WO2020008201A1 - Reflectarray antenna - Google Patents
Reflectarray antenna Download PDFInfo
- Publication number
- WO2020008201A1 WO2020008201A1 PCT/GB2019/051897 GB2019051897W WO2020008201A1 WO 2020008201 A1 WO2020008201 A1 WO 2020008201A1 GB 2019051897 W GB2019051897 W GB 2019051897W WO 2020008201 A1 WO2020008201 A1 WO 2020008201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patch
- antenna element
- phase control
- ground
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/44—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
- H01Q3/46—Active lenses or reflecting arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
- H01Q15/0013—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
- H01Q15/002—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
- H01Q5/45—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
Definitions
- a method of operating a reflectarray as specified and disclosed herein including the steps of: controlling a DC bias signal to the DC bias input of each of the
- % represents the modulo (remainder) operator.
- the via holes 44, 46, 48, 50 also pass through the second substrate, thereby linking the first, second, and third layers.
- the via holes 44, 46, 48, 50 are each electrically coupled to a respective pad in the third layer which thereby provide electrical connections to ground at the third layer.
- This provides advantages in that it avoids providing blind vias which are hard to fabricate, as well as expensive and not reliable. By passing through both first and second substrates, fabrication is reliable.
- the vias also mean that ground is available on the third or bottom layer. The availability of ground on the third or bottom layer facilitates the DC return path. Similarly, having the vias terminate at the third or bottom layer enables fabrication fault finding at later stages.
- the DC bias voltages are configured as follows:
- the first patch length 60 determines the frequency of operation in Y polarization. It also makes one of the phase states fixed. The other two phase states are engineered around this to get desired phase differences with respect to this fixed state.
- the unit cell design only consumes DC power in two of its phase states, while one state does not consume DC power and saves DC power.
- Cross polarization is the reflection of the field of undesired
- the first phase control line section 116 provides L 1Y and l_ 3Y which are the main phase control line section lengths for Y polarization and which can be adjusted as per the required phase shift. Their length is changed in dependence upon whether l_ 2Y and l_ 4Y are zero or non-zero.
- the third phase control line effective length Li X + l_ 2X
- the above described embodiments include three layers, in some embodiments, only two layers are provided and the second substrate and third layer can be omitted.
- the DC isolation element can be implemented on the second layer.
- the RF-DC isolation can in other embodiments be implemented in many other ways. Flowever, having the DC isolation element at a third layer as described above provides good RF performance.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020573449A JP7522401B2 (ja) | 2018-07-05 | 2019-07-04 | リフレクトアレー・アンテナ |
| EP19748885.1A EP3818592B1 (en) | 2018-07-05 | 2019-07-04 | Reflectarray antenna |
| CN201980050284.6A CN112585816B (zh) | 2018-07-05 | 2019-07-04 | 反射阵列天线 |
| US17/258,082 US11695214B2 (en) | 2018-07-05 | 2019-07-04 | Reflectarray antenna |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBGB1811092.4A GB201811092D0 (en) | 2018-07-05 | 2018-07-05 | Reflectarray antenna element |
| GB1811092.4 | 2018-07-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020008201A1 true WO2020008201A1 (en) | 2020-01-09 |
Family
ID=63170808
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2019/051897 Ceased WO2020008201A1 (en) | 2018-07-05 | 2019-07-04 | Reflectarray antenna |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11695214B2 (enExample) |
| EP (1) | EP3818592B1 (enExample) |
| JP (1) | JP7522401B2 (enExample) |
| CN (1) | CN112585816B (enExample) |
| GB (1) | GB201811092D0 (enExample) |
| WO (1) | WO2020008201A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111355520A (zh) * | 2020-03-10 | 2020-06-30 | 电子科技大学 | 一种智能反射表面辅助的太赫兹安全通信系统设计方法 |
| CN112311427A (zh) * | 2020-11-18 | 2021-02-02 | 成都迅翼卫通科技有限公司 | 一种卫星通信收发极化切换控制装置 |
| WO2022200571A1 (en) * | 2021-03-26 | 2022-09-29 | Sony Group Corporation | Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11035950B2 (en) * | 2018-10-29 | 2021-06-15 | Keysight Technologies, Inc. | Millimeter-wave detect or reflect array |
| CN114095050B (zh) * | 2020-07-29 | 2022-12-27 | 华为技术有限公司 | 一种无线终端 |
| CN115000726B (zh) * | 2021-03-01 | 2025-02-28 | 华为技术有限公司 | 一种反射阵列天线及基站 |
| CN115224463B (zh) * | 2021-04-19 | 2025-03-28 | 华为技术有限公司 | 一种天线及无线设备 |
| CN114267956B (zh) * | 2021-12-21 | 2023-06-30 | 中国科学院光电技术研究所 | 亚波长结构透反射超表面器件、波束扫描天线及扫描方法 |
| US20250175217A1 (en) * | 2022-02-17 | 2025-05-29 | NEC Laboratories Europe GmbH | Multi-frequency ris architecture |
| CN114937861B (zh) * | 2022-04-13 | 2023-07-14 | 湖南大学 | 一比特辐射反射一体化天线单元及阵列天线系统 |
| CN114725690B (zh) * | 2022-05-10 | 2025-04-22 | 南京大学 | 一种转极化幅度放大型超构表面天线 |
| KR20240002542A (ko) * | 2022-06-29 | 2024-01-05 | 삼성전자주식회사 | 다중 공진을 형성하는 재구성가능한 지능형 표면 |
| CN115693167B (zh) * | 2022-11-08 | 2024-05-07 | 华工未来科技(江苏)有限公司 | 一种基于谐振开口的数字编码超表面 |
| CN116231325B (zh) * | 2023-02-28 | 2024-03-15 | 深圳大学 | 一种电可调二相位电磁超表面单元及阵列 |
| WO2024192039A1 (en) * | 2023-03-14 | 2024-09-19 | Qualcomm Incorporated | Antenna on glass with through glass via sidewall shielding structure |
| CN116154468B (zh) * | 2023-04-19 | 2023-06-16 | 湖南大学 | 一种宽带双极化反射单元及可编程反射天线 |
| CN116598789B (zh) * | 2023-05-29 | 2024-07-16 | 中国人民解放军战略支援部队航天工程大学 | 一种1bit超表面单元及可重构反射阵列天线 |
| WO2024262097A1 (ja) * | 2023-06-19 | 2024-12-26 | パナソニックIpマネジメント株式会社 | 反射ユニット、アンテナユニット、反射板装置、及びアレイアンテナ装置 |
| CN116683187B (zh) * | 2023-06-25 | 2024-05-17 | 淮南联合大学(安徽广播电视大学淮南分校淮南职工大学) | 基于可重构地板宽带低剖面方向图多样性天线及设计方法 |
| WO2025006114A2 (en) * | 2023-06-28 | 2025-01-02 | Corning Research & Development Corporation | Passive reflectors providing phase distribution and methods of fabricating the same |
| CN119324317A (zh) * | 2023-07-17 | 2025-01-17 | 中兴通讯股份有限公司 | 超表面单元和超表面系统 |
| CN116864996B (zh) * | 2023-08-30 | 2023-11-21 | 天府兴隆湖实验室 | 超表面阵列结构 |
| US20250322596A1 (en) * | 2024-04-10 | 2025-10-16 | The Boeing Company | Satellite model generation system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6437752B1 (en) * | 1999-02-05 | 2002-08-20 | Thomson-Cfs | Antenna with double-band electronic scanning, with active microwave reflector |
| US7071888B2 (en) | 2003-05-12 | 2006-07-04 | Hrl Laboratories, Llc | Steerable leaky wave antenna capable of both forward and backward radiation |
| US20080284674A1 (en) * | 2007-05-15 | 2008-11-20 | Hrl Laboratories, Llc | Digital control architecture for a tunable impedance surface |
| US7868829B1 (en) | 2008-03-21 | 2011-01-11 | Hrl Laboratories, Llc | Reflectarray |
| US9099775B2 (en) | 2010-12-24 | 2015-08-04 | Commissariat A L'energies Alternatives | Radiating cell having two phase states for a transmitting network |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4410891A (en) * | 1979-12-14 | 1983-10-18 | The United States Of America As Represented By The Secretary Of The Army | Microstrip antenna with polarization diversity |
| CN101872894A (zh) | 2010-04-01 | 2010-10-27 | 电子科技大学 | 一种方向图可重构的介质谐振天线及其相控阵 |
-
2018
- 2018-07-05 GB GBGB1811092.4A patent/GB201811092D0/en not_active Ceased
-
2019
- 2019-07-04 EP EP19748885.1A patent/EP3818592B1/en active Active
- 2019-07-04 US US17/258,082 patent/US11695214B2/en active Active
- 2019-07-04 WO PCT/GB2019/051897 patent/WO2020008201A1/en not_active Ceased
- 2019-07-04 JP JP2020573449A patent/JP7522401B2/ja active Active
- 2019-07-04 CN CN201980050284.6A patent/CN112585816B/zh active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6437752B1 (en) * | 1999-02-05 | 2002-08-20 | Thomson-Cfs | Antenna with double-band electronic scanning, with active microwave reflector |
| US7071888B2 (en) | 2003-05-12 | 2006-07-04 | Hrl Laboratories, Llc | Steerable leaky wave antenna capable of both forward and backward radiation |
| US20080284674A1 (en) * | 2007-05-15 | 2008-11-20 | Hrl Laboratories, Llc | Digital control architecture for a tunable impedance surface |
| US7868829B1 (en) | 2008-03-21 | 2011-01-11 | Hrl Laboratories, Llc | Reflectarray |
| US9099775B2 (en) | 2010-12-24 | 2015-08-04 | Commissariat A L'energies Alternatives | Radiating cell having two phase states for a transmitting network |
Non-Patent Citations (21)
| Title |
|---|
| "MACOM PIN diodes for microwave switch designs AN3021 application note Rev V2", 2015, MA COM TECHNOLOGY SOLUTIONS LOWELL |
| AHMAD ET AL., ACTA ASTRONAUTICA, vol. 151, October 2018 (2018-10-01), pages 475 - 486, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0094576518308622> |
| AHMAD GBROWN TWCUNDERWOOD CILOH TH: "How coarse is too coarse in electrically large reflectarray smart antennas?", INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS, APPLICATIONS AND STUDENT INNOVATION COMPETITION, 2017, pages 135 - 137, XP033114802, doi:10.1109/iWEM.2017.7968807 |
| AHMAD GBROWN, TWUNDERWOOD C.I.LOH TH: "An investigation of millimeter wave reflectarrays for small satellite platforms", ACTA ASTRONAUTICA, 2018 |
| AHMAD GHULAM ET AL: "How coarse is too coarse in electrically large reflectarray smart antennas?", 2017 INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION, IEEE, 30 May 2017 (2017-05-30), pages 135 - 137, XP033114802, DOI: 10.1109/IWEM.2017.7968807 * |
| BOLES TBROGLE JHOAG DCURCIO D: "AlGaAs PIN diode multi octave mmW switches", IEEE INTERNATIONAL CONFERENCE ON MICROWAVES COMMUNICATIONS ANTENNAS AND ELECTRONICS SYSTEMS (COMCAS, 2011, pages 1 - 5, XP032076172, doi:10.1109/COMCAS.2011.6105783 |
| BOLES TBROGLE JHOAG, DCARLSON D: "AIGaAs anode heterojunction PIN diodes", PHYSICA STATUS SOLIDI (C), vol. 10, no. 5, 2013, pages 786 - 789 |
| BROGLE JJCURCIO DGHOAG DRBOLES TE: "Multithrow heterojunc tion PIN diode switches", EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC, 2009, pages 9 - 12 |
| FREEBOROUGH D: "Smart antennas for 5G", MICROWAVE JOURNAL, vol. 59, no. 8, 2016, pages 70 - 78 |
| FRIES ET AL.: "A Reconfigurable Slot Antenna With Switchable Polarization", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 13, no. 11, November 2003 (2003-11-01), pages 490 - 492, XP001184457, doi:10.1109/LMWC.2003.817148 |
| HUM S VPERRUISSEAU CARRIER J: "Reconhgurable reflectarrays and array lenses for dynamic antenna beam control A review Antennas and Propagation", IEEE TRANSACTIONS ON, vol. 62, no. 1, 2014, pages 181 - 198 |
| KAMODA ET AL.: "60-GHz Electrically Reconfigurable Reflectarray Using p-i-n Diode", IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, 2009, pages 1177 - 1180, XP031490734 |
| KAMODA HIWASAKI, TTSUMOCHI JKUKI, T: "60 GHz electrically reconfig urable reflectarray using pin diode Microwave Symposium Digest", IEEE MTT S INTERNATIONAL, 2009, pages 1177 - 1180 |
| KAMODA, HIWASAKI, TTSUMOCHI JKUKI THASHIMOTO O: "60 GHz electron ically reconhgurable large reflectarray using single bit phase shifters", ANTENNAS AND PROPAGATION IEEE TRANSACTIONS ON, vol. 59, no. 7, 2011, pages 2524 - 2531 |
| KULAS L: "Simple 2 D direction of arrival estimation using an ESPAR antenna", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol. 16, 2017, pages 2513 - 2516, XP011659702, doi:10.1109/LAWP.2017.2728322 |
| MARANTIS LMALIATSOS KOIKONOMOPOULOS ZACBOS CRONGAS D KPARASKEVOPOULOS, AASPREAS A ET AL.: "The pattern selection capability of a printed ESPAR antenna", 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP, 2017, pages 922 - 926, XP033097944, doi:10.23919/EuCAP.2017.7928841 |
| MICROSEMI.: "PIN diode circuit designers Handbook", 1998, MICROSEMI CORPORATION |
| RAPPAPORT T SROH WCHEUN K: "Smart antennas could open up new spectrum for 5G", IEEE SPECTRUM, 2014 |
| ROH W SEOLJ Y PARKJ LEEB LEEJ KIM Y ET AL.: "Millimeter wave beamforming as an enabling technology for 5G cellular communications: theoret ical feasibility and prototype results", IEEE COMMUNICATIONS MAGAZINE, vol. 52, no. 2, 2014, pages 106 - 113 |
| SUN SRAPPAPORT TSHEATH R WNIX ARANGAN S: "Mimo tor millimeter. wave wireless communications beamforming, spatial multiplexing or both?", IEEE COMMUNICATIONS MAGAZINE, vol. 52, no. 12, 2014, pages 110 - 121, XP011567662, doi:10.1109/MCOM.2014.6979962 |
| ZIHIR SGURBUZ 0 DKARROY, ARAMAN SREBEIZ GM: "A 60 GHz 64 element wafer scale phased array with full reticle design", IEEE MTT S INTERNATIONAL MICROWAVE SYMPOSIUM, 2015, pages 1 - 3, XP033181494, doi:10.1109/MWSYM.2015.7167089 |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111355520A (zh) * | 2020-03-10 | 2020-06-30 | 电子科技大学 | 一种智能反射表面辅助的太赫兹安全通信系统设计方法 |
| CN112311427A (zh) * | 2020-11-18 | 2021-02-02 | 成都迅翼卫通科技有限公司 | 一种卫星通信收发极化切换控制装置 |
| WO2022200571A1 (en) * | 2021-03-26 | 2022-09-29 | Sony Group Corporation | Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals |
| US20240171221A1 (en) * | 2021-03-26 | 2024-05-23 | Sony Group Corporation | Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7522401B2 (ja) | 2024-07-25 |
| US20210184362A1 (en) | 2021-06-17 |
| EP3818592A1 (en) | 2021-05-12 |
| EP3818592B1 (en) | 2024-04-10 |
| US11695214B2 (en) | 2023-07-04 |
| CN112585816A (zh) | 2021-03-30 |
| CN112585816B (zh) | 2024-06-07 |
| JP2021530164A (ja) | 2021-11-04 |
| EP3818592C0 (en) | 2024-04-10 |
| GB201811092D0 (en) | 2018-08-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3818592A1 (en) | Reflectarray antenna | |
| Moghaddam et al. | Fully-planar ultrawideband tightly-coupled array (FPU-TCA) with integrated feed for wide-scanning millimeter-wave applications | |
| Xiao et al. | Design and implementation of a wideband 1-bit transmitarray based on a Yagi–Vivaldi unit cell | |
| Wang et al. | Beam scanning transmitarray employing reconfigurable dual-layer Huygens element | |
| Riel et al. | Design of an electronically beam scanning reflectarray using aperture-coupled elements | |
| Ji et al. | A wideband polarization reconfigurable antenna with partially reflective surface | |
| Trzebiatowski et al. | Simple 60 GHz switched beam antenna for 5G millimeter-wave applications | |
| Deng et al. | Series-fed beam-steerable millimeter-wave antenna design with wide spatial coverage for 5G mobile terminals | |
| Ji et al. | Reconfigurable phased-array antenna using continuously tunable substrate integrated waveguide phase shifter | |
| Guntupalli et al. | 60-GHz circularly polarized antenna array made in low-cost fabrication process | |
| Bantavis et al. | A cost-effective wideband switched beam antenna system for a small cell base station | |
| Luo et al. | Dual circularly polarized equilateral triangular patch array | |
| Yang et al. | A wideband L-probes fed circularly-polarized reconfigurable microstrip patch antenna | |
| Lee et al. | Dual-band and polarization-flexible CRLH substrate-integrated waveguide resonant antenna | |
| Wang et al. | A W-band high-efficiency multibeam circularly polarized antenna array fed by GGW Butler matrix | |
| Guo et al. | A 45° polarized wideband and wide-coverage patch antenna array for millimeter-wave communication | |
| Zhang et al. | A reconfigurable microstrip patch antenna with frequency and circular polarization diversities | |
| Pham et al. | High gain and wideband metasurfaced magnetoelectric antenna for WiGig applications | |
| Yin et al. | Low-Cost, Series–Parallel-Fed 2-Bit Phased Array Antenna in $ Ku $-Band | |
| Li et al. | A miniaturized dual-polarized active phased array antenna for 5G millimeter-wave applications | |
| Chen et al. | Design of Series‐Fed Bandwidth‐Enhanced Microstrip Antenna Array for Millimetre‐Wave Beamforming Applications | |
| Kahar et al. | A wideband tightly coupled slot antenna for 360° full azimuthal beam steering applications | |
| Lin et al. | A novel beam-switching array antenna using series-fed slots with PIN diodes | |
| Yin et al. | A modular 2-bit subarray for large-scale phased array antenna | |
| Chi et al. | 60-GHz polarization-adjustable antenna arrays |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19748885 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020573449 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2019748885 Country of ref document: EP |