WO2020008201A1 - Reflectarray antenna - Google Patents

Reflectarray antenna Download PDF

Info

Publication number
WO2020008201A1
WO2020008201A1 PCT/GB2019/051897 GB2019051897W WO2020008201A1 WO 2020008201 A1 WO2020008201 A1 WO 2020008201A1 GB 2019051897 W GB2019051897 W GB 2019051897W WO 2020008201 A1 WO2020008201 A1 WO 2020008201A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
antenna element
phase control
ground
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/GB2019/051897
Other languages
English (en)
French (fr)
Inventor
Tian HONG LOH
Ghulam AHMAD
Tim Brown
Craig Underwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NPL Management Ltd
Original Assignee
NPL Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NPL Management Ltd filed Critical NPL Management Ltd
Priority to JP2020573449A priority Critical patent/JP7522401B2/ja
Priority to EP19748885.1A priority patent/EP3818592B1/en
Priority to CN201980050284.6A priority patent/CN112585816B/zh
Priority to US17/258,082 priority patent/US11695214B2/en
Publication of WO2020008201A1 publication Critical patent/WO2020008201A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • a method of operating a reflectarray as specified and disclosed herein including the steps of: controlling a DC bias signal to the DC bias input of each of the
  • % represents the modulo (remainder) operator.
  • the via holes 44, 46, 48, 50 also pass through the second substrate, thereby linking the first, second, and third layers.
  • the via holes 44, 46, 48, 50 are each electrically coupled to a respective pad in the third layer which thereby provide electrical connections to ground at the third layer.
  • This provides advantages in that it avoids providing blind vias which are hard to fabricate, as well as expensive and not reliable. By passing through both first and second substrates, fabrication is reliable.
  • the vias also mean that ground is available on the third or bottom layer. The availability of ground on the third or bottom layer facilitates the DC return path. Similarly, having the vias terminate at the third or bottom layer enables fabrication fault finding at later stages.
  • the DC bias voltages are configured as follows:
  • the first patch length 60 determines the frequency of operation in Y polarization. It also makes one of the phase states fixed. The other two phase states are engineered around this to get desired phase differences with respect to this fixed state.
  • the unit cell design only consumes DC power in two of its phase states, while one state does not consume DC power and saves DC power.
  • Cross polarization is the reflection of the field of undesired
  • the first phase control line section 116 provides L 1Y and l_ 3Y which are the main phase control line section lengths for Y polarization and which can be adjusted as per the required phase shift. Their length is changed in dependence upon whether l_ 2Y and l_ 4Y are zero or non-zero.
  • the third phase control line effective length Li X + l_ 2X
  • the above described embodiments include three layers, in some embodiments, only two layers are provided and the second substrate and third layer can be omitted.
  • the DC isolation element can be implemented on the second layer.
  • the RF-DC isolation can in other embodiments be implemented in many other ways. Flowever, having the DC isolation element at a third layer as described above provides good RF performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
PCT/GB2019/051897 2018-07-05 2019-07-04 Reflectarray antenna Ceased WO2020008201A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020573449A JP7522401B2 (ja) 2018-07-05 2019-07-04 リフレクトアレー・アンテナ
EP19748885.1A EP3818592B1 (en) 2018-07-05 2019-07-04 Reflectarray antenna
CN201980050284.6A CN112585816B (zh) 2018-07-05 2019-07-04 反射阵列天线
US17/258,082 US11695214B2 (en) 2018-07-05 2019-07-04 Reflectarray antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1811092.4A GB201811092D0 (en) 2018-07-05 2018-07-05 Reflectarray antenna element
GB1811092.4 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008201A1 true WO2020008201A1 (en) 2020-01-09

Family

ID=63170808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2019/051897 Ceased WO2020008201A1 (en) 2018-07-05 2019-07-04 Reflectarray antenna

Country Status (6)

Country Link
US (1) US11695214B2 (enExample)
EP (1) EP3818592B1 (enExample)
JP (1) JP7522401B2 (enExample)
CN (1) CN112585816B (enExample)
GB (1) GB201811092D0 (enExample)
WO (1) WO2020008201A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355520A (zh) * 2020-03-10 2020-06-30 电子科技大学 一种智能反射表面辅助的太赫兹安全通信系统设计方法
CN112311427A (zh) * 2020-11-18 2021-02-02 成都迅翼卫通科技有限公司 一种卫星通信收发极化切换控制装置
WO2022200571A1 (en) * 2021-03-26 2022-09-29 Sony Group Corporation Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035950B2 (en) * 2018-10-29 2021-06-15 Keysight Technologies, Inc. Millimeter-wave detect or reflect array
CN114095050B (zh) * 2020-07-29 2022-12-27 华为技术有限公司 一种无线终端
CN115000726B (zh) * 2021-03-01 2025-02-28 华为技术有限公司 一种反射阵列天线及基站
CN115224463B (zh) * 2021-04-19 2025-03-28 华为技术有限公司 一种天线及无线设备
CN114267956B (zh) * 2021-12-21 2023-06-30 中国科学院光电技术研究所 亚波长结构透反射超表面器件、波束扫描天线及扫描方法
US20250175217A1 (en) * 2022-02-17 2025-05-29 NEC Laboratories Europe GmbH Multi-frequency ris architecture
CN114937861B (zh) * 2022-04-13 2023-07-14 湖南大学 一比特辐射反射一体化天线单元及阵列天线系统
CN114725690B (zh) * 2022-05-10 2025-04-22 南京大学 一种转极化幅度放大型超构表面天线
KR20240002542A (ko) * 2022-06-29 2024-01-05 삼성전자주식회사 다중 공진을 형성하는 재구성가능한 지능형 표면
CN115693167B (zh) * 2022-11-08 2024-05-07 华工未来科技(江苏)有限公司 一种基于谐振开口的数字编码超表面
CN116231325B (zh) * 2023-02-28 2024-03-15 深圳大学 一种电可调二相位电磁超表面单元及阵列
WO2024192039A1 (en) * 2023-03-14 2024-09-19 Qualcomm Incorporated Antenna on glass with through glass via sidewall shielding structure
CN116154468B (zh) * 2023-04-19 2023-06-16 湖南大学 一种宽带双极化反射单元及可编程反射天线
CN116598789B (zh) * 2023-05-29 2024-07-16 中国人民解放军战略支援部队航天工程大学 一种1bit超表面单元及可重构反射阵列天线
WO2024262097A1 (ja) * 2023-06-19 2024-12-26 パナソニックIpマネジメント株式会社 反射ユニット、アンテナユニット、反射板装置、及びアレイアンテナ装置
CN116683187B (zh) * 2023-06-25 2024-05-17 淮南联合大学(安徽广播电视大学淮南分校淮南职工大学) 基于可重构地板宽带低剖面方向图多样性天线及设计方法
WO2025006114A2 (en) * 2023-06-28 2025-01-02 Corning Research & Development Corporation Passive reflectors providing phase distribution and methods of fabricating the same
CN119324317A (zh) * 2023-07-17 2025-01-17 中兴通讯股份有限公司 超表面单元和超表面系统
CN116864996B (zh) * 2023-08-30 2023-11-21 天府兴隆湖实验室 超表面阵列结构
US20250322596A1 (en) * 2024-04-10 2025-10-16 The Boeing Company Satellite model generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437752B1 (en) * 1999-02-05 2002-08-20 Thomson-Cfs Antenna with double-band electronic scanning, with active microwave reflector
US7071888B2 (en) 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US20080284674A1 (en) * 2007-05-15 2008-11-20 Hrl Laboratories, Llc Digital control architecture for a tunable impedance surface
US7868829B1 (en) 2008-03-21 2011-01-11 Hrl Laboratories, Llc Reflectarray
US9099775B2 (en) 2010-12-24 2015-08-04 Commissariat A L'energies Alternatives Radiating cell having two phase states for a transmitting network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410891A (en) * 1979-12-14 1983-10-18 The United States Of America As Represented By The Secretary Of The Army Microstrip antenna with polarization diversity
CN101872894A (zh) 2010-04-01 2010-10-27 电子科技大学 一种方向图可重构的介质谐振天线及其相控阵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437752B1 (en) * 1999-02-05 2002-08-20 Thomson-Cfs Antenna with double-band electronic scanning, with active microwave reflector
US7071888B2 (en) 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US20080284674A1 (en) * 2007-05-15 2008-11-20 Hrl Laboratories, Llc Digital control architecture for a tunable impedance surface
US7868829B1 (en) 2008-03-21 2011-01-11 Hrl Laboratories, Llc Reflectarray
US9099775B2 (en) 2010-12-24 2015-08-04 Commissariat A L'energies Alternatives Radiating cell having two phase states for a transmitting network

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"MACOM PIN diodes for microwave switch designs AN3021 application note Rev V2", 2015, MA COM TECHNOLOGY SOLUTIONS LOWELL
AHMAD ET AL., ACTA ASTRONAUTICA, vol. 151, October 2018 (2018-10-01), pages 475 - 486, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S0094576518308622>
AHMAD GBROWN TWCUNDERWOOD CILOH TH: "How coarse is too coarse in electrically large reflectarray smart antennas?", INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS, APPLICATIONS AND STUDENT INNOVATION COMPETITION, 2017, pages 135 - 137, XP033114802, doi:10.1109/iWEM.2017.7968807
AHMAD GBROWN, TWUNDERWOOD C.I.LOH TH: "An investigation of millimeter wave reflectarrays for small satellite platforms", ACTA ASTRONAUTICA, 2018
AHMAD GHULAM ET AL: "How coarse is too coarse in electrically large reflectarray smart antennas?", 2017 INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS: APPLICATIONS AND STUDENT INNOVATION COMPETITION, IEEE, 30 May 2017 (2017-05-30), pages 135 - 137, XP033114802, DOI: 10.1109/IWEM.2017.7968807 *
BOLES TBROGLE JHOAG DCURCIO D: "AlGaAs PIN diode multi octave mmW switches", IEEE INTERNATIONAL CONFERENCE ON MICROWAVES COMMUNICATIONS ANTENNAS AND ELECTRONICS SYSTEMS (COMCAS, 2011, pages 1 - 5, XP032076172, doi:10.1109/COMCAS.2011.6105783
BOLES TBROGLE JHOAG, DCARLSON D: "AIGaAs anode heterojunction PIN diodes", PHYSICA STATUS SOLIDI (C), vol. 10, no. 5, 2013, pages 786 - 789
BROGLE JJCURCIO DGHOAG DRBOLES TE: "Multithrow heterojunc tion PIN diode switches", EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC, 2009, pages 9 - 12
FREEBOROUGH D: "Smart antennas for 5G", MICROWAVE JOURNAL, vol. 59, no. 8, 2016, pages 70 - 78
FRIES ET AL.: "A Reconfigurable Slot Antenna With Switchable Polarization", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 13, no. 11, November 2003 (2003-11-01), pages 490 - 492, XP001184457, doi:10.1109/LMWC.2003.817148
HUM S VPERRUISSEAU CARRIER J: "Reconhgurable reflectarrays and array lenses for dynamic antenna beam control A review Antennas and Propagation", IEEE TRANSACTIONS ON, vol. 62, no. 1, 2014, pages 181 - 198
KAMODA ET AL.: "60-GHz Electrically Reconfigurable Reflectarray Using p-i-n Diode", IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, 2009, pages 1177 - 1180, XP031490734
KAMODA HIWASAKI, TTSUMOCHI JKUKI, T: "60 GHz electrically reconfig urable reflectarray using pin diode Microwave Symposium Digest", IEEE MTT S INTERNATIONAL, 2009, pages 1177 - 1180
KAMODA, HIWASAKI, TTSUMOCHI JKUKI THASHIMOTO O: "60 GHz electron ically reconhgurable large reflectarray using single bit phase shifters", ANTENNAS AND PROPAGATION IEEE TRANSACTIONS ON, vol. 59, no. 7, 2011, pages 2524 - 2531
KULAS L: "Simple 2 D direction of arrival estimation using an ESPAR antenna", IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol. 16, 2017, pages 2513 - 2516, XP011659702, doi:10.1109/LAWP.2017.2728322
MARANTIS LMALIATSOS KOIKONOMOPOULOS ZACBOS CRONGAS D KPARASKEVOPOULOS, AASPREAS A ET AL.: "The pattern selection capability of a printed ESPAR antenna", 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP, 2017, pages 922 - 926, XP033097944, doi:10.23919/EuCAP.2017.7928841
MICROSEMI.: "PIN diode circuit designers Handbook", 1998, MICROSEMI CORPORATION
RAPPAPORT T SROH WCHEUN K: "Smart antennas could open up new spectrum for 5G", IEEE SPECTRUM, 2014
ROH W SEOLJ Y PARKJ LEEB LEEJ KIM Y ET AL.: "Millimeter wave beamforming as an enabling technology for 5G cellular communications: theoret ical feasibility and prototype results", IEEE COMMUNICATIONS MAGAZINE, vol. 52, no. 2, 2014, pages 106 - 113
SUN SRAPPAPORT TSHEATH R WNIX ARANGAN S: "Mimo tor millimeter. wave wireless communications beamforming, spatial multiplexing or both?", IEEE COMMUNICATIONS MAGAZINE, vol. 52, no. 12, 2014, pages 110 - 121, XP011567662, doi:10.1109/MCOM.2014.6979962
ZIHIR SGURBUZ 0 DKARROY, ARAMAN SREBEIZ GM: "A 60 GHz 64 element wafer scale phased array with full reticle design", IEEE MTT S INTERNATIONAL MICROWAVE SYMPOSIUM, 2015, pages 1 - 3, XP033181494, doi:10.1109/MWSYM.2015.7167089

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111355520A (zh) * 2020-03-10 2020-06-30 电子科技大学 一种智能反射表面辅助的太赫兹安全通信系统设计方法
CN112311427A (zh) * 2020-11-18 2021-02-02 成都迅翼卫通科技有限公司 一种卫星通信收发极化切换控制装置
WO2022200571A1 (en) * 2021-03-26 2022-09-29 Sony Group Corporation Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals
US20240171221A1 (en) * 2021-03-26 2024-05-23 Sony Group Corporation Filter management procedure for reconfigurable relaying devices using polarization multiplexing of data signals and reference signals

Also Published As

Publication number Publication date
JP7522401B2 (ja) 2024-07-25
US20210184362A1 (en) 2021-06-17
EP3818592A1 (en) 2021-05-12
EP3818592B1 (en) 2024-04-10
US11695214B2 (en) 2023-07-04
CN112585816A (zh) 2021-03-30
CN112585816B (zh) 2024-06-07
JP2021530164A (ja) 2021-11-04
EP3818592C0 (en) 2024-04-10
GB201811092D0 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
EP3818592A1 (en) Reflectarray antenna
Moghaddam et al. Fully-planar ultrawideband tightly-coupled array (FPU-TCA) with integrated feed for wide-scanning millimeter-wave applications
Xiao et al. Design and implementation of a wideband 1-bit transmitarray based on a Yagi–Vivaldi unit cell
Wang et al. Beam scanning transmitarray employing reconfigurable dual-layer Huygens element
Riel et al. Design of an electronically beam scanning reflectarray using aperture-coupled elements
Ji et al. A wideband polarization reconfigurable antenna with partially reflective surface
Trzebiatowski et al. Simple 60 GHz switched beam antenna for 5G millimeter-wave applications
Deng et al. Series-fed beam-steerable millimeter-wave antenna design with wide spatial coverage for 5G mobile terminals
Ji et al. Reconfigurable phased-array antenna using continuously tunable substrate integrated waveguide phase shifter
Guntupalli et al. 60-GHz circularly polarized antenna array made in low-cost fabrication process
Bantavis et al. A cost-effective wideband switched beam antenna system for a small cell base station
Luo et al. Dual circularly polarized equilateral triangular patch array
Yang et al. A wideband L-probes fed circularly-polarized reconfigurable microstrip patch antenna
Lee et al. Dual-band and polarization-flexible CRLH substrate-integrated waveguide resonant antenna
Wang et al. A W-band high-efficiency multibeam circularly polarized antenna array fed by GGW Butler matrix
Guo et al. A 45° polarized wideband and wide-coverage patch antenna array for millimeter-wave communication
Zhang et al. A reconfigurable microstrip patch antenna with frequency and circular polarization diversities
Pham et al. High gain and wideband metasurfaced magnetoelectric antenna for WiGig applications
Yin et al. Low-Cost, Series–Parallel-Fed 2-Bit Phased Array Antenna in $ Ku $-Band
Li et al. A miniaturized dual-polarized active phased array antenna for 5G millimeter-wave applications
Chen et al. Design of Series‐Fed Bandwidth‐Enhanced Microstrip Antenna Array for Millimetre‐Wave Beamforming Applications
Kahar et al. A wideband tightly coupled slot antenna for 360° full azimuthal beam steering applications
Lin et al. A novel beam-switching array antenna using series-fed slots with PIN diodes
Yin et al. A modular 2-bit subarray for large-scale phased array antenna
Chi et al. 60-GHz polarization-adjustable antenna arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19748885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020573449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019748885

Country of ref document: EP