WO2020008496A1 - Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method - Google Patents

Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method Download PDF

Info

Publication number
WO2020008496A1
WO2020008496A1 PCT/JP2018/025050 JP2018025050W WO2020008496A1 WO 2020008496 A1 WO2020008496 A1 WO 2020008496A1 JP 2018025050 W JP2018025050 W JP 2018025050W WO 2020008496 A1 WO2020008496 A1 WO 2020008496A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reference light
hologram recording
hologram
signal light
Prior art date
Application number
PCT/JP2018/025050
Other languages
French (fr)
Japanese (ja)
Inventor
利樹 石井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/025050 priority Critical patent/WO2020008496A1/en
Publication of WO2020008496A1 publication Critical patent/WO2020008496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors

Definitions

  • the present invention relates to a hologram recording device, a hologram reproducing device, a hologram recording method, and a hologram reproducing method.
  • Patent Document 1 discloses a technique relating to dynamic aperture holography.
  • Paragraph 0053 of the document states, “Operation 301 passes the first signal beam 243A through the objective lens 245 of the first embodiment, and then projects the first signal beam 243A onto the photosensitive recording medium 258 with the first signal beam angle aperture 270A.
  • the paragraph 0055 states that “the first reference beam 233A is projected through the objective lens 245 of the first embodiment onto the photosensitive recording medium 258 with the first reference beam angle aperture 276A.
  • the first signal beam 243A and The first reference beams 233A interfere with each other to generate a first interference pattern 248A, and a portion of the first interference pattern 248A present in the photosensitive recording layer 260 of the recording medium 258 is partially embedded in the photosensitive recording medium 258. It is recorded as the first hologram 249A.
  • the present invention has been made in view of the above points, and has as its object to improve the recording density with a simple configuration in a hologram recording technique.
  • a hologram recording device that records information by irradiating a recording medium with signal light and reference light, and a light source unit that emits a light beam
  • An optical separation unit that separates the light beam into the signal light and the reference light, a spatial light modulation unit that modulates the signal light, an objective lens that transmits the signal light and the reference light,
  • a position control unit configured to change a position of a signal light irradiation area that is an irradiation area of the signal light on the objective lens and a reference light irradiation area that is an irradiation area of the reference light on the objective lens;
  • An angle control unit that controls an incident angle with respect to the recording medium, wherein the signal light transmitted through the signal light irradiation area whose position is fixed by the position control unit is transmitted to the recording medium.
  • the recording density can be improved with a simple configuration.
  • FIG. 3 is a diagram illustrating an example of functional blocks of the hologram recording / reproducing device.
  • FIG. 2 is a diagram (part 1) illustrating a configuration example of a pickup according to the first embodiment.
  • FIG. 3 is a diagram (part 2) illustrating a configuration example of a pickup according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens according to the first embodiment.
  • FIG. 3 is a block diagram of a signal generation circuit of the hologram recording / reproducing device.
  • FIG. 3 is a block diagram of a signal processing circuit of the hologram recording / reproducing apparatus.
  • 4 is a flowchart illustrating an example of preparation for recording processing and reproduction processing in the hologram recording / reproduction device.
  • 9 is a flowchart illustrating an example of a recording process. It is a flow chart which shows an example of reproduction processing. It is a flowchart which shows an example of a signal generation process. It is a flowchart which shows an example of a signal reproduction process.
  • 5 is a flowchart illustrating an example of a data recording process according to the first embodiment. It is a figure showing the example of composition of the pickup in a 2nd embodiment. It is a figure showing an example of arrangement of signal light and reference light in the objective lens of a 2nd embodiment.
  • 9 is a flowchart illustrating an example of a data recording process according to the second embodiment. It is a figure showing the example of composition of the pickup in a 3rd embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a pickup and a recording principle.
  • FIG. 3 is a diagram illustrating a configuration example of a pickup and a principle of reproduction.
  • FIG. 1 is a diagram illustrating an example of functional blocks of the hologram recording / reproducing device 10.
  • the hologram recording / reproducing apparatus 10 is a recording / reproducing apparatus for the hologram recording medium 1 for recording and / or reproducing digital information using holography.
  • the hologram recording / reproducing device 10 is communicably connected to an external control device 91 via an input / output control circuit 90.
  • the hologram recording / reproducing apparatus 10 When recording information, the hologram recording / reproducing apparatus 10 receives a signal (user data) indicating information to be recorded from the external control device 91 via the input / output control circuit 90. When reproducing information, the hologram recording / reproduction device 10 transmits a signal indicating the reproduced information to the external control device 91 via the input / output control circuit 90.
  • the hologram recording and reproducing apparatus 10 includes a pickup 11, a reproducing reference light optical system 12, a cure optical system 13, a disk rotation angle detecting optical system 14, a rotation motor 50, an access control circuit 81, and a light source driving circuit. 82, a servo signal generation circuit 83, a servo control circuit 84, a signal processing circuit 85, a signal generation circuit 86, a shutter control circuit 87, a disk rotation motor control circuit 88, a controller 89, and an input / output control circuit 90.
  • the pickup 11 irradiates reference light and signal light obtained from the light generated by the light source drive circuit 82 onto the optical recording medium to generate a hologram, and plays a role of recording digital information on the recording medium.
  • the information to be recorded is sent to a spatial light modulator (described later) in the pickup 11 by the controller 89 via the signal generation circuit 86 and modulated.
  • the pickup 11 causes the reference light generated using the reproduction reference light optical system 12 to enter the hologram recording medium 1 in a direction opposite to the direction at the time of recording.
  • the pickup 11 detects the reference light for reproduction by a light detection unit described later, and reproduces a signal by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light irradiated on the hologram recording medium 1 can be adjusted by controlling the opening and closing time of the shutter in the pickup 11 by the controller 89 via the shutter control circuit 87.
  • the ⁇ cure optical system 13 has a role of generating a light beam used for pre-curing and post-curing of the hologram recording medium 1.
  • Precuring is a pre-process of irradiating a predetermined light beam before irradiating a desired position with reference light and signal light when recording information at a desired position in the hologram recording medium 1.
  • the post cure is a post-process in which information is recorded at a desired position in the hologram recording medium 1 and then a predetermined light beam is irradiated to make it impossible to additionally record at the desired position.
  • the disk rotation angle detecting optical system 14 is used to detect the rotation angle of the hologram recording medium 1.
  • the hologram recording medium 1 is configured to be rotatable by a rotation motor 50.
  • the disk rotation angle detecting optical system 14 detects a signal corresponding to the rotation angle. Thereafter, under the control of the controller 89, the rotation angle can be adjusted via the disk rotation motor control circuit 88 using the detected signal.
  • a predetermined light source drive current is supplied from the light source drive circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the optical system 14 for detecting the rotation angle of the disk. Can emit a light beam.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining two or more optical system configurations into one optical system configuration.
  • the pickup 11 and the cure optical system 13 are provided with a mechanism capable of sliding the positions of the hologram recording medium 1 in the radial direction, and the position is controlled through the access control circuit 81 under the control of the controller 89.
  • FIG. 15 is a diagram showing a configuration example of the pickup 11 and a recording principle.
  • the light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303.
  • the shutter 303 When the shutter 303 is open, the light beam passes through the shutter 303 and then enters the optical element 304.
  • the optical element 304 is, for example, a half-wave plate, and controls the polarization direction such that the light amount ratio between the p-polarized light and the s-polarized light becomes a predetermined desired ratio.
  • the light beam whose polarization direction has been controlled by the optical element 304 then enters the optical separation unit 305.
  • the optical separation unit 305 is, for example, a PBS (Polarizing Beam Splitter) prism.
  • the light beam transmitted through the optical separation unit 305 functions as a signal light 306.
  • the light beam diameter is expanded by a beam expander 308, the light beam passes through a phase mask 309, a relay lens 310, and a PBS prism 311 to generate spatial light.
  • the light enters the modulator 312.
  • the spatial light modulator 312 adds information to the signal light 306 and emits it.
  • the emitted signal light 306 is reflected by the PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. After that, the signal light 306 is focused on the hologram recording medium 1 by the objective lens 315.
  • the light beam reflected by the optical separation unit 305 functions as the reference light 307, and after being set to a predetermined polarization direction by the polarization direction conversion element 316 according to recording or reproduction, the mirror 317 and the mirror 318 are turned on.
  • the light then enters the angle control unit 319.
  • the angle control unit 319 for example, a galvanomirror can be used.
  • the angle control unit 319 can adjust the angle by the actuator 320. That is, the incident angle of the reference beam 307 that is transmitted through the lens 321, reflected by the mirror 322, transmitted through the objective lens 315, and then incident on the hologram recording medium 1 can be controlled to a desired angle.
  • an element that converts the wavefront of the reference light 307 may be used in the angle control unit 319 instead of the galvanomirror.
  • angle control unit 319 can change the incident angle of the reference beam 307 incident on the hologram recording medium 1, so that recording by angle multiplexing is possible.
  • a hologram recorded in the same area on the hologram recording medium 1 at a different angle of the reference light will be described as a hologram corresponding to a certain angle, and a set of pages recorded by angle multiplexing in the same area. Will be described as a book.
  • FIG. 16 is a diagram showing a configuration example of the pickup 11 and a principle of reproduction. This drawing is a diagram for explaining the principle of reproduction in the pickup 11 having the same configuration as that of FIG.
  • a reference beam is made incident on the hologram recording medium 1, and a light beam transmitted through the hologram recording medium 1 is reflected by an actuator 323 to an angle control unit 324 whose angle can be adjusted. Generates a reference light for reproduction.
  • the reference light for reproduction is obtained by irradiating the reference light from the surface of the hologram recording medium 1 opposite to the surface irradiated with the reference light during recording. That is, the hologram recording medium 1 is irradiated with the reference light in a direction opposite to that of the recording.
  • the reference light 326 reproduced by the reference light for reproduction propagates through the objective lens 315, the relay lens 313, and the spatial filter 314. After that, the reference light 326 passes through the PBS prism 311 and enters the light detection unit 325. When the light detection unit 325 detects the reference light 326, the signal recorded by the signal processing circuit 85 can be reproduced as described above.
  • an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor can be used, but the element is not limited as long as page data can be reproduced. .
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the present invention improves the recording density by using the following representative means.
  • FIG. 2 is a diagram (part 1) illustrating a configuration example of the pickup 11 in the first embodiment.
  • a lens 501 having a larger aperture is used instead of the lens 321 shown in FIG.
  • a mirror 502 extending in the scanning direction of the reference light is used instead of the mirror 322 shown in FIG.
  • the reference light shown in FIG. 2 is transmitted through the left side of the objective lens 315.
  • the signal light shown in FIG. 2 is transmitted through the right side of the objective lens 315.
  • FIG. 3 is a diagram (part 2) illustrating a configuration example of the pickup 11 in the first embodiment. This figure shows an example in which the control of the signal light and the reference light is changed in the configuration shown in FIG. As a result, the reference light shown in FIG. 3 passes through the right side of the objective lens 315. The signal light shown in FIG. 3 is transmitted through the left side of the objective lens 315.
  • the angle control unit 319 By changing the angle of the angle control unit 319, the irradiation position of the reference light on the mirror 502 can be changed. By changing the irradiation position of the reference light, the incident angle of the reference light incident on the hologram recording medium 1 can be changed.
  • the controller 89 functions as a position control unit that controls the change of the irradiation position of the reference light.
  • the incident angle of the reference light incident on the hologram recording medium 1 is inverted.
  • the controller 89 changes the area of the signal light to be modulated by the spatial light modulator 312, and changes the irradiation position of the signal light to the mirror 502. That is, the controller 89 also functions as a position control unit that controls the change of the irradiation position of the signal light.
  • the incident angle of the signal light incident on the hologram recording medium 1 is inverted by changing the irradiation position.
  • the signal light modulated by the spatial light modulator 312 and the reference light reflected by the mirror 502 are guided coaxially and transmitted through the objective lens 315.
  • the hologram recording medium 1 is referred to in the opposite direction to the recording as in the case described with reference to FIG. Irradiate light.
  • the controller 89 changes the position of the reference light irradiation area as in the case of recording.
  • the setting information such as the timing and the incident angle regarding the change of the position of the reference light irradiation area is predetermined.
  • the controller 89 may specify the setting information by referring to the management information of the hologram recording medium 1.
  • the controller 89 may refer to setting information defined by a standard defined for recording and reproduction using a hologram.
  • FIG. 4 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens 315 of the first embodiment.
  • the upper part of FIG. 4 is a diagram showing the arrangement of the signal light and the reference light when the objective lens 315 shown in FIGS. 2 and 3 is viewed from the signal light irradiation direction (that is, the optical axis direction of the objective lens 315). . That is, the upper part of FIG. 4 shows a state in which the objective lens 315 is viewed from the upper side to the lower side of the paper of FIGS. 2 and 3.
  • the lower part of FIG. 4 shows the hologram recording medium 1, the signal light, and the reference light from the near side to the far side of the paper surface of FIGS. 2 and 3 (that is, from the same direction as FIGS. 2 and 3). Indicates the status. That is, the lower part of FIG. 4 illustrates a state in which the signal light and the reference light applied to the hologram recording medium 1 are viewed from a direction orthogonal to a plane including the signal light and the reference light transmitted through the objective lens 315. It can be said that there is. First, the upper and lower views on the left side of FIG. 4 will be described.
  • the objective lens 315 and the mirror 502 are arranged so that the rectangular mirror 502 can be seen in the effective diameter 101 when the objective lens 315 is viewed from the optical axis direction. 4 shows the rear surface of the mirror 502, and does not show the reflection surface on the rear side of the rear surface.
  • the position of the reference light changes on a line connecting the points 503a and 504a on the reflection surface of the mirror 502.
  • the irradiation area of the reference light on the objective lens 315 is defined as a reference light irradiation area.
  • the scanning of the reference light changes the incident angle of the reference light on the hologram recording medium 1 from the innermost angle 505a to the outermost angle 506a.
  • the signal light is arranged in a region 507a shown on the upper left side of FIG.
  • the irradiation area of the signal light on the objective lens 315 is defined as the signal light irradiation area.
  • the signal light is emitted toward the objective lens 315 from the rear side of the mirror 502. That is, the signal light is not reflected on the reflection surface of the mirror 502.
  • the spatial light modulator 312 includes information in the signal light irradiated on the focal plane of the objective lens 315 excluding a region that is a shadow of the mirror 502.
  • the incident angle of the signal light on the hologram recording medium 1 is in a range from the innermost angle 508a to the outermost angle 509a.
  • Angle multiplex recording is performed by changing the incident angle of the reference light from the innermost angle 505a to the outermost angle 506a. During that time, the position of the signal light irradiation area 507a is fixed. That is, while the signal light transmitted through the signal light irradiation area 507a whose position is fixed is incident on the recording medium 1, the angle control unit 319 changes the incident angle of the reference light. Thereby, the reference light is incident on the recording medium 1 at a plurality of different angles, and angle multiplex recording is performed.
  • the position of the reference light changes on the line connecting the points 503b and 504b on the reflection surface of the mirror 502 under the control of the angle controller 319.
  • the incident angle of the reference light on the hologram recording medium 1 changes from the innermost angle 505b to the outermost angle 506b.
  • the signal light is arranged in an area 507b shown on the upper right side in FIG.
  • the incident angle of the signal light on the hologram recording medium 1 ranges from the innermost angle 508b to the outermost angle 509b. While the signal light transmitted through the signal light irradiation area 507b having a fixed position and size is incident on the recording medium 1, the angle control unit 319 changes the incident angle of the reference light from the innermost angle 505b to the outermost angle 506b. As a result, angle multiplex recording is performed on the signal light irradiated to the signal irradiation area 507b.
  • the positions of the signal light irradiation area and the reference light irradiation area are switched under the control of the controller 89. It is desirable that the size of the signal light irradiation region be constant before and after the position of the signal light irradiation region and the reference light irradiation region are changed. As a result, the magnitude of the signal light on the hologram recording medium 1 becomes constant. With this configuration, it is not necessary to change the page format, and it is possible to increase the recording density without increasing the load of signal processing.
  • the signal light irradiation region and the reference light irradiation region are located at positions facing each other with the optical axis of the objective lens 315 as the center, as shown in the upper two figures of FIG.
  • the shape of the signal light irradiation region is a line-symmetric shape with respect to a certain straight line passing through the optical axis of the objective lens 315.
  • the positions of the signal light irradiation region and the reference light irradiation region are changed so as to rotate around the optical axis of the objective lens 315.
  • the effect of peristrographic multiplexing is obtained, and the recording density can be increased.
  • the width 509 of the mirror 502 is a size that includes most (for example, 95%) of the reference light applied to the mirror 502. That is, the width 509 of the mirror 502 is configured to substantially include the reference light.
  • the irradiation range of the reference light with respect to the mirror 502 is maximized when the incident angle is maximized. That is, the width 509 of the mirror 502 is large enough to substantially reflect the reference light when the incident angle is the maximum.
  • the focusing position of the reference light is considered. It is preferable that the reference light be condensed at any part on the mirror 502 and then converted into parallel light by the objective lens 315.
  • the angle control unit 319 When irradiating the reference light to the mirror 502 under the control of the angle control unit 319, when the reference light is irradiated so as to be condensed at a position closer to the left or right on the mirror 502, the light at the converging position is not At the end of the mirror 502, the irradiation range of the reference light becomes the largest.
  • the irradiation range of the reference light becomes the largest at the point 504b in the upper right diagram of FIG.
  • the irradiation range of the reference light is the largest at both ends of the mirror 502 (that is, at the points 504a and 504b). It becomes smaller than the irradiation range at the point 504b when the condensing position is the point 504a.
  • the center of the mirror 502 indicates a position on the mirror 502 where the reference light reflected by the mirror 502 is irradiated near the center of the objective lens 315.
  • the signal light is not irradiated to the shadow area of the mirror 502, it is desirable to make the mirror 502 thinner when the signal light contains a lot of information. Therefore, in the present embodiment, it is desirable to design the reference light condensing position at the center of the mirror 502. As a result, a portion of the mirror 502 that becomes a shadow can be reduced, so that a reduction in the page data capacity of the signal light can be suppressed.
  • FIG. 5 is a block diagram of the signal generating circuit 86 of the hologram recording / reproducing apparatus 10.
  • the input / output control circuit 90 notifies the controller 89 that the input of the user data has started.
  • the controller 89 receives the notification and instructs the signal generation circuit 86 to record and process one page of data input from the input / output control circuit 90.
  • the processing command from the controller 89 is sent to the sub-controller 701 in the signal generation circuit 86 via the control line 708.
  • the sub-controller 701 controls via the control line 708 such that the signal processing circuits 85 operate in parallel.
  • the memory control circuit 703 controls to store user data input from the input / output control circuit 90 via the data line 709 in the memory 702.
  • a CRC (Cyclic Redundancy Check) operation circuit 704 controls the user data to be converted into a CRC.
  • a scramble circuit 705 performs scrambling to add a pseudo-random number data sequence to the CRC-converted user data
  • an error correction coding circuit 706 controls to perform error correction coding to add a parity data sequence.
  • the pickup (spatial light modulator) interface circuit 707 reads the error-corrected coded data from the memory 702 in the arrangement order of the two-dimensional data on the spatial light modulator 312, and specifies a marker that is a reference at the time of reproduction. Add. After that, the two-dimensional data is transmitted to the spatial light modulator 312 in the pickup 11.
  • FIG. 6 is a block diagram of the signal processing circuit 85 of the hologram recording / reproducing apparatus 10.
  • the controller 89 instructs the signal processing circuit 85 to reproduce one page of image data input from the pickup 11. .
  • the processing command from the controller 89 is notified to the sub-controller 801 in the signal processing circuit 85 via the control line 811.
  • the sub-controller 801 controls each signal processing circuit 85 via the control line 811 so that the signal processing circuits 85 operate in parallel. First, the sub-controller 801 controls to store image data input from the pickup 11 via the pickup (photodetector) interface circuit 810 in the memory 802 via the control line 811.
  • the sub-controller 801 When the image data stored in the memory 802 reaches a certain fixed amount, the sub-controller 801 performs control to detect a marker from the image data stored in the memory 802 and extract a valid data range by using an image position detection circuit. 809 is performed. Next, using the detected marker, the image distortion correction circuit 808 performs distortion correction such as image tilt, magnification, and distortion, and performs control to convert the image data into a desired two-dimensional data size.
  • a binarization circuit 807 performs a binarization process of determining each bit data of a plurality of bits forming two-dimensional data in two-dimensional data whose size has been converted as “0” or “1”. An operation of storing data in the order of reproduction data output on the 802 is performed. Next, an error included in each data string is corrected by an error correction circuit 806, and a scramble descramble circuit 805 descrambles the pseudo random number data string. Thereafter, the CRC calculation circuit 804 checks whether or not the user data on the memory 802 contains an error. Thereafter, the user data is transmitted from the memory 802 to the input / output control circuit 90.
  • FIG. 7A is a flowchart illustrating an example of preparation for recording processing and reproduction processing in the hologram recording / reproduction device 10. The following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89.
  • the hologram recording / reproduction device 10 determines whether the inserted disk is the hologram recording medium 1 for recording or reproducing digital information using holography (step S701). ).
  • the hologram recording / reproducing apparatus 10 reads the disk information (control data) included in the hologram recording medium 1 (Step S702).
  • the hologram recording / reproducing apparatus 10 acquires, for example, information on the hologram recording medium 1 itself and information on various setting conditions during recording or reproduction.
  • the hologram recording / reproducing apparatus 10 performs various adjustments according to the control data and learning processing related to the pickup 11 (step S703). After that, the hologram recording / reproducing apparatus 10 completes preparations for recording or reproduction (Ready state) (step S704). Thereafter, in the hologram recording / reproducing apparatus 10, the processing of this flowchart ends.
  • FIG. 7B is a flowchart illustrating an example of the recording process.
  • the following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89, similarly to the processing shown in FIG. This process is executed after the completion of the preparation process shown in FIG.
  • the hologram recording / reproducing apparatus 10 receives recording data from the external control device 91 (Step S711). The received recording data is then sent to the spatial light modulator 312 in the pickup 11.
  • the hologram recording / reproducing apparatus 10 executes a learning process for recording (step S712). Specifically, the hologram recording / reproducing apparatus 10 performs various recording learning processes as needed in order to record high-quality information on the hologram recording medium 1.
  • the recording learning process includes, for example, a process of optimizing the power of the light source 301 and a process of optimizing the exposure time by the shutter 303.
  • the hologram recording / reproducing device 10 performs a seek process (Step S713). Specifically, the hologram recording / reproducing apparatus 10 controls the access control circuit 81 to position the pickup 11 and the cure optical system 13 at predetermined positions on the hologram recording medium 1. When the hologram recording medium 1 has the address information, the address information is reproduced and it is confirmed whether or not the hologram recording medium 1 is positioned at a target position. If the position is not positioned at the target position, the amount of deviation from the target position is calculated, and the operation of positioning again is repeated.
  • the hologram recording / reproducing apparatus 10 performs a precure process (step S714). Specifically, the hologram recording / reproducing apparatus 10 precurs a predetermined area using a light beam emitted from the cure optical system 13.
  • Step S715 the hologram recording / reproducing device 10 performs a data recording process. This processing will be described later in detail.
  • the hologram recording / reproducing device 10 performs a post cure process (step S716). Specifically, the hologram recording / reproducing apparatus 10 performs post cure using a light beam emitted from the cure optical system 13. At that time, data can be verified as needed. Thereafter, the hologram recording medium 1 ends the processing of this flowchart.
  • FIG. 7C is a flowchart illustrating an example of the reproduction process.
  • the following processing is executed under the control of the controller 89 in the hologram recording / reproducing apparatus 10 as in the processing shown in FIGS. 7A and 7B. This process is executed after the completion of the preparation process shown in FIG.
  • the hologram recording / reproducing device 10 performs a seek process (Step S721). More specifically, the hologram recording / reproducing apparatus 10 controls the access control circuit 81 to position the pickup 11 and the reference light beam system for reproduction 12 at predetermined positions on the hologram recording medium 1. When the hologram recording medium 1 has the address information, the hologram recording / reproducing apparatus 10 reproduces the address information and checks whether the hologram recording medium 1 is positioned at a target position. If the position is not positioned at the target position, the amount of deviation from the target position is calculated, and the operation of positioning again is repeated.
  • the hologram recording / reproducing device 10 performs a data reproducing process (Step S722). Specifically, the hologram recording / reproducing apparatus 10 emits reference light from the pickup 11 and detects reference light for reproduction. The hologram recording / reproducing apparatus 10 reads information recorded on the hologram recording medium 1 from the detected reproduction reference light.
  • the hologram recording / reproducing device 10 transmits the reproduced data (Step S723). Specifically, the hologram recording / reproducing device 10 transmits the read information to the external control device 91. Thereafter, the hologram recording medium 1 ends the processing of this flowchart.
  • FIG. 8A is a flowchart illustrating an example of the signal generation process. This figure shows an example of processing in the signal generation circuit 86 after the data reception processing in step S711 in FIG. 7B until the received data is converted into two-dimensional data output from the spatial light modulator 312. It is shown.
  • step S801 The processing in step S801 is the same as the processing in step S711, and a description thereof will not be repeated.
  • the received data is notified to the signal generation circuit 86 via the input / output control circuit 90.
  • the signal generation circuit 86 performs a CRC adding process (step S802). Specifically, the signal generation circuit 86 divides the received data into a plurality of data strings, and converts each data string into a CRC so that an error can be detected during reproduction.
  • the signal generation circuit 86 converts the data into scrambled data (step S803). Specifically, the signal generation circuit 86 adds a pseudo-random number data sequence to the data sequence for the purpose of making the number of on-pixels and the number of off-pixels of the CRC-converted data substantially equal, and preventing the same pattern from being repeated.
  • the signal generation circuit 86 performs error correction coding (step S804). Specifically, the signal generation circuit 86 performs error correction coding such as Reed-Solomon code so that error correction can be performed during data reproduction.
  • error correction coding such as Reed-Solomon code
  • the signal generation circuit 86 performs two-dimensional data conversion (step S805). Specifically, the signal generation circuit 86 converts the data sequence into M ⁇ N two-dimensional data, and repeats the conversion for one page, thereby generating one page of two-dimensional data.
  • the signal generation circuit 86 performs marker addition (step S806). More specifically, the signal generation circuit 86 adds, to the two-dimensional data, a marker that is used as a reference in image position detection during reproduction and image distortion correction.
  • the signal generation circuit 86 performs pattern transfer to the spatial light modulator 312 (Step S807).
  • the signal generation circuit 86 transmits the two-dimensional data with the marker added to the spatial light modulator 312. Thereafter, the processing of this flowchart ends.
  • FIG. 8B is a flowchart illustrating an example of the signal reproduction process. This figure shows an example of the processing performed by the signal processing circuit 85 after the two-dimensional data is detected by the light detection unit 325 in step S722 in FIG. 7C and before the reproduction data is transmitted in step S723. It is shown.
  • the photodetector acquires a reproduced image (step S811). Specifically, the signal processing circuit 85 acquires data detected by the photodetector.
  • the signal processing circuit 85 detects an image position (step S812).
  • the signal processing circuit 85 detects an image position based on a marker included in the data.
  • the signal processing circuit 85 performs image distortion correction (step S813). More specifically, the signal processing circuit 85 corrects distortion such as image inclination, magnification, and distortion.
  • the signal processing circuit 85 performs a binarization process (step S814).
  • the signal processing circuit 85 removes the marker (Step S815).
  • the signal processing circuit 85 acquires two-dimensional data (step S816). Specifically, the signal processing circuit 85 acquires one page of two-dimensional data from which the marker has been removed. The signal processing circuit 85 converts the obtained two-dimensional data into a plurality of data strings.
  • the signal processing circuit 85 performs an error correction process (step S817).
  • the signal processing circuit 85 removes the parity data sequence by performing an error correction process.
  • the signal processing circuit 85 performs descrambling (step S818).
  • the signal processing circuit 85 performs error detection (step S819). Specifically, the signal processing circuit 85 performs an error detection process using the CRC and deletes the CRC parity.
  • the signal processing circuit 85 transmits the reproduced data (step S820).
  • the processing performed in this step is the same as the processing performed in step S723 shown in FIG. Thereafter, the processing of this flowchart ends.
  • FIG. 9 is a flowchart illustrating an example of a data recording process according to the first embodiment. This figure shows the processing performed in step S715 of FIG. 7B in more detail. The following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89.
  • the hologram recording / reproducing apparatus 10 positions the hologram recording medium 1 on the first page (Step S901). Specifically, the hologram recording / reproducing apparatus 10 positions the hologram recording medium 1 at the position where the first page is recorded, and controls the angle of the reference light using the angle control unit 319. The angle of the reference light is the angle at which the first page is recorded.
  • the hologram recording / reproducing apparatus 10 performs page recording (step S902). Specifically, the hologram recording / reproducing apparatus 10 performs page recording by modulating page data using the spatial light modulator 312 and causing the signal light and the reference light to interfere with each other in the hologram recording medium 1.
  • the hologram recording / reproducing apparatus 10 determines whether or not it is the last angle multiplexing (Step S903). Specifically, the hologram recording / reproducing apparatus 10 determines whether or not the angle of the reference light is the last angle at which angle multiplexing is performed.
  • the hologram recording / reproducing device 10 determines that the angle of the reference light is not the last angle (“No” in step S903), the hologram recording / reproducing device 10 changes the angle of the reference light (step S904). Specifically, the hologram recording / reproducing apparatus 10 changes the angle of the reference light to the angle to be recorded next, and performs a page recording process in Step 902.
  • the hologram recording / reproducing apparatus 10 determines whether or not the last perisotropic multiplexing is performed. Is determined (step S905). Specifically, the hologram recording / reproducing apparatus 10 determines whether or not the arrangement of the signal light and the reference light is an arrangement for performing the last peristroic multiplexing.
  • the hologram recording / reproducing apparatus 10 determines that the last peristrographic multiplexing is not performed ("No" in step S905), the hologram recording / reproducing apparatus 10 changes the use area of the spatial light modulator 312 (step S906). ). As a result of this processing, the position of the signal light irradiation area on the objective lens 315 is changed.
  • the hologram recording / reproducing device 10 changes the use area of the reference light (Step S907). As a result of this processing, the position of the reference light irradiation area on the objective lens 315 is changed. After that, the hologram recording / reproduction device 10 shifts the processing to step S902.
  • the hologram recording / reproducing apparatus 10 determines whether the book recorded in step S902 is the last book. It is determined whether or not it is (step S908). If the hologram recording / reproducing apparatus 10 determines that the book is the last book (“Yes” in step S908), the processing of this flowchart ends. That is, the data recording ends.
  • the hologram recording / reproducing apparatus 10 determines that the book is not the last book ("No" in step S908), the hologram recording / reproducing apparatus 10 changes the recording position (step S909). Specifically, the hologram recording / reproducing apparatus 10 changes the recording position of the hologram recording medium 1. Thereafter, the hologram recording medium 1 returns the process to step S902. As a result, the peristrographic multiplexing process is continuously performed.
  • the present embodiment it is possible to perform recording by combining angle multiplexing and peristlographic multiplexing with a simple configuration. Thereby, the recording density can be improved with a simple configuration.
  • the pickup 11 in the present embodiment has two angle control units that control the incident angle of the reference light.
  • the scanning directions of the reference light by the two angle controllers are orthogonal to each other.
  • FIG. 10 is a diagram illustrating a configuration example of the pickup 11 according to the second embodiment.
  • the pickup 11 shown in FIG. 10 has an angle control unit 1101 instead of the mirror 318, and has a + type mirror 1103 instead of the mirror 502.
  • the pickup 11 shown in FIG. 10 has a polarization direction controller 1104.
  • a ⁇ wavelength plate is used for the polarization direction controller 1104.
  • the angle control unit 1101 can adjust the angle by the actuator 1102. It is desirable that the angle adjustment direction of the angle control unit 1101 is perpendicular to the angle adjustment direction of the angle control unit 319. That is, the scanning direction of the reference light scanned on the + mirror 1103 by the angle control unit 1101 and the scanning direction of the reference light scanned on the + mirror 1103 by the angle control unit 319 are orthogonal to each other.
  • a galvanomirror can be used for the angle control unit 1101.
  • the + type mirror 1103 has a shape of + (plus), and has the same function as that of two mirrors 502 arranged orthogonally.
  • the reference light can be made to enter the hologram recording medium 1 from four different directions. As a result, the reference light can be scanned two-dimensionally. Note that, with the change in the scanning direction of the reference light, the spatial light modulator 312 changes the position of the signal light irradiation region formed by irradiating the objective lens 315 with the signal light.
  • the polarization direction control unit 1104 changes the azimuth of the polarization of the signal light 306 and the reference light 307 reflected by the + type mirror 1103, so that the s-polarized light is obtained.
  • the scanning direction of the reference light is changed using two angle control units.
  • an element capable of controlling scanning in a two-dimensional direction can be used instead of the angle control unit. is there.
  • an angle control unit (not shown) is further added to the angle control unit 324 so that the reference light can be two-dimensionally scanned.
  • an element capable of controlling the reflection direction in two dimensions may be used instead of the angle control unit 324.
  • FIG. 11 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens 315 of the second embodiment.
  • This figure is a diagram showing the arrangement of the signal light and the reference light when the objective lens 315 shown in FIG. 10 is viewed from the signal light irradiation direction (that is, the optical axis direction of the objective lens 315). That is, FIG. 11 shows a state in which the objective lens 315 is viewed from the upper side to the lower side in FIG.
  • the back of the + type mirror 1103 is shown in FIG. The back side of the back is the reflection surface.
  • a positive mirror 1103 is arranged in the effective diameter 101 of the objective lens 315.
  • the reference light is scanned two-dimensionally by the angle control unit 1101 and the angle control unit 319, the reference light is reflected by the reflection surface of the + type mirror 1103.
  • the position of the reference light changes on the lines 1203a, 1203b, 1203c, and 1203d by scanning.
  • the + type mirror 1103 is configured to extend along the reference beam scanned orthogonally. Further, according to this configuration, it can be said that the reference light enters the hologram recording medium 1 from four different directions (upward, downward, rightward, and leftward directions shown in FIG. 11).
  • the spatial light modulator 312 arranges the signal light in the area 1204a. Similarly, when the reference light is moving on the line 1203b, the spatial light modulator 312 places the signal light in the region 1204b. When the reference light is moving on the line 1203c, the signal light is arranged in the region 1204c. When the reference light is moving on the line 1203d, the signal light is arranged in the region 1204d. Note that, as an example, even after the position is changed, as shown in FIG. 11, the signal light irradiation region and the reference light irradiation region are at positions facing each other around the optical axis of the objective lens 315. The change in the positions of the signal light irradiation region and the reference light irradiation region is not limited to the order shown in FIG.
  • the arrangement of the signal light and the reference light is rotated by 90 degrees around the optical axis of the objective lens 315.
  • the spatial light modulator 312 records the signal light on the focal plane of the objective lens 315, which is applied to the area excluding the shadow area of the + type mirror 1103. Include information.
  • the signal light irradiation region does not have to have the shape shown in FIG. 11, and may have any shape for suppressing crosstalk.
  • FIG. 12 is a flowchart illustrating an example of a data recording process according to the second embodiment.
  • steps S1221 to S1225 is the same as the processing performed in steps S901 to S905 shown in FIG.
  • step S1225 when the hologram recording / reproducing apparatus 10 determines that the data is not the last perisotropic multiplexing (“No” in step S1225), the hologram recording / reproducing apparatus 10 changes the polarization of the signal light and the reference light. (Step S1231). Specifically, the hologram recording / reproducing apparatus 10 controls the polarization using the polarization direction control unit 1104 so that the signal light and the reference light become s-polarized light.
  • steps S1226 to S1229 is the same as the processing performed in steps S906 to S909 in FIG.
  • the effect of peristlographic multiplexing in which recording is performed by rotating the hologram with respect to the optical axis is obtained. it can. In the present embodiment, four multiplexes can be performed.
  • a third embodiment will be described.
  • a half beam splitter 1401 is arranged instead of the mirror 502 or the + type mirror 1103.
  • points different from the first embodiment and the second embodiment will be described.
  • FIG. 13 is a diagram illustrating a configuration example of the pickup 11 according to the third embodiment.
  • the half beam splitter 1401 reflects the reference light and guides it to the objective lens 315.
  • the half beam splitter 1401 transmits the signal light and guides the signal light to the objective lens 315. That is, the reference light and the signal light are guided coaxially by the half beam splitter 1401 and pass through the objective lens 315.
  • the reference beam is scanned in two orthogonal directions to use the + type mirror 1103.
  • the half beam splitter 1401 has a reflecting surface on the surface, the reference beam can be arbitrarily set. Can be scanned in the direction of. That is, more peristroic multiplexing than four multiplexing is possible.
  • approximately half of the light amount of the signal light is reflected by the half beam splitter 1401, and approximately half of the reference light is transmitted by the half beam splitter 1401. That is, the light amounts of the signal light and the reference light are reduced by half.
  • FIG. 14 is a diagram illustrating a configuration example of the pickup 11 according to a modified example of the third embodiment.
  • the pickup 11 according to the present modification includes a reproduction reference optical system 12 including an angle control unit 324 and an actuator 323 for recording information on the hologram recording medium 1, and a reproduction reference optical system including an angle control unit 1505 and an actuator 1504.
  • the optical optical system 12 is included. Further, it further includes a polarization direction controller 1502 for controlling the polarization of the signal light and the reproduction light, and an objective lens 1503.
  • the reference light transmitted through the half beam splitter 1401 without being reflected is transmitted through the polarization direction control unit 1502 and irradiated on the objective lens 1503.
  • the signal light reflected without being transmitted through the half beam splitter 1401 is transmitted through the polarization direction controller 1502 and is irradiated on the objective lens 1503. That is, the signal light and the reference light are guided coaxially by the half beam splitter 1401.
  • the signal light and the reference light transmitted through the objective lens 1503 interfere with each other on the hologram recording medium 1501 to form a hologram.
  • the reference light for reproduction can be generated by reflecting the reference light to the angle control unit 1505 whose angle can be adjusted by the actuator 1504.
  • the hologram same as that of the hologram recording medium 1 is stored in the hologram recording medium 1501.
  • the signal light and the reference light that have not been used for recording in the third embodiment can be used for recording on the hologram recording medium 1501, and the light use efficiency is improved.
  • holograms of various angles are multiplexed and stored at predetermined positions of the hologram recording medium 1 by peristlographic multiplexing. can do.
  • the hologram recording / reproducing apparatus 10 described above is used for recording digital data, and for forming and printing an arbitrary hologram such as a hologram for an ornament or a display, and a hologram of a hologram light guide plate used for a head-mounted display. It can be widely applied.
  • the present invention is not limited to the above-described example of the embodiment, and includes various modified examples.
  • the example of the above-described embodiment has been described in detail in order to make the present invention easy to understand, and the present invention is not limited to one having all the configurations described here.
  • a part of the configuration of one example of an embodiment can be replaced with the configuration of another example.
  • another configuration can be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit.
  • control lines and information lines in the figure indicate those considered to be necessary for the description, and do not necessarily indicate all of them. Almost all configurations may be considered interconnected.
  • the above configurations, functions, and the like may be realized by software by a processor interpreting and executing a program for realizing each function.
  • Information such as programs for realizing each function should be recorded in a memory, a hard disk, a recording device such as SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD, and read and used. Can be.
  • the functional configuration of the hologram recording / reproducing apparatus 10 is classified according to main processing contents for easy understanding.
  • the invention of the present application is not limited by the way of classification and names of the components.
  • the configuration of the hologram recording / reproducing apparatus 10 can be further classified into more components according to the processing content. In addition, it can be classified so that one component performs more processing.
  • hologram recording medium 10: hologram recording / reproducing device, 11: pickup, 12: reference optical system for reproduction, 13: cure optical system, 14: optical system for detecting disk rotation angle, 50: rotation motor, 81: access Control circuit, 82: light source drive circuit, 83: servo signal generation circuit, 84: servo control circuit, 85: signal processing circuit, 86: signal generation circuit, 87: shutter control circuit, 88: disk rotation motor control circuit, 89: Controller, 90: input / output control circuit, 91: external control device, 101: effective diameter, 301: light source, 302: collimating lens, 303: shutter, 304: optical element, 305: optical separation unit, 306: signal light, 307 308: beam expander 309: phase mask 310/313: relay lens 311: PBS pre 312: Spatial light modulator, 314: Spatial filter, 315/1503: Objective lens, 316: Polarization direction conversion element, 317/318/322/502: Mirror, 319/324

Abstract

The purpose of the present invention is to improve recording density with a simple configuration in the art of hologram recording. Provided is a hologram recording device for recording information by emitting signal light and reference light onto a recording medium, and is characterized by having: a light source unit that emits a light beam; an optical separation unit that separates the light beam into the signal light and the reference light; a spatial light modulation unit that modulates the signal light; an objective lens through which the signal light and the reference light pass; a position control unit that controls the positions of a signal light emission region, that is, an emission region of the signal light on the objective lens, and a reference light emission region, that is, an emission region of the reference light on the objective lens; and an angle control unit that controls the incident angle of the reference light on the recording medium, wherein the angle control unit causes the reference light to be incident on the recording medium at multiple different angles by changing the incident angle while the signal light that has passed through the signal light emission region, the position of which has been fixed by the position control unit, is incident on the recording medium.

Description

ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、及びホログラム再生方法Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method
 本発明は、ホログラム記録装置、ホログラム再生装置、ホログラム記録方法、及びホログラム再生方法に関する。 The present invention relates to a hologram recording device, a hologram reproducing device, a hologram recording method, and a hologram reproducing method.
 記録容量の大容量化を可能とするホログラム記録技術が注目を集めている。 ホ ロ グ ラ ム Hologram recording technology that can increase the recording capacity is attracting attention.
 特許文献1には、ダイナミックアパーチャホログラフィに関する技術が開示されている。同文献の段落0053には、「操作301は第1の信号ビーム243Aを第1の実施形態の対物レンズ245に通し、次いで感光性記録媒体258に第1の信号ビーム角度アパーチャ270Aで投影するステップを含む。」と記載されている。また、段落0055には、「第1の参照ビーム233Aを第1の実施形態の対物レンズ245を通して感光性記録媒体258に第1の参照ビーム角度アパーチャ276Aで投影する。第1の信号ビーム243Aと第1の参照ビーム233Aは互いに干渉して第1の干渉パターン248Aを生成し、記録媒体258の感光性記録層260内に存在する第1の干渉パターン248Aの一部分が感光性記録媒体258内に第1のホログラム249Aとして記録される。」と記載されている。 Patent Document 1 discloses a technique relating to dynamic aperture holography. Paragraph 0053 of the document states, “Operation 301 passes the first signal beam 243A through the objective lens 245 of the first embodiment, and then projects the first signal beam 243A onto the photosensitive recording medium 258 with the first signal beam angle aperture 270A. Including. " In addition, the paragraph 0055 states that “the first reference beam 233A is projected through the objective lens 245 of the first embodiment onto the photosensitive recording medium 258 with the first reference beam angle aperture 276A. The first signal beam 243A and The first reference beams 233A interfere with each other to generate a first interference pattern 248A, and a portion of the first interference pattern 248A present in the photosensitive recording layer 260 of the recording medium 258 is partially embedded in the photosensitive recording medium 258. It is recorded as the first hologram 249A. "
特表2016-510931号公報Japanese Unexamined Patent Publication No. 2016-510931
 ホログラム記録技術において、装置を複雑化させることなく多重数を増加して記録密度を高めることが期待されている。 In hologram recording technology, it is expected to increase the number of multiplexes and increase the recording density without complicating the apparatus.
 特許文献1に係る技術では、多重数増加のために信号光の大きさを変化させるため、信号光に含まれる信号のページフォーマットが変化することとなり、信号処理の負荷が増大する。 In the technique according to Patent Literature 1, since the size of the signal light is changed to increase the number of multiplexes, the page format of the signal included in the signal light changes, and the load of signal processing increases.
 本発明は、上記の点に鑑みてなされたものであって、ホログラム記録技術において、簡易な構成で記録密度を向上させることを目的とする。 The present invention has been made in view of the above points, and has as its object to improve the recording density with a simple configuration in a hologram recording technique.
 本願は、上記課題を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。 Although the present application includes a plurality of means for solving the above-mentioned problems, examples thereof are as follows.
 上記課題を解決するため、本発明の一態様に係るホログラム記録装置は、信号光と参照光とを記録媒体に照射して情報を記録するホログラム記録装置であって、光ビームを出射する光源部と、前記光ビームを前記信号光と前記参照光とに分離する光学分離部と、前記信号光を変調する空間光変調部と、前記信号光と前記参照光とを透過する対物レンズと、前記対物レンズ上の前記信号光の照射領域である信号光照射領域と、前記対物レンズ上の前記参照光の照射領域である参照光照射領域と、の位置を変更する位置制御部と、前記参照光の前記記録媒体に対する入射角度を制御する角度制御部と、を有し、前記角度制御部は、前記位置制御部により位置の固定された信号光照射領域を透過した前記信号光が前記記録媒体に入射する間に、前記入射角度を変更することにより、異なる複数の角度で前記参照光を前記記録媒体に入射することを特徴とする。 In order to solve the above problem, a hologram recording device according to one embodiment of the present invention is a hologram recording device that records information by irradiating a recording medium with signal light and reference light, and a light source unit that emits a light beam An optical separation unit that separates the light beam into the signal light and the reference light, a spatial light modulation unit that modulates the signal light, an objective lens that transmits the signal light and the reference light, A position control unit configured to change a position of a signal light irradiation area that is an irradiation area of the signal light on the objective lens and a reference light irradiation area that is an irradiation area of the reference light on the objective lens; An angle control unit that controls an incident angle with respect to the recording medium, wherein the signal light transmitted through the signal light irradiation area whose position is fixed by the position control unit is transmitted to the recording medium. Before the incident By changing the angle of incidence, and wherein the incident the reference light beam onto the recording medium at a plurality of different angles.
 本発明によれば、ホログラム記録技術において、簡易な構成で記録密度を向上させることができる。 According to the present invention, in the hologram recording technology, the recording density can be improved with a simple configuration.
 上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
ホログラム記録再生装置の機能ブロックの一例を示す図である。FIG. 3 is a diagram illustrating an example of functional blocks of the hologram recording / reproducing device. 第1の実施形態におけるピックアップの構成例を示す図(その1)である。FIG. 2 is a diagram (part 1) illustrating a configuration example of a pickup according to the first embodiment. 第1の実施形態におけるピックアップの構成例を示す図(その2)である。FIG. 3 is a diagram (part 2) illustrating a configuration example of a pickup according to the first embodiment. 第1の実施形態の対物レンズにおける信号光と参照光との配置の一例を示す図である。FIG. 3 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens according to the first embodiment. ホログラム記録再生装置の信号生成回路のブロック図である。FIG. 3 is a block diagram of a signal generation circuit of the hologram recording / reproducing device. ホログラム記録再生装置の信号処理回路のブロック図である。FIG. 3 is a block diagram of a signal processing circuit of the hologram recording / reproducing apparatus. ホログラム記録再生装置における記録処理及び再生処理の準備の一例を示すフローチャートである。4 is a flowchart illustrating an example of preparation for recording processing and reproduction processing in the hologram recording / reproduction device. 記録処理の一例を示すフローチャートである。9 is a flowchart illustrating an example of a recording process. 再生処理の一例を示すフローチャートである。It is a flow chart which shows an example of reproduction processing. 信号生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of a signal generation process. 信号再生処理の一例を示すフローチャートである。It is a flowchart which shows an example of a signal reproduction process. 第1の実施形態におけるデータ記録処理の一例を示すフローチャートである。5 is a flowchart illustrating an example of a data recording process according to the first embodiment. 第2の実施形態におけるピックアップの構成例を示す図である。It is a figure showing the example of composition of the pickup in a 2nd embodiment. 第2の実施形態の対物レンズにおける信号光と参照光との配置の一例を示す図である。It is a figure showing an example of arrangement of signal light and reference light in the objective lens of a 2nd embodiment. 第2の実施形態におけるデータ記録処理の一例を示すフローチャートである。9 is a flowchart illustrating an example of a data recording process according to the second embodiment. 第3の実施形態におけるピックアップの構成例を示す図である。It is a figure showing the example of composition of the pickup in a 3rd embodiment. 第3の実施形態の変形例におけるピックアップの構成例を示す図である。It is a figure showing the example of composition of the pickup in the modification of a 3rd embodiment. ピックアップの構成例と記録原理を示す図である。FIG. 3 is a diagram illustrating a configuration example of a pickup and a recording principle. ピックアップの構成例と再生原理を示す図である。FIG. 3 is a diagram illustrating a configuration example of a pickup and a principle of reproduction.
 以下、図面に基づいて本発明の実施形態の例を説明する。図1は、ホログラム記録再生装置10の機能ブロックの一例を示す図である。ホログラム記録再生装置10は、ホログラフィを利用してデジタル情報を記録および/または再生するホログラム記録媒体1の記録再生装置である。ホログラム記録再生装置10は、入出力制御回路90を介して外部制御装置91と通信可能に接続されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating an example of functional blocks of the hologram recording / reproducing device 10. The hologram recording / reproducing apparatus 10 is a recording / reproducing apparatus for the hologram recording medium 1 for recording and / or reproducing digital information using holography. The hologram recording / reproducing device 10 is communicably connected to an external control device 91 via an input / output control circuit 90.
 情報の記録を行う場合、ホログラム記録再生装置10は記録する情報を示す信号(ユーザデータ)を外部制御装置91から入出力制御回路90を介して受信する。また、情報の再生を行う場合、ホログラム記録再生装置10は再生した情報を示す信号を入出力制御回路90を介して外部制御装置91に送信する。 When recording information, the hologram recording / reproducing apparatus 10 receives a signal (user data) indicating information to be recorded from the external control device 91 via the input / output control circuit 90. When reproducing information, the hologram recording / reproduction device 10 transmits a signal indicating the reproduced information to the external control device 91 via the input / output control circuit 90.
 ホログラム記録再生装置10は、ピックアップ11と、再生用参照光光学系12と、キュア光学系13と、ディスク回転角度検出用光学系14と、回転モータ50と、アクセス制御回路81と、光源駆動回路82と、サーボ信号生成回路83と、サーボ制御回路84と、信号処理回路85と、信号生成回路86と、シャッタ制御回路87と、ディスク回転モータ制御回路88と、コントローラ89と、入出力制御回路90とを有する。 The hologram recording and reproducing apparatus 10 includes a pickup 11, a reproducing reference light optical system 12, a cure optical system 13, a disk rotation angle detecting optical system 14, a rotation motor 50, an access control circuit 81, and a light source driving circuit. 82, a servo signal generation circuit 83, a servo control circuit 84, a signal processing circuit 85, a signal generation circuit 86, a shutter control circuit 87, a disk rotation motor control circuit 88, a controller 89, and an input / output control circuit 90.
 ピックアップ11は、光源駆動回路82により発生した光から得られる参照光と信号光とを光記録媒体に照射してホログラムを生成し、デジタル情報を記録媒体に記録する役割を果たす。記録する情報は、コントローラ89によって信号生成回路86を介してピックアップ11内の後述する空間光変調器に送られ、変調される。 The pickup 11 irradiates reference light and signal light obtained from the light generated by the light source drive circuit 82 onto the optical recording medium to generate a hologram, and plays a role of recording digital information on the recording medium. The information to be recorded is sent to a spatial light modulator (described later) in the pickup 11 by the controller 89 via the signal generation circuit 86 and modulated.
 また、ピックアップ11は、再生用参照光光学系12を用いて生成された参照光を、記録時とは逆の向きにホログラム記録媒体1に入射させる。ピックアップ11は、再生用参照光を後述する光検出部によって検出し、信号処理回路85によって信号を再生する。 (4) The pickup 11 causes the reference light generated using the reproduction reference light optical system 12 to enter the hologram recording medium 1 in a direction opposite to the direction at the time of recording. The pickup 11 detects the reference light for reproduction by a light detection unit described later, and reproduces a signal by the signal processing circuit 85.
 なお、ホログラム記録媒体1に照射する参照光と信号光との照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することにより、調整することができる。 The irradiation time of the reference light and the signal light irradiated on the hologram recording medium 1 can be adjusted by controlling the opening and closing time of the shutter in the pickup 11 by the controller 89 via the shutter control circuit 87.
 キュア光学系13は、ホログラム記録媒体1のプリキュア及びポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録する際、所望の位置に参照光と信号光とを照射する前に、予め所定の光ビームを照射する前工程である。ポストキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。 The 光学 cure optical system 13 has a role of generating a light beam used for pre-curing and post-curing of the hologram recording medium 1. Precuring is a pre-process of irradiating a predetermined light beam before irradiating a desired position with reference light and signal light when recording information at a desired position in the hologram recording medium 1. The post cure is a post-process in which information is recorded at a desired position in the hologram recording medium 1 and then a predetermined light beam is irradiated to make it impossible to additionally record at the desired position.
 ディスク回転角度検出用光学系14は、ホログラム記録媒体1の回転角度を検出するために用いられる。ホログラム記録媒体1は回転モータ50によって回転可能となるよう構成されている。ホログラム記録媒体1を所望の回転角度に調整する場合、ディスク回転角度検出用光学系14が回転角度に応じた信号を検出する。その後、コントローラ89の制御により、検出された信号を用いてディスク回転モータ制御回路88を介して回転角度を調整することができる。 The disk rotation angle detecting optical system 14 is used to detect the rotation angle of the hologram recording medium 1. The hologram recording medium 1 is configured to be rotatable by a rotation motor 50. When adjusting the hologram recording medium 1 to a desired rotation angle, the disk rotation angle detecting optical system 14 detects a signal corresponding to the rotation angle. Thereafter, under the control of the controller 89, the rotation angle can be adjusted via the disk rotation motor control circuit 88 using the detected signal.
 また、コントローラ89の制御により、光源駆動回路82から所定の光源駆動電流がピックアップ11、キュア光学系13、及びディスク回転角度検出用光学系14内の光源に供給され、各々の光源から所定の光量で光ビームを出射することができる。なお、ピックアップ11、キュア光学系13、及びディスク回転角度検出用光学系14は、2以上の光学系構成をまとめて1つの光学系構成とすることにより、簡素化してもよい。 Further, under the control of the controller 89, a predetermined light source drive current is supplied from the light source drive circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the optical system 14 for detecting the rotation angle of the disk. Can emit a light beam. The pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining two or more optical system configurations into one optical system configuration.
 また、ピックアップ11及びキュア光学系13は、ホログラム記録媒体1の半径方向に位置をスライドできる機構が設けられており、コントローラ89の制御により、アクセス制御回路81を介して位置制御が行われる。 The pickup 11 and the cure optical system 13 are provided with a mechanism capable of sliding the positions of the hologram recording medium 1 in the radial direction, and the position is controlled through the access control circuit 81 under the control of the controller 89.
 図15は、ピックアップ11の構成例と記録原理を示す図である。光源301を出射した光ビームは、コリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている場合には、光ビームはシャッタ303を通過した後、光学素子304に入射する。光学素子304は、例えば1/2波長板であって、p偏光とs偏光との光量比が予め定められた所望の比になるように偏光方向を制御する。 FIG. 15 is a diagram showing a configuration example of the pickup 11 and a recording principle. The light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303. When the shutter 303 is open, the light beam passes through the shutter 303 and then enters the optical element 304. The optical element 304 is, for example, a half-wave plate, and controls the polarization direction such that the light amount ratio between the p-polarized light and the s-polarized light becomes a predetermined desired ratio.
 光学素子304により偏光方向が制御された光ビームは、その後光学分離部305に入射する。光学分離部305は、例えばPBS(Polarizing Beam Splitter)プリズムである。 The light beam whose polarization direction has been controlled by the optical element 304 then enters the optical separation unit 305. The optical separation unit 305 is, for example, a PBS (Polarizing Beam Splitter) prism.
 光学分離部305を透過した光ビームは、信号光306として機能し、ビームエキスパンダ308によって光ビーム径が拡大された後、位相マスク309、リレーレンズ310、及びPBSプリズム311を透過して空間光変調器312に入射する。 The light beam transmitted through the optical separation unit 305 functions as a signal light 306. After the light beam diameter is expanded by a beam expander 308, the light beam passes through a phase mask 309, a relay lens 310, and a PBS prism 311 to generate spatial light. The light enters the modulator 312.
 空間光変調器312は、信号光306に対して情報を付加して出射する。出射された信号光306はPBSプリズム311に反射し、リレーレンズ313及び空間フィルタ314を伝播する。その後、信号光306は対物レンズ315によってホログラム記録媒体1に集光する。 The spatial light modulator 312 adds information to the signal light 306 and emits it. The emitted signal light 306 is reflected by the PBS prism 311 and propagates through the relay lens 313 and the spatial filter 314. After that, the signal light 306 is focused on the hologram recording medium 1 by the objective lens 315.
 一方、光学分離部305に反射した光ビームは、参照光307として機能し、偏光方向変換素子316によって記録時又は再生時に応じて所定の偏光方向に設定された後、ミラー317、及びミラー318を経由して角度制御部319に入射する。角度制御部319には、例えばガルバノミラーを用いることができる。角度制御部319は、アクチュエーター320によって角度を調整することができる。即ち、レンズ321を透過し、ミラー322に反射し、対物レンズ315を透過した後にホログラム記録媒体1に入射する参照光307の入射角度を、所望の角度に制御することができる。 On the other hand, the light beam reflected by the optical separation unit 305 functions as the reference light 307, and after being set to a predetermined polarization direction by the polarization direction conversion element 316 according to recording or reproduction, the mirror 317 and the mirror 318 are turned on. The light then enters the angle control unit 319. As the angle control unit 319, for example, a galvanomirror can be used. The angle control unit 319 can adjust the angle by the actuator 320. That is, the incident angle of the reference beam 307 that is transmitted through the lens 321, reflected by the mirror 322, transmitted through the objective lens 315, and then incident on the hologram recording medium 1 can be controlled to a desired angle.
 なお、参照光307の入射角度を制御するために、角度制御部319には、ガルバノミラーに代えて、参照光307の波面を変換する素子を用いてもよい。 In order to control the incident angle of the reference light 307, an element that converts the wavefront of the reference light 307 may be used in the angle control unit 319 instead of the galvanomirror.
 このように、ホログラム記録媒体1において、信号光306と参照光307とを互いに重ね合うように入射させることで、ホログラム記録媒体1の内部で干渉縞パターンが形成される。干渉縞パターンをホログラム記録媒体1に書き込むことにより、ホログラムとして情報が記録される。 In this way, by causing the signal light 306 and the reference light 307 to be incident on the hologram recording medium 1 so as to overlap each other, an interference fringe pattern is formed inside the hologram recording medium 1. By writing the interference fringe pattern on the hologram recording medium 1, information is recorded as a hologram.
 なお、角度制御部319によって、ホログラム記録媒体1に入射する参照光307の入射角度を変化させることができるため、角度多重による記録が可能となる。 Note that the angle control unit 319 can change the incident angle of the reference beam 307 incident on the hologram recording medium 1, so that recording by angle multiplexing is possible.
 以降において、ホログラム記録媒体1上の同じ領域に参照光の角度を変えて記録されたホログラムについて、ある角度に対応するホログラムをページとして説明し、同領域に角度多重して記録されたページの集合をブックとして説明する。 Hereinafter, a hologram recorded in the same area on the hologram recording medium 1 at a different angle of the reference light will be described as a hologram corresponding to a certain angle, and a set of pages recorded by angle multiplexing in the same area. Will be described as a book.
 図16は、ピックアップ11の構成例と再生原理を示す図である。本図は、図15と同様の構成を有するピックアップ11における再生原理を説明するための図である。ホログラム記録媒体1に記録した情報を再生する場合、参照光をホログラム記録媒体1に入射し、ホログラム記録媒体1を透過した光ビームを、アクチュエーター323によって角度調整可能な角度制御部324に反射させることで、再生用参照光を生成する。 FIG. 16 is a diagram showing a configuration example of the pickup 11 and a principle of reproduction. This drawing is a diagram for explaining the principle of reproduction in the pickup 11 having the same configuration as that of FIG. When information recorded on the hologram recording medium 1 is reproduced, a reference beam is made incident on the hologram recording medium 1, and a light beam transmitted through the hologram recording medium 1 is reflected by an actuator 323 to an angle control unit 324 whose angle can be adjusted. Generates a reference light for reproduction.
 換言すれば、ホログラム記録媒体1のうち、記録時に参照光を照射した面と反対側の面から参照光を照射することで、再生用参照光が得られる。即ち、記録時とは逆向きにホログラム記録媒体1に参照光を照射する。 In other words, the reference light for reproduction is obtained by irradiating the reference light from the surface of the hologram recording medium 1 opposite to the surface irradiated with the reference light during recording. That is, the hologram recording medium 1 is irradiated with the reference light in a direction opposite to that of the recording.
 この再生用参照光で再生された参照光326は、対物レンズ315、リレーレンズ313並びに空間フィルタ314を伝播する。その後、参照光326はPBSプリズム311を透過して光検出部325に入射する。参照光326を光検出部325が検出すると、先述のように、信号処理回路85によって記録した信号を再生することができる。 The reference light 326 reproduced by the reference light for reproduction propagates through the objective lens 315, the relay lens 313, and the spatial filter 314. After that, the reference light 326 passes through the PBS prism 311 and enters the light detection unit 325. When the light detection unit 325 detects the reference light 326, the signal recorded by the signal processing circuit 85 can be reproduced as described above.
 光検出部325には、例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサーやCCD(Charge Coupled Device)イメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、素子は限定されない。 As the light detection unit 325, for example, an imaging element such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor or a CCD (Charge Coupled Device) image sensor can be used, but the element is not limited as long as page data can be reproduced. .
 情報をホログラム記録媒体1に記録するために、さらなる記録密度の向上が望まれる。そこで、本発明は、以下に示す代表的な手段を用いて、記録密度を向上させる。 (4) In order to record information on the hologram recording medium 1, further improvement in recording density is desired. Therefore, the present invention improves the recording density by using the following representative means.
 <第1の実施形態> <First Embodiment>
 図2は、第1の実施形態におけるピックアップ11の構成例を示す図(その1)である。以下、図15に示すピックアップ11の構成例と異なる点について説明する。第1の実施形態では、図15に示すレンズ321に代えて、より口径の大きいレンズ501を用いる。また、第1の実施形態では、図15に示すミラー322に代えて、参照光の走査方向に延伸するミラー502を用いる。この構成により、ホログラム記録媒体1に入射する参照光の入射角度を、図15に示す場合に比べてより大きく変化させることが可能となる。 FIG. 2 is a diagram (part 1) illustrating a configuration example of the pickup 11 in the first embodiment. Hereinafter, points different from the configuration example of the pickup 11 illustrated in FIG. 15 will be described. In the first embodiment, a lens 501 having a larger aperture is used instead of the lens 321 shown in FIG. In the first embodiment, a mirror 502 extending in the scanning direction of the reference light is used instead of the mirror 322 shown in FIG. With this configuration, the incident angle of the reference light incident on the hologram recording medium 1 can be changed more greatly than in the case shown in FIG.
 なお、図2に示す参照光は、対物レンズ315の左側を透過している。また、図2に示す信号光は、対物レンズ315の右側を透過している。 The reference light shown in FIG. 2 is transmitted through the left side of the objective lens 315. The signal light shown in FIG. 2 is transmitted through the right side of the objective lens 315.
 図3は、第1の実施形態におけるピックアップ11の構成例を示す図(その2)である。本図は、図2に示す構成のうち、信号光と参照光との制御を変更した例を示している。その結果、図3に示す参照光は、対物レンズ315の右側を透過している。また、図3に示す信号光は、対物レンズ315の左側を透過している。 FIG. 3 is a diagram (part 2) illustrating a configuration example of the pickup 11 in the first embodiment. This figure shows an example in which the control of the signal light and the reference light is changed in the configuration shown in FIG. As a result, the reference light shown in FIG. 3 passes through the right side of the objective lens 315. The signal light shown in FIG. 3 is transmitted through the left side of the objective lens 315.
 角度制御部319の角度を変化させることにより、参照光のミラー502への照射位置を変更することができる。参照光の照射位置の変更により、ホログラム記録媒体1に入射する参照光の入射角度を変更することができる。 照射 By changing the angle of the angle control unit 319, the irradiation position of the reference light on the mirror 502 can be changed. By changing the irradiation position of the reference light, the incident angle of the reference light incident on the hologram recording medium 1 can be changed.
 本実施形態では、コントローラ89が参照光の照射位置の変更を制御する位置制御部として機能する。図2及び図3に示す構成例では、ホログラム記録媒体1に入射する参照光の入射角度が反転している。 In the present embodiment, the controller 89 functions as a position control unit that controls the change of the irradiation position of the reference light. In the configuration examples shown in FIGS. 2 and 3, the incident angle of the reference light incident on the hologram recording medium 1 is inverted.
 また、コントローラ89は、空間光変調器312で変調する信号光の領域を変化させ、ミラー502への信号光の照射位置を変更する。即ち、コントローラ89は、信号光の照射位置の変更を制御する位置制御部としても機能している。図2及び図3に示す構成例では、照射位置の変更により、ホログラム記録媒体1に入射する信号光の入射角度が反転している。 {Circle around (5)} The controller 89 changes the area of the signal light to be modulated by the spatial light modulator 312, and changes the irradiation position of the signal light to the mirror 502. That is, the controller 89 also functions as a position control unit that controls the change of the irradiation position of the signal light. In the configuration examples shown in FIGS. 2 and 3, the incident angle of the signal light incident on the hologram recording medium 1 is inverted by changing the irradiation position.
 なお、図2及び図3に示す構成例において、空間光変調器312で変調した信号光、及びミラー502に反射した参照光は、同軸方向に導かれ、対物レンズ315を透過する。 In the configuration examples shown in FIGS. 2 and 3, the signal light modulated by the spatial light modulator 312 and the reference light reflected by the mirror 502 are guided coaxially and transmitted through the objective lens 315.
 付言すれば、本実施形態でホログラムにより情報が記録されたホログラム記録媒体1を再生するために、図16を用いて説明した場合と同様に、記録時とは逆向きにホログラム記録媒体1に参照光を照射する。その場合、コントローラ89は、記録時と同様に参照光照射領域の位置を変更させる。 In addition, in order to reproduce the hologram recording medium 1 on which information is recorded by the hologram in the present embodiment, the hologram recording medium 1 is referred to in the opposite direction to the recording as in the case described with reference to FIG. Irradiate light. In this case, the controller 89 changes the position of the reference light irradiation area as in the case of recording.
 なお、参照光照射領域の位置の変更に関するタイミングや入射角度等の設定情報は、予め定められている。例えば、ホログラム記録媒体1の有する管理情報を参照することにより、コントローラ89が設定情報を特定してもよい。又は、コントローラ89が、ホログラムを用いた記録再生について定められた規格で定義された設定情報を参照するものであってもよい。 The setting information such as the timing and the incident angle regarding the change of the position of the reference light irradiation area is predetermined. For example, the controller 89 may specify the setting information by referring to the management information of the hologram recording medium 1. Alternatively, the controller 89 may refer to setting information defined by a standard defined for recording and reproduction using a hologram.
 図4は、第1の実施形態の対物レンズ315における信号光と参照光との配置の一例を示す図である。図4の上段は、図2及び図3に示す対物レンズ315を信号光の照射方向(即ち対物レンズ315の光軸方向)から見た場合の、信号光と参照光の配置を示す図である。即ち、図4の上段は、図2及び図3の紙面の上方向から下方向に向かって、対物レンズ315を見た状態を示す。 FIG. 4 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens 315 of the first embodiment. The upper part of FIG. 4 is a diagram showing the arrangement of the signal light and the reference light when the objective lens 315 shown in FIGS. 2 and 3 is viewed from the signal light irradiation direction (that is, the optical axis direction of the objective lens 315). . That is, the upper part of FIG. 4 shows a state in which the objective lens 315 is viewed from the upper side to the lower side of the paper of FIGS. 2 and 3.
 図4の下段は、図2及び図3の紙面の手前方向から奥側方向に向かって(つまり図2及び図3と同じ方向から)、ホログラム記録媒体1、信号光、及び参照光を見た状態を示す。即ち、図4の下段は、対物レンズ315を透過した信号光と参照光とを含む平面に直交する方向から、ホログラム記録媒体1に照射される信号光と参照光とを見た状態を示しているといえる。まず、図4左側の上下に示す図について説明する。 The lower part of FIG. 4 shows the hologram recording medium 1, the signal light, and the reference light from the near side to the far side of the paper surface of FIGS. 2 and 3 (that is, from the same direction as FIGS. 2 and 3). Indicates the status. That is, the lower part of FIG. 4 illustrates a state in which the signal light and the reference light applied to the hologram recording medium 1 are viewed from a direction orthogonal to a plane including the signal light and the reference light transmitted through the objective lens 315. It can be said that there is. First, the upper and lower views on the left side of FIG. 4 will be described.
 図4左上側に示すように、対物レンズ315を光軸方向から見た場合の有効径101の中に、矩形のミラー502が見えるよう、対物レンズ315とミラー502とを配置する。図4左上側は、ミラー502の背面を示しており、背面の裏側にある反射面は示されていない。角度制御部319の制御により参照光を走査すると、参照光はミラー502の反射面のうち、点503aと点504aとを結ぶ線上で、位置が変化する。参照光のミラー502の反射面上の位置が変化することにより、反射面に反射した参照光の対物レンズ315上の位置が変化する。対物レンズ315上の参照光の照射領域を、参照光照射領域とする。 (4) As shown in the upper left of FIG. 4, the objective lens 315 and the mirror 502 are arranged so that the rectangular mirror 502 can be seen in the effective diameter 101 when the objective lens 315 is viewed from the optical axis direction. 4 shows the rear surface of the mirror 502, and does not show the reflection surface on the rear side of the rear surface. When the reference light is scanned by the control of the angle control unit 319, the position of the reference light changes on a line connecting the points 503a and 504a on the reflection surface of the mirror 502. When the position of the reference light on the reflecting surface of the mirror 502 changes, the position of the reference light reflected on the reflecting surface on the objective lens 315 changes. The irradiation area of the reference light on the objective lens 315 is defined as a reference light irradiation area.
 図4左下側に示すように、参照光の走査により、ホログラム記録媒体1への参照光の入射角度は、最内角505aから最外角506aまで変化する。 4 As shown in the lower left side of FIG. 4, the scanning of the reference light changes the incident angle of the reference light on the hologram recording medium 1 from the innermost angle 505a to the outermost angle 506a.
 また、信号光は、図4左上側に示す領域507aに配置される。対物レンズ315上の信号光の照射領域を信号光照射領域とする。信号光は、ミラー502の背面方向から対物レンズ315に向かって照射される。即ち、信号光はミラー502の反射面で反射されない。 {Circle around (4)} The signal light is arranged in a region 507a shown on the upper left side of FIG. The irradiation area of the signal light on the objective lens 315 is defined as the signal light irradiation area. The signal light is emitted toward the objective lens 315 from the rear side of the mirror 502. That is, the signal light is not reflected on the reflection surface of the mirror 502.
 対物レンズ315の有効径101の内部に対し信号光を照射した場合に、ミラー502の影になる部分の領域には、信号光が照射されない。従って、空間光変調器312は、対物レンズ315の焦点面において、ミラー502の影となる領域を除外した領域に照射される信号光に、情報を含める。なお、図4左下側に示す通り、ホログラム記録媒体1への信号光の入射角度は、最内角508aから最外角509aまでの範囲となる。 (4) When the signal light is applied to the inside of the effective diameter 101 of the objective lens 315, the signal light is not applied to the shadowed area of the mirror 502. Therefore, the spatial light modulator 312 includes information in the signal light irradiated on the focal plane of the objective lens 315 excluding a region that is a shadow of the mirror 502. As shown on the lower left side of FIG. 4, the incident angle of the signal light on the hologram recording medium 1 is in a range from the innermost angle 508a to the outermost angle 509a.
 参照光の入射角度を最内角505aから最外角506aまで変化させて、角度多重記録を行う。その間、信号光照射領域507aは位置が固定されている。即ち、位置の固定された信号光照射領域507aを透過した信号光が記録媒体1に入射する間に、角度制御部319は参照光の入射角度を変更する。これにより、異なる複数の角度で参照光が記録媒体1に入射され、角度多重記録が行われる。 角度 Angle multiplex recording is performed by changing the incident angle of the reference light from the innermost angle 505a to the outermost angle 506a. During that time, the position of the signal light irradiation area 507a is fixed. That is, while the signal light transmitted through the signal light irradiation area 507a whose position is fixed is incident on the recording medium 1, the angle control unit 319 changes the incident angle of the reference light. Thereby, the reference light is incident on the recording medium 1 at a plurality of different angles, and angle multiplex recording is performed.
 その後、コントローラ89は、信号光と参照光の配置を反転させる。配置を反転させた結果について、図4右側の上下に示す図を用いて説明する。 (4) After that, the controller 89 reverses the arrangement of the signal light and the reference light. The result of reversing the arrangement will be described with reference to the upper and lower diagrams on the right side of FIG.
 図4右上側に示す通り、参照光は、角度制御部319の制御により、ミラー502の反射面のうち、点503bと点504bとを結ぶ線上において、位置が変化する。これにより、図4右下側に示す通り、ホログラム記録媒体1への参照光の入射角度は、最内角505bから最外角506bまで変化する。 4 As shown on the upper right side of FIG. 4, the position of the reference light changes on the line connecting the points 503b and 504b on the reflection surface of the mirror 502 under the control of the angle controller 319. Thereby, as shown in the lower right side of FIG. 4, the incident angle of the reference light on the hologram recording medium 1 changes from the innermost angle 505b to the outermost angle 506b.
 信号光は、図4右上側に示す領域507bに配置される。ホログラム記録媒体1への信号光の入射角度は、最内角508bから最外角509bまでの範囲となる。位置及び大きさの固定された信号光照射領域507bを透過した信号光が記録媒体1に入射する間に、角度制御部319は参照光の入射角度を最内角505bから最外角506bまで変化させる。これにより、信号照射領域507bに照射された信号光に対しても、角度多重記録が行われる。 The signal light is arranged in an area 507b shown on the upper right side in FIG. The incident angle of the signal light on the hologram recording medium 1 ranges from the innermost angle 508b to the outermost angle 509b. While the signal light transmitted through the signal light irradiation area 507b having a fixed position and size is incident on the recording medium 1, the angle control unit 319 changes the incident angle of the reference light from the innermost angle 505b to the outermost angle 506b. As a result, angle multiplex recording is performed on the signal light irradiated to the signal irradiation area 507b.
 このように、本実施形態では、コントローラ89の制御により、信号光照射領域と、参照光照射領域との位置が入れ替わる。なお、信号光照射領域と参照光照射領域との位置の変更の前後において、信号光照射領域の大きさは一定であることが望ましい。その結果、ホログラム記録媒体1上の信号光の大きさが一定となる。このように構成することで、ページフォーマットを変化させる必要がなく、信号処理の負荷を増加させずに記録密度を高めることが可能となる。 As described above, in the present embodiment, the positions of the signal light irradiation area and the reference light irradiation area are switched under the control of the controller 89. It is desirable that the size of the signal light irradiation region be constant before and after the position of the signal light irradiation region and the reference light irradiation region are changed. As a result, the magnitude of the signal light on the hologram recording medium 1 becomes constant. With this configuration, it is not necessary to change the page format, and it is possible to increase the recording density without increasing the load of signal processing.
 付言すると、信号光照射領域と参照光照射領域とは、図4上段の二つの図に示す通り、対物レンズ315の光軸を中心として対向する位置にある。また、一例として、信号光照射領域の形状は、対物レンズ315の光軸を通るある直線に対し線対称の形状である。 Additionally, the signal light irradiation region and the reference light irradiation region are located at positions facing each other with the optical axis of the objective lens 315 as the center, as shown in the upper two figures of FIG. In addition, as an example, the shape of the signal light irradiation region is a line-symmetric shape with respect to a certain straight line passing through the optical axis of the objective lens 315.
 なお、位置の変更の際、信号光照射領域と参照光照射領域との位置は、対物レンズ315の光軸周りに各々回転するよう変更されることが望ましい。これにより、ペリストロフィック多重の効果が得られ、記録密度を高めることが可能となる。 When the positions are changed, it is preferable that the positions of the signal light irradiation region and the reference light irradiation region are changed so as to rotate around the optical axis of the objective lens 315. As a result, the effect of peristrographic multiplexing is obtained, and the recording density can be increased.
 また、ミラー502の幅509は、ミラー502に照射される参照光の大部分(例えば95%)を含む大きさである。即ち、ミラー502の幅509は、実質的に参照光を含むよう構成される。参照光のミラー502に対する照射範囲は、入射角度が最大となる場合に最も大きくなる。即ち、ミラー502の幅509は、入射角度が最大となる場合の参照光を実質的に反射することのできる大きさを有する。 (4) The width 509 of the mirror 502 is a size that includes most (for example, 95%) of the reference light applied to the mirror 502. That is, the width 509 of the mirror 502 is configured to substantially include the reference light. The irradiation range of the reference light with respect to the mirror 502 is maximized when the incident angle is maximized. That is, the width 509 of the mirror 502 is large enough to substantially reflect the reference light when the incident angle is the maximum.
 ここで、参照光の集光位置について検討する。参照光は、ミラー502上のいずれかの部分で集光し、その後対物レンズ315で平行光となるよう構成されることが望ましい。角度制御部319の制御により参照光をミラー502に照射する際に、ミラー502上の左右どちらかに寄った位置に集光するよう参照光を照射した場合、集光位置が寄っていない側のミラー502の端において、参照光の照射範囲が最も大きくなる。 (4) Here, the focusing position of the reference light is considered. It is preferable that the reference light be condensed at any part on the mirror 502 and then converted into parallel light by the objective lens 315. When irradiating the reference light to the mirror 502 under the control of the angle control unit 319, when the reference light is irradiated so as to be condensed at a position closer to the left or right on the mirror 502, the light at the converging position is not At the end of the mirror 502, the irradiation range of the reference light becomes the largest.
 例えば、図4左上側の図において、点504aの位置に参照光が集光するよう構成した場合、図4右上側の図における点504bにおいて、参照光の照射範囲が最も大きくなる。一方で、ミラー502の中央に参照光が集光するよう構成した場合、ミラー502の両端(即ち点504a及び点504b)において参照光の照射範囲が最も大きくなるが、この場合の照射範囲は、集光位置が点504aであった場合の点504bにおける照射範囲よりも小さくなる。 For example, when the reference light is condensed at the position of the point 504a in the upper left diagram of FIG. 4, the irradiation range of the reference light becomes the largest at the point 504b in the upper right diagram of FIG. On the other hand, when the reference light is condensed at the center of the mirror 502, the irradiation range of the reference light is the largest at both ends of the mirror 502 (that is, at the points 504a and 504b). It becomes smaller than the irradiation range at the point 504b when the condensing position is the point 504a.
 なお、ミラー502の中央とは、ミラー502に反射した参照光が、対物レンズ315の中央近傍に照射される、ミラー502上の箇所を示す。 中央 The center of the mirror 502 indicates a position on the mirror 502 where the reference light reflected by the mirror 502 is irradiated near the center of the objective lens 315.
 上述したように、ミラー502の影となる領域には信号光が照射されないため、信号光に多くの情報を含ませる場合には、ミラー502を薄く構成することが望ましい。そのため、本実施形態では、参照光の集光位置をミラー502の中央となるように設計することが望ましい。これにより、ミラー502の影となる部分を低減することができるため、信号光のページデータ容量の低減を抑制することができる。 As described above, since the signal light is not irradiated to the shadow area of the mirror 502, it is desirable to make the mirror 502 thinner when the signal light contains a lot of information. Therefore, in the present embodiment, it is desirable to design the reference light condensing position at the center of the mirror 502. As a result, a portion of the mirror 502 that becomes a shadow can be reduced, so that a reduction in the page data capacity of the signal light can be suppressed.
 図5は、ホログラム記録再生装置10の信号生成回路86のブロック図である。先述の外部制御装置91から入出力制御回路90へユーザデータが入力されると、入出力制御回路90はコントローラ89にユーザデータの入力が開始されたことを通知する。コントローラ89は該通知を受け、入出力制御回路90から入力される1ページ分のデータを記録処理するよう、信号生成回路86に命令する。 FIG. 5 is a block diagram of the signal generating circuit 86 of the hologram recording / reproducing apparatus 10. When the user data is input from the external control device 91 to the input / output control circuit 90, the input / output control circuit 90 notifies the controller 89 that the input of the user data has started. The controller 89 receives the notification and instructs the signal generation circuit 86 to record and process one page of data input from the input / output control circuit 90.
 コントローラ89からの処理命令は、制御用ライン708を経由し、信号生成回路86内のサブコントローラ701に通知される。該通知を受け、サブコントローラ701は、各信号処理回路85を並列に動作させるよう、制御用ライン708を介して制御を行う。サブコントローラ701の制御により、メモリ制御回路703は、データライン709を介して入出力制御回路90から入力されるユーザデータをメモリ702に格納するよう制御する。 The processing command from the controller 89 is sent to the sub-controller 701 in the signal generation circuit 86 via the control line 708. Upon receiving the notification, the sub-controller 701 controls via the control line 708 such that the signal processing circuits 85 operate in parallel. Under the control of the sub-controller 701, the memory control circuit 703 controls to store user data input from the input / output control circuit 90 via the data line 709 in the memory 702.
 メモリ702に格納されたユーザデータが、ある一定量に達すると、CRC(Cyclic Redundancy Check)演算回路704でユーザデータをCRC化する制御を行う。次に、CRC化したユーザデータに、スクランブル回路705で疑似乱数データ列を加えるスクランブル化を施し、誤り訂正符号化回路706でパリティデータ列を加える誤り訂正符号化する制御を行う。次に、ピックアップ(空間光変調器)インターフェース回路707に、誤り訂正符号化したデータを空間光変調器312上の2次元データの並び順でメモリ702から読みださせ、再生時に基準となるマーカーを付加する。その後、ピックアップ11内の空間光変調器312に、2次元データを送信する。 When the user data stored in the memory 702 reaches a certain amount, a CRC (Cyclic Redundancy Check) operation circuit 704 controls the user data to be converted into a CRC. Next, a scramble circuit 705 performs scrambling to add a pseudo-random number data sequence to the CRC-converted user data, and an error correction coding circuit 706 controls to perform error correction coding to add a parity data sequence. Next, the pickup (spatial light modulator) interface circuit 707 reads the error-corrected coded data from the memory 702 in the arrangement order of the two-dimensional data on the spatial light modulator 312, and specifies a marker that is a reference at the time of reproduction. Add. After that, the two-dimensional data is transmitted to the spatial light modulator 312 in the pickup 11.
 図6は、ホログラム記録再生装置10の信号処理回路85のブロック図である。コントローラ89は、ピックアップ11内の光検出部325が再生用参照光に含まれる画像データを検出すると、ピックアップ11から入力される1ページ分の画像データを信号処理回路85に再生処理するよう命令する。コントローラ89からの処理命令は、制御用ライン811を経由し、信号処理回路85内のサブコントローラ801に通知される。 FIG. 6 is a block diagram of the signal processing circuit 85 of the hologram recording / reproducing apparatus 10. When the light detector 325 in the pickup 11 detects image data included in the reference light for reproduction, the controller 89 instructs the signal processing circuit 85 to reproduce one page of image data input from the pickup 11. . The processing command from the controller 89 is notified to the sub-controller 801 in the signal processing circuit 85 via the control line 811.
 該通知を受け、サブコントローラ801は各信号処理回路85を並列に動作させるよう、制御用ライン811を介して各信号処理回路85の制御を行う。まず、サブコントローラ801は、ピックアップ(光検出器)インターフェース回路810を経由してピックアップ11から入力される画像データを、制御用ライン811を介してメモリ802に格納するよう制御する。 (4) Upon receiving the notification, the sub-controller 801 controls each signal processing circuit 85 via the control line 811 so that the signal processing circuits 85 operate in parallel. First, the sub-controller 801 controls to store image data input from the pickup 11 via the pickup (photodetector) interface circuit 810 in the memory 802 via the control line 811.
 メモリ802に格納された画像データが、ある一定量に達すると、サブコントローラ801は、メモリ802に格納された画像データ内からマーカーを検出して有効データ範囲を抽出する制御を、画像位置検出回路809に行わせる制御を実行する。次に、検出されたマーカーを用いて、画像歪み補正回路808が画像の傾き・倍率・ディストーション等の歪み補正を行い、所望の2次元データのサイズに画像データを変換する制御を行う。 When the image data stored in the memory 802 reaches a certain fixed amount, the sub-controller 801 performs control to detect a marker from the image data stored in the memory 802 and extract a valid data range by using an image position detection circuit. 809 is performed. Next, using the detected marker, the image distortion correction circuit 808 performs distortion correction such as image tilt, magnification, and distortion, and performs control to convert the image data into a desired two-dimensional data size.
 次に、2値化回路807が、サイズ変換された2次元で2次元データを構成する複数ビットの各ビットデータを、“0”、又は“1”として判定する2値化処理を行い、メモリ802上に再生データの出力の並びでデータを格納する作業を行う。次に、誤り訂正回路806で、各データ列に含まれる誤りを訂正し、スクランブル解除回路805で疑似乱数データ列を加えるスクランブルを解除する。その後、CRC演算回路804が、メモリ802上のユーザデータに誤りが含まれないか否かの確認を行う。その後、ユーザデータは、メモリ802から入出力制御回路90に送信される。 Next, a binarization circuit 807 performs a binarization process of determining each bit data of a plurality of bits forming two-dimensional data in two-dimensional data whose size has been converted as “0” or “1”. An operation of storing data in the order of reproduction data output on the 802 is performed. Next, an error included in each data string is corrected by an error correction circuit 806, and a scramble descramble circuit 805 descrambles the pseudo random number data string. Thereafter, the CRC calculation circuit 804 checks whether or not the user data on the memory 802 contains an error. Thereafter, the user data is transmitted from the memory 802 to the input / output control circuit 90.
 図7(A)は、ホログラム記録再生装置10における記録処理及び再生処理の準備の一例を示すフローチャートである。以下の処理は、ホログラム記録再生装置10において、コントローラ89の制御により実行される。 FIG. 7A is a flowchart illustrating an example of preparation for recording processing and reproduction processing in the hologram recording / reproduction device 10. The following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89.
 まず、ホログラム記録再生装置10は、ディスクの設置を検知すると、挿入されたディスクがホログラフィを利用してデジタル情報を記録又は再生するホログラム記録媒体1であるか否かのディスク判別を行う(ステップS701)。 First, when detecting the installation of the disk, the hologram recording / reproduction device 10 determines whether the inserted disk is the hologram recording medium 1 for recording or reproducing digital information using holography (step S701). ).
 次に、ホログラム記録再生装置10は、ホログラム記録媒体1に含まれるディスク情報(コントロールデータ)の読み出しを行う(ステップS702)。ホログラム記録再生装置10は、例えばホログラム記録媒体1自体に対する情報や、記録時又は再生時における各種設定条件に関する情報を取得する。 Next, the hologram recording / reproducing apparatus 10 reads the disk information (control data) included in the hologram recording medium 1 (Step S702). The hologram recording / reproducing apparatus 10 acquires, for example, information on the hologram recording medium 1 itself and information on various setting conditions during recording or reproduction.
 次に、ホログラム記録再生装置10は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理を行う(ステップS703)。その後、ホログラム記録再生装置10において、記録又は再生の準備が完了する(Ready状態)(ステップS704)。その後、ホログラム記録再生装置10において、本フローチャートの処理が終了する。 Next, the hologram recording / reproducing apparatus 10 performs various adjustments according to the control data and learning processing related to the pickup 11 (step S703). After that, the hologram recording / reproducing apparatus 10 completes preparations for recording or reproduction (Ready state) (step S704). Thereafter, in the hologram recording / reproducing apparatus 10, the processing of this flowchart ends.
 図7(B)は、記録処理の一例を示すフローチャートである。以下の処理は、図7(A)に示す処理と同様に、ホログラム記録再生装置10において、コントローラ89の制御により実行される。また、本処理は、図7(A)に示す準備処理の終了後に実行される。 FIG. 7B is a flowchart illustrating an example of the recording process. The following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89, similarly to the processing shown in FIG. This process is executed after the completion of the preparation process shown in FIG.
 まず、ホログラム記録再生装置10は、外部制御装置91から記録データを受信する(ステップS711)。受信した記録データは、その後ピックアップ11内の空間光変調器312に送られる。 First, the hologram recording / reproducing apparatus 10 receives recording data from the external control device 91 (Step S711). The received recording data is then sent to the spatial light modulator 312 in the pickup 11.
 次に、ホログラム記録再生装置10は、記録用学習処理を実行する(ステップS712)。具体的には、ホログラム記録再生装置10は、ホログラム記録媒体1に高品質の情報を記録するために、必要に応じて各種記録用学習処理を行う。記録用学習処理には、例えば光源301のパワーの最適化処理や、シャッタ303による露光時間の最適化処理が含まれる。 Next, the hologram recording / reproducing apparatus 10 executes a learning process for recording (step S712). Specifically, the hologram recording / reproducing apparatus 10 performs various recording learning processes as needed in order to record high-quality information on the hologram recording medium 1. The recording learning process includes, for example, a process of optimizing the power of the light source 301 and a process of optimizing the exposure time by the shutter 303.
 次に、ホログラム記録再生装置10は、シーク処理を行う(ステップS713)。具体的には、ホログラム記録再生装置10は、アクセス制御回路81を制御して、ピックアップ11及びキュア光学系13の位置をホログラム記録媒体1の所定の位置に位置付けする。ホログラム記録媒体1がアドレス情報を有する場合には、アドレス情報を再生し、目的の位置に位置付けされているかを確認する。目的の位置に位置付けされていない場合には、目的の位置とのずれ量を算出し、再度位置付けする動作を繰り返す。 Next, the hologram recording / reproducing device 10 performs a seek process (Step S713). Specifically, the hologram recording / reproducing apparatus 10 controls the access control circuit 81 to position the pickup 11 and the cure optical system 13 at predetermined positions on the hologram recording medium 1. When the hologram recording medium 1 has the address information, the address information is reproduced and it is confirmed whether or not the hologram recording medium 1 is positioned at a target position. If the position is not positioned at the target position, the amount of deviation from the target position is calculated, and the operation of positioning again is repeated.
 次に、ホログラム記録再生装置10は、プリキュア処理を行う(ステップS714)。具体的には、ホログラム記録再生装置10は、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアする。 Next, the hologram recording / reproducing apparatus 10 performs a precure process (step S714). Specifically, the hologram recording / reproducing apparatus 10 precurs a predetermined area using a light beam emitted from the cure optical system 13.
 次に、ホログラム記録再生装置10は、データ記録処理を行う(ステップS715)。本処理については後に詳述する。 Next, the hologram recording / reproducing device 10 performs a data recording process (Step S715). This processing will be described later in detail.
 次に、ホログラム記録再生装置10は、ポストキュア処理を行う(ステップS716)。具体的には、ホログラム記録再生装置10は、キュア光学系13から出射する光ビームを用いて、ポストキュアを行う。その際に、必要に応じてデータをベリファイすることができる。その後、ホログラム記録媒体1は本フローチャートの処理を終了する。 Next, the hologram recording / reproducing device 10 performs a post cure process (step S716). Specifically, the hologram recording / reproducing apparatus 10 performs post cure using a light beam emitted from the cure optical system 13. At that time, data can be verified as needed. Thereafter, the hologram recording medium 1 ends the processing of this flowchart.
 図7(C)は、再生処理の一例を示すフローチャートである。以下の処理は、図7(A)及び図7(B)に示す処理と同様に、ホログラム記録再生装置10において、コントローラ89の制御により実行される。また、本処理は、図7(A)に示す準備処理の終了後に実行される。 FIG. 7C is a flowchart illustrating an example of the reproduction process. The following processing is executed under the control of the controller 89 in the hologram recording / reproducing apparatus 10 as in the processing shown in FIGS. 7A and 7B. This process is executed after the completion of the preparation process shown in FIG.
 まず、ホログラム記録再生装置10は、シーク処理を行う(ステップS721)。具体的には、ホログラム記録再生装置10は、アクセス制御回路81を制御して、ピックアップ11及び再生用参照光光学系12の位置をホログラム記録媒体1の所定の位置に位置付けする。ホログラム記録媒体1がアドレス情報を有する場合、ホログラム記録再生装置10はアドレス情報を再生し、目的の位置に位置付けされているかを確認する。目的の位置に位置付けされていない場合には、目的の位置とのずれ量を算出し、再度位置付けする動作を繰り返す。 First, the hologram recording / reproducing device 10 performs a seek process (Step S721). More specifically, the hologram recording / reproducing apparatus 10 controls the access control circuit 81 to position the pickup 11 and the reference light beam system for reproduction 12 at predetermined positions on the hologram recording medium 1. When the hologram recording medium 1 has the address information, the hologram recording / reproducing apparatus 10 reproduces the address information and checks whether the hologram recording medium 1 is positioned at a target position. If the position is not positioned at the target position, the amount of deviation from the target position is calculated, and the operation of positioning again is repeated.
 次に、ホログラム記録再生装置10は、データ再生処理を行う(ステップS722)。具体的には、ホログラム記録再生装置10は、ピックアップ11から参照光を出射し、再生用の参照光を検出する。ホログラム記録再生装置10は、検出した再生用参照光から、ホログラム記録媒体1に記録された情報を読み出す。 Next, the hologram recording / reproducing device 10 performs a data reproducing process (Step S722). Specifically, the hologram recording / reproducing apparatus 10 emits reference light from the pickup 11 and detects reference light for reproduction. The hologram recording / reproducing apparatus 10 reads information recorded on the hologram recording medium 1 from the detected reproduction reference light.
 次に、ホログラム記録再生装置10は、再生データを送信する(ステップS723)。具体的には、ホログラム記録再生装置10は、読みだした情報を外部制御装置91に送信する。その後、ホログラム記録媒体1は本フローチャートの処理を終了する。 Next, the hologram recording / reproducing device 10 transmits the reproduced data (Step S723). Specifically, the hologram recording / reproducing device 10 transmits the read information to the external control device 91. Thereafter, the hologram recording medium 1 ends the processing of this flowchart.
 図8(A)は、信号生成処理の一例を示すフローチャートである。本図は、図7(B)のステップS711におけるデータ受信処理の後、受信したデータが空間光変調器312から出力される2次元データに変換されるまでの信号生成回路86での処理の一例を示すものである。 FIG. 8A is a flowchart illustrating an example of the signal generation process. This figure shows an example of processing in the signal generation circuit 86 after the data reception processing in step S711 in FIG. 7B until the received data is converted into two-dimensional data output from the spatial light modulator 312. It is shown.
 ステップS801の処理は、ステップS711の処理と同様であるため、説明を省略する。なお、受信したデータは、入出力制御回路90を介して信号生成回路86に通知される。 処理 The processing in step S801 is the same as the processing in step S711, and a description thereof will not be repeated. The received data is notified to the signal generation circuit 86 via the input / output control circuit 90.
 次に、信号生成回路86は、CRC付加処理を行う(ステップS802)。具体的には、信号生成回路86は、受信したデータを複数のデータ列に分割し、再生時にエラー検出が行えるよう、各データ列をCRC化する。 Next, the signal generation circuit 86 performs a CRC adding process (step S802). Specifically, the signal generation circuit 86 divides the received data into a plurality of data strings, and converts each data string into a CRC so that an error can be detected during reproduction.
 次に、信号生成回路86は、スクランブルデータ化する(ステップS803)。具体的には、信号生成回路86は、CRC化したデータのオンピクセル数とオフピクセル数をほぼ等しくし、同一パターンの繰り返しを防ぐことを目的として、データ列に疑似乱数データ列を加える。 Next, the signal generation circuit 86 converts the data into scrambled data (step S803). Specifically, the signal generation circuit 86 adds a pseudo-random number data sequence to the data sequence for the purpose of making the number of on-pixels and the number of off-pixels of the CRC-converted data substantially equal, and preventing the same pattern from being repeated.
 次に、信号生成回路86は、誤り訂正符号化する(ステップS804)。具体的には、信号生成回路86は、データ再生時にエラー訂正が行えるよう、リード・ソロモン符号等の誤り訂正符号化を行う。 Next, the signal generation circuit 86 performs error correction coding (step S804). Specifically, the signal generation circuit 86 performs error correction coding such as Reed-Solomon code so that error correction can be performed during data reproduction.
 次に、信号生成回路86は、データ2次元化を行う(ステップS805)。具体的には、信号生成回路86は、データ列をM×Nの2次元データに変換し、それを1ページ分繰り返すことにより、1ページ分の2次元データを生成する。 Next, the signal generation circuit 86 performs two-dimensional data conversion (step S805). Specifically, the signal generation circuit 86 converts the data sequence into M × N two-dimensional data, and repeats the conversion for one page, thereby generating one page of two-dimensional data.
 次に、信号生成回路86は、マーカー付加を行う(ステップS806)。具体的には、信号生成回路86は、2次元データに対して、再生時の画像位置検出や画像歪み補正での基準となるマーカーを付加する。 Next, the signal generation circuit 86 performs marker addition (step S806). More specifically, the signal generation circuit 86 adds, to the two-dimensional data, a marker that is used as a reference in image position detection during reproduction and image distortion correction.
 次に、信号生成回路86は、空間光変調器312にパターン転送を行う(ステップS807)。信号生成回路86は、マーカーを付加した2次元データを空間光変調器312に送信する。その後、本フローチャートの処理が終了される。 Next, the signal generation circuit 86 performs pattern transfer to the spatial light modulator 312 (Step S807). The signal generation circuit 86 transmits the two-dimensional data with the marker added to the spatial light modulator 312. Thereafter, the processing of this flowchart ends.
 図8(B)は、信号再生処理の一例を示すフローチャートである。本図は、図7(C)のステップS722において、光検出部325で2次元データが検出された後、ステップS723において再生データが送信されるまでに信号処理回路85において行われる処理の一例を示すものである。 FIG. 8B is a flowchart illustrating an example of the signal reproduction process. This figure shows an example of the processing performed by the signal processing circuit 85 after the two-dimensional data is detected by the light detection unit 325 in step S722 in FIG. 7C and before the reproduction data is transmitted in step S723. It is shown.
 まず、光検出器が再生画像を取得する(ステップS811)。具体的には、信号処理回路85は、光検出器で検出されたデータを取得する。 First, the photodetector acquires a reproduced image (step S811). Specifically, the signal processing circuit 85 acquires data detected by the photodetector.
 次に、信号処理回路85は、画像位置を検出する(ステップS812)。信号処理回路85は、データに含まれるマーカーを基準に、画像位置を検出する。 Next, the signal processing circuit 85 detects an image position (step S812). The signal processing circuit 85 detects an image position based on a marker included in the data.
 次に、信号処理回路85は、画像歪み補正を行う(ステップS813)。具体的には、信号処理回路85は、画像の傾き、倍率、ディストーション等の歪みを補正する。 Next, the signal processing circuit 85 performs image distortion correction (step S813). More specifically, the signal processing circuit 85 corrects distortion such as image inclination, magnification, and distortion.
 次に、信号処理回路85は、2値化処理を行う(ステップS814)。 Next, the signal processing circuit 85 performs a binarization process (step S814).
 次に、信号処理回路85は、マーカーを除去する(ステップS815)。 Next, the signal processing circuit 85 removes the marker (Step S815).
 次に、信号処理回路85は、2次元データを取得する(ステップS816)。具体的には、信号処理回路85は、マーカーが除去された、1ページ分の2次元データを取得する。信号処理回路85は、取得した2次元データを複数のデータ列に変換する。 Next, the signal processing circuit 85 acquires two-dimensional data (step S816). Specifically, the signal processing circuit 85 acquires one page of two-dimensional data from which the marker has been removed. The signal processing circuit 85 converts the obtained two-dimensional data into a plurality of data strings.
 次に、信号処理回路85は、誤り訂正処理を行う(ステップS817)。信号処理回路85は、誤り訂正処理を行うことにより、パリティデータ列を取り除く。 Next, the signal processing circuit 85 performs an error correction process (step S817). The signal processing circuit 85 removes the parity data sequence by performing an error correction process.
 次に、信号処理回路85は、スクランブル解除を行う(ステップS818)。 Next, the signal processing circuit 85 performs descrambling (step S818).
 次に、信号処理回路85は、誤り検出を行う(ステップS819)。具体的には、信号処理回路85は、CRCを用いた誤り検出処理を行い、CRCパリティを削除する。 Next, the signal processing circuit 85 performs error detection (step S819). Specifically, the signal processing circuit 85 performs an error detection process using the CRC and deletes the CRC parity.
 次に、信号処理回路85は、再生データを送信する(ステップS820)。本ステップで行われる処理は、図7(C)に示すステップS723で行われる処理と同様であるため、説明を省略する。その後、本フローチャートの処理が終了される。 Next, the signal processing circuit 85 transmits the reproduced data (step S820). The processing performed in this step is the same as the processing performed in step S723 shown in FIG. Thereafter, the processing of this flowchart ends.
 図9は、第1の実施形態におけるデータ記録処理の一例を示すフローチャートである。本図は、図7(B)のステップS715において行われる処理をより詳細に示すものである。以下の処理は、ホログラム記録再生装置10において、コントローラ89の制御により実行される。 FIG. 9 is a flowchart illustrating an example of a data recording process according to the first embodiment. This figure shows the processing performed in step S715 of FIG. 7B in more detail. The following processing is executed in the hologram recording / reproducing apparatus 10 under the control of the controller 89.
 まず、ホログラム記録再生装置10は、ホログラム記録媒体1を、最初のページに位置付ける(ステップS901)。具体的には、ホログラム記録再生装置10は、ホログラム記録媒体1を、最初のページを記録する位置に位置付けるとともに、角度制御部319を用いて参照光の角度を制御する。参照光の角度は、最初のページを記録する角度となる。 First, the hologram recording / reproducing apparatus 10 positions the hologram recording medium 1 on the first page (Step S901). Specifically, the hologram recording / reproducing apparatus 10 positions the hologram recording medium 1 at the position where the first page is recorded, and controls the angle of the reference light using the angle control unit 319. The angle of the reference light is the angle at which the first page is recorded.
 次に、ホログラム記録再生装置10は、ページ記録を行う(ステップS902)。具体的には、ホログラム記録再生装置10は、空間光変調器312を用いてページデータを変調し、信号光と参照光とをホログラム記録媒体1中で干渉させることにより、ページ記録を行う。 Next, the hologram recording / reproducing apparatus 10 performs page recording (step S902). Specifically, the hologram recording / reproducing apparatus 10 performs page recording by modulating page data using the spatial light modulator 312 and causing the signal light and the reference light to interfere with each other in the hologram recording medium 1.
 次に、ホログラム記録再生装置10は、最後の角度多重であるか否かを判定する(ステップS903)。具体的には、ホログラム記録再生装置10は、参照光の角度が、角度多重を行う最後の角度であるか否かを判定する。 Next, the hologram recording / reproducing apparatus 10 determines whether or not it is the last angle multiplexing (Step S903). Specifically, the hologram recording / reproducing apparatus 10 determines whether or not the angle of the reference light is the last angle at which angle multiplexing is performed.
 ホログラム記録再生装置10が、参照光の角度が最後の角度でないと判定する場合(ステップS903で「No」の場合)、ホログラム記録再生装置10は、参照光の角度を変更する(ステップS904)。具体的には、ホログラム記録再生装置10は、参照光の角度を次に記録すべき角度に変更し、ステップ902にてページ記録処理を行う。 If the hologram recording / reproducing device 10 determines that the angle of the reference light is not the last angle (“No” in step S903), the hologram recording / reproducing device 10 changes the angle of the reference light (step S904). Specifically, the hologram recording / reproducing apparatus 10 changes the angle of the reference light to the angle to be recorded next, and performs a page recording process in Step 902.
 ホログラム記録再生装置10が、参照光の角度が最後の角度であると判定する場合(ステップS903で「Yes」の場合)、ホログラム記録再生装置10は、最後のペリストロフィック多重であるか否かを判定する(ステップS905)。具体的には、ホログラム記録再生装置10は、信号光と参照光との配置が、最後のペリストロフィック多重を行う配置となっているか否かを判定する。 When the hologram recording / reproducing apparatus 10 determines that the angle of the reference light is the last angle (in the case of “Yes” in step S903), the hologram recording / reproducing apparatus 10 determines whether or not the last perisotropic multiplexing is performed. Is determined (step S905). Specifically, the hologram recording / reproducing apparatus 10 determines whether or not the arrangement of the signal light and the reference light is an arrangement for performing the last peristroic multiplexing.
 ホログラム記録再生装置10が、最後のペリストロフィック多重でないと判定する場合(ステップS905で「No」の場合)、ホログラム記録再生装置10は、空間光変調器312の使用領域を変更する(ステップS906)。本処理の結果、対物レンズ315上の信号光照射領域の位置が変更される。 If the hologram recording / reproducing apparatus 10 determines that the last peristrographic multiplexing is not performed ("No" in step S905), the hologram recording / reproducing apparatus 10 changes the use area of the spatial light modulator 312 (step S906). ). As a result of this processing, the position of the signal light irradiation area on the objective lens 315 is changed.
 次に、ホログラム記録再生装置10は、参照光の使用領域を変更する(ステップS907)。本処理の結果、対物レンズ315上の参照光照射領域の位置が変更される。その後、ホログラム記録再生装置10は、ステップS902に処理を移行させる。 Next, the hologram recording / reproducing device 10 changes the use area of the reference light (Step S907). As a result of this processing, the position of the reference light irradiation area on the objective lens 315 is changed. After that, the hologram recording / reproduction device 10 shifts the processing to step S902.
 ホログラム記録再生装置10が、最後のペリストロフィック多重であると判定する場合(ステップS905で「Yes」の場合)、ホログラム記録再生装置10は、ステップS902で記録したブックが最後のブックであるか否かを判定する(ステップS908)。ホログラム記録再生装置10が、最後のブックであると判定する場合(ステップS908で「Yes」の場合)、本フローチャートの処理が終了される。即ち、データ記録が終了する。 When the hologram recording / reproducing apparatus 10 determines that the last peristrographic multiplex is performed (in the case of “Yes” in step S905), the hologram recording / reproducing apparatus 10 determines whether the book recorded in step S902 is the last book. It is determined whether or not it is (step S908). If the hologram recording / reproducing apparatus 10 determines that the book is the last book (“Yes” in step S908), the processing of this flowchart ends. That is, the data recording ends.
 ホログラム記録再生装置10が、最後のブックでないと判定する場合(ステップS908で「No」の場合)、ホログラム記録再生装置10は、記録位置を変更する(ステップS909)。具体的には、ホログラム記録再生装置10は、ホログラム記録媒体1の記録位置を変更する。その後、ホログラム記録媒体1は処理をステップS902に戻す。その結果、ペリストロフィック多重の処理が引き続き行われる。 If the hologram recording / reproducing apparatus 10 determines that the book is not the last book ("No" in step S908), the hologram recording / reproducing apparatus 10 changes the recording position (step S909). Specifically, the hologram recording / reproducing apparatus 10 changes the recording position of the hologram recording medium 1. Thereafter, the hologram recording medium 1 returns the process to step S902. As a result, the peristrographic multiplexing process is continuously performed.
 なお、本実施形態において、参照光の角度の変更に要する時間と、ブック位置の変更に要する時間とを短くする例として、角度多重、ペリストロフィック多重、ブック位置変更の順序で処理を行う例を説明した。しかしながら、処理の順序を入れ替えても構わないし、交互に処理を行い、最終的に所望のブックが記録されるよう構成しても構わない。 In the present embodiment, as an example of shortening the time required for changing the angle of the reference light and the time required for changing the book position, an example in which processing is performed in the order of angle multiplexing, peristrographic multiplexing, and book position change Was explained. However, the order of the processes may be changed, or the processes may be performed alternately so that a desired book is finally recorded.
 以上、本実施形態によれば、簡易な構成で角度多重とペリストロフィック多重を組み合わせた記録が可能となる。これにより、簡易な構成で記録密度を向上させることができる。 As described above, according to the present embodiment, it is possible to perform recording by combining angle multiplexing and peristlographic multiplexing with a simple configuration. Thereby, the recording density can be improved with a simple configuration.
 <第2の実施形態> <Second embodiment>
 以下、第2の実施形態について説明する。本実施形態におけるピックアップ11は、参照光の入射角度を制御する2つの角度制御部を有する。2つの角度制御部による参照光の走査方向は互いに直交する。以下、第1の実施形態と異なる点について説明する。 Hereinafter, a second embodiment will be described. The pickup 11 in the present embodiment has two angle control units that control the incident angle of the reference light. The scanning directions of the reference light by the two angle controllers are orthogonal to each other. Hereinafter, points different from the first embodiment will be described.
 図10は、第2の実施形態におけるピックアップ11の構成例を示す図である。図10に示すピックアップ11は、ミラー318の代わりに、角度制御部1101を有し、ミラー502の代わりに、+型ミラー1103を有する。また、図10に示すピックアップ11は、偏光方向制御部1104を有する。一例として、偏光方向制御部1104には、1/2波長板を用いる。 FIG. 10 is a diagram illustrating a configuration example of the pickup 11 according to the second embodiment. The pickup 11 shown in FIG. 10 has an angle control unit 1101 instead of the mirror 318, and has a + type mirror 1103 instead of the mirror 502. The pickup 11 shown in FIG. 10 has a polarization direction controller 1104. As an example, a 波長 wavelength plate is used for the polarization direction controller 1104.
 角度制御部1101は、アクチュエーター1102により角度を調整可能である。角度制御部1101の角度の調整方向は、角度制御部319の角度調整の方向と垂直の関係であることが望ましい。即ち、角度制御部1101によって+型ミラー1103上を走査される参照光の走査方向と、角度制御部319によって+型ミラー1103上を走査される参照光の走査方向とは、互いに直交する。なお、一例として、角度制御部1101にはガルバノミラーを用いることができる。 The angle control unit 1101 can adjust the angle by the actuator 1102. It is desirable that the angle adjustment direction of the angle control unit 1101 is perpendicular to the angle adjustment direction of the angle control unit 319. That is, the scanning direction of the reference light scanned on the + mirror 1103 by the angle control unit 1101 and the scanning direction of the reference light scanned on the + mirror 1103 by the angle control unit 319 are orthogonal to each other. As an example, a galvanomirror can be used for the angle control unit 1101.
 +型ミラー1103は、+(プラス)の形状をしており、ミラー502を2つ直交して配置したのと同様の機能を有する。この構成により、ホログラム記録媒体1に対し、互いに異なる4方向から参照光を入射させることができる。その結果、参照光を2次元で走査させることができる。なお、参照光の走査方向の変更に伴い、空間光変調器312は、信号光が対物レンズ315に照射されることにより形成される信号光照射領域の位置を異ならせる。 The + type mirror 1103 has a shape of + (plus), and has the same function as that of two mirrors 502 arranged orthogonally. With this configuration, the reference light can be made to enter the hologram recording medium 1 from four different directions. As a result, the reference light can be scanned two-dimensionally. Note that, with the change in the scanning direction of the reference light, the spatial light modulator 312 changes the position of the signal light irradiation region formed by irradiating the objective lens 315 with the signal light.
 角度多重方式で情報の記録処理を行う場合、信号光と参照光とをs偏光して干渉させることが、回折効率を高く保つ観点から望ましい。しかしながら、信号光と参照光との配置を90度回転すると、s偏光だった光がp偏光となり、回折効率が低下する。そのため、信号光306と、+型ミラー1103を反射した参照光307とについて、偏光方向制御部1104により偏光の方位角を変化させて、s偏光とする。 In the case where information recording processing is performed by the angle multiplexing method, it is desirable to cause the signal light and the reference light to interfere with each other by s-polarization from the viewpoint of maintaining high diffraction efficiency. However, when the arrangement of the signal light and the reference light is rotated by 90 degrees, the s-polarized light becomes the p-polarized light, and the diffraction efficiency decreases. Therefore, the polarization direction control unit 1104 changes the azimuth of the polarization of the signal light 306 and the reference light 307 reflected by the + type mirror 1103, so that the s-polarized light is obtained.
 なお、本実施形態では、2つの角度制御部を用いて参照光の走査方向を変更するが、2次元の方向に走査の制御が可能な素子を、角度制御部の代わりに用いることも可能である。 In the present embodiment, the scanning direction of the reference light is changed using two angle control units. However, an element capable of controlling scanning in a two-dimensional direction can be used instead of the angle control unit. is there.
 なお、第1の実施形態と同様に、再生時には参照光を記録時とは逆向きにホログラム記録媒体1に照射させる必要がある。そのため、記録時に入射角度を2次元で変化させた場合には、再生時にも参照光の走査方向を2次元で変化させる必要がある。このため、図示しない角度制御部を角度制御部324にさらに追加して、参照光を2次元で走査可能とする。又は、角度制御部324の代わりに、2次元で反射方向を制御可能な素子を用いても構わない。 Note that, similarly to the first embodiment, it is necessary to irradiate the hologram recording medium 1 with the reference light at the time of reproduction in a direction opposite to that at the time of recording. Therefore, when the incident angle is changed two-dimensionally during recording, it is necessary to change the scanning direction of the reference light two-dimensionally also during reproduction. For this reason, an angle control unit (not shown) is further added to the angle control unit 324 so that the reference light can be two-dimensionally scanned. Alternatively, an element capable of controlling the reflection direction in two dimensions may be used instead of the angle control unit 324.
 図11は、第2の実施形態の対物レンズ315における信号光と参照光との配置の一例を示す図である。本図は、図10に示す対物レンズ315を信号光の照射方向(即ち対物レンズ315の光軸方向)から見た場合の、信号光と参照光の配置を示す図である。即ち、図11は、図10の紙面の上方向から下方向に向かって、対物レンズ315を見た状態を示す。なお、本図には、+型ミラー1103の背面が示されている。背面の裏側が反射面である。 FIG. 11 is a diagram illustrating an example of an arrangement of signal light and reference light in the objective lens 315 of the second embodiment. This figure is a diagram showing the arrangement of the signal light and the reference light when the objective lens 315 shown in FIG. 10 is viewed from the signal light irradiation direction (that is, the optical axis direction of the objective lens 315). That is, FIG. 11 shows a state in which the objective lens 315 is viewed from the upper side to the lower side in FIG. It should be noted that the back of the + type mirror 1103 is shown in FIG. The back side of the back is the reflection surface.
 図11において、対物レンズ315の有効径101の中に、+型ミラー1103が配置されている。角度制御部1101と角度制御部319によって2次元で参照光を走査すると、参照光は+型ミラー1103の反射面に反射される。参照光は、走査により線1203a、1203b、1203c、1203d上で位置が変化する。+型ミラー1103は、直交して走査される参照光に沿って延伸するよう構成されているといえる。また、本構成によれば、参照光はホログラム記録媒体1に対して互いに異なる4方向(図11に示す上方向、下方向、右方向、及び左方向)から入射するといえる。 に お い て In FIG. 11, a positive mirror 1103 is arranged in the effective diameter 101 of the objective lens 315. When the reference light is scanned two-dimensionally by the angle control unit 1101 and the angle control unit 319, the reference light is reflected by the reflection surface of the + type mirror 1103. The position of the reference light changes on the lines 1203a, 1203b, 1203c, and 1203d by scanning. It can be said that the + type mirror 1103 is configured to extend along the reference beam scanned orthogonally. Further, according to this configuration, it can be said that the reference light enters the hologram recording medium 1 from four different directions (upward, downward, rightward, and leftward directions shown in FIG. 11).
 参照光が反射面において線1203a上を移動している際、空間光変調器312は信号光を領域1204aに配置する。同様に、参照光が線1203b上を移動している際、空間光変調器312は、信号光を領域1204bに配置する。参照光が線1203c上を移動している際、信号光は領域1204cに配置される。参照光が線1203d上を移動している際、信号光は領域1204dに配置される。なお、一例として、位置の変化後においても、図11に示すように、信号光照射領域と参照光照射領域とは、対物レンズ315の光軸を中心として対向する位置にある。また、信号光照射領域と参照光照射領域の位置の変化については、図11に示す並び順に限定されない。 While the reference light is moving on the line 1203a on the reflection surface, the spatial light modulator 312 arranges the signal light in the area 1204a. Similarly, when the reference light is moving on the line 1203b, the spatial light modulator 312 places the signal light in the region 1204b. When the reference light is moving on the line 1203c, the signal light is arranged in the region 1204c. When the reference light is moving on the line 1203d, the signal light is arranged in the region 1204d. Note that, as an example, even after the position is changed, as shown in FIG. 11, the signal light irradiation region and the reference light irradiation region are at positions facing each other around the optical axis of the objective lens 315. The change in the positions of the signal light irradiation region and the reference light irradiation region is not limited to the order shown in FIG.
 なお、図11に示す4組の信号光と参照光との組み合わせのそれぞれにおいて、角度多重が可能となる。また、本実施形態では、対物レンズ315の光軸周りに90度ずつ信号光と参照光との配置が回転している。付言すると、第1の実施形態と同様に、空間光変調器312は、対物レンズ315の焦点面において、+型ミラー1103の影となる領域を除外した領域に照射される信号光に、記録する情報を含める。 角度 Angle multiplexing is possible for each of the four combinations of the signal light and the reference light shown in FIG. In the present embodiment, the arrangement of the signal light and the reference light is rotated by 90 degrees around the optical axis of the objective lens 315. In addition, similarly to the first embodiment, the spatial light modulator 312 records the signal light on the focal plane of the objective lens 315, which is applied to the area excluding the shadow area of the + type mirror 1103. Include information.
 本実施形態においても、信号光照射領域の大きさが一定であるため、ページフォーマットを固定にすることで、信号処理の負荷を増大させずに記録密度を高めることが可能となる。 Also in this embodiment, since the size of the signal light irradiation area is constant, it is possible to increase the recording density without increasing the signal processing load by fixing the page format.
 付言すれば、信号光の開口数が大きい場合には、隣接するペリストロフィック多重したホログラムとの間でクロストークが発生しやすくなる。信号光照射領域は、図11に示す形状でなくてもよく、クロストークを抑制するための任意の形状とすることができる。 Additionally, when the numerical aperture of the signal light is large, crosstalk is likely to occur between adjacent peristrographically multiplexed holograms. The signal light irradiation region does not have to have the shape shown in FIG. 11, and may have any shape for suppressing crosstalk.
 図12は、第2の実施形態におけるデータ記録処理の一例を示すフローチャートである。 FIG. 12 is a flowchart illustrating an example of a data recording process according to the second embodiment.
 ステップS1221からステップS1225において行われる処理は、図9に示すステップS901からステップS905において行われる処理と同様であるため、説明を省略する。 The processing performed in steps S1221 to S1225 is the same as the processing performed in steps S901 to S905 shown in FIG.
 ステップS1225において、ホログラム記録再生装置10が、最後のペリストロフィック多重でないと判定する場合(ステップS1225で「No」の場合)、ホログラム記録再生装置10は、信号光と参照光の偏光を変更する(ステップS1231)。具体的には、ホログラム記録再生装置10は、信号光と参照光とがs偏光となるよう、偏光方向制御部1104を用いて偏光を制御する。 In step S1225, when the hologram recording / reproducing apparatus 10 determines that the data is not the last perisotropic multiplexing (“No” in step S1225), the hologram recording / reproducing apparatus 10 changes the polarization of the signal light and the reference light. (Step S1231). Specifically, the hologram recording / reproducing apparatus 10 controls the polarization using the polarization direction control unit 1104 so that the signal light and the reference light become s-polarized light.
 その後、ステップS1226からステップS1229で行われる処理は、図9のステップS906からステップS909で行われる処理と同様であるため、説明を省略する。 Thereafter, the processing performed in steps S1226 to S1229 is the same as the processing performed in steps S906 to S909 in FIG.
 本実施形態において、信号光と参照光との配置位置を変更することにより、ホログラムを光軸に対して回転させて記録を行うペリストロフィック多重の効果が得られるため、記録密度を高めることができる。本実施形態では4多重のペリストロフィック多重が可能となる。 In the present embodiment, by changing the arrangement positions of the signal light and the reference light, the effect of peristlographic multiplexing in which recording is performed by rotating the hologram with respect to the optical axis is obtained. it can. In the present embodiment, four multiplexes can be performed.
 また、信号光と参照光との配置の回転により、p偏光となった場合であっても、s偏光に変更する。これにより、回折効率の低下を防ぐことができる。なお、本フローチャートでは、偏光を変化させた後に、信号光照射領域と再生光照射領域との位置を変更したが、これらの処理の順序は本図に示す順序に限られない。 Also, even if it becomes p-polarized light due to the rotation of the arrangement of the signal light and the reference light, it is changed to s-polarized light. As a result, it is possible to prevent a reduction in diffraction efficiency. In the present flowchart, the positions of the signal light irradiation area and the reproduction light irradiation area are changed after the polarization is changed, but the order of these processes is not limited to the order shown in FIG.
 <第3の実施形態> <Third embodiment>
 次に、第3の実施形態について説明する。第3の実施形態では、ミラー502又は+型ミラー1103の代わりに、ハーフビームスプリッター1401を配置する。以下、第1の実施形態及び第2の実施形態と異なる点について説明する。 Next, a third embodiment will be described. In the third embodiment, a half beam splitter 1401 is arranged instead of the mirror 502 or the + type mirror 1103. Hereinafter, points different from the first embodiment and the second embodiment will be described.
 図13は、第3の実施形態におけるピックアップ11の構成例を示す図である。ハーフビームスプリッター1401は、参照光を反射し、対物レンズ315に導く。また、ハーフビームスプリッター1401は、信号光を透過し、対物レンズ315に導く。即ち、参照光と信号光とは、ハーフビームスプリッター1401により同軸方向に導かれ、対物レンズ315を透過する。 FIG. 13 is a diagram illustrating a configuration example of the pickup 11 according to the third embodiment. The half beam splitter 1401 reflects the reference light and guides it to the objective lens 315. The half beam splitter 1401 transmits the signal light and guides the signal light to the objective lens 315. That is, the reference light and the signal light are guided coaxially by the half beam splitter 1401 and pass through the objective lens 315.
 第2の実施形態では、+型ミラー1103を用いるため、直交する2方向に参照光を走査させたが、ハーフビームスプリッター1401は、反射面を面にて有しているため、参照光を任意の方向に走査させることができる。即ち、4多重よりも多くのペリストロフィック多重が可能となる。 In the second embodiment, the reference beam is scanned in two orthogonal directions to use the + type mirror 1103. However, since the half beam splitter 1401 has a reflecting surface on the surface, the reference beam can be arbitrarily set. Can be scanned in the direction of. That is, more peristroic multiplexing than four multiplexing is possible.
 一方で、信号光は光量の略半分がハーフビームスプリッター1401により反射し、参照光は光量の略半分がハーフビームスプリッター1401により透過される。即ち、信号光と参照光との光量が半分に低下する。記録されるホログラムの回折効率を保つために、記録露光時間を倍に延ばすことが好ましい。 On the other hand, approximately half of the light amount of the signal light is reflected by the half beam splitter 1401, and approximately half of the reference light is transmitted by the half beam splitter 1401. That is, the light amounts of the signal light and the reference light are reduced by half. In order to maintain the diffraction efficiency of the recorded hologram, it is preferable to double the recording exposure time.
 <変形例> <Modified example>
 図14は、第3の実施形態の変形例におけるピックアップ11の構成例を示す図である。本変形例におけるピックアップ11は、ホログラム記録媒体1に情報を記録するための角度制御部324とアクチュエーター323を含む再生用参照光光学系12のほか、角度制御部1505及びアクチュエーター1504を含む再生用参照光光学系12を含む。また、信号光及び再生光の偏光を制御する偏光方向制御部1502と、対物レンズ1503と、をさらに有する。 FIG. 14 is a diagram illustrating a configuration example of the pickup 11 according to a modified example of the third embodiment. The pickup 11 according to the present modification includes a reproduction reference optical system 12 including an angle control unit 324 and an actuator 323 for recording information on the hologram recording medium 1, and a reproduction reference optical system including an angle control unit 1505 and an actuator 1504. The optical optical system 12 is included. Further, it further includes a polarization direction controller 1502 for controlling the polarization of the signal light and the reproduction light, and an objective lens 1503.
 ハーフビームスプリッター1401を反射せずに透過した参照光は、偏光方向制御部1502を透過し、対物レンズ1503に照射される。また、ハーフビームスプリッター1401を透過せずに反射した信号光は、偏光方向制御部1502を透過して対物レンズ1503に照射される。即ち、信号光及び参照光は、ハーフビームスプリッター1401により同軸方向に導かれる。対物レンズ1503を透過した信号光及び参照光は、ホログラム記録媒体1501において干渉し、ホログラムを形成する。 The reference light transmitted through the half beam splitter 1401 without being reflected is transmitted through the polarization direction control unit 1502 and irradiated on the objective lens 1503. In addition, the signal light reflected without being transmitted through the half beam splitter 1401 is transmitted through the polarization direction controller 1502 and is irradiated on the objective lens 1503. That is, the signal light and the reference light are guided coaxially by the half beam splitter 1401. The signal light and the reference light transmitted through the objective lens 1503 interfere with each other on the hologram recording medium 1501 to form a hologram.
 また、記録されたホログラムを再生する際には、アクチュエーター1504によって角度調整可能な角度制御部1505に参照光を反射させることで、再生用参照光を生成することができる。 When reproducing the recorded hologram, the reference light for reproduction can be generated by reflecting the reference light to the angle control unit 1505 whose angle can be adjusted by the actuator 1504.
 本変形例では、ホログラム記録媒体1501にはホログラム記録媒体1と同じホログラムが記憶される。これにより、第3の実施形態において記録に用いられなかった信号光及び参照光をホログラム記録媒体1501の記録に用いることができ、光の利用効率が向上する。 In this modification, the hologram same as that of the hologram recording medium 1 is stored in the hologram recording medium 1501. Thus, the signal light and the reference light that have not been used for recording in the third embodiment can be used for recording on the hologram recording medium 1501, and the light use efficiency is improved.
 以上、第1の実施形態から第3の実施形態におけるホログラム記録再生装置10を用いることで、ペリストロフィック多重により、ホログラム記録媒体1の所定の箇所に、様々な角度のホログラムを多重して記憶することができる。 As described above, by using the hologram recording / reproducing device 10 according to the first to third embodiments, holograms of various angles are multiplexed and stored at predetermined positions of the hologram recording medium 1 by peristlographic multiplexing. can do.
 また、上述のホログラム記録再生装置10は、デジタルデータの記録に用いるほか、観賞用又はディスプレイ用のホログラムや、ヘッドマウントディスプレイ等に用いるホログラム導光板のホログラム等の任意のホログラムの形成及び印刷において、幅広く適用することが可能である。 The hologram recording / reproducing apparatus 10 described above is used for recording digital data, and for forming and printing an arbitrary hologram such as a hologram for an ornament or a display, and a hologram of a hologram light guide plate used for a head-mounted display. It can be widely applied.
 以上、本発明に係る各実施形態及び変形例の説明を行ってきたが、本発明は、上記した実施形態の一例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態の一例は、本発明を分かり易くするために詳細に説明したものであり、本発明は、ここで説明した全ての構成を備えるものに限定されない。また、ある実施形態の一例の構成の一部を他の一例の構成に置き換えることが可能である。また、ある実施形態の一例の構成に他の一例の構成を加えることも可能である。また、各実施形態の一例の構成の一部について、他の構成の追加・削除・置換をすることもできる。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、図中の制御線や情報線は、説明上必要と考えられるものを示しており、全てを示しているとは限らない。ほとんど全ての構成が相互に接続されていると考えてもよい。 Although the embodiments and the modified examples according to the present invention have been described above, the present invention is not limited to the above-described example of the embodiment, and includes various modified examples. For example, the example of the above-described embodiment has been described in detail in order to make the present invention easy to understand, and the present invention is not limited to one having all the configurations described here. Further, a part of the configuration of one example of an embodiment can be replaced with the configuration of another example. Further, it is also possible to add another example configuration to the example configuration of one embodiment. Further, for a part of the configuration of an example of each embodiment, another configuration can be added, deleted, or replaced. Further, each of the above-described configurations, functions, processing units, processing means, and the like may be partially or entirely realized by hardware, for example, by designing an integrated circuit. Further, control lines and information lines in the figure indicate those considered to be necessary for the description, and do not necessarily indicate all of them. Almost all configurations may be considered interconnected.
 また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又はICカード、SDカード、DVD等の記録媒体内に記録し、読みだして使用することができる。 The above configurations, functions, and the like may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs for realizing each function should be recorded in a memory, a hard disk, a recording device such as SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD, and read and used. Can be.
 また、上記のホログラム記録再生装置10の機能構成は、理解を容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。ホログラム記録再生装置10の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。 The functional configuration of the hologram recording / reproducing apparatus 10 is classified according to main processing contents for easy understanding. The invention of the present application is not limited by the way of classification and names of the components. The configuration of the hologram recording / reproducing apparatus 10 can be further classified into more components according to the processing content. In addition, it can be classified so that one component performs more processing.
1:ホログラム記録媒体、10:ホログラム記録再生装置、11:ピックアップ、12:再生用参照光光学系、13:キュア光学系、14:ディスク回転角度検出用光学系、50:回転モータ、81:アクセス制御回路、82:光源駆動回路、83:サーボ信号生成回路、84:サーボ制御回路、85:信号処理回路、86:信号生成回路、87:シャッタ制御回路、88:ディスク回転モータ制御回路、89:コントローラ、90:入出力制御回路、91:外部制御装置、101:有効径、301:光源、302:コリメートレンズ、303:シャッタ、304:光学素子、305:光学分離部、306:信号光、307:参照光、308:ビームエキスパンダ、309:位相マスク、310・313:リレーレンズ、311:PBSプリズム、312:空間光変調器、314:空間フィルタ、315・1503:対物レンズ、316:偏光方向変換素子、317・318・322・502:ミラー、319・324・1101・1505:角度制御部、320・323・1102・1504:アクチュエーター、321・501:レンズ、325:光検出部、503a・504a・503b・504b:点、507a・507b:領域、505a・508a・505b・508b:最内角、506a・509a・506b・509b:最外角、509:幅、701・801:サブコントローラ、702・802:メモリ、703・803:メモリ制御回路、704・804:CRC演算回路、705:スクランブル回路、706:誤り訂正符号化回路、707:ピックアップ(空間光変調器)インターフェース回路、708・811:制御用ライン、709・812:データライン、805:スクランブル解除回路、806:誤り訂正回路、807:2値化回路、808:画像歪み補正回路、809:画像位置検出回路、810:ピックアップ(光検出器)インターフェース回路、1103:+型ミラー、1104・1502:偏光方向制御部、1203a・1203b・1203c・1203d:線、1204a・1204b・1204c・1204d:領域、1401:ハーフビームスプリッター 1: hologram recording medium, 10: hologram recording / reproducing device, 11: pickup, 12: reference optical system for reproduction, 13: cure optical system, 14: optical system for detecting disk rotation angle, 50: rotation motor, 81: access Control circuit, 82: light source drive circuit, 83: servo signal generation circuit, 84: servo control circuit, 85: signal processing circuit, 86: signal generation circuit, 87: shutter control circuit, 88: disk rotation motor control circuit, 89: Controller, 90: input / output control circuit, 91: external control device, 101: effective diameter, 301: light source, 302: collimating lens, 303: shutter, 304: optical element, 305: optical separation unit, 306: signal light, 307 308: beam expander 309: phase mask 310/313: relay lens 311: PBS pre 312: Spatial light modulator, 314: Spatial filter, 315/1503: Objective lens, 316: Polarization direction conversion element, 317/318/322/502: Mirror, 319/324/1101/1505: Angle control unit, 320, 323, 1102, 1504: actuator, 321, 501: lens, 325: photodetector, 503a, 504a, 503b, 504b: point, 507a, 507b: area, 505a, 508a, 505b, 508b: innermost angle, 506a · 509a · 506b · 509b: outermost angle, 509: width, 701 · 801: sub-controller, 702 · 802: memory, 703 · 803: memory control circuit, 704 · 804: CRC operation circuit, 705: scramble circuit, 706: Error correction coding circuit, 707: pickup ( Intermediate light modulator) interface circuit, 708/811: control line, 709/812: data line, 805: descrambling circuit, 806: error correction circuit, 807: binarization circuit, 808: image distortion correction circuit, 809 : Image position detection circuit, 810: Pickup (photodetector) interface circuit, 1103: + type mirror, 1104, 1502: Polarization direction control unit, 1203a, 1203b, 1203c, 1203d: Line, 1204a, 1204b, 1204c, 1204d: Area, 1401: half beam splitter

Claims (12)

  1.  信号光と参照光とを記録媒体に照射して情報を記録するホログラム記録装置であって、
     光ビームを出射する光源部と、
     前記光ビームを前記信号光と前記参照光とに分離する光学分離部と、
     前記信号光を変調する空間光変調部と、
     前記信号光と前記参照光とを透過する対物レンズと、
     前記対物レンズ上の前記信号光の照射領域である信号光照射領域と、前記対物レンズ上の前記参照光の照射領域である参照光照射領域と、の位置を変更する位置制御部と、
     前記参照光の前記記録媒体に対する入射角度を制御する角度制御部と、を有し、
     前記角度制御部は、前記位置制御部により位置の固定された信号光照射領域を透過した前記信号光が前記記録媒体に入射する間に、前記入射角度を変更することにより、異なる複数の角度で前記参照光を前記記録媒体に入射することを特徴とする、ホログラム記録装置。
    A hologram recording device that records information by irradiating a recording medium with signal light and reference light,
    A light source unit for emitting a light beam;
    An optical separation unit that separates the light beam into the signal light and the reference light,
    A spatial light modulator for modulating the signal light,
    An objective lens that transmits the signal light and the reference light,
    A position control unit that changes the position of the signal light irradiation area that is the irradiation area of the signal light on the objective lens, and the reference light irradiation area that is the irradiation area of the reference light on the objective lens.
    An angle control unit that controls an incident angle of the reference light with respect to the recording medium,
    The angle control unit changes the incident angle while the signal light transmitted through the signal light irradiation area whose position is fixed by the position control unit is incident on the recording medium, so that the angle is changed at a plurality of different angles. A hologram recording device, wherein the reference light is incident on the recording medium.
  2.  請求項1に記載のホログラム記録装置であって、
     前記位置制御部は、前記信号光照射領域と前記参照光照射領域との位置が前記対物レンズの光軸周りに各々回転するよう前記位置を変更することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    The hologram recording device, wherein the position control unit changes the positions such that the positions of the signal light irradiation region and the reference light irradiation region rotate around the optical axis of the objective lens.
  3.  請求項1に記載のホログラム記録装置であって、
     前記位置制御部は、前記信号光照射領域と前記参照光照射領域とが前記対物レンズの光軸を中心として対向する位置になるよう前記位置を変更することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    The hologram recording apparatus, wherein the position control unit changes the position such that the signal light irradiation area and the reference light irradiation area face each other with the optical axis of the objective lens as a center.
  4.  請求項1に記載のホログラム記録装置であって、
     前記角度制御部により制御された前記参照光を反射面で反射し、前記反射面で前記信号光を反射しない位置に配置されるミラー部を有し、
     前記対物レンズは、前記ミラー部に反射された前記参照光を透過することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    Reflecting the reference light controlled by the angle control unit on a reflecting surface, having a mirror unit disposed at a position that does not reflect the signal light on the reflecting surface,
    The hologram recording device, wherein the objective lens transmits the reference light reflected by the mirror unit.
  5.  請求項4に記載のホログラム記録装置であって、
     前記ミラー部は、前記入射角度が最大となる場合の前記参照光を反射する幅を有することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 4,
    The hologram recording device, wherein the mirror section has a width that reflects the reference light when the incident angle is maximum.
  6.  請求項4に記載のホログラム記録装置であって、
     前記空間光変調部は、前記対物レンズの焦点面において、前記ミラー部の影となる領域を除外した領域に照射される前記信号光に情報を含めることを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 4,
    The hologram recording apparatus, wherein the spatial light modulator includes information in the signal light irradiated to a region on the focal plane of the objective lens excluding a region serving as a shadow of the mirror unit.
  7.  請求項1に記載のホログラム記録装置であって、
     2つの前記角度制御部と、
     直交して走査される前記参照光に沿って延伸し、該参照光を反射するミラー部と、を有し、
     前記角度制御部は、前記参照光の走査方向が互いに直交するよう制御し、
     前記対物レンズは、前記ミラー部に反射された前記参照光を透過することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    Two angle controllers,
    Extending along the reference light scanned orthogonally, and a mirror unit that reflects the reference light,
    The angle control unit controls the scanning directions of the reference light to be orthogonal to each other,
    The hologram recording device, wherein the objective lens transmits the reference light reflected by the mirror unit.
  8.  請求項1に記載のホログラム記録装置であって、
     前記角度制御部により制御された前記参照光を反射し、前記信号光を透過するミラー部と、を有し、
     前記対物レンズは、前記ミラー部に反射した前記参照光及び前記ミラー部を透過した前記信号光を透過することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    A mirror unit that reflects the reference light controlled by the angle control unit and transmits the signal light,
    The hologram recording device, wherein the objective lens transmits the reference light reflected by the mirror unit and the signal light transmitted through the mirror unit.
  9.  請求項1に記載のホログラム記録装置であって、
     前記信号光照射領域と前記参照光照射領域との位置の変更に応じて、前記信号光と前記参照光との偏光を制御する偏光制御部を有することを特徴とする、ホログラム記録装置。
    The hologram recording device according to claim 1,
    A hologram recording device, comprising: a polarization control unit that controls polarization of the signal light and the reference light in accordance with a change in the position between the signal light irradiation region and the reference light irradiation region.
  10.  信号光と参照光とを照射して情報が記録された記録媒体から前記情報を再生するホログラム再生装置であって、
     光ビームを出射する光源部と、
     前記光ビームから参照光を生成する光学分離部と、
     前記参照光が前記記録媒体に照射された結果得られる再生光を検出する光検出部と、
     前記参照光と前記再生光とを透過する対物レンズと、
     前記対物レンズ上の前記参照光の照射領域である参照光照射領域の位置を変更する位置制御部と、
     を有することを特徴とする、ホログラム再生装置。
    A hologram reproducing apparatus that reproduces the information from a recording medium on which information is recorded by irradiating signal light and reference light,
    A light source unit for emitting a light beam;
    An optical separation unit that generates reference light from the light beam,
    A light detection unit that detects a reproduction light obtained as a result of the reference light being applied to the recording medium,
    An objective lens that transmits the reference light and the reproduction light,
    A position control unit that changes a position of a reference light irradiation area that is an irradiation area of the reference light on the objective lens,
    A hologram reproducing device, comprising:
  11.  信号光と参照光とを記録媒体に照射して情報を記録するホログラム記録方法であって、
     光源から光ビームを出射するステップと、
     前記光ビームを前記信号光と前記参照光とに分離するステップと、
     前記信号光を変調するステップと、
     対物レンズを用いて前記信号光と前記参照光とを干渉させてホログラムを記録するステップと、
     前記対物レンズ上の前記信号光の照射領域である信号光照射領域と、前記対物レンズ上の前記参照光の照射領域である参照光照射領域と、の位置を変更するステップと、
     前記参照光の前記記録媒体に対する入射角度を制御するステップと、を有し、
     前記ホログラムを記録するステップにおいて、位置の固定された信号光照射領域を透過した前記信号光が前記記録媒体に入射される間に、前記入射角度を変更することにより、異なる複数の角度の前記参照光が前記記録媒体に入射されることを特徴とする、ホログラム記録方法。
    A hologram recording method for recording information by irradiating a recording medium with signal light and reference light,
    Emitting a light beam from a light source;
    Separating the light beam into the signal light and the reference light,
    Modulating the signal light;
    Recording the hologram by interfering the signal light and the reference light using an objective lens,
    Changing the position of the signal light irradiation area that is the irradiation area of the signal light on the objective lens, and the reference light irradiation area that is the irradiation area of the reference light on the objective lens,
    Controlling the angle of incidence of the reference light on the recording medium,
    In the step of recording the hologram, by changing the incident angle while the signal light transmitted through the signal light irradiation area having a fixed position is incident on the recording medium, the reference of a plurality of different angles is performed. A hologram recording method, wherein light is incident on the recording medium.
  12.  信号光と参照光とを照射して情報が記録された記録媒体から前記情報を再生するホログラム再生方法であって、
     光源から光ビームを出射するステップと、
     前記光ビームから参照光を生成するステップと、
     前記参照光が対物レンズに透過されるステップと、
     前記参照光が前記記録媒体に照射された結果得られる再生光が前記対物レンズに透過されるステップと、
     前記再生光を検出して前記情報を再生するステップと、
     前記対物レンズ上の前記参照光の照射領域である参照光照射領域の位置を変更するステップと、
     を有することを特徴とする、ホログラム再生方法。
    A hologram reproducing method for reproducing the information from a recording medium on which information is recorded by irradiating signal light and reference light,
    Emitting a light beam from a light source;
    Generating reference light from the light beam;
    Transmitting the reference light through an objective lens;
    Reproducing light obtained as a result of irradiating the recording medium with the reference light is transmitted through the objective lens;
    Detecting the reproduction light to reproduce the information;
    Changing the position of the reference light irradiation area, which is the irradiation area of the reference light on the objective lens,
    A hologram reproducing method, comprising:
PCT/JP2018/025050 2018-07-02 2018-07-02 Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method WO2020008496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025050 WO2020008496A1 (en) 2018-07-02 2018-07-02 Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025050 WO2020008496A1 (en) 2018-07-02 2018-07-02 Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method

Publications (1)

Publication Number Publication Date
WO2020008496A1 true WO2020008496A1 (en) 2020-01-09

Family

ID=69060706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025050 WO2020008496A1 (en) 2018-07-02 2018-07-02 Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method

Country Status (1)

Country Link
WO (1) WO2020008496A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338846A (en) * 1999-05-25 2000-12-08 Sony Corp Hologram recording and reproducing device
JP2006343714A (en) * 2005-05-13 2006-12-21 Sharp Corp Information recording apparatus, information reproducing apparatus and information recording/reproducing apparatus
JP2010508617A (en) * 2006-11-01 2010-03-18 インフェーズ テクノロジィズ インコーポレイテッド Configuration of monocular holographic data storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338846A (en) * 1999-05-25 2000-12-08 Sony Corp Hologram recording and reproducing device
JP2006343714A (en) * 2005-05-13 2006-12-21 Sharp Corp Information recording apparatus, information reproducing apparatus and information recording/reproducing apparatus
JP2010508617A (en) * 2006-11-01 2010-03-18 インフェーズ テクノロジィズ インコーポレイテッド Configuration of monocular holographic data storage system

Similar Documents

Publication Publication Date Title
WO2015114743A1 (en) Optical information device and optical information processing method
US8379500B2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP5802616B2 (en) Optical information recording / reproducing apparatus and optical information recording / reproducing method
JP5753768B2 (en) Optical information recording apparatus, optical information reproducing apparatus, optical information recording / reproducing apparatus, optical information recording method, optical information reproducing method, and optical information recording / reproducing method
JP5581111B2 (en) Optical information reproducing apparatus and optical information reproducing method
US8699311B2 (en) Optical information recording/reproducing apparatus, optical information reproducing apparatus, optical information recording/reproducing method and optical information reproducing method
WO2020008496A1 (en) Hologram recording device, hologram reproducing device, hologram recording method, and hologram reproducing method
US9087522B2 (en) Optical information reproducing device and reference beam adjusting method
JP5953284B2 (en) Optical information recording medium, optical information recording apparatus, optical information recording method, optical information reproducing apparatus, and optical information reproducing method.
WO2015083247A1 (en) Optical information recording device and optical information recording method
WO2016194155A1 (en) Holographic memory device and optical information detecting method
US9728219B2 (en) Optical information reproduction device and optical information reproduction method
WO2016199231A1 (en) Optical information reproduction device and optical information reproduction method
WO2016009546A1 (en) Optical information recording/playback device, optical information playback device, and optical information playback method
JP6078634B2 (en) Optical information reproducing apparatus and optical information recording / reproducing apparatus
JP2015082327A (en) Optical information reproduction apparatus, optical information reproduction method, and optical information recording method
WO2015083246A1 (en) Optical information reproduction device and optical information reproduction method
JP2015060613A (en) Optical information recording device and optical information recording method
WO2014083670A1 (en) Optical information playback device and optical information playback method
US20160307589A1 (en) Hologram recording and playback device and playback position deviation detection method
WO2015033456A1 (en) Optical information recording device, optical information reproduction device, optical information recording method, and optical information reproduction method
WO2016075729A1 (en) Optical information device and method for processing optical information
WO2016163312A1 (en) Optical information reproduction device and optical information reproduction method
JPWO2015162653A1 (en) Optical information apparatus and optical information processing method
WO2016020994A1 (en) Otical information recording device and optical information reproduction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP