergency drive cam groove and the emergency driven cam groove are set smaller than the inclination angles of the groove bottoms of the normal drive cam groove and the normal driven cam groove. Accordingly, when the rolling element rolls in the emergency drive cam groove and the emergency driven cam groove, the drive cam can be rotated with a small torque. Therefore, in a normal state where neither of the two winding sets is disconnected, the operation of the prime mover is controlled so that the rolling elements roll in the normal driving cam grooves and the normal driven cam grooves, and the two winding sets are controlled. In the case of an emergency where one of them is disconnected, the operation of the prime mover is controlled so that the rolling elements roll in the emergency drive cam groove and the emergency driven cam groove, so that the drive of the clutch device can be reliably continued. .
  • FIG. 1 is a sectional view showing a clutch device according to a first embodiment
  • FIG. 2 is a schematic diagram showing a winding set of a motor of the clutch device according to the first embodiment
  • FIG. 3 is a diagram illustrating a drive cam of the clutch device according to the first embodiment
  • FIG. 4 is a diagram showing a driven cam of the clutch device according to the first embodiment
  • FIG. 5 is a sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment
  • FIG. 1 is a sectional view showing a clutch device according to a first embodiment
  • FIG. 2 is a schematic diagram showing a winding set of a motor of the clutch device according to the first embodiment
  • FIG. 3 is a diagram illustrating a drive cam of the clutch device according to the first embodiment
  • FIG. 4 is a diagram showing a driven cam of the clutch device according to the first embodiment
  • FIG. 5 is a sectional view showing a driving cam groove and a driven cam groove of the clutch device according
  • FIG. 6 is a cross-sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment, and is a diagram showing a state different from FIG.
  • FIG. 7 is a cross-sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment, and is a diagram showing a state different from FIG.
  • FIG. 8 is a diagram illustrating a relationship between a relative rotation angle between a driving cam and a driven cam of the clutch device according to the first embodiment, and a displacement of the driven cam with respect to the driving cam.
  • FIG. 9 is a view showing a drive cam of the clutch device according to the second embodiment.
  • FIG. 10 is a diagram showing a driven cam of the clutch device according to the second embodiment, FIG.
  • FIG. 11 is a diagram showing a drive cam of the clutch device according to the third embodiment
  • FIG. 12 is a diagram showing a driven cam of the clutch device according to the third embodiment
  • FIG. 13 is a cross-sectional view illustrating a clutch device according to a fourth embodiment.
  • FIG. 1 shows a clutch device according to a first embodiment.
  • the clutch device 1 is provided, for example, between an internal combustion engine and a transmission of a vehicle, and is used to allow or cut off transmission of torque between the internal combustion engine and the transmission.
  • the clutch device 1 includes an electronic control unit (hereinafter, referred to as “ECU”) 10 as a “control unit”, an input shaft 61 as a “first transmission unit”, a motor 20 as a “motor”, a reduction gear 30, and a housing 12.
  • ECU electronice control unit
  • the ECU 10 is a small computer having a CPU as an arithmetic unit, a ROM, a RAM, an EEPROM as a storage unit, and an I / O as an input / output unit.
  • the ECU 10 executes calculations in accordance with programs stored in a ROM or the like based on information such as signals from various sensors provided in various parts of the vehicle, and controls operations of various devices and devices of the vehicle. In this way, the ECU 10 executes the program stored in the non-transitional substantive recording medium. When this program is executed, a method corresponding to the program is executed.
  • the ECU 10 can control the operation of the internal combustion engine and the like based on information such as signals from various sensors. Further, the ECU 10 can control the operation of a motor 20 described later.
  • the input shaft 61 is connected to, for example, a drive shaft of an internal combustion engine (not shown) and is rotatable together with the drive shaft. That is, torque is input to the input shaft 61 from the drive shaft.
  • a fixed flange 11 is provided on a vehicle equipped with an internal combustion engine.
  • the fixing flange 11 is formed in a cylindrical shape, and is fixed to, for example, an engine room of a vehicle.
  • a bearing 141 is provided between the inner peripheral wall of the fixed flange 11 and the outer peripheral wall of the input shaft 61.
  • the input shaft 61 is supported by the fixed flange 11 via the bearing 141.
  • the housing 12 is provided between the inner peripheral wall at the end of the fixed flange 11 and the outer peripheral wall of the input shaft 61.
  • the housing 12 includes an inner cylinder 121, an inner bottom 122, an outer cylinder 123, an outer bottom 124 as a "bottom”, an outer cylinder 125 as a "cylinder”, a spline groove 126, and the like.
  • the inner cylinder 121 is formed in a substantially cylindrical shape.
  • the inner bottom part 122 is formed integrally with the inner cylinder part 121 so as to extend in an annular plate shape from the end of the inner cylinder part 121 radially outward.
  • the outer cylinder 123 is formed integrally with the inner bottom 122 so as to extend substantially cylindrically from the outer edge of the inner bottom 122 toward the inner cylinder 121.
  • the outer bottom part 124 is formed integrally with the outer cylindrical part 123 so as to extend radially outward from the end of the outer cylindrical part 123 opposite to the inner bottom part 122 in an annular plate shape.
  • the outer cylinder part 125 is formed integrally with the outer bottom part 124 so as to extend from the outer edge of the outer bottom part 124 to a side opposite to the outer cylinder part 123 in a substantially cylindrical shape.
  • the spline groove 126 is formed on the inner peripheral wall at the end of the outer cylinder 125 opposite to the outer bottom 124.
  • a plurality of spline grooves 126 are formed in the circumferential direction of the outer cylinder part 125 so as to extend from the end of the outer cylinder part 125 to the outer bottom part 124 side.
  • the housing 12 is provided on the fixed flange 11 such that the outer peripheral walls of the outer cylindrical portion 123 and the outer cylindrical portion 125 face the inner peripheral wall at the end of the fixed flange 11.
  • the housing 12 is fixed to the fixing flange 11 by bolts 13.
  • the housing 12 is provided coaxially with the fixed flange 11 and the input shaft 61.
  • a substantially cylindrical space is formed between the inner peripheral wall of the inner cylinder 121 and the outer peripheral wall of the input shaft 61.
  • the motor 20 has a stator 21, a coil 22, a rotor 23, a shaft 24, and the like.
  • the stator 21 is formed in a substantially annular shape by, for example, a laminated steel plate, and is fixed inside the outer cylindrical portion 123. That is, the stator 21 of the motor 20 is provided so as to be relatively immovable with respect to the outer cylindrical portion 123 of the housing 12.
  • the coil 22 is wound around the stator 21.
  • the rotor 23 is formed in a substantially annular shape by, for example, a laminated steel plate, and is rotatably provided inside the stator 21.
  • the shaft 24 is formed in a substantially cylindrical shape, and is provided integrally with the rotor 23 inside the rotor 23.
  • the shaft 24 is provided radially outside of the inner cylindrical portion 121 of the housing 12.
  • a bearing 151 is provided between the inner peripheral wall of the shaft 24 and the outer peripheral wall of the inner cylinder 121. As a result, the rotor 23 and the shaft 24 are supported by the inner cylinder 121 via the bearing 151.
  • the coil 22 has winding sets 25 and 26 (see FIG. 2).
  • the winding set 25 has a U-phase winding 251, a V-phase winding 252, and a W-phase winding 253.
  • the U-phase winding 251, the V-phase winding 252, and the W-phase winding 253 are respectively wound around the stator 21, and one end of each is electrically connected.
  • the winding set 26 has a U-phase winding 261, a V-phase winding 262, and a W-phase winding 263.
  • the U-phase winding 261, the V-phase winding 262, and the W-phase winding 263 are each wound around the stator 21, and one end of each is electrically connected.
  • the ECU 10 has the switching elements 271 to 276 and 281 to 286 and the voltage detection units 250 and 260.
  • the switching element 271 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 272.
  • the other end of the switching element 272 is connected to the ground.
  • the switching element 273 has one end connected to a positive electrode of a battery (not shown) and the other end connected to one end of the switching element 274.
  • the other end of the switching element 274 is connected to the ground.
  • the switching element 275 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 276.
  • the other end of the switching element 276 is connected to the ground.
  • the switching element 281 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 282.
  • the other end of the switching element 282 is connected to the ground.
  • the switching element 283 has one end connected to a positive electrode of a battery (not shown) and the other end connected to one end of the switching element 284.
  • the other end of the switching element 284 is connected to the ground.
  • the switching element 285 has one end connected to the positive electrode of a battery (not shown) and the other end connected to one end of the switching element 286.
  • the other end of the switching element 286 is connected to the ground.
  • the other end of the U-phase winding 251 is connected to a connection point between the switching element 271 and the switching element 272.
  • the other end of V-phase winding 252 is connected to a connection point between switching element 273 and switching element 274.
  • the other end of W-phase winding 253 is connected to a connection point between switching element 275 and switching element 276.
  • the other end of the U-phase winding 261 is connected to a connection point between the switching element 281 and the switching element 282.
  • the other end of V-phase winding 262 is connected to a connection point between switching element 283 and switching element 284.
  • the other end of W-phase winding 263 is connected to a connection point between switching element 285 and switching element 286.
  • the voltage detection unit 250 is provided between the switching elements 272, 274, and 276 and the ground, and can detect a potential difference at the location.
  • the voltage detection unit 260 is provided between the switching elements 282, 284, and 286 and the ground, and can detect a potential difference at the location.
  • the housing 12 is provided so as not to move relative to the stator 21 of the motor 20.
  • the ECU 10 can control the operation of the motor 20 by controlling the power supplied to the coil 22.
  • a rotating magnetic field is generated in the stator 21, and the rotor 23 rotates. Thereby, torque is output from the shaft 24.
  • the motor 20 can output torque.
  • the ECU 10 controls the switching operation of the switching elements 271 to 276 and 281 to 286 to control the power supplied from the battery to the winding sets 25 and 26, so that the rotor 23 rotates forward or backward.
  • the operation of the motor 20 can be controlled to reverse the rotation.
  • the motor 20 has two winding sets (25, 26), that is, two winding sets. Is output.
  • the motor 20 can continue to operate with the other winding set even in an emergency when one of the two winding sets is disconnected. In this case, the torque output by the motor 20 is about half of the normal time.
  • the ECU 10 can detect the value of the current flowing through the winding sets 25 and 26 based on the voltages detected by the voltage detection units 250 and 260. Thereby, the ECU 10 can detect the disconnection of the winding sets 25 and 26.
  • the reduction gear 30 has an eccentric part 31 as an “eccentric rotating body”, a planetary gear 32, a ring gear 33, a ring gear 430 as an “output member”, and the like.
  • the eccentric part 31 is formed in a cylindrical shape so that the outer peripheral wall is eccentric with respect to the inner peripheral wall.
  • the eccentric portion 31 is provided integrally with the shaft 24 on the radially outer side of the inner cylindrical portion 121 such that the inner peripheral wall is coaxial with the shaft 24. That is, the eccentric part 31 and the shaft 24 cannot rotate relative to each other. Therefore, the eccentric portion 31 can rotate together with the shaft 24 in a state where the outer peripheral wall is eccentric with respect to the shaft 24.
  • a bearing 152 is provided between the inner peripheral wall of the eccentric part 31 and the outer peripheral wall of the inner cylindrical part 121. Thus, the eccentric portion 31 is supported by the inner cylindrical portion 121 via the bearing 152.
  • the eccentric part 31 has an axis Ax2 that is eccentric with respect to the axis Ax1 of the motor 20.
  • the axis Ax1 coincides with the center line of the inner peripheral wall of the eccentric portion 31.
  • the axis Ax2 coincides with the center line of the outer peripheral wall of the eccentric portion 31.
  • the eccentric part 31 is rotatable relative to the inner cylinder part 121 of the housing 12 about the axis Ax1 of the motor 20.
  • the axis Ax1 of the motor 20 matches the center line of the shaft 24.
  • the planetary gear 32 is formed in a substantially annular shape.
  • the planetary gear 32 has first external teeth 321 and second external teeth 322.
  • the first external teeth 321 are formed on the outer peripheral wall of one end of the planetary gear 32 in the axial direction.
  • the second external teeth 322 are formed on the other end side in the axial direction with respect to the first external teeth 321 of the planetary gear 32.
  • the diameter of the tip circle of the second external teeth 322 is smaller than the diameter of the tip circle of the first external teeth 321.
  • the first external teeth 321 and the second external teeth 322 are formed so as to be coaxial with the inner peripheral wall of the planetary gear 32.
  • the planetary gear 32 is provided radially outside the eccentric portion 31.
  • Bearings 153 and 154 are provided between the inner peripheral wall of the planetary gear 32 and the outer peripheral wall of the eccentric portion 31.
  • the planetary gear 32 is supported by the eccentric portion 31 via the bearings 153 and 154.
  • the planetary gear 32 is relatively rotatable coaxially with respect to the eccentric part 31 while being eccentric with respect to the shaft 24.
  • the ring gear 33 is formed in a substantially annular shape.
  • the ring gear 33 has internal teeth 331.
  • the internal teeth 331 are formed on an inner peripheral wall of one end of the ring gear 33 in the axial direction.
  • the ring gear 33 is fixed to the housing 12 such that the outer peripheral wall at the end opposite to the internal teeth 331 is fitted to the inner peripheral wall at the end of the outer cylindrical portion 123 of the housing 12.
  • the diameter of the addendum circle of the internal teeth 331 is larger than the diameter of the addendum circle of the first outer teeth 321 of the planetary gear 32.
  • the number of the internal teeth 331 is larger than the number of the first external teeth 321.
  • the planetary gear 32 is provided such that the first external teeth 321 mesh with the internal teeth 331 of the ring gear 33. Therefore, when the rotor 23 and the shaft 24 rotate, the planetary gear 32 revolves while rotating on the inside of the ring gear 33 while the first external teeth 321 mesh with the internal teeth 331 of the ring gear 33.
  • the drive cam 40 has a drive cam body 41, a drive cam hole 42, a drive cam groove 400, and the like (see FIG. 3).
  • the drive cam body 41 is formed in a substantially disk shape by, for example, metal.
  • the drive cam hole 42 is formed in a circular shape coaxially with the drive cam body 41 so as to pass through the center of the drive cam body 41.
  • the drive cam groove 400 is formed so as to be recessed from one end face 411 in the axial direction of the drive cam body 41 to the other end face 412.
  • the drive cam groove 400 is formed so that the depth changes in the circumferential direction of the drive cam 40.
  • the three drive cam grooves 400 are formed at equal intervals in the circumferential direction of the drive cam body 41. A more detailed configuration of the drive cam groove 400 will be described later.
  • the ring gear 430 as the “output member” of the speed reducer 30 is formed annularly integrally with the drive cam 40 radially inside the drive cam hole 42 of the drive cam 40.
  • the ring gear 430 has the driving cam inner teeth 43.
  • the drive cam inner teeth 43 are formed on the inner edge of the ring gear 430.
  • the diameter of the tip circle of the drive cam inner teeth 43 is larger than the diameter of the tip circle of the second outer teeth 322 of the planetary gear 32.
  • the number of teeth of the drive cam inner teeth 43 is larger than the number of teeth of the second outer teeth 322.
  • the drive cam 40 is formed as a “cylindrical portion” of the housing 12 on the side opposite to the stator 21 with respect to the ring gear 33 so that the drive cam inner teeth 43 of the ring gear 430 mesh with the second outer teeth 322 of the planetary gear 32. It is provided inside the cylindrical portion 125.
  • the drive cam 40 rotates relative to the outer cylinder 125 of the housing 12 inside the outer cylinder 125. I do.
  • the drive cam 40 has the plurality of drive cam grooves 400 formed on the one end surface 411, and can be rotated by the torque output from the speed reducer 30.
  • the torque from the motor 20 is reduced by the speed reducer 30 and output to the drive cam 40 from the ring gear 430 as an “output member”.
  • the speed reducer 30 can reduce the torque of the motor 20 and output it.
  • the reduction ratio of the speed reducer 30 is set by appropriately setting the number of first external teeth 321 of the planetary gear 32 and the number of internal teeth 331 of the ring gear 33. In general, the efficiency of the speed reducer increases as the reduction ratio decreases.
  • a thrust bearing 161 is provided between the outer edge of the drive cam 40 and the outer bottom 124 of the housing 12 on the radially outer side of the ring gear 33.
  • the thrust bearing 161 bears the drive cam 40 while receiving a load in the thrust direction from the drive cam 40. That is, the thrust bearing 161 is provided between the outer bottom portion 124 as the “bottom portion” and the drive cam 40, and receives the axial load of the drive cam 40.
  • the ball 3 is formed in a spherical shape by, for example, metal.
  • the ball 3 corresponds to a “rolling element”.
  • the ball 3 is provided so as to roll in each of the plurality of drive cam grooves 400 (see FIG. 3). That is, a total of three balls 3 are provided.
  • the driven cam 50 has a driven cam body 51, a driven cam hole 52, a spline connecting portion 53, and a driven cam groove 500 (see FIG. 4).
  • the driven cam main body 51 is formed in a substantially disk shape by, for example, metal.
  • the driven cam hole 52 is formed in a circular shape coaxially with the driven cam body 51 so as to pass through the center of the driven cam body 51.
  • the spline connecting portion 53 is formed integrally with the driven cam body 51 at the outer edge of the driven cam body 51.
  • a plurality of spline coupling portions 53 are formed in the circumferential direction of the driven cam body 51 so as to extend from one end face 511 in the axial direction of the driven cam body 51 to the other end face 512.
  • the driven cam groove 500 is formed so as to be recessed from one end face 511 in the axial direction of the driven cam body 51 to the other end face 512 side.
  • the driven cam groove 500 is formed so that the depth changes in the circumferential direction of the driven cam 50.
  • Three driven cam grooves 500 are formed at equal intervals in the circumferential direction of the driven cam body 51. A more detailed configuration of the driven cam groove 500 will be described later.
  • the driven cam 50 is provided inside the outer cylinder portion 125 as a “tube portion” of the housing 12 so that the spline coupling portion 53 is spline-coupled to the spline groove 126 of the housing 12. Therefore, the driven cam 50 cannot rotate relative to the outer cylindrical portion 125 of the housing 12 and can move relatively in the axial direction.
  • the driven cam 50 is provided on the side opposite to the ring gear 33 with respect to the driving cam 40 so as to sandwich the ball 3 between the driven cam groove 500 and the driving cam groove 400 of the driving cam 40.
  • the ball cam 2 is constituted.
  • the ball cam 2 corresponds to a “rolling body cam”.
  • the drive cam 40 is rotatable relative to the driven cam 50 and the housing 12. When the driving cam 40 rotates relative to the driven cam 50, the ball 3 rolls along the groove bottoms 403 and 503 in the driving cam groove 400 and the driven cam groove 500, respectively.
  • the drive cam groove 400 and the driven cam groove 500 are formed so that the depth changes in the circumferential direction of the drive cam 40 or the driven cam 50. Therefore, when the driving cam 40 rotates relative to the driven cam 50 by the torque output from the speed reducer 30, the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500, and the driven cam 50 It moves relative to the housing 12 in the axial direction (see FIGS. 5 to 7).
  • the driven cam 50 has the plurality of driven cam grooves 500 formed on the one end surface 511 so as to sandwich the ball 3 between the driven cam groove 400 and the driven cam groove 400.
  • the driven cam 50 When it is configured and rotated relative to the drive cam 40, it moves relative to the drive cam 40 in the axial direction.
  • the output shaft 62 has a shaft portion 621, a plate portion 622, a cylindrical portion 623, and a friction plate 624.
  • the shaft 621 is formed in a substantially cylindrical shape.
  • the plate portion 622 is formed integrally with the shaft portion 621 so as to extend from one end of the shaft portion 621 radially outward in an annular plate shape.
  • the tubular portion 623 is formed integrally with the plate portion 622 so as to extend from the outer edge of the plate portion 622 to a side opposite to the shaft portion 621 in a substantially cylindrical shape.
  • the friction plate 624 is formed in a substantially annular plate shape, and is provided on an end surface of the plate portion 622 on the side of the cylindrical portion 623. Here, the friction plate 624 cannot rotate relative to the plate portion 622.
  • the end of the input shaft 61 passes through the driven cam hole 52 and is located on the opposite side of the driven cam 50 with respect to the driven cam 50.
  • the output shaft 62 is provided coaxially with the input shaft 61 on the side opposite to the fixed flange 11 with respect to the housing 12, that is, on the side opposite to the drive cam 40 with respect to the driven cam 50.
  • a bearing 142 is provided between the inner peripheral wall of the shaft 621 and the outer peripheral wall at the end of the input shaft 61.
  • the output shaft 62 is supported by the input shaft 61 via the bearing 142.
  • the clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50.
  • the clutch 70 has an inner friction plate 71 and an outer friction plate 72.
  • the inner friction plate 71 is formed in a substantially annular plate shape, and a plurality of inner friction plates 71 are provided between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 so as to be arranged in the axial direction.
  • the inner friction plate 71 is provided so that the inner edge portion is spline-coupled to the outer peripheral wall of the input shaft 61. Therefore, the inner friction plate 71 cannot rotate relative to the input shaft 61 and can move relatively in the axial direction.
  • the outer friction plate 72 is formed in a substantially annular plate shape, and a plurality of outer friction plates 72 are provided between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 so as to be arranged in the axial direction.
  • the inner friction plates 71 and the outer friction plates 72 are alternately arranged in the axial direction of the input shaft 61.
  • the outer friction plate 72 is provided so that the outer edge portion is spline-coupled to the inner peripheral wall of the cylindrical portion 623 of the output shaft 62. Therefore, the outer friction plate 72 cannot rotate relative to the output shaft 62 and can move relatively in the axial direction.
  • the outer friction plate 72 located closest to the friction plate 624 among the plurality of outer friction plates 72 can contact the friction plate 624.
  • the output shaft 62 transmits torque to and from the input shaft 61.
  • the clutch 70 allows the transmission of torque between the input shaft 61 and the output shaft 62 in the engaged state of engagement, and outputs the torque to the input shaft 61 in the non-engaged state of non-engagement.
  • the transmission of torque to and from the shaft 62 is interrupted.
  • the clutch device 1 is a so-called normally-open (normally open type) clutch device that is normally in a non-engaged state.
  • the piston 81 is formed in a substantially annular shape, and is provided between the driven cam 50 and the clutch 70 on a radially outer side of the input shaft 61.
  • a thrust bearing 162 is provided between the driven cam 50 and the piston 81. The thrust bearing 162 supports the piston 81 while receiving a load in the thrust direction from the piston 81.
  • a return spring 82 and a locking portion 83 are provided between the piston 81 and the clutch 70.
  • the locking portion 83 is formed in a substantially annular shape, and is provided so that an outer edge portion thereof is fitted to an inner peripheral wall of the cylindrical portion 623 of the output shaft 62.
  • the locking portion 83 can lock the outer edge of the outer friction plate 72 located closest to the piston 81 among the plurality of outer friction plates 72. Therefore, the plurality of outer friction plates 72 and the plurality of inner friction plates 71 are prevented from falling off from the inside of the cylindrical portion 623.
  • the distance between the locking portion 83 and the friction plate 624 is larger than the total thickness of the plurality of outer friction plates 72 and the plurality of inner friction plates 71.
  • the return spring 82 is a so-called disc spring, and is provided such that one end thereof contacts the outer edge of the piston 81 and the other end thereof contacts the locking portion 83. Thus, the return spring 82 biases the piston 81 toward the driven cam 50.
  • the ball 3 is furthest away from the deepest portion PDd ⁇ b> 1, which is the portion farthest from the one end surface 411 of the driving cam groove 400, and from the one end surface 511 of the driven cam groove 500.
  • the distance between the driving cam 40 and the driven cam 50 is relatively small, and a gap Sp1 is formed between the piston 81 and the outer friction plate 72 of the clutch 70. (See FIG. 1). Therefore, the clutch 70 is in the non-engaged state, and the transmission of torque between the input shaft 61 and the output shaft 62 is interrupted.
  • the motor 20 rotates, a torque is output from the speed reducer 30, and the drive cam 40 rotates relative to the housing 12.
  • the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500. Therefore, the driven cam 50 moves relative to the driving cam 40 in the axial direction, that is, moves to the clutch 70 side.
  • the piston 81 is pressed by the driven cam 50 and moves toward the clutch 70 against the urging force of the return spring 82.
  • the clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50, and changes to an engaged state or a disengaged state according to the relative position of the driven cam 50 with respect to the driving cam 40 in the axial direction.
  • the output shaft 62 has an end opposite to the plate 622 of the shaft 621 connected to an input shaft of a transmission (not shown), and is rotatable together with the input shaft. That is, the torque output from the output shaft 62 is input to the input shaft of the transmission. The torque input to the transmission is shifted by the transmission and output to the drive wheels of the vehicle as drive torque. As a result, the vehicle runs.
  • the drive cam groove 400 is formed so as to at least partially overlap the speed reducer 30.
  • the drive cam groove 400 is formed so that all parts thereof overlap the ring gear 430 as an “output member” which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the drive cam 40 can be reduced.
  • the speed reducer 30 further has a restricting portion 34.
  • the restricting portion 34 is formed integrally with the planetary gear 32 so as to extend cylindrically from the axial end face of the planetary gear 32 on the clutch 70 side toward the clutch 70 and then extend radially inward in a ring shape.
  • the inner peripheral wall of the cylindrical portion of the restricting portion 34 is fitted to the outer peripheral wall of the bearing 154.
  • the surface of the annular portion of the regulating portion 34 opposite to the clutch 70 can be brought into contact with the surface of the bearing 154 on the clutch 70 side. Therefore, the movement of the planetary gear 32 toward the motor 20 is restricted when the bearing 154 and the restricting portion 34 come into contact with each other.
  • the drive cam groove 400 is formed so that all parts thereof overlap with the second external teeth 322 of the planetary gear 32, which is a part of the speed reducer 30, in particular.
  • the regulating portion 34 of the speed reducer 30 has a portion in the axial direction located radially inside the driven cam groove 500 of the driven cam 50. That is, in the present embodiment, in the axial direction of the driven cam 50, the driven cam groove 500 is formed so that at least a part thereof overlaps the regulating part 34 which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the driving cam 40 and the driven cam 50 can be reduced.
  • the drive cam groove 400 has a normal drive cam groove 401 and an emergency drive cam groove 402.
  • the normal drive cam groove 401 extends from the drive cam specific position PSd1, which is a specific position of the drive cam 40, to one side in the circumferential direction of the drive cam 40, and from the drive cam specific position PSd1 to one side in the circumferential direction of the drive cam 40.
  • the groove bottom 403 is formed so as to be inclined with respect to one end face 411 of the drive cam 40 so that the depth becomes shallower as going toward.
  • the emergency drive cam groove 402 extends from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40, and the depth becomes shallower from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40.
  • the groove bottom 403 is formed to be inclined with respect to one end surface 411 of the driving cam 40, and the inclination angle of the groove bottom 403 with respect to the one end surface 411 of the driving cam 40 is larger than the inclination angle of the groove bottom 403 of the normal driving cam groove 401. small. In the circumferential direction of the drive cam 40, the drive cam specific position PSd1 and the deepest portion PDd1 coincide.
  • the driven cam groove 500 has a normal driven cam groove 501 and an emergency driven cam groove 502.
  • the normal driven cam groove 501 extends from the specified position of the driven cam 50 to the driven cam specific position PSv1 to one side in the circumferential direction of the driven cam 50, and from the specified driven cam position PSv1 to one side in the circumferential direction of the driven cam 50.
  • the groove bottom 503 is formed so as to be inclined with respect to one end face 511 of the driven cam 50 so that the depth becomes shallower as going toward.
  • the emergency driven cam groove 502 extends from the driven cam specific position PSv1 to the other side in the circumferential direction of the driven cam 50, and the depth becomes shallower from the driven cam specific position PSv1 to the other side in the circumferential direction of the driven cam 50.
  • the groove bottom 503 is formed to be inclined with respect to one end face 511 of the driven cam 50, and the inclination angle of the groove bottom 503 with respect to the one end face 511 of the driven cam 50 is larger than the inclination angle of the groove bottom 503 of the normal driven cam groove 501. small. In the circumferential direction of the driven cam 50, the driven cam specific position PSv1 and the deepest part PDv1 coincide.
  • the inclination angle of the groove bottom 403 of the normal driving cam groove 401 and the inclination angle of the groove bottom 503 of the normal driven cam groove 501 are the same. Further, the inclination angle of the groove bottom 403 of the emergency drive cam groove 402 and the inclination angle of the groove bottom 503 of the emergency driven cam groove 502 are the same.
  • the tangent of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 of the emergency drive cam groove 402 from the drive cam specific position PSd1 and the drive cam specification of the normal drive cam groove 401 The ratio of the tangent value of the inclination angle of the groove bottom 403 to the circumferential movement distance DMd1 from the position PSd1 is 1: 2.
  • the tangent value of the inclination angle of the groove bottom 503 with respect to the circumferential movement distance DMv2 of the emergency driven cam groove 502 from the driven cam specifying position PSv1 and the driven cam specification of the normal driven cam groove 501 is 1: 2.
  • the entire circumferential angle ⁇ d2 along the groove bottom 403 of the emergency drive cam groove 402 and the entire circumferential angle ⁇ d1 along the track LLd1 along the groove bottom 403 of the normal drive cam groove 401 are shown.
  • the circumferential angle ⁇ d2 is a straight line connecting the center Od1 of the drive cam 40 and the drive cam specific position PSd1, and a straight line connecting the center Od1 to the groove bottom 403 of the emergency drive cam groove 402 and the end of the locus LLd2. Corresponding to the angle formed.
  • the circumferential angle ⁇ d1 is a straight line connecting the center Od1 of the drive cam 40 and the drive cam specific position PSd1, and a straight line connecting the center Od1 to the groove bottom 403 of the normal drive cam groove 401 and the end of the locus LLd1. Corresponds to the angle formed.
  • the circumferential angle ⁇ v2 is a straight line connecting the center Ov1 of the driven cam 50 and the driven cam specific position PSv1, and a straight line connecting the center Ov1 to the groove bottom 503 of the emergency driven cam groove 502 and the end of the trajectory LLv2. Corresponding to the angle formed.
  • the circumferential angle ⁇ v1 is a straight line connecting the center Ov1 of the driven cam 50 and the driven cam specific position PSv1, and a straight line connecting the center Ov1 to the groove bottom 503 of the normal driven cam groove 501 and the end of the locus LLv1. Corresponds to the angle formed.
  • the drive cam 40 has three drive cam grooves 400 having the same configuration formed at equal intervals in the circumferential direction of the drive cam 40.
  • the normal drive cam groove 401 and the emergency drive cam groove 402 of the drive cam groove 400 are formed such that the distance Rd1 between the center Od1 of the drive cam 40 and the groove bottom 403 is constant in the circumferential direction of the drive cam 40. I have.
  • the driven cam 50 is formed with three driven cam grooves 500 having the same configuration at equal intervals in the circumferential direction of the driven cam 50.
  • the normal driven cam groove 501 and the emergency driven cam groove 502 of the driven cam groove 500 are formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 is constant in the circumferential direction of the driven cam 50. I have.
  • the ECU 10 controls the operation of the switching elements 271 to 276 and 281 to 286, thereby controlling the energization of the winding sets 25 and 26 and controlling the operation of the motor 20. In addition, the ECU 10 determines whether the two winding sets (25, 26) are in a normal state when none of the two winding sets are disconnected or the two winding sets (25, 26) based on the voltages detected by the voltage detection units 250 and 260. ) Is disconnected.
  • the ECU 10 operates the motor 20 so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501 in the normal state when none of the two winding sets (25, 26) is disconnected. Control. At this time, the ECU 10 outputs torque from the motor 20 by energizing the two winding sets (25, 26), and the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501.
  • the driving cam 40 is rotated relative to the driven cam 50.
  • the driven cam 50 moves relative to the drive cam 40 and the housing 12 in the axial direction, and the engaged state of the clutch 70 changes to the disengaged state or the engaged state.
  • the ECU 20 rotates the motor 20 in a direction opposite to the normal direction, and the ball 3 is moved to the emergency drive cam groove 402 and the emergency The operation of the motor 20 is controlled so as to roll the driven cam groove 502.
  • the ECU 10 outputs torque from the motor 20 by energizing the unbroken winding set of the two winding sets (25, 26), and the ball 3 is driven by the emergency drive cam groove 402 and the emergency
  • the driving cam 40 is rotated relative to the driven cam 50 so as to roll the driven driven cam groove 502.
  • the driven cam 50 moves relative to the drive cam 40 and the housing 12 in the axial direction, and the engaged state of the clutch 70 changes to the disengaged state or the engaged state.
  • 5 to 7 show cross sections of curved surfaces parallel to the axes of the drive cam 40 and the driven cam 50, passing through the groove bottom 403 of the drive cam groove 400 and the groove bottom 503 of the driven cam groove 500.
  • the maximum displacement of the driven cam 50 in the axial direction with respect to the driving cam 40 is L2-L1
  • the difference between the groove depth between the deepest part PDd1 and the shallowest part of the driving cam groove 400 and the driven cam corresponds to the sum of the difference in groove depth between the deepest part PDv1 and the shallowest part of the groove 500.
  • the relationship between the relative rotation angle between the driving cam 40 and the driven cam 50 and the displacement of the driven cam 50 with respect to the driving cam 40 is as shown in FIG.
  • the inclination angle of the emergency driving cam groove 402 and the inclination angle of the emergency driven cam groove 502 are set to the inclination angle of the normal driving cam groove 401 and the inclination angle of the normal driven cam groove 501.
  • the output torque of the motor 20 is further amplified from the normal state and translated. Can be converted to thrust. Therefore, in the event of an emergency when one of the two winding sets (25, 26) is disconnected, the motor 20 is rotated in the direction opposite to the normal direction, so that the emergency drive cam groove 402 and the emergency driven cam groove 502 ,
  • the clutch 70 can be controlled in the same manner as in the normal state.
  • the inclination angle of the emergency driving cam groove 402 and the inclination angle of the emergency driven cam groove 502 are set to be 1 with respect to the inclination angle of the normal driving cam groove 401 and the inclination angle of the normal driven cam groove 501.
  • the emergency drive cam groove 402 and the emergency driven cam groove 502 are circumferentially longer than the normal drive cam groove 401 and the normal driven cam groove 501.
  • the required rotation angle increases.
  • the drive response time of the motor 20 when the ball 3 moves from the deepest portions PDd1 and PDv1 to the shallowest portion becomes longer due to a decrease in the output torque from the motor 20 due to the disconnection of the winding set of one system. Due to emergency, it is acceptable.
  • the emergency drive cam groove 402 is connected to the deepest part PDd1 of the normal drive cam groove 401, and the emergency driven cam groove 502 is connected to the deepest part PDv1 of the normal driven cam groove 501. Therefore, in normal times, when the ball 3 returns to the deepest portions PDd1 and PDv1, the ball 3 does not collide with the wall surface of the driving cam groove 400 or the driven cam groove 500. Therefore, damage to the components of the ball cam 2 can be avoided.
  • the drive cam groove 400 has the normal drive cam groove 401 and the emergency drive cam groove 402.
  • the normal drive cam groove 401 extends from the drive cam specific position PSd1, which is a specific position of the drive cam 40, to one side in the circumferential direction of the drive cam 40, and from the drive cam specific position PSd1 to one side in the circumferential direction of the drive cam 40.
  • the groove bottom 403 is formed so as to be inclined with respect to one end face 411 of the drive cam 40 so that the depth becomes shallower as going toward.
  • the emergency drive cam groove 402 extends from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40, and the depth becomes shallower from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40.
  • the groove bottom 403 is formed to be inclined with respect to one end surface 411 of the driving cam 40, and the inclination angle of the groove bottom 403 with respect to the one end surface 411 of the driving cam 40 is larger than the inclination angle of the groove bottom 403 of the normal driving cam groove 401. small.
  • the driven cam groove 500 has a normal driven cam groove 501 and an emergency driven cam groove 502.
  • the normal driven cam groove 501 extends from the specified position of the driven cam 50 to the driven cam specific position PSv1 to one side in the circumferential direction of the driven cam 50, and from the specified driven cam position PSv1 to one side in the circumferential direction of the driven cam 50.
  • the groove bottom 503 is formed so as to be inclined with respect to one end face 511 of the driven cam 50 so that the depth becomes shallower as going toward.
  • the emergency follower cam groove 502 extends from the follower cam specific position PSv1 to the other side in the circumferential direction of the follower cam 50, and decreases in depth from the follower cam specific position PSv1 to the other side in the circumferential direction of the follower cam 50.
  • the groove bottom 503 is formed to be inclined with respect to one end face 511 of the driven cam 50, and the inclination angle of the groove bottom 503 with respect to the one end face 511 of the driven cam 50 is larger than the inclination angle of the groove bottom 503 of the normal driven cam groove 501. small.
  • the torque is output from the motor 20 and the drive cam 40 can be rotated by energizing the other. Therefore, even if the winding set (25, 26) of the motor 20 is disconnected, the driving of the clutch device 1 can be continued.
  • the inclination angles of the groove bottoms 403 and 503 of the emergency driving cam groove 402 and the emergency driven cam groove 502 are set to be equal to those of the groove bottoms 403 and 503 of the normal driving cam groove 401 and the normal driven cam groove 501. It is set smaller than the inclination angle.
  • the operation of the motor 20 is controlled so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501, and In the case of an emergency in which one of the winding sets is disconnected, the operation of the motor 20 is controlled so that the ball 3 rolls in the emergency drive cam groove 402 and the emergency driven cam groove 502, thereby driving the clutch device 1. Is surely continuable.
  • the present embodiment includes the ECU 10 that controls the energization of the winding sets 25 and 26 and can control the operation of the motor 20.
  • the ECU 10 operates the motor 20 so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501 in the normal state when none of the two winding sets (25, 26) is disconnected.
  • Control The ECU 10 controls the operation of the motor 20 so that the ball 3 rolls in the emergency driving cam groove 402 and the emergency driven cam groove 502 in an emergency when one of the two winding sets (25, 26) is disconnected. I do.
  • the operation of the clutch device 1 can be continued even in an emergency when one winding set is disconnected.
  • the tangent value of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 of the emergency drive cam groove 402 from the drive cam identification position PSd1 and the drive cam identification of the normal drive cam groove 401 The ratio of the tangent value of the inclination angle of the groove bottom 403 to the circumferential movement distance DMd1 from the position PSd1 is 1: 2.
  • the ratio of the inclination angle of the groove bottom 503 to the tangent value to the moving distance DMv1 is 1: 2.
  • the ratio of the entire circumferential angle ⁇ d2 of the entire locus LLd2 of the emergency drive cam groove 402 to the entire circumferential angle ⁇ d1 of the normal drive cam groove 401 is 2: 1.
  • the ratio of the circumferential angle ⁇ v2 of the entire locus LLv2 of the emergency driven cam groove 502 to the circumferential angle ⁇ v1 of the entire locus LLv1 of the normal driven cam groove 501 is 2: 1.
  • (2nd Embodiment) 9 and 10 show a part of the clutch device according to the second embodiment.
  • the second embodiment is different from the first embodiment in the configuration of the driving cam 40 and the driven cam 50.
  • the distance Rd1 between the center Od1 of the driving cam 40 and the groove bottom 403 increases from one side in the circumferential direction of the driving cam 40 to the other side. It is shaped to change. Specifically, the emergency drive cam groove 402 is formed such that the distance Rd1 between the center Od1 of the drive cam 40 and the groove bottom 403 decreases from one side in the circumferential direction of the drive cam 40 to the other side. .
  • the emergency driven cam groove 502 is formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 changes from one side in the circumferential direction of the driven cam 50 to the other side. Specifically, the emergency driven cam groove 502 is formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 decreases from one side in the circumferential direction of the driven cam 50 to the other side. .
  • the circumferential length of the drive cam 40 of the normal drive cam groove 401 and the circumferential length of the driven cam 50 of the normal driven cam groove 501 are increased as compared with the first embodiment. Can be. This makes it possible to secure a large operating angle range of the normal driving cam groove 401 and the normal driven cam groove 501 used at normal times, and to reduce design constraints.
  • FIGS. 11 and 12 show a part of the clutch device according to the third embodiment.
  • the third embodiment differs from the first embodiment in the configuration of the drive cam 40 and the driven cam 50.
  • the drive cam groove 400 further has a drive cam flat groove 404.
  • the drive cam flat groove 404 extends in the circumferential direction of the drive cam 40 from the end of the normal drive cam groove 401 opposite to the drive cam specific position PSd1, and has a constant depth in the circumferential direction of the drive cam 40.
  • the groove bottom 403 is formed parallel to one end surface 411 of the drive cam 40. That is, the inclination angle of the groove bottom 403 of the driving cam flat groove 404 with respect to the one end surface 411 of the driving cam 40 is 0 degree.
  • the driven cam groove 500 further has a driven cam flat groove 504.
  • the driven cam flat groove 504 extends in the circumferential direction of the driven cam 50 from the end of the normal driven cam groove 501 on the opposite side to the driven cam specific position PSv1, and has a constant depth in the circumferential direction of the driven cam 50.
  • a groove bottom 503 is formed parallel to one end face 511 of the driven cam 50. That is, the inclination angle of the groove bottom 503 of the driven cam flat groove 504 with respect to one end surface 511 of the driven cam 50 is 0 degree.
  • FIG. 13 shows a clutch device according to a fourth embodiment.
  • the fourth embodiment is different from the first embodiment in the configuration of the clutch and the state changing unit.
  • bearings 141 and 143 are provided between the inner peripheral wall of the fixed flange 11 and the outer peripheral wall of the input shaft 61.
  • the input shaft 61 is supported by the fixed flange 11 via the bearings 141 and 143.
  • the housing 12 is provided on the fixed flange 11 such that the inner peripheral wall of the inner cylindrical portion 121 faces the outer peripheral wall at the end of the fixed flange 11, and the inner bottom portion 122 contacts the step surface 111 of the fixed flange 11.
  • the housing 12 is fixed to the fixing flange 11 by bolts or the like (not shown).
  • the housing 12 is provided coaxially with the fixed flange 11 and the input shaft 61.
  • the motor 20, the speed reducer 30, and the ball cam 2 are provided inside the outer cylinder portions 123, 125 of the housing 12, as in the first embodiment.
  • the drive cam 40 is provided on the housing 12 on the side opposite to the stator 21 with respect to the ring gear 33 so that the drive cam inner teeth 43 of the ring gear 430 mesh with the second outer teeth 322 of the planetary gear 32. It is provided inside the outer cylinder part 125 as a “cylindrical part”.
  • the output shaft 62 has a shaft portion 621, a plate portion 622, a tube portion 623, and a cover 625.
  • the shaft 621 is formed in a substantially cylindrical shape.
  • the plate portion 622 is formed integrally with the shaft portion 621 so as to extend from one end of the shaft portion 621 radially outward in an annular plate shape.
  • the tubular portion 623 is formed integrally with the plate portion 622 so as to extend from the outer edge of the plate portion 622 to a side opposite to the shaft portion 621 in a substantially cylindrical shape.
  • the output shaft 62 is supported by the input shaft 61 via a bearing 142.
  • the clutch 70 has a support portion 73, friction plates 74 and 75, and a pressure plate 76.
  • the support portion 73 is formed in a substantially annular plate shape so as to extend radially outward from the outer peripheral wall at the end of the input shaft 61 on the driven cam 50 side with respect to the plate portion 622 of the output shaft 62.
  • the friction plate 74 is formed in a substantially annular plate shape, and is provided on the outer edge portion of the support portion 73 on the plate portion 622 side of the output shaft 62.
  • the friction plate 74 is fixed to the support 73.
  • the friction plate 74 can come into contact with the plate portion 622 by deforming the outer edge of the support portion 73 toward the plate portion 622 side.
  • the friction plate 75 is formed in a substantially annular plate shape, and is provided at the outer edge of the support portion 73 on the side opposite to the plate portion 622 of the output shaft 62. The friction plate 75 is fixed to the support 73.
  • the pressure plate 76 is formed in a substantially annular plate shape, and is provided on the driven cam 50 side with respect to the friction plate 75.
  • the cover 625 is formed in a substantially annular shape, and is provided on the cylindrical portion 623 of the output shaft 62 so as to cover the pressure plate 76 on the side opposite to the friction plate 75.
  • the clutch device 1 includes a diaphragm spring 91 as a “state changing unit” instead of the piston 81.
  • the diaphragm spring 91 is formed in a substantially annular shape, and is provided on the cover 625 such that an outer edge portion of the diaphragm spring 91 contacts the pressure plate 76.
  • the diaphragm spring 91 is formed so that the outer edge is located on the clutch 70 side with respect to the inner edge, and the space between the inner edge and the outer edge is supported by the cover 625. Further, the diaphragm spring 91 urges the pressure plate 76 toward the friction plate 75 by the outer edge.
  • the pressure plate 76 is pressed against the friction plate 75, and the friction plate 74 is pressed against the plate portion 622. That is, the clutch 70 is normally in the engaged state.
  • the clutch device 1 is a so-called normally-closed (normally closed type) clutch device that is normally in an engaged state.
  • a return spring 92 and a release bearing 93 are provided instead of the return spring 82, the locking portion 83, and the thrust bearing 162.
  • the return spring 92 is, for example, a coil spring, and is provided in an annular concave portion 513 formed on a surface of the driven cam 50 opposite to the drive cam 40.
  • the release bearing 93 is provided between the return spring 92 and the inner edge of the diaphragm spring 91.
  • the return spring 92 urges the release bearing 93 toward the diaphragm spring 91.
  • the release bearing 93 supports the diaphragm spring 91 while receiving a load in the thrust direction from the diaphragm spring 91.
  • the urging force of the return spring 92 is smaller than the urging force of the diaphragm spring 91.
  • the motor 20 rotates, a torque is output from the speed reducer 30, and the drive cam 40 rotates relative to the housing 12.
  • the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500. Therefore, the driven cam 50 moves relative to the driving cam 40 in the axial direction, that is, moves to the clutch 70 side.
  • the gap Sp2 between the release bearing 93 and the concave portion 513 of the driven cam 50 is reduced, and the return spring 92 is compressed in the axial direction between the driven cam 50 and the release bearing 93.
  • the clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50, and is in an engaged state or a non-engaged state according to the relative position of the driven cam 50 with respect to the driving cam 40 in the axial direction. Change to a state.
  • the drive cam groove 400 is formed so as to at least partially overlap the speed reducer 30 in the axial direction of the drive cam 40, as in the first embodiment.
  • the drive cam groove 400 is formed so that all parts thereof overlap the ring gear 430 as an “output member” which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the drive cam 40 can be reduced.
  • the speed reducer 30 further includes an extension 35 instead of the restriction 34.
  • the extending portion 35 is formed integrally with the planetary gear 32 so as to extend in a cylindrical shape from the axial end face of the planetary gear 32 on the clutch 70 side to the clutch 70 side.
  • the inner peripheral wall of the extension 35 is fitted to the outer peripheral wall of the bearing 154.
  • the driven cam 50 further has a concave portion 514.
  • the concave portion 514 is formed so as to be circularly concave from the inner edge of one end surface 511 of the driven cam body 51 on the drive cam 40 side to the clutch 70 side. Inside the recess 514, the end of the extension 35 on the clutch 70 side is located.
  • the drive cam groove 400 is formed so that all parts thereof overlap with the second external teeth 322 of the planetary gear 32, which is a part of the speed reducer 30, in particular.
  • the extension 35 of the speed reducer 30 has a portion in the axial direction located radially inside the driven cam groove 500 of the driven cam 50. That is, in the present embodiment, in the axial direction of the driven cam 50, the driven cam groove 500 is formed so that at least a part thereof overlaps the extending part 35 which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the driving cam 40 and the driven cam 50 can be reduced.
  • This embodiment is the same as the first embodiment except for the configuration described above.
  • the present disclosure is also applicable to a normally-closed clutch device.
  • the present embodiment even with a reduced output torque that can be output by the motor 20 in which the winding set of one system is broken, the maximum translation force equivalent to that in the normal state can be generated, and the normally-closed clutch 70 can be completely opened. realizable.
  • the drive cam specific position of the emergency drive cam groove 402 The tangent value of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 from PSd1 and the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd1 of the normal drive cam groove 401 from the drive cam specific position PSd1.
  • the ratio to the tangent value need not be 1: 2. However, if the ratio is 1/2 or less, a useless rotation angle may occur in the drive cam 40 and the design constraint in the rotation direction may increase, so the ratio is desirably 1: 2.
  • the ratio between the circumferential angle ⁇ d2 of the entire locus of the emergency drive cam groove 402 and the circumferential angle ⁇ d1 of the entire locus of the normal drive cam groove 401 need not be 2: 1. However, if the ratio is 2 or more, a useless rotation angle may occur in the drive cam 40 and the design constraint in the rotation direction may increase, so that the ratio is preferably 2: 1.
  • the inclination angle of the groove bottom 503 of the emergency driven cam groove 502 is smaller than the inclination angle of the groove bottom 503 of the normal driven cam groove 501, the circumference of the emergency driven cam groove 502 from the driven cam specific position PSv1.
  • the tangent value of the inclination angle of the groove bottom 503 with respect to the moving distance DMv2 in the direction, and the tangent value of the inclination angle of the groove bottom 503 with respect to the circumferential moving distance DMv1 of the normal driven cam groove 501 from the driven cam specific position PSv1. May not be 1: 2. However, if the ratio is 1/2 or less, a useless rotation angle may be generated in the driven cam 50 and the design constraint in the rotation direction may increase, so the ratio is desirably 1: 2.
  • the ratio between the circumferential angle ⁇ v2 of the entire trajectory of the emergency driven cam groove 502 and the circumferential angle ⁇ v1 of the entire trajectory of the normal driven cam groove 501 may not be 2: 1. However, if the ratio is 2 or more, a useless rotation angle may be generated in the driven cam 50 and the design constraint in the rotation direction may increase, so the ratio is preferably 2: 1.
  • the distance between the center Od1 of the drive cam 40 and the groove bottom 403 decreases as the emergency drive cam groove 402 moves from one side in the circumferential direction of the drive cam 40 to the other side.
  • the example in which the emergency driven cam groove 502 is formed such that the distance between the center Ov1 of the driven cam 50 and the groove bottom 503 becomes smaller as going from one side to the other side in the circumferential direction of the driven cam 50 is shown.
  • the emergency drive cam groove 402 is such that the distance between the center Od1 of the drive cam 40 and the groove bottom 403 increases from one side in the circumferential direction of the drive cam 40 to the other side.
  • the emergency driven cam groove 502 may be formed such that the distance between the center Ov1 of the driven cam 50 and the groove bottom 503 increases from one side in the circumferential direction of the driven cam 50 to the other side.
  • the drive cam flat groove 404 is formed to extend in the circumferential direction of the drive cam 40 from the end of the normal drive cam groove 401 opposite to the drive cam specific position PSd1.
  • the example in which the cam flat groove 504 is formed so as to extend in the circumferential direction of the driven cam 50 from the end of the normal driven cam groove 501 opposite to the driven cam specific position PSv1 is shown.
  • the drive cam flat groove 404 is formed so as to extend in the circumferential direction of the drive cam 40 from the end of the emergency drive cam groove 402 opposite to the drive cam specific position PSd1
  • the cam flat groove 504 may be formed so as to extend in the circumferential direction of the driven cam 50 from the end of the emergency driven cam groove 502 opposite to the driven cam specific position PSv1.
  • the number of the drive cam grooves 400 and the number of the driven cam grooves 500 are not limited to three, and may be four or more, for example.
  • the number of the balls 3 is not limited to three, but may be four or more in accordance with the number of the driving cam grooves 400 and the number of the driven cam grooves 500.
  • the “rolling element” is not limited to a spherical shape, and may be, for example, a cylindrical roller.
  • the present disclosure is not limited to vehicles that run with drive torque from an internal combustion engine, but can also be applied to electric vehicles, hybrid vehicles, and the like that can run with drive torque from a motor.
  • the torque may be input from the second transmission unit, and the torque may be output from the first transmission unit via the clutch. Further, for example, when one of the first transmission unit and the second transmission unit is fixed so as not to rotate, the rotation of the other of the first transmission unit and the second transmission unit may be stopped by engaging the clutch. it can.
  • the clutch device can be used as a brake device.
  • the present disclosure is not limited to the above embodiments, and can be implemented in various forms without departing from the gist of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

A regular drive cam groove (401) extends from a drive cam specific position (PSd1) which is a specific position of a drive cam (40) toward one side in the circumferential direction of the drive cam (40), and is formed with a groove bottom (403) inclined with respect to one end surface (411) of the drive cam (40) so that the depth becomes smaller from the drive cam specific position (PSd1) toward the one side, in the circumferential direction, of the drive cam (40). An irregular drive cam groove (402) extends from the drive cam specific position (PSd1) toward the other side in the circumferential direction of the drive cam (40), and is formed with the groove bottom (403) inclined with respect to the one end surface (411) of the drive cam (40) so that the depth becomes smaller from the drive cam specific position (PSd1) toward the other side, in the circumferential direction, of the drive cam (40). An inclination angle of the groove bottom (403) with respect to the one end surface (411) of the drive cam (40) is smaller than an inclination angle of the groove bottom (403) of the regular drive cam groove (401).

Description

クラッチ装置Clutch device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年7月6日に出願された特許出願番号2018-128691号、および、2019年6月6日に出願された特許出願番号2019-106249号に基づくものであり、ここにその記載内容を援用する。 This application is based on Patent Application No. 2018-128691 filed on July 6, 2018 and Patent Application No. 2019-106249 filed on June 6, 2019, the disclosure of which is hereby incorporated by reference. The contents of the description are incorporated.
 本開示は、クラッチ装置に関する。 The present disclosure relates to a clutch device.
 従来、減速機で減速した原動機のトルクにより駆動カムを回転させ、駆動カムおよび従動カムのカム溝を転動する転動体により、駆動カムに対し従動カムを軸方向に相対移動させる転動体カムが知られている。
 また、転動体カムを備え、駆動カムに対する従動カムの軸方向の相対位置に応じて、クラッチの状態を係合状態または非係合状態に変更することにより、第1伝達部と第2伝達部との間のトルクの伝達を許容または遮断するクラッチ装置が知られている。例えば、特許文献1に記載された転動体カムは、クラッチ装置に適用することにより、クラッチの状態を係合状態または非係合状態に変更可能である。
Conventionally, the rolling element cam that rotates the driven cam by the torque of the prime mover decelerated by the speed reducer and rolls the cam groove of the driving cam and the driven cam, thereby relatively moving the driven cam relative to the driving cam in the axial direction. Are known.
Further, the first transmission unit and the second transmission unit are provided with a rolling element cam, and by changing the state of the clutch between an engaged state and a disengaged state in accordance with an axial relative position of the driven cam with respect to the driving cam. There is known a clutch device that allows or interrupts transmission of torque between the clutch device and the clutch device. For example, the rolling element cam described in Patent Literature 1 can change the state of the clutch to an engaged state or a disengaged state by applying the rolling element cam to a clutch device.
特開2003-065420号公報JP 2003-066542 A
 ところで、特許文献1の転動体カムを適用したクラッチ装置では、原動機の巻線組が断線した場合、原動機のトルクが消失し、駆動カムを回転させることができず、クラッチの状態を変更できなくなるおそれがある。 By the way, in the clutch device to which the rolling element cam of Patent Document 1 is applied, when the winding set of the motor breaks, the torque of the motor is lost, the drive cam cannot be rotated, and the state of the clutch cannot be changed. There is a risk.
 本開示の目的は、原動機の巻線組が断線しても、駆動を継続可能なクラッチ装置を提供することにある。 目的 An object of the present disclosure is to provide a clutch device that can continue driving even when a winding set of a prime mover is disconnected.
 本開示に係るクラッチ装置は、第1伝達部と原動機と駆動カムと転動体と従動カムと第2伝達部とクラッチとを備えている。 The clutch device according to the present disclosure includes a first transmission unit, a prime mover, a driving cam, a rolling element, a driven cam, a second transmission unit, and a clutch.
 原動機は、2つの巻線組を有し、巻線組への通電によりトルクを出力可能である。駆動カムは、一方の端面に形成された複数の駆動カム溝を有し、原動機から出力されるトルクにより回転可能である。転動体は、複数の駆動カム溝のそれぞれにおいて転動可能に設けられている。従動カムは、駆動カム溝との間に転動体を挟むようにして一方の端面に形成された複数の従動カム溝を有し、駆動カムおよび転動体とともに転動体カムを構成し、駆動カムに対し相対回転すると、駆動カムに対し軸方向に相対移動する。第2伝達部は、第1伝達部との間でトルクを伝達する。クラッチは、駆動カムに対する従動カムの軸方向の相対位置に応じて係合状態または非係合状態に変化し、係合している係合状態のとき、第1伝達部と第2伝達部との間のトルクの伝達を許容し、係合していない非係合状態のとき、第1伝達部と第2伝達部との間のトルクの伝達を遮断する。 The prime mover has two winding sets, and can output torque by energizing the winding sets. The drive cam has a plurality of drive cam grooves formed on one end surface, and is rotatable by torque output from the prime mover. The rolling element is provided so as to roll in each of the plurality of drive cam grooves. The driven cam has a plurality of driven cam grooves formed on one end surface so as to sandwich the rolling element between the driven cam groove and the driven cam, and forms a rolling element cam together with the driving cam and the rolling element. When rotated, it moves relative to the drive cam in the axial direction. The second transmission unit transmits torque to and from the first transmission unit. The clutch changes to an engaged state or a non-engaged state according to the axial position of the driven cam with respect to the driving cam, and when the engaged state is engaged, the first transmission unit and the second transmission unit And transmission of torque between the first transmission unit and the second transmission unit is interrupted in the non-engaged and non-engaged state.
 駆動カム溝は、通常用駆動カム溝、非常用駆動カム溝を有している。通常用駆動カム溝は、駆動カムの特定の位置である駆動カム特定位置から駆動カムの周方向の一方側へ延び、駆動カム特定位置から駆動カムの周方向の一方側へ向かうに従い深さが浅くなるよう駆動カムの一方の端面に対し溝底が傾斜して形成されている。非常用駆動カム溝は、駆動カム特定位置から駆動カムの周方向の他方側へ延び、駆動カム特定位置から駆動カムの周方向の他方側へ向かうに従い深さが浅くなるよう駆動カムの一方の端面に対し溝底が傾斜して形成され、駆動カムの一方の端面に対する溝底の傾斜角が通常用駆動カム溝の溝底の傾斜角より小さい。 The drive cam groove has a normal drive cam groove and an emergency drive cam groove. The normal drive cam groove extends from the drive cam specific position, which is a specific position of the drive cam, to one side in the circumferential direction of the drive cam, and has a depth from the drive cam specific position to one side in the circumferential direction of the drive cam. The groove bottom is formed to be inclined with respect to one end face of the drive cam so as to be shallow. The emergency drive cam groove extends from the drive cam specific position to the other side in the circumferential direction of the drive cam, and one of the drive cams has a depth decreasing from the drive cam specific position to the other side in the circumferential direction of the drive cam. The groove bottom is formed to be inclined with respect to the end face, and the inclination angle of the groove bottom with respect to one end face of the drive cam is smaller than the inclination angle of the groove bottom of the normal drive cam groove.
 従動カム溝は、通常用従動カム溝、非常用従動カム溝を有している。通常用従動カム溝は、従動カムの特定の位置である従動カム特定位置から従動カムの周方向の一方側へ延び、従動カム特定位置から従動カムの周方向の一方側へ向かうに従い深さが浅くなるよう従動カムの一方の端面に対し溝底が傾斜して形成されている。非常用従動カム溝は、従動カム特定位置から従動カムの周方向の他方側へ延び、従動カム特定位置から従動カムの周方向の他方側へ向かうに従い深さが浅くなるよう従動カムの一方の端面に対し溝底が傾斜して形成され、従動カムの一方の端面に対する溝底の傾斜角が通常用従動カム溝の溝底の傾斜角より小さい。 The driven cam groove has a normal driven cam groove and an emergency driven cam groove. The normal driven cam groove extends from the specific position of the driven cam, which is a specific position of the driven cam, to one side in the circumferential direction of the driven cam, and has a depth from the specific position of the driven cam toward one side in the circumferential direction of the driven cam. The groove bottom is formed to be inclined with respect to one end face of the driven cam so as to be shallow. The emergency follower cam groove extends from the follower cam specific position to the other side in the circumferential direction of the follower cam, and has one of the follower cams whose depth decreases from the follower cam specific position to the other side in the circumferential direction of the follower cam. The groove bottom is formed to be inclined with respect to the end surface, and the inclination angle of the groove bottom with respect to one end surface of the driven cam is smaller than the inclination angle of the groove bottom of the normal driven cam groove.
 本開示では、原動機の2つの巻線組の一方が断線した場合、他方に通電することにより、原動機からトルクを出力し、駆動カムを回転させることができる。そのため、原動機の巻線組が断線しても、クラッチ装置の駆動を継続可能である。 According to the present disclosure, when one of the two winding sets of the prime mover is disconnected, the other motor is energized to output torque from the prime mover and rotate the drive cam. Therefore, even if the winding set of the prime mover is disconnected, the driving of the clutch device can be continued.
 ここで、原動機の2つの巻線組の一方が断線した場合、原動機から出力されるトルクは、断線前より小さくなる。そこで、本開示では、非常用駆動カム溝および非常用従動カム溝の溝底の傾斜角を通常用駆動カム溝および通常用従動カム溝の溝底の傾斜角より小さく設定している。これにより、転動体が非常用駆動カム溝および非常用従動カム溝を転動するときは、駆動カムを小さなトルクで回転させることができる。よって、2つの巻線組のいずれもが断線していない通常時は、転動体が通常用駆動カム溝および通常用従動カム溝を転動するよう原動機の作動を制御し、2つの巻線組の一方が断線している非常時は、転動体が非常用駆動カム溝および非常用従動カム溝を転動するよう原動機の作動を制御することで、クラッチ装置の駆動を確実に継続可能である。 Here, when one of the two winding sets of the prime mover is disconnected, the torque output from the prime mover becomes smaller than before the disconnection. Therefore, in the present disclosure, the inclination angles of the groove bottoms of the emergency drive cam groove and the emergency driven cam groove are set smaller than the inclination angles of the groove bottoms of the normal drive cam groove and the normal driven cam groove. Accordingly, when the rolling element rolls in the emergency drive cam groove and the emergency driven cam groove, the drive cam can be rotated with a small torque. Therefore, in a normal state where neither of the two winding sets is disconnected, the operation of the prime mover is controlled so that the rolling elements roll in the normal driving cam grooves and the normal driven cam grooves, and the two winding sets are controlled. In the case of an emergency where one of them is disconnected, the operation of the prime mover is controlled so that the rolling elements roll in the emergency drive cam groove and the emergency driven cam groove, so that the drive of the clutch device can be reliably continued. .
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるクラッチ装置を示す断面図であり、 図2は、第1実施形態によるクラッチ装置の原動機の巻線組を示す模式図であり、 図3は、第1実施形態によるクラッチ装置の駆動カムを示す図であり、 図4は、第1実施形態によるクラッチ装置の従動カムを示す図であり、 図5は、第1実施形態によるクラッチ装置の駆動カム溝および従動カム溝を示す断面図であり、 図6は、第1実施形態によるクラッチ装置の駆動カム溝および従動カム溝を示す断面図であって、図5と異なる状態を示す図であり、 図7は、第1実施形態によるクラッチ装置の駆動カム溝および従動カム溝を示す断面図であって、図5と異なる状態を示す図であり、 図8は、第1実施形態によるクラッチ装置の駆動カムと従動カムとの相対回転角と、駆動カムに対する従動カムの変位との関係を示す図であり、 図9は、第2実施形態によるクラッチ装置の駆動カムを示す図であり、 図10は、第2実施形態によるクラッチ装置の従動カムを示す図であり、 図11は、第3実施形態によるクラッチ装置の駆動カムを示す図であり、 図12は、第3実施形態によるクラッチ装置の従動カムを示す図であり、 図13は、第4実施形態によるクラッチ装置を示す断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a sectional view showing a clutch device according to a first embodiment, FIG. 2 is a schematic diagram showing a winding set of a motor of the clutch device according to the first embodiment, FIG. 3 is a diagram illustrating a drive cam of the clutch device according to the first embodiment, FIG. 4 is a diagram showing a driven cam of the clutch device according to the first embodiment, FIG. 5 is a sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment, FIG. 6 is a cross-sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment, and is a diagram showing a state different from FIG. FIG. 7 is a cross-sectional view showing a driving cam groove and a driven cam groove of the clutch device according to the first embodiment, and is a diagram showing a state different from FIG. FIG. 8 is a diagram illustrating a relationship between a relative rotation angle between a driving cam and a driven cam of the clutch device according to the first embodiment, and a displacement of the driven cam with respect to the driving cam. FIG. 9 is a view showing a drive cam of the clutch device according to the second embodiment. FIG. 10 is a diagram showing a driven cam of the clutch device according to the second embodiment, FIG. 11 is a diagram showing a drive cam of the clutch device according to the third embodiment, FIG. 12 is a diagram showing a driven cam of the clutch device according to the third embodiment, FIG. 13 is a cross-sectional view illustrating a clutch device according to a fourth embodiment.
 以下、複数の実施形態によるクラッチ装置を図面に基づき説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。また、複数の実施形態において実質的に同一の構成部位は、同一または同様の作用効果を奏する。 Hereinafter, clutch devices according to a plurality of embodiments will be described with reference to the drawings. Note that, in a plurality of embodiments, substantially the same components are denoted by the same reference numerals, and description thereof will be omitted. In addition, in a plurality of embodiments, substantially the same components have the same or similar effects.
  (第1実施形態)
 第1実施形態によるクラッチ装置を図1に示す。クラッチ装置1は、例えば車両の内燃機関と変速機との間に設けられ、内燃機関と変速機との間のトルクの伝達を許容または遮断するのに用いられる。
(1st Embodiment)
FIG. 1 shows a clutch device according to a first embodiment. The clutch device 1 is provided, for example, between an internal combustion engine and a transmission of a vehicle, and is used to allow or cut off transmission of torque between the internal combustion engine and the transmission.
 クラッチ装置1は、「制御部」としての電子制御ユニット(以下、「ECU」という)10、「第1伝達部」としての入力軸61と「原動機」としてのモータ20と減速機30とハウジング12と駆動カム40とボール3と従動カム50と「第2伝達部」としての出力軸62とクラッチ70と「状態変更部」としてのピストン81とを備えている。 The clutch device 1 includes an electronic control unit (hereinafter, referred to as “ECU”) 10 as a “control unit”, an input shaft 61 as a “first transmission unit”, a motor 20 as a “motor”, a reduction gear 30, and a housing 12. A driving cam 40, a ball 3, a driven cam 50, an output shaft 62 as a "second transmitting portion", a clutch 70, and a piston 81 as a "state changing portion".
 ECU10は、演算手段としてのCPU、記憶手段としてのROM、RAM、EEPROM、入出力手段としてのI/O等を有する小型のコンピュータである。ECU10は、車両の各部に設けられた各種センサからの信号等の情報に基づき、ROM等に格納されたプログラムに従い演算を実行し、車両の各種装置および機器の作動を制御する。このように、ECU10は、非遷移的実体的記録媒体に格納されたプログラムを実行する。このプログラムが実行されることで、プログラムに対応する方法が実行される。 The ECU 10 is a small computer having a CPU as an arithmetic unit, a ROM, a RAM, an EEPROM as a storage unit, and an I / O as an input / output unit. The ECU 10 executes calculations in accordance with programs stored in a ROM or the like based on information such as signals from various sensors provided in various parts of the vehicle, and controls operations of various devices and devices of the vehicle. In this way, the ECU 10 executes the program stored in the non-transitional substantive recording medium. When this program is executed, a method corresponding to the program is executed.
 ECU10は、各種センサからの信号等の情報に基づき、内燃機関等の作動を制御可能である。また、ECU10は、後述するモータ20の作動を制御可能である。 The ECU 10 can control the operation of the internal combustion engine and the like based on information such as signals from various sensors. Further, the ECU 10 can control the operation of a motor 20 described later.
 入力軸61は、例えば、図示しない内燃機関の駆動軸に接続され、駆動軸とともに回転可能である。つまり、入力軸61には、駆動軸からトルクが入力される。 The input shaft 61 is connected to, for example, a drive shaft of an internal combustion engine (not shown) and is rotatable together with the drive shaft. That is, torque is input to the input shaft 61 from the drive shaft.
 内燃機関を搭載する車両には、固定フランジ11が設けられる。固定フランジ11は、筒状に形成され、例えば車両のエンジンルームに固定される。固定フランジ11の内周壁と入力軸61の外周壁との間には、ベアリング141が設けられる。これにより、入力軸61は、ベアリング141を介して固定フランジ11により軸受けされる。 車 両 A fixed flange 11 is provided on a vehicle equipped with an internal combustion engine. The fixing flange 11 is formed in a cylindrical shape, and is fixed to, for example, an engine room of a vehicle. A bearing 141 is provided between the inner peripheral wall of the fixed flange 11 and the outer peripheral wall of the input shaft 61. Thus, the input shaft 61 is supported by the fixed flange 11 via the bearing 141.
 ハウジング12は、固定フランジ11の端部の内周壁と入力軸61の外周壁との間に設けられる。ハウジング12は、内筒部121、内底部122、外筒部123、「底部」としての外底部124、「筒部」としての外筒部125、スプライン溝126等を有している。 The housing 12 is provided between the inner peripheral wall at the end of the fixed flange 11 and the outer peripheral wall of the input shaft 61. The housing 12 includes an inner cylinder 121, an inner bottom 122, an outer cylinder 123, an outer bottom 124 as a "bottom", an outer cylinder 125 as a "cylinder", a spline groove 126, and the like.
 内筒部121は、略円筒状に形成されている。内底部122は、内筒部121の端部から径方向外側へ環状の板状に延びるよう内筒部121と一体に形成されている。外筒部123は、内底部122の外縁部から内筒部121側へ略円筒状に延びるよう内底部122と一体に形成されている。外底部124は、外筒部123の内底部122とは反対側の端部から径方向外側へ環状の板状に延びるよう外筒部123と一体に形成されている。外筒部125は、外底部124の外縁部から外筒部123とは反対側へ略円筒状に延びるよう外底部124と一体に形成されている。スプライン溝126は、外筒部125の外底部124とは反対側の端部の内周壁に形成されている。スプライン溝126は、外筒部125の端部から外底部124側へ延びるよう、外筒部125の周方向に複数形成されている。 The inner cylinder 121 is formed in a substantially cylindrical shape. The inner bottom part 122 is formed integrally with the inner cylinder part 121 so as to extend in an annular plate shape from the end of the inner cylinder part 121 radially outward. The outer cylinder 123 is formed integrally with the inner bottom 122 so as to extend substantially cylindrically from the outer edge of the inner bottom 122 toward the inner cylinder 121. The outer bottom part 124 is formed integrally with the outer cylindrical part 123 so as to extend radially outward from the end of the outer cylindrical part 123 opposite to the inner bottom part 122 in an annular plate shape. The outer cylinder part 125 is formed integrally with the outer bottom part 124 so as to extend from the outer edge of the outer bottom part 124 to a side opposite to the outer cylinder part 123 in a substantially cylindrical shape. The spline groove 126 is formed on the inner peripheral wall at the end of the outer cylinder 125 opposite to the outer bottom 124. A plurality of spline grooves 126 are formed in the circumferential direction of the outer cylinder part 125 so as to extend from the end of the outer cylinder part 125 to the outer bottom part 124 side.
 ハウジング12は、外筒部123、外筒部125の外周壁が、固定フランジ11の端部の内周壁と対向するよう固定フランジ11に設けられる。ハウジング12は、ボルト13により固定フランジ11に固定される。ここで、ハウジング12は、固定フランジ11および入力軸61に対し同軸に設けられる。また、内筒部121の内周壁と入力軸61の外周壁との間には、略円筒状の空間が形成される。 The housing 12 is provided on the fixed flange 11 such that the outer peripheral walls of the outer cylindrical portion 123 and the outer cylindrical portion 125 face the inner peripheral wall at the end of the fixed flange 11. The housing 12 is fixed to the fixing flange 11 by bolts 13. Here, the housing 12 is provided coaxially with the fixed flange 11 and the input shaft 61. A substantially cylindrical space is formed between the inner peripheral wall of the inner cylinder 121 and the outer peripheral wall of the input shaft 61.
 モータ20は、ステータ21、コイル22、ロータ23、シャフト24等を有している。ステータ21は、例えば積層鋼板により略円環状に形成され、外筒部123の内側に固定される。すなわち、モータ20のステータ21は、ハウジング12の外筒部123に対し相対移動不能に設けられている。コイル22は、ステータ21に巻き回されている。ロータ23は、例えば積層鋼板により略円環状に形成され、ステータ21の内側において回転可能に設けられる。シャフト24は、略円筒状に形成され、ロータ23の内側においてロータ23と一体に設けられている。シャフト24は、ハウジング12の内筒部121の径方向外側に設けられる。シャフト24の内周壁と内筒部121の外周壁との間には、ベアリング151が設けられる。これにより、ロータ23およびシャフト24は、ベアリング151を介して内筒部121により軸受けされる。 The motor 20 has a stator 21, a coil 22, a rotor 23, a shaft 24, and the like. The stator 21 is formed in a substantially annular shape by, for example, a laminated steel plate, and is fixed inside the outer cylindrical portion 123. That is, the stator 21 of the motor 20 is provided so as to be relatively immovable with respect to the outer cylindrical portion 123 of the housing 12. The coil 22 is wound around the stator 21. The rotor 23 is formed in a substantially annular shape by, for example, a laminated steel plate, and is rotatably provided inside the stator 21. The shaft 24 is formed in a substantially cylindrical shape, and is provided integrally with the rotor 23 inside the rotor 23. The shaft 24 is provided radially outside of the inner cylindrical portion 121 of the housing 12. A bearing 151 is provided between the inner peripheral wall of the shaft 24 and the outer peripheral wall of the inner cylinder 121. As a result, the rotor 23 and the shaft 24 are supported by the inner cylinder 121 via the bearing 151.
 ここで、コイル22は、巻線組25、26を有している(図2参照)。巻線組25は、U相巻線251、V相巻線252、W相巻線253を有している。U相巻線251、V相巻線252、W相巻線253は、それぞれ、ステータ21に巻き回され、それぞれの一端が電気的に接続されている。 コ イ ル Here, the coil 22 has winding sets 25 and 26 (see FIG. 2). The winding set 25 has a U-phase winding 251, a V-phase winding 252, and a W-phase winding 253. The U-phase winding 251, the V-phase winding 252, and the W-phase winding 253 are respectively wound around the stator 21, and one end of each is electrically connected.
 巻線組26は、U相巻線261、V相巻線262、W相巻線263を有している。U相巻線261、V相巻線262、W相巻線263は、それぞれ、ステータ21に巻き回され、それぞれの一端が電気的に接続されている。 The winding set 26 has a U-phase winding 261, a V-phase winding 262, and a W-phase winding 263. The U-phase winding 261, the V-phase winding 262, and the W-phase winding 263 are each wound around the stator 21, and one end of each is electrically connected.
 ECU10は、スイッチング素子271~276、281~286、電圧検出部250、260を有している。 The ECU 10 has the switching elements 271 to 276 and 281 to 286 and the voltage detection units 250 and 260.
 スイッチング素子271は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子272の一端に接続している。スイッチング素子272の他端は、グランドに接続している。スイッチング素子273は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子274の一端に接続している。スイッチング素子274の他端は、グランドに接続している。スイッチング素子275は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子276の一端に接続している。スイッチング素子276の他端は、グランドに接続している。 The switching element 271 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 272. The other end of the switching element 272 is connected to the ground. The switching element 273 has one end connected to a positive electrode of a battery (not shown) and the other end connected to one end of the switching element 274. The other end of the switching element 274 is connected to the ground. The switching element 275 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 276. The other end of the switching element 276 is connected to the ground.
 スイッチング素子281は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子282の一端に接続している。スイッチング素子282の他端は、グランドに接続している。スイッチング素子283は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子284の一端に接続している。スイッチング素子284の他端は、グランドに接続している。スイッチング素子285は、一端が図示しないバッテリの正極に接続し、他端がスイッチング素子286の一端に接続している。スイッチング素子286の他端は、グランドに接続している。 The switching element 281 has one end connected to the positive electrode of the battery (not shown) and the other end connected to one end of the switching element 282. The other end of the switching element 282 is connected to the ground. The switching element 283 has one end connected to a positive electrode of a battery (not shown) and the other end connected to one end of the switching element 284. The other end of the switching element 284 is connected to the ground. The switching element 285 has one end connected to the positive electrode of a battery (not shown) and the other end connected to one end of the switching element 286. The other end of the switching element 286 is connected to the ground.
 U相巻線251の他端は、スイッチング素子271とスイッチング素子272との接続点に接続している。V相巻線252の他端は、スイッチング素子273とスイッチング素子274との接続点に接続している。W相巻線253の他端は、スイッチング素子275とスイッチング素子276との接続点に接続している。 The other end of the U-phase winding 251 is connected to a connection point between the switching element 271 and the switching element 272. The other end of V-phase winding 252 is connected to a connection point between switching element 273 and switching element 274. The other end of W-phase winding 253 is connected to a connection point between switching element 275 and switching element 276.
 U相巻線261の他端は、スイッチング素子281とスイッチング素子282との接続点に接続している。V相巻線262の他端は、スイッチング素子283とスイッチング素子284との接続点に接続している。W相巻線263の他端は、スイッチング素子285とスイッチング素子286との接続点に接続している。 The other end of the U-phase winding 261 is connected to a connection point between the switching element 281 and the switching element 282. The other end of V-phase winding 262 is connected to a connection point between switching element 283 and switching element 284. The other end of W-phase winding 263 is connected to a connection point between switching element 285 and switching element 286.
 電圧検出部250は、スイッチング素子272、274、276とグランドとの間に設けられ、当該箇所の電位差を検出可能である。電圧検出部260は、スイッチング素子282、284、286とグランドとの間に設けられ、当該箇所の電位差を検出可能である。 (4) The voltage detection unit 250 is provided between the switching elements 272, 274, and 276 and the ground, and can detect a potential difference at the location. The voltage detection unit 260 is provided between the switching elements 282, 284, and 286 and the ground, and can detect a potential difference at the location.
 ハウジング12は、モータ20のステータ21に対し相対移動不能に設けられている。 The housing 12 is provided so as not to move relative to the stator 21 of the motor 20.
 ECU10は、コイル22に供給する電力を制御することにより、モータ20の作動を制御可能である。コイル22に電力が供給されると、ステータ21に回転磁界が生じ、ロータ23が回転する。これにより、シャフト24からトルクが出力される。このように、モータ20は、トルクを出力可能である。 The ECU 10 can control the operation of the motor 20 by controlling the power supplied to the coil 22. When electric power is supplied to the coil 22, a rotating magnetic field is generated in the stator 21, and the rotor 23 rotates. Thereby, torque is output from the shaft 24. Thus, the motor 20 can output torque.
 より詳細には、ECU10は、スイッチング素子271~276、281~286のスイッチング作動を制御することで、バッテリから巻線組25、26に供給する電力を制御することにより、ロータ23が正転または逆転するようモータ20の作動を制御可能である。 More specifically, the ECU 10 controls the switching operation of the switching elements 271 to 276 and 281 to 286 to control the power supplied from the battery to the winding sets 25 and 26, so that the rotor 23 rotates forward or backward. The operation of the motor 20 can be controlled to reverse the rotation.
 このように、本実施形態では、モータ20は、2つの巻線組(25、26)、すなわち、2系統の巻線組を有し、通常時、2系統の巻線組への通電によりトルクを出力する。なお、モータ20は、2つの巻線組の一方が断線した場合の非常時でも、他方の巻線組により作動を継続可能である。この場合、モータ20が出力するトルクは、通常時の約半分となる。 As described above, in the present embodiment, the motor 20 has two winding sets (25, 26), that is, two winding sets. Is output. The motor 20 can continue to operate with the other winding set even in an emergency when one of the two winding sets is disconnected. In this case, the torque output by the motor 20 is about half of the normal time.
 ECU10は、電圧検出部250、260により検出した電圧により、巻線組25、26に流れる電流値を検出可能である。これにより、ECU10は、巻線組25、26の断線を検出可能である。 The ECU 10 can detect the value of the current flowing through the winding sets 25 and 26 based on the voltages detected by the voltage detection units 250 and 260. Thereby, the ECU 10 can detect the disconnection of the winding sets 25 and 26.
 減速機30は、「偏心回転体」としての偏心部31、プラネタリギア32、リングギア33、「出力部材」としてのリングギア430等を有している。偏心部31は、内周壁に対し外周壁が偏心するよう筒状に形成されている。偏心部31は、内筒部121の径方向外側において、内周壁がシャフト24と同軸となるようシャフト24と一体に設けられている。つまり、偏心部31とシャフト24とは相対回転不能である。そのため、偏心部31は、シャフト24に対し外周壁が偏心した状態でシャフト24とともに回転可能である。偏心部31の内周壁と内筒部121の外周壁との間には、ベアリング152が設けられている。これにより、偏心部31は、ベアリング152を介して内筒部121により軸受けされる。 The reduction gear 30 has an eccentric part 31 as an “eccentric rotating body”, a planetary gear 32, a ring gear 33, a ring gear 430 as an “output member”, and the like. The eccentric part 31 is formed in a cylindrical shape so that the outer peripheral wall is eccentric with respect to the inner peripheral wall. The eccentric portion 31 is provided integrally with the shaft 24 on the radially outer side of the inner cylindrical portion 121 such that the inner peripheral wall is coaxial with the shaft 24. That is, the eccentric part 31 and the shaft 24 cannot rotate relative to each other. Therefore, the eccentric portion 31 can rotate together with the shaft 24 in a state where the outer peripheral wall is eccentric with respect to the shaft 24. A bearing 152 is provided between the inner peripheral wall of the eccentric part 31 and the outer peripheral wall of the inner cylindrical part 121. Thus, the eccentric portion 31 is supported by the inner cylindrical portion 121 via the bearing 152.
 偏心部31は、モータ20の軸Ax1に対して偏心する軸Ax2を有している。ここで、軸Ax1は、偏心部31の内周壁の中心線と一致する。軸Ax2は、偏心部31の外周壁の中心線と一致する。偏心部31は、モータ20の軸Ax1を中心に、ハウジング12の内筒部121に対し相対回転可能である。また、モータ20の軸Ax1は、シャフト24の中心線と一致する。 The eccentric part 31 has an axis Ax2 that is eccentric with respect to the axis Ax1 of the motor 20. Here, the axis Ax1 coincides with the center line of the inner peripheral wall of the eccentric portion 31. The axis Ax2 coincides with the center line of the outer peripheral wall of the eccentric portion 31. The eccentric part 31 is rotatable relative to the inner cylinder part 121 of the housing 12 about the axis Ax1 of the motor 20. The axis Ax1 of the motor 20 matches the center line of the shaft 24.
 プラネタリギア32は、略円環状に形成されている。プラネタリギア32は、第1外歯321、第2外歯322を有している。第1外歯321は、プラネタリギア32の軸方向の一端の外周壁に形成されている。第2外歯322は、プラネタリギア32の第1外歯321に対し軸方向の他端側に形成されている。第2外歯322は、歯先円の直径が第1外歯321の歯先円の直径よりも小さい。第1外歯321、第2外歯322は、プラネタリギア32の内周壁と同軸となるよう形成されている。 The planetary gear 32 is formed in a substantially annular shape. The planetary gear 32 has first external teeth 321 and second external teeth 322. The first external teeth 321 are formed on the outer peripheral wall of one end of the planetary gear 32 in the axial direction. The second external teeth 322 are formed on the other end side in the axial direction with respect to the first external teeth 321 of the planetary gear 32. The diameter of the tip circle of the second external teeth 322 is smaller than the diameter of the tip circle of the first external teeth 321. The first external teeth 321 and the second external teeth 322 are formed so as to be coaxial with the inner peripheral wall of the planetary gear 32.
 プラネタリギア32は、偏心部31の径方向外側に設けられている。プラネタリギア32の内周壁と偏心部31の外周壁との間には、ベアリング153、ベアリング154が設けられている。これにより、プラネタリギア32は、ベアリング153、ベアリング154を介して偏心部31により軸受けされる。なお、プラネタリギア32は、偏心部31に対し同軸に相対回転しつつ、シャフト24に対し偏心した状態で相対回転可能である。 The planetary gear 32 is provided radially outside the eccentric portion 31. Bearings 153 and 154 are provided between the inner peripheral wall of the planetary gear 32 and the outer peripheral wall of the eccentric portion 31. Thus, the planetary gear 32 is supported by the eccentric portion 31 via the bearings 153 and 154. The planetary gear 32 is relatively rotatable coaxially with respect to the eccentric part 31 while being eccentric with respect to the shaft 24.
 リングギア33は、略環状に形成されている。リングギア33は、内歯331を有している。内歯331は、リングギア33の軸方向の一端の内周壁に形成されている。リングギア33は、内歯331とは反対側の端部の外周壁がハウジング12の外筒部123の端部の内周壁に嵌合するようハウジング12に固定される。ここで、内歯331の歯先円の直径は、プラネタリギア32の第1外歯321の歯先円の直径より大きい。また、内歯331の歯数は、第1外歯321の歯数より多い。 The ring gear 33 is formed in a substantially annular shape. The ring gear 33 has internal teeth 331. The internal teeth 331 are formed on an inner peripheral wall of one end of the ring gear 33 in the axial direction. The ring gear 33 is fixed to the housing 12 such that the outer peripheral wall at the end opposite to the internal teeth 331 is fitted to the inner peripheral wall at the end of the outer cylindrical portion 123 of the housing 12. Here, the diameter of the addendum circle of the internal teeth 331 is larger than the diameter of the addendum circle of the first outer teeth 321 of the planetary gear 32. The number of the internal teeth 331 is larger than the number of the first external teeth 321.
 プラネタリギア32は、第1外歯321がリングギア33の内歯331に噛み合うよう設けられる。そのため、ロータ23およびシャフト24が回転すると、プラネタリギア32は、第1外歯321がリングギア33の内歯331に噛み合いながら、リングギア33の内側において自転しつつ公転する。 The planetary gear 32 is provided such that the first external teeth 321 mesh with the internal teeth 331 of the ring gear 33. Therefore, when the rotor 23 and the shaft 24 rotate, the planetary gear 32 revolves while rotating on the inside of the ring gear 33 while the first external teeth 321 mesh with the internal teeth 331 of the ring gear 33.
 駆動カム40は、駆動カム本体41、駆動カム穴部42、駆動カム溝400等を有している(図3参照)。駆動カム本体41は、例えば金属により略円板状に形成されている。駆動カム穴部42は、駆動カム本体41の中央を貫くよう駆動カム本体41と同軸に円形に形成されている。 The drive cam 40 has a drive cam body 41, a drive cam hole 42, a drive cam groove 400, and the like (see FIG. 3). The drive cam body 41 is formed in a substantially disk shape by, for example, metal. The drive cam hole 42 is formed in a circular shape coaxially with the drive cam body 41 so as to pass through the center of the drive cam body 41.
 駆動カム溝400は、駆動カム本体41の軸方向の一方の端面411から他方の端面412側へ凹むよう形成されている。駆動カム溝400は、駆動カム40の周方向において深さが変化するよう形成されている。駆動カム溝400は、駆動カム本体41の周方向に等間隔で3つ形成されている。駆動カム溝400のより詳細な構成については、後に説明する。 The drive cam groove 400 is formed so as to be recessed from one end face 411 in the axial direction of the drive cam body 41 to the other end face 412. The drive cam groove 400 is formed so that the depth changes in the circumferential direction of the drive cam 40. The three drive cam grooves 400 are formed at equal intervals in the circumferential direction of the drive cam body 41. A more detailed configuration of the drive cam groove 400 will be described later.
 減速機30の「出力部材」としてのリングギア430は、駆動カム40の駆動カム穴部42の径方向内側において駆動カム40と一体に環状に形成されている。リングギア430は、駆動カム内歯43を有している。駆動カム内歯43は、リングギア430の内縁部に形成されている。 The ring gear 430 as the “output member” of the speed reducer 30 is formed annularly integrally with the drive cam 40 radially inside the drive cam hole 42 of the drive cam 40. The ring gear 430 has the driving cam inner teeth 43. The drive cam inner teeth 43 are formed on the inner edge of the ring gear 430.
 駆動カム内歯43の歯先円の直径は、プラネタリギア32の第2外歯322の歯先円の直径より大きい。また、駆動カム内歯43の歯数は、第2外歯322の歯数より多い。駆動カム40は、リングギア430の駆動カム内歯43がプラネタリギア32の第2外歯322に噛み合うよう、リングギア33に対しステータ21とは反対側においてハウジング12の「筒部」としての外筒部125の内側に設けられる。そのため、ロータ23およびシャフト24が回転し、プラネタリギア32がリングギア33の内側において自転しつつ公転すると、駆動カム40は、外筒部125の内側においてハウジング12の外筒部125に対し相対回転する。このように、駆動カム40は、一方の端面411に形成された複数の駆動カム溝400を有し、減速機30から出力されるトルクにより回転可能である。 The diameter of the tip circle of the drive cam inner teeth 43 is larger than the diameter of the tip circle of the second outer teeth 322 of the planetary gear 32. The number of teeth of the drive cam inner teeth 43 is larger than the number of teeth of the second outer teeth 322. The drive cam 40 is formed as a “cylindrical portion” of the housing 12 on the side opposite to the stator 21 with respect to the ring gear 33 so that the drive cam inner teeth 43 of the ring gear 430 mesh with the second outer teeth 322 of the planetary gear 32. It is provided inside the cylindrical portion 125. Therefore, when the rotor 23 and the shaft 24 rotate and the planetary gear 32 revolves while rotating inside the ring gear 33, the drive cam 40 rotates relative to the outer cylinder 125 of the housing 12 inside the outer cylinder 125. I do. As described above, the drive cam 40 has the plurality of drive cam grooves 400 formed on the one end surface 411, and can be rotated by the torque output from the speed reducer 30.
 モータ20からのトルクは、減速機30により減速されて、「出力部材」としてのリングギア430から駆動カム40に出力される。このように、減速機30は、モータ20のトルクを減速して出力可能である。ここで、減速機30の減速比は、プラネタリギア32の第1外歯321の歯数とリングギア33の内歯331の歯数とを適宜設定することにより設定される。なお、一般的に、減速機の効率は、減速比が小さいほど高い。 ト ル ク The torque from the motor 20 is reduced by the speed reducer 30 and output to the drive cam 40 from the ring gear 430 as an “output member”. In this way, the speed reducer 30 can reduce the torque of the motor 20 and output it. Here, the reduction ratio of the speed reducer 30 is set by appropriately setting the number of first external teeth 321 of the planetary gear 32 and the number of internal teeth 331 of the ring gear 33. In general, the efficiency of the speed reducer increases as the reduction ratio decreases.
 リングギア33の径方向外側において駆動カム40の外縁部とハウジング12の外底部124との間には、スラストベアリング161が設けられる。スラストベアリング161は、駆動カム40からスラスト方向の荷重を受けつつ駆動カム40を軸受けする。すなわち、スラストベアリング161は、「底部」としての外底部124と駆動カム40との間に設けられ、駆動カム40の軸方向の荷重を受ける。 A thrust bearing 161 is provided between the outer edge of the drive cam 40 and the outer bottom 124 of the housing 12 on the radially outer side of the ring gear 33. The thrust bearing 161 bears the drive cam 40 while receiving a load in the thrust direction from the drive cam 40. That is, the thrust bearing 161 is provided between the outer bottom portion 124 as the “bottom portion” and the drive cam 40, and receives the axial load of the drive cam 40.
 ボール3は、例えば金属により球状に形成されている。ここで、ボール3は、「転動体」に対応している。ボール3は、複数の駆動カム溝400のそれぞれにおいて転動可能に設けられている(図3参照)。すなわち、ボール3は、合計3つ設けられている。 The ball 3 is formed in a spherical shape by, for example, metal. Here, the ball 3 corresponds to a “rolling element”. The ball 3 is provided so as to roll in each of the plurality of drive cam grooves 400 (see FIG. 3). That is, a total of three balls 3 are provided.
 従動カム50は、従動カム本体51、従動カム穴部52、スプライン結合部53、従動カム溝500を有している(図4参照)。従動カム本体51は、例えば金属により略円板状に形成されている。従動カム穴部52は、従動カム本体51の中央を貫くよう従動カム本体51と同軸に円形に形成されている。スプライン結合部53は、従動カム本体51の外縁部において従動カム本体51と一体に形成されている。スプライン結合部53は、従動カム本体51の軸方向の一方の端面511から他方の端面512まで延びるよう従動カム本体51の周方向に複数形成されている。 The driven cam 50 has a driven cam body 51, a driven cam hole 52, a spline connecting portion 53, and a driven cam groove 500 (see FIG. 4). The driven cam main body 51 is formed in a substantially disk shape by, for example, metal. The driven cam hole 52 is formed in a circular shape coaxially with the driven cam body 51 so as to pass through the center of the driven cam body 51. The spline connecting portion 53 is formed integrally with the driven cam body 51 at the outer edge of the driven cam body 51. A plurality of spline coupling portions 53 are formed in the circumferential direction of the driven cam body 51 so as to extend from one end face 511 in the axial direction of the driven cam body 51 to the other end face 512.
 従動カム溝500は、従動カム本体51の軸方向の一方の端面511から他方の端面512側へ凹むよう形成されている。従動カム溝500は、従動カム50の周方向において深さが変化するよう形成されている。従動カム溝500は、従動カム本体51の周方向に等間隔で3つ形成されている。従動カム溝500のより詳細な構成については、後に説明する。 The driven cam groove 500 is formed so as to be recessed from one end face 511 in the axial direction of the driven cam body 51 to the other end face 512 side. The driven cam groove 500 is formed so that the depth changes in the circumferential direction of the driven cam 50. Three driven cam grooves 500 are formed at equal intervals in the circumferential direction of the driven cam body 51. A more detailed configuration of the driven cam groove 500 will be described later.
 従動カム50は、スプライン結合部53がハウジング12のスプライン溝126にスプライン結合するよう、ハウジング12の「筒部」としての外筒部125の内側に設けられる。そのため、従動カム50は、ハウジング12の外筒部125に対し相対回転不能、かつ、軸方向に相対移動可能である。 The driven cam 50 is provided inside the outer cylinder portion 125 as a “tube portion” of the housing 12 so that the spline coupling portion 53 is spline-coupled to the spline groove 126 of the housing 12. Therefore, the driven cam 50 cannot rotate relative to the outer cylindrical portion 125 of the housing 12 and can move relatively in the axial direction.
 従動カム50は、従動カム溝500と駆動カム40の駆動カム溝400との間にボール3を挟むようにして駆動カム40に対しリングギア33とは反対側に設けられ、駆動カム40およびボール3とともにボールカム2を構成している。ここで、ボールカム2は、「転動体カム」に対応している。駆動カム40は、従動カム50およびハウジング12に対し相対回転可能である。駆動カム40が従動カム50に対し相対回転すると、ボール3は、駆動カム溝400および従動カム溝500においてそれぞれの溝底403、溝底503に沿って転動する。 The driven cam 50 is provided on the side opposite to the ring gear 33 with respect to the driving cam 40 so as to sandwich the ball 3 between the driven cam groove 500 and the driving cam groove 400 of the driving cam 40. The ball cam 2 is constituted. Here, the ball cam 2 corresponds to a “rolling body cam”. The drive cam 40 is rotatable relative to the driven cam 50 and the housing 12. When the driving cam 40 rotates relative to the driven cam 50, the ball 3 rolls along the groove bottoms 403 and 503 in the driving cam groove 400 and the driven cam groove 500, respectively.
 上述のように、駆動カム溝400および従動カム溝500は、駆動カム40または従動カム50の周方向において深さが変化するよう形成されている。そのため、減速機30から出力されるトルクにより駆動カム40が従動カム50に対し相対回転すると、ボール3が駆動カム溝400および従動カム溝500において転動し、従動カム50は、駆動カム40およびハウジング12に対し軸方向に相対移動する(図5~7参照)。 As described above, the drive cam groove 400 and the driven cam groove 500 are formed so that the depth changes in the circumferential direction of the drive cam 40 or the driven cam 50. Therefore, when the driving cam 40 rotates relative to the driven cam 50 by the torque output from the speed reducer 30, the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500, and the driven cam 50 It moves relative to the housing 12 in the axial direction (see FIGS. 5 to 7).
 このように、従動カム50は、駆動カム溝400との間にボール3を挟むようにして一方の端面511に形成された複数の従動カム溝500を有し、駆動カム40およびボール3とともにボールカム2を構成し、駆動カム40に対し相対回転すると、駆動カム40に対し軸方向に相対移動する。 As described above, the driven cam 50 has the plurality of driven cam grooves 500 formed on the one end surface 511 so as to sandwich the ball 3 between the driven cam groove 400 and the driven cam groove 400. When it is configured and rotated relative to the drive cam 40, it moves relative to the drive cam 40 in the axial direction.
 出力軸62は、軸部621、板部622、筒部623、摩擦板624を有している。軸部621は、略円筒状に形成されている。板部622は、軸部621の一端から径方向外側へ環状の板状に延びるよう軸部621と一体に形成されている。筒部623は、板部622の外縁部から軸部621とは反対側へ略円筒状に延びるよう板部622と一体に形成されている。摩擦板624は、略円環の板状に形成され、板部622の筒部623側の端面に設けられている。ここで、摩擦板624は、板部622に対し相対回転不能である。 The output shaft 62 has a shaft portion 621, a plate portion 622, a cylindrical portion 623, and a friction plate 624. The shaft 621 is formed in a substantially cylindrical shape. The plate portion 622 is formed integrally with the shaft portion 621 so as to extend from one end of the shaft portion 621 radially outward in an annular plate shape. The tubular portion 623 is formed integrally with the plate portion 622 so as to extend from the outer edge of the plate portion 622 to a side opposite to the shaft portion 621 in a substantially cylindrical shape. The friction plate 624 is formed in a substantially annular plate shape, and is provided on an end surface of the plate portion 622 on the side of the cylindrical portion 623. Here, the friction plate 624 cannot rotate relative to the plate portion 622.
 入力軸61の端部は、従動カム穴部52を通り、従動カム50に対し駆動カム40とは反対側に位置している。出力軸62は、ハウジング12に対し固定フランジ11とは反対側、すなわち、従動カム50に対し駆動カム40とは反対側において、入力軸61と同軸に設けられる。軸部621の内周壁と入力軸61の端部の外周壁との間には、ベアリング142が設けられる。これにより、出力軸62は、ベアリング142を介して入力軸61により軸受けされる。 The end of the input shaft 61 passes through the driven cam hole 52 and is located on the opposite side of the driven cam 50 with respect to the driven cam 50. The output shaft 62 is provided coaxially with the input shaft 61 on the side opposite to the fixed flange 11 with respect to the housing 12, that is, on the side opposite to the drive cam 40 with respect to the driven cam 50. A bearing 142 is provided between the inner peripheral wall of the shaft 621 and the outer peripheral wall at the end of the input shaft 61. Thus, the output shaft 62 is supported by the input shaft 61 via the bearing 142.
 クラッチ70は、従動カム50に対し駆動カム40とは反対側に設けられている。クラッチ70は、内側摩擦板71、外側摩擦板72を有している。内側摩擦板71は、略円環の板状に形成され、入力軸61と出力軸62の筒部623との間において、軸方向に並ぶよう複数設けられている。内側摩擦板71は、内縁部が入力軸61の外周壁とスプライン結合するよう設けられている。そのため、内側摩擦板71は、入力軸61に対し相対回転不能、かつ、軸方向に相対移動可能である。 The clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50. The clutch 70 has an inner friction plate 71 and an outer friction plate 72. The inner friction plate 71 is formed in a substantially annular plate shape, and a plurality of inner friction plates 71 are provided between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 so as to be arranged in the axial direction. The inner friction plate 71 is provided so that the inner edge portion is spline-coupled to the outer peripheral wall of the input shaft 61. Therefore, the inner friction plate 71 cannot rotate relative to the input shaft 61 and can move relatively in the axial direction.
 外側摩擦板72は、略円環の板状に形成され、入力軸61と出力軸62の筒部623との間において、軸方向に並ぶよう複数設けられている。ここで、内側摩擦板71と外側摩擦板72とは、入力軸61の軸方向において交互に配置されている。外側摩擦板72は、外縁部が出力軸62の筒部623の内周壁とスプライン結合するよう設けられている。そのため、外側摩擦板72は、出力軸62に対し相対回転不能、かつ、軸方向に相対移動可能である。複数の外側摩擦板72のうち最も摩擦板624側に位置する外側摩擦板72は、摩擦板624に接触可能である。 The outer friction plate 72 is formed in a substantially annular plate shape, and a plurality of outer friction plates 72 are provided between the input shaft 61 and the cylindrical portion 623 of the output shaft 62 so as to be arranged in the axial direction. Here, the inner friction plates 71 and the outer friction plates 72 are alternately arranged in the axial direction of the input shaft 61. The outer friction plate 72 is provided so that the outer edge portion is spline-coupled to the inner peripheral wall of the cylindrical portion 623 of the output shaft 62. Therefore, the outer friction plate 72 cannot rotate relative to the output shaft 62 and can move relatively in the axial direction. The outer friction plate 72 located closest to the friction plate 624 among the plurality of outer friction plates 72 can contact the friction plate 624.
 複数の内側摩擦板71および複数の外側摩擦板72が互いに接触、つまり係合した状態である係合状態では、内側摩擦板71と外側摩擦板72との間に摩擦力が生じ、当該摩擦力の大きさに応じて内側摩擦板71と外側摩擦板72との相対回転が規制される。一方、複数の内側摩擦板71および複数の外側摩擦板72が互いに離間、つまり係合していない状態である非係合状態では、内側摩擦板71と外側摩擦板72との間に摩擦力は生じず、内側摩擦板71と外側摩擦板72との相対回転は規制されない。 In an engagement state in which the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are in contact with each other, that is, in an engaged state, a frictional force is generated between the inner friction plate 71 and the outer friction plate 72, and the frictional force is generated. , The relative rotation between the inner friction plate 71 and the outer friction plate 72 is regulated. On the other hand, when the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are separated from each other, that is, in a disengaged state in which they are not engaged, a frictional force is generated between the inner friction plates 71 and the outer friction plates 72. This does not occur, and the relative rotation between the inner friction plate 71 and the outer friction plate 72 is not restricted.
 クラッチ70が係合状態のとき、入力軸61に入力されたトルクは、クラッチ70を経由して出力軸62に伝達する。一方、クラッチ70が非係合状態のとき、入力軸61に入力されたトルクは、出力軸62に伝達しない。 When the clutch 70 is engaged, the torque input to the input shaft 61 is transmitted to the output shaft 62 via the clutch 70. On the other hand, when the clutch 70 is in the disengaged state, the torque input to the input shaft 61 is not transmitted to the output shaft 62.
 このように、出力軸62は、入力軸61との間でトルクを伝達する。クラッチ70は、係合している係合状態のとき、入力軸61と出力軸62との間のトルクの伝達を許容し、係合していない非係合状態のとき、入力軸61と出力軸62との間のトルクの伝達を遮断する。 Thus, the output shaft 62 transmits torque to and from the input shaft 61. The clutch 70 allows the transmission of torque between the input shaft 61 and the output shaft 62 in the engaged state of engagement, and outputs the torque to the input shaft 61 in the non-engaged state of non-engagement. The transmission of torque to and from the shaft 62 is interrupted.
 本実施形態では、クラッチ装置1は、通常、非係合状態となる、所謂常開式(ノーマリーオープンタイプ)のクラッチ装置である。 In the present embodiment, the clutch device 1 is a so-called normally-open (normally open type) clutch device that is normally in a non-engaged state.
 ピストン81は、略円環状に形成され、入力軸61の径方向外側において従動カム50とクラッチ70との間に設けられる。従動カム50とピストン81との間には、スラストベアリング162が設けられる。スラストベアリング162は、ピストン81からスラスト方向の荷重を受けつつピストン81を軸受けする。 The piston 81 is formed in a substantially annular shape, and is provided between the driven cam 50 and the clutch 70 on a radially outer side of the input shaft 61. A thrust bearing 162 is provided between the driven cam 50 and the piston 81. The thrust bearing 162 supports the piston 81 while receiving a load in the thrust direction from the piston 81.
 ピストン81とクラッチ70との間には、リターンスプリング82、係止部83が設けられている。係止部83は、略円環状に形成され、外縁部が出力軸62の筒部623の内周壁に嵌合するよう設けられる。係止部83は、複数の外側摩擦板72のうち最もピストン81側に位置する外側摩擦板72の外縁部を係止可能である。そのため、複数の外側摩擦板72、複数の内側摩擦板71は、筒部623の内側からの脱落が抑制される。なお、係止部83と摩擦板624との距離は、複数の外側摩擦板72および複数の内側摩擦板71の板厚の合計よりも大きい。 リ タ ー ン A return spring 82 and a locking portion 83 are provided between the piston 81 and the clutch 70. The locking portion 83 is formed in a substantially annular shape, and is provided so that an outer edge portion thereof is fitted to an inner peripheral wall of the cylindrical portion 623 of the output shaft 62. The locking portion 83 can lock the outer edge of the outer friction plate 72 located closest to the piston 81 among the plurality of outer friction plates 72. Therefore, the plurality of outer friction plates 72 and the plurality of inner friction plates 71 are prevented from falling off from the inside of the cylindrical portion 623. The distance between the locking portion 83 and the friction plate 624 is larger than the total thickness of the plurality of outer friction plates 72 and the plurality of inner friction plates 71.
 リターンスプリング82は、所謂皿バネであり、一端がピストン81の外縁部に当接し、他端が係止部83に当接するよう設けられる。これにより、リターンスプリング82は、ピストン81を従動カム50側へ付勢する。 The return spring 82 is a so-called disc spring, and is provided such that one end thereof contacts the outer edge of the piston 81 and the other end thereof contacts the locking portion 83. Thus, the return spring 82 biases the piston 81 toward the driven cam 50.
 図1、3、4に示すように、ボール3が、駆動カム溝400の一方の端面411から最も離れた部位である最深部PDd1、および、従動カム溝500の一方の端面511から最も離れた部位である最深部PDv1に位置するとき、駆動カム40と従動カム50との距離は、比較的小さく、ピストン81とクラッチ70の外側摩擦板72との間には、隙間Sp1が形成されている(図1参照)。そのため、クラッチ70は非係合状態であり、入力軸61と出力軸62との間のトルクの伝達は遮断されている。 As shown in FIGS. 1, 3, and 4, the ball 3 is furthest away from the deepest portion PDd <b> 1, which is the portion farthest from the one end surface 411 of the driving cam groove 400, and from the one end surface 511 of the driven cam groove 500. When located at the deepest part PDv1, which is the site, the distance between the driving cam 40 and the driven cam 50 is relatively small, and a gap Sp1 is formed between the piston 81 and the outer friction plate 72 of the clutch 70. (See FIG. 1). Therefore, the clutch 70 is in the non-engaged state, and the transmission of torque between the input shaft 61 and the output shaft 62 is interrupted.
 ここで、ECU10の制御によりモータ20のコイル22に電力が供給されると、モータ20が回転し、減速機30からトルクが出力され、駆動カム40がハウジング12に対し相対回転する。これにより、ボール3が駆動カム溝400および従動カム溝500を転動する。そのため、従動カム50は、駆動カム40に対し軸方向に相対移動、すなわち、クラッチ70側へ移動する。これにより、ピストン81は、従動カム50により押圧され、リターンスプリング82の付勢力に抗してクラッチ70側へ移動する。 Here, when power is supplied to the coil 22 of the motor 20 under the control of the ECU 10, the motor 20 rotates, a torque is output from the speed reducer 30, and the drive cam 40 rotates relative to the housing 12. Thus, the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500. Therefore, the driven cam 50 moves relative to the driving cam 40 in the axial direction, that is, moves to the clutch 70 side. As a result, the piston 81 is pressed by the driven cam 50 and moves toward the clutch 70 against the urging force of the return spring 82.
 従動カム50の押圧によりピストン81がクラッチ70側へ移動すると、隙間Sp1が小さくなり、ピストン81は、クラッチ70の外側摩擦板72に接触する。ピストン81がクラッチ70に接触した後さらに従動カム50がピストン81を押圧すると、複数の内側摩擦板71および複数の外側摩擦板72が互いに係合し、クラッチ70が係合状態となる。これにより、入力軸61と出力軸62との間のトルクの伝達が許容される。 When the piston 81 moves toward the clutch 70 due to the pressing of the driven cam 50, the gap Sp1 becomes smaller, and the piston 81 contacts the outer friction plate 72 of the clutch 70. When the driven cam 50 further presses the piston 81 after the piston 81 comes into contact with the clutch 70, the plurality of inner friction plates 71 and the plurality of outer friction plates 72 are engaged with each other, and the clutch 70 is engaged. Thereby, transmission of torque between the input shaft 61 and the output shaft 62 is allowed.
 ECU10は、クラッチ伝達トルクがクラッチ要求トルク容量に達すると、モータ20の回転を停止させる。これにより、クラッチ70は、クラッチ伝達トルクがクラッチ要求トルク容量に維持された係合保持状態となる。このように、ピストン81は、従動カム50から軸方向の力を受け、駆動カム40に対する従動カム50の軸方向の相対位置に応じてクラッチ70の状態を係合状態または非係合状態に変更可能である。 (4) When the clutch transmission torque reaches the clutch required torque capacity, the ECU 10 stops the rotation of the motor 20. As a result, the clutch 70 enters the engagement holding state in which the clutch transmission torque is maintained at the clutch required torque capacity. Thus, the piston 81 receives the axial force from the driven cam 50, and changes the state of the clutch 70 to the engaged state or the disengaged state according to the relative position of the driven cam 50 to the driving cam 40 in the axial direction. It is possible.
 クラッチ70は、従動カム50に対し駆動カム40とは反対側に設けられ、駆動カム40に対する従動カム50の軸方向の相対位置に応じて係合状態または非係合状態に変化する。 The clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50, and changes to an engaged state or a disengaged state according to the relative position of the driven cam 50 with respect to the driving cam 40 in the axial direction.
 出力軸62は、軸部621の板部622とは反対側の端部が、図示しない変速機の入力軸に接続され、当該入力軸とともに回転可能である。つまり、変速機の入力軸には、出力軸62から出力されたトルクが入力される。変速機に入力されたトルクは、変速機で変速され、駆動トルクとして車両の駆動輪に出力される。これにより、車両が走行する。 The output shaft 62 has an end opposite to the plate 622 of the shaft 621 connected to an input shaft of a transmission (not shown), and is rotatable together with the input shaft. That is, the torque output from the output shaft 62 is input to the input shaft of the transmission. The torque input to the transmission is shifted by the transmission and output to the drive wheels of the vehicle as drive torque. As a result, the vehicle runs.
 図1に示すように、本実施形態では、駆動カム40の軸方向において、駆動カム溝400は、少なくとも一部が減速機30と重なるよう形成されている。 As shown in FIG. 1, in the present embodiment, in the axial direction of the drive cam 40, the drive cam groove 400 is formed so as to at least partially overlap the speed reducer 30.
 より具体的には、駆動カム40の軸方向において、駆動カム溝400は、全ての部分が、減速機30の一部である「出力部材」としてのリングギア430と重なるよう形成されている。そのため、駆動カム40の軸方向におけるクラッチ装置1の体格を小さくできる。 More specifically, in the axial direction of the drive cam 40, the drive cam groove 400 is formed so that all parts thereof overlap the ring gear 430 as an “output member” which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the drive cam 40 can be reduced.
 本実施形態では、減速機30は、規制部34をさらに有している。規制部34は、プラネタリギア32の軸方向のクラッチ70側の端面からクラッチ70側へ筒状に延びた後、径方向内側へ環状に延びるよう、プラネタリギア32と一体に形成されている。規制部34の筒状の部分の内周壁は、ベアリング154の外周壁に嵌合している。規制部34の環状の部分のクラッチ70とは反対側の面は、ベアリング154のクラッチ70側の面に当接可能である。そのため、プラネタリギア32は、ベアリング154と規制部34とが当接したとき、モータ20側への移動が規制される。 で は In the present embodiment, the speed reducer 30 further has a restricting portion 34. The restricting portion 34 is formed integrally with the planetary gear 32 so as to extend cylindrically from the axial end face of the planetary gear 32 on the clutch 70 side toward the clutch 70 and then extend radially inward in a ring shape. The inner peripheral wall of the cylindrical portion of the restricting portion 34 is fitted to the outer peripheral wall of the bearing 154. The surface of the annular portion of the regulating portion 34 opposite to the clutch 70 can be brought into contact with the surface of the bearing 154 on the clutch 70 side. Therefore, the movement of the planetary gear 32 toward the motor 20 is restricted when the bearing 154 and the restricting portion 34 come into contact with each other.
 ここで、駆動カム40の軸方向において、駆動カム溝400は、全ての部分が、減速機30の一部であるプラネタリギア32の特に第2外歯322と重なるよう形成されている。 Here, in the axial direction of the drive cam 40, the drive cam groove 400 is formed so that all parts thereof overlap with the second external teeth 322 of the planetary gear 32, which is a part of the speed reducer 30, in particular.
 また、減速機30の規制部34は、軸方向の一部が従動カム50の従動カム溝500の径方向内側に位置している。すなわち、本実施形態では、従動カム50の軸方向において、従動カム溝500は、少なくとも一部が減速機30の一部である規制部34と重なるよう形成されている。そのため、駆動カム40および従動カム50の軸方向におけるクラッチ装置1の体格を小さくできる。 規 制 Further, the regulating portion 34 of the speed reducer 30 has a portion in the axial direction located radially inside the driven cam groove 500 of the driven cam 50. That is, in the present embodiment, in the axial direction of the driven cam 50, the driven cam groove 500 is formed so that at least a part thereof overlaps the regulating part 34 which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the driving cam 40 and the driven cam 50 can be reduced.
 次に、駆動カム溝400、従動カム溝500のより詳細な構成について説明する。 Next, more detailed configurations of the driving cam groove 400 and the driven cam groove 500 will be described.
 図3に示すように、駆動カム溝400は、通常用駆動カム溝401、非常用駆動カム溝402を有している。通常用駆動カム溝401は、駆動カム40の特定の位置である駆動カム特定位置PSd1から駆動カム40の周方向の一方側へ延び、駆動カム特定位置PSd1から駆動カム40の周方向の一方側へ向かうに従い深さが浅くなるよう駆動カム40の一方の端面411に対し溝底403が傾斜して形成されている。 駆 動 As shown in FIG. 3, the drive cam groove 400 has a normal drive cam groove 401 and an emergency drive cam groove 402. The normal drive cam groove 401 extends from the drive cam specific position PSd1, which is a specific position of the drive cam 40, to one side in the circumferential direction of the drive cam 40, and from the drive cam specific position PSd1 to one side in the circumferential direction of the drive cam 40. The groove bottom 403 is formed so as to be inclined with respect to one end face 411 of the drive cam 40 so that the depth becomes shallower as going toward.
 非常用駆動カム溝402は、駆動カム特定位置PSd1から駆動カム40の周方向の他方側へ延び、駆動カム特定位置PSd1から駆動カム40の周方向の他方側へ向かうに従い深さが浅くなるよう駆動カム40の一方の端面411に対し溝底403が傾斜して形成され、駆動カム40の一方の端面411に対する溝底403の傾斜角が通常用駆動カム溝401の溝底403の傾斜角より小さい。なお、駆動カム40の周方向において、駆動カム特定位置PSd1と最深部PDd1とは一致している。 The emergency drive cam groove 402 extends from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40, and the depth becomes shallower from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40. The groove bottom 403 is formed to be inclined with respect to one end surface 411 of the driving cam 40, and the inclination angle of the groove bottom 403 with respect to the one end surface 411 of the driving cam 40 is larger than the inclination angle of the groove bottom 403 of the normal driving cam groove 401. small. In the circumferential direction of the drive cam 40, the drive cam specific position PSd1 and the deepest portion PDd1 coincide.
 図4に示すように、従動カム溝500は、通常用従動カム溝501、非常用従動カム溝502を有している。通常用従動カム溝501は、従動カム50の特定の位置である従動カム特定位置PSv1から従動カム50の周方向の一方側へ延び、従動カム特定位置PSv1から従動カム50の周方向の一方側へ向かうに従い深さが浅くなるよう従動カム50の一方の端面511に対し溝底503が傾斜して形成されている。 従 As shown in FIG. 4, the driven cam groove 500 has a normal driven cam groove 501 and an emergency driven cam groove 502. The normal driven cam groove 501 extends from the specified position of the driven cam 50 to the driven cam specific position PSv1 to one side in the circumferential direction of the driven cam 50, and from the specified driven cam position PSv1 to one side in the circumferential direction of the driven cam 50. The groove bottom 503 is formed so as to be inclined with respect to one end face 511 of the driven cam 50 so that the depth becomes shallower as going toward.
 非常用従動カム溝502は、従動カム特定位置PSv1から従動カム50の周方向の他方側へ延び、従動カム特定位置PSv1から従動カム50の周方向の他方側へ向かうに従い深さが浅くなるよう従動カム50の一方の端面511に対し溝底503が傾斜して形成され、従動カム50の一方の端面511に対する溝底503の傾斜角が通常用従動カム溝501の溝底503の傾斜角より小さい。なお、従動カム50の周方向において、従動カム特定位置PSv1と最深部PDv1とは一致している。また、通常用駆動カム溝401の溝底403の傾斜角と通常用従動カム溝501の溝底503の傾斜角とは同じである。さらに、非常用駆動カム溝402の溝底403の傾斜角と非常用従動カム溝502の溝底503の傾斜角とは同じである。 The emergency driven cam groove 502 extends from the driven cam specific position PSv1 to the other side in the circumferential direction of the driven cam 50, and the depth becomes shallower from the driven cam specific position PSv1 to the other side in the circumferential direction of the driven cam 50. The groove bottom 503 is formed to be inclined with respect to one end face 511 of the driven cam 50, and the inclination angle of the groove bottom 503 with respect to the one end face 511 of the driven cam 50 is larger than the inclination angle of the groove bottom 503 of the normal driven cam groove 501. small. In the circumferential direction of the driven cam 50, the driven cam specific position PSv1 and the deepest part PDv1 coincide. The inclination angle of the groove bottom 403 of the normal driving cam groove 401 and the inclination angle of the groove bottom 503 of the normal driven cam groove 501 are the same. Further, the inclination angle of the groove bottom 403 of the emergency drive cam groove 402 and the inclination angle of the groove bottom 503 of the emergency driven cam groove 502 are the same.
 図3に示すように、非常用駆動カム溝402の駆動カム特定位置PSd1からの周方向の移動距離DMd2に対する溝底403の傾斜角の正接の値と、通常用駆動カム溝401の駆動カム特定位置PSd1からの周方向の移動距離DMd1に対する溝底403の傾斜角の正接の値との比は、1:2である。 As shown in FIG. 3, the tangent of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 of the emergency drive cam groove 402 from the drive cam specific position PSd1 and the drive cam specification of the normal drive cam groove 401 The ratio of the tangent value of the inclination angle of the groove bottom 403 to the circumferential movement distance DMd1 from the position PSd1 is 1: 2.
 図4に示すように、非常用従動カム溝502の従動カム特定位置PSv1からの周方向の移動距離DMv2に対する溝底503の傾斜角の正接の値と、通常用従動カム溝501の従動カム特定位置PSv1からの周方向の移動距離DMv1に対する溝底503の傾斜角の正接の値との比は、1:2である。 As shown in FIG. 4, the tangent value of the inclination angle of the groove bottom 503 with respect to the circumferential movement distance DMv2 of the emergency driven cam groove 502 from the driven cam specifying position PSv1 and the driven cam specification of the normal driven cam groove 501. The ratio of the tangent value of the inclination angle of the groove bottom 503 to the circumferential movement distance DMv1 from the position PSv1 is 1: 2.
 図3に示すように、非常用駆動カム溝402の溝底403に沿う軌跡LLd2全体の円周角θd2と、通常用駆動カム溝401の溝底403に沿う軌跡LLd1全体の円周角θd1との比は、2:1である。ここで、円周角θd2は、駆動カム40の中心Od1と駆動カム特定位置PSd1とを結ぶ直線と、中心Od1と非常用駆動カム溝402の溝底403および軌跡LLd2の端部とを結ぶ直線との成す角に対応している。また、円周角θd1は、駆動カム40の中心Od1と駆動カム特定位置PSd1とを結ぶ直線と、中心Od1と通常用駆動カム溝401の溝底403および軌跡LLd1の端部とを結ぶ直線との成す角に対応している。 As shown in FIG. 3, the entire circumferential angle θd2 along the groove bottom 403 of the emergency drive cam groove 402 and the entire circumferential angle θd1 along the track LLd1 along the groove bottom 403 of the normal drive cam groove 401 are shown. Is 2: 1. Here, the circumferential angle θd2 is a straight line connecting the center Od1 of the drive cam 40 and the drive cam specific position PSd1, and a straight line connecting the center Od1 to the groove bottom 403 of the emergency drive cam groove 402 and the end of the locus LLd2. Corresponding to the angle formed. The circumferential angle θd1 is a straight line connecting the center Od1 of the drive cam 40 and the drive cam specific position PSd1, and a straight line connecting the center Od1 to the groove bottom 403 of the normal drive cam groove 401 and the end of the locus LLd1. Corresponds to the angle formed.
 図4に示すように、非常用従動カム溝502の溝底503に沿う軌跡LLv2全体の円周角θv2と、通常用従動カム溝501の溝底503に沿う軌跡LLv1全体の円周角θv1との比は、2:1である。ここで、円周角θv2は、従動カム50の中心Ov1と従動カム特定位置PSv1とを結ぶ直線と、中心Ov1と非常用従動カム溝502の溝底503および軌跡LLv2の端部とを結ぶ直線との成す角に対応している。また、円周角θv1は、従動カム50の中心Ov1と従動カム特定位置PSv1とを結ぶ直線と、中心Ov1と通常用従動カム溝501の溝底503および軌跡LLv1の端部とを結ぶ直線との成す角に対応している。 As shown in FIG. 4, the entire circumferential angle θv2 of the locus LLv2 along the groove bottom 503 of the emergency driven cam groove 502 and the entire circumferential angle θv1 of the locus LLv1 along the groove bottom 503 of the normal driven cam groove 501. Is 2: 1. Here, the circumferential angle θv2 is a straight line connecting the center Ov1 of the driven cam 50 and the driven cam specific position PSv1, and a straight line connecting the center Ov1 to the groove bottom 503 of the emergency driven cam groove 502 and the end of the trajectory LLv2. Corresponding to the angle formed. The circumferential angle θv1 is a straight line connecting the center Ov1 of the driven cam 50 and the driven cam specific position PSv1, and a straight line connecting the center Ov1 to the groove bottom 503 of the normal driven cam groove 501 and the end of the locus LLv1. Corresponds to the angle formed.
 図3に示すように、駆動カム40には、同様の構成の駆動カム溝400が、駆動カム40の周方向に等間隔で3つ形成されている。駆動カム溝400の通常用駆動カム溝401および非常用駆動カム溝402は、駆動カム40の周方向において、駆動カム40の中心Od1と溝底403との距離Rd1が一定になるよう形成されている。 駆 動 As shown in FIG. 3, the drive cam 40 has three drive cam grooves 400 having the same configuration formed at equal intervals in the circumferential direction of the drive cam 40. The normal drive cam groove 401 and the emergency drive cam groove 402 of the drive cam groove 400 are formed such that the distance Rd1 between the center Od1 of the drive cam 40 and the groove bottom 403 is constant in the circumferential direction of the drive cam 40. I have.
 図4に示すように、従動カム50には、同様の構成の従動カム溝500が、従動カム50の周方向に等間隔で3つ形成されている。従動カム溝500の通常用従動カム溝501および非常用従動カム溝502は、従動カム50の周方向において、従動カム50の中心Ov1と溝底503との距離Rv1が一定になるよう形成されている。 As shown in FIG. 4, the driven cam 50 is formed with three driven cam grooves 500 having the same configuration at equal intervals in the circumferential direction of the driven cam 50. The normal driven cam groove 501 and the emergency driven cam groove 502 of the driven cam groove 500 are formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 is constant in the circumferential direction of the driven cam 50. I have.
 ECU10は、スイッチング素子271~276、281~286の作動を制御することで、巻線組25、26への通電を制御し、モータ20の作動を制御可能である。また、ECU10は、電圧検出部250、260で検出した電圧により、「2つの巻線組(25、26)のいずれもが断線していない通常時」か「2つの巻線組(25、26)の一方が断線している非常時」を判別可能である。 The ECU 10 controls the operation of the switching elements 271 to 276 and 281 to 286, thereby controlling the energization of the winding sets 25 and 26 and controlling the operation of the motor 20. In addition, the ECU 10 determines whether the two winding sets (25, 26) are in a normal state when none of the two winding sets are disconnected or the two winding sets (25, 26) based on the voltages detected by the voltage detection units 250 and 260. ) Is disconnected.
 ECU10は、2つの巻線組(25、26)のいずれもが断線していない通常時、ボール3が通常用駆動カム溝401および通常用従動カム溝501を転動するようモータ20の作動を制御する。このとき、ECU10は、2つの巻線組(25、26)に通電することにより、モータ20からトルクを出力し、ボール3が通常用駆動カム溝401および通常用従動カム溝501を転動するよう駆動カム40を従動カム50に対し相対回転させる。これにより、従動カム50が駆動カム40およびハウジング12に対し軸方向に相対移動し、クラッチ70の係合状態が非係合状態または係合状態に変化する。 The ECU 10 operates the motor 20 so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501 in the normal state when none of the two winding sets (25, 26) is disconnected. Control. At this time, the ECU 10 outputs torque from the motor 20 by energizing the two winding sets (25, 26), and the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501. The driving cam 40 is rotated relative to the driven cam 50. As a result, the driven cam 50 moves relative to the drive cam 40 and the housing 12 in the axial direction, and the engaged state of the clutch 70 changes to the disengaged state or the engaged state.
 一方、ECU10は、2つの巻線組(25、26)の一方が断線している非常時、モータ20を通常時とは逆方向に回転させ、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するようモータ20の作動を制御する。このとき、ECU10は、2つの巻線組(25、26)のうち断線していない巻線組に通電することにより、モータ20からトルクを出力し、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するよう駆動カム40を従動カム50に対し相対回転させる。これにより、従動カム50が駆動カム40およびハウジング12に対し軸方向に相対移動し、クラッチ70の係合状態が非係合状態または係合状態に変化する。 On the other hand, in an emergency, when one of the two winding sets (25, 26) is disconnected, the ECU 20 rotates the motor 20 in a direction opposite to the normal direction, and the ball 3 is moved to the emergency drive cam groove 402 and the emergency The operation of the motor 20 is controlled so as to roll the driven cam groove 502. At this time, the ECU 10 outputs torque from the motor 20 by energizing the unbroken winding set of the two winding sets (25, 26), and the ball 3 is driven by the emergency drive cam groove 402 and the emergency The driving cam 40 is rotated relative to the driven cam 50 so as to roll the driven driven cam groove 502. As a result, the driven cam 50 moves relative to the drive cam 40 and the housing 12 in the axial direction, and the engaged state of the clutch 70 changes to the disengaged state or the engaged state.
 次に、クラッチ装置1の作動等について、より詳細に説明する。なお、図5~7では、駆動カム溝400の溝底403および従動カム溝500の溝底503を通り駆動カム40および従動カム50の軸に対し平行な曲面による断面を示している。 Next, the operation of the clutch device 1 will be described in more detail. 5 to 7 show cross sections of curved surfaces parallel to the axes of the drive cam 40 and the driven cam 50, passing through the groove bottom 403 of the drive cam groove 400 and the groove bottom 503 of the driven cam groove 500.
 図5に示すように、モータ20への通電が停止されているとき、ボール3は、駆動カム特定位置PSd1および従動カム特定位置PSv1に位置する。このとき、駆動カム40の一方の端面411と従動カム50の一方の端面511とは、距離L1離れている。 As shown in FIG. 5, when the power supply to the motor 20 is stopped, the ball 3 is located at the drive cam specific position PSd1 and the driven cam specific position PSv1. At this time, one end face 411 of the driving cam 40 and one end face 511 of the driven cam 50 are separated by a distance L1.
 ここで、通常用駆動カム溝401の溝底403の傾斜角をα、非常用駆動カム溝402の溝底403の傾斜角をβとすると、tanα:tanβ=2:1である。 Here, assuming that the inclination angle of the groove bottom 403 of the normal drive cam groove 401 is α and the inclination angle of the groove bottom 403 of the emergency drive cam groove 402 is β, tan α: tan β = 2: 1.
 2つの巻線組(25、26)のいずれもが断線していない通常時、ボール3は、通常用駆動カム溝401および通常用従動カム溝501を転動し、通常用駆動カム溝401の駆動カム特定位置PSd1とは反対側の端部、および、通常用従動カム溝501の従動カム特定位置PSv1とは反対側の端部に到達する(図6参照)。このとき、駆動カム40の一方の端面411と従動カム50の一方の端面511とは、距離L2離れている。 At the normal time when neither of the two winding sets (25, 26) is disconnected, the ball 3 rolls on the normal driving cam groove 401 and the normal driven cam groove 501, and It reaches the end opposite to the drive cam specific position PSd1 and the end of the normal driven cam groove 501 opposite to the driven cam specific position PSv1 (see FIG. 6). At this time, one end face 411 of the driving cam 40 and one end face 511 of the driven cam 50 are separated by a distance L2.
 一方、2つの巻線組(25、26)の一方が断線している非常時、ボール3は、非常用駆動カム溝402および非常用従動カム溝502を転動し、非常用駆動カム溝402の駆動カム特定位置PSd1とは反対側の端部、および、非常用従動カム溝502の従動カム特定位置PSv1とは反対側の端部に到達する(図7参照)。このとき、駆動カム40の一方の端面411と従動カム50の一方の端面511とは、距離L2離れている。 On the other hand, in an emergency, when one of the two winding sets (25, 26) is disconnected, the ball 3 rolls in the emergency driving cam groove 402 and the emergency driven cam groove 502, and the emergency driving cam groove 402 And the end of the emergency driven cam groove 502 on the opposite side to the driven cam specific position PSv1 (see FIG. 7). At this time, one end face 411 of the driving cam 40 and one end face 511 of the driven cam 50 are separated by a distance L2.
 上述のように、駆動カム40に対する従動カム50の軸方向の最大の変位は、L2-L1であり、駆動カム溝400の最深部PDd1と最浅部との溝深さの差と、従動カム溝500の最深部PDv1と最浅部との溝深さの差との合計に対応する。駆動カム40と従動カム50との相対回転角と、駆動カム40に対する従動カム50の変位との関係は、図8に示す通りである。 As described above, the maximum displacement of the driven cam 50 in the axial direction with respect to the driving cam 40 is L2-L1, and the difference between the groove depth between the deepest part PDd1 and the shallowest part of the driving cam groove 400 and the driven cam This corresponds to the sum of the difference in groove depth between the deepest part PDv1 and the shallowest part of the groove 500. The relationship between the relative rotation angle between the driving cam 40 and the driven cam 50 and the displacement of the driven cam 50 with respect to the driving cam 40 is as shown in FIG.
 上述したように、本実施形態では、非常用駆動カム溝402の傾斜角および非常用従動カム溝502の傾斜角を、通常用駆動カム溝401の傾斜角および通常用従動カム溝501の傾斜角に対し1/2となるよう設定することにより、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するとき、モータ20の出力トルクを通常状態よりもさらに増幅して並進推力に変換できる。そのため、2つの巻線組(25、26)の一方が断線した場合の非常時には、モータ20を通常時とは逆方向に回転させることで、非常用駆動カム溝402および非常用従動カム溝502を用いて、クラッチ70を通常時と同等に制御することができる。 As described above, in the present embodiment, the inclination angle of the emergency driving cam groove 402 and the inclination angle of the emergency driven cam groove 502 are set to the inclination angle of the normal driving cam groove 401 and the inclination angle of the normal driven cam groove 501. When the ball 3 rolls in the emergency drive cam groove 402 and the emergency driven cam groove 502, the output torque of the motor 20 is further amplified from the normal state and translated. Can be converted to thrust. Therefore, in the event of an emergency when one of the two winding sets (25, 26) is disconnected, the motor 20 is rotated in the direction opposite to the normal direction, so that the emergency drive cam groove 402 and the emergency driven cam groove 502 , The clutch 70 can be controlled in the same manner as in the normal state.
 上述の構成により、本実施形態では、1系統の巻線組が断線したモータ20が出力可能な低下した出力トルクでも、通常時と同等の最大並進力を発生させることができ、常開式のクラッチ70の最大伝達トルク容量を確保することができる。 With the configuration described above, in the present embodiment, even with a reduced output torque that can be output by the motor 20 in which one winding set is disconnected, a maximum translation force equivalent to that in a normal state can be generated. The maximum transmission torque capacity of the clutch 70 can be ensured.
 なお、本実施形態では、非常用駆動カム溝402の傾斜角および非常用従動カム溝502の傾斜角を、通常用駆動カム溝401の傾斜角および通常用従動カム溝501の傾斜角に対し1/2となるよう緩やかに設定したことに起因して、非常用駆動カム溝402および非常用従動カム溝502は、通常用駆動カム溝401および通常用従動カム溝501に対し周方向の長さが長くなり、所要回転角度が大きくなる。さらに、1系統の巻線組の断線によるモータ20からの出力トルクの低下により、ボール3が最深部PDd1、PDv1から最浅部まで移動するときのモータ20による駆動応答時間が長くなるが、断線による非常時のため、許容される。 In the present embodiment, the inclination angle of the emergency driving cam groove 402 and the inclination angle of the emergency driven cam groove 502 are set to be 1 with respect to the inclination angle of the normal driving cam groove 401 and the inclination angle of the normal driven cam groove 501. / 2, the emergency drive cam groove 402 and the emergency driven cam groove 502 are circumferentially longer than the normal drive cam groove 401 and the normal driven cam groove 501. And the required rotation angle increases. Further, the drive response time of the motor 20 when the ball 3 moves from the deepest portions PDd1 and PDv1 to the shallowest portion becomes longer due to a decrease in the output torque from the motor 20 due to the disconnection of the winding set of one system. Due to emergency, it is acceptable.
 ところで、特許文献1(特開2003-065420号公報)の転動体カムを適用したクラッチ装置では、原動機の巻線組が断線した場合、原動機のトルクが消失し、負荷側の荷重により駆動カムが逆駆動され、転動体が、ストッパとしてのカム溝の端部の壁面に衝突するおそれがある。この場合、転動体カムの構成要素が損傷するおそれがある。特許文献1の転動体カムでは、カム溝の壁面への転動体の衝突による構成要素の損傷を抑制するため、駆動カムと従動カムとの周方向の衝撃を吸収可能な弾性部材を設けている。しかしながら、弾性部材を設ける場合、部材点数および組付け工数等が増大するおそれがある。 By the way, in the clutch device to which the rolling element cam disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-0665420) is applied, when the winding set of the motor breaks, the torque of the motor disappears and the driving cam is displaced by the load on the load side. There is a possibility that the rolling element is reversely driven and collides with the wall surface at the end of the cam groove as the stopper. In this case, the components of the rolling element cam may be damaged. The rolling element cam disclosed in Patent Document 1 is provided with an elastic member capable of absorbing a circumferential impact between the driving cam and the driven cam in order to suppress damage to components due to the collision of the rolling element with the wall surface of the cam groove. . However, when the elastic member is provided, the number of members and the number of assembling steps may increase.
 これに対し、本実施形態では、通常用駆動カム溝401の最深部PDd1に非常用駆動カム溝402が接続し、通常用従動カム溝501の最深部PDv1に非常用従動カム溝502が接続しているため、通常時において、ボール3の最深部PDd1、PDv1への復帰時、ボール3が駆動カム溝400または従動カム溝500の壁面に衝突することはない。そのため、ボールカム2の構成要素の損傷を回避できる。 In contrast, in the present embodiment, the emergency drive cam groove 402 is connected to the deepest part PDd1 of the normal drive cam groove 401, and the emergency driven cam groove 502 is connected to the deepest part PDv1 of the normal driven cam groove 501. Therefore, in normal times, when the ball 3 returns to the deepest portions PDd1 and PDv1, the ball 3 does not collide with the wall surface of the driving cam groove 400 or the driven cam groove 500. Therefore, damage to the components of the ball cam 2 can be avoided.
 以上説明したように、本実施形態では、駆動カム溝400は、通常用駆動カム溝401、非常用駆動カム溝402を有している。通常用駆動カム溝401は、駆動カム40の特定の位置である駆動カム特定位置PSd1から駆動カム40の周方向の一方側へ延び、駆動カム特定位置PSd1から駆動カム40の周方向の一方側へ向かうに従い深さが浅くなるよう駆動カム40の一方の端面411に対し溝底403が傾斜して形成されている。 As described above, in the present embodiment, the drive cam groove 400 has the normal drive cam groove 401 and the emergency drive cam groove 402. The normal drive cam groove 401 extends from the drive cam specific position PSd1, which is a specific position of the drive cam 40, to one side in the circumferential direction of the drive cam 40, and from the drive cam specific position PSd1 to one side in the circumferential direction of the drive cam 40. The groove bottom 403 is formed so as to be inclined with respect to one end face 411 of the drive cam 40 so that the depth becomes shallower as going toward.
 非常用駆動カム溝402は、駆動カム特定位置PSd1から駆動カム40の周方向の他方側へ延び、駆動カム特定位置PSd1から駆動カム40の周方向の他方側へ向かうに従い深さが浅くなるよう駆動カム40の一方の端面411に対し溝底403が傾斜して形成され、駆動カム40の一方の端面411に対する溝底403の傾斜角が通常用駆動カム溝401の溝底403の傾斜角より小さい。 The emergency drive cam groove 402 extends from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40, and the depth becomes shallower from the drive cam specific position PSd1 to the other side in the circumferential direction of the drive cam 40. The groove bottom 403 is formed to be inclined with respect to one end surface 411 of the driving cam 40, and the inclination angle of the groove bottom 403 with respect to the one end surface 411 of the driving cam 40 is larger than the inclination angle of the groove bottom 403 of the normal driving cam groove 401. small.
 従動カム溝500は、通常用従動カム溝501、非常用従動カム溝502を有している。通常用従動カム溝501は、従動カム50の特定の位置である従動カム特定位置PSv1から従動カム50の周方向の一方側へ延び、従動カム特定位置PSv1から従動カム50の周方向の一方側へ向かうに従い深さが浅くなるよう従動カム50の一方の端面511に対し溝底503が傾斜して形成されている。 The driven cam groove 500 has a normal driven cam groove 501 and an emergency driven cam groove 502. The normal driven cam groove 501 extends from the specified position of the driven cam 50 to the driven cam specific position PSv1 to one side in the circumferential direction of the driven cam 50, and from the specified driven cam position PSv1 to one side in the circumferential direction of the driven cam 50. The groove bottom 503 is formed so as to be inclined with respect to one end face 511 of the driven cam 50 so that the depth becomes shallower as going toward.
 非常用従動カム溝502は、従動カム特定位置PSv1から従動カム50の周方向の他方側へ延び、従動カム特定位置PSv1から従動カム50の周方向の他方側へ向かうに従い深さが浅くなるよう従動カム50の一方の端面511に対し溝底503が傾斜して形成され、従動カム50の一方の端面511に対する溝底503の傾斜角が通常用従動カム溝501の溝底503の傾斜角より小さい。 The emergency follower cam groove 502 extends from the follower cam specific position PSv1 to the other side in the circumferential direction of the follower cam 50, and decreases in depth from the follower cam specific position PSv1 to the other side in the circumferential direction of the follower cam 50. The groove bottom 503 is formed to be inclined with respect to one end face 511 of the driven cam 50, and the inclination angle of the groove bottom 503 with respect to the one end face 511 of the driven cam 50 is larger than the inclination angle of the groove bottom 503 of the normal driven cam groove 501. small.
 本実施形態では、モータ20の2つの巻線組(25、26)の一方が断線した場合、他方に通電することにより、モータ20からトルクを出力し、駆動カム40を回転させることができる。そのため、モータ20の巻線組(25、26)が断線しても、クラッチ装置1の駆動を継続可能である。 In the present embodiment, when one of the two winding sets (25, 26) of the motor 20 is disconnected, the torque is output from the motor 20 and the drive cam 40 can be rotated by energizing the other. Therefore, even if the winding set (25, 26) of the motor 20 is disconnected, the driving of the clutch device 1 can be continued.
 ここで、モータ20の2つの巻線組(25、26)の一方が断線した場合、モータ20から出力されるトルクは、断線前より小さくなる。そこで、本実施形態では、非常用駆動カム溝402および非常用従動カム溝502の溝底403、503の傾斜角を通常用駆動カム溝401および通常用従動カム溝501の溝底403、503の傾斜角より小さく設定している。これにより、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するときは、駆動カム40を小さなトルクで回転させることができる。よって、2つの巻線組のいずれもが断線していない通常時は、ボール3が通常用駆動カム溝401および通常用従動カム溝501を転動するようモータ20の作動を制御し、2つの巻線組の一方が断線している非常時は、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するようモータ20の作動を制御することで、クラッチ装置1の駆動を確実に継続可能である。 Here, when one of the two winding sets (25, 26) of the motor 20 is disconnected, the torque output from the motor 20 is smaller than before the disconnection. Therefore, in the present embodiment, the inclination angles of the groove bottoms 403 and 503 of the emergency driving cam groove 402 and the emergency driven cam groove 502 are set to be equal to those of the groove bottoms 403 and 503 of the normal driving cam groove 401 and the normal driven cam groove 501. It is set smaller than the inclination angle. Thus, when the ball 3 rolls in the emergency drive cam groove 402 and the emergency driven cam groove 502, the drive cam 40 can be rotated with a small torque. Therefore, in a normal state in which none of the two winding sets is disconnected, the operation of the motor 20 is controlled so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501, and In the case of an emergency in which one of the winding sets is disconnected, the operation of the motor 20 is controlled so that the ball 3 rolls in the emergency drive cam groove 402 and the emergency driven cam groove 502, thereby driving the clutch device 1. Is surely continuable.
 また、本実施形態は、巻線組25、26への通電を制御し、モータ20の作動を制御可能なECU10を備えている。ECU10は、2つの巻線組(25、26)のいずれもが断線していない通常時、ボール3が通常用駆動カム溝401および通常用従動カム溝501を転動するようモータ20の作動を制御する。ECU10は、2つの巻線組(25、26)の一方が断線している非常時、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するようモータ20の作動を制御する。 In addition, the present embodiment includes the ECU 10 that controls the energization of the winding sets 25 and 26 and can control the operation of the motor 20. The ECU 10 operates the motor 20 so that the ball 3 rolls in the normal driving cam groove 401 and the normal driven cam groove 501 in the normal state when none of the two winding sets (25, 26) is disconnected. Control. The ECU 10 controls the operation of the motor 20 so that the ball 3 rolls in the emergency driving cam groove 402 and the emergency driven cam groove 502 in an emergency when one of the two winding sets (25, 26) is disconnected. I do.
 本実施形態では、ECU10でモータ20の作動を制御することにより、1つの巻線組が断線した非常時においても、クラッチ装置1の作動を継続することができる。 In the present embodiment, by controlling the operation of the motor 20 by the ECU 10, the operation of the clutch device 1 can be continued even in an emergency when one winding set is disconnected.
 また、本実施形態では、非常用駆動カム溝402の駆動カム特定位置PSd1からの周方向の移動距離DMd2に対する溝底403の傾斜角の正接の値と、通常用駆動カム溝401の駆動カム特定位置PSd1からの周方向の移動距離DMd1に対する溝底403の傾斜角の正接の値との比は、1:2である。非常用従動カム溝502の従動カム特定位置PSv1からの周方向の移動距離DMv2に対する溝底503の傾斜角の正接の値と、通常用従動カム溝501の従動カム特定位置PSv1からの周方向の移動距離DMv1に対する溝底503の傾斜角の正接の値との比は、1:2である。 In the present embodiment, the tangent value of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 of the emergency drive cam groove 402 from the drive cam identification position PSd1 and the drive cam identification of the normal drive cam groove 401 The ratio of the tangent value of the inclination angle of the groove bottom 403 to the circumferential movement distance DMd1 from the position PSd1 is 1: 2. The tangent value of the inclination angle of the groove bottom 503 with respect to the circumferential movement distance DMv2 of the emergency driven cam groove 502 from the driven cam specific position PSv1, and the circumferential tangent of the normal driven cam groove 501 from the driven cam specific position PSv1. The ratio of the inclination angle of the groove bottom 503 to the tangent value to the moving distance DMv1 is 1: 2.
 そのため、2つの巻線組(25、26)の一方が断線している非常時、モータ20からの出力トルクが通常時の半分になったとしても、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するようモータ20を制御することで、通常時と同等の並進推力を確保しながら、クラッチ装置1の作動を継続することができる。 For this reason, in an emergency where one of the two winding sets (25, 26) is disconnected, even if the output torque from the motor 20 is reduced to half of the normal state, the ball 3 is still in the emergency drive cam groove 402 and the emergency. By controlling the motor 20 to roll the driven follower cam groove 502, the operation of the clutch device 1 can be continued while securing the translational thrust equivalent to that in the normal state.
 また、本実施形態では、非常用駆動カム溝402の軌跡LLd2全体の円周角θd2と、通常用駆動カム溝401の軌跡LLd1全体の円周角θd1との比は、2:1である。非常用従動カム溝502の軌跡LLv2全体の円周角θv2と、通常用従動カム溝501の軌跡LLv1全体の円周角θv1との比は、2:1である。 Also, in the present embodiment, the ratio of the entire circumferential angle θd2 of the entire locus LLd2 of the emergency drive cam groove 402 to the entire circumferential angle θd1 of the normal drive cam groove 401 is 2: 1. The ratio of the circumferential angle θv2 of the entire locus LLv2 of the emergency driven cam groove 502 to the circumferential angle θv1 of the entire locus LLv1 of the normal driven cam groove 501 is 2: 1.
 そのため、2つの巻線組(25、26)の一方が断線している非常時、モータ20からの出力トルクが通常時の半分になったとしても、ボール3が非常用駆動カム溝402および非常用従動カム溝502を転動するようモータ20を制御することで、通常時と同等の並進推力を確保しながら、クラッチ装置1の作動を継続することができる。 For this reason, in an emergency where one of the two winding sets (25, 26) is disconnected, even if the output torque from the motor 20 is reduced to half of the normal state, the ball 3 is still in the emergency drive cam groove 402 and the emergency. By controlling the motor 20 to roll the driven follower cam groove 502, the operation of the clutch device 1 can be continued while securing the translational thrust equivalent to that in the normal state.
  (第2実施形態)
 第2実施形態によるクラッチ装置の一部を図9、10に示す。第2実施形態は、駆動カム40および従動カム50の構成が第1実施形態と異なる。
(2nd Embodiment)
9 and 10 show a part of the clutch device according to the second embodiment. The second embodiment is different from the first embodiment in the configuration of the driving cam 40 and the driven cam 50.
 図9に示すように、本実施形態では、非常用駆動カム溝402は、駆動カム40の周方向の一方側から他方側へ向かうに従い駆動カム40の中心Od1と溝底403との距離Rd1が変化するよう形成されている。具体的には、非常用駆動カム溝402は、駆動カム40の周方向の一方側から他方側へ向かうに従い駆動カム40の中心Od1と溝底403との距離Rd1が小さくなるよう形成されている。 As shown in FIG. 9, in the present embodiment, the distance Rd1 between the center Od1 of the driving cam 40 and the groove bottom 403 increases from one side in the circumferential direction of the driving cam 40 to the other side. It is shaped to change. Specifically, the emergency drive cam groove 402 is formed such that the distance Rd1 between the center Od1 of the drive cam 40 and the groove bottom 403 decreases from one side in the circumferential direction of the drive cam 40 to the other side. .
 図10に示すように、非常用従動カム溝502は、従動カム50の周方向の一方側から他方側へ向かうに従い従動カム50の中心Ov1と溝底503との距離Rv1が変化するよう形成されている。具体的には、非常用従動カム溝502は、従動カム50の周方向の一方側から他方側へ向かうに従い従動カム50の中心Ov1と溝底503との距離Rv1が小さくなるよう形成されている。 As shown in FIG. 10, the emergency driven cam groove 502 is formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 changes from one side in the circumferential direction of the driven cam 50 to the other side. ing. Specifically, the emergency driven cam groove 502 is formed such that the distance Rv1 between the center Ov1 of the driven cam 50 and the groove bottom 503 decreases from one side in the circumferential direction of the driven cam 50 to the other side. .
 上記構成により、第1実施形態と比べ、通常用駆動カム溝401の駆動カム40の周方向の長さ、および、通常用従動カム溝501の従動カム50の周方向の長さを大きくすることができる。これにより、通常時に用いられる通常用駆動カム溝401および通常用従動カム溝501の作動角度範囲を大きく確保することができ、設計制約を緩和できる。 With the above configuration, the circumferential length of the drive cam 40 of the normal drive cam groove 401 and the circumferential length of the driven cam 50 of the normal driven cam groove 501 are increased as compared with the first embodiment. Can be. This makes it possible to secure a large operating angle range of the normal driving cam groove 401 and the normal driven cam groove 501 used at normal times, and to reduce design constraints.
  (第3実施形態)
 第3実施形態によるクラッチ装置の一部を図11、12に示す。第3実施形態は、駆動カム40および従動カム50の構成が第1実施形態と異なる。
(Third embodiment)
FIGS. 11 and 12 show a part of the clutch device according to the third embodiment. The third embodiment differs from the first embodiment in the configuration of the drive cam 40 and the driven cam 50.
 本実施形態では、駆動カム溝400は、駆動カム平坦溝404をさらに有している。駆動カム平坦溝404は、通常用駆動カム溝401の駆動カム特定位置PSd1とは反対側の端部から駆動カム40の周方向へ延び、駆動カム40の周方向において深さが一定となるよう駆動カム40の一方の端面411に対し溝底403が平行に形成されている。すなわち、駆動カム40の一方の端面411に対する駆動カム平坦溝404の溝底403の傾斜角は、0度である。 In the present embodiment, the drive cam groove 400 further has a drive cam flat groove 404. The drive cam flat groove 404 extends in the circumferential direction of the drive cam 40 from the end of the normal drive cam groove 401 opposite to the drive cam specific position PSd1, and has a constant depth in the circumferential direction of the drive cam 40. The groove bottom 403 is formed parallel to one end surface 411 of the drive cam 40. That is, the inclination angle of the groove bottom 403 of the driving cam flat groove 404 with respect to the one end surface 411 of the driving cam 40 is 0 degree.
 従動カム溝500は、従動カム平坦溝504をさらに有している。従動カム平坦溝504は、通常用従動カム溝501の従動カム特定位置PSv1とは反対側の端部から従動カム50の周方向へ延び、従動カム50の周方向において深さが一定となるよう従動カム50の一方の端面511に対し溝底503が平行に形成されている。すなわち、従動カム50の一方の端面511に対する従動カム平坦溝504の溝底503の傾斜角は、0度である。 The driven cam groove 500 further has a driven cam flat groove 504. The driven cam flat groove 504 extends in the circumferential direction of the driven cam 50 from the end of the normal driven cam groove 501 on the opposite side to the driven cam specific position PSv1, and has a constant depth in the circumferential direction of the driven cam 50. A groove bottom 503 is formed parallel to one end face 511 of the driven cam 50. That is, the inclination angle of the groove bottom 503 of the driven cam flat groove 504 with respect to one end surface 511 of the driven cam 50 is 0 degree.
 上記構成により、ボール3が駆動カム平坦溝404および従動カム平坦溝504に位置するとき、係合状態のクラッチ70側から従動カム50に対し軸方向の反力が作用しても、ボール3は転動せず、駆動カム40が従動カム50に対し相対回転することはない。そのため、このとき、モータ20への通電を停止しても、クラッチ70の状態を係合状態に維持できる。よって、クラッチ装置1の消費電力を低減できる。 With the above configuration, when the ball 3 is located in the driving cam flat groove 404 and the driven cam flat groove 504, even if an axial reaction force acts on the driven cam 50 from the clutch 70 side in the engaged state, the ball 3 is not moved. The driving cam 40 does not roll and does not rotate relative to the driven cam 50. Therefore, at this time, even if the power supply to the motor 20 is stopped, the state of the clutch 70 can be maintained in the engaged state. Therefore, the power consumption of the clutch device 1 can be reduced.
  (第4実施形態)
 第4実施形態によるクラッチ装置を図13に示す。第4実施形態は、クラッチや状態変更部の構成等が第1実施形態と異なる。
(Fourth embodiment)
FIG. 13 shows a clutch device according to a fourth embodiment. The fourth embodiment is different from the first embodiment in the configuration of the clutch and the state changing unit.
 本実施形態では、固定フランジ11の内周壁と入力軸61の外周壁との間には、ベアリング141、143が設けられる。これにより、入力軸61は、ベアリング141、143を介して固定フランジ11により軸受けされる。 In the present embodiment, bearings 141 and 143 are provided between the inner peripheral wall of the fixed flange 11 and the outer peripheral wall of the input shaft 61. Thus, the input shaft 61 is supported by the fixed flange 11 via the bearings 141 and 143.
 ハウジング12は、内筒部121の内周壁が固定フランジ11の端部の外周壁と対向し、内底部122が固定フランジ11の段差面111に当接するようにして固定フランジ11に設けられる。ハウジング12は、図示しないボルト等により固定フランジ11に固定される。ここで、ハウジング12は、固定フランジ11および入力軸61に対し同軸に設けられる。 The housing 12 is provided on the fixed flange 11 such that the inner peripheral wall of the inner cylindrical portion 121 faces the outer peripheral wall at the end of the fixed flange 11, and the inner bottom portion 122 contacts the step surface 111 of the fixed flange 11. The housing 12 is fixed to the fixing flange 11 by bolts or the like (not shown). Here, the housing 12 is provided coaxially with the fixed flange 11 and the input shaft 61.
 モータ20、減速機30、ボールカム2は、第1実施形態と同様、ハウジング12の外筒部123、125の内側に設けられる。駆動カム40は、第1実施形態と同様、リングギア430の駆動カム内歯43がプラネタリギア32の第2外歯322に噛み合うよう、リングギア33に対しステータ21とは反対側においてハウジング12の「筒部」としての外筒部125の内側に設けられる。 The motor 20, the speed reducer 30, and the ball cam 2 are provided inside the outer cylinder portions 123, 125 of the housing 12, as in the first embodiment. Similarly to the first embodiment, the drive cam 40 is provided on the housing 12 on the side opposite to the stator 21 with respect to the ring gear 33 so that the drive cam inner teeth 43 of the ring gear 430 mesh with the second outer teeth 322 of the planetary gear 32. It is provided inside the outer cylinder part 125 as a “cylindrical part”.
 本実施形態では、出力軸62は、軸部621、板部622、筒部623、カバー625を有している。軸部621は、略円筒状に形成されている。板部622は、軸部621の一端から径方向外側へ環状の板状に延びるよう軸部621と一体に形成されている。筒部623は、板部622の外縁部から軸部621とは反対側へ略円筒状に延びるよう板部622と一体に形成されている。出力軸62は、ベアリング142を介して入力軸61により軸受けされる。 In the present embodiment, the output shaft 62 has a shaft portion 621, a plate portion 622, a tube portion 623, and a cover 625. The shaft 621 is formed in a substantially cylindrical shape. The plate portion 622 is formed integrally with the shaft portion 621 so as to extend from one end of the shaft portion 621 radially outward in an annular plate shape. The tubular portion 623 is formed integrally with the plate portion 622 so as to extend from the outer edge of the plate portion 622 to a side opposite to the shaft portion 621 in a substantially cylindrical shape. The output shaft 62 is supported by the input shaft 61 via a bearing 142.
 クラッチ70は、支持部73、摩擦板74、75、プレッシャプレート76を有している。支持部73は、出力軸62の板部622に対し従動カム50側において、入力軸61の端部の外周壁から径方向外側へ延びるよう略円環の板状に形成されている。 The clutch 70 has a support portion 73, friction plates 74 and 75, and a pressure plate 76. The support portion 73 is formed in a substantially annular plate shape so as to extend radially outward from the outer peripheral wall at the end of the input shaft 61 on the driven cam 50 side with respect to the plate portion 622 of the output shaft 62.
 摩擦板74は、略円環の板状に形成され、支持部73の外縁部において出力軸62の板部622側に設けられている。摩擦板74は、支持部73に固定されている。摩擦板74は、支持部73の外縁部が板部622側に変形することにより、板部622に接触可能である。 The friction plate 74 is formed in a substantially annular plate shape, and is provided on the outer edge portion of the support portion 73 on the plate portion 622 side of the output shaft 62. The friction plate 74 is fixed to the support 73. The friction plate 74 can come into contact with the plate portion 622 by deforming the outer edge of the support portion 73 toward the plate portion 622 side.
 摩擦板75は、略円環の板状に形成され、支持部73の外縁部において出力軸62の板部622とは反対側に設けられている。摩擦板75は、支持部73に固定されている。 The friction plate 75 is formed in a substantially annular plate shape, and is provided at the outer edge of the support portion 73 on the side opposite to the plate portion 622 of the output shaft 62. The friction plate 75 is fixed to the support 73.
 プレッシャプレート76は、略円環の板状に形成され、摩擦板75に対し従動カム50側に設けられている。 The pressure plate 76 is formed in a substantially annular plate shape, and is provided on the driven cam 50 side with respect to the friction plate 75.
 摩擦板74と板部622とが互いに接触、つまり係合した状態である係合状態では、摩擦板74と板部622との間に摩擦力が生じ、当該摩擦力の大きさに応じて摩擦板74と板部622との相対回転が規制される。一方、摩擦板74と板部622とが互いに離間、つまり係合していない状態である非係合状態では、摩擦板74と板部622との間に摩擦力は生じず、摩擦板74と板部622との相対回転は規制されない。 In an engagement state where the friction plate 74 and the plate portion 622 are in contact with each other, that is, in an engaged state, a frictional force is generated between the friction plate 74 and the plate portion 622, and the friction is generated according to the magnitude of the frictional force. The relative rotation between the plate 74 and the plate portion 622 is restricted. On the other hand, when the friction plate 74 and the plate portion 622 are separated from each other, that is, in a non-engagement state in which the friction plate 74 and the plate portion 622 are not engaged with each other, no frictional force is generated between the friction plate 74 and the plate portion 622. The relative rotation with respect to the plate part 622 is not restricted.
 クラッチ70が係合状態のとき、入力軸61に入力されたトルクは、クラッチ70を経由して出力軸62に伝達する。一方、クラッチ70が非係合状態のとき、入力軸61に入力されたトルクは、出力軸62に伝達しない。 When the clutch 70 is engaged, the torque input to the input shaft 61 is transmitted to the output shaft 62 via the clutch 70. On the other hand, when the clutch 70 is in the disengaged state, the torque input to the input shaft 61 is not transmitted to the output shaft 62.
 カバー625は、略円環状に形成され、プレッシャプレート76の摩擦板75とは反対側を覆うよう出力軸62の筒部623に設けられている。 The cover 625 is formed in a substantially annular shape, and is provided on the cylindrical portion 623 of the output shaft 62 so as to cover the pressure plate 76 on the side opposite to the friction plate 75.
 本実施形態では、クラッチ装置1は、ピストン81に代えて「状態変更部」としてのダイアフラムスプリング91を備えている。ダイアフラムスプリング91は、略円環状に形成され、外縁部がプレッシャプレート76に当接するようカバー625に設けられている。ここで、ダイアフラムスプリング91は、外縁部が内縁部に対しクラッチ70側に位置するよう形成され、内縁部と外縁部との間がカバー625により支持されている。また、ダイアフラムスプリング91は、外縁部によりプレッシャプレート76を摩擦板75側へ付勢している。これにより、プレッシャプレート76は、摩擦板75に押し付けられ、摩擦板74は、板部622に押し付けられている。すなわち、クラッチ70は、通常、係合状態となっている。 In the present embodiment, the clutch device 1 includes a diaphragm spring 91 as a “state changing unit” instead of the piston 81. The diaphragm spring 91 is formed in a substantially annular shape, and is provided on the cover 625 such that an outer edge portion of the diaphragm spring 91 contacts the pressure plate 76. Here, the diaphragm spring 91 is formed so that the outer edge is located on the clutch 70 side with respect to the inner edge, and the space between the inner edge and the outer edge is supported by the cover 625. Further, the diaphragm spring 91 urges the pressure plate 76 toward the friction plate 75 by the outer edge. Thus, the pressure plate 76 is pressed against the friction plate 75, and the friction plate 74 is pressed against the plate portion 622. That is, the clutch 70 is normally in the engaged state.
 本実施形態では、クラッチ装置1は、通常、係合状態となる、所謂常閉式(ノーマリークローズタイプ)のクラッチ装置である。 In the present embodiment, the clutch device 1 is a so-called normally-closed (normally closed type) clutch device that is normally in an engaged state.
 本実施形態では、リターンスプリング82、係止部83、スラストベアリング162に代えて、リターンスプリング92、レリーズベアリング93が設けられている。 In the present embodiment, a return spring 92 and a release bearing 93 are provided instead of the return spring 82, the locking portion 83, and the thrust bearing 162.
 リターンスプリング92は、例えばコイルスプリングであり、従動カム50の駆動カム40とは反対側の面に形成された環状の凹部513に設けられている。 The return spring 92 is, for example, a coil spring, and is provided in an annular concave portion 513 formed on a surface of the driven cam 50 opposite to the drive cam 40.
 レリーズベアリング93は、リターンスプリング92とダイアフラムスプリング91の内縁部との間に設けられている。リターンスプリング92は、レリーズベアリング93をダイアフラムスプリング91側へ付勢している。レリーズベアリング93は、ダイアフラムスプリング91からスラスト方向の荷重を受けつつダイアフラムスプリング91を軸受けする。なお、リターンスプリング92の付勢力は、ダイアフラムスプリング91の付勢力より小さい。 The release bearing 93 is provided between the return spring 92 and the inner edge of the diaphragm spring 91. The return spring 92 urges the release bearing 93 toward the diaphragm spring 91. The release bearing 93 supports the diaphragm spring 91 while receiving a load in the thrust direction from the diaphragm spring 91. The urging force of the return spring 92 is smaller than the urging force of the diaphragm spring 91.
 図13に示すように、ボール3が駆動カム溝400の最深部および従動カム溝500の最深部に位置するとき、駆動カム40と従動カム50との距離は、比較的小さく、レリーズベアリング93と従動カム50の凹部513との間には、隙間Sp2が形成されている。そのため、ダイアフラムスプリング91の付勢力により摩擦板74が板部622に押し付けられ、クラッチ70は係合状態であり、入力軸61と出力軸62との間のトルクの伝達は許容されている。 As shown in FIG. 13, when the ball 3 is located at the deepest part of the driving cam groove 400 and the deepest part of the driven cam groove 500, the distance between the driving cam 40 and the driven cam 50 is relatively small, and A gap Sp2 is formed between the driven cam 50 and the recess 513. Therefore, the friction plate 74 is pressed against the plate portion 622 by the urging force of the diaphragm spring 91, the clutch 70 is in the engaged state, and the transmission of torque between the input shaft 61 and the output shaft 62 is allowed.
 ここで、ECU10の制御によりモータ20のコイル22に電力が供給されると、モータ20が回転し、減速機30からトルクが出力され、駆動カム40がハウジング12に対し相対回転する。これにより、ボール3が駆動カム溝400および従動カム溝500を転動する。そのため、従動カム50は、駆動カム40に対し軸方向に相対移動、すなわち、クラッチ70側へ移動する。これにより、レリーズベアリング93と従動カム50の凹部513との間の隙間Sp2が小さくなり、リターンスプリング92は、従動カム50とレリーズベアリング93との間で軸方向に圧縮される。 Here, when power is supplied to the coil 22 of the motor 20 under the control of the ECU 10, the motor 20 rotates, a torque is output from the speed reducer 30, and the drive cam 40 rotates relative to the housing 12. Thus, the ball 3 rolls in the driving cam groove 400 and the driven cam groove 500. Therefore, the driven cam 50 moves relative to the driving cam 40 in the axial direction, that is, moves to the clutch 70 side. As a result, the gap Sp2 between the release bearing 93 and the concave portion 513 of the driven cam 50 is reduced, and the return spring 92 is compressed in the axial direction between the driven cam 50 and the release bearing 93.
 従動カム50がクラッチ70側にさらに移動すると、リターンスプリング92が最大限圧縮され、レリーズベアリング93が従動カム50によりクラッチ70側へ押圧される。これにより、レリーズベアリング93は、ダイアフラムスプリング91の内縁部を押圧しつつ、ダイアフラムスプリング91からの反力に抗してクラッチ70側へ移動する。 When the driven cam 50 further moves toward the clutch 70, the return spring 92 is compressed to the maximum, and the release bearing 93 is pressed toward the clutch 70 by the driven cam 50. Thus, the release bearing 93 moves toward the clutch 70 against the reaction force from the diaphragm spring 91 while pressing the inner edge of the diaphragm spring 91.
 レリーズベアリング93がダイアフラムスプリング91の内縁部を押圧しつつクラッチ70側へ移動すると、ダイアフラムスプリング91は、内縁部がクラッチ70側へ移動するとともに、外縁部がクラッチ70とは反対側へ移動する。これにより、摩擦板74が板部622から離間し、クラッチ70の状態が係合状態から非係合状態に変更される。その結果、入力軸61と出力軸62との間のトルクの伝達が遮断される。 When the release bearing 93 moves toward the clutch 70 while pressing the inner edge of the diaphragm spring 91, the inner edge of the diaphragm spring 91 moves toward the clutch 70, and the outer edge moves toward the side opposite to the clutch 70. Thereby, the friction plate 74 is separated from the plate portion 622, and the state of the clutch 70 is changed from the engaged state to the non-engaged state. As a result, transmission of torque between the input shaft 61 and the output shaft 62 is interrupted.
 ECU10は、クラッチ伝達トルクが0になると、モータ20の回転を停止させる。これにより、クラッチ70の状態が非係合状態に維持される。このように、ダイアフラムスプリング91は、従動カム50から軸方向の力を受け、駆動カム40に対する従動カム50の軸方向の相対位置に応じてクラッチ70の状態を係合状態または非係合状態に変更可能である。 (4) When the clutch transmission torque becomes zero, the ECU 10 stops the rotation of the motor 20. As a result, the state of the clutch 70 is maintained in the non-engaged state. As described above, the diaphragm spring 91 receives the axial force from the driven cam 50, and changes the state of the clutch 70 to the engaged state or the disengaged state according to the relative position of the driven cam 50 to the driving cam 40 in the axial direction. Can be changed.
 クラッチ70は、第1実施形態と同様、従動カム50に対し駆動カム40とは反対側に設けられ、駆動カム40に対する従動カム50の軸方向の相対位置に応じて係合状態または非係合状態に変化する。 Similar to the first embodiment, the clutch 70 is provided on the opposite side of the driven cam 50 with respect to the driven cam 50, and is in an engaged state or a non-engaged state according to the relative position of the driven cam 50 with respect to the driving cam 40 in the axial direction. Change to a state.
 駆動カム溝400および従動カム溝500の構成は、第1実施形態と同様のため、説明を省略する。 構成 The configurations of the drive cam groove 400 and the driven cam groove 500 are the same as those of the first embodiment, and thus the description is omitted.
 図13に示すように、本実施形態では、第1実施形態と同様、駆動カム40の軸方向において、駆動カム溝400は、少なくとも一部が減速機30と重なるよう形成されている。 As shown in FIG. 13, in the present embodiment, the drive cam groove 400 is formed so as to at least partially overlap the speed reducer 30 in the axial direction of the drive cam 40, as in the first embodiment.
 より具体的には、駆動カム40の軸方向において、駆動カム溝400は、全ての部分が、減速機30の一部である「出力部材」としてのリングギア430と重なるよう形成されている。そのため、駆動カム40の軸方向におけるクラッチ装置1の体格を小さくできる。 More specifically, in the axial direction of the drive cam 40, the drive cam groove 400 is formed so that all parts thereof overlap the ring gear 430 as an “output member” which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the drive cam 40 can be reduced.
 本実施形態では、減速機30は、規制部34に代えて延伸部35をさらに有している。延伸部35は、プラネタリギア32の軸方向のクラッチ70側の端面からクラッチ70側へ筒状に延びるよう、プラネタリギア32と一体に形成されている。延伸部35の内周壁は、ベアリング154の外周壁に嵌合している。 In the present embodiment, the speed reducer 30 further includes an extension 35 instead of the restriction 34. The extending portion 35 is formed integrally with the planetary gear 32 so as to extend in a cylindrical shape from the axial end face of the planetary gear 32 on the clutch 70 side to the clutch 70 side. The inner peripheral wall of the extension 35 is fitted to the outer peripheral wall of the bearing 154.
 従動カム50は、凹部514をさらに有している。凹部514は、従動カム本体51の駆動カム40側の端面である一方の端面511の内縁部からクラッチ70側へ円形に凹むよう形成されている。凹部514の内側には、延伸部35のクラッチ70側の端部が位置している。 The driven cam 50 further has a concave portion 514. The concave portion 514 is formed so as to be circularly concave from the inner edge of one end surface 511 of the driven cam body 51 on the drive cam 40 side to the clutch 70 side. Inside the recess 514, the end of the extension 35 on the clutch 70 side is located.
 ここで、駆動カム40の軸方向において、駆動カム溝400は、全ての部分が、減速機30の一部であるプラネタリギア32の特に第2外歯322と重なるよう形成されている。 Here, in the axial direction of the drive cam 40, the drive cam groove 400 is formed so that all parts thereof overlap with the second external teeth 322 of the planetary gear 32, which is a part of the speed reducer 30, in particular.
 また、減速機30の延伸部35は、軸方向の一部が従動カム50の従動カム溝500の径方向内側に位置している。すなわち、本実施形態では、従動カム50の軸方向において、従動カム溝500は、少なくとも一部が減速機30の一部である延伸部35と重なるよう形成されている。そのため、駆動カム40および従動カム50の軸方向におけるクラッチ装置1の体格を小さくできる。 The extension 35 of the speed reducer 30 has a portion in the axial direction located radially inside the driven cam groove 500 of the driven cam 50. That is, in the present embodiment, in the axial direction of the driven cam 50, the driven cam groove 500 is formed so that at least a part thereof overlaps the extending part 35 which is a part of the speed reducer 30. Therefore, the size of the clutch device 1 in the axial direction of the driving cam 40 and the driven cam 50 can be reduced.
 本実施形態は、上述した点以外の構成については、第1実施形態と同様である。 This embodiment is the same as the first embodiment except for the configuration described above.
 このように、本開示は、常閉式のクラッチ装置にも適用可能である。本実施形態では、1系統の巻線組が断線したモータ20が出力可能な低下した出力トルクでも、通常時と同等の最大並進力を発生させることができ、常閉式のクラッチ70の完全開放を実現できる。 As described above, the present disclosure is also applicable to a normally-closed clutch device. In the present embodiment, even with a reduced output torque that can be output by the motor 20 in which the winding set of one system is broken, the maximum translation force equivalent to that in the normal state can be generated, and the normally-closed clutch 70 can be completely opened. realizable.
  (他の実施形態)
 他の実施形態では、非常用駆動カム溝402の溝底403の傾斜角が通常用駆動カム溝401の溝底403の傾斜角より小さいのであれば、非常用駆動カム溝402の駆動カム特定位置PSd1からの周方向の移動距離DMd2に対する溝底403の傾斜角の正接の値と、通常用駆動カム溝401の駆動カム特定位置PSd1からの周方向の移動距離DMd1に対する溝底403の傾斜角の正接の値との比は、1:2でなくてもよい。ただし、当該比が1/2以下の場合、駆動カム40に無駄な回転角度が発生し回転方向の設計制約が増大するおそれがあるため、当該比は、1:2であることが望ましい。
(Other embodiments)
In another embodiment, if the inclination angle of the groove bottom 403 of the emergency drive cam groove 402 is smaller than the inclination angle of the groove bottom 403 of the normal drive cam groove 401, the drive cam specific position of the emergency drive cam groove 402 The tangent value of the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd2 from PSd1 and the inclination angle of the groove bottom 403 with respect to the circumferential movement distance DMd1 of the normal drive cam groove 401 from the drive cam specific position PSd1. The ratio to the tangent value need not be 1: 2. However, if the ratio is 1/2 or less, a useless rotation angle may occur in the drive cam 40 and the design constraint in the rotation direction may increase, so the ratio is desirably 1: 2.
 また、非常用駆動カム溝402の軌跡全体の円周角θd2と、通常用駆動カム溝401の軌跡全体の円周角θd1との比は、2:1でなくてもよい。ただし、当該比が2以上の場合、駆動カム40に無駄な回転角度が発生し回転方向の設計制約が増大するおそれがあるため、当該比は、2:1であることが望ましい。 The ratio between the circumferential angle θd2 of the entire locus of the emergency drive cam groove 402 and the circumferential angle θd1 of the entire locus of the normal drive cam groove 401 need not be 2: 1. However, if the ratio is 2 or more, a useless rotation angle may occur in the drive cam 40 and the design constraint in the rotation direction may increase, so that the ratio is preferably 2: 1.
 また、非常用従動カム溝502の溝底503の傾斜角が通常用従動カム溝501の溝底503の傾斜角より小さいのであれば、非常用従動カム溝502の従動カム特定位置PSv1からの周方向の移動距離DMv2に対する溝底503の傾斜角の正接の値と、通常用従動カム溝501の従動カム特定位置PSv1からの周方向の移動距離DMv1に対する溝底503の傾斜角の正接の値との比は、1:2でなくてもよい。ただし、当該比が1/2以下の場合、従動カム50に無駄な回転角度が発生し回転方向の設計制約が増大するおそれがあるため、当該比は、1:2であることが望ましい。 If the inclination angle of the groove bottom 503 of the emergency driven cam groove 502 is smaller than the inclination angle of the groove bottom 503 of the normal driven cam groove 501, the circumference of the emergency driven cam groove 502 from the driven cam specific position PSv1. The tangent value of the inclination angle of the groove bottom 503 with respect to the moving distance DMv2 in the direction, and the tangent value of the inclination angle of the groove bottom 503 with respect to the circumferential moving distance DMv1 of the normal driven cam groove 501 from the driven cam specific position PSv1. May not be 1: 2. However, if the ratio is 1/2 or less, a useless rotation angle may be generated in the driven cam 50 and the design constraint in the rotation direction may increase, so the ratio is desirably 1: 2.
 また、非常用従動カム溝502の軌跡全体の円周角θv2と、通常用従動カム溝501の軌跡全体の円周角θv1との比は、2:1でなくてもよい。ただし、当該比が2以上の場合、従動カム50に無駄な回転角度が発生し回転方向の設計制約が増大するおそれがあるため、当該比は、2:1であることが望ましい。 The ratio between the circumferential angle θv2 of the entire trajectory of the emergency driven cam groove 502 and the circumferential angle θv1 of the entire trajectory of the normal driven cam groove 501 may not be 2: 1. However, if the ratio is 2 or more, a useless rotation angle may be generated in the driven cam 50 and the design constraint in the rotation direction may increase, so the ratio is preferably 2: 1.
 また、上述の第2実施形態では、非常用駆動カム溝402が、駆動カム40の周方向の一方側から他方側へ向かうに従い駆動カム40の中心Od1と溝底403との距離が小さくなるよう形成され、非常用従動カム溝502が、従動カム50の周方向の一方側から他方側へ向かうに従い従動カム50の中心Ov1と溝底503との距離が小さくなるよう形成される例を示した。これに対し、他の実施形態では、非常用駆動カム溝402は、駆動カム40の周方向の一方側から他方側へ向かうに従い駆動カム40の中心Od1と溝底403との距離が大きくなるよう形成され、非常用従動カム溝502は、従動カム50の周方向の一方側から他方側へ向かうに従い従動カム50の中心Ov1と溝底503との距離が大きくなるよう形成されていてもよい。 In the second embodiment described above, the distance between the center Od1 of the drive cam 40 and the groove bottom 403 decreases as the emergency drive cam groove 402 moves from one side in the circumferential direction of the drive cam 40 to the other side. The example in which the emergency driven cam groove 502 is formed such that the distance between the center Ov1 of the driven cam 50 and the groove bottom 503 becomes smaller as going from one side to the other side in the circumferential direction of the driven cam 50 is shown. . On the other hand, in another embodiment, the emergency drive cam groove 402 is such that the distance between the center Od1 of the drive cam 40 and the groove bottom 403 increases from one side in the circumferential direction of the drive cam 40 to the other side. The emergency driven cam groove 502 may be formed such that the distance between the center Ov1 of the driven cam 50 and the groove bottom 503 increases from one side in the circumferential direction of the driven cam 50 to the other side.
 また、上述の第3実施形態では、駆動カム平坦溝404が、通常用駆動カム溝401の駆動カム特定位置PSd1とは反対側の端部から駆動カム40の周方向へ延びるよう形成され、従動カム平坦溝504が、通常用従動カム溝501の従動カム特定位置PSv1とは反対側の端部から従動カム50の周方向へ延びるよう形成される例を示した。これに対し、他の実施形態では、駆動カム平坦溝404は、非常用駆動カム溝402の駆動カム特定位置PSd1とは反対側の端部から駆動カム40の周方向へ延びるよう形成され、従動カム平坦溝504は、非常用従動カム溝502の従動カム特定位置PSv1とは反対側の端部から従動カム50の周方向へ延びるよう形成されていてもよい。 In the above-described third embodiment, the drive cam flat groove 404 is formed to extend in the circumferential direction of the drive cam 40 from the end of the normal drive cam groove 401 opposite to the drive cam specific position PSd1. The example in which the cam flat groove 504 is formed so as to extend in the circumferential direction of the driven cam 50 from the end of the normal driven cam groove 501 opposite to the driven cam specific position PSv1 is shown. On the other hand, in another embodiment, the drive cam flat groove 404 is formed so as to extend in the circumferential direction of the drive cam 40 from the end of the emergency drive cam groove 402 opposite to the drive cam specific position PSd1, and The cam flat groove 504 may be formed so as to extend in the circumferential direction of the driven cam 50 from the end of the emergency driven cam groove 502 opposite to the driven cam specific position PSv1.
 また、他の実施形態では、駆動カム溝400、従動カム溝500は、それぞれ、3つに限らず、例えば4つ以上形成されていてもよい。また、ボール3は、3つに限らず、駆動カム溝400、従動カム溝500の数に応じて4つ以上設けられていてもよい。 In another embodiment, the number of the drive cam grooves 400 and the number of the driven cam grooves 500 are not limited to three, and may be four or more, for example. The number of the balls 3 is not limited to three, but may be four or more in accordance with the number of the driving cam grooves 400 and the number of the driven cam grooves 500.
 また、上述の実施形態では、駆動カム40と従動カム50との間に設けられる「転動体」として、球状のボール3を用いる例を示した。これに対し、他の実施形態では、「転動体」は、球状に限らず、例えば円柱状のローラ等を用いてもよい。 In the above-described embodiment, the example in which the spherical ball 3 is used as the “rolling member” provided between the driving cam 40 and the driven cam 50 has been described. On the other hand, in another embodiment, the “rolling element” is not limited to a spherical shape, and may be, for example, a cylindrical roller.
 また、本開示は、内燃機関からの駆動トルクによって走行する車両に限らず、モータからの駆動トルクによって走行可能な電気自動車やハイブリッド車等に適用することもできる。 Also, the present disclosure is not limited to vehicles that run with drive torque from an internal combustion engine, but can also be applied to electric vehicles, hybrid vehicles, and the like that can run with drive torque from a motor.
 また、他の実施形態では、第2伝達部からトルクを入力し、クラッチを経由して第1伝達部からトルクを出力することとしてもよい。また、例えば、第1伝達部または第2伝達部の一方を回転不能に固定した場合、クラッチを係合状態にすることにより、第1伝達部または第2伝達部の他方の回転を止めることができる。この場合、クラッチ装置をブレーキ装置として用いることができる。 In another embodiment, the torque may be input from the second transmission unit, and the torque may be output from the first transmission unit via the clutch. Further, for example, when one of the first transmission unit and the second transmission unit is fixed so as not to rotate, the rotation of the other of the first transmission unit and the second transmission unit may be stopped by engaging the clutch. it can. In this case, the clutch device can be used as a brake device.
 このように、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。 As described above, the present disclosure is not limited to the above embodiments, and can be implemented in various forms without departing from the gist of the present disclosure.
 本開示は、実施形態に基づき記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。 The present disclosure has been described based on the embodiments. However, the present disclosure is not limited to the embodiment and the structure. The present disclosure also encompasses various modifications and variations within equivalent scope. Also, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.

Claims (6)

  1.  第1伝達部(61)と、
     2つの巻線組(25、26)を有し、前記巻線組への通電によりトルクを出力可能な原動機(20)と、
     一方の端面(411)に形成された複数の駆動カム溝(400)を有し、前記原動機から出力されるトルクにより回転可能な駆動カム(40)と、
     複数の前記駆動カム溝のそれぞれにおいて転動可能に設けられた転動体(3)と、
     前記駆動カム溝との間に前記転動体を挟むようにして一方の端面(511)に形成された複数の従動カム溝(500)を有し、前記駆動カムおよび前記転動体とともに転動体カム(2)を構成し、前記駆動カムに対し相対回転すると、前記駆動カムに対し軸方向に相対移動する従動カム(50)と、
     前記第1伝達部との間でトルクを伝達する第2伝達部(62)と、
     前記駆動カムに対する前記従動カムの軸方向の相対位置に応じて係合状態または非係合状態に変化し、係合している係合状態のとき、前記第1伝達部と前記第2伝達部との間のトルクの伝達を許容し、係合していない非係合状態のとき、前記第1伝達部と前記第2伝達部との間のトルクの伝達を遮断するクラッチ(70)と、を備え、
     前記駆動カム溝は、
     前記駆動カムの特定の位置である駆動カム特定位置(PSd1)から前記駆動カムの周方向の一方側へ延び、前記駆動カム特定位置から前記駆動カムの周方向の一方側へ向かうに従い深さが浅くなるよう前記駆動カムの一方の端面(411)に対し溝底(403)が傾斜して形成された通常用駆動カム溝(401)、および、
     前記駆動カム特定位置から前記駆動カムの周方向の他方側へ延び、前記駆動カム特定位置から前記駆動カムの周方向の他方側へ向かうに従い深さが浅くなるよう前記駆動カムの一方の端面(411)に対し溝底(403)が傾斜して形成され、前記駆動カムの一方の端面(411)に対する溝底(403)の傾斜角が前記通常用駆動カム溝の溝底(403)の傾斜角より小さい非常用駆動カム溝(402)を有し、
     前記従動カム溝は、
     前記従動カムの特定の位置である従動カム特定位置(PSv1)から前記従動カムの周方向の一方側へ延び、前記従動カム特定位置から前記従動カムの周方向の一方側へ向かうに従い深さが浅くなるよう前記従動カムの一方の端面(511)に対し溝底(503)が傾斜して形成された通常用従動カム溝(501)、および、
     前記従動カム特定位置から前記従動カムの周方向の他方側へ延び、前記従動カム特定位置から前記従動カムの周方向の他方側へ向かうに従い深さが浅くなるよう前記従動カムの一方の端面(511)に対し溝底(503)が傾斜して形成され、前記従動カムの一方の端面(511)に対する溝底(503)の傾斜角が前記通常用従動カム溝の溝底(503)の傾斜角より小さい非常用従動カム溝(502)を有するクラッチ装置。
    A first transmission unit (61);
    A motor (20) having two winding sets (25, 26) and capable of outputting torque by energizing the winding sets;
    A drive cam (40) having a plurality of drive cam grooves (400) formed on one end surface (411) and rotatable by torque output from the motor;
    A rolling element (3) rotatably provided in each of the plurality of drive cam grooves;
    A plurality of driven cam grooves (500) formed on one end surface (511) so as to sandwich the rolling element between the driving cam groove and the rolling element cam (2) together with the driving cam and the rolling element; A driven cam (50) that moves relative to the drive cam in the axial direction when rotated relative to the drive cam;
    A second transmission unit (62) for transmitting torque between the first transmission unit and the first transmission unit;
    The first transmission unit and the second transmission unit change to an engaged state or a non-engaged state in accordance with an axial relative position of the driven cam with respect to the drive cam, and in the engaged engaged state. A clutch (70) that allows transmission of torque between the first transmission unit and the second transmission unit when the clutch is in a disengaged and non-engaged state; With
    The drive cam groove,
    The drive cam extends from the drive cam specific position (PSd1), which is a specific position of the drive cam, to one side in the circumferential direction of the drive cam, and the depth increases from the drive cam specific position to one side in the circumferential direction of the drive cam. A normal drive cam groove (401) having a groove bottom (403) inclined with respect to one end surface (411) of the drive cam so as to be shallower;
    One end face of the drive cam extends from the drive cam specific position to the other side in the circumferential direction of the drive cam, and the depth decreases from the drive cam specific position to the other side in the circumferential direction of the drive cam. The groove bottom (403) is formed to be inclined with respect to 411), and the inclination angle of the groove bottom (403) with respect to one end face (411) of the drive cam is the inclination of the groove bottom (403) of the normal drive cam groove. An emergency drive cam groove (402) smaller than the angle,
    The driven cam groove,
    The driven cam extends from the specific position of the driven cam (PSv1), which is a specific position of the driven cam, to one side in the circumferential direction of the driven cam. A normal driven cam groove (501) having a groove bottom (503) inclined with respect to one end face (511) of the driven cam so as to be shallow; and
    One end face of the driven cam extends from the specified position of the driven cam to the other side in the circumferential direction of the driven cam, and the depth decreases from the specified position of the driven cam toward the other side in the circumferential direction of the driven cam. The groove bottom (503) is formed so as to be inclined with respect to 511), and the inclination angle of the groove bottom (503) with respect to one end surface (511) of the driven cam is the inclination of the groove bottom (503) of the normal driven cam groove. A clutch device having an emergency driven cam groove (502) smaller than a corner.
  2.  前記巻線組への通電を制御し、前記原動機の作動を制御可能な制御部(10)をさらに備え、
     前記制御部は、
     2つの前記巻線組のいずれもが断線していない通常時、前記転動体が前記通常用駆動カム溝および前記通常用従動カム溝を転動するよう前記原動機の作動を制御し、
     2つの前記巻線組の一方が断線している非常時、前記転動体が前記非常用駆動カム溝および前記非常用従動カム溝を転動するよう前記原動機の作動を制御する請求項1に記載のクラッチ装置。
    A control unit (10) that controls energization of the winding set and controls operation of the prime mover;
    The control unit includes:
    At the normal time when neither of the two winding sets is disconnected, the operation of the prime mover is controlled so that the rolling elements roll the normal drive cam groove and the normal driven cam groove,
    2. The motor according to claim 1, wherein the operation of the prime mover is controlled such that the rolling element rolls in the emergency drive cam groove and the emergency driven cam groove in an emergency when one of the two winding sets is disconnected. Clutch device.
  3.  前記非常用駆動カム溝の前記駆動カム特定位置からの周方向の移動距離に対する溝底(403)の傾斜角の正接の値と、前記通常用駆動カム溝の前記駆動カム特定位置からの周方向の移動距離に対する溝底(403)の傾斜角の正接の値との比は、1:2であり、
     前記非常用従動カム溝の前記従動カム特定位置からの周方向の移動距離に対する溝底(503)の傾斜角の正接の値と、前記通常用従動カム溝の前記従動カム特定位置からの周方向の移動距離に対する溝底(503)の傾斜角の正接の値との比は、1:2である請求項1または2に記載のクラッチ装置。
    The tangent value of the inclination angle of the groove bottom (403) with respect to the circumferential movement distance of the emergency drive cam groove from the drive cam specific position, and the circumferential direction of the normal drive cam groove from the drive cam specific position The ratio of the inclination angle of the groove bottom (403) to the tangent value to the moving distance of the groove is 1: 2,
    The tangent value of the inclination angle of the groove bottom (503) with respect to the circumferential movement distance of the emergency driven cam groove from the driven cam specific position, and the circumferential direction of the normal driven cam groove from the driven cam specific position 3. The clutch device according to claim 1, wherein a ratio of a tangent value of the inclination angle of the groove bottom (503) to a moving distance of the clutch device is 1: 2. 4.
  4.  前記非常用駆動カム溝の軌跡(LLd2)全体の円周角(θd2)と、前記通常用駆動カム溝の軌跡(LLd1)全体の円周角(θd1)との比は、2:1であり、
     前記非常用従動カム溝の軌跡(LLv2)全体の円周角(θv2)と、前記通常用従動カム溝の軌跡(LLv1)全体の円周角(θv1)との比は、2:1である請求項1~3のいずれか一項に記載のクラッチ装置。
    The ratio between the circumferential angle (θd2) of the entire locus (LLd2) of the emergency drive cam groove and the circumferential angle (θd1) of the entire locus (LLd1) of the normal drive cam groove is 2: 1. ,
    The ratio of the circumferential angle (θv2) of the entire locus (LLv2) of the emergency driven cam groove to the circumferential angle (θv1) of the entire locus (LLv1) of the normal driven cam groove is 2: 1. The clutch device according to any one of claims 1 to 3.
  5.  前記非常用駆動カム溝は、前記駆動カムの周方向の一方側から他方側へ向かうに従い前記駆動カムの中心(Od1)と溝底(403)との距離(Rd1)が変化するよう形成され、
     前記非常用従動カム溝は、前記従動カムの周方向の一方側から他方側へ向かうに従い前記従動カムの中心(Ov1)と溝底(503)との距離(Rv1)が変化するよう形成されている請求項1~4のいずれか一項に記載のクラッチ装置。
    The emergency drive cam groove is formed so that the distance (Rd1) between the center (Od1) of the drive cam and the groove bottom (403) changes from one side in the circumferential direction of the drive cam to the other side,
    The emergency driven cam groove is formed so that the distance (Rv1) between the center (Ov1) of the driven cam and the groove bottom (503) changes from one side in the circumferential direction of the driven cam to the other side. The clutch device according to any one of claims 1 to 4.
  6.  前記駆動カム溝は、前記通常用駆動カム溝または前記非常用駆動カム溝の前記駆動カム特定位置とは反対側の端部から前記駆動カムの周方向へ延び、前記駆動カムの周方向において深さが一定となるよう前記駆動カムの一方の端面(411)に対し溝底(403)が平行に形成された駆動カム平坦溝(404)を有し、
     前記従動カム溝は、前記通常用従動カム溝または前記非常用従動カム溝の前記従動カム特定位置とは反対側の端部から前記従動カムの周方向へ延び、前記従動カムの周方向において深さが一定となるよう前記従動カムの一方の端面(511)に対し溝底(503)が平行に形成された従動カム平坦溝(504)を有する請求項1~5のいずれか一項に記載のクラッチ装置。
    The drive cam groove extends in a circumferential direction of the drive cam from an end of the normal drive cam groove or the emergency drive cam groove on a side opposite to the drive cam specific position, and is deep in a circumferential direction of the drive cam. A drive cam flat groove (404) in which a groove bottom (403) is formed parallel to one end surface (411) of the drive cam so as to make the constant.
    The driven cam groove extends in a circumferential direction of the driven cam from an end of the normal driven cam groove or the emergency driven cam groove on a side opposite to the driven cam specific position, and has a depth in a circumferential direction of the driven cam. 6. A driven cam flat groove (504) having a groove bottom (503) formed parallel to one end face (511) of the driven cam so that the driven cam has a constant height. Clutch device.
PCT/JP2019/026689 2018-07-06 2019-07-04 Clutch device WO2020009192A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019003441.3T DE112019003441T5 (en) 2018-07-06 2019-07-04 Coupling device
CN201980042180.0A CN112313422B (en) 2018-07-06 2019-07-04 Clutch device
US17/137,726 US11940012B2 (en) 2018-07-06 2020-12-30 Clutch device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018128691 2018-07-06
JP2018-128691 2018-07-06
JP2019-106249 2019-06-06
JP2019106249A JP7275874B2 (en) 2018-07-06 2019-06-06 clutch device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/137,726 Continuation US11940012B2 (en) 2018-07-06 2020-12-30 Clutch device

Publications (1)

Publication Number Publication Date
WO2020009192A1 true WO2020009192A1 (en) 2020-01-09

Family

ID=69059208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026689 WO2020009192A1 (en) 2018-07-06 2019-07-04 Clutch device

Country Status (2)

Country Link
CN (1) CN112313422B (en)
WO (1) WO2020009192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610622A (en) * 2021-01-11 2021-04-06 重庆宗申发动机制造有限公司 Motorcycle engine clutch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217947U (en) * 1988-07-21 1990-02-06
JPH11270654A (en) * 1998-03-25 1999-10-05 Tochigi Fuji Ind Co Ltd Fastening mechanism of friction clutch and differential gear provided with mechanism thereof
JP2003294110A (en) * 2002-03-22 2003-10-15 Gkn Technology Ltd Differential gear
JP2017044236A (en) * 2015-08-25 2017-03-02 Ntn株式会社 Automatic clutch device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556136A (en) * 1983-11-30 1985-12-03 Borg-Warner Corporation Clutch driven plate assembly
GB8730164D0 (en) * 1987-12-24 1988-02-03 Automotive Prod Plc Friction facing material & carrier assembly
JP2011169374A (en) * 2010-02-17 2011-09-01 Honda Motor Co Ltd Clutch mechanism
JP5759141B2 (en) * 2010-11-04 2015-08-05 株式会社ユニバンス Driving force distribution device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217947U (en) * 1988-07-21 1990-02-06
JPH11270654A (en) * 1998-03-25 1999-10-05 Tochigi Fuji Ind Co Ltd Fastening mechanism of friction clutch and differential gear provided with mechanism thereof
JP2003294110A (en) * 2002-03-22 2003-10-15 Gkn Technology Ltd Differential gear
JP2017044236A (en) * 2015-08-25 2017-03-02 Ntn株式会社 Automatic clutch device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112610622A (en) * 2021-01-11 2021-04-06 重庆宗申发动机制造有限公司 Motorcycle engine clutch

Also Published As

Publication number Publication date
CN112313422B (en) 2022-03-25
CN112313422A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
JP7275874B2 (en) clutch device
US11808308B2 (en) Clutch device
WO2012124812A1 (en) Electric braking device with parking mechanism
US11808306B2 (en) Clutch device
WO2020009192A1 (en) Clutch device
WO2020009199A1 (en) Rolling element cam and clutch device using same
JP2014101973A (en) Electric parking brake device
WO2020009202A1 (en) Clutch device
WO2020009187A1 (en) Clutch device
JP2022119622A (en) clutch device
WO2023276714A1 (en) Clutch actuator
WO2023276722A1 (en) Geared motor and clutch actuator using same
WO2022118839A1 (en) Clutch device
WO2023276720A1 (en) Clutch actuator
WO2022118852A1 (en) Clutch actuator
WO2023276719A1 (en) Clutch actuator
WO2023276717A1 (en) Clutch actuator
JP2023006290A (en) clutch actuator
JP2023035018A (en) Geared motor and clutch actuator using the same
JP2022170458A (en) clutch actuator
JP2023007822A (en) clutch actuator
JP2023020488A (en) clutch actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829887

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19829887

Country of ref document: EP

Kind code of ref document: A1