WO2020008806A1 - Sensor system - Google Patents

Sensor system Download PDF

Info

Publication number
WO2020008806A1
WO2020008806A1 PCT/JP2019/022770 JP2019022770W WO2020008806A1 WO 2020008806 A1 WO2020008806 A1 WO 2020008806A1 JP 2019022770 W JP2019022770 W JP 2019022770W WO 2020008806 A1 WO2020008806 A1 WO 2020008806A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
reactor
flow path
reaction
sensor system
Prior art date
Application number
PCT/JP2019/022770
Other languages
French (fr)
Japanese (ja)
Inventor
河内 秀夫
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2020528746A priority Critical patent/JPWO2020008806A1/en
Publication of WO2020008806A1 publication Critical patent/WO2020008806A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties

Definitions

  • the present invention relates to a sensor system used for managing the internal state of a reactor.
  • the flow reaction system can increase the speed and efficiency of the reaction as compared with the case where a large reactor is used in a conventional chemical plant, and is a highly dangerous reaction that was difficult to perform in the past.
  • the reaction can be performed more safely by limiting the reaction field to a narrow place and handling the dangerous substance little by little. Therefore, the flow reaction system is expected as a technology applicable to various fields such as the chemical field and the medical field.
  • Patent Literature 1 discloses that in a tubular reaction system, a pressure sensor that detects a pressure loss is provided at an inlet and an outlet of the reactor, and the flow rate of a pump is controlled according to the pressure loss.
  • Patent Document 2 the flow path, mass acquisition means for acquiring mass information representing the mass of the sample in the solution, near the mass acquisition means, flow velocity acquisition means for acquiring flow velocity information representing the flow velocity of the solution, are disclosed.
  • Patent Document 3 discloses a mounting structure of a temperature sensor to a flow path forming body, in which a part of a wall forming a flow path has a concave portion substantially parallel to a direction in which a fluid flows, and the concave portion has a temperature sensor.
  • Patent Document 4 discloses a sensor unit for a microreactor device, in which a plurality of sensor installation holes communicating with the flow path are provided in a circumferential direction of a flow path wall at a fluid measurement position in the flow path.
  • Patent Literature 5 discloses a flow path forming body with a temperature sensor including a seal fitting, a temperature sensor joined to the seal fitting, and a heat insulating member that covers the seal fitting and the temperature sensor.
  • the length of the flow path corresponds to the reaction time. Therefore, in normal times, state quantities such as temperature and pressure show steady values at a certain point (in other words, at a certain reaction time).
  • state quantities such as temperature and pressure show steady values at a certain point (in other words, at a certain reaction time).
  • a change in a state quantity represented by, for example, a temperature change due to heat generation or heat absorption during the reaction should occur according to the reaction that is occurring.
  • the position of the sensor is fixed, so that a steady value at a certain point (in other words, a certain reaction time) can be measured in normal times.
  • an unsteady change in the state quantity occurring in the length direction of the flow reaction system cannot be captured. Therefore, it cannot be assured whether the maximum value or the minimum value of the state quantity, which is considered to have a great influence on the quality of the product, can be reliably measured.
  • an object of the present invention is to provide a sensor system capable of capturing a state quantity that changes non-stationarily in a reactor.
  • the present inventor has conducted intensive studies to solve the above problems, and as a result, a reactor having a longitudinal direction and a transversal direction, and a sensor that is disposed movably in the longitudinal direction inside the reactor. It has been found that a sensor system having a sensor position specifying unit for specifying the position of the sensor solves the above problem, and completed the present invention. In addition, the present inventor has disclosed a reactor having a flow path through which a fluid flows, a sensor disposed inside the flow path so as to be movable along a flow direction of the fluid, and a sensor for specifying a position of the sensor. It has been found that the above problem is also solved by a sensor system having a position specifying unit.
  • the sensor system according to the present invention has the following points. [1] a reactor having a longitudinal direction and a transversal direction; A sensor movably arranged in the longitudinal direction inside the reactor, A sensor position specifying unit for specifying the position of the sensor, A sensor system comprising: [2] a reactor having a flow path through which a fluid flows; A sensor arranged movably along the flow direction of the fluid inside the flow path, A sensor position specifying unit for specifying the position of the sensor, A sensor system comprising: [3] The sensor system according to [1] or [2], wherein the reactor is a tubular reactor.
  • a sensor system capable of capturing a state quantity which changes non-stationarily in a reactor.
  • FIG. 1 is a schematic diagram of a sensor system according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of the reactor according to the present invention.
  • FIG. 3A is a schematic diagram illustrating an example of a sensor disposed inside the reactor.
  • FIG. 3B is a schematic diagram illustrating another example of a sensor disposed inside the reactor.
  • FIG. 3C is a schematic diagram showing another example of the sensor arranged inside the reactor.
  • FIG. 4 is a schematic view showing another example of the reactor according to the present invention.
  • FIG. 1 is a schematic diagram of a sensor system 10 according to the present invention.
  • the sensor system 10 according to one embodiment of the present invention includes a reactor 1 having a longitudinal direction and a lateral direction, a sensor 2a disposed inside the reactor 1 so as to be movable in the longitudinal direction, and the sensor And a sensor position specifying unit 3 for specifying the position of 2a.
  • a sensor position specifying unit 3 for specifying the position of 2a.
  • a sensor system 10 includes a reactor 1 having a flow path 7 through which a fluid flows, and a sensor system 10 that is movably arranged inside the flow path 7 along the flow direction of the fluid. It is characterized in that it has a sensor 2a and a sensor position specifying unit 3 for specifying the position of the sensor.
  • the reactor 1 in the present invention is a reactor having a longitudinal direction and a lateral direction.
  • the reactor 1 preferably has a channel 7 therein.
  • a fluid reactant
  • the longitudinal direction of the reactor 1 and the flow direction of the fluid may be the same or different from each other.
  • at least a part of the flow path 7 is formed in a straight line, but at least a part of the flow path 7 may be curved or bent. Further, a part of the flow path 7 may be folded back. Further, the flow path 7 may be branched.
  • the cross section of the flow path 7 can be, for example, circular, elliptical, polygonal, or a combination thereof.
  • Reactor 1 is preferably a tubular reactor.
  • the tubular reactor is, specifically, a slender tubular reactor with a hollow inside, a reaction device that supplies a reaction raw material from one end and discharges a reaction product from the other end.
  • the cross section of the flow channel of the tubular reactor is desirably circular.
  • Examples of the shape of the tubular reactor include a curved shape such as a straight shape, a spiral shape (coil shape), and the like, or a shape obtained by combining these.
  • the sensor 2a is installed inside the reactor 1 or inside the flow path 7 so as to be movable in the longitudinal direction of the reactor 1 or the flow direction of the fluid.
  • the reactor 1 (for example, a tubular reactor) preferably has a linear shape at least in part so that the sensor 2a can be easily installed.
  • the structure of the reactor 1 other than the linear shape is not particularly limited.
  • the reactor 1 may have one or more folded structures 6e.
  • FIG. 2 shows a state in which the folded structure 6e is bent in a crank shape, but the shape of the folded structure 6e is not particularly limited, and the folded structure 6e may be curved.
  • the length of the flow path 7 and the length of the tubular reactor are preferably 1 cm or more, more preferably 10 cm or more, and the upper limit is not particularly limited, but is preferably 500 m or less, more preferably 300 m or less.
  • the equivalent diameter of the flow path of the reactor 1 (preferably a tubular reactor) is preferably 0.1 mm or more, more preferably 1.0 mm or more, and still more preferably 1.5 mm, in view of pressure loss and throughput.
  • the above is preferably 50 mm or less, more preferably 20 mm or less, and still more preferably 15 mm or less.
  • the equivalent diameter of the flow path 7 of the reactor 1 may be uniform in the extending direction of the flow path 7 or may be changed in the middle of the extending direction.
  • the equivalent diameter of a part in the extending direction of the flow path 7 may be smaller than the equivalent diameter of the other part in the extending direction.
  • the flow path 7 may have a portion whose equivalent diameter decreases toward the upstream side or the downstream side.
  • the equivalent diameter of the flow path of the tubular reactor may be uniform throughout the tubular reactor, or may be changed in the middle of the tubular reactor.
  • the equivalent diameter of the flow path of the tubular reactor may be changed in the middle of the tubular reactor.
  • the portion where the equivalent diameter of the flow path is changed may be arbitrary, and the number of times the equivalent diameter of the flow path is changed is not limited, and may be changed one or more times as needed. Further, the equivalent diameter of the flow path may change gradually, or may change largely at a certain point.
  • the equivalent diameter of the flow path may be smaller or larger than the equivalent diameter of the upstream flow path, and may be appropriately designed according to the reaction.
  • the design of the flow path is not limited to the following examples.For example, since the mixing performance is improved as the equivalent diameter of the flow path of the tubular reactor becomes smaller, the flow path of the tubular reactor immediately after the start of the reaction is increased. It is also possible to reduce the equivalent diameter of the tube reactor and to increase the equivalent diameter of the channel of the tubular reactor after sufficient mixing.
  • the inner wall of the reactor 1 (preferably a tubular reactor), in particular, the inner wall forming the flow path 7 may be made of, for example, an inorganic substance such as metal, silicon, glass, and ceramics, or an organic substance such as resin. preferable.
  • a chemical reaction operation for example, a chemical reaction operation, an extraction operation, a separation operation, a purification operation, and the like, which are examples of a chemical reaction operation of a fluid, can be performed.
  • various chemical reactions can be performed, and there is no particular limitation, but a liquid-liquid reaction or a gas-liquid reaction can be preferably performed.
  • Reaction solvents usable in the reactor 1 include, for example, aliphatic hydrocarbon solvents such as n-hexane, cyclohexane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; diethyl ether, diisopropyl Ether solvents such as ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, methyl-tert-butyl ether, 1,4-dioxane, cyclopentyl methyl ether; methylene chloride, chloroform, 1,1,1, -trichloroethane, Halogen solvents such as chlorobenzene; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone;
  • the temperature in the reactor 1 is not particularly limited as long as it is equal to or lower than the boiling point of the reaction solvent and equal to or higher than the freezing point, and is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 60 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or less.
  • ⁇ 80 ° C. or higher more preferably ⁇ 60 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or less.
  • an endothermic reaction or an exothermic reaction can be performed.
  • the flow rate of the reaction solution in the reactor 1 is generally preferably 2 m / s or less, more preferably 1 m / s or less, further preferably 0.8 m / s or less as a linear velocity.
  • the reaction time (average residence time) is generally preferably 120 minutes or less, more preferably 60 minutes or less, and still more preferably 30 minutes or less.
  • the reactor 1 of the present invention has a raw material supply unit and a discharge unit as appropriate.
  • a raw material supply unit (for example, 6a, 6b) is provided on the upstream side of the reactor 1.
  • the raw material supply unit corresponds to a part that sends raw materials used in the reactor 1.
  • the reactor 1 may have two or more (for example, three) raw material supply units 6a and 6b depending on the reaction system.
  • a raw material supplied from one or both raw material supply units is a product obtained by mixing another raw material in advance with a premixer and, if necessary, thereafter reacting the raw materials. It may be.
  • the reaction solution discharged from the reactor 1 may be used as a raw material in the next reaction.
  • Reaction raw materials (including pre-reactants) are supplied into the reactor 1 through these raw material supply units 6a and 6b.
  • the reactants are usually supplied in the form of a gas or a liquid (including a solution).
  • the reactor 1 in the present invention preferably has a mixing unit 6c for mixing the raw materials from the raw material supply unit.
  • the mixing section 6c is provided at an end of the two or more raw material supply sections, and the mixed liquid obtained in the mixing section 6c is supplied into the reactor 1 as a reaction liquid. .
  • the mixing unit 6c may be provided with a known movable or stationary mixer alone or in combination in order to sufficiently stir the raw materials.
  • the mixer include a T-shaped mixer, a Y-shaped mixer, a static mixer, and a helical mixer.
  • the reaction raw material is desirably supplied by a liquid sending control unit such as a diaphragm pump.
  • the liquid feed control unit is not limited to a pump, and for example, a liquid supply control unit in which a charged container of a reaction raw material is pressurized can be used.
  • the raw material supply section is preferably a tube (tube shape), and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less.
  • the discharge part 6 d corresponds to a part for discharging the reaction product in the reactor 1. By the discharge part 6d, not only the reaction products generated in the reactor 1 but also unreacted raw materials are circulated.
  • the discharge portion 6d is preferably a tube, and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less. It is desirable that the reaction liquid recovered from the discharge unit 6d is thereafter appropriately processed. The reaction liquid recovered from the discharge part 6d can continue the reaction in the subsequent reactor.
  • the raw material supply sections 6a and 6b, the mixing section 6c and the discharge section 6d are made of a metal such as stainless steel, Hastelloy, titanium, copper, nickel, or aluminum; an inorganic material such as glass or ceramic; a PEEK resin, a silicone resin, a fluororesin, or the like.
  • the inorganic material and the resin may be provided with conductivity. Since the shape of the mixing portion 6c sometimes becomes complicated, when precise processing is required, it is preferable to use a metal or resin having good workability.
  • the sensor 2a according to the present invention is a sensor that is disposed inside the reactor so as to be movable in the longitudinal direction.
  • the sensor 2a according to another embodiment of the present invention is a sensor that is movably disposed inside the flow path along the flow direction of the fluid.
  • the sensor 2a is fixed to a support 2b.
  • the support 2b is a member for supporting the sensor 2a in the reactor 1 (preferably in the flow path 7).
  • the support can be composed of one or more members.
  • the shape of the support 2b is not particularly limited, it is preferable that the support 2b has a rod-like portion at least partially inserted into the reactor 1 or the flow path 7.
  • the sensor 2a is fixed to the tip of the rod-shaped portion.
  • the rod-shaped portion of the support 2b preferably moves along the longitudinal direction of the reactor 1 or the flow direction of the fluid. Further, the rod-shaped portion of the support 2b may be extendable. In that case, it is preferable that the rod-shaped portion of the support 2b can expand and contract in the longitudinal direction of the reactor 1 or the flow direction of the fluid.
  • the sensor 2a can be moved by configuring the rod-shaped portion of the support 2b so as to be movable or extendable.
  • the first wall penetrating the wall of the reactor 1 from the inside of the reactor 1 (preferably the flow path 7) to the outside. May be provided.
  • the support 2b is inserted into the reactor 1 or the flow path 7 through the first through hole 8a.
  • the sensor 2a can be arranged inside the reactor 1 or the flow path 7.
  • the first through-hole 8a may be provided in the middle of the flow path 7 as shown in FIGS. 2 and 3 (c), and may be provided in a pipe forming the flow path 7 as shown in FIG. 3 (a). It may be provided on one end surface (preferably the downstream end surface) in the extending direction.
  • the mixing portion 6c may be provided with a second through hole 8b penetrating from the inside of the flow path 7 to the outside.
  • a part (more preferably, a rod-shaped portion) of the support 2b is inserted into the reactor 1 or the flow path 7 through the second through-hole 8b.
  • the rod-shaped portion of the support 2b may be arranged so as to extend along the flow direction of the fluid as shown in FIGS. 2 to 3 (b), and as shown in FIG. 3 (c). They may be arranged to extend along a direction perpendicular to the flow direction.
  • the first through-hole 8a extends along the flow direction of the fluid. Is preferred. This makes it possible to move the sensor 2a along the flow direction of the fluid.
  • the sensor 2a is a device that detects a state quantity and makes the detected state quantity directly or indirectly readable by replacing it with a signal.
  • the sensor 2a includes, for example, a temperature, a pressure, a flow rate, a flow rate, a pH, a dissolved oxygen concentration, a viscosity, a turbidity, a color difference, an infrared ray, a near infrared ray, and an ultraviolet ray inside the reactor 1 (more preferably, a reaction solution inside the reactor 1).
  • the temperature can be detected.
  • a thermocouple or a temperature measuring resistor is used as the sensor 2a capable of detecting the temperature. If the temperature, pressure, flow rate, flow rate, pH, dissolved oxygen concentration, viscosity, and the like in the reactor 1 can be measured by the sensor 2a, the reaction state in the reactor 1 can be more finely monitored. In addition, if the absorption spectrum when irradiating infrared rays can be measured by the sensor 2a, the reaction yield at the measurement point can be known.
  • the shape of the sensor 2a according to the present invention may be set as long as the sensor 2a is arranged in the reactor 1 so as to be movable in the longitudinal direction, or is arranged in the flow path 7 so as to be movable in the fluid flow direction. There is no particular limitation as long as it is performed.
  • the sensor 2a is preferably movable in the longitudinal direction inside the reactor 1 so as not to touch the inner wall of the reactor 1. That is, the outer diameter of the sensor 2a is preferably smaller than the equivalent diameter of the flow path 7.
  • One or more sensors 2a can be provided.
  • the plurality of sensors 2a are arranged apart from each other in the extending direction of the bar of the support.
  • a mode may be adopted in which one sensor is arranged at the tip of the rod-shaped portion, and the other sensor is arranged on the downstream side of the flow path from the one sensor. Accordingly, the state quantity can be detected at a plurality of positions in the flow path 7, and the reaction state in the reactor 1 can be monitored more finely.
  • the sensor 2a according to the present invention has an aspect A in which the sensor 2a is located upstream of the support 2b; and as shown in FIG. Any one of the embodiments B; which is located downstream of the body 2b, may be used.
  • the embodiment A is particularly difficult to disturb the flow in the reactor 1. Therefore, it is preferable.
  • the channel 7 of the reactor 1 may be branched.
  • the branch position in the extending direction of the flow path 7 is not particularly limited, and the branch may be on the upstream side of the flow path 7 or on the downstream side.
  • the flow path 7 has a merging path 7a, a first branch path 7b and a second branch path 7c connected downstream of the merging path 7a,
  • the branch path 7b is connected to the discharge part 6d, and a first through-hole 8a is formed in a wall constituting the second branch path 7c, and at least a part of the support 2b extends from the first through-hole 8a.
  • (More preferably a rod-shaped portion) is preferably inserted into the merged channel 7a.
  • the first through-hole 8a may be formed at the end of the second branch 7c, or may be formed in the middle of the second branch 7c.
  • the extension length of the second branch path 7c is shorter than the extension length of the first branch path 7b.
  • the extending direction of the first branch 7b is perpendicular to the extending direction of the merging channel 7a, and the extending direction of the second branch 7c is The extending direction is preferably parallel to the extending direction of the merging channel 7a.
  • the sensor 2a is placed in the reactor 1 such that the sensor 2a and the support 2b are parallel to the longitudinal direction of the reactor 1.
  • the sensor 2a and the support 2b may be arranged in the reactor 1 so that the sensor 2a and the support 2b are parallel to the short direction of the reactor 1 as shown in FIG. Is also good.
  • a protective tube for protecting the sensor 2a may be provided.
  • the protective tube is preferably capable of accommodating at least a part of the sensor and the rod-shaped portion of the support in the lumen.
  • the protective tube is not particularly limited, for example, the protective tube may have any shape as long as it can protect the sensor 2a disposed inside the reactor 1, and may have, for example, a cylindrical shape, an elliptic cylindrical shape, or a rectangular cylindrical shape. Can be formed.
  • the sensor 2 a may be movable in at least a part of the longitudinal direction of the reactor 1, but may be movable over the entire longitudinal direction of the reactor 1. Preferably, there is.
  • the sensor 2a is made movable in the first half position corresponding to 50% (preferably 40%, more preferably 30%) from the entrance of the entire length of the reactor 1 in the longitudinal direction, immediately after the start of the reaction Since the internal state of the reactor 1 can be measured in detail, it is possible to more accurately measure the state quantities (for example, temperature, pressure, viscosity, etc.) that are expected to change greatly immediately after the start of the reaction.
  • state quantities for example, temperature, pressure, viscosity, etc.
  • the sensor 2a is made movable at the latter half position corresponding to 50% (preferably 40%, more preferably 30%) from the outlet in the longitudinal length of the reactor 1, the reaction is completed. Since the internal state of the reactor 1 can be measured in detail, it is possible to more accurately measure the state quantities (eg, pH, dissolved oxygen concentration, absorption spectrum, and the like) that are advantageous if the measurement is performed immediately before the end of the reaction. it can.
  • state quantities eg, pH, dissolved oxygen concentration, absorption spectrum, and the like
  • the sensor 2a only needs to be movable in at least a part of the range of the flow path 7.
  • the sensor be movable on the upstream side of the flow path 7 when the flow path length from the inlet to the outlet of the flow path 7 is equally divided into an upstream side and a downstream side.
  • the senor is preferably movable on the downstream side of the flow path 7. This makes it possible to measure in detail the internal state of the flow path 7 immediately before the end of the reaction. It can be done more accurately. In order to accurately measure the state in the flow path 7, it is preferable that the sensor 2 a be movable over the entire flow path 7.
  • the sensor 2a is preferably arranged downstream of the fluid in the reactor 1. Since the sensor 2a is unlikely to disturb the flow in the reactor 1, the state quantity can be measured more accurately.
  • the sensor 2a may move at a constant speed, or may move at the same speed as the fluid flow rate in the reactor 1 or at a speed faster than this flow rate.
  • the sensor position specifying unit 3 in the present invention is a part that specifies the position of the sensor.
  • the sensor position specifying unit 3 can preferably measure a moving distance in the longitudinal direction of the sensor 2a in the reactor 1 or a moving distance in the flow direction of the fluid.
  • Examples of the sensor position specifying unit 3 include a contact type or laser type displacement meter; a scale installed in parallel with the moving direction of the sensor 2a; a scale attached to a rod-shaped portion of the support 2b; When the displacement meter is used, the position of the sensor 2a may be read from the numerical value displayed on the displacement meter. When a scale or a scale is used, the position of the sensor 2a may be read visually or by image processing.
  • the sensor system 10 may include the sensor driving device 4 as necessary.
  • the sensor driving device 4 is a device capable of moving the sensor 2a in the longitudinal direction of the reactor 1 or the flow direction of the fluid. If a program is incorporated in the sensor driving device 4, it is possible to control the movement of the sensor 2a, such as moving the sensor 2a at a constant speed or stopping the sensor 2a at a predetermined location.
  • the sensor driving device 4 is not necessarily required. When the sensor driving device 4 is not provided in the sensor system 10, the sensor 2a may be moved manually.
  • the sensor system 10 may include the data logger 5 as needed.
  • the data logger 5 is a device that records information on the internal state of the reactor 1 measured by the sensor 2a and position information of the sensor 2a specified by the sensor position specifying unit 3. It is preferable to use one or a combination of two or more of the data loggers 5 for one sensor system 10.
  • the timing of collecting information in the data logger 5 is not particularly limited, and may be any of, for example, collecting information continuously; collecting information at regular time intervals or intermittently at a specific time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A sensor system 10 according to the present invention is characterized by comprising: a reactor 1 which has a long direction and a short direction; a sensor 2a which is disposed within the reactor 1 so as to be able to move in the long direction; and a sensor position determination unit 3 which determines the position of the sensor 2a. Another sensor system 10 according to the present invention is characterized by comprising: a reactor 1 which has a flow passage through which fluid flows; a sensor 2a which is disposed within the flow passage so as to be able to move along the flow direction of the fluid; and a sensor position determination unit 3 which determines the position of the sensor 2a.

Description

センサシステムSensor system
 本発明は、反応器の内部状態の管理等に利用されるセンサシステムに関する。 (4) The present invention relates to a sensor system used for managing the internal state of a reactor.
 近年、物質の化学反応に利用される連続式のフロー反応システムが注目されている。フロー反応システムは、従来の化学プラントにおける大型の反応器を用いた場合と比べて、反応の高速化・高効率化を図れる上、従来は実施が困難であった危険性の高い反応であっても、反応場を狭い場所に限定し、危険な物質を少量ずつ取り扱うようにすることで、より安全に実施することができるという利点を有している。そのため、フロー反応システムは、化学分野や医療分野など様々な分野に対して応用可能な技術として期待されている。 In recent years, a continuous flow reaction system used for chemical reactions of substances has attracted attention. The flow reaction system can increase the speed and efficiency of the reaction as compared with the case where a large reactor is used in a conventional chemical plant, and is a highly dangerous reaction that was difficult to perform in the past. However, there is an advantage that the reaction can be performed more safely by limiting the reaction field to a narrow place and handling the dangerous substance little by little. Therefore, the flow reaction system is expected as a technology applicable to various fields such as the chemical field and the medical field.
 このようなフロー反応システムでは、流路を流れる反応物質の温度や圧力などの状態量を計測することにより、平常時には、システムが想定通りに制御され、安定した品質の製品が生産されているという証明が可能である。一方、異常時には、状態量の計測を行うことにより、異常を直ちに発見して、品質に問題のある製品が流通することのないように対策を講じることが可能である。そのため、流路を流れる反応物質の状態量を高い精度で計測することは、品質管理の観点からは極めて重要であると言える。 In such a flow reaction system, by measuring the state quantities such as the temperature and pressure of the reactants flowing in the flow path, the system is controlled as expected in normal times, and products of stable quality are produced. Proof is possible. On the other hand, in the event of an abnormality, by measuring the state quantity, it is possible to immediately detect the abnormality and take measures to prevent a product having a quality problem from being distributed. Therefore, it can be said that measuring the state quantity of the reactant flowing in the flow path with high accuracy is extremely important from the viewpoint of quality control.
 状態量の計測を行うシステムについては、これまでにも様々な報告が行われている。例えば、特許文献1には、管型反応システムにおいて、該反応器の出入口に圧力損失を検出する圧力センサを設け、圧力損失に応じてポンプの流速を制御することが開示されている。特許文献2には、流路と、溶液中の試料の質量を表す質量情報を取得する質量取得手段と、前記質量取得手段近傍における、前記溶液の流速を表す流速情報を取得する流速取得手段と、を具備したことを特徴とするマイクロリアクタが開示されている。特許文献3には、流路形成体への温度センサの取付構造であって、流路を形成する壁の一部に、流体の流れる方向に略平行な凹部を有し、この凹部に温度センサの測温部を設けたことを特徴とする流路形成体への温度センサの取付構造が開示されている。特許文献4には、マイクロリアクタデバイス用のセンサユニットであって、流路内の流体計測位置における流路壁面の周方向に、前記流路に連通する複数のセンサ設置孔が設けられた流路形成部材と、前記複数のセンサ設置孔の各々に、感応部を前記流路側に向けて設置され、前記流体計測位置における流体の状態量を検出する複数種類のセンサと、を具備することを特徴とするセンサユニットが開示されている。特許文献5には、シール金具と、前記シール金具に接合された温度センサと、前記シール金具と前記温度センサを被覆する断熱部材を有する温度センサ付流路形成体が開示されている。 Various reports have been made on systems that measure state quantities. For example, Patent Literature 1 discloses that in a tubular reaction system, a pressure sensor that detects a pressure loss is provided at an inlet and an outlet of the reactor, and the flow rate of a pump is controlled according to the pressure loss. Patent Document 2, the flow path, mass acquisition means for acquiring mass information representing the mass of the sample in the solution, near the mass acquisition means, flow velocity acquisition means for acquiring flow velocity information representing the flow velocity of the solution, Are disclosed. Patent Document 3 discloses a mounting structure of a temperature sensor to a flow path forming body, in which a part of a wall forming a flow path has a concave portion substantially parallel to a direction in which a fluid flows, and the concave portion has a temperature sensor. A structure for attaching a temperature sensor to a flow path forming body, characterized in that the temperature measuring section is provided. Patent Document 4 discloses a sensor unit for a microreactor device, in which a plurality of sensor installation holes communicating with the flow path are provided in a circumferential direction of a flow path wall at a fluid measurement position in the flow path. A member and, in each of the plurality of sensor installation holes, a plurality of types of sensors that are installed with a sensitive part facing the flow path side and detect a state quantity of a fluid at the fluid measurement position. Is disclosed. Patent Literature 5 discloses a flow path forming body with a temperature sensor including a seal fitting, a temperature sensor joined to the seal fitting, and a heat insulating member that covers the seal fitting and the temperature sensor.
特開昭62-61628号公報JP-A-62-61628 特開2007-121058号公報JP 2007-121058 A 特開2008-51789号公報JP 2008-51789 A 特開2008-215873号公報JP 2008-215873 A 特開2009-262015号公報JP 2009-262015 A
 連続式のフロー反応システムは、流路の長さが反応時間に対応している。そのため、平常時には、温度や圧力などの状態量は、ある地点(換言すれば、ある反応時間)においては定常値を示す。その一方、フロー反応システムの長さ方向に対しては、生じている反応に応じて、例えば、反応時の発熱または吸熱による温度変化等に代表される状態量の変化が生じているはずであるが、特許文献1~5に開示されるシステムを採用しても、いずれもセンサの位置が固定されているため、平常時に、ある地点(換言すれば、ある反応時間)における定常値は計測できるものの、フロー反応システムの長さ方向に対して生じている状態量の非定常的な変化を捉えることができない。そのため、製品の品質に多大な影響を与えると考えられる状態量の極大値または極小値を確実に計測できているかどうか、保証することができない。 In a continuous flow reaction system, the length of the flow path corresponds to the reaction time. Therefore, in normal times, state quantities such as temperature and pressure show steady values at a certain point (in other words, at a certain reaction time). On the other hand, in the longitudinal direction of the flow reaction system, a change in a state quantity represented by, for example, a temperature change due to heat generation or heat absorption during the reaction should occur according to the reaction that is occurring. However, even when the systems disclosed in Patent Documents 1 to 5 are employed, the position of the sensor is fixed, so that a steady value at a certain point (in other words, a certain reaction time) can be measured in normal times. However, an unsteady change in the state quantity occurring in the length direction of the flow reaction system cannot be captured. Therefore, it cannot be assured whether the maximum value or the minimum value of the state quantity, which is considered to have a great influence on the quality of the product, can be reliably measured.
 そこで本発明は、反応器内において、特に非定常的に変化する状態量を捉えることのできるセンサシステムの提供を課題として掲げた。 Therefore, an object of the present invention is to provide a sensor system capable of capturing a state quantity that changes non-stationarily in a reactor.
 本発明者は、前記課題を解決するために鋭意研究を重ねた結果、長手方向と短手方向を有する反応器と、前記反応器の内部において前記長手方向に移動可能に配置されているセンサと、前記センサの位置を特定するセンサ位置特定部と、を有するセンサシステムであれば、上記課題が解決されることを見出し、本発明を完成した。また、本発明者は、流体が流れる流路を有する反応器と、前記流路の内部において前記流体の流れ方向に沿って移動可能に配置されているセンサと、前記センサの位置を特定するセンサ位置特定部と、を有するセンサシステムでも、上記課題が解決されることを見出した。 The present inventor has conducted intensive studies to solve the above problems, and as a result, a reactor having a longitudinal direction and a transversal direction, and a sensor that is disposed movably in the longitudinal direction inside the reactor. It has been found that a sensor system having a sensor position specifying unit for specifying the position of the sensor solves the above problem, and completed the present invention. In addition, the present inventor has disclosed a reactor having a flow path through which a fluid flows, a sensor disposed inside the flow path so as to be movable along a flow direction of the fluid, and a sensor for specifying a position of the sensor. It has been found that the above problem is also solved by a sensor system having a position specifying unit.
 すなわち、本発明に係るセンサシステムは、以下の点に要旨を有する。
[1] 長手方向と短手方向を有する反応器と、
 前記反応器の内部において前記長手方向に移動可能に配置されているセンサと、
 前記センサの位置を特定するセンサ位置特定部と、
を有することを特徴とするセンサシステム。
[2] 流体が流れる流路を有する反応器と、
 前記流路の内部において前記流体の流れ方向に沿って移動可能に配置されているセンサと、
 前記センサの位置を特定するセンサ位置特定部と、
を有することを特徴とするセンサシステム。
[3] 前記反応器が管型反応器である[1]または[2]に記載のセンサシステム。
[4] 前記管型反応器の流路の相当直径が0.1mm以上50mm以下である[3]に記載のセンサシステム。
[5] 前記センサが、温度、圧力、流量、流速、pH、溶存酸素濃度、粘度、または赤外線を照射したときの吸収スペクトルを検出可能である[1]~[4]のいずれか1つに記載のセンサシステム。
[6] 前記センサが、熱電対または測温抵抗体である[5]に記載のセンサシステム。
[7] 前記センサが支持体に固定されており、
 前記センサが前記支持体よりも上流に存在している[1]~[6]のいずれか1つに記載のセンサシステム。
[8] 前記センサが、前記反応器の長手方向の全長のうち入口から50%までに相当する前半位置において移動可能である[1]~[7]のいずれか1つに記載のセンサシステム。
[9] 前記センサが、前記反応器の長手方向の全長のうち出口から50%までに相当する後半位置において移動可能である[1]~[7]のいずれか1つに記載のセンサシステム。
That is, the sensor system according to the present invention has the following points.
[1] a reactor having a longitudinal direction and a transversal direction;
A sensor movably arranged in the longitudinal direction inside the reactor,
A sensor position specifying unit for specifying the position of the sensor,
A sensor system comprising:
[2] a reactor having a flow path through which a fluid flows;
A sensor arranged movably along the flow direction of the fluid inside the flow path,
A sensor position specifying unit for specifying the position of the sensor,
A sensor system comprising:
[3] The sensor system according to [1] or [2], wherein the reactor is a tubular reactor.
[4] The sensor system according to [3], wherein the equivalent diameter of the flow path of the tubular reactor is 0.1 mm or more and 50 mm or less.
[5] The sensor according to any one of [1] to [4], wherein the sensor can detect a temperature, a pressure, a flow rate, a flow rate, a pH, a dissolved oxygen concentration, a viscosity, or an absorption spectrum when irradiated with infrared rays. The sensor system as described.
[6] The sensor system according to [5], wherein the sensor is a thermocouple or a resistance temperature detector.
[7] The sensor is fixed to a support,
The sensor system according to any one of [1] to [6], wherein the sensor is located upstream of the support.
[8] The sensor system according to any one of [1] to [7], wherein the sensor is movable in a first half position corresponding to 50% from an inlet in a total length in a longitudinal direction of the reactor.
[9] The sensor system according to any one of [1] to [7], wherein the sensor is movable at a rear half position corresponding to 50% from an outlet in a total length in a longitudinal direction of the reactor.
 本発明によれば、反応器内において、特に非定常的に変化する状態量を捉えることのできるセンサシステムが提供される。 According to the present invention, there is provided a sensor system capable of capturing a state quantity which changes non-stationarily in a reactor.
図1は、本発明に係るセンサシステムの概略図である。FIG. 1 is a schematic diagram of a sensor system according to the present invention. 図2は、本発明における反応器の一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of the reactor according to the present invention. 図3(a)は、反応器内部に配置されているセンサの一例を示す概略図である。FIG. 3A is a schematic diagram illustrating an example of a sensor disposed inside the reactor. 図3(b)は、反応器内部に配置されているセンサの他の例を示す概略図である。FIG. 3B is a schematic diagram illustrating another example of a sensor disposed inside the reactor. 図3(c)は、反応器内部に配置されているセンサの他の例を示す概略図である。FIG. 3C is a schematic diagram showing another example of the sensor arranged inside the reactor. 図4は、本発明における反応器の他の例を示す概略図である。FIG. 4 is a schematic view showing another example of the reactor according to the present invention.
 以下、本発明に係るセンサシステムに関して、実施例を示す図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定される訳ではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the sensor system according to the present invention will be specifically described with reference to the drawings showing embodiments, but the present invention is not necessarily limited to the illustrated examples, and a range that can conform to the purpose of the preceding and following descriptions. It is also possible to carry out the present invention with appropriate modifications, and all of them are included in the technical scope of the present invention.
<センサシステム>
 図1は、本発明に係るセンサシステム10の概略図である。本発明の一実施形態に係るセンサシステム10は、長手方向と短手方向を有する反応器1と、前記反応器1の内部において前記長手方向に移動可能に配置されているセンサ2aと、前記センサ2aの位置を特定するセンサ位置特定部3と、を有する点に特徴を有する。センサ2aを反応器1内部において移動可能に配置することで、反応器1内部の任意の地点(換言すれば、任意の反応時間)における、反応器1内部の状態量を的確に捉えることが可能となる。また、本発明の他の実施形態に係るセンサシステム10は、流体が流れる流路7を有する反応器1と、前記流路7の内部において前記流体の流れ方向に沿って移動可能に配置されているセンサ2aと、前記センサの位置を特定するセンサ位置特定部3と、を有する点に特徴を有する。センサ2aを流路7の内部において移動可能に配置することで、流路7の内部の任意の地点(換言すれば、任意の反応時間)における、流路7の内部の状態量を的確に捉えることが可能となる。
<Sensor system>
FIG. 1 is a schematic diagram of a sensor system 10 according to the present invention. The sensor system 10 according to one embodiment of the present invention includes a reactor 1 having a longitudinal direction and a lateral direction, a sensor 2a disposed inside the reactor 1 so as to be movable in the longitudinal direction, and the sensor And a sensor position specifying unit 3 for specifying the position of 2a. By arranging the sensor 2a movably inside the reactor 1, it is possible to accurately capture the state quantity inside the reactor 1 at an arbitrary point inside the reactor 1 (in other words, at any reaction time). It becomes. Further, a sensor system 10 according to another embodiment of the present invention includes a reactor 1 having a flow path 7 through which a fluid flows, and a sensor system 10 that is movably arranged inside the flow path 7 along the flow direction of the fluid. It is characterized in that it has a sensor 2a and a sensor position specifying unit 3 for specifying the position of the sensor. By arranging the sensor 2a movably inside the flow path 7, the state quantity inside the flow path 7 at an arbitrary point inside the flow path 7 (in other words, at any reaction time) is accurately captured. It becomes possible.
<反応器>
 本発明における反応器1とは、長手方向と短手方向を有する反応器である。反応器1はその内部に流路7を好ましく有している。これにより、反応器1の内部において、詳細には流路7の上流側から下流側に向かって流体(反応物質)を流すことができる。反応器1の長手方向と流体の流れ方向は、同じであってもよく、互いに異なっていてもよい。流路7の少なくとも一部が、反応器1の長手方向に沿って延在していることが好ましい。流路7の少なくとも一部が直線状に形成されていることが好ましいが、流路7の少なくとも一部が湾曲または屈曲していてもよい。また、流路7の一部が折り返されていてもよい。さらに、流路7は分岐していてもよい。流路7の断面は、例えば、円形、楕円形、多角形、またはこれらを組み合わせた形状にすることができる。
<Reactor>
The reactor 1 in the present invention is a reactor having a longitudinal direction and a lateral direction. The reactor 1 preferably has a channel 7 therein. Thus, a fluid (reactant) can flow inside the reactor 1 from the upstream side of the flow path 7 to the downstream side. The longitudinal direction of the reactor 1 and the flow direction of the fluid may be the same or different from each other. It is preferable that at least a part of the flow path 7 extends along the longitudinal direction of the reactor 1. It is preferable that at least a part of the flow path 7 is formed in a straight line, but at least a part of the flow path 7 may be curved or bent. Further, a part of the flow path 7 may be folded back. Further, the flow path 7 may be branched. The cross section of the flow path 7 can be, for example, circular, elliptical, polygonal, or a combination thereof.
 反応器1は、好ましくは管型反応器である。管型反応器とは、具体的には、中が空洞で細長い筒状のリアクターであって、一端部から反応原料を供給し、他端部から反応生成物を流出させる反応装置である。管型反応器の流路断面は円形であることが望ましい。管型反応器の形状としては、例えば、直線状、螺旋状(コイル状)等の曲線状、またはこれらを組み合わせた形状が挙げられる。本発明では、反応器1内部または流路7内部にセンサ2aを前記反応器1の長手方向または流体の流れ方向に移動可能に設置する。このため、センサ2aを設置しやすいよう、前記反応器1(例えば、管型反応器)は、少なくともその一部に直線状の形状を有することが好ましい。前記反応器1が少なくともその一部に直線状の形状を有する場合、前記反応器1の直線状以外の構造は特に限定されない。また前記反応器1は、図2に示すように、1または2以上の折り返し構造6eを有していてもよい。図2は、折り返し構造6eがクランク状に折れている状態を示しているものであるが、折り返し構造6eの形状に特に限定はなく、折り返し構造6eが曲線状になっていてもよい。 Reactor 1 is preferably a tubular reactor. The tubular reactor is, specifically, a slender tubular reactor with a hollow inside, a reaction device that supplies a reaction raw material from one end and discharges a reaction product from the other end. The cross section of the flow channel of the tubular reactor is desirably circular. Examples of the shape of the tubular reactor include a curved shape such as a straight shape, a spiral shape (coil shape), and the like, or a shape obtained by combining these. In the present invention, the sensor 2a is installed inside the reactor 1 or inside the flow path 7 so as to be movable in the longitudinal direction of the reactor 1 or the flow direction of the fluid. For this reason, the reactor 1 (for example, a tubular reactor) preferably has a linear shape at least in part so that the sensor 2a can be easily installed. When at least a part of the reactor 1 has a linear shape, the structure of the reactor 1 other than the linear shape is not particularly limited. Further, as shown in FIG. 2, the reactor 1 may have one or more folded structures 6e. FIG. 2 shows a state in which the folded structure 6e is bent in a crank shape, but the shape of the folded structure 6e is not particularly limited, and the folded structure 6e may be curved.
 流路7の長さや管型反応器の長さは、好ましくは1cm以上、より好ましくは10cm以上、上限は特に限定されないが、好ましくは500m以下、より好ましくは300m以下である。 The length of the flow path 7 and the length of the tubular reactor are preferably 1 cm or more, more preferably 10 cm or more, and the upper limit is not particularly limited, but is preferably 500 m or less, more preferably 300 m or less.
 また反応器1(好ましくは管型反応器)の流路の相当直径は、圧力損失や処理量を鑑みれば、好ましくは0.1mm以上、より好ましくは1.0mm以上、更に好ましくは1.5mm以上、好ましくは50mm以下、より好ましくは20mm以下、更に好ましくは15mm以下である。
 なお本発明において「流路の相当直径」とは、流路の断面と等価とみなした円管に相当する直径のことを指す。すなわち、流路の相当直径Deは、下記式(i)で表される。
   De=4Af/Wp …(i)
(式中、Af:流路断面積、Wp:濡れ縁長さ(断面にある壁面の長さ)である)
The equivalent diameter of the flow path of the reactor 1 (preferably a tubular reactor) is preferably 0.1 mm or more, more preferably 1.0 mm or more, and still more preferably 1.5 mm, in view of pressure loss and throughput. The above is preferably 50 mm or less, more preferably 20 mm or less, and still more preferably 15 mm or less.
In the present invention, the “equivalent diameter of the flow path” refers to a diameter corresponding to a circular tube regarded as equivalent to a cross section of the flow path. That is, the equivalent diameter De of the flow path is represented by the following equation (i).
De = 4Af / Wp (i)
(Where Af is the cross-sectional area of the flow path, Wp is the length of the wet edge (the length of the wall surface in the cross section))
 反応器1の流路7の相当直径は、流路7の延在方向において一様であってもよく、延在方向の途中で変更されていてもよい。流路7の延在方向の一部の相当直径が、該延在方向の他部の相当直径よりも小さくてもよい。また、流路7は、その相当直径が上流側または下流側に向かって小さくなっている部分を有していてもよい。 相当 The equivalent diameter of the flow path 7 of the reactor 1 may be uniform in the extending direction of the flow path 7 or may be changed in the middle of the extending direction. The equivalent diameter of a part in the extending direction of the flow path 7 may be smaller than the equivalent diameter of the other part in the extending direction. In addition, the flow path 7 may have a portion whose equivalent diameter decreases toward the upstream side or the downstream side.
 管型反応器の流路の相当直径は、管型反応器全体で一様であってもよく、管型反応器の途中で変更されていてもよい。管型反応器の流路の相当直径が一様であれば、反応液の流れが阻害されることなく、反応がムラなく進行する。一方、混合性能や除熱性能などの諸条件を考慮すれば、管型反応器の流路の相当直径は、管型反応器の途中で変更されていてもよい。前記流路の相当直径の変更部位は任意でよく、前記流路の相当直径の変更回数に制限はなく、必要に応じて一回または複数回変更してもよい。また、前記流路の相当直径は徐々に変化してもよいし、ある一点を境に大きく変化させてもよい。前記流路の相当直径は、上流側の流路の相当直径と比較して細くてもよいし、太くてもよく、反応に応じて適宜設計すればよい。流路の設計は以下の例に限定されるものではないが、例えば、管型反応器の流路の相当直径が細くなるほど混合性能は向上するため、反応開始直後の管型反応器の流路の相当直径は細くしておき、十分に混合された後に管型反応器の流路の相当直径を太くすることも可能である。 相当 The equivalent diameter of the flow path of the tubular reactor may be uniform throughout the tubular reactor, or may be changed in the middle of the tubular reactor. When the equivalent diameter of the flow path of the tubular reactor is uniform, the reaction proceeds without unevenness without obstructing the flow of the reaction solution. On the other hand, in consideration of various conditions such as mixing performance and heat removal performance, the equivalent diameter of the flow path of the tubular reactor may be changed in the middle of the tubular reactor. The portion where the equivalent diameter of the flow path is changed may be arbitrary, and the number of times the equivalent diameter of the flow path is changed is not limited, and may be changed one or more times as needed. Further, the equivalent diameter of the flow path may change gradually, or may change largely at a certain point. The equivalent diameter of the flow path may be smaller or larger than the equivalent diameter of the upstream flow path, and may be appropriately designed according to the reaction. The design of the flow path is not limited to the following examples.For example, since the mixing performance is improved as the equivalent diameter of the flow path of the tubular reactor becomes smaller, the flow path of the tubular reactor immediately after the start of the reaction is increased. It is also possible to reduce the equivalent diameter of the tube reactor and to increase the equivalent diameter of the channel of the tubular reactor after sufficient mixing.
 反応器1(好ましくは管型反応器)の内壁、中でも流路7を形成する内壁は、例えば、金属、シリコン、ガラス、セラミックス等の無機物、または樹脂等の有機物等から構成されていることが好ましい。 The inner wall of the reactor 1 (preferably a tubular reactor), in particular, the inner wall forming the flow path 7 may be made of, for example, an inorganic substance such as metal, silicon, glass, and ceramics, or an organic substance such as resin. preferable.
 反応器1内では、例えば、流体の化学反応操作の一例である、化学反応操作、抽出操作、分離操作、精製操作などを実施できる。反応器1内では、種々の化学反応が実施でき、特に制限はないが、好ましくは液液反応または気液反応を行うことができる。 内 In the reactor 1, for example, a chemical reaction operation, an extraction operation, a separation operation, a purification operation, and the like, which are examples of a chemical reaction operation of a fluid, can be performed. In the reactor 1, various chemical reactions can be performed, and there is no particular limitation, but a liquid-liquid reaction or a gas-liquid reaction can be preferably performed.
 反応器1内で使用可能な反応溶媒としては、例えば、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、4-メチルテトラヒドロピラン、メチル-tert-ブチルエーテル、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;塩化メチレン、クロロホルム、1,1,1,-トリクロロエタン、クロロベンゼン等のハロゲン系溶媒;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル、プロピオニトリル、ブチロニトリル等のニトリル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;水;などが例示される。これらの反応溶媒は、単独でまたは2種以上を混合して使用してもよい。 Reaction solvents usable in the reactor 1 include, for example, aliphatic hydrocarbon solvents such as n-hexane, cyclohexane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; diethyl ether, diisopropyl Ether solvents such as ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, methyl-tert-butyl ether, 1,4-dioxane, cyclopentyl methyl ether; methylene chloride, chloroform, 1,1,1, -trichloroethane, Halogen solvents such as chlorobenzene; ester solvents such as ethyl acetate, propyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; acetonitrile, propionitrile, butyroni Nitriles Lil like; N, N- dimethylformamide, N, N- dimethylacetamide, amide solvents such as N- methylpyrrolidone; water; methanol, ethanol, alcohol solvents such as isopropanol, etc. are exemplified. These reaction solvents may be used alone or in combination of two or more.
 反応器1内の温度は、反応溶媒の沸点以下で凝固点以上であれば特に制限されず、好ましくは-80℃以上、より好ましくは-60℃以上であり、好ましくは200℃以下、より好ましくは180℃以下である。反応器1内では、吸熱反応または発熱反応のいずれも実施可能である。 The temperature in the reactor 1 is not particularly limited as long as it is equal to or lower than the boiling point of the reaction solvent and equal to or higher than the freezing point, and is preferably −80 ° C. or higher, more preferably −60 ° C. or higher, preferably 200 ° C. or lower, more preferably 180 ° C. or less. In the reactor 1, either an endothermic reaction or an exothermic reaction can be performed.
 反応器1内における反応液の流速は、一般的に線速度として、好ましくは2m/s以下、より好ましくは1m/s以下、更に好ましくは0.8m/s以下である。また反応時間(平均滞留時間)は、一般的に、好ましくは120分以下、より好ましくは60分以下、更に好ましくは30分以下である。 流速 The flow rate of the reaction solution in the reactor 1 is generally preferably 2 m / s or less, more preferably 1 m / s or less, further preferably 0.8 m / s or less as a linear velocity. In addition, the reaction time (average residence time) is generally preferably 120 minutes or less, more preferably 60 minutes or less, and still more preferably 30 minutes or less.
 本発明における反応器1は、原料供給部及び排出部を適宜有していることが好ましい。 反 応 It is preferable that the reactor 1 of the present invention has a raw material supply unit and a discharge unit as appropriate.
 原料供給部(例えば、6a、6b)は、前記反応器1の上流側に設けられる。原料供給部とは、前記反応器1で用いる原料を送る部位に相当する。 A raw material supply unit (for example, 6a, 6b) is provided on the upstream side of the reactor 1. The raw material supply unit corresponds to a part that sends raw materials used in the reactor 1.
 反応器1は、反応の方式によって2以上(例えば、3つ)の原料供給部6a、6bを有していてもよい。2以上の原料供給部6a、6bが存在する場合、片方又は両方の原料供給部から供給される原料は、前もって別の原料を予備混合器で混合させ、必要に応じてその後反応させた結果物であってもよい。また図示しないが、前記反応器1から排出される反応液は、次の反応における原料として用いてよい。反応原料(予備反応物を含む)は、これら原料供給部6a、6bを通じて前記反応器1内に供給される。反応原料は、通常、気体または液体(溶液を含む)の形態で供給される。 The reactor 1 may have two or more (for example, three) raw material supply units 6a and 6b depending on the reaction system. When two or more raw material supply units 6a and 6b are present, a raw material supplied from one or both raw material supply units is a product obtained by mixing another raw material in advance with a premixer and, if necessary, thereafter reacting the raw materials. It may be. Although not shown, the reaction solution discharged from the reactor 1 may be used as a raw material in the next reaction. Reaction raw materials (including pre-reactants) are supplied into the reactor 1 through these raw material supply units 6a and 6b. The reactants are usually supplied in the form of a gas or a liquid (including a solution).
 原料供給部が2以上存在する場合、本発明における反応器1は、前記原料供給部からの原料を混合する混合部6cを有していることが望ましい。混合部6cが存在する場合、前記混合部6cは、前記2以上の原料供給部の末端に設けられ、混合部6cで得られた混合液は、前記反応器1内に反応液として供給される。 場合 When there are two or more raw material supply units, the reactor 1 in the present invention preferably has a mixing unit 6c for mixing the raw materials from the raw material supply unit. When the mixing section 6c is present, the mixing section 6c is provided at an end of the two or more raw material supply sections, and the mixed liquid obtained in the mixing section 6c is supplied into the reactor 1 as a reaction liquid. .
 混合部6cには、原料を充分に撹拌するために、公知の可動型あるいは静止型の混合器が単独あるいは組み合わせて備えられていてもよい。前記混合器としては、例えば、T字型ミキサー、Y字型ミキサー、スタティックミキサー、ヘリックス型ミキサーなどが挙げられる。 The mixing unit 6c may be provided with a known movable or stationary mixer alone or in combination in order to sufficiently stir the raw materials. Examples of the mixer include a T-shaped mixer, a Y-shaped mixer, a static mixer, and a helical mixer.
 原料供給部において、反応原料は、ダイヤフラムポンプなどの送液制御部により供給されることが望ましい。送液制御部はポンプに限定されず、例えば、反応原料の仕込容器を加圧したものも使用できる。 に お い て In the raw material supply unit, the reaction raw material is desirably supplied by a liquid sending control unit such as a diaphragm pump. The liquid feed control unit is not limited to a pump, and for example, a liquid supply control unit in which a charged container of a reaction raw material is pressurized can be used.
 原料供給部は、好ましくは管(チューブ状)であり、前記管の内径は、好ましくは0.01mm以上、より好ましくは0.1mm以上であり、好ましくは50mm以下である。 The raw material supply section is preferably a tube (tube shape), and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less.
 排出部6dは、前記反応器1での反応生成物を排出する部位に相当する。排出部6dにより、前記反応器1内で生成した反応生成物だけでなく、未反応原料も流通する。 The discharge part 6 d corresponds to a part for discharging the reaction product in the reactor 1. By the discharge part 6d, not only the reaction products generated in the reactor 1 but also unreacted raw materials are circulated.
 排出部6dは好ましくは管であり、前記管の内径は、好ましくは0.01mm以上、より好ましくは0.1mm以上であり、好ましくは50mm以下である。排出部6dより回収される反応液は、その後、適切に処理されることが望ましい。排出部6dより回収される反応液は、さらに後続の反応器にて引き続き反応を継続することも可能である。 The discharge portion 6d is preferably a tube, and the inner diameter of the tube is preferably 0.01 mm or more, more preferably 0.1 mm or more, and preferably 50 mm or less. It is desirable that the reaction liquid recovered from the discharge unit 6d is thereafter appropriately processed. The reaction liquid recovered from the discharge part 6d can continue the reaction in the subsequent reactor.
 なお原料供給部6a、6b、混合部6cおよび排出部6dは、ステンレス鋼、ハステロイ、チタン、銅、ニッケル、アルミニウムなどの金属;ガラス、セラミックスなどの無機材料;PEEK樹脂、シリコーン樹脂、フッ素樹脂等の樹脂;から構成されていることが好ましく、前記無機材料や前記樹脂には、導電性が付与されていてもよい。混合部6cの形状は時に複雑になることがあるため、精密な加工が必要なときには、加工性のよい金属や樹脂を用いるとよい。 The raw material supply sections 6a and 6b, the mixing section 6c and the discharge section 6d are made of a metal such as stainless steel, Hastelloy, titanium, copper, nickel, or aluminum; an inorganic material such as glass or ceramic; a PEEK resin, a silicone resin, a fluororesin, or the like. Preferably, the inorganic material and the resin may be provided with conductivity. Since the shape of the mixing portion 6c sometimes becomes complicated, when precise processing is required, it is preferable to use a metal or resin having good workability.
<センサ>
 本発明におけるセンサ2aとは、前記反応器の内部において前記長手方向に移動可能に配置されているセンサである。また、本発明の他の実施態様に係るセンサ2aとは、前記流路の内部において流体の流れ方向に沿って移動可能に配置されているセンサである。前記センサ2aは、支持体2bに固定されていることが望ましい。支持体2bは、センサ2aを反応器1内(好ましくは流路7内)において支持するための部材である。支持体は、1または複数の部材から構成することができる。支持体2bの形状は特に限定されないが、支持体2bは、少なくとも一部が反応器1または流路7の内部に挿入されている棒状部を有していることが好ましい。その場合、該棒状部の先端部にセンサ2aが固定されていることが好ましい。支持体2bの棒状部は、反応器1の長手方向または流体の流れ方向に沿って移動することが好ましい。また、支持体2bの棒状部が伸縮可能であってもよい。その場合、支持体2bの棒状部は、反応器1の長手方向または流体の流れ方向に伸縮可能であることが好ましい。このように支持体2bの棒状部を移動可能または伸縮可能に構成することによって、センサ2aを移動させることができる。
<Sensor>
The sensor 2a according to the present invention is a sensor that is disposed inside the reactor so as to be movable in the longitudinal direction. The sensor 2a according to another embodiment of the present invention is a sensor that is movably disposed inside the flow path along the flow direction of the fluid. Preferably, the sensor 2a is fixed to a support 2b. The support 2b is a member for supporting the sensor 2a in the reactor 1 (preferably in the flow path 7). The support can be composed of one or more members. Although the shape of the support 2b is not particularly limited, it is preferable that the support 2b has a rod-like portion at least partially inserted into the reactor 1 or the flow path 7. In that case, it is preferable that the sensor 2a is fixed to the tip of the rod-shaped portion. The rod-shaped portion of the support 2b preferably moves along the longitudinal direction of the reactor 1 or the flow direction of the fluid. Further, the rod-shaped portion of the support 2b may be extendable. In that case, it is preferable that the rod-shaped portion of the support 2b can expand and contract in the longitudinal direction of the reactor 1 or the flow direction of the fluid. The sensor 2a can be moved by configuring the rod-shaped portion of the support 2b so as to be movable or extendable.
 図2、図3(a)および図3(c)に示すように、反応器1の壁には、反応器1の内部(好ましくは流路7)から外に向かって貫通している第1の貫通口8aが設けられていてもよい。その場合、支持体2bの少なくとも一部が第1の貫通口8aを通じて反応器1または流路7の内部に挿入されていることが好ましい。これにより、センサ2aを反応器1または流路7の内部に配置することができる。第1の貫通口8aは、図2および図3(c)に示すように流路7の途中に設けられていてもよく、図3(a)に示すように流路7を構成する管の延在方向の一方端面(好ましくは下流側の端面)に設けられていてもよい。 As shown in FIGS. 2, 3 (a) and 3 (c), the first wall penetrating the wall of the reactor 1 from the inside of the reactor 1 (preferably the flow path 7) to the outside. May be provided. In that case, it is preferable that at least a part of the support 2b is inserted into the reactor 1 or the flow path 7 through the first through hole 8a. Thereby, the sensor 2a can be arranged inside the reactor 1 or the flow path 7. The first through-hole 8a may be provided in the middle of the flow path 7 as shown in FIGS. 2 and 3 (c), and may be provided in a pipe forming the flow path 7 as shown in FIG. 3 (a). It may be provided on one end surface (preferably the downstream end surface) in the extending direction.
 図3(b)に示すように、混合部6cに、流路7の内部から外に向かって貫通している第2の貫通口8bが設けられていてもよい。その場合、支持体2bの少なくとも一部(より好ましくは棒状部)が第2の貫通口8bを通じて反応器1または流路7の内部に挿入されていることが好ましい。このように第2の貫通口8bを設けることによってもセンサ2aを反応器1または流路7の内部に配置することができる。 (3) As shown in FIG. 3 (b), the mixing portion 6c may be provided with a second through hole 8b penetrating from the inside of the flow path 7 to the outside. In this case, it is preferable that at least a part (more preferably, a rod-shaped portion) of the support 2b is inserted into the reactor 1 or the flow path 7 through the second through-hole 8b. By providing the second through-hole 8b in this way, the sensor 2a can be arranged inside the reactor 1 or the flow path 7.
 支持体2bの棒状部は、図2~図3(b)に示すように流体の流れ方向に沿って延在するように配置されていてもよく、図3(c)に示すように流体の流れ方向と垂直な方向に沿って延在するように配置されていてもよい。支持体2bの棒状部を、流体の流れ方向と垂直な方向に沿って延在するように配置するためには、第1の貫通口8aが、流体の流れ方向に沿って延在していることが好ましい。これにより、センサ2aを流体の流れ方向に沿って移動させることが可能となる。 The rod-shaped portion of the support 2b may be arranged so as to extend along the flow direction of the fluid as shown in FIGS. 2 to 3 (b), and as shown in FIG. 3 (c). They may be arranged to extend along a direction perpendicular to the flow direction. In order to arrange the rod-shaped portion of the support 2b so as to extend along a direction perpendicular to the flow direction of the fluid, the first through-hole 8a extends along the flow direction of the fluid. Is preferred. This makes it possible to move the sensor 2a along the flow direction of the fluid.
 センサ2aは、具体的には、状態量を検出し、前記検出された状態量を、直接または信号に置き換えることによって間接的に判読可能にする装置をいう。センサ2aは、例えば、反応器1内部(より好ましくは反応器1内部における反応液)の温度、圧力、流量、流速、pH、溶存酸素濃度、粘度、濁度、色差、赤外線、近赤外線、紫外線、エックス線を照射したときの吸収スペクトル、レーザー光照射により物質から発せられるラマン散乱光、収束ビーム反射測定法に基づく反応器中に存在する粒子の粒径、核磁気共鳴シグナル等を検出可能であることが好ましく、より好ましくは温度を検出可能であることが好ましい。温度を検出可能なセンサ2aとしては、例えば、熱電対または測温抵抗体が挙げられる。センサ2aにより、反応器1内の温度、圧力、流量、流速、pH、溶存酸素濃度、粘度などを計測できれば、反応器1内での反応状態をより細かにモニタリングすることが可能となる。また、センサ2aにより、赤外線を照射したときの吸収スペクトルを計測できれば、計測地点における反応収率を知ることが可能となる。 Specifically, the sensor 2a is a device that detects a state quantity and makes the detected state quantity directly or indirectly readable by replacing it with a signal. The sensor 2a includes, for example, a temperature, a pressure, a flow rate, a flow rate, a pH, a dissolved oxygen concentration, a viscosity, a turbidity, a color difference, an infrared ray, a near infrared ray, and an ultraviolet ray inside the reactor 1 (more preferably, a reaction solution inside the reactor 1). , X-ray irradiation, absorption spectrum, Raman scattered light emitted from the material by laser beam irradiation, particle size of particles present in the reactor based on convergent beam reflection measurement, nuclear magnetic resonance signal, etc. Preferably, it is more preferable that the temperature can be detected. As the sensor 2a capable of detecting the temperature, for example, a thermocouple or a temperature measuring resistor is used. If the temperature, pressure, flow rate, flow rate, pH, dissolved oxygen concentration, viscosity, and the like in the reactor 1 can be measured by the sensor 2a, the reaction state in the reactor 1 can be more finely monitored. In addition, if the absorption spectrum when irradiating infrared rays can be measured by the sensor 2a, the reaction yield at the measurement point can be known.
 本発明におけるセンサ2aの形状は、該センサ2aが、前記反応器1の内部において前記長手方向に移動可能に配置されている限り、または流路7の内部において流体の流れ方向に移動可能に配置されている限り、特に限定されない。該センサ2aは、反応器1の内壁に触れないように前記反応器1の内部を長手方向に移動可能であることが好ましい。すなわち、センサ2aの外径が、流路7の相当直径よりも小さいことが好ましい。 The shape of the sensor 2a according to the present invention may be set as long as the sensor 2a is arranged in the reactor 1 so as to be movable in the longitudinal direction, or is arranged in the flow path 7 so as to be movable in the fluid flow direction. There is no particular limitation as long as it is performed. The sensor 2a is preferably movable in the longitudinal direction inside the reactor 1 so as not to touch the inner wall of the reactor 1. That is, the outer diameter of the sensor 2a is preferably smaller than the equivalent diameter of the flow path 7.
 センサ2aは、1または複数設けることができる。センサ2aが複数設けられ、該複数のセンサ2aが棒状部を有する支持体によって固定されている場合、複数のセンサ2aは、支持体の棒状部の延在方向に離隔して配置されていることが好ましい。例えば、一のセンサが棒状部の先端に配置されており、他のセンサが一のセンサよりも流路の下流側に配置されている態様とすることができる。これにより、流路7内の複数位置において状態量を検出することができ、反応器1内での反応状態をより細かにモニタリングすることが可能となる。 One or more sensors 2a can be provided. When a plurality of sensors 2a are provided and the plurality of sensors 2a are fixed by a support having a bar, the plurality of sensors 2a are arranged apart from each other in the extending direction of the bar of the support. Is preferred. For example, a mode may be adopted in which one sensor is arranged at the tip of the rod-shaped portion, and the other sensor is arranged on the downstream side of the flow path from the one sensor. Accordingly, the state quantity can be detected at a plurality of positions in the flow path 7, and the reaction state in the reactor 1 can be monitored more finely.
 本発明におけるセンサ2aは、図3(a)に示すように、前記センサ2aが前記支持体2bよりも上流に存在する態様A;図3(b)に示すように、前記センサ2aが前記支持体2bよりも下流に存在する態様B;のいずれであってもよいが、反応器1が混合部6cを有している場合に、特に態様Aは、反応器1内の流れを乱し難いため好ましい。 As shown in FIG. 3A, the sensor 2a according to the present invention has an aspect A in which the sensor 2a is located upstream of the support 2b; and as shown in FIG. Any one of the embodiments B; which is located downstream of the body 2b, may be used. However, when the reactor 1 has the mixing section 6c, the embodiment A is particularly difficult to disturb the flow in the reactor 1. Therefore, it is preferable.
 反応器1の流路7は分岐していてもよい。流路7の延在方向における分岐位置は特に限定されず、流路7の上流側で分岐していてもよく、下流側で分岐していてもよい。例えば、図4に示すように、流路7は合流路7aと、該合流路7aの下流に接続されている第1の分岐路7bおよび第2の分岐路7cとを有し、第1の分岐路7bが排出部6dに接続されており、第2の分岐路7cを構成する壁に第1の貫通口8aが形成されており、第1の貫通口8aから支持体2bの少なくとも一部(より好ましくは棒状部)が合流路7a内に挿入されていることが好ましい。これにより、流体は主に合流路7aから第1の分岐路7bに向かって流れるが、第2の分岐路7cを通じて合流路7a内の状態量を検出することが可能となる。第1の貫通口8aは、第2の分岐路7cの突き当りに形成されていてもよく、第2の分岐路7cの途中に形成されていてもよい。支持体2bの棒状部が過度に長く形成されることを防ぐためには、第2の分岐路7cの延在長さは、第1の分岐路7bよりも延在長さよりも短いことが好ましい。合流路7a内に支持体2bの棒状部を挿入しやすくするためには、第1の分岐路7bの延在方向が合流路7aの延在方向と垂直であり、第2の分岐路7cの延在方向が合流路7aの延在方向と平行であることが好ましい。 流 路 The channel 7 of the reactor 1 may be branched. The branch position in the extending direction of the flow path 7 is not particularly limited, and the branch may be on the upstream side of the flow path 7 or on the downstream side. For example, as shown in FIG. 4, the flow path 7 has a merging path 7a, a first branch path 7b and a second branch path 7c connected downstream of the merging path 7a, The branch path 7b is connected to the discharge part 6d, and a first through-hole 8a is formed in a wall constituting the second branch path 7c, and at least a part of the support 2b extends from the first through-hole 8a. (More preferably a rod-shaped portion) is preferably inserted into the merged channel 7a. Thereby, although the fluid mainly flows from the merging channel 7a toward the first branch 7b, the state quantity in the merging channel 7a can be detected through the second branch 7c. The first through-hole 8a may be formed at the end of the second branch 7c, or may be formed in the middle of the second branch 7c. In order to prevent the bar-shaped portion of the support 2b from being formed too long, it is preferable that the extension length of the second branch path 7c is shorter than the extension length of the first branch path 7b. In order to facilitate the insertion of the rod-shaped portion of the support 2b into the merging channel 7a, the extending direction of the first branch 7b is perpendicular to the extending direction of the merging channel 7a, and the extending direction of the second branch 7c is The extending direction is preferably parallel to the extending direction of the merging channel 7a.
 また、センサ2aは、図3(a)~図3(b)に示すように、センサ2aと前記支持体2bが前記反応器1の長手方向に平行となるようにして前記反応器1内に配置されていてもよく、図3(c)に示すように、センサ2aと前記支持体2bが前記反応器1の短手方向に平行となるようにして前記反応器1内に配置されていてもよい。 Further, as shown in FIGS. 3A and 3B, the sensor 2a is placed in the reactor 1 such that the sensor 2a and the support 2b are parallel to the longitudinal direction of the reactor 1. The sensor 2a and the support 2b may be arranged in the reactor 1 so that the sensor 2a and the support 2b are parallel to the short direction of the reactor 1 as shown in FIG. Is also good.
 さらに、反応液が腐食性を有する場合等、センサ2aを直接反応液に接触させることができない場合には、センサ2aを保護するための保護管を設けてもよい。保護管は、その内腔にセンサおよび支持体の棒状部の少なくとも一部を収容可能であることが好ましい。前記保護管は、特に限定されるものではないが、例えば、反応器1内部に配置されているセンサ2aを保護できる形状であればよく、例えば、円筒状、楕円筒状、または角筒状に形成することができる。 Further, when the sensor 2a cannot be brought into direct contact with the reaction liquid, such as when the reaction liquid has corrosiveness, a protective tube for protecting the sensor 2a may be provided. The protective tube is preferably capable of accommodating at least a part of the sensor and the rod-shaped portion of the support in the lumen. Although the protective tube is not particularly limited, for example, the protective tube may have any shape as long as it can protect the sensor 2a disposed inside the reactor 1, and may have, for example, a cylindrical shape, an elliptic cylindrical shape, or a rectangular cylindrical shape. Can be formed.
 該センサ2aは、反応器1の内部状態を測定するため、反応器1の長手方向の少なくとも一部の範囲を移動可能であればよいが、反応器1の長手方向全体に亘って移動可能であることが好ましい。特に、該センサ2aを、反応器1の長手方向の全長のうち入口から50%(好ましくは40%、より好ましくは30%)までに相当する前半位置において移動可能にしておくと、反応開始直後の反応器1の内部状態を詳細に測定できるため、特に反応開始直後に大きく変化することが予想される状態量(例えば、温度、圧力、粘度等)の計測をより正確に行うことができる。また、該センサ2aを、反応器1の長手方向の全長のうち出口から50%(好ましくは40%、より好ましくは30%)までに相当する後半位置において移動可能にしておくと、反応終了間際の反応器1の内部状態を詳細に測定できるため、特に反応終了間際に測定しておくと有利な状態量(例えば、pH、溶存酸素濃度、吸収スペクトル等)の計測をより正確に行うことができる。 In order to measure the internal state of the reactor 1, the sensor 2 a may be movable in at least a part of the longitudinal direction of the reactor 1, but may be movable over the entire longitudinal direction of the reactor 1. Preferably, there is. In particular, if the sensor 2a is made movable in the first half position corresponding to 50% (preferably 40%, more preferably 30%) from the entrance of the entire length of the reactor 1 in the longitudinal direction, immediately after the start of the reaction Since the internal state of the reactor 1 can be measured in detail, it is possible to more accurately measure the state quantities (for example, temperature, pressure, viscosity, etc.) that are expected to change greatly immediately after the start of the reaction. Further, if the sensor 2a is made movable at the latter half position corresponding to 50% (preferably 40%, more preferably 30%) from the outlet in the longitudinal length of the reactor 1, the reaction is completed. Since the internal state of the reactor 1 can be measured in detail, it is possible to more accurately measure the state quantities (eg, pH, dissolved oxygen concentration, absorption spectrum, and the like) that are advantageous if the measurement is performed immediately before the end of the reaction. it can.
 センサ2aは、流路7の少なくとも一部の範囲を移動可能であればよい。例えば、流路7の入口から出口までの流路長を上流側と下流側に二等分割したときに、センサは、流路7の上流側を移動可能であることが好ましい。これにより、反応開始直後の流路7の内部状態を詳細に測定できるため、特に反応開始直後に大きく変化することが予想される状態量(例えば、温度、圧力、粘度等)の計測をより正確に行うことができる。また、流路7の入口から出口までの流路長を上流側と下流側に二等分割したときに、センサは、流路7の下流側を移動可能であることが好ましい。これにより、反応終了間際の流路7の内部状態を詳細に測定できるため、特に反応終了間際に測定しておくと有利な状態量(例えば、pH、溶存酸素濃度、吸収スペクトル等)の計測をより正確に行うことができる。流路7内の状態を正確に測定するためには、センサ2aは、流路7の全体に亘って移動可能であることが好ましい。 The sensor 2a only needs to be movable in at least a part of the range of the flow path 7. For example, it is preferable that the sensor be movable on the upstream side of the flow path 7 when the flow path length from the inlet to the outlet of the flow path 7 is equally divided into an upstream side and a downstream side. Thereby, since the internal state of the flow path 7 immediately after the start of the reaction can be measured in detail, the measurement of the state quantities (for example, temperature, pressure, viscosity, etc.) that are expected to greatly change particularly immediately after the start of the reaction is more accurately performed. Can be done. Further, when the length of the flow path from the inlet to the outlet of the flow path 7 is divided into two equal parts, the sensor is preferably movable on the downstream side of the flow path 7. This makes it possible to measure in detail the internal state of the flow path 7 immediately before the end of the reaction. It can be done more accurately. In order to accurately measure the state in the flow path 7, it is preferable that the sensor 2 a be movable over the entire flow path 7.
 センサ2aは、反応器1内の流体よりも下流側に配置されていることが好ましい。センサ2aが反応器1内の流れを乱し難いため、状態量の計測をより正確に行うことができる。 The sensor 2a is preferably arranged downstream of the fluid in the reactor 1. Since the sensor 2a is unlikely to disturb the flow in the reactor 1, the state quantity can be measured more accurately.
 センサ2aは、一定の速度で移動してもよく、反応器1内における流体の流速と同一かまたはこの流速よりも速く移動してもよい。 The sensor 2a may move at a constant speed, or may move at the same speed as the fluid flow rate in the reactor 1 or at a speed faster than this flow rate.
<センサ位置特定部>
 本発明におけるセンサ位置特定部3とは、前記センサの位置を特定する部位である。センサ位置特定部3は、好ましくはセンサ2aの反応器1内部での長手方向における移動距離、または流体の流れ方向における移動距離を測定できるものである。
<Sensor position specifying unit>
The sensor position specifying unit 3 in the present invention is a part that specifies the position of the sensor. The sensor position specifying unit 3 can preferably measure a moving distance in the longitudinal direction of the sensor 2a in the reactor 1 or a moving distance in the flow direction of the fluid.
 センサ位置特定部3としては、接触式またはレーザー式の変位計;センサ2aの移動方向に平行して設置されたスケール;支持体2bの棒状部に付された目盛り等が例示される。変位計を採用する場合は、センサ2aの位置を変位計に表示される数値から読み取ればよく、スケールや目盛りを採用する場合は、センサ2aの位置を目視や画像処理により読み取ればよい。 Examples of the sensor position specifying unit 3 include a contact type or laser type displacement meter; a scale installed in parallel with the moving direction of the sensor 2a; a scale attached to a rod-shaped portion of the support 2b; When the displacement meter is used, the position of the sensor 2a may be read from the numerical value displayed on the displacement meter. When a scale or a scale is used, the position of the sensor 2a may be read visually or by image processing.
<センサ駆動装置>
 本発明に係るセンサシステム10は、必要に応じて、センサ駆動装置4を有していてもよい。センサ駆動装置4とは、具体的には、センサ2aを反応器1の長手方向または流体の流れ方向に移動させることが可能な装置である。センサ駆動装置4にプログラムを組み込んでおけば、一定速度でセンサ2aを移動させたり、予め決められた場所でセンサ2aを停止させたり等、センサ2aの移動を制御することが可能となる。
<Sensor drive device>
The sensor system 10 according to the present invention may include the sensor driving device 4 as necessary. Specifically, the sensor driving device 4 is a device capable of moving the sensor 2a in the longitudinal direction of the reactor 1 or the flow direction of the fluid. If a program is incorporated in the sensor driving device 4, it is possible to control the movement of the sensor 2a, such as moving the sensor 2a at a constant speed or stopping the sensor 2a at a predetermined location.
 センサ駆動装置4は必ずしも必須ではなく、センサシステム10にセンサ駆動装置4を設けない場合には、センサ2aを手動で移動させるとよい。 (4) The sensor driving device 4 is not necessarily required. When the sensor driving device 4 is not provided in the sensor system 10, the sensor 2a may be moved manually.
<データロガー>
 本発明に係るセンサシステム10は、必要に応じて、データロガー5を有していてもよい。データロガー5とは、具体的には、センサ2aで測定された反応器1の内部状態に関する情報や、センサ位置特定部3で特定されたセンサ2aの位置情報を記録する装置である。一つのセンサシステム10に対し、前記データロガー5を1つまたは2つ以上組み合わせて使用するとよい。
<Data logger>
The sensor system 10 according to the present invention may include the data logger 5 as needed. Specifically, the data logger 5 is a device that records information on the internal state of the reactor 1 measured by the sensor 2a and position information of the sensor 2a specified by the sensor position specifying unit 3. It is preferable to use one or a combination of two or more of the data loggers 5 for one sensor system 10.
 データロガー5における情報収集のタイミングは特に限定されず、連続的に情報を収集する;一定の時間毎或いは特定の時間に間欠的に情報を収集する;など、いずれであってもよい。 The timing of collecting information in the data logger 5 is not particularly limited, and may be any of, for example, collecting information continuously; collecting information at regular time intervals or intermittently at a specific time.
 本願は、2018年7月5日に出願された日本国特許出願第2018-128528号に基づく優先権の利益を主張するものである。2018年7月5日に出願された日本国特許出願第2018-128528号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2018-128528 filed on Jul. 5, 2018. The entire contents of the specification of Japanese Patent Application No. 2018-128528 filed on July 5, 2018 are incorporated herein by reference.
 1 反応器
 2a センサ、2b 支持体
 3 センサ位置特定部
 4 センサ駆動装置
 5 データロガー
 6a、6b 原料供給部、6c 混合部、6d 排出部、6e 折り返し構造
 7 流路
 7a 合流路、7b 第1の分岐路、7c 第2の分岐路
 8a 第1の貫通口、8b 第2の貫通口
 10 センサシステム
Reference Signs List 1 reactor 2a sensor 2b support 3 sensor position specifying unit 4 sensor driving device 5 data logger 6a, 6b raw material supply unit, 6c mixing unit, 6d discharge unit, 6e folded structure 7 flow path 7a combined flow path, 7b first Fork, 7c Second fork 8a First through port, 8b Second through port 10 Sensor system

Claims (9)

  1.  長手方向と短手方向を有する反応器と、
     前記反応器の内部において前記長手方向に移動可能に配置されているセンサと、
     前記センサの位置を特定するセンサ位置特定部と、
    を有することを特徴とするセンサシステム。
    A reactor having a longitudinal direction and a lateral direction,
    A sensor movably arranged in the longitudinal direction inside the reactor,
    A sensor position specifying unit for specifying the position of the sensor,
    A sensor system comprising:
  2.  流体が流れる流路を有する反応器と、
     前記流路の内部において前記流体の流れ方向に沿って移動可能に配置されているセンサと、
     前記センサの位置を特定するセンサ位置特定部と、
    を有することを特徴とするセンサシステム。
    A reactor having a flow path through which a fluid flows,
    A sensor arranged movably along the flow direction of the fluid inside the flow path,
    A sensor position specifying unit for specifying the position of the sensor,
    A sensor system comprising:
  3.  前記反応器が管型反応器である請求項1または2に記載のセンサシステム。 The sensor system according to claim 1 or 2, wherein the reactor is a tubular reactor.
  4.  前記管型反応器の流路の相当直径が0.1mm以上50mm以下である請求項3に記載のセンサシステム。 The sensor system according to claim 3, wherein the equivalent diameter of the flow path of the tubular reactor is 0.1 mm or more and 50 mm or less.
  5.  前記センサが、温度、圧力、流量、流速、pH、溶存酸素濃度、粘度、または赤外線を照射したときの吸収スペクトルを検出可能である請求項1~4のいずれか1項に記載のセンサシステム。 The sensor system according to any one of claims 1 to 4, wherein the sensor is capable of detecting a temperature, a pressure, a flow rate, a flow rate, a pH, a dissolved oxygen concentration, a viscosity, or an absorption spectrum when irradiated with infrared rays.
  6.  前記センサが、熱電対または測温抵抗体である請求項5に記載のセンサシステム。 The sensor system according to claim 5, wherein the sensor is a thermocouple or a resistance temperature detector.
  7.  前記センサが支持体に固定されており、
     前記センサが前記支持体よりも上流に存在している請求項1~6のいずれか1項に記載のセンサシステム。
    The sensor is fixed to a support,
    The sensor system according to any one of claims 1 to 6, wherein the sensor is located upstream of the support.
  8.  前記センサが、前記反応器の長手方向の全長のうち入口から50%までに相当する前半位置において移動可能である請求項1~7のいずれか1項に記載のセンサシステム。 (8) The sensor system according to any one of (1) to (7), wherein the sensor is movable at a first half position corresponding to up to 50% of an entire length of the reactor in the longitudinal direction from the inlet.
  9.  前記センサが、前記反応器の長手方向の全長のうち出口から50%までに相当する後半位置において移動可能である請求項1~7のいずれか1項に記載のセンサシステム。 (8) The sensor system according to any one of (1) to (7), wherein the sensor is movable at a rear half position corresponding to up to 50% of an entire length of the reactor in the longitudinal direction from the outlet.
PCT/JP2019/022770 2018-07-05 2019-06-07 Sensor system WO2020008806A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020528746A JPWO2020008806A1 (en) 2018-07-05 2019-06-07 Sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128528 2018-07-05
JP2018128528 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008806A1 true WO2020008806A1 (en) 2020-01-09

Family

ID=69060813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022770 WO2020008806A1 (en) 2018-07-05 2019-06-07 Sensor system

Country Status (2)

Country Link
JP (1) JPWO2020008806A1 (en)
WO (1) WO2020008806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112932A1 (en) * 2021-12-15 2023-06-22 横河電機株式会社 Flow path device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115302A (en) * 1989-05-18 1991-05-16 E I Du Pont De Nemours & Co On-line measurement of property of polymer in continuous polymerization reactor
JPH07294341A (en) * 1994-04-26 1995-11-10 Tonen Corp Automatic temperature distribution measuring device for fixed bed reactor
JPH1019687A (en) * 1996-06-07 1998-01-23 Samsung Electron Co Ltd Method and device for detecting process temperature of diffusion furnace for manufacturing semiconductor device
JP2008545967A (en) * 2005-06-14 2008-12-18 エルジー・ケム・リミテッド Temperature measuring device
JP2009148757A (en) * 2007-12-20 2009-07-09 Man Dwe Gmbh Tube bundle reactor
US20170165632A1 (en) * 2015-12-09 2017-06-15 Blacktrace Holdings Limited Reactor device for reaction fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115302A (en) * 1989-05-18 1991-05-16 E I Du Pont De Nemours & Co On-line measurement of property of polymer in continuous polymerization reactor
JPH07294341A (en) * 1994-04-26 1995-11-10 Tonen Corp Automatic temperature distribution measuring device for fixed bed reactor
JPH1019687A (en) * 1996-06-07 1998-01-23 Samsung Electron Co Ltd Method and device for detecting process temperature of diffusion furnace for manufacturing semiconductor device
JP2008545967A (en) * 2005-06-14 2008-12-18 エルジー・ケム・リミテッド Temperature measuring device
JP2009148757A (en) * 2007-12-20 2009-07-09 Man Dwe Gmbh Tube bundle reactor
US20170165632A1 (en) * 2015-12-09 2017-06-15 Blacktrace Holdings Limited Reactor device for reaction fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112932A1 (en) * 2021-12-15 2023-06-22 横河電機株式会社 Flow path device
JP2023088770A (en) * 2021-12-15 2023-06-27 横河電機株式会社 Flow path device

Also Published As

Publication number Publication date
JPWO2020008806A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US9857256B2 (en) In-line contactless pressure sensors and methods of measuring pressure
US10933398B2 (en) Device for carrying out a chemical reaction by a continuous method
Mohagheghian et al. Characterization of bubble size distributions within a bubble column
WO2020008806A1 (en) Sensor system
EP2997358B1 (en) Arrangement and method for monitoring scaling in heat exchanger
JP7239559B2 (en) Flow type reactor and manufacturing equipment having the same
Miyabayashi et al. Estimation of gas and liquid slug lengths for T-shaped microreactors
CN111215160A (en) Method for measuring droplet speed in micro-reactor channel based on light absorption turbidimetry
CHOI et al. Comparison of probe methods for measurement of bubble properties
Ellis Experimental investigation of fluidized bed systems
JP2008215873A (en) Sensor unit and microreactor system
AU2018340857B2 (en) Detecting settled solids in a conduit for transporting a slurry
JP2008268107A (en) Sensor unit and microreactor system
CN208779148U (en) Detecting device for pipeline blocking based on photoelectric sensor
CN102269694A (en) self-aligning light source and detector assembly
Vaitsis et al. Slug flow hydrodynamics in the presence of catalyst rods
JP5959835B2 (en) Reaction system
JP3473708B2 (en) Capillary tube viscometer, viscosity measuring method using capillary viscometer, and fluid quality control method
CN112162003B (en) Device and method for measuring width of micro-scale flow system crystal metastable region
DE102012004317B4 (en) Fluidkalorimeter
JP5097496B2 (en) Temperature measuring device
JP6683225B2 (en) Total organic carbon meter
KR101697859B1 (en) System for measuring temperature
EP3835407A1 (en) Tubular biomanufacturing assembly
SU890161A1 (en) Device for determination porous material penetrability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830098

Country of ref document: EP

Kind code of ref document: A1