WO2020008970A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2020008970A1
WO2020008970A1 PCT/JP2019/025298 JP2019025298W WO2020008970A1 WO 2020008970 A1 WO2020008970 A1 WO 2020008970A1 JP 2019025298 W JP2019025298 W JP 2019025298W WO 2020008970 A1 WO2020008970 A1 WO 2020008970A1
Authority
WO
WIPO (PCT)
Prior art keywords
cool air
refrigerator
air return
duct
cooling
Prior art date
Application number
PCT/JP2019/025298
Other languages
French (fr)
Japanese (ja)
Inventor
圭佑 西田
亮 山地
円香 宇都宮
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020528817A priority Critical patent/JPWO2020008970A1/en
Publication of WO2020008970A1 publication Critical patent/WO2020008970A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the present invention relates to a refrigerator that circulates cool air between a cooling room and a storage room such as a refrigerator room.
  • a cooling room for accommodating a cooler or the like is arranged on the back of the storage room.
  • a cooler also called an evaporator
  • air passing through the cooling chamber is cooled by the cooler to become cool air.
  • the cool air generated in the cooling room is sent to each storage room such as a refrigerator room and a freezer room through a cool air passage (also referred to as a cool air duct) provided on the back surface of the storage room.
  • each storage room enters the cool air passage (return duct) from the return port, etc., and is returned to the cooling room again.
  • the cool air cooled by the cooler circulates between the cool air passage and each of the storage rooms, so that each of the storage rooms is maintained at an appropriate refrigeration temperature or a freezing temperature.
  • an object of the present invention is to provide a refrigerator that can suppress an increase in power consumption by dehumidifying return cold air from a storage room such as a refrigerator room and reducing the amount of frost attached to the cooler. .
  • a refrigerator includes a storage room, a cooling room provided with a cooler, a cool air delivery passage that sends out the gas cooled by the cooler to the storage room, and passes through the storage room.
  • a drainage mechanism for discharging water to the outside of the cool air return passage.
  • the cooling mechanism may include a heat transfer unit that transmits cold heat in the cool air delivery passage to the cool air return passage.
  • the heat transfer section may be formed of metal.
  • the drainage mechanism may include a flow path of the dew water in the storage room.
  • the drainage mechanism may deliver at least a part of the dew condensation water to the cool air delivery passage.
  • the drainage mechanism may have a dew condensation water trap structure that suppresses outflow of cool air from the cold air discharge passage to the cool air return passage due to the transmission of the dew water to the cool air discharge passage. Good.
  • the drainage mechanism may be disposed in the cold air return passage on a side far from the cooling chamber.
  • the refrigerator it is possible to dehumidify cold air returned from the storage room and reduce the amount of frost adhering to the cooler. This leads to an improvement in cooling efficiency and a reduction in the defrosting time, so that an increase in power consumption of the refrigerator can be suppressed.
  • FIG. 3 is a perspective view illustrating a configuration of a cooling mechanism provided in the dew condensation water discharging mechanism illustrated in FIG. It is a mimetic diagram showing an example of a method of arranging a heat transfer plate between a cool air sending duct and a cool air return duct in a refrigerator.
  • FIG. 2 is a schematic diagram illustrating a cooling chamber and a cool air return duct arranged on a rear side of the refrigerator illustrated in FIG. 1. It is a schematic diagram which shows the arrangement position of the drainage mechanism in the cool air return duct. It is a mimetic diagram showing a dew condensation water discharge mechanism concerning a modification of a 1st embodiment.
  • A is a schematic diagram showing a dew condensation water discharge mechanism provided in the refrigerator according to the second embodiment.
  • (B) is a schematic cross-sectional view showing the configuration of the refrigerator along the line A-A 'shown in (a).
  • (C) is a schematic cross-sectional view showing a configuration of a line B-B 'of the refrigerator shown in (a).
  • FIG. 9 is a perspective view schematically illustrating a cooling mechanism provided in the dew condensation water discharging mechanism illustrated in FIG.
  • A is a schematic diagram showing a dew condensation water discharge mechanism provided in the refrigerator according to the third embodiment.
  • B is a schematic cross-sectional view showing the configuration of the refrigerator along the line A-A 'shown in (a).
  • C is a schematic cross-sectional view showing a configuration of a line B-B 'of the refrigerator shown in (a). It is the front view and top view which show the flow path of the condensed water in the refrigerator compartment of the condensed water discharge mechanism shown to Fig.10 (a). It is a mimetic diagram showing the dew condensation water discharge mechanism provided in the refrigerator concerning a 4th embodiment.
  • a refrigerator having a refrigerated storage space in an upper portion and a frozen storage space in a lower portion will be described as an example of the refrigerator of the present invention.
  • the arrangement of each storage room of the refrigerator of the present invention is not limited to this.
  • FIG. 1 is a schematic front view showing the entire configuration of a refrigerator 1 according to the present embodiment.
  • the refrigerator 1 includes a refrigerator compartment (storage compartment) 11 in an upper stage, a first freezing compartment 12 in a lower stage, an ice making compartment 13 on a middle left side, and a second freezing compartment 14 on a middle right side.
  • Each storage room is provided with a door.
  • each surface of the refrigerator 1 is defined as an upper surface, a side surface, a rear surface, and a bottom surface based on a position existing when the refrigerator 1 is installed in a normal state with reference to the front surface. Therefore, in this specification, when it is defined as “front side” or “back side”, the side where the front or back face is provided based on an arbitrary position, or from any position toward the front or back face Means direction. Further, in this specification, a direction from the front to the back of the refrigerator 1 and a direction from the back to the front of the refrigerator 1 are referred to as front and rear directions.
  • a direction from one side surface of the refrigerator 1 to the other side surface is referred to as a left-right direction.
  • the “right side” of the refrigerator means a side corresponding to the right side when viewed from the front of the refrigerator
  • the “left side” of the refrigerator refers to a side corresponding to the left side when viewed from the front of the refrigerator.
  • the refrigerator 1 is provided with a heat insulating box 50 as a heat insulating structure for insulating each storage space from the surroundings.
  • the heat insulating box 50 is provided so as to cover the outer periphery of the refrigerator 1.
  • the heat insulating box 50 mainly includes an outer box 51, an inner box 52, and a heat insulating layer (not shown).
  • the outer box 51 forms the outer peripheral surface of the heat insulating box 50.
  • the inner box 52 forms the inner peripheral surface of the heat insulating box 50.
  • the inner box 52 forms an inner wall of each storage space (for example, the refrigerator compartment 11, the first freezer compartment 12, and the like).
  • the heat insulating layer is formed between the outer case 51 and the inner case 52.
  • the heat insulating layer is composed of, for example, a vacuum heat insulating material and a foam heat insulating material.
  • a plurality of movable shelves and partition shelves 25, 25 are arranged in order from the top.
  • the partitioning shelves 25 are fixed to the inner wall of the refrigerator compartment 11 and cannot be removed during normal use.
  • a chilled case, a vegetable case, and the like are arranged in the space inside the refrigerator compartment 11 partitioned by the partition shelf 25. As a result, a chilled room, a vegetable room, and the like are formed below the refrigerator compartment 11.
  • a cool air delivery duct 30 is provided on the back side of the refrigerator compartment 11 as a cool air delivery passage.
  • the cool air delivery duct 30 is formed of a duct forming member 32, a part of the inner box 52, and the like, and serves as a cool air passage.
  • the space formed between the duct forming member 32 and the inner box 52 is the cool air delivery duct 30.
  • the duct forming member 32 is made of a heat insulating material such as styrene foam, and a plate made of resin such as ABS resin and polypropylene (PP) resin.
  • a plurality of cool air outlets 31 are provided in the front part of the duct forming member 32. From each outlet 31, the cool air generated in the cooling chamber 40 is blown into the refrigerator compartment 11.
  • the outlet 31a located at the bottom blows cool air mainly toward the chilled room and the vegetable room.
  • a cooling room 40 is arranged on the back side of the first freezing room 12, the ice making room 13, and the second freezing room 14.
  • an evaporator (cooler) 41 constituting a refrigeration cycle
  • a glass tube heater 81 for defrosting the evaporator 41
  • a cooling fan for sending cool air from the evaporator 41 to each storage chamber.
  • a drain tray 82 for discharging defrost water generated when the evaporator 41 is defrosted, and the like are disposed.
  • the upper part of the cooling chamber 40 communicates with the cool air delivery duct 30.
  • a damper (not shown) is provided between the cooling chamber 40 and the cool air delivery duct 30. By opening and closing the damper, the flow of cool air toward the refrigerator compartment 11 can be turned on / off. Further, a cooling fan may be provided in the cool air delivery duct 30 above the damper. By operating the cooling fan, cool air can be sent into the refrigerator compartment 11 through the plurality of outlets 31.
  • a plurality of outlets 47 a are formed in the cooling chamber 40. These outlets 47 a communicate with the first freezing compartment 12, the ice making compartment 13, and the second freezing compartment 14. The first freezing compartment 12, the ice making compartment 13, and the second freezing compartment 14 are maintained at an appropriate temperature by the cool air generated in the cooling compartment 40 and blown out from the outlet 47a.
  • an opening is formed below the back of the refrigerator compartment 11. This opening communicates with cool air return ducts (cool air return passages) 45 and 46 leading to the cooling chamber 40, and serves as a cool air return port 48.
  • the cool air return duct 45 is formed on the back of the refrigerator compartment 11.
  • the cool air return duct 45 is arranged adjacent to a part of the cool air delivery duct 30.
  • the cool air circulated in the refrigerator compartment 11 enters the cool air return duct 45 from the return port 48.
  • the cool air return duct 46 is formed below the cool air return duct 45 with a partition wall 53 between the refrigerator compartment 11 and the ice making compartment 13 and the second freezing compartment 14 interposed therebetween (see FIG. 2A).
  • the cool air return duct 45 and the cool air return duct 46 communicate with each other via an opening 53 a formed in the partition wall 53.
  • the cool air return duct 46 is arranged adjacent to the cooling chamber 40 (see FIG. 5).
  • the cool air return duct 46 communicates with the cooling chamber 40 at a position below the cool air return duct 46.
  • the evaporator 41 in the cooling chamber 40 forms a refrigeration cycle.
  • the refrigeration cycle is configured such that a compressor, a condenser, an expander, and an evaporator (cooler) 41 are connected via a refrigerant pipe through which the refrigerant flows.
  • the evaporator 41 into which the low-temperature refrigerant flows exchanges heat with the air around the evaporator 41. By this heat exchange, cool air is generated in the cooling chamber 40.
  • Cold air generated in the cooling chamber 40 circulates in each storage space.
  • the flow of cold air generated by the refrigeration cycle is indicated by arrows.
  • the cool air cooled by the evaporator 41 is sent from the outlets 47a to the first freezing room 12, the ice making room 13, and the second freezing room 14 by the cooling fan 43.
  • the cool air that has passed through each freezing storage space returns into the cooling chamber 40 from below the first freezing chamber 12.
  • the cool air is sent into the refrigerator compartment 11 from the plurality of outlets 31 while rising in the cool air delivery duct 30 by the cooling fan.
  • the cold air sent into the refrigerator compartment 11 cools foods and beverages in the refrigerator compartment while descending from above to below, and returns to the cooling compartment 40 from the return port 48 through the cool air return ducts 45 and 46.
  • FIG. 2A shows the configuration of the dew condensation water discharging mechanism 10.
  • the dew condensation water discharge mechanism 10 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46. Specifically, each component of the dew condensation water discharge mechanism 10 is arranged in any one of the cool air sending duct 30, the cool air return duct 45, and the cool air return duct 46 located at the back of the refrigerator compartment 11.
  • the condensed water discharge mechanism 10 mainly includes a cooling mechanism 60 and a drainage mechanism 70.
  • the cooling mechanism 60 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 (that is, the cool air returned from the refrigerator compartment 11), thereby dew condensation the water vapor contained in the gas.
  • the drainage mechanism 70 discharges the condensed water generated by the cooling mechanism 60 out of the cool air return ducts 45 and 46.
  • the drainage mechanism 70 discharges the generated condensed water from a drainage tray 82 provided below the cooling chamber 40 to a machine room (not shown) outside the heat insulating box 50.
  • FIGS. 2B and 3 show the configuration of the cooling mechanism 60.
  • FIG. 2B shows a configuration of the cooling mechanism 60 located on the side of the cool air return duct 45.
  • the cooling mechanism 60 can dehumidify the returned cold air by cooling the gas (that is, the returned cold air from the refrigerator compartment 11) to condense the water vapor contained in the returned cold air. By dehumidifying the returned cool air, the amount of frost adhering to the evaporator 41 can be reduced.
  • the cooling mechanism 60 has a heat transfer plate (heat transfer portion) 61, a delivery duct side fin 62a, a return duct side fin 62b, and the like.
  • the heat transfer plate 61 is formed of a metal plate having a high thermal conductivity.
  • the heat transfer plate 61 is disposed between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 61.
  • FIG. 4 shows an example of a method of arranging the heat transfer plate 61 between the cool air sending duct 30 and the cool air return duct 45.
  • the cool air delivery duct 30 is formed by the duct forming member 32.
  • a cool air return duct 45 is arranged adjacent to the lower portion of the cool air delivery duct 30. That is, the cool air delivery duct 30 and the cool air return duct 45 are arranged to be adjacent to each other with a heat insulating material (styrene foam) as a part of the duct forming member 32 interposed therebetween.
  • a heat insulating material styrene foam
  • the heat insulating material is divided into upper and lower portions, and the heat transfer plate 61 is disposed so as to sandwich the heat transfer plate 61 therebetween. Thereby, the heat transfer plate 61 can transmit the cold heat from the cool air delivery duct 30 to the cool air return duct 45.
  • the delivery duct side fins 62a and the return duct side fins 62b are a plurality of plate-like members. These fins are formed of a metal plate having a high thermal conductivity, similarly to the heat transfer plate 61.
  • the delivery duct side fins 62 a are formed on the heat transfer plate 61 located on the side of the cool air delivery duct 30.
  • the return duct side fins 62b are formed on the heat transfer plate 61 located on the cool air return duct 45 side. By forming these fins, heat transfer efficiency can be improved.
  • the return duct side fin 62b is shaped so that its lower portion tapers. By forming the fins in such a shape, the dew condensation water generated on the surface of the return duct side fins 62b can be guided toward the lower end portion. Further, each return duct-side fin 62b arranged substantially in parallel on the heat transfer plate 61 is arranged such that the lowermost position thereof is gradually positioned downward in accordance with the inclination of the tray portion 63 described later. The length in the vertical direction is defined.
  • the drainage mechanism 70 has a tray 63, an inclined guide 64, a vertical guide 65, and the like.
  • the tray 63 is formed below the return duct side fins 62b on the heat transfer plate 61.
  • the receiving portion 63 serves as a receiving tray for receiving the dew water generated on the surface of the return duct side fin 62b.
  • the tray 63 is inclined downward from the front side to the rear side of the refrigerator 1 (see FIGS. 2A and 2B). As a result, the dew condensation water that has fallen on the tray 63 flows backward along the slope.
  • the inclined guide portion 64 and the vertical guide portion 65 are formed in the cool air return duct 46.
  • the inclined guide portion 64 and the vertical guide portion 65 are projecting members formed on the inner wall of a duct forming member 49 forming the cool air return duct 46.
  • the inclined guiding portion 64 and the vertical guiding portion 65 are members for guiding the dew condensation water dropped from the tray 63 to the drain tray 82 below.
  • FIG. 6 shows the inclined guide portion 64 and the vertical guide portion 65 formed in the cool air return duct 46.
  • the duct forming member 49 is formed of, for example, a heat insulating material such as styrene foam.
  • the inclined guide portion 64 and the vertical guide portion 65 can be formed integrally with the cool air return duct 45 when the heat insulating material is molded.
  • the respective side walls of the duct forming member 49 are referred to as a right side wall 49a, a left side wall 49b, a front side wall 49c, and a rear side wall 49d according to the position in the refrigerator 1 (see FIG. 6).
  • the inclined guiding portion 64 is formed on the rear wall 49d of the cool air return duct 46.
  • the inclination guiding section 64 is inclined downward from the left side to the right side.
  • the left portion of the inclined guiding portion 64 located above is disposed at a position overlapping with the lower end portion of the tray 63 when viewed from above.
  • the right portion of the inclined guiding portion 64 located below is connected to the upper end of the vertical guiding portion 65.
  • the vertical guide portion 65 extends vertically at the right end of the rear wall 49d of the cool air return duct 46.
  • the cool air return duct 46 is disposed on the right side of the cooling chamber 40 when viewed from the front. In such a configuration, it is preferable that the vertical guide portion 65 is disposed on the right side of the cool air return duct 46 (that is, on the side far from the cooling chamber 40).
  • the vertical guide portion 65 is disposed on the left side of the cool air return duct (that is, on the side far from the cooling chamber). Is preferred.
  • the gas in the cool air return duct 45 (that is, the return cool air) is cooled by the cold transmitted from the cool air delivery duct 30 to the cool air return duct 45 via the heat transfer plate 61. Is done. Then, the water vapor contained in the gas in the cool air return duct 45 is condensed, and the condensed water adheres to the return duct side fin 62b.
  • the dew water adhering to the return duct side fins 62b drips down due to gravity, and drops into the cool air return duct 46 along the tray 63 provided below the return duct side fins 62b. Then, the condensed water dropped into the cool air return duct 46 travels through the inclined guide portion 64 and the vertical guide portion 65, reaches the drain tray 82 provided at the lower part of the cooling chamber 40, and is discharged from the drain tray 82 to the outside. Is done. Thereby, the amount of water vapor contained in the return cool air can be reduced.
  • the refrigerator 1 As described above, the refrigerator 1 according to the present embodiment is provided with the dew condensation water discharge mechanism 10 as a mechanism for returning the cool air from the refrigerator compartment 11 to the cooling compartment 40 and dehumidifying the cool air.
  • the dew condensation water discharge mechanism 10 has a cooling mechanism 60 and a drainage mechanism 70.
  • the cooling mechanism 60 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 by using the cold heat in the cool air delivery duct 30 to dew the water vapor contained in the gas.
  • the drainage mechanism 70 discharges the condensed water generated by the cooling mechanism 60 out of the cool air return duct 46.
  • the amount of water vapor contained in the return cool air can be reduced.
  • the amount of frost adhering to the evaporator (cooler) 41 can be reduced by dehumidifying the returned cool air from the refrigerator compartment 11.
  • the cooling efficiency can be improved.
  • the time required for defrosting the evaporator 41 using the glass tube heater 81 or the like is reduced. Therefore, the provision of the dew condensation water discharge mechanism 10 makes it possible to reduce the power consumption of the refrigerator.
  • FIG. 7 shows a configuration of a dew condensation water discharging mechanism 110 according to a modification.
  • the dew condensation water discharge mechanism 110 mainly includes the cooling mechanism 60 and the drainage mechanism 170.
  • the cooling mechanism 60 has the same configuration as that described above.
  • the drainage mechanism 170 includes the tray 63, the inclined guide 164, the vertical guide 165, and the like.
  • the receiving portion 63 has the same configuration as that described above.
  • the inclination guiding section 164 is arranged in the cool air return duct 45. Specifically, the inclined guiding portion 164 extends in the left-right direction on the partition wall 53 of the cool air return duct 45. The inclination guiding section 164 is inclined downward from left to right. The left portion of the inclined guiding portion 164 located above is disposed adjacent to the lower end of the tray 63. The right portion of the inclined guiding portion 164 located below is arranged adjacent to the upper end of the vertical guiding portion 165.
  • the vertical guiding portion 165 extends vertically from the lower end of the cool air return duct 45 to the inside of the cool air return duct 46 through the opening 53a.
  • the vertical guide portion 165 is a groove formed on the inner wall of the duct forming member 49 forming the cool air return duct 46.
  • the vertical guiding section 165 is arranged on the right side of the cool air return duct 46 (that is, on the side far from the cooling chamber 40), similarly to the vertical guiding section 65. Thereby, the possibility that the condensed water falling along the vertical guiding portion 165 freezes can be reduced.
  • the vertical guide 165 may be in the form of a protrusion formed on the inner wall of the duct forming member 49, and the vertical guide 165 ensures that the dew condensation water flows on the right side of the cool air return duct 46. It just needs to be transmitted.
  • the drainage mechanism 170 can discharge the dew water generated by the cooling mechanism 60 to the outside of the cool air return duct 46. Thereby, the amount of water vapor contained in the return cool air can thereby be reduced.
  • FIG. 8A shows the appearance of the rear part inside the refrigerator compartment 11 of the refrigerator 1 according to the second embodiment.
  • a condensed water discharge mechanism 210 is provided below the refrigerator compartment 11.
  • the dew condensation water discharge mechanism 210 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46.
  • FIG. 8B shows a cross-sectional configuration taken along the line A-A ′ of the refrigerator 1.
  • FIG. 8C shows a cross-sectional configuration of the refrigerator 1 along the line B-B ′.
  • the condensed water discharge mechanism 210 mainly includes a cooling mechanism 260 and a drainage mechanism 270.
  • the cooling mechanism 260 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 to cause dew condensation of water vapor contained in the gas.
  • Drainage mechanism 270 discharges the dew water generated by cooling mechanism 260 to outside of cool air return ducts 45 and 46.
  • the drainage mechanism 270 has a dew water flow path (specifically, an indoor first flow path 264a and an indoor second flow path 265a) in the refrigerator compartment 11.
  • FIG. 9 shows a configuration of the cooling mechanism 260.
  • the cooling mechanism 260 has a heat transfer plate (heat transfer portion) 261, a delivery duct side fin 262a, a return duct side fin 262b, and the like.
  • the heat transfer plate 261 is formed of a metal plate having high thermal conductivity.
  • the heat transfer plate 261 is disposed between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 261.
  • the heat transfer plate 261 is disposed on the back of the refrigerator. Specifically, the heat transfer plate 261 is attached to the back of the inner box 52 that partitions the inside of the refrigerator 1. By disposing the heat transfer plate 261 at such a position, it is possible to provide a heat transfer portion that extends over both ducts without impairing the sealing performance between the cool air sending duct 30 and the cool air return duct 45.
  • a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 262a and a return duct side fin 262b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 261.
  • the delivery duct side fin 262a is formed on the heat transfer plate 261 located on the side of the cool air delivery duct 30.
  • the return duct side fin 262b is formed on the heat transfer plate 261 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved.
  • the cooling mechanism 260 having the above configuration, the return cold air from the refrigerator compartment 11 that has entered the cool air return duct 45 is cooled by the heat transfer plate 261 cooled by the cool heat in the cool air delivery duct 30. Thereby, the water vapor contained in the returned cool air is dewed, and the returned cool air is dehumidified. The generated dew water adheres to a surface such as the return duct side fin 262b. By dehumidifying the returned cool air, the amount of frost adhering to the evaporator 41 can be reduced.
  • the drainage mechanism 270 has a tray 263, a first flow path 264, an indoor first flow path 264a, an indoor second flow path 265a, a second flow path 265, and the like.
  • the tray portion 263 is formed below the return duct side fin 262b on the heat transfer plate 261.
  • the receiving tray 263 serves as a receiving tray for receiving the dew water generated on the surface of the return duct side fin 262b.
  • the tray 263 is inclined downward from the right side to the left side of the refrigerator 1. As a result, the condensed water that has fallen on the tray 263 flows toward the left side (the side approaching the cool air delivery duct 30) along the slope.
  • the first flow path 264 is inclined downward from the rear side to the front side in the cool air return duct 45.
  • the rear end of the first flow path 264 is connected to the left end of the tray 263.
  • the condensed water dropped on the receiving tray 263 is guided to the first flow path 264 and flows forward through the first flow path 264.
  • the first flow path 264 is connected to the indoor first flow path 264 a passing through the refrigerator compartment 11.
  • the indoor first flow path 264 a is arranged along the rear surface of the refrigerator compartment 11.
  • the first indoor channel 264 a is mounted on a duct forming member 32 provided on the back surface of the refrigerator compartment 11.
  • the indoor first flow path 264a extends to the front position of the outlet 31a formed below the refrigerator compartment 11 while being inclined downward from right to left.
  • the cool air blown out from the outlet 31a is sent to a chilled room or the like located below the refrigerator compartment 11.
  • the indoor second flow path 265a is arranged below the indoor first flow path 264a.
  • the indoor second flow path 265a is inclined to the opposite side to the indoor first flow path 264a.
  • the condensed water that has reached the left end of the first indoor channel 264a falls into the second indoor channel 265a and flows from left to right along the slope of the second indoor channel 265a.
  • the right end of the indoor second flow path 265a is connected to the second flow path 265 arranged in the cool air return duct 45.
  • the second flow path 265 has the same configuration as the inclined guiding section 64 and the vertical guiding section 65 described in the first embodiment, or the inclined guiding section 164 and the vertical guiding section 165.
  • the dew condensation water generated by the cooling mechanism 260 is temporarily separated from the flow path (that is, the indoor first flow path 264a and It flows into the indoor second flow path 265a).
  • the indoor first flow path 264a extends to a position in front of the outlet 31a formed below the refrigerator compartment 11. Since the dew water flows to the front position of the outlet 31a, vaporization of the dew water is promoted by the wind blown from the outlet 31a. Thereby, the humidity in the refrigerator compartment 11, especially the humidity in the chilled compartment can be increased.
  • the dew water flowing in the refrigerator compartment 11 through the indoor first flow path 264a is turned back at the front position of the outlet 31a, passes through the indoor second flow path 265a, and flows into the cool air return duct 45 in the second air flow path 265. It is led to.
  • the same structure as the drainage mechanism 70 described in the first embodiment can be applied to the drainage mechanism of the condensed water ahead of the second flow path 265. As a result, the dew water passes through the cool air return ducts 45 and 45, and is finally discharged from the drain tray 82 to a machine room (not shown) outside the heat insulating box 50.
  • the dew condensation water discharging mechanism 210 can return the dew condensation water obtained by dehumidifying the returned cool air to the refrigerator compartment 11 and use it for humidification in the refrigerator compartment 11.
  • the dew condensation water discharging mechanism 310 provided in the refrigerator 1 according to the third embodiment differs from the second embodiment in the configuration of the draining mechanism 370.
  • basically the same configuration as in the second embodiment can be applied.
  • the third embodiment only points different from the second embodiment will be described.
  • FIG. 10 (a) shows the appearance of the rear part inside the refrigerator compartment 11 of the refrigerator 1 according to the third embodiment.
  • a dew condensation water discharge mechanism 310 is provided below the refrigerator compartment 11.
  • the dew condensation water discharge mechanism 310 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46.
  • FIG. 10B shows a cross-sectional configuration taken along the line A-A ′ of the refrigerator 1.
  • FIG. 10C shows a cross-sectional configuration taken along the line B-B ′ of the refrigerator 1.
  • the dew condensation water discharge mechanism 310 mainly includes a cooling mechanism 260 and a drainage mechanism 370.
  • the cooling mechanism 260 has a configuration similar to that of the second embodiment.
  • the drainage mechanism 370 discharges the condensed water generated by the cooling mechanism 260 out of the cool air return ducts 45 and 46.
  • the drainage mechanism 370 has a tray 363, a first flow path 364, an indoor first flow path 364a, an indoor second flow path 365a, a second flow path 365, and the like.
  • the drainage mechanism 370 has a flow path of dew condensation water (specifically, an indoor first flow path 364a and an indoor second flow path 365a) in the refrigerator compartment 11.
  • the tray 363 is formed below the return duct side fin 262b on the heat transfer plate 261.
  • the receiving tray 363 serves as a receiving tray for receiving dew water generated on the surface of the return duct side fin 262b.
  • the tray portion 363 is inclined downward from the left side to the right side of the refrigerator 1. As a result, the condensed water that has fallen on the tray 363 flows toward the right side (the side away from the cool air delivery duct 30) along the inclination thereof.
  • the first flow path 364 is inclined downward from the rear side to the front side in the cool air return duct 45.
  • the first flow path 364 is formed along the right end of the cool air return duct 45.
  • the rear end of the first flow path 364 is connected to the right end of the tray 363.
  • the first flow path 364 is connected to the first indoor flow path 364 a passing through the refrigerator compartment 11.
  • the indoor first flow path 364 a is arranged along the rear surface of the refrigerator compartment 11.
  • the first indoor channel 364a extends to the center of the refrigerator compartment 11 while being inclined downward from right to left.
  • the indoor first flow path 364a extends to the front position of the outlet 31a, but in the third embodiment, the indoor first flow path 364a is located on the left side beyond the arrangement position of the outlet 31a.
  • FIG. 11 shows the shape of the first indoor channel 364a when viewed from above.
  • the indoor first flow path 364a has an expansion flow path 364b in which the width of the flow path increases from the front position of the outlet 31a toward the left side (that is, the lower side of the slope). are doing.
  • the width of the flow path at the front position of the outlet 31a increases from the front position of the outlet 31a toward the left side (that is, the lower side of the slope).
  • the expansion channel 364b having a large surface area, it is possible to increase the contact area between the cool air delivered from the outlet 31a and the dew water. Thereby, vaporization of the dew condensation water is promoted. Furthermore, since the indoor first flow path 364a extends beyond the position of the outlet 31a, the indoor first flow path 364a is inclined leftward and downward at the front position of the outlet 31a. This makes it easier for the cool air sent from the outlet 31a to flow to the left side with low pressure.
  • the indoor second flow path 365a is disposed below the indoor first flow path 364a.
  • the indoor second flow path 365a is inclined to the opposite side to the indoor first flow path 364a. As a result, the dew water that has reached the left end of the first indoor channel 364a falls into the second indoor channel 365a and flows from left to right along the slope of the second indoor channel 365a.
  • the right end of the indoor second flow path 365a is connected to the second flow path 365 disposed in the cool air return duct 45.
  • the second flow path 365 has the same configuration as the vertical guiding section 65 or the vertical guiding section 165 described in the first embodiment.
  • the second flow path 365 is connected to the right end of the indoor second flow path 365a at a position away from the cool air delivery duct 30. Therefore, the vertical guide portion can be disposed on the right side farther from the cooling chamber 40 without providing the inclined guide portion 64 and the like.
  • the fourth embodiment is different from the first embodiment in the configuration of the dew condensation water discharge mechanism provided in the refrigerator 1.
  • the fourth embodiment basically the same configuration as in the first embodiment can be applied.
  • the fourth embodiment only differences from the first embodiment will be described.
  • FIG. 12 shows a configuration of a dew condensation water discharging mechanism 410 provided below the rear part of the refrigerator compartment 11 of the refrigerator 1 according to the fourth embodiment.
  • the dew condensation water discharge mechanism 410 is provided inside the cool air delivery duct 30 and the cool air return duct 45.
  • the dew condensation water discharge mechanism 410 mainly includes the cooling mechanism 60 and the drainage mechanism 470.
  • the cooling mechanism 60 has a configuration similar to that of the first embodiment. Note that the configuration described in the other embodiments can be applied to the cooling mechanism.
  • the drainage mechanism 470 has a dew condensation water trap structure 471 for discharging at least a part of the dew condensation water to the cool air discharge duct 30.
  • the drainage mechanism 470 has a dew condensation trap structure 471, an evaporating water storage tray 472, a drainage channel 473, and the like.
  • the dew condensation water trap structure 471 has a tray 474 for receiving dew condensation water falling from the cooling mechanism 60.
  • the dew condensation trap 471 and the drain 473 are arranged in the cool air return duct 45.
  • the evaporating water tray 472 is disposed in the cool air delivery duct 30.
  • the evaporating water storage tray 472 communicates with the dew condensation water trap structure 471 via a flow path penetrating the duct forming member 32.
  • the condensed water generated by the cooling mechanism 60 first flows into the tray 474 of the dew condensation trap structure 471. After that, a part of the dew water flowing into the receiving tray 474 flows from the dew water trap structure 471 to the evaporating water storage tray 472.
  • the dew water stored in the dew water trap structure 471 causes the cold air sending duct 30 to return to the cool air return duct 45. Shortcuts caused by cold air can be suppressed.
  • the evaporation of the dew condensation water stored in the evaporating water storage tray 472 is promoted by the flow of the delivered cool air passing through the cool air delivery duct 30. Thereby, appropriate humidity can be given to the sending cool air flowing into the refrigerator compartment 11.
  • the drainage mechanism 470 is configured such that the position of the upper end of the evaporating water storage tray 472 is higher than the upper end of the receiving tray 474 of the dew condensation water trap structure 471.
  • the dew water overflowing from the tray 474 flows to a drain 473 disposed below the dew condensation trap structure 471.
  • a drain 473 disposed below the dew condensation trap structure 471.
  • the same configuration as the inclined guiding portion 64 and the vertical guiding portion 65 described in the first embodiment, or the inclined guiding portion 164 and the vertical guiding portion 165 can be applied.
  • the dew water overflowing from the tray 474 passes through the cool air return ducts 45 and 45 and is finally discharged from the drain tray 82 to a machine room (not shown) outside the heat insulating box 50.
  • the fifth embodiment is different from the other embodiments in the configuration of the cooling mechanism provided in the dew condensation water discharging mechanism.
  • the same configurations as in any of the above embodiments can be applied. Therefore, in the fifth embodiment, only points different from the above-described embodiment will be described.
  • FIG. 13 shows the configuration of the cooling mechanism 560 provided in the dew condensation water discharging mechanism.
  • the cooling mechanism 560 has a thin portion (heat transfer portion) 561.
  • the thin portion 561 is formed by a part of the duct forming member 32 disposed between the cool air delivery duct 30 and the cool air return duct 45.
  • the thin portion 561 is formed by cutting out a part of the heat insulating material forming the duct forming member 32.
  • the heat insulation between the cool air delivery duct 30 and the cool air return duct 45 is relaxed, so that the cold heat of the cool air delivery duct 30 is transmitted to the cool air return duct 45.
  • the thin portion 561 can cool the return cold air from the refrigerating room 11 passing through the inside of the cool air return duct 45 and condense water vapor contained in the return cold air. Thereby, the return cool air can be dehumidified while adjusting the thermal coupling between the cool air delivery duct 30 and the cool air return duct 45 by the thickness of the thin portion 561.
  • the heat transfer plate 61 and the return duct side fins 62b of the first embodiment may be provided.
  • FIG. 14 shows the configuration of the cooling mechanism 660 provided in the dew condensation water discharging mechanism.
  • the cooling mechanism 660 includes a heat transfer plate (heat transfer portion) 661, a delivery duct side fin 662a, a return duct side fin 662b, and the like.
  • the heat transfer plate 661 is formed of a metal plate having a high thermal conductivity.
  • the heat transfer plate 661 is arranged as a partition plate that partitions between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 661.
  • a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 662a and a return duct side fin 662b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 661.
  • the delivery duct side fin 662a is formed on a heat transfer plate 661 located on the side of the cool air delivery duct 30.
  • the return duct side fin 662b is formed on a heat transfer plate 661 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved.
  • the cooling mechanism 660 can be a small unit.
  • the seventh embodiment is different from the other embodiments in the configuration of the cooling mechanism provided in the dew condensation water discharging mechanism.
  • the same configurations as in any of the above embodiments can be applied. Therefore, in the seventh embodiment, only points different from the above-described embodiment will be described.
  • FIG. 15 shows the configuration of the cooling mechanism 760 provided in the dew condensation water discharging mechanism.
  • the cooling mechanism 760 includes a heat transfer plate (heat transfer portion) 761, a delivery duct side fin 762a, a return duct side fin 762b, and the like.
  • the heat transfer plate 761 is formed of a metal plate having high thermal conductivity.
  • the heat transfer plate 761 is disposed between the cool air delivery duct 30 and the cool air return duct 45. Thereby, the cold heat of the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 761. Attachment of the heat transfer plate 761 to the duct forming member 32 can be performed using a method similar to the method described with reference to FIG. 4 in the first embodiment.
  • a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 762a and a return duct side fin 762b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 761.
  • the delivery duct side fins 762a are formed on a heat transfer plate 761 located on the side of the cool air delivery duct 30.
  • the return duct side fin 762b is formed on a heat transfer plate 761 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved.
  • the cooling mechanism 760 can be a small unit, and the thermal coupling between the cool air delivery duct 30 and the cool air return duct 45 can be minimized.
  • Refrigerator 10 Condensed water discharge mechanism 11: Refrigerator room (storage room) 30: Cold air delivery duct (cold air delivery passage) 40: Cooling chamber 41: Evaporator (cooler) 45: Cold air return duct (cold air return passage) 46: Cold air return duct (cold air return passage) 50: Insulated box 60: Cooling mechanism 61: Heat transfer plate (heat transfer section) 63: Receiving part (drainage mechanism) 64: Incline guide (drainage mechanism) 65: Vertical guide (drainage mechanism) 70: drainage mechanism 110: dew condensation water discharge mechanism 210: dew condensation water discharge mechanism 260: cooling mechanism 264a: indoor first flow path 265a: indoor second flow path 270: drainage mechanism 310: dew condensation water discharge mechanism 410: dew condensation water discharge mechanism 471: condensation water trap structure 560: cooling mechanism 660: cooling mechanism 760: cooling mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

This refrigerator (1) is provided with: a refrigeration compartment (storage compartment) (11); a cooling compartment (40) in which an evaporator (cooler) (41) is disposed; a cold air delivery duct (cold air delivery passage) (30) through which a gas cooled by the evaporator (41) is delivered to the refrigeration compartment (11); and cold air return ducts (cold air return passages) (45, 46) through which the gas having passed through the refrigeration compartment (11) is returned to the cooling compartment (40). The refrigerator (1) is further provided with a dew condensation water excretion mechanism (10) that has a cooling mechanism (60) and a drainage mechanism (70). The cooling mechanism (60) causes condensation of water vapor in the gas returned into the cold air return duct (45) from the refrigeration compartment (11). The drainage mechanism (70) drains dew condensation water generated by the cooling mechanism (60).

Description

冷蔵庫refrigerator
 本発明は、冷却室と冷蔵室などの貯蔵室との間で冷気を循環させる冷蔵庫に関する。 The present invention relates to a refrigerator that circulates cool air between a cooling room and a storage room such as a refrigerator room.
 一般的な冷蔵庫では、貯蔵室の背面に冷却器などを収容する冷却室が配置されている。冷却室内には冷却器(蒸発器とも呼ばれる)が備えられており、冷却室内を通る空気は、冷却器によって冷却されて冷気となる。冷却室で生成された冷気は、貯蔵室の背面に設けられた冷気通路(冷気ダクトとも呼ばれる)を通って、冷蔵室及び冷凍室などの各貯蔵室へ送出される。 In a general refrigerator, a cooling room for accommodating a cooler or the like is arranged on the back of the storage room. A cooler (also called an evaporator) is provided in the cooling chamber, and air passing through the cooling chamber is cooled by the cooler to become cool air. The cool air generated in the cooling room is sent to each storage room such as a refrigerator room and a freezer room through a cool air passage (also referred to as a cool air duct) provided on the back surface of the storage room.
 各貯蔵室を通過した冷気は、戻り口などから冷気通路(戻りダクト)内に入り、再び冷却室に戻される。このように、冷却器で冷やされた冷気が冷気通路と各貯蔵室との間を循環することで、各貯蔵室内は、適切な冷蔵温度または冷凍温度に維持される。 冷 The cool air that has passed through each storage room enters the cool air passage (return duct) from the return port, etc., and is returned to the cooling room again. As described above, the cool air cooled by the cooler circulates between the cool air passage and each of the storage rooms, so that each of the storage rooms is maintained at an appropriate refrigeration temperature or a freezing temperature.
 一方、各貯蔵室に送り込まれた冷気には、各貯蔵室空間中の湿気(すなわち、水蒸気)が混入する。これにより、各貯蔵室を通過した後、戻りダクトを通って冷却室に戻る冷気中には、比較的多くの水分が含まれる。このような水分を多く含む冷気が冷却室内に戻り冷却器で再び冷却されると、冷却器には霜が付着する。そのため、従来の冷蔵庫には、冷却器に付着した霜を除去するための霜取り運転を行うものがある(例えば、特許文献1参照)。特許文献1に開示された冷蔵庫には、霜取りヒータ18が備えられている。 On the other hand, the cool air sent into each storage room is mixed with the moisture (that is, water vapor) in each storage room space. Thereby, after passing through each storage room, a relatively large amount of water is contained in the cool air returning to the cooling room through the return duct. When such cool air containing much water returns to the cooling chamber and is cooled again by the cooler, frost adheres to the cooler. Therefore, some conventional refrigerators perform a defrosting operation for removing frost attached to the cooler (for example, see Patent Document 1). The refrigerator disclosed in Patent Literature 1 includes a defrost heater 18.
特公昭63-26837号公報JP-B-63-26837
 しかしながら、霜取りヒータを用いて冷却器に付着した霜を融かすためには、多量の電力が必要となり、消費電力を増大させる。そのため、冷却器に多量の霜が付着してしまうと、頻繁に霜取り運転を行う必要があり、消費電力を増大させる。もし、頻繁に霜取り運転を行わなければ、冷却室内の風路の大部分が霜によって塞がれることで、貯蔵室へ送られる冷気の量が減少してしまい、冷却効率が低下するため、結局、消費電力を増大させてしまう。 However, in order to melt frost adhering to the cooler using the defrost heater, a large amount of electric power is required and power consumption is increased. Therefore, when a large amount of frost adheres to the cooler, it is necessary to frequently perform a defrosting operation, which increases power consumption. If the defrosting operation is not performed frequently, most of the air passages in the cooling room will be blocked by frost, and the amount of cool air sent to the storage room will decrease, resulting in lower cooling efficiency. This increases power consumption.
 そこで、本発明では、冷蔵室などの貯蔵室からの戻り冷気を除湿し、冷却器に付着する霜の量を低減させることで、消費電力の増加を抑制できる冷蔵庫を提供することを目的とする。 Therefore, an object of the present invention is to provide a refrigerator that can suppress an increase in power consumption by dehumidifying return cold air from a storage room such as a refrigerator room and reducing the amount of frost attached to the cooler. .
 本発明の一局面にかかる冷蔵庫は、貯蔵室と、冷却器が設けられている冷却室と、前記冷却器で冷却された気体を前記貯蔵室へ送出する冷気送出通路と、前記貯蔵室内を通過した気体を前記冷却室へ戻す冷気戻り通路と、前記貯蔵室から前記冷気戻り通路内へ戻された気体中に含まれる水蒸気を結露させるための冷却機構と、前記冷却機構で生成された結露水を前記冷気戻り通路外へ排出する排水機構とを備えている。 A refrigerator according to one aspect of the present invention includes a storage room, a cooling room provided with a cooler, a cool air delivery passage that sends out the gas cooled by the cooler to the storage room, and passes through the storage room. A return path for returning the cooled gas to the cooling chamber; a cooling mechanism for dehydrating water vapor contained in the gas returned from the storage chamber into the cool air return path; and dew water generated by the cooling mechanism. And a drainage mechanism for discharging water to the outside of the cool air return passage.
 上記の本発明の一局面にかかる冷蔵庫において、前記冷却機構は、前記冷気送出通路内の冷熱を前記冷気戻り通路へ伝達させる伝熱部を備えていてもよい。 In the refrigerator according to one aspect of the present invention, the cooling mechanism may include a heat transfer unit that transmits cold heat in the cool air delivery passage to the cool air return passage.
 上記の本発明の一局面にかかる冷蔵庫において、前記伝熱部は、金属で形成されていてもよい。 に お い て In the refrigerator according to one aspect of the present invention, the heat transfer section may be formed of metal.
 上記の本発明の一局面にかかる冷蔵庫において、前記排水機構は、前記貯蔵室内に前記結露水の流路を有していてもよい。 In the refrigerator according to one aspect of the present invention, the drainage mechanism may include a flow path of the dew water in the storage room.
 上記の本発明の一局面にかかる冷蔵庫において、前記排水機構は、前記結露水の少なくとも一部を前記冷気送出通路へ送出してもよい。このような構成において、前記排水機構は、前記冷気送出通路への前記結露水の送出による前記冷気送出通路から前記冷気戻り通路への冷気の流出を抑制する結露水トラップ構造を有していてもよい。 In the refrigerator according to one aspect of the present invention, the drainage mechanism may deliver at least a part of the dew condensation water to the cool air delivery passage. In such a configuration, the drainage mechanism may have a dew condensation water trap structure that suppresses outflow of cool air from the cold air discharge passage to the cool air return passage due to the transmission of the dew water to the cool air discharge passage. Good.
 上記の本発明の一局面にかかる冷蔵庫において、前記排水機構は、前記冷気戻り通路内の前記冷却室から遠い側に配置されていてもよい。 In the refrigerator according to one aspect of the present invention, the drainage mechanism may be disposed in the cold air return passage on a side far from the cooling chamber.
 本発明の一局面にかかる冷蔵庫によれば、貯蔵室からの戻り冷気を除湿し、冷却器に付着する霜の量を低減させることができる。これにより、冷却効率の向上、および、除霜時間の短縮化につながるため、冷蔵庫の消費電力の増加を抑制することが可能となる。 According to the refrigerator according to one aspect of the present invention, it is possible to dehumidify cold air returned from the storage room and reduce the amount of frost adhering to the cooler. This leads to an improvement in cooling efficiency and a reduction in the defrosting time, so that an increase in power consumption of the refrigerator can be suppressed.
本発明の一実施形態に係る冷蔵庫の内部構成を模式的に示す正面図である。It is a front view showing typically the internal composition of the refrigerator concerning one embodiment of the present invention. (a)は、第1の実施形態にかかる冷蔵庫に備えられている結露水排出機構を示す模式図である。(b)は、(a)に示す結露水排出機構に備えられている冷却機構を模式的に示す側面図である。(A) is a schematic diagram showing a dew condensation water discharge mechanism provided in the refrigerator according to the first embodiment. (B) is a side view schematically showing a cooling mechanism provided in the dew condensation water discharging mechanism shown in (a). 図2(a)に示す結露水排出機構に備えられている冷却機構の構成を示す斜視図である。FIG. 3 is a perspective view illustrating a configuration of a cooling mechanism provided in the dew condensation water discharging mechanism illustrated in FIG. 冷蔵庫内の冷気送出ダクトと冷気戻りダクトとの間に伝熱板を配置する方法の一例を示す模式図である。It is a mimetic diagram showing an example of a method of arranging a heat transfer plate between a cool air sending duct and a cool air return duct in a refrigerator. 図1に示す冷蔵庫の背面側に配置されている冷却室と冷気戻りダクトとを示す模式図である。FIG. 2 is a schematic diagram illustrating a cooling chamber and a cool air return duct arranged on a rear side of the refrigerator illustrated in FIG. 1. 冷気戻りダクト内における排水機構の配置位置を示す模式図である。It is a schematic diagram which shows the arrangement position of the drainage mechanism in the cool air return duct. 第1の実施形態の変形例にかかる結露水排出機構を示す模式図である。It is a mimetic diagram showing a dew condensation water discharge mechanism concerning a modification of a 1st embodiment. (a)は、第2の実施形態にかかる冷蔵庫に備えられている結露水排出機構を示す模式図である。(b)は、(a)に示す冷蔵庫のA-A’線部分の構成を示す断面模式図である。(c)は、(a)に示す冷蔵庫のB-B’線部分の構成を示す断面模式図である。(A) is a schematic diagram showing a dew condensation water discharge mechanism provided in the refrigerator according to the second embodiment. (B) is a schematic cross-sectional view showing the configuration of the refrigerator along the line A-A 'shown in (a). (C) is a schematic cross-sectional view showing a configuration of a line B-B 'of the refrigerator shown in (a). 図8(a)に示す結露水排出機構に備えられている冷却機構を模式的に示す斜視図である。FIG. 9 is a perspective view schematically illustrating a cooling mechanism provided in the dew condensation water discharging mechanism illustrated in FIG. (a)は、第3の実施形態にかかる冷蔵庫に備えられている結露水排出機構を示す模式図である。(b)は、(a)に示す冷蔵庫のA-A’線部分の構成を示す断面模式図である。(c)は、(a)に示す冷蔵庫のB-B’線部分の構成を示す断面模式図である。(A) is a schematic diagram showing a dew condensation water discharge mechanism provided in the refrigerator according to the third embodiment. (B) is a schematic cross-sectional view showing the configuration of the refrigerator along the line A-A 'shown in (a). (C) is a schematic cross-sectional view showing a configuration of a line B-B 'of the refrigerator shown in (a). 図10(a)に示す結露水排出機構の冷蔵室内における結露水の流路を示す正面図および上面図である。It is the front view and top view which show the flow path of the condensed water in the refrigerator compartment of the condensed water discharge mechanism shown to Fig.10 (a). 第4の実施形態にかかる冷蔵庫に備えられている結露水排出機構を示す模式図である。It is a mimetic diagram showing the dew condensation water discharge mechanism provided in the refrigerator concerning a 4th embodiment. 第5の実施形態にかかる冷蔵庫の結露水排出機構に備えられている冷却機構を模式的に示す斜視図である。It is a perspective view showing typically the cooling mechanism provided in the dew condensation water discharge mechanism of the refrigerator concerning a 5th embodiment. 第6の実施形態にかかる冷蔵庫の結露水排出機構に備えられている冷却機構を模式的に示す斜視図である。It is a perspective view showing typically the cooling mechanism provided in the dew condensation water discharge mechanism of the refrigerator concerning a 6th embodiment. 第7の実施形態にかかる冷蔵庫の結露水排出機構に備えられている冷却機構を模式的に示す斜視図である。It is a perspective view showing typically the cooling mechanism provided in the dew condensation water discharge mechanism of the refrigerator concerning a 7th embodiment.
 以下、図面を参照しつつ、本発明の各実施形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same components are denoted by the same reference numerals. Their names and functions are the same. Therefore, detailed description thereof will not be repeated.
 〔第1の実施形態〕
 第1の実施形態では、本発明の冷蔵庫の一例として、上方部分に冷蔵貯蔵空間を有し、下方部分に冷凍貯蔵空間を有する冷蔵庫を例に挙げて説明する。但し、本発明の冷蔵庫の各貯蔵室の配置は、これに限定はされない。
[First Embodiment]
In the first embodiment, a refrigerator having a refrigerated storage space in an upper portion and a frozen storage space in a lower portion will be described as an example of the refrigerator of the present invention. However, the arrangement of each storage room of the refrigerator of the present invention is not limited to this.
 (冷蔵庫の全体構成)
 まず、本実施の形態にかかる冷蔵庫1の全体構成について説明する。図1は、本実施の形態にかかる冷蔵庫1の全体構成を示す正面模式図である。
(Overall configuration of refrigerator)
First, the overall configuration of the refrigerator 1 according to the present embodiment will be described. FIG. 1 is a schematic front view showing the entire configuration of a refrigerator 1 according to the present embodiment.
 図1に示すように、冷蔵庫1は、上段に冷蔵室(貯蔵室)11、下段に第1冷凍室12、中段左側に製氷室13、中段右側に第2冷凍室14を備えている。各貯蔵室には、扉が設けられている。 冷 蔵 庫 As shown in FIG. 1, the refrigerator 1 includes a refrigerator compartment (storage compartment) 11 in an upper stage, a first freezing compartment 12 in a lower stage, an ice making compartment 13 on a middle left side, and a second freezing compartment 14 on a middle right side. Each storage room is provided with a door.
 本実施形態では、扉が設けられている面を冷蔵庫の前面(正面)とする。そして、前面を基準にして、冷蔵庫1を通常の状態で設置した場合に存在する位置に基づいて、冷蔵庫1の各面を、上面、側面、背面、及び底面とする。したがって、本明細書中において、「前面側」または「背面側」と規定するときは、任意の位置を基準として前面又は背面が設けられている側、あるいは、任意の位置から前面又は背面へ向かう方向のことを意味する。また、本明細書では、冷蔵庫1の前面から背面へ向かう方向および冷蔵庫1の背面から前面へ向かう方向を、前後方向と呼ぶ。また、本明細書では、冷蔵庫1の一方の側面から他方の側面へ向かう方向を、左右方向と呼ぶ。さらに、本明細書においては、冷蔵庫の「右側」とは、冷蔵庫の正面から見て右側に当たる側のことを意味し、冷蔵庫の「左側」とは、冷蔵庫の正面から見て左側に当たる側のことを意味する。 で は In this embodiment, the surface on which the door is provided is the front (front) of the refrigerator. Then, each surface of the refrigerator 1 is defined as an upper surface, a side surface, a rear surface, and a bottom surface based on a position existing when the refrigerator 1 is installed in a normal state with reference to the front surface. Therefore, in this specification, when it is defined as "front side" or "back side", the side where the front or back face is provided based on an arbitrary position, or from any position toward the front or back face Means direction. Further, in this specification, a direction from the front to the back of the refrigerator 1 and a direction from the back to the front of the refrigerator 1 are referred to as front and rear directions. Further, in this specification, a direction from one side surface of the refrigerator 1 to the other side surface is referred to as a left-right direction. Further, in the present specification, the “right side” of the refrigerator means a side corresponding to the right side when viewed from the front of the refrigerator, and the “left side” of the refrigerator refers to a side corresponding to the left side when viewed from the front of the refrigerator. Means
 冷蔵庫1には、各貯蔵空間を周囲から断熱するための断熱構造として、断熱箱体50が設けられている。断熱箱体50は、冷蔵庫1の外周を覆うように設けられている。断熱箱体50は、主として、外箱51と、内箱52と、断熱層(図示せず)とを備えている。 The refrigerator 1 is provided with a heat insulating box 50 as a heat insulating structure for insulating each storage space from the surroundings. The heat insulating box 50 is provided so as to cover the outer periphery of the refrigerator 1. The heat insulating box 50 mainly includes an outer box 51, an inner box 52, and a heat insulating layer (not shown).
 外箱51は、断熱箱体50の外周面を形成する。内箱52は、断熱箱体50の内周面を形成する。また、内箱52は、各貯蔵空間(例えば、冷蔵室11、第1冷凍室12など)の内壁を形成している。断熱層は、外箱51と内箱52との間に形成されている。断熱層は、例えば、真空断熱材と発泡断熱材とで構成される。 The outer box 51 forms the outer peripheral surface of the heat insulating box 50. The inner box 52 forms the inner peripheral surface of the heat insulating box 50. The inner box 52 forms an inner wall of each storage space (for example, the refrigerator compartment 11, the first freezer compartment 12, and the like). The heat insulating layer is formed between the outer case 51 and the inner case 52. The heat insulating layer is composed of, for example, a vacuum heat insulating material and a foam heat insulating material.
 冷蔵室11内には、上から順に、複数の移動式棚と、仕切棚25,25とが配置されている。仕切棚25,25は、冷蔵室11の内壁に固定されており、通常の使用時には取り外しできないようになっている。 (4) In the refrigerator compartment 11, a plurality of movable shelves and partition shelves 25, 25 are arranged in order from the top. The partitioning shelves 25 are fixed to the inner wall of the refrigerator compartment 11 and cannot be removed during normal use.
 仕切棚25によって区画された冷蔵室11内の空間には、チルドケース、野菜ケースなどが配置される。これにより、冷蔵室11の下部には、チルド室、野菜室などが形成される。 チ ル A chilled case, a vegetable case, and the like are arranged in the space inside the refrigerator compartment 11 partitioned by the partition shelf 25. As a result, a chilled room, a vegetable room, and the like are formed below the refrigerator compartment 11.
 冷蔵室11の背面側には、冷気の送出通路である冷気送出ダクト30が設けられている。冷気送出ダクト30は、ダクト形成部材32、および内箱52の一部などで形成され、冷気の通路となっている。言い換えれば、ダクト形成部材32と内箱52との間に形成された空間が、冷気送出ダクト30となっている。ダクト形成部材32は、発泡スチロールなどの断熱材、および、ABS樹脂、ポリプロピレン(PP)樹脂などの樹脂製の板材などで構成されている。 冷 A cool air delivery duct 30 is provided on the back side of the refrigerator compartment 11 as a cool air delivery passage. The cool air delivery duct 30 is formed of a duct forming member 32, a part of the inner box 52, and the like, and serves as a cool air passage. In other words, the space formed between the duct forming member 32 and the inner box 52 is the cool air delivery duct 30. The duct forming member 32 is made of a heat insulating material such as styrene foam, and a plate made of resin such as ABS resin and polypropylene (PP) resin.
 ダクト形成部材32の正面部分には、複数の冷気の吹き出し口31が設けられている。各吹き出し口31からは、冷却室40において生成された冷気が冷蔵室11内に吹き出される。最も下に位置する吹き出し口31aは、主として、チルド室および野菜室へ向けて冷気を吹き出す。 A plurality of cool air outlets 31 are provided in the front part of the duct forming member 32. From each outlet 31, the cool air generated in the cooling chamber 40 is blown into the refrigerator compartment 11. The outlet 31a located at the bottom blows cool air mainly toward the chilled room and the vegetable room.
 第1冷凍室12、製氷室13、及び第2冷凍室14の背面側には、冷却室40が配置されている。冷却室40内には、冷凍サイクルを構成する蒸発器(冷却器)41、蒸発器41を除霜するためのガラス管ヒータ81、蒸発器41からの冷気を各貯蔵室に送るための冷却ファン43、蒸発器41の除霜時に生成される除霜水などを排出するための排水トレイ82などが配置される。冷却室40の上方は、冷気送出ダクト30と連通している。 冷却 A cooling room 40 is arranged on the back side of the first freezing room 12, the ice making room 13, and the second freezing room 14. In the cooling chamber 40, an evaporator (cooler) 41 constituting a refrigeration cycle, a glass tube heater 81 for defrosting the evaporator 41, and a cooling fan for sending cool air from the evaporator 41 to each storage chamber. 43, a drain tray 82 for discharging defrost water generated when the evaporator 41 is defrosted, and the like are disposed. The upper part of the cooling chamber 40 communicates with the cool air delivery duct 30.
 冷却室40と冷気送出ダクト30との間には、ダンパ(図示せず)が設けられている。ダンパを開閉することで、冷蔵室11に向かう冷気の流れをON/OFFすることができる。また、冷気送出ダクト30内には、ダンパの上方に冷却ファンが設けられていてもよい。この冷却ファンが作動することで、複数の吹き出し口31を介して冷蔵室11内に冷気を送り込むことができる。 ダ ン A damper (not shown) is provided between the cooling chamber 40 and the cool air delivery duct 30. By opening and closing the damper, the flow of cool air toward the refrigerator compartment 11 can be turned on / off. Further, a cooling fan may be provided in the cool air delivery duct 30 above the damper. By operating the cooling fan, cool air can be sent into the refrigerator compartment 11 through the plurality of outlets 31.
 また、冷却室40には、複数の吹き出し口47aが形成されている。これらの吹き出し口47aは、第1冷凍室12、製氷室13、及び第2冷凍室14と連通している。冷却室40で生成され、吹き出し口47aから吹き出された冷気によって、第1冷凍室12、製氷室13、及び第2冷凍室14は、適切な温度に維持される。 冷却 Further, a plurality of outlets 47 a are formed in the cooling chamber 40. These outlets 47 a communicate with the first freezing compartment 12, the ice making compartment 13, and the second freezing compartment 14. The first freezing compartment 12, the ice making compartment 13, and the second freezing compartment 14 are maintained at an appropriate temperature by the cool air generated in the cooling compartment 40 and blown out from the outlet 47a.
 また、冷蔵室11の背面部の下方には、開口部が形成されている。この開口部は、冷却室40へとつながる冷気戻りダクト(冷気戻り通路)45および46と連通しており、冷気の戻り口48となっている。 開口 Further, an opening is formed below the back of the refrigerator compartment 11. This opening communicates with cool air return ducts (cool air return passages) 45 and 46 leading to the cooling chamber 40, and serves as a cool air return port 48.
 冷気戻りダクト45は、冷蔵室11の背面部に形成されている。冷気戻りダクト45は、冷気送出ダクト30の一部と隣接して配置されている。冷蔵室11内を循環した冷気は、戻り口48から冷気戻りダクト45内へ入る。 The cool air return duct 45 is formed on the back of the refrigerator compartment 11. The cool air return duct 45 is arranged adjacent to a part of the cool air delivery duct 30. The cool air circulated in the refrigerator compartment 11 enters the cool air return duct 45 from the return port 48.
 冷気戻りダクト46は、冷蔵室11と製氷室13および第2冷凍室14との仕切り壁53を間に挟んで、冷気戻りダクト45の下方に形成されている(図2(a)参照)。冷気戻りダクト45と冷気戻りダクト46とは、仕切り壁53に形成された開口部53aを介して連通している。冷気戻りダクト46は、冷却室40と隣接して配置されている(図5参照)。また、冷気戻りダクト46は、その下方位置で冷却室40と連通している。 The cool air return duct 46 is formed below the cool air return duct 45 with a partition wall 53 between the refrigerator compartment 11 and the ice making compartment 13 and the second freezing compartment 14 interposed therebetween (see FIG. 2A). The cool air return duct 45 and the cool air return duct 46 communicate with each other via an opening 53 a formed in the partition wall 53. The cool air return duct 46 is arranged adjacent to the cooling chamber 40 (see FIG. 5). The cool air return duct 46 communicates with the cooling chamber 40 at a position below the cool air return duct 46.
 冷却室40内の蒸発器41は、冷凍サイクルを構成する。冷凍サイクルは、冷媒が流通する冷媒管を介して、圧縮機、凝縮器、膨張器、及び、蒸発器(冷却器)41が接続されて構成されている。冷凍サイクル内を冷媒が循環する間に、低温の冷媒が流入する蒸発器41では、蒸発器41周辺の空気との間で熱交換が行われる。この熱交換により、冷却室40内では冷気が生成される。 蒸 発 The evaporator 41 in the cooling chamber 40 forms a refrigeration cycle. The refrigeration cycle is configured such that a compressor, a condenser, an expander, and an evaporator (cooler) 41 are connected via a refrigerant pipe through which the refrigerant flows. During the circulation of the refrigerant in the refrigeration cycle, the evaporator 41 into which the low-temperature refrigerant flows exchanges heat with the air around the evaporator 41. By this heat exchange, cool air is generated in the cooling chamber 40.
 冷却室40内で生成された冷気は、各貯蔵空間を循環する。図1では、冷凍サイクルによって発生する冷気の流れを矢印で示す。 冷 Cold air generated in the cooling chamber 40 circulates in each storage space. In FIG. 1, the flow of cold air generated by the refrigeration cycle is indicated by arrows.
 蒸発器41によって冷やされた冷気は、冷却ファン43によって、各吹き出し口47aから第1冷凍室12・製氷室13・第2冷凍室14に送られる。各冷凍貯蔵空間を通った冷気は、第1冷凍室12の下方から冷却室40内へ戻る。 (4) The cool air cooled by the evaporator 41 is sent from the outlets 47a to the first freezing room 12, the ice making room 13, and the second freezing room 14 by the cooling fan 43. The cool air that has passed through each freezing storage space returns into the cooling chamber 40 from below the first freezing chamber 12.
 また、ダンパが解放されているときは、冷気は、冷却ファンによって、冷気送出ダクト30内を上昇しながら、複数の吹き出し口31から冷蔵室11内へ送り込まれる。冷蔵室11内に送られた冷気は、上方から下方へと降下しながら、冷蔵室内の食料および飲料などを冷やして、戻り口48から冷気戻りダクト45および46を通って冷却室40へと帰ってくる。 (4) When the damper is released, the cool air is sent into the refrigerator compartment 11 from the plurality of outlets 31 while rising in the cool air delivery duct 30 by the cooling fan. The cold air sent into the refrigerator compartment 11 cools foods and beverages in the refrigerator compartment while descending from above to below, and returns to the cooling compartment 40 from the return port 48 through the cool air return ducts 45 and 46. Come.
 (結露水排出機構について)
 続いて、冷蔵庫1に備えられている結露水排出機構10について説明する。図2(a)には、結露水排出機構10の構成を示す。結露水排出機構10は、冷蔵室11の背面部の下方から冷気戻りダクト45および46にかけて形成されている。具体的には、結露水排出機構10の各構成部材が、冷蔵室11の背面部分に位置する冷気送出ダクト30、冷気戻りダクト45、および冷気戻りダクト46の何れかに配置されている。
(About the dew water discharge mechanism)
Next, the condensed water discharge mechanism 10 provided in the refrigerator 1 will be described. FIG. 2A shows the configuration of the dew condensation water discharging mechanism 10. The dew condensation water discharge mechanism 10 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46. Specifically, each component of the dew condensation water discharge mechanism 10 is arranged in any one of the cool air sending duct 30, the cool air return duct 45, and the cool air return duct 46 located at the back of the refrigerator compartment 11.
 結露水排出機構10は、主として、冷却機構60と、排水機構70とで構成されている。冷却機構60は、冷蔵室11から冷気戻りダクト45内へ戻された気体(すなわち、冷蔵室11からの戻り冷気)を冷却することによって、この気体中に含まれる水蒸気を結露させる。排水機構70は、冷却機構60で生成された結露水を冷気戻りダクト45および46の外へ排出する。本実施形態では、排水機構70は、生成された結露水を冷却室40の下方に設けられた排水トレイ82から、断熱箱体50の外側の機械室(図示せず)へ排出する。 The condensed water discharge mechanism 10 mainly includes a cooling mechanism 60 and a drainage mechanism 70. The cooling mechanism 60 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 (that is, the cool air returned from the refrigerator compartment 11), thereby dew condensation the water vapor contained in the gas. The drainage mechanism 70 discharges the condensed water generated by the cooling mechanism 60 out of the cool air return ducts 45 and 46. In the present embodiment, the drainage mechanism 70 discharges the generated condensed water from a drainage tray 82 provided below the cooling chamber 40 to a machine room (not shown) outside the heat insulating box 50.
 図2(b)および図3には、冷却機構60の構成を示す。図2(b)では、冷気戻りダクト45側に位置する冷却機構60の構成を示す。 FIGS. 2B and 3 show the configuration of the cooling mechanism 60. FIG. 2B shows a configuration of the cooling mechanism 60 located on the side of the cool air return duct 45.
 冷却機構60は、気体(すなわち、冷蔵室11からの戻り冷気)を冷却することによって、戻り冷気中に含まれる水蒸気を結露させることで、戻り冷気を除湿することができる。戻り冷気が除湿されることで、蒸発器41に付着する霜の量を減らすことができる。冷却機構60は、伝熱板(伝熱部)61、送出ダクト側フィン62a、および戻りダクト側フィン62bなどを有している。 (4) The cooling mechanism 60 can dehumidify the returned cold air by cooling the gas (that is, the returned cold air from the refrigerator compartment 11) to condense the water vapor contained in the returned cold air. By dehumidifying the returned cool air, the amount of frost adhering to the evaporator 41 can be reduced. The cooling mechanism 60 has a heat transfer plate (heat transfer portion) 61, a delivery duct side fin 62a, a return duct side fin 62b, and the like.
 伝熱板61は、熱伝導率の高い金属板で形成されている。伝熱板61は、冷気送出ダクト30と冷気戻りダクト45との間にまたがって配置されている。これにより、伝熱板61を介して、冷気送出ダクト30側の冷熱が冷気戻りダクト45側へ伝達される。 熱 The heat transfer plate 61 is formed of a metal plate having a high thermal conductivity. The heat transfer plate 61 is disposed between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 61.
 図4には、冷気送出ダクト30と冷気戻りダクト45との間に伝熱板61を配置する方法の一例を示す。上述したように、冷気送出ダクト30は、ダクト形成部材32によって形成されている。そして、冷気送出ダクト30の下方部分では、冷気戻りダクト45が隣接して配置されている。すなわち、冷気送出ダクト30と冷気戻りダクト45とは、ダクト形成部材32の一部である断熱材(発泡スチロール)を間に挟んで、隣り合うように配置されている。 FIG. 4 shows an example of a method of arranging the heat transfer plate 61 between the cool air sending duct 30 and the cool air return duct 45. As described above, the cool air delivery duct 30 is formed by the duct forming member 32. Then, a cool air return duct 45 is arranged adjacent to the lower portion of the cool air delivery duct 30. That is, the cool air delivery duct 30 and the cool air return duct 45 are arranged to be adjacent to each other with a heat insulating material (styrene foam) as a part of the duct forming member 32 interposed therebetween.
 そこで、図4に示すように、断熱材を上下に分割し、その間に伝熱板61を挟み込むようにして伝熱板61を配置する。これにより、伝熱板61は、冷気送出ダクト30側の冷熱を冷気戻りダクト45側へ伝達させることができる。 Therefore, as shown in FIG. 4, the heat insulating material is divided into upper and lower portions, and the heat transfer plate 61 is disposed so as to sandwich the heat transfer plate 61 therebetween. Thereby, the heat transfer plate 61 can transmit the cold heat from the cool air delivery duct 30 to the cool air return duct 45.
 送出ダクト側フィン62aおよび戻りダクト側フィン62bは、複数枚の板状の部材である。これらのフィンは、伝熱板61と同様に、熱伝導率の高い金属板で形成されている。送出ダクト側フィン62aは、冷気送出ダクト30側に位置する伝熱板61上に形成されている。戻りダクト側フィン62bは、冷気戻りダクト45側に位置する伝熱板61上に形成されている。これらのフィンが形成されていることで、熱の伝達効率を向上させることができる。 The delivery duct side fins 62a and the return duct side fins 62b are a plurality of plate-like members. These fins are formed of a metal plate having a high thermal conductivity, similarly to the heat transfer plate 61. The delivery duct side fins 62 a are formed on the heat transfer plate 61 located on the side of the cool air delivery duct 30. The return duct side fins 62b are formed on the heat transfer plate 61 located on the cool air return duct 45 side. By forming these fins, heat transfer efficiency can be improved.
 戻りダクト側フィン62bは、その下方部分が先細となるような形状となっている。フィンをこのような形状にすることで、戻りダクト側フィン62bの表面に生成された結露水を下方の先端部分へ向けて誘導することができる。また、伝熱板61上に略平行に並んで配置されている各戻りダクト側フィン62bは、後述する受け皿部63の傾斜に合わせて、その最下端位置が徐々に下方に位置するように、その上下方向の長さが規定されている。 The return duct side fin 62b is shaped so that its lower portion tapers. By forming the fins in such a shape, the dew condensation water generated on the surface of the return duct side fins 62b can be guided toward the lower end portion. Further, each return duct-side fin 62b arranged substantially in parallel on the heat transfer plate 61 is arranged such that the lowermost position thereof is gradually positioned downward in accordance with the inclination of the tray portion 63 described later. The length in the vertical direction is defined.
 排水機構70は、受け皿部63、傾斜誘導部64、および鉛直誘導部65などを有している。 The drainage mechanism 70 has a tray 63, an inclined guide 64, a vertical guide 65, and the like.
 受け皿部63は、伝熱板61上の戻りダクト側フィン62bの下方に形成されている。受け皿部63は、戻りダクト側フィン62bの表面に生成された結露水を受ける受け皿となる。受け皿部63は、冷蔵庫1の前方側から後方側へ向かって下方に傾斜している(図2(a)および(b)参照)。これにより、受け皿部63上に落下した結露水は、その傾斜に沿って後方へ向かって流れる。 The tray 63 is formed below the return duct side fins 62b on the heat transfer plate 61. The receiving portion 63 serves as a receiving tray for receiving the dew water generated on the surface of the return duct side fin 62b. The tray 63 is inclined downward from the front side to the rear side of the refrigerator 1 (see FIGS. 2A and 2B). As a result, the dew condensation water that has fallen on the tray 63 flows backward along the slope.
 傾斜誘導部64および鉛直誘導部65は、冷気戻りダクト46内に形成されている。具体的には、傾斜誘導部64および鉛直誘導部65は、冷気戻りダクト46を形成しているダクト形成部材49の内壁に形成された突起状の部材である。傾斜誘導部64および鉛直誘導部65は、受け皿部63から落下した結露水を下方の排水トレイ82まで導くための部材である。図6には、冷気戻りダクト46内に形成される傾斜誘導部64および鉛直誘導部65を示す。 The inclined guide portion 64 and the vertical guide portion 65 are formed in the cool air return duct 46. Specifically, the inclined guide portion 64 and the vertical guide portion 65 are projecting members formed on the inner wall of a duct forming member 49 forming the cool air return duct 46. The inclined guiding portion 64 and the vertical guiding portion 65 are members for guiding the dew condensation water dropped from the tray 63 to the drain tray 82 below. FIG. 6 shows the inclined guide portion 64 and the vertical guide portion 65 formed in the cool air return duct 46.
 ダクト形成部材49は、例えば、発泡スチロールなどの断熱材で形成されている。この場合、傾斜誘導部64および鉛直誘導部65は、断熱材の成型時に、冷気戻りダクト45と一体的に形成することができる。 The duct forming member 49 is formed of, for example, a heat insulating material such as styrene foam. In this case, the inclined guide portion 64 and the vertical guide portion 65 can be formed integrally with the cool air return duct 45 when the heat insulating material is molded.
 ここで、ダクト形成部材49の各側壁を、冷蔵庫1内における位置に合わせて、右側壁49a、左側壁49b、前側壁49c、および後側壁49dと呼ぶ(図6参照)。 Here, the respective side walls of the duct forming member 49 are referred to as a right side wall 49a, a left side wall 49b, a front side wall 49c, and a rear side wall 49d according to the position in the refrigerator 1 (see FIG. 6).
 傾斜誘導部64は、冷気戻りダクト46の後側壁49dに形成されている。傾斜誘導部64は、左側から右側へ向かって下方に傾斜している。上方に位置する傾斜誘導部64の左側の部分は、上方から見て、受け皿部63の下端部と重なるような位置に配置されている。また、下方に位置する傾斜誘導部64の右側の部分は、鉛直誘導部65の上端部と連結している。 The inclined guiding portion 64 is formed on the rear wall 49d of the cool air return duct 46. The inclination guiding section 64 is inclined downward from the left side to the right side. The left portion of the inclined guiding portion 64 located above is disposed at a position overlapping with the lower end portion of the tray 63 when viewed from above. Further, the right portion of the inclined guiding portion 64 located below is connected to the upper end of the vertical guiding portion 65.
 鉛直誘導部65は、冷気戻りダクト46の後側壁49dの右端に上下方向に延びている。なお、冷蔵庫1では、図5に示すように、冷気戻りダクト46は、正面から見て冷却室40の右側に配置されている。このような構成において、鉛直誘導部65は、冷気戻りダクト46の右側(すなわち、冷却室40から遠い側)に配置されていることが好ましい。 The vertical guide portion 65 extends vertically at the right end of the rear wall 49d of the cool air return duct 46. In the refrigerator 1, as shown in FIG. 5, the cool air return duct 46 is disposed on the right side of the cooling chamber 40 when viewed from the front. In such a configuration, it is preferable that the vertical guide portion 65 is disposed on the right side of the cool air return duct 46 (that is, on the side far from the cooling chamber 40).
 冷気戻りダクト46内は、冷却室40により近い左側壁49bの方が、右側壁49aと比較して温度が低くなる傾向にある。そこで、鉛直誘導部65を、冷却室40からより離れた右側に配置することで、鉛直誘導部65を伝って落下する結露水が凍結する可能性を低減させることができる。なお、冷気戻りダクトが、正面から見て冷却室40の左側に配置されている冷蔵庫の場合には、鉛直誘導部は、冷気戻りダクトの左側側(すなわち、冷却室から遠い側)に配置されていることが好ましい。 温度 In the cool air return duct 46, the temperature of the left side wall 49b closer to the cooling chamber 40 tends to be lower than that of the right side wall 49a. Therefore, by arranging the vertical guide portion 65 on the right side farther from the cooling chamber 40, it is possible to reduce the possibility that the dew condensation water falling along the vertical guide portion 65 freezes. In the case of a refrigerator in which the cool air return duct is disposed on the left side of the cooling chamber 40 when viewed from the front, the vertical guide portion is disposed on the left side of the cool air return duct (that is, on the side far from the cooling chamber). Is preferred.
 以上の構成によれば、冷却機構60では、伝熱板61を介して冷気送出ダクト30から冷気戻りダクト45へ伝達された冷熱によって、冷気戻りダクト45内の気体(すなわち、戻り冷気)は冷却される。すると、冷気戻りダクト45内の気体中に含まれる水蒸気は結露し、戻りダクト側フィン62bには結露水が付着する。 According to the above configuration, in the cooling mechanism 60, the gas in the cool air return duct 45 (that is, the return cool air) is cooled by the cold transmitted from the cool air delivery duct 30 to the cool air return duct 45 via the heat transfer plate 61. Is done. Then, the water vapor contained in the gas in the cool air return duct 45 is condensed, and the condensed water adheres to the return duct side fin 62b.
 戻りダクト側フィン62bに付着した結露水は、重力によって滴り落ち、戻りダクト側フィン62bの下に設けられた受け皿部63を伝って冷気戻りダクト46内に滴下する。そして、冷気戻りダクト46内に滴下した結露水は、傾斜誘導部64および鉛直誘導部65を伝って、冷却室40の下部に設けられた排水トレイ82へ到達し、排水トレイ82から外部へ排出される。これにより、戻り冷気内に含まれる水蒸気の量を減らすことができる。 The dew water adhering to the return duct side fins 62b drips down due to gravity, and drops into the cool air return duct 46 along the tray 63 provided below the return duct side fins 62b. Then, the condensed water dropped into the cool air return duct 46 travels through the inclined guide portion 64 and the vertical guide portion 65, reaches the drain tray 82 provided at the lower part of the cooling chamber 40, and is discharged from the drain tray 82 to the outside. Is done. Thereby, the amount of water vapor contained in the return cool air can be reduced.
 (第1の実施形態のまとめ)
 以上のように、本実施形態にかかる冷蔵庫1には、冷蔵室11から冷却室40への戻り冷気を除湿するための機構として、結露水排出機構10が備えられている。結露水排出機構10は、冷却機構60と、排水機構70とを有している。
(Summary of First Embodiment)
As described above, the refrigerator 1 according to the present embodiment is provided with the dew condensation water discharge mechanism 10 as a mechanism for returning the cool air from the refrigerator compartment 11 to the cooling compartment 40 and dehumidifying the cool air. The dew condensation water discharge mechanism 10 has a cooling mechanism 60 and a drainage mechanism 70.
 冷却機構60は、冷蔵室11から冷気戻りダクト45内へ戻された気体を、冷気送出ダクト30内の冷熱を用いて冷却し、この気体中に含まれる水蒸気を結露させる。排水機構70は、冷却機構60で生成された結露水を冷気戻りダクト46の外へ排出する。 (4) The cooling mechanism 60 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 by using the cold heat in the cool air delivery duct 30 to dew the water vapor contained in the gas. The drainage mechanism 70 discharges the condensed water generated by the cooling mechanism 60 out of the cool air return duct 46.
 この構成によれば、冷蔵室11からの戻り冷気が冷却室40へ帰る前に、戻り冷気中に含まれる水蒸気の量を減らすことができる。このようにして、冷蔵室11からの戻り冷気を除湿することで、蒸発器(冷却器)41に付着する霜の量を低減させることができる。蒸発器(冷却器)41に付着する霜の量を減らすことで、冷却効率を向上させることができる。また、ガラス管ヒータ81などを用いた蒸発器41の除霜にかかる時間の短縮化につながる。したがって、結露水排出機構10を備えることで、冷蔵庫の消費電力を低減させることが可能となる。 According to this configuration, before the return cold air from the refrigerator compartment 11 returns to the cooling chamber 40, the amount of water vapor contained in the return cool air can be reduced. Thus, the amount of frost adhering to the evaporator (cooler) 41 can be reduced by dehumidifying the returned cool air from the refrigerator compartment 11. By reducing the amount of frost adhering to the evaporator (cooler) 41, the cooling efficiency can be improved. In addition, the time required for defrosting the evaporator 41 using the glass tube heater 81 or the like is reduced. Therefore, the provision of the dew condensation water discharge mechanism 10 makes it possible to reduce the power consumption of the refrigerator.
 (変形例について)
 続いて、本実施の形態にかかる冷蔵庫1に設けられた結露水排出機構の変形例を示す。図7には、変形例にかかる結露水排出機構110の構成を示す。
(About the modification)
Next, a modified example of the dew condensation water discharging mechanism provided in the refrigerator 1 according to the present embodiment will be described. FIG. 7 shows a configuration of a dew condensation water discharging mechanism 110 according to a modification.
 結露水排出機構110は、主として、冷却機構60と、排水機構170とで構成されている。冷却機構60については、上述した構成と同じである。 The dew condensation water discharge mechanism 110 mainly includes the cooling mechanism 60 and the drainage mechanism 170. The cooling mechanism 60 has the same configuration as that described above.
 排水機構170は、受け皿部63、傾斜誘導部164、および鉛直誘導部165などを有している。受け皿部63は、上述した構成と同じである。 The drainage mechanism 170 includes the tray 63, the inclined guide 164, the vertical guide 165, and the like. The receiving portion 63 has the same configuration as that described above.
 傾斜誘導部164は、冷気戻りダクト45内に配置されている。具体的には、傾斜誘導部164は、冷気戻りダクト45の仕切り壁53上に左右方向に延びている。傾斜誘導部164は、左側から右側へ向かって下方に傾斜している。上方に位置する傾斜誘導部164の左側の部分は、受け皿部63の下端部に隣接して配置されている。また、下方に位置する傾斜誘導部164の右側の部分は、鉛直誘導部165の上端部に隣接して配置されている。 The inclination guiding section 164 is arranged in the cool air return duct 45. Specifically, the inclined guiding portion 164 extends in the left-right direction on the partition wall 53 of the cool air return duct 45. The inclination guiding section 164 is inclined downward from left to right. The left portion of the inclined guiding portion 164 located above is disposed adjacent to the lower end of the tray 63. The right portion of the inclined guiding portion 164 located below is arranged adjacent to the upper end of the vertical guiding portion 165.
 鉛直誘導部165は、冷気戻りダクト45の下端部から開口部53aを通って冷気戻りダクト46の内部へ上下方向に延びている。鉛直誘導部165は、冷気戻りダクト46を形成しているダクト形成部材49の内壁に形成された溝である。鉛直誘導部165は、鉛直誘導部65と同様に、冷気戻りダクト46の右側(すなわち、冷却室40から遠い側)に配置されている。これにより、鉛直誘導部165を伝って落下する結露水が凍結する可能性を低減させることができる。鉛直誘導部165は、鉛直誘導部65と同様に、ダクト形成部材49の内壁に形成された突起状であってもよく、鉛直誘導部165によって、結露水が冷気戻りダクト46の右側を確実に伝うようになっていればよい。 The vertical guiding portion 165 extends vertically from the lower end of the cool air return duct 45 to the inside of the cool air return duct 46 through the opening 53a. The vertical guide portion 165 is a groove formed on the inner wall of the duct forming member 49 forming the cool air return duct 46. The vertical guiding section 165 is arranged on the right side of the cool air return duct 46 (that is, on the side far from the cooling chamber 40), similarly to the vertical guiding section 65. Thereby, the possibility that the condensed water falling along the vertical guiding portion 165 freezes can be reduced. Like the vertical guide 65, the vertical guide 165 may be in the form of a protrusion formed on the inner wall of the duct forming member 49, and the vertical guide 165 ensures that the dew condensation water flows on the right side of the cool air return duct 46. It just needs to be transmitted.
 上記の構成によれば、排水機構170は、冷却機構60で生成された結露水を冷気戻りダクト46の外へ排出することができる。これにより、これにより、戻り冷気内に含まれる水蒸気の量を減らすことができる。 According to the above configuration, the drainage mechanism 170 can discharge the dew water generated by the cooling mechanism 60 to the outside of the cool air return duct 46. Thereby, the amount of water vapor contained in the return cool air can thereby be reduced.
 〔第2の実施形態〕
 続いて、本発明の第2の実施形態について説明する。第2の実施形態は、冷蔵庫1の冷蔵室11に備えられた結露水排出機構の構成が第1の実施形態とは異なっている。その他の構成については、基本的に第1の実施形態と同じ構成を適用することができる。そこで、第2の実施形態では、第1の実施形態とは異なる点のみを説明する。
[Second embodiment]
Subsequently, a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in the configuration of the dew condensation water discharge mechanism provided in the refrigerator compartment 11 of the refrigerator 1. For other configurations, basically the same configuration as in the first embodiment can be applied. Thus, in the second embodiment, only points different from the first embodiment will be described.
 図8(a)には、第2の実施形態にかかる冷蔵庫1の冷蔵室11内の背面部分の外観を示す。冷蔵室11の下方には、結露水排出機構210が設けられている。結露水排出機構210は、冷蔵室11の背面部の下方から冷気戻りダクト45および46にかけて形成されている。 FIG. 8A shows the appearance of the rear part inside the refrigerator compartment 11 of the refrigerator 1 according to the second embodiment. A condensed water discharge mechanism 210 is provided below the refrigerator compartment 11. The dew condensation water discharge mechanism 210 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46.
 図8(b)には、冷蔵庫1のA-A’線部分の断面構成を示す。図8(c)には、冷蔵庫1のB-B’線部分の断面構成を示す。 FIG. 8B shows a cross-sectional configuration taken along the line A-A ′ of the refrigerator 1. FIG. 8C shows a cross-sectional configuration of the refrigerator 1 along the line B-B ′.
 結露水排出機構210は、主として、冷却機構260と、排水機構270とで構成されている。冷却機構260は、冷蔵室11から冷気戻りダクト45内へ戻された気体を冷却することによって、この気体中に含まれる水蒸気を結露させる。排水機構270は、冷却機構260で生成された結露水を冷気戻りダクト45および46の外へ排出する。本実施形態では、排水機構270は、冷蔵室11内に結露水の流路(具体的には、室内第1流路264aおよび室内第2流路265a)を有している。 The condensed water discharge mechanism 210 mainly includes a cooling mechanism 260 and a drainage mechanism 270. The cooling mechanism 260 cools the gas returned from the refrigerator compartment 11 into the cool air return duct 45 to cause dew condensation of water vapor contained in the gas. Drainage mechanism 270 discharges the dew water generated by cooling mechanism 260 to outside of cool air return ducts 45 and 46. In the present embodiment, the drainage mechanism 270 has a dew water flow path (specifically, an indoor first flow path 264a and an indoor second flow path 265a) in the refrigerator compartment 11.
 図9には、冷却機構260の構成を示す。冷却機構260は、伝熱板(伝熱部)261、送出ダクト側フィン262a、および戻りダクト側フィン262bなどを有している。 FIG. 9 shows a configuration of the cooling mechanism 260. The cooling mechanism 260 has a heat transfer plate (heat transfer portion) 261, a delivery duct side fin 262a, a return duct side fin 262b, and the like.
 伝熱板261は、熱伝導率の高い金属板で形成されている。伝熱板261は、冷気送出ダクト30と冷気戻りダクト45との間にまたがって配置されている。これにより、伝熱板261を介して、冷気送出ダクト30側の冷熱が冷気戻りダクト45側へ伝達される。 熱 The heat transfer plate 261 is formed of a metal plate having high thermal conductivity. The heat transfer plate 261 is disposed between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 261.
 本実施形態では、伝熱板261は、庫内の背面部に配置されている。具体的には、伝熱板261は、冷蔵庫1の内部を区画している内箱52の背面部に取り付けられている。このような位置に伝熱板261を設置することで、冷気送出ダクト30と冷気戻りダクト45との間のシール性を損なうことなく、両方のダクトにまたがる伝熱部を設けることができる。 で は In the present embodiment, the heat transfer plate 261 is disposed on the back of the refrigerator. Specifically, the heat transfer plate 261 is attached to the back of the inner box 52 that partitions the inside of the refrigerator 1. By disposing the heat transfer plate 261 at such a position, it is possible to provide a heat transfer portion that extends over both ducts without impairing the sealing performance between the cool air sending duct 30 and the cool air return duct 45.
 伝熱板261上には、複数枚の板状の部材が互いに略平行に並べて配置されている。これらの板状の部材が、送出ダクト側フィン262aおよび戻りダクト側フィン262bである。これらのフィンは、伝熱板261と同様に、熱伝導率の高い金属板で形成されている。送出ダクト側フィン262aは、冷気送出ダクト30側に位置する伝熱板261上に形成されている。戻りダクト側フィン262bは、冷気戻りダクト45側に位置する伝熱板261上に形成されている。これらのフィンが形成されていることで、熱の伝達効率を向上させることができる。 複数 On the heat transfer plate 261, a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 262a and a return duct side fin 262b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 261. The delivery duct side fin 262a is formed on the heat transfer plate 261 located on the side of the cool air delivery duct 30. The return duct side fin 262b is formed on the heat transfer plate 261 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved.
 上記の構成を有する冷却機構260によれば、冷気戻りダクト45内に入った冷蔵室11からの戻り冷気は、冷気送出ダクト30内の冷熱によって冷やされた伝熱板261によって冷却される。これにより、戻り冷気中に含まれる水蒸気は結露し、戻り冷気は除湿される。生成された結露水は、戻りダクト側フィン262bなどの表面に付着する。戻り冷気が除湿されることで、蒸発器41に付着する霜の量を減らすことができる。 According to the cooling mechanism 260 having the above configuration, the return cold air from the refrigerator compartment 11 that has entered the cool air return duct 45 is cooled by the heat transfer plate 261 cooled by the cool heat in the cool air delivery duct 30. Thereby, the water vapor contained in the returned cool air is dewed, and the returned cool air is dehumidified. The generated dew water adheres to a surface such as the return duct side fin 262b. By dehumidifying the returned cool air, the amount of frost adhering to the evaporator 41 can be reduced.
 排水機構270は、受け皿部263、第1流路264、室内第1流路264a、室内第2流路265a、および第2流路265などを有している。 The drainage mechanism 270 has a tray 263, a first flow path 264, an indoor first flow path 264a, an indoor second flow path 265a, a second flow path 265, and the like.
 受け皿部263は、伝熱板261上の戻りダクト側フィン262bの下方に形成されている。受け皿部263は、戻りダクト側フィン262bの表面に生成された結露水を受ける受け皿となる。受け皿部263は、冷蔵庫1の右側から左側へ向かって下方に傾斜している。これにより、受け皿部263上に落下した結露水は、その傾斜に沿って左側(冷気送出ダクト30へ近づく側)へ向かって流れる。 The tray portion 263 is formed below the return duct side fin 262b on the heat transfer plate 261. The receiving tray 263 serves as a receiving tray for receiving the dew water generated on the surface of the return duct side fin 262b. The tray 263 is inclined downward from the right side to the left side of the refrigerator 1. As a result, the condensed water that has fallen on the tray 263 flows toward the left side (the side approaching the cool air delivery duct 30) along the slope.
 第1流路264は、冷気戻りダクト45内において、後方側から前方側へ向かって下方に傾斜している。第1流路264の後方側の端部は、受け皿部263の左側端部と接続されている。これにより、受け皿部263に滴下した結露水は、第1流路264へ誘導され、第1流路264を前方側へ流れる。 The first flow path 264 is inclined downward from the rear side to the front side in the cool air return duct 45. The rear end of the first flow path 264 is connected to the left end of the tray 263. As a result, the condensed water dropped on the receiving tray 263 is guided to the first flow path 264 and flows forward through the first flow path 264.
 第1流路264は、冷蔵室11内を通る室内第1流路264aと接続されている。室内第1流路264aは、冷蔵室11の背面部に沿って配置されている。本実施形態では、室内第1流路264aは、冷蔵室11の背面部に設けられたダクト形成部材32上に取り付けられている。室内第1流路264aは、右から左へ向かって下方に傾斜しながら、冷蔵室11の下方に形成された吹き出し口31aの正面位置まで延びている。吹き出し口31aから吹き出される冷気は、冷蔵室11の下方に位置するチルド室などへ送出される。 The first flow path 264 is connected to the indoor first flow path 264 a passing through the refrigerator compartment 11. The indoor first flow path 264 a is arranged along the rear surface of the refrigerator compartment 11. In the present embodiment, the first indoor channel 264 a is mounted on a duct forming member 32 provided on the back surface of the refrigerator compartment 11. The indoor first flow path 264a extends to the front position of the outlet 31a formed below the refrigerator compartment 11 while being inclined downward from right to left. The cool air blown out from the outlet 31a is sent to a chilled room or the like located below the refrigerator compartment 11.
 室内第2流路265aは、室内第1流路264aの下方に配置されている。室内第2流路265aは、室内第1流路264aとは反対側に傾斜している。これにより、室内第1流路264aの左端部に達した結露水は、室内第2流路265aへ落下し、室内第2流路265aの傾斜に沿って左から右へ流れる。 The indoor second flow path 265a is arranged below the indoor first flow path 264a. The indoor second flow path 265a is inclined to the opposite side to the indoor first flow path 264a. As a result, the condensed water that has reached the left end of the first indoor channel 264a falls into the second indoor channel 265a and flows from left to right along the slope of the second indoor channel 265a.
 室内第2流路265aの右端部は、冷気戻りダクト45内に配置されている第2流路265と接続されている。これにより、室内第1流路264aおよび室内第2流路265aを流れた結露水は、再び冷気戻りダクト45へ戻る。 右 The right end of the indoor second flow path 265a is connected to the second flow path 265 arranged in the cool air return duct 45. As a result, the dew water flowing through the indoor first flow path 264a and the indoor second flow path 265a returns to the cool air return duct 45 again.
 第2流路265は、第1の実施形態で説明した傾斜誘導部64および鉛直誘導部65、または傾斜誘導部164および鉛直誘導部165などと同様の構成を有している。 2The second flow path 265 has the same configuration as the inclined guiding section 64 and the vertical guiding section 65 described in the first embodiment, or the inclined guiding section 164 and the vertical guiding section 165.
 このように、本実施形態にかかる結露水排出機構210では、冷却機構260によって生成された結露水を、一旦、冷蔵室11内に形成されている流路(すなわち、室内第1流路264aおよび室内第2流路265a)に流す。室内第1流路264aは、冷蔵室11の下側に形成された吹き出し口31aの正面位置まで延びている。吹き出し口31aの正面位置に結露水が流れることで、吹き出し口31aから吹き出される風によって結露水の気化が促進される。これにより、冷蔵室11内の湿度、特にチルド室内の湿度を上昇させることができる。 As described above, in the dew condensation water discharging mechanism 210 according to the present embodiment, the dew condensation water generated by the cooling mechanism 260 is temporarily separated from the flow path (that is, the indoor first flow path 264a and It flows into the indoor second flow path 265a). The indoor first flow path 264a extends to a position in front of the outlet 31a formed below the refrigerator compartment 11. Since the dew water flows to the front position of the outlet 31a, vaporization of the dew water is promoted by the wind blown from the outlet 31a. Thereby, the humidity in the refrigerator compartment 11, especially the humidity in the chilled compartment can be increased.
 室内第1流路264aを通って冷蔵室11内を流れた結露水は、吹き出し口31aの正面位置で折り返され、室内第2流路265aを通って冷気戻りダクト45内の第2流路265へと導かれる。第2流路265から先の結露水の排水機構については、第1の実施形態で説明した排水機構70と同様の構成が適用できる。これにより、結露水は、冷気戻りダクト45および45内を通過し、最終的に排水トレイ82から、断熱箱体50の外側の機械室(図示せず)へ排出される。 The dew water flowing in the refrigerator compartment 11 through the indoor first flow path 264a is turned back at the front position of the outlet 31a, passes through the indoor second flow path 265a, and flows into the cool air return duct 45 in the second air flow path 265. It is led to. The same structure as the drainage mechanism 70 described in the first embodiment can be applied to the drainage mechanism of the condensed water ahead of the second flow path 265. As a result, the dew water passes through the cool air return ducts 45 and 45, and is finally discharged from the drain tray 82 to a machine room (not shown) outside the heat insulating box 50.
 以上のように、本実施形態にかかる結露水排出機構210は、戻り冷気を除湿することによって得られた結露水を冷蔵室11へ戻し、冷蔵室11内の加湿に利用することができる。 As described above, the dew condensation water discharging mechanism 210 according to the present embodiment can return the dew condensation water obtained by dehumidifying the returned cool air to the refrigerator compartment 11 and use it for humidification in the refrigerator compartment 11.
 〔第3の実施形態〕
 続いて、本発明の第3の実施形態について説明する。第3の実施形態にかかる冷蔵庫1に備えられた結露水排出機構310は、排水機構370の構成が第2の実施形態とは異なっている。その他の構成については、基本的に第2の実施形態と同じ構成を適用することができる。そこで、第3の実施形態では、第2の実施形態とは異なる点のみを説明する。
[Third embodiment]
Subsequently, a third embodiment of the present invention will be described. The dew condensation water discharging mechanism 310 provided in the refrigerator 1 according to the third embodiment differs from the second embodiment in the configuration of the draining mechanism 370. For other configurations, basically the same configuration as in the second embodiment can be applied. Thus, in the third embodiment, only points different from the second embodiment will be described.
 図10(a)には、第3の実施形態にかかる冷蔵庫1の冷蔵室11内の背面部分の外観を示す。冷蔵室11の下方には、結露水排出機構310が設けられている。結露水排出機構310は、冷蔵室11の背面部の下方から冷気戻りダクト45および46にかけて形成されている。 FIG. 10 (a) shows the appearance of the rear part inside the refrigerator compartment 11 of the refrigerator 1 according to the third embodiment. Below the refrigerator compartment 11, a dew condensation water discharge mechanism 310 is provided. The dew condensation water discharge mechanism 310 is formed from below the rear part of the refrigerator compartment 11 to the cool air return ducts 45 and 46.
 図10(b)には、冷蔵庫1のA-A’線部分の断面構成を示す。図10(c)には、冷蔵庫1のB-B’線部分の断面構成を示す。 FIG. 10B shows a cross-sectional configuration taken along the line A-A ′ of the refrigerator 1. FIG. 10C shows a cross-sectional configuration taken along the line B-B ′ of the refrigerator 1.
 結露水排出機構310は、主として、冷却機構260と、排水機構370とで構成されている。冷却機構260は、第2の実施形態と同様の構成を有している。 The dew condensation water discharge mechanism 310 mainly includes a cooling mechanism 260 and a drainage mechanism 370. The cooling mechanism 260 has a configuration similar to that of the second embodiment.
 排水機構370は、冷却機構260で生成された結露水を冷気戻りダクト45および46の外へ排出する。排水機構370は、受け皿部363、第1流路364、室内第1流路364a、室内第2流路365a、および第2流路365などを有している。第2の実施形態と同様に、排水機構370は、冷蔵室11内に結露水の流路(具体的には、室内第1流路364aおよび室内第2流路365a)を有している。 The drainage mechanism 370 discharges the condensed water generated by the cooling mechanism 260 out of the cool air return ducts 45 and 46. The drainage mechanism 370 has a tray 363, a first flow path 364, an indoor first flow path 364a, an indoor second flow path 365a, a second flow path 365, and the like. As in the second embodiment, the drainage mechanism 370 has a flow path of dew condensation water (specifically, an indoor first flow path 364a and an indoor second flow path 365a) in the refrigerator compartment 11.
 受け皿部363は、伝熱板261上の戻りダクト側フィン262bの下方に形成されている。受け皿部363は、戻りダクト側フィン262bの表面に生成された結露水を受ける受け皿となる。第2の実施形態の受け皿部263とは異なり、受け皿部363は、冷蔵庫1の左側から右側へ向かって下方に傾斜している。これにより、受け皿部363上に落下した結露水は、その傾斜に沿って右側(冷気送出ダクト30から離れる側)へ向かって流れる。 The tray 363 is formed below the return duct side fin 262b on the heat transfer plate 261. The receiving tray 363 serves as a receiving tray for receiving dew water generated on the surface of the return duct side fin 262b. Unlike the tray portion 263 of the second embodiment, the tray portion 363 is inclined downward from the left side to the right side of the refrigerator 1. As a result, the condensed water that has fallen on the tray 363 flows toward the right side (the side away from the cool air delivery duct 30) along the inclination thereof.
 第1流路364は、冷気戻りダクト45内において、後方側から前方側へ向かって下方に傾斜している。本実施形態では、第1流路364は、冷気戻りダクト45の右側の端部に沿って形成されている。第1流路364の後方側の端部は、受け皿部363の右側端部と接続されている。これにより、受け皿部363に滴下した結露水は、第1流路364へ誘導され、第1流路364を前方側へ流れる。 The first flow path 364 is inclined downward from the rear side to the front side in the cool air return duct 45. In the present embodiment, the first flow path 364 is formed along the right end of the cool air return duct 45. The rear end of the first flow path 364 is connected to the right end of the tray 363. As a result, the condensed water dropped on the tray 363 is guided to the first flow path 364 and flows forward through the first flow path 364.
 第1流路364は、冷蔵室11内を通る室内第1流路364aと接続されている。室内第1流路364aは、冷蔵室11の背面部に沿って配置されている。室内第1流路364aは、右から左へ向かって下方に傾斜しながら、冷蔵室11の中央部にまで延びている。第2の実施形態では、室内第1流路364aは吹き出し口31aの正面位置まで延びているが、第3の実施形態では、室内第1流路364aは吹き出し口31aの配置位置を越えた左側にまで延びている。 The first flow path 364 is connected to the first indoor flow path 364 a passing through the refrigerator compartment 11. The indoor first flow path 364 a is arranged along the rear surface of the refrigerator compartment 11. The first indoor channel 364a extends to the center of the refrigerator compartment 11 while being inclined downward from right to left. In the second embodiment, the indoor first flow path 364a extends to the front position of the outlet 31a, but in the third embodiment, the indoor first flow path 364a is located on the left side beyond the arrangement position of the outlet 31a. Extends to
 図11には、室内第1流路364aを上から見たときの形状を示す。図11に示すように、室内第1流路364aは、吹き出し口31aの正面位置から左側(すなわち、傾斜の下方側)へ向かって、流路の幅が大きくなっている拡張流路364bを有している。このように、吹き出し口31aの正面位置で流路の幅を変化させることで、吹き出し口31aから送出される冷気の流れは、室内第1流路364aの縁に沿って、拡張流路364b側へ導かれる。 FIG. 11 shows the shape of the first indoor channel 364a when viewed from above. As shown in FIG. 11, the indoor first flow path 364a has an expansion flow path 364b in which the width of the flow path increases from the front position of the outlet 31a toward the left side (that is, the lower side of the slope). are doing. As described above, by changing the width of the flow path at the front position of the outlet 31a, the flow of the cool air sent out from the outlet 31a flows along the edge of the indoor first flow path 364a toward the expansion flow path 364b. Led to.
 また、表面積の大きな拡張流路364bを有していることで、吹き出し口31aから送出される冷気と結露水との接触面積を増やすことができる。これにより、結露水の気化が促進される。さらに、室内第1流路364aが吹き出し口31aの配置位置を越えて延在していることで、吹き出し口31aの正面位置では、室内第1流路364aは左下がりに傾斜している。これにより、吹き出し口31aから送出される冷気を、圧力の低い左側に流れやすくすることができる。 Because of having the expansion channel 364b having a large surface area, it is possible to increase the contact area between the cool air delivered from the outlet 31a and the dew water. Thereby, vaporization of the dew condensation water is promoted. Furthermore, since the indoor first flow path 364a extends beyond the position of the outlet 31a, the indoor first flow path 364a is inclined leftward and downward at the front position of the outlet 31a. This makes it easier for the cool air sent from the outlet 31a to flow to the left side with low pressure.
 室内第2流路365aは、室内第1流路364aの下方に配置されている。室内第2流路365aは、室内第1流路364aとは反対側に傾斜している。これにより、室内第1流路364aの左端部に達した結露水は、室内第2流路365aへ落下し、室内第2流路365aの傾斜に沿って左から右へ流れる。 The indoor second flow path 365a is disposed below the indoor first flow path 364a. The indoor second flow path 365a is inclined to the opposite side to the indoor first flow path 364a. As a result, the dew water that has reached the left end of the first indoor channel 364a falls into the second indoor channel 365a and flows from left to right along the slope of the second indoor channel 365a.
 室内第2流路365aの右端部は、冷気戻りダクト45内に配置されている第2流路365と接続されている。これにより、室内第1流路364aおよび室内第2流路365aを流れた結露水は、再び冷気戻りダクト45へ戻る。 右 The right end of the indoor second flow path 365a is connected to the second flow path 365 disposed in the cool air return duct 45. As a result, the dew water flowing through the first indoor flow path 364a and the second indoor flow path 365a returns to the cool air return duct 45 again.
 第2流路365は、第1の実施形態で説明した鉛直誘導部65、または鉛直誘導部165などと同様の構成を有している。本実施形態では、第2流路365は、冷気送出ダクト30から離れた位置で室内第2流路365aの右端部と接続されている。そのため、傾斜誘導部64などを設けることなく、鉛直誘導部を冷却室40からより離れた右側に配置することができる。 The second flow path 365 has the same configuration as the vertical guiding section 65 or the vertical guiding section 165 described in the first embodiment. In the present embodiment, the second flow path 365 is connected to the right end of the indoor second flow path 365a at a position away from the cool air delivery duct 30. Therefore, the vertical guide portion can be disposed on the right side farther from the cooling chamber 40 without providing the inclined guide portion 64 and the like.
 〔第4の実施形態〕
 続いて、本発明の第4の実施形態について説明する。第4の実施形態は、冷蔵庫1に備えられた結露水排出機構の構成が第1の実施形態とは異なっている。その他の構成については、基本的に第1の実施形態と同じ構成を適用することができる。そこで、第4の実施形態では、第1の実施形態とは異なる点のみを説明する。
[Fourth embodiment]
Subsequently, a fourth embodiment of the present invention will be described. The fourth embodiment is different from the first embodiment in the configuration of the dew condensation water discharge mechanism provided in the refrigerator 1. For other configurations, basically the same configuration as in the first embodiment can be applied. Thus, in the fourth embodiment, only differences from the first embodiment will be described.
 図12には、第4の実施形態にかかる冷蔵庫1の冷蔵室11の背面部分の下方に備えられている結露水排出機構410の構成を示す。結露水排出機構410は、冷気送出ダクト30および冷気戻りダクト45の内部に備えられている。 FIG. 12 shows a configuration of a dew condensation water discharging mechanism 410 provided below the rear part of the refrigerator compartment 11 of the refrigerator 1 according to the fourth embodiment. The dew condensation water discharge mechanism 410 is provided inside the cool air delivery duct 30 and the cool air return duct 45.
 結露水排出機構410は、主として、冷却機構60と、排水機構470とで構成されている。冷却機構60は、第1の実施形態と同様の構成を有している。なお、冷却機構につては、他の実施形態で説明した構成を適用することもできる。 The dew condensation water discharge mechanism 410 mainly includes the cooling mechanism 60 and the drainage mechanism 470. The cooling mechanism 60 has a configuration similar to that of the first embodiment. Note that the configuration described in the other embodiments can be applied to the cooling mechanism.
 本実施形態では、排水機構470は、結露水の少なくとも一部を冷気送出ダクト30へ送出するための結露水トラップ構造471を有している。排水機構470は、結露水トラップ構造471、蒸発用貯水皿472、排水路473などを有している。結露水トラップ構造471は、冷却機構60から落下する結露水を受けるための受け皿部474を有している。 In the present embodiment, the drainage mechanism 470 has a dew condensation water trap structure 471 for discharging at least a part of the dew condensation water to the cool air discharge duct 30. The drainage mechanism 470 has a dew condensation trap structure 471, an evaporating water storage tray 472, a drainage channel 473, and the like. The dew condensation water trap structure 471 has a tray 474 for receiving dew condensation water falling from the cooling mechanism 60.
 結露水トラップ構造471および排水路473は、冷気戻りダクト45内に配置されている。蒸発用貯水皿472は、冷気送出ダクト30内に配置されている。蒸発用貯水皿472は、ダクト形成部材32を貫通している流路を介して、結露水トラップ構造471と連通している。 The dew condensation trap 471 and the drain 473 are arranged in the cool air return duct 45. The evaporating water tray 472 is disposed in the cool air delivery duct 30. The evaporating water storage tray 472 communicates with the dew condensation water trap structure 471 via a flow path penetrating the duct forming member 32.
 この排水機構470では、冷却機構60で生成された結露水は、先ず結露水トラップ構造471の受け皿部474へ流入する。その後、受け皿部474に流入した結露水の一部は、結露水トラップ構造471から蒸発用貯水皿472へ流入する。結露水を、結露水トラップ構造471を通じて冷気送出ダクト30内の蒸発用貯水皿472へと導くことで、結露水トラップ構造471内に貯まった結露水により、冷気送出ダクト30から冷気戻りダクト45へ冷気がショートカットすることを抑えることができる。 In the drainage mechanism 470, the condensed water generated by the cooling mechanism 60 first flows into the tray 474 of the dew condensation trap structure 471. After that, a part of the dew water flowing into the receiving tray 474 flows from the dew water trap structure 471 to the evaporating water storage tray 472. By guiding the dew water to the evaporating water storage tray 472 in the cool air sending duct 30 through the dew water trap structure 471, the dew water stored in the dew water trap structure 471 causes the cold air sending duct 30 to return to the cool air return duct 45. Shortcuts caused by cold air can be suppressed.
 蒸発用貯水皿472に貯められた結露水は、冷気送出ダクト30内を通過する送出冷気の流れによって蒸発が促進される。これにより、冷蔵室11へ流れ込む送出冷気に適度な湿気を与えることができる。 The evaporation of the dew condensation water stored in the evaporating water storage tray 472 is promoted by the flow of the delivered cool air passing through the cool air delivery duct 30. Thereby, appropriate humidity can be given to the sending cool air flowing into the refrigerator compartment 11.
 また、排水機構470では、蒸発用貯水皿472の上端部の位置が、結露水トラップ構造471の受け皿部474の上端部よりも高くなるように構成されている。この構成により、蒸発用貯水皿472の水位が上がると、先ず、受け皿部474から結露水が溢れることになるため、蒸発用貯水皿472において結露水が溢れることを抑えることができる。したがって、冷気送出ダクト30内で結露水が流下することによって起こり得る冷気フラップ444または冷却ファンの故障を防ぐことができる。 In addition, the drainage mechanism 470 is configured such that the position of the upper end of the evaporating water storage tray 472 is higher than the upper end of the receiving tray 474 of the dew condensation water trap structure 471. With this configuration, when the water level of the evaporating water storage tray 472 rises, first, the dew condensation water overflows from the receiving tray part 474, so that the dew condensation water can be prevented from overflowing in the evaporating water storage tray 472. Therefore, it is possible to prevent a failure of the cool air flap 444 or the cooling fan, which may occur when the dew condensation water flows down in the cool air sending duct 30.
 受け皿部474から溢れた結露水は、結露水トラップ構造471の下方に配置されている排水路473へと流れる。排水路473の下流側の構成は、第1の実施形態で説明した傾斜誘導部64および鉛直誘導部65、または傾斜誘導部164および鉛直誘導部165などと同様の構成が適用できる。受け皿部474から溢れた結露水は、冷気戻りダクト45および45内を通過し、最終的に排水トレイ82から、断熱箱体50の外側の機械室(図示せず)へ排出される。 The dew water overflowing from the tray 474 flows to a drain 473 disposed below the dew condensation trap structure 471. As the configuration on the downstream side of the drainage channel 473, the same configuration as the inclined guiding portion 64 and the vertical guiding portion 65 described in the first embodiment, or the inclined guiding portion 164 and the vertical guiding portion 165 can be applied. The dew water overflowing from the tray 474 passes through the cool air return ducts 45 and 45 and is finally discharged from the drain tray 82 to a machine room (not shown) outside the heat insulating box 50.
 〔第5の実施形態〕
 続いて、本発明の第5の実施形態について説明する。第5の実施形態は、結露水排出機構に備えられた冷却機構の構成が他の実施形態とは異なっている。その他の構成については、上述の何れかの実施形態と同じ構成を適用することができる。そこで、第5の実施形態では、上述の実施形態とは異なる点のみを説明する。
[Fifth Embodiment]
Subsequently, a fifth embodiment of the present invention will be described. The fifth embodiment is different from the other embodiments in the configuration of the cooling mechanism provided in the dew condensation water discharging mechanism. For other configurations, the same configurations as in any of the above embodiments can be applied. Therefore, in the fifth embodiment, only points different from the above-described embodiment will be described.
 図13には、結露水排出機構に備えられた冷却機構560の構成を示す。冷却機構560は、薄肉部(伝熱部)561を有している。薄肉部561は、冷気送出ダクト30と冷気戻りダクト45との間に配置されたダクト形成部材32の一部で形成されている。例えば、薄肉部561は、ダクト形成部材32を形成している断熱材の一部を切り欠くことによって形成されている。 FIG. 13 shows the configuration of the cooling mechanism 560 provided in the dew condensation water discharging mechanism. The cooling mechanism 560 has a thin portion (heat transfer portion) 561. The thin portion 561 is formed by a part of the duct forming member 32 disposed between the cool air delivery duct 30 and the cool air return duct 45. For example, the thin portion 561 is formed by cutting out a part of the heat insulating material forming the duct forming member 32.
 薄肉部561では、冷気送出ダクト30と冷気戻りダクト45との間の断熱性が緩和されているため、冷気送出ダクト30の冷熱が冷気戻りダクト45へ伝達される。薄肉部561は、冷気戻りダクト45内を通過する冷蔵室11からの戻り冷気を冷却し、戻り冷気中に含まれる水蒸気を結露させることができる。これにより、冷気送出ダクト30と冷気戻りダクト45との間の熱結合を薄肉部561の厚みで調整しながら、戻り冷気を除湿することができる。薄肉部561の冷気戻りダクト45側に、第1の実施形態の伝熱板61や戻りダクト側フィン62bを設けてもよい。 In the thin portion 561, the heat insulation between the cool air delivery duct 30 and the cool air return duct 45 is relaxed, so that the cold heat of the cool air delivery duct 30 is transmitted to the cool air return duct 45. The thin portion 561 can cool the return cold air from the refrigerating room 11 passing through the inside of the cool air return duct 45 and condense water vapor contained in the return cold air. Thereby, the return cool air can be dehumidified while adjusting the thermal coupling between the cool air delivery duct 30 and the cool air return duct 45 by the thickness of the thin portion 561. On the cold air return duct 45 side of the thin portion 561, the heat transfer plate 61 and the return duct side fins 62b of the first embodiment may be provided.
 〔第6の実施形態〕
 続いて、本発明の第6の実施形態について説明する。第6の実施形態は、結露水排出機構に備えられた冷却機構の構成が他の実施形態とは異なっている。その他の構成については、上述の何れかの実施形態と同じ構成を適用することができる。そこで、第6の実施形態では、上述の実施形態とは異なる点のみを説明する。
[Sixth embodiment]
Subsequently, a sixth embodiment of the present invention will be described. The sixth embodiment is different from the other embodiments in the configuration of the cooling mechanism provided in the dew condensation water discharging mechanism. For other configurations, the same configurations as in any of the above embodiments can be applied. Thus, in the sixth embodiment, only points different from the above-described embodiment will be described.
 図14には、結露水排出機構に備えられた冷却機構660の構成を示す。冷却機構660は、伝熱板(伝熱部)661、送出ダクト側フィン662a、および戻りダクト側フィン662bなどを有している。 FIG. 14 shows the configuration of the cooling mechanism 660 provided in the dew condensation water discharging mechanism. The cooling mechanism 660 includes a heat transfer plate (heat transfer portion) 661, a delivery duct side fin 662a, a return duct side fin 662b, and the like.
 伝熱板661は、熱伝導率の高い金属板で形成されている。伝熱板661は、冷気送出ダクト30と冷気戻りダクト45との間を仕切る仕切り板として配置されている。これにより、伝熱板661を介して、冷気送出ダクト30側の冷熱が冷気戻りダクト45側へ伝達される。 熱 The heat transfer plate 661 is formed of a metal plate having a high thermal conductivity. The heat transfer plate 661 is arranged as a partition plate that partitions between the cool air delivery duct 30 and the cool air return duct 45. As a result, the cold heat from the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 661.
 伝熱板661上には、複数枚の板状の部材が互いに略平行に並べて配置されている。これらの板状の部材が、送出ダクト側フィン662aおよび戻りダクト側フィン662bである。これらのフィンは、伝熱板661と同様に、熱伝導率の高い金属板で形成されている。送出ダクト側フィン662aは、冷気送出ダクト30側に位置する伝熱板661上に形成されている。戻りダクト側フィン662bは、冷気戻りダクト45側に位置する伝熱板661上に形成されている。これらのフィンが形成されていることで、熱の伝達効率を向上させることができる。これにより、冷却機構660を小型ユニットとすることができる。 複数 On the heat transfer plate 661, a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 662a and a return duct side fin 662b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 661. The delivery duct side fin 662a is formed on a heat transfer plate 661 located on the side of the cool air delivery duct 30. The return duct side fin 662b is formed on a heat transfer plate 661 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved. Thus, the cooling mechanism 660 can be a small unit.
 〔第7の実施形態〕
 続いて、本発明の第7の実施形態について説明する。第7の実施形態は、結露水排出機構に備えられた冷却機構の構成が他の実施形態とは異なっている。その他の構成については、上述の何れかの実施形態と同じ構成を適用することができる。そこで、第7の実施形態では、上述の実施形態とは異なる点のみを説明する。
[Seventh embodiment]
Subsequently, a seventh embodiment of the present invention will be described. The seventh embodiment is different from the other embodiments in the configuration of the cooling mechanism provided in the dew condensation water discharging mechanism. For other configurations, the same configurations as in any of the above embodiments can be applied. Therefore, in the seventh embodiment, only points different from the above-described embodiment will be described.
 図15には、結露水排出機構に備えられた冷却機構760の構成を示す。冷却機構760は、伝熱板(伝熱部)761、送出ダクト側フィン762a、および戻りダクト側フィン762bなどを有している。 FIG. 15 shows the configuration of the cooling mechanism 760 provided in the dew condensation water discharging mechanism. The cooling mechanism 760 includes a heat transfer plate (heat transfer portion) 761, a delivery duct side fin 762a, a return duct side fin 762b, and the like.
 伝熱板761は、熱伝導率の高い金属板で形成されている。伝熱板761は、冷気送出ダクト30と冷気戻りダクト45との間にまたがって配置されている。これにより、伝熱板761を介して、冷気送出ダクト30側の冷熱が冷気戻りダクト45側へ伝達される。ダクト形成部材32への伝熱板761の取り付けは、第1の実施形態で図4を参照しながら説明した方法と同様の方法を用いて行うことができる。 熱 The heat transfer plate 761 is formed of a metal plate having high thermal conductivity. The heat transfer plate 761 is disposed between the cool air delivery duct 30 and the cool air return duct 45. Thereby, the cold heat of the cool air delivery duct 30 is transmitted to the cool air return duct 45 via the heat transfer plate 761. Attachment of the heat transfer plate 761 to the duct forming member 32 can be performed using a method similar to the method described with reference to FIG. 4 in the first embodiment.
 伝熱板761上には、複数枚の板状の部材が互いに略平行に並べて配置されている。これらの板状の部材が、送出ダクト側フィン762aおよび戻りダクト側フィン762bである。これらのフィンは、伝熱板761と同様に、熱伝導率の高い金属板で形成されている。送出ダクト側フィン762aは、冷気送出ダクト30側に位置する伝熱板761上に形成されている。戻りダクト側フィン762bは、冷気戻りダクト45側に位置する伝熱板761上に形成されている。これらのフィンが形成されていることで、熱の伝達効率を向上させることができる。本実施の形態により、冷却機構760を小型ユニットとすることができ、かつ、冷気送出ダクト30と冷気戻りダクト45との間の熱結合を最小限に抑えることができる。 複数 On the heat transfer plate 761, a plurality of plate-like members are arranged substantially in parallel with each other. These plate-shaped members are a delivery duct side fin 762a and a return duct side fin 762b. These fins are formed of a metal plate having a high thermal conductivity, like the heat transfer plate 761. The delivery duct side fins 762a are formed on a heat transfer plate 761 located on the side of the cool air delivery duct 30. The return duct side fin 762b is formed on a heat transfer plate 761 located on the side of the cool air return duct 45. By forming these fins, heat transfer efficiency can be improved. According to the present embodiment, the cooling mechanism 760 can be a small unit, and the thermal coupling between the cool air delivery duct 30 and the cool air return duct 45 can be minimized.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、本明細書で説明した異なる実施形態の構成を互いに組み合わせて得られる構成についても、本発明の範疇に含まれる。 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Further, configurations obtained by combining the configurations of different embodiments described in this specification with each other are also included in the scope of the present invention.
1   :冷蔵庫
10  :結露水排出機構
11  :冷蔵室(貯蔵室)
30  :冷気送出ダクト(冷気送出通路)
40  :冷却室
41  :蒸発器(冷却器)
45  :冷気戻りダクト(冷気戻り通路)
46  :冷気戻りダクト(冷気戻り通路)
50  :断熱箱体
60  :冷却機構
61  :伝熱板(伝熱部)
63  :受け皿部(排水機構)
64  :傾斜誘導部(排水機構)
65  :鉛直誘導部(排水機構)
70  :排水機構
110 :結露水排出機構
210 :結露水排出機構
260 :冷却機構
264a:室内第1流路
265a:室内第2流路
270 :排水機構
310 :結露水排出機構
410 :結露水排出機構
471 :結露水トラップ構造
560 :冷却機構
660 :冷却機構
760 :冷却機構
 
1: Refrigerator 10: Condensed water discharge mechanism 11: Refrigerator room (storage room)
30: Cold air delivery duct (cold air delivery passage)
40: Cooling chamber 41: Evaporator (cooler)
45: Cold air return duct (cold air return passage)
46: Cold air return duct (cold air return passage)
50: Insulated box 60: Cooling mechanism 61: Heat transfer plate (heat transfer section)
63: Receiving part (drainage mechanism)
64: Incline guide (drainage mechanism)
65: Vertical guide (drainage mechanism)
70: drainage mechanism 110: dew condensation water discharge mechanism 210: dew condensation water discharge mechanism 260: cooling mechanism 264a: indoor first flow path 265a: indoor second flow path 270: drainage mechanism 310: dew condensation water discharge mechanism 410: dew condensation water discharge mechanism 471: condensation water trap structure 560: cooling mechanism 660: cooling mechanism 760: cooling mechanism

Claims (7)

  1.  貯蔵室と、
     冷却器が設けられている冷却室と、
     前記冷却器で冷却された気体を前記貯蔵室へ送出する冷気送出通路と、
     前記貯蔵室内を通過した気体を前記冷却室へ戻す冷気戻り通路と、
     前記貯蔵室から前記冷気戻り通路内へ戻された気体中に含まれる水蒸気を結露させるための冷却機構と、
     前記冷却機構で生成された結露水を前記冷気戻り通路外へ排出する排水機構と
    を備えている冷蔵庫。
    A storage room,
    A cooling chamber provided with a cooler,
    A cool air delivery passage for delivering the gas cooled by the cooler to the storage chamber,
    A cold air return passage that returns the gas that has passed through the storage chamber to the cooling chamber,
    A cooling mechanism for dew condensation of water vapor contained in the gas returned from the storage chamber into the cold air return passage,
    A refrigerator configured to discharge the dew water generated by the cooling mechanism to the outside of the cool air return passage.
  2.  前記冷却機構は、前記冷気送出通路内の冷熱を前記冷気戻り通路へ伝達させる伝熱部を備えている、請求項1に記載の冷蔵庫。 2. The refrigerator according to claim 1, wherein the cooling mechanism includes a heat transfer unit that transmits cold heat in the cool air delivery passage to the cool air return passage. 3.
  3.  前記伝熱部は、金属で形成されている、請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, wherein the heat transfer section is formed of metal.
  4.  前記排水機構は、前記貯蔵室内に前記結露水の流路を有している、請求項1から3の何れか1項に記載の冷蔵庫。 冷 蔵 庫 The refrigerator according to any one of claims 1 to 3, wherein the drainage mechanism has the flow path of the dew condensation water in the storage room.
  5.  前記排水機構は、前記結露水の少なくとも一部を前記冷気送出通路へ送出する、請求項1から4の何れか1項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 4, wherein the drainage mechanism sends out at least a part of the dew water to the cool air delivery passage.
  6.  前記排水機構は、前記冷気送出通路への前記結露水の送出による前記冷気送出通路から前記冷気戻り通路への冷気の流出を抑制する結露水トラップ構造を有している、請求項5に記載の冷蔵庫。 The drainage mechanism according to claim 5, wherein the drainage mechanism has a dew condensation water trap structure that suppresses outflow of cool air from the cold air discharge passage to the cool air return passage due to the transmission of the dew water to the cool air discharge passage. refrigerator.
  7.  前記排水機構は、前記冷気戻り通路内の前記冷却室から遠い側に配置されている、請求項1から6の何れか1項に記載の冷蔵庫。
     
    The refrigerator according to any one of claims 1 to 6, wherein the drainage mechanism is disposed in the cold air return passage on a side far from the cooling chamber.
PCT/JP2019/025298 2018-07-03 2019-06-26 Refrigerator WO2020008970A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020528817A JPWO2020008970A1 (en) 2018-07-03 2019-06-26 refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126491 2018-07-03
JP2018126491 2018-07-03

Publications (1)

Publication Number Publication Date
WO2020008970A1 true WO2020008970A1 (en) 2020-01-09

Family

ID=69059613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025298 WO2020008970A1 (en) 2018-07-03 2019-06-26 Refrigerator

Country Status (2)

Country Link
JP (1) JPWO2020008970A1 (en)
WO (1) WO2020008970A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836463U (en) * 1971-09-03 1973-05-01
JPS6024914B2 (en) * 1980-01-30 1985-06-15 松下冷機株式会社 refrigerator
JPH06249562A (en) * 1993-02-26 1994-09-06 Toshiba Corp Refrigerator-freezer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883172A (en) * 1981-11-10 1983-05-18 シャープ株式会社 Defrosting system of refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836463U (en) * 1971-09-03 1973-05-01
JPS6024914B2 (en) * 1980-01-30 1985-06-15 松下冷機株式会社 refrigerator
JPH06249562A (en) * 1993-02-26 1994-09-06 Toshiba Corp Refrigerator-freezer

Also Published As

Publication number Publication date
JPWO2020008970A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
KR101907166B1 (en) Refrigerator
KR101560147B1 (en) Refrigerator
US5784896A (en) Freezer or refrigerator construction suitable for food service use
CN112781301B (en) Refrigerator with a door
WO2021047549A1 (en) Refrigerator
CN108286854B (en) Refrigerator with a door
JP3850145B2 (en) Refrigerator evaporating dish structure
WO2013088462A1 (en) Refrigerator
JP2004101028A (en) Refrigerator
WO2020008970A1 (en) Refrigerator
JP6678542B2 (en) refrigerator
US3212285A (en) Refrigerating apparatus-single evaporator
TWI722397B (en) refrigerator
JP2006078053A (en) Refrigerator
JP6940424B2 (en) refrigerator
US20030145611A1 (en) Refrigerator
JP2005016903A (en) Refrigerator
JP2001280794A (en) Refrigerator
TWI717950B (en) refrigerator
CN114719534A (en) Refrigerating and freezing device
JP4203662B2 (en) refrigerator
WO2024111073A1 (en) Refrigerator
WO2023223429A1 (en) Freezer/refrigerator
TWI658245B (en) Refrigerator
CN114719528A (en) Refrigerating and freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831251

Country of ref document: EP

Kind code of ref document: A1