WO2020008137A1 - Procede ameliore de fabrication de piece par fabrication additive - Google Patents

Procede ameliore de fabrication de piece par fabrication additive Download PDF

Info

Publication number
WO2020008137A1
WO2020008137A1 PCT/FR2019/051634 FR2019051634W WO2020008137A1 WO 2020008137 A1 WO2020008137 A1 WO 2020008137A1 FR 2019051634 W FR2019051634 W FR 2019051634W WO 2020008137 A1 WO2020008137 A1 WO 2020008137A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
lateral surface
holding element
holding
construction
Prior art date
Application number
PCT/FR2019/051634
Other languages
English (en)
Inventor
Sébastien Vincent François DREANO
Tiphaine DE TINGUY
Michel Daniel Régis SERS
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to CN201980039935.1A priority Critical patent/CN112334903A/zh
Priority to US17/054,592 priority patent/US11511349B2/en
Priority to EP19753141.1A priority patent/EP3818463A1/fr
Publication of WO2020008137A1 publication Critical patent/WO2020008137A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/68Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/351343-D cad-cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a part manufacturing process by additive manufacturing making it possible to maintain certain surfaces of the part liable to deform during manufacture, and in particular the surfaces influencing the aerodynamics of the final part.
  • Such an additive manufacturing process is particularly suitable for manufacturing complex parts provided with sensitive surfaces, intended in particular for the aeronautical field.
  • a classic example of additive manufacturing is the manufacturing by melting or sintering of powder particles by means of a high energy beam.
  • high energy beams mention may be made in particular of the laser beam and the electron beam.
  • Selective laser melting in English “Selective Laser Melting” (SLM), also known as the “Laser Beam Melting” (LBM) process, is meant a process the main characteristics of which are recalled below. next, with reference to FIG 1 illustrating a conventional device for manufacturing a part by selective melting or selective sintering of powder beds by means of a laser beam.
  • SLM Selective Laser Melting
  • LBM Laser Beam Melting
  • a spreading tool 200 for example a roller
  • a first layer 100a of powder of a material on a construction plate 210 it may be a '' a plate alone or surmounted by a solid support, a part of another part or a support grid used to facilitate the construction of certain parts.
  • This powder is transferred from a feed tank 220 during a forward movement of the roller 200 then it is scraped, and possibly slightly compacted, during one (or more) movement (s) of return from the roller 200.
  • the powder is composed of particles 110.
  • the excess powder is recovered in a recycling container 230 located adjacent to the construction container 240 in which the construction plate 210 moves vertically.
  • a laser beam generator 300 310 and a control system 320 capable of directing this beam 310 on any region of the construction plate 210 so as to scan any region of a layer powder previously deposited.
  • the shaping of the laser beam 310 and the variation of its diameter on the focal plane are done respectively by means of a beam dilator or focusing system 330 and a “Beam Expander” 340, the assembly constituting the system optical.
  • one carries a region of this first layer 100a of powder, by scanning with a laser beam 310, at a temperature above the melting temperature of this powder.
  • This type of additive manufacturing process can use any high energy beam in place of the laser beam 310, and in particular an electron beam, as long as this beam is sufficiently energetic to melt the powder particles and part of the material on which the particles rest.
  • This scanning of the beam is carried out for example by a galvanometric head forming part of a control system 320.
  • this control system comprises at least one adjustable mirror 350 on which the laser beam 310 is reflected before reaching a layer of powder, each point of the surface of which is always located at the same height with respect to the focusing lens, contained in the focusing system 340, the angular position of this mirror being controlled by a galvanometric head so that the beam laser scans at least one region of the first layer of powder, and thus follows a preset workpiece profile.
  • the galvanometric head is controlled according to the information contained in the database of the computer tool used for the computer-aided design and manufacture of the part to be manufactured.
  • the powder particles 110 of this region of the first layer 100a are melted and form a first element 120a in one piece, integral with the construction plate 210.
  • the construction plate 210 is lowered by a height corresponding to the thickness of the first layer of powder 100a (20 to 100 ⁇ m and in general from 30 to 50 ⁇ m).
  • Such an additive manufacturing technique therefore provides excellent control of the geometry of the part to be manufactured and makes it possible to produce parts having great complexity.
  • the part obtained comprises zones whose surface condition is not homogeneous.
  • This non-homogeneous surface state when it concerns sensitive areas of the room (for example areas in contact with an air flow), can disturb the flow of the fluid and thus alter the aerodynamic properties and therefore the performance of the machine concerned.
  • one solution is to orient the part so as to limit the use of supports, for example by arranging the largest surface in a substantially vertical manner.
  • the present disclosure relates to a method of manufacturing a part by additive manufacturing, the part to be manufactured comprising at least one portion to be maintained forming an angle less than 45 ° relative to a direction of construction of the part to be manufactured, the portion to be maintained having a first lateral surface and a second lateral surface opposite one another, the method comprising the following steps:
  • the digital model comprises at least two holding elements, a first holding element being positioned on a first side of the portion to be held, so as to be in contact with said first lateral surface and a second holding element being positioned on a second side of the portion to be held so as to be in contact with said second lateral surface.
  • direction of construction we understand direction in which the part is constructed, that is to say in which the powder layers, or manufacturing layers, are stacked one on the other. other.
  • the construction direction corresponds to a direction orthogonal to said construction plate.
  • construction plane is then meant a plane orthogonal to the direction of construction and substantially parallel to the construction plate.
  • in contact it is understood that the holding element is directly in contact with the lateral surface, or with a clearance less than 0.1 mm.
  • a main direction of the workpiece forms a lower angle 30 ° relative to the direction of construction.
  • the part to be manufactured would be a plate, for example, the plate having two lateral surfaces opposite to each other would be arranged so as to form an angle less than 30 ° relative to the direction of construction, c that is to say with respect to the direction orthogonal to the construction plate.
  • the plate would be arranged substantially vertically, or sub-vertically, with respect to the construction plate.
  • the addition to the digital model of at least two holding elements makes it possible to construct these holding elements by additive manufacturing, at the same time as the part to be manufactured.
  • the two holding elements are arranged on either side of the portion to be maintained and in contact with the latter, so as to take the latter in sandwich.
  • the holding elements allow to maintain the lateral surfaces of the portion to be maintained of the part to be manufactured.
  • these holding elements makes it possible to avoid deformation of the part during manufacture, by buckling under the effect of the constraints of cooling and the solidification of the molten zone. It is thus possible to precisely position the retaining elements against the part, according to the modes of deformation thereof. In the case of an aeronautical part, these holding elements thus make it possible to limit the modification of the aerodynamic properties of this part.
  • the contact between the first holding member and the first side surface, and the contact between the second holding member and the second side surface are linear contacts.
  • linear contact is meant a contact along a straight or curved line in a given plane, the line being continuous or discontinuous.
  • the linear contact can be in the form of a succession of point contacts, insofar as these point contacts are aligned on the same line.
  • the presence of these linear contacts between the holding elements and the lateral surfaces makes it possible to limit the contact surface between the holding elements and the lateral surfaces.
  • the final part obtained thus has a homogeneous surface condition. It is therefore possible to dispense with a manual polishing step for these surfaces after obtaining the final part.
  • the first and second holding elements are opposite one with respect to the other.
  • first and second holding elements are arranged on each side of the portion to be maintained, but are understood one and the other in the same plane, said plane being substantially perpendicular to the portion to be maintained and parallel to the direction of construction. This arrangement improves the maintenance of the portion to be maintained during manufacture, further limiting its deformation, by constraining its shape on a given section.
  • a contact end of at least one holding element in contact with the corresponding lateral surface of the portion to be held, has a thinned shape.
  • the contact end is thinner, that is to say thinner than the rest of the holding element.
  • the contact end can be rounded.
  • rounded it is understood that the contact end is rounded in the transverse plane of the holding element.
  • At least one retaining element has a plurality of teeth aligned with respect to each other, said retaining element being positioned so that the teeth are in contact with the corresponding lateral surface of the portion to maintain.
  • the contact between the holding element and the corresponding lateral surface of the portion to be maintained is a discontinuous linear contact.
  • the plurality of teeth of the holding element can for example take the form of saw teeth.
  • said contact is in the form of a succession of contact points aligned with relative to each other along a line.
  • the teeth of at least one holding element are aligned with respect to each other in a direction forming part of a plane comprising the direction of construction of the part to be manufactured.
  • the teeth can be aligned along a straight line, but can also be aligned along a curved line, the latter being part of a plane comprising the direction of construction, that is to say perpendicular to the building plate.
  • This configuration makes it possible to limit the deformation of the part to be produced more effectively.
  • At least one holding element has, in the direction of construction of the workpiece, a decreasing section.
  • the section of the holding element considered is a cross section, that is to say a section perpendicular to the direction of construction.
  • the cross section of the holding element decreases as one moves away from the construction plate along the construction direction.
  • a portion of the holding element closer to the building plate is more massive than a portion of the holding element more distant from the building plate.
  • the need to maintain the latter is more important towards the bottom of the part, c that is to say close to the construction plate, thus requiring a sufficiently rigid holding element to limit deformation in this area.
  • the rigidity of the retaining element may be lower in areas further from the construction plate.
  • the section of the holding element as a function of the deformation stresses exerted by the portion to be maintained according to the height of the latter makes it possible to limit the amount of material used to manufacture the holding element. This configuration thus makes it possible to limit the costs of manufacturing the part and its retaining elements, as well as the manufacturing time.
  • the contact line between at least one holding element and the corresponding lateral surface extends over the entire height of the portion to be maintained.
  • the height of the portion to be maintained is considered according to the direction of construction, that is to say the direction perpendicular to the construction plate. This configuration makes it possible to improve the maintenance of the portion to be maintained, and to more effectively limit the deformation thereof.
  • the digital model comprises a plurality of first holding elements in contact with the first lateral surface of the portion to be maintained, and a plurality of second holding elements in contact with the second lateral surface of the portion to maintain.
  • These holding elements can be distributed uniformly on each lateral surface of the portion, but can also be distributed in a non-uniform manner, as required. For example, the number of elements in contact with one or the other of the lateral surfaces may be greater in the areas of these surfaces where the part presents a greater risk of deformation, and vice versa. This configuration makes it possible to optimize the maintenance of the portion to be maintained, as a function of the modes of deformation thereof.
  • each first holding element of the plurality of first holding elements in contact with the first lateral surface of the portion to be maintained is positioned opposite one of the second elements. maintaining the plurality of second holding elements in contact with the second lateral surface of the portion to be maintained.
  • the holding elements are arranged two by two of each of the portion to be maintained, being included one and the other in the same plane, said plane being substantially perpendicular to the portion to be maintained and parallel to the direction of construction. This arrangement improves the maintenance of the portion to be maintained during manufacturing by fixing the shape of the latter on given sections.
  • each first holding element of the plurality of first holding elements in contact with the first lateral surface of the portion to be held is positioned in staggered rows with respect to the second holding elements of the plurality of second holding elements in contact with the second lateral surface of the portion to be held.
  • first holding elements are not opposite one of the second holding elements.
  • first and second holding elements are offset from each other in a longitudinal direction, parallel to the construction plane. This arrangement makes it possible to optimize the position of the holding elements as a function of the buckling of the part.
  • At least one tooth of at least one holding element has a face having an angle between 30 ° and 70 °, preferably between 40 ° and 60 ° 7 relative to the direction of construction.
  • At least 50% of the teeth of at least one holding element preferably at least 80% of the teeth, more preferably all the teeth, have a face having an angle between 30 ° and 70 °, preferably between 40 ° and 60 °.
  • angles of inclination of these surfaces make it possible to avoid the installation of supports thereon. Indeed, it is known that from a construction angle of approximately 30 ° relative to the construction plate, the layer of the part being manufactured has sufficient grip on the solidified part of the layer of lower manufacturing in order to be able to remain in position during the production of the part, without the need for additional holding means. It is therefore not necessary to install supports on said surface. Thus, by orienting the model so that these surfaces have these angles of inclination, the teeth of the holding element are not likely to collapse under their own weight during manufacture, the establishment of supports are thus not necessary.
  • At least one holding element comprises a shell part entirely enveloping the first lateral surface of the portion to be maintained and / or the second lateral surface of the portion to be maintained, so that a clearance exists between the shell part and the lateral surface (s), the shell part having supports in contact with the surface (s) (s) lateral (s), the contact being linear.
  • the shell has an internal surface whose shape matches that of the corresponding lateral surface of the portion to be maintained, these two surfaces being opposite one another and being separated by a clearance between 0.1 and 0.5 mm. It is known to use a shell of this type, having a smooth surface, to limit the overall deformations of the part.
  • the shell according to the present description also has supports on its internal surface comprising, for example, a plurality of teeth in contact with the corresponding lateral surface, in the same way as the retaining elements. The presence of this shell comprising these supports makes it possible to further limit the deformations of the part during manufacture, including in the areas of the portion to be maintained not maintained by the supports. In the case of parts exhibiting strong buckling zones, this shell thus makes it possible to avoid having holding elements over the entire length of the part.
  • the shell part has a plurality of orifices.
  • the orifices make it possible to more easily recover the powder and to recycle the unused powder at the end of manufacture.
  • the portion to be maintained of the part to be produced has a slender face.
  • a flat plate is meant a part of which at least one dimension is at least 10 times, preferably at least 50 times greater than another dimension.
  • a flat plate may have a length and a width much greater than its thickness.
  • the part to be manufactured is an aeronautical part, in particular of a turbomachine, and the lateral surfaces of the portion to be maintained are surfaces intended to be in contact with a flow of a working fluid.
  • the surfaces intended to be in contact with a flow of a working fluid may be surfaces delimiting a vein flow of the working fluid in a turbomachine for example.
  • the presence of the holding elements therefore makes it possible to limit the deformation of these surfaces during manufacture, and thus to limit the risks of degrading the performance of the turbomachine.
  • the part to be manufactured is a turbomachine blade, the first lateral surface being the lower surface of the blade, the second lateral surface being the upper surface of the blade.
  • the surface to be maintained comprising the lower surface and the upper surface
  • the surface to be maintained is oriented so that the angle which it forms with respect to the direction of construction, as a function of the curvature of the 'lower surface and upper surface, remains below 45 °.
  • the main direction of the blade is the rope of the latter
  • the rope forms an angle less than 30 ° relative to the direction of construction.
  • these holding elements to maintain the lower surface and upper surface of the blade during the manufacture thereof makes it possible to limit a deformation, causing the modification of the curvature thereof, and therefore a modification of its aerodynamic properties.
  • these retaining elements allow, after their removal, to limit the presence of residues on the lower surface and upper surface of the blade. It is therefore possible to dispense with a manual polishing step for these surfaces after obtaining the final blade.
  • the method further comprises:
  • the method further comprises, after the removal of the holding elements, an automated polishing step of the surface to be saved from the part thus obtained.
  • the holding elements described in the previous embodiments make it possible to limit the presence of residues after the removal of the latter, the automated polishing step of the surface to be saved from the part obtained makes it possible to further improve the homogeneity of said surface.
  • This presentation also relates to a blank comprising:
  • a part having at least one portion to be held forming an angle less than 45 ° with respect to a direction of construction of the part, the portion to be held having a first lateral surface and a second lateral surface opposite to each other, and
  • first holding element being positioned on a first side of the portion to be held, so as to be in contact with said first lateral surface and a second holding element being positioned on a side of the portion to be maintained so as to be in contact with said second lateral surface.
  • FIG. 1 shows an overview of an additive manufacturing device by selective melting of powder beds
  • Figure 2a shows a perspective view of a digital model of a part to be manufactured, and Figure 2b shows a cross section along A-A of the part of Figure 2a;
  • Figure 3a shows the cross section of Figure 2b, comprising holding elements according to the present description, and Figure 3b shows a sectional view of Figure 3a along line B-B;
  • - Figure 4 shows a perspective view of a holding element according to the present description
  • - Figure 5 shows a cross section of an upper portion of the part to be manufactured.
  • FIG. 6 shows a sectional view of the workpiece and a shell.
  • the height of the workpiece is considered in the vertical direction Z, corresponding to the direction of construction. Consequently, the terms “upper”, “lower” and their deviations are considered in this direction Z. Furthermore, a longitudinal direction of the workpiece is considered in a horizontal direction X, perpendicular to the vertical direction Z. In addition , the thickness of the part to be manufactured is considered in a direction Y, perpendicular to the direction x and to the direction Z.
  • any reference to the blade or to the holding elements in fact refers to the digital model of the part to be manufactured, the digital model comprising said blade and said holding elements.
  • the workpiece 1 is a turbine engine blade.
  • the blade 1 has a lower surface la and an upper surface lb.
  • the lower surface la and the upper surface lb are lateral surfaces of the portion to be maintained during the manufacture of the blade 1 by additive manufacturing.
  • the lower surface la and the upper surface lb of the blade 1 extend substantially in the vertical direction Z, a lower end of the blade 1, for example the trailing edge, being supported by at least one support 2, or resting directly on the construction plate P.
  • the model of the blade 1 is oriented so that the chord of the blade forms an angle preferably less than 30 ° relative to the direction of construction, that is to say the vertical direction Z.
  • 3a shows a lower portion of the cross section of Figure 2b, in which the holding elements 10 and 20 are arranged on either side of the blade 1.
  • the holding element 10 is a holding upper surfaces allowing the upper surface 1b of the blade 1 to be maintained during manufacture, and the holding element 20 is a lower surface support making it possible to maintain the lower surface 1a of the blade 1 during manufacture.
  • each holding element 10, 20 is supported by the construction plate P, and is in contact with the blade 1 along a contact line extending over the entire height of the latter, c that is to say from the leading edge to the trailing edge thereof.
  • the holding elements 10, 20 may be in contact with the blade 1 only over a portion of the height thereof.
  • the holding elements 10 and 20 are arranged so that they are aligned with each other along the thickness direction Y (cf. FIG. 3b). In other words, the contact line between the lower surface retaining element 20 and the lower surface la, and the contact line between the upper surface retaining element 10 and the upper surface 1b, are both included in the YZ plan.
  • FIG 4 shows a perspective view of an upper retaining element 10 according to the present description.
  • the retaining element 10 extends mainly along the direction of construction, following the shape, or more precisely the curvature, of the upper surface 1b of the blade 1.
  • the retaining element 10 comprises a structural portion 10a, and a contact portion 10b.
  • One end of the contact portion 10b is provided to be in contact with the upper surface 1b of the blade 1.
  • the contact portion 10b has a convergent shape from the structural portion 10a to the end in contact with the extrados lb.
  • the structural portion 10a is the portion of the retaining element making it possible to limit the deformations thereof. In other words, the structural portion 10a makes it possible to give the retaining element 10 sufficient rigidity to resist deformations of the blade 1.
  • the right part of Figure 4 has cross sections of the holding member 10 perpendicular to the direction of construction, on a lower portion and an upper portion of the latter.
  • the structural portion 10a and the contact portion 10b have a width, that is to say a dimension in the longitudinal direction X, substantially constant, and small compared to their dimension in the vertical direction Z.
  • the thickness, that is to say the dimension in the direction Y, of the structural portion 10a decreases along the direction of construction, from the lower end to the upper end of the holding element 10. In other words, the total cross section of the holding element 10 decreases along the direction of construction.
  • the need to maintain the latter is greater in the lower portions, that is to say close to the construction plate, requiring that the holding element 10 is more rigid to limit deformation in this area.
  • the rigidity of the holding element 10 may be lower in the upper portions of the blade 1.
  • the end of the contact portion 10b, in contact with the upper surface 1b, comprises a plurality of teeth 12.
  • Each holding element can comprise between three to ten teeth 12 per cm along the line according to which the teeth 12 are aligned.
  • the teeth 12 are aligned with respect to each other in a plane perpendicular to the longitudinal axis X, so that a discontinuous linear contact, in the form of a succession of contacts punctual, or established between the upper surface lb and the holding element 10, over the entire height of the upper surface.
  • the teeth 12 In a cross section perpendicular to the longitudinal axis X, corresponding to the view of Figures 3a and 5, the teeth 12 have the shape of saw teeth.
  • each tooth 12 has a bearing face 12a, the bearing face 12a having, in this section, an angle b between 30 ° and 70 °, preferably between 40 ° and 60 °, more preferably equal to 45 ° , in relation to the horizontal, that is to say in relation to the construction plane. This angle avoids the installation of supports thereon.
  • each tooth 12 has a rounded end 14.
  • the linear contact between the upper surface lb and the element of holding 10 is in the form of a succession of contact points aligned with each other over the entire height of the blade 1.
  • This rounded shape makes it possible to limit the contact surface between the holding element 10 and the extrados 1b, and thus limit the residue present after removal of the holding element 10.
  • the lower surface holding elements 20 have the same structural characteristics as the upper surface holding element 10, except that the curvature of the lower surface holding element 20 follows the curvature of the lower surface.
  • the end of the contact portions in contact with the lower surface 1a comprises in particular a plurality of teeth 22.
  • Figures 3a and 3b show sections of the blade 1 in which a single upper support element 10 and a single lower support element 20 are visible.
  • the digital model may include two or more upper surface holding elements 10 along the longitudinal direction X, and two, or more, lower surface holding elements 20 along the longitudinal direction X.
  • the number of elements holding on each side of the blade, as well as their positions, are determined according to needs, that is to say according to the portions of the blade most likely to deform during manufacture.
  • FIG. 6 shows a sectional view of the part to be manufactured according to another embodiment in which, instead of the holding elements 10, 20, a shell 30 is arranged on either side of the part to manufacture.
  • the shell 30 includes supports 32 having the same characteristics as the holding elements 10, 20, in particular a plurality of aligned teeth and in contact with the lateral surfaces la, lb of the portion to be maintained.
  • the shell also has intermediate portions 34 between two adjacent supports 32.
  • the intermediate portions 34 have a surface whose shape matches that of the corresponding lateral surface 1a, 1b of the portion to be maintained, these two surfaces being opposite one another.
  • the intermediate portions 34 are not in contact with the lateral surfaces of the portion to be maintained, but have a clearance J of between 0.1 and 0.5 mm with them.
  • the intermediate portions 34 also include orifices 36.
  • the orifices 36 make it possible to be able to recover the powder more easily and to recycle the powder not used at the end of manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Plasma & Fusion (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Procédé de fabrication de pièce par fabrication additive, la pièce à fabriquer (1) comportant au moins une portion à maintenir formant un angle inférieur à 60° par rapport à une direction de construction de la pièce à fabriquer, la portion à maintenir présentant une première surface latérale (1a) et une deuxième surface latérale (1b) opposées l'une à l'autre, le procédé comprenant les étapes suivantes : fourniture d'un modèle numérique de la pièce à fabriquer (1), ajout au modèle numérique d'au moins un élément de maintien (10, 20) positionné d'un côté de la portion à maintenir, de manière à être en contact avec ladite première surface latérale (1a) ou avec ladite deuxième surface latérale (1b).

Description

Procédé amélioré de fabrication de pièce par fabrication additive
DOMAINE DE L'INVENTION
[0001] Le présent exposé concerne un procédé de fabrication de pièce par fabrication additive permettant de maintenir certaines surfaces de la pièce susceptibles de se déformer en cours de fabrication, et notamment les surfaces influant sur l'aérodynamisme de la pièce finale.
[0002] Un tel procédé de fabrication additive est particulièrement adapté pour fabriquer des pièces complexes munies de surfaces sensibles, à destination notamment du domaine aéronautique.
ETAT DE LA TECHNIQUE ANTERIEURE
[0003] Il est désormais connu, dans le domaine aéronautique notamment, d'utiliser des méthodes de fabrication additive pour la réalisation de certains pièces dont la géométrie est fine ou complexe.
[0004] Un exemple classique de fabrication additive est la fabrication par fusion ou frittage de particules de poudre au moyen d'un faisceau de haute énergie. Parmi ces faisceaux de haute énergie, on peut mentionner notamment le faisceau laser et le faisceau d'électrons.
[0005] Par "fusion sélective par laser", en anglais "Sélective Laser Melting" (SLM), également connu sous le nom de procédé « Laser Beam Melting » (LBM), on entend un procédé dont les caractéristiques principales sont rappelées ci-après, en référence à la FIG 1 illustrant un dispositif classique de fabrication de pièce par fusion sélective ou frittage sélectif de lits de poudre au moyen d'un faisceau laser.
[0006] On dépose, par exemple à l'aide d'un outil d'étalement 200 (par exemple un rouleau), une première couche 100a de poudre d’un matériau sur un plateau de construction 210 (il peut s'agir d'un plateau seul ou surmonté d'un support massif, d'une partie d'une autre pièce ou d'une grille support utilisée pour faciliter la construction de certaines pièces).
[0007] Cette poudre est transvasée depuis un bac d'alimentation 220 lors d'un mouvement aller du rouleau 200 puis elle est raclée, et éventuellement légèrement compactée, lors d'un (ou de plusieurs) mouvement(s) de retour du rouleau 200. La poudre est composée de particules 110. L'excédent de poudre est récupéré dans un bac de recyclage 230 situé de façon adjacente au bac de construction 240 dans lequel se déplace verticalement le plateau de construction 210.
[0008] On utilise également un générateur 300 de faisceau laser 310, et un système de pilotage 320 apte à diriger ce faisceau 310 sur n’importe quelle région du plateau de construction 210 de façon à balayer n’importe quelle région d’une couche de poudre préalablement déposée. La mise en forme du faisceau laser 310 et la variation de son diamètre sur le plan focal se font respectivement au moyen d'un dilatateur de faisceau ou système de focalisation 330 et d'un « Beam Expander » 340, l'ensemble constituant le système optique.
[0009] Ensuite, on porte une région de cette première couche 100a de poudre, par balayage avec un faisceau laser 310, à une température supérieure à la température de fusion de cette poudre.
[0010] Ce type de procédé de fabrication additive peut utiliser n’importe quel faisceau de haute énergie à la place du faisceau laser 310, et notamment un faisceau d'électrons, tant que ce faisceau est suffisamment énergétique pour fondre les particules de poudre et une partie du matériau sur lequel les particules reposent.
[0011] Ce balayage du faisceau est effectué par exemple par une tête galvanométrique faisant partie d'un système de pilotage 320. Par exemple ce système de pilotage comprend au moins un miroir 350 orientable sur lequel le faisceau laser 310 se réfléchit avant d’atteindre une couche de poudre dont chaque point de la surface se trouve située toujours à la même hauteur par rapport à la lentille de focalisation, contenue dans le système de focalisation 340, la position angulaire de ce miroir étant pilotée par une tête galvanométrique pour que le faisceau laser balaye au moins une région de la première couche de poudre, et suive ainsi un profil de pièce préétabli. Pour ce faire, la tête galvanométrique est commandée selon les informations contenues dans la base de données de l'outil informatique utilisé pour la conception et la fabrication assistées par ordinateur de la pièce à fabriquer.
[0012] Ainsi, les particules de poudre 110 de cette région de la première couche 100a sont fondues et forment un premier élément 120a d’un seul tenant, solidaire avec le plateau de construction 210. A ce stade, on peut également balayer avec le faisceau laser plusieurs régions indépendantes de cette première couche pour former, après fusion et solidification de la matière, plusieurs premiers éléments 120a disjoints les uns des autres.
[0013] On abaisse le plateau de construction 210 d'une hauteur correspondant à l'épaisseur de la première couche de poudre 100a (20 à 100 pm et en général de 30 à 50 pm).
[0014] On dépose ensuite une deuxième couche 100b de poudre sur la première couche 100a et sur ce premier élément d'un seul tenant ou consolidé 120a, puis on chauffe par exposition au faisceau laser 310 une région de la deuxième couche 10b qui est située partiellement ou complètement au-dessus de ce premier élément d'un seul tenant ou consolidé 120a dans le cas illustré à la FIG 1, de telle sorte que les particules de poudre de cette région de la deuxième couche 100b sont fondues avec au moins une partie de l'élément 120a et forment un deuxième élément d'un seul tenant ou consolidé 120b, l'ensemble de ces deux éléments 120a et 120b formant, dans le cas illustré à la FIG 1, un bloc d’un seul tenant.
[0015] Une telle technique de fabrication additive assure donc un excellent contrôle de la géométrie de la pièce à fabriquer et permet de réaliser des pièces possédant une grande complexité.
[0016] Toutefois, lors de la réalisation de pièces à géométrie complexe, certaines parties de la pièce se retrouvent momentanément en fort porte-à-faux, ou même sans aucun autre maintien que le volume de poudre non solidifiée situé au-dessous, et présentent donc un risque d'effondrement dans le bac de fabrication. Cela est notamment le cas des parties de la pièce sensiblement parallèles au plateau de fabrication. Dans un tel cas, il est alors nécessaire de fabriquer des supports en même temps que la pièce afin de maintenir ces parties pendant la phase de fabrication.
[0017] Or, lorsque la fabrication est terminée, et lors de l'enlèvement de ces supports, des résidus subsistent à l'interface entre les supports et la pièce. Par conséquent, la pièce obtenue comporte des zones dont l'état de surface n'est pas homogène. Cet état de surface non homogène, lorsqu'il concerne des zones sensibles de la pièce (par exemple les zones en contact avec un flux d'air), peut perturber l'écoulement du fluide et ainsi altérer les propriétés aérodynamiques et donc le rendement de la machine concernée.
[0018] Pour éviter ce problème, une solution consiste à orienter la pièce de manière à limiter l'utilisation de supports, en disposant par exemple la plus grande surface de manière sensiblement verticale.
[0019] Cependant, lors de la réalisation de pièces à géométrie élancée, c'est-à-dire des pièces longues et fines dans laquelle une dimension est très supérieure à une autre dimension, par exemple une pale, certaines surfaces ont tendance à se déformer au cours de la fabrication, par flambage sous l'effet des contraintes résultant du refroidissement et de la solidification de la zone fondue. Cette déformation peut donner lieu à des écarts de forme de l'ordre de 4 mm sur les profils aérodynamiques, pouvant altérer les propriétés aérodynamiques de ces derniers. Pour limiter ces déformations, et limiter la nécessité des supports, il est également possible de disposer la pièce, par exemple la pale, en positionnant la plus grande dimension verticalement, c'est-à-dire en positionnant le bord d'attaque et le bord de fuite verticalement. Cependant, cette disposition augmente fortement le temps de fabrication.
[0020] Il existe donc un réel besoin pour un procédé de fabrication de pièce par fabrication additive, permettant de maintenir certaines surfaces particulièrement sensibles de la pièce et notamment les surfaces influant sur l'aérodynamisme de la pièce finale, tout en limitant la présence de résidus sur ces surfaces lors de la fabrication de la pièce.
PRESENTATION DE L'INVENTION
[0021] Le présent exposé concerne un procédé de fabrication de pièce par fabrication additive, la pièce à fabriquer comportant au moins une portion à maintenir formant un angle inférieur à 45° par rapport à une direction de construction de la pièce à fabriquer, la portion à maintenir présentant une première surface latérale et une deuxième surface latérale opposées l'une à l'autre, le procédé comprenant les étapes suivantes :
fourniture d'un modèle numérique de la pièce à fabriquer, ajout au modèle numérique d'au moins un élément de maintien positionné d'un côté de la portion à maintenir, de manière à être en contact avec ladite première surface latérale ou ladite deuxième surface latérale. [0022] Dans certains modes de réalisation, le modèle numérique comporte au moins deux éléments de maintien, un premier élément de maintien étant positionné d'un premier côté de la portion à maintenir, de manière à être en contact avec ladite première surface latérale et un deuxième élément de maintien étant positionné d'un deuxième côté de la portion à maintenir de manière à être en contact avec ladite deuxième surface latérale.
[0023] Dans le présent exposé, par « direction de construction », on comprend direction dans laquelle la pièce est construite, c'est-à-dire dans laquelle les couches de poudre, ou couches de fabrication, sont empilées les unes sur les autres. Par exemple, lorsque la pièce est fabriquée sur un plateau de construction, la direction de construction correspond à une direction orthogonale audit plateau de construction. On entend alors par plan de construction un plan orthogonal à la direction de construction et sensiblement parallèle au plateau de construction. De plus, par « en contact », on comprend que l'élément de maintien est directement en contact avec la surface latérale, ou avec un jeu inférieur à 0,1 mm.
[0024] De préférence, une direction principale de la pièce à fabriquer forme un angle inférieur 30° par rapport à la direction de construction. Dans un cas où la pièce à fabriquer serait une plaque, par exemple, la plaque possédant deux surfaces latérales opposées l'une à l'autre serait disposée de manière à former un angle inférieur à 30° par rapport à la direction de construction, c'est-à-dire par rapport à la direction orthogonale au plateau de construction. En d'autres termes, la plaque serait disposée de manière sensiblement verticale, ou sub- verticale, par rapport au plateau de construction.
[0025] L'ajout au modèle numérique d'au moins deux éléments de maintien permet de construire ces éléments de maintien par fabrication additive, en même temps que la pièce à fabriquer. Les deux éléments de maintien sont disposés de part et d'autre de la portion à maintenir et en contact avec celle-ci, de manière à prendre cette dernière en sandwich. En d'autres termes, alors qu'une portion inférieure de la pièce à fabriquer est supportée soit par un élément de support, soit directement par le plateau de construction, les éléments de maintien permettent de maintenir les surfaces latérales de la portion à maintenir de la pièce à fabriquer.
[0026] La présence de ces éléments de maintien permet d'éviter une déformation de la pièce en cours de fabrication, par flambage sous l'effet des contraintes du refroidissement et de la solidification de la zone fondue. Il est ainsi possible de positionner précisément les éléments de maintien contre la pièce, en fonction des modes de déformation de celle-ci. Dans le cas d'une pièce aéronautique, ces éléments de maintien permettent ainsi de limiter la modification des propriétés aérodynamiques de cette pièce.
[0027] Dans certains modes de réalisation, le contact entre le premier élément de maintien et la première surface latérale, et le contact entre le deuxième élément de maintien et la deuxième surface latérale, sont des contacts linéaires.
[0028] Par « contact linéaire », on comprend un contact suivant une ligne droite ou courbe dans un plan donné, la ligne étant continue ou discontinue. En d'autres termes, le contact linéaire peut se présenter sous la forme d'une succession de contacts ponctuels, dans la mesure où ces contacts ponctuels sont alignés sur une même ligne. La présence de ces contacts linéaires entre les éléments de maintien et les surfaces latérales permet de limiter la surface de contact entre les éléments de maintien et les surface latérales. Ainsi, lorsque la fabrication de la pièce est terminée, il est possible de détacher facilement les éléments de maintien de ces surfaces latérales, en limitant la présence de résidus sur celles-ci, causés par ces éléments. La pièce finale obtenue présente ainsi un état de surface homogène. Il est donc possible de se passer d'une étape de polissage manuel de ces surfaces après obtention de la pièce finale.
[0029] Dans certains modes de réalisation, les premier et deuxième éléments de maintien sont en vis-à-vis l'un par rapport à l'autre.
[0030] Par « en vis-à-vis l'un par rapport à l'autre », on comprend que les premier et deuxième éléments de maintien sont disposés de chaque côté de la portion à maintenir, mais sont compris l'un et l'autre dans un même plan, ledit plan étant sensiblement perpendiculaire à la portion à maintenir et parallèle à la direction de construction. Cette disposition permet d'améliorer le maintien de la portion à maintenir au cours de la fabrication, limitant davantage la déformation de celle-ci, en contraignant sa forme sur une section donnée.
[0031] Dans certains modes de réalisation, une extrémité de contact d'au moins un élément de maintien, en contact avec la surface latérale correspondante de la portion à maintenir, présente une forme amincie.
[0032] Par « forme amincie », on comprend que dans un plan transverse de l'élément de maintien, le plan transverse étant perpendiculaire à la direction de construction, l'extrémité de contact est plus mince, c'est-à-dire moins épaisse, que le reste de l'élément de maintien. Par exemple, l'extrémité de contact peut être arrondie. Par « arrondie », on comprend que l'extrémité de contact est arrondie dans le plan transverse de l'élément de maintien Cette forme amincie, par exemple arrondie, permet de limiter davantage la surface de contact entre l'élément de maintien et la surface latérale correspondante de la portion à maintenir. Cela permet de limiter davantage la présente de résidu après enlèvement de l'élément de maintien. De plus, cette forme arrondie permet de faciliter l'opération d'enlèvement manuelle de l'élément de maintien.
[0033] Dans certains modes de réalisation, au moins un élément de maintien comporte une pluralité de dents alignées les unes par rapport aux autres, ledit élément de maintien étant positionné de manière à ce que les dents soient en contact avec la surface latérale correspondante de la portion à maintenir.
[0034] Selon cette configuration, le contact entre l'élément de maintien et la surface latérale correspondante de la portion à maintenir est un contact linéaire discontinu. Dans un plan parallèle à la direction de construction et perpendiculaire aux surfaces latérales, la pluralité de dents de l'élément de maintien peut par exemple prendre la forme de dents de scie. Par ailleurs, lorsque les extrémités de contact des dents de l'élément de maintien, en contact avec la surface latérale correspondante de la portion à maintenir, sont arrondies, ledit contact se présente sous la forme d'une succession de points de contact alignés les uns par rapport aux autres le long d'une ligne. Cette configuration permet de limiter davantage la surface de contact entre l'élément de maintien et la surface latérale correspondante de la portion à maintenir, et ainsi de limiter encore la présente de résidu après enlèvement de l'élément de maintien.
[0035] Dans certains modes de réalisation, les dents d'au moins un élément de maintien sont alignées les unes par rapport aux autres suivant une direction s'inscrivant dans un plan comprenant la direction de construction de la pièce à fabriquer.
[0036] En d'autres termes, les dents peuvent être alignées selon une ligne droite, mais peuvent être également alignées selon une ligne courbe, cette dernière s'inscrivant dans un plan comprenant la direction de construction, c'est-à-dire perpendiculaire au plateau de construction. Cette configuration permet de limiter plus efficacement la déformation de la pièce à fabriquer.
[0037] Dans certains modes de réalisation, au moins un élément de maintien présente, suivant la direction de construction de la pièce à fabriquer, une section décroissante.
[0038] La section de l'élément de maintien considérée est une section transversale, c'est-à-dire une section perpendiculaire à la direction de construction. Selon cette configuration, la section de l'élément de maintien diminue à mesure que l'on s'éloigne du plateau de construction le long de la direction de construction. En d'autres termes, une portion de l'élément de maintien plus proche du plateau de construction est plus massive qu'une portion de l'élément de maintien plus éloignée du plateau de construction. Compte tenu du fait que la pièce à fabriquer tend à se déformer sous l'effet des contraintes de refroidissement accumulées tout au long de la fabrication et de couches successives, la nécessité de maintenir cette dernière est plus importante vers le bas de la pièce, c'est-à-dire proche du plateau de construction, nécessitant ainsi un élément de maintien suffisamment rigide pour limiter les déformations dans cette zone. A l'inverse, la rigidité de l'élément de maintien peut être plus faible dans des zones plus éloignées du plateau de construction. Le fait d'adapter la section de l'élément de maintien en fonction des contraintes de déformations exercées par la portion à maintenir selon la hauteur de cette dernière permet de limiter la quantité de matière utilisée pour fabriquer l'élément de maintien. Cette configuration permet ainsi de limiter les coûts de fabrication de la pièce et de ses éléments de maintien, ainsi que le temps de fabrication. [0039] Dans certains modes de réalisation, la ligne de contact entre au moins élément de maintien et la surface latérale correspondante s'étend sur toute la hauteur de la portion à maintenir.
[0040] La hauteur de la portion à maintenir est considérée selon la direction de construction, c'est-à-dire la direction perpendiculaire au plateau de construction. Cette configuration permet d'améliorer le maintien de la portion à maintenir, et de limiter plus efficacement la déformation de celle-ci.
[0041] Dans certains modes de réalisation, le modèle numérique comporte une pluralité de premiers éléments de maintien en contact avec la première surface latérale de la portion à maintenir, et une pluralité de deuxièmes éléments de maintien en contact avec la deuxième surface latérale de la portion à maintenir.
[0042] Ces éléments de maintien peuvent être répartis uniformément sur chaque surface latérale de la portion, mais peuvent également être réparties de manière non uniforme, en fonction des besoins. Par exemple, le nombre d'éléments en contact avec l'une ou l'autre des surfaces latérales peut être plus important dans les zones de ces surfaces où la pièce présente un risque plus important de se déformer, et inversement. Cette configuration permet d'optimiser le maintien de la portion à maintenir, en fonction des modes de déformation de celle-ci.
[0043] Dans certains modes de réalisation, chaque premier élément de maintien de la pluralité de premiers éléments de maintien en contact avec la première surface latérale de la portion à maintenir, est positionné en vis-à-vis d'un des deuxièmes éléments de maintien de la pluralité de deuxièmes éléments de maintien en contact avec la deuxième surface latérale de la portion à maintenir.
[0044] Par « en vis-à-vis », on comprend que les éléments de maintien sont disposés deux à deux de chaque de la portion à maintenir, en étant compris l'un et l'autre dans un même plan, ledit plan étant sensiblement perpendiculaire à la portion à maintenir et parallèle à la direction de construction. Cette disposition permet d'améliorer le maintien de la portion à maintenir au cours de la fabrication en fixant la forme de celle-ci sur des sections données.
[0045] Dans certains modes de réalisation, chaque premier élément de maintien de la pluralité de premiers éléments de maintien en contact avec la première surface latérale de la portion à maintenir, est positionné en quinconce par rapport aux deuxièmes éléments de maintien de la pluralité de deuxièmes éléments de maintien en contact avec la deuxième surface latérale de la portion à maintenir.
[0046] Par « en quinconce », on comprend que les premiers éléments de maintien ne sont pas en vis-à-vis d'un des deuxièmes éléments de maintien. En d'autres termes, les premiers et les deuxièmes éléments de maintien sont décalés les uns par rapport aux autres dans une direction longitudinale, parallèle au plan de construction. Cette disposition permet d'optimiser la position des éléments de maintien en fonction du flambage de la pièce.
[0047] Dans certains modes de réalisation, au moins une dent d'au moins un élément de maintien comporte une face présentant un angle compris entre 30° et 70°, de préférence compris entre 40° et 60°7 par rapport à la direction de construction.
[0048] Dans certains modes de réalisation, au moins 50% des dents d'au moins un élément de maintien, de préférence, au moins 80% des dents, de préférence encore toutes les dents, comportent une face présentant un angle compris entre 30° et 70°, de préférence compris entre 40° et 60°.
[0049] Les angles d'inclinaison de ces surfaces permettent d'éviter la mise en place de supports sur celles-ci. En effet, il est connu qu'à partir d'un angle de construction de 30° environ par rapport au plateau de construction, la couche de la pièce en cours de fabrication bénéficie d'une accroche suffisante sur la partie solidifiée de la couche de fabrication inférieure pour pouvoir se maintenir en position au cours de la fabrication de la pièce, sans avoir besoin de moyens de maintien supplémentaires. Il n'est donc pas nécessaire de mettre en place des supports sur ladite surface. Ainsi, en orientant le modèle de manière à ce que ces surfaces présentent ces angles d'inclinaison, les dents de l'élément de maintien ne risquent pas de s'effondrer sous leur propre poids au cours de la fabrication, la mise en place de supports n'étant ainsi pas nécessaire.
[0050] Dans certains modes de réalisation, au moins un élément de maintien comprend une partie de coquille enveloppant entièrement la première surface latérale de la portion à maintenir et/ou la deuxième surface latérale de la portion à maintenir, de manière à ce qu'un jeu existe entre la partie de coquille et la ou les surface(s) latérale(s), la partie de coquille présentant des appuis en contact avec la ou les surface(s) latérale(s), le contact étant linéaire.
[0051] La coquille présente une surface interne dont la forme épouse celle de la surface latérale correspondant de la portion à maintenir, ces deux surfaces étant en vis-à-vis l'une de l'autre et étant séparées par un jeu compris entre 0,1 et 0,5 mm. Il est connu d'utiliser une coquille de ce type, présentant une surface lisse, pour limiter les déformations globales de la pièce. Néanmoins, la coquille selon le présent exposé présente en plus sur sa surface interne des appuis comportant par exemple une pluralité de dents en contact avec la surface latérale correspondante, de la même manière que les éléments de maintien. La présence de cette coquille comportant ces appuis permet de limiter davantage les déformations de la pièce en cours de fabrication, y compris dans les zones de la portion à maintenir non maintenues par les appuis. Dans le cas de pièces présentant de fortes zones de flambage, cette coquille permet ainsi d'éviter de disposer des éléments de maintien sur toute la longueur de la pièce.
[0052] Dans certains modes de réalisation, la partie de coquille comporte une pluralité d'orifices.
[0053] Les orifices permettent de pouvoir récupérer plus facilement la poudre et de recycler la poudre non utilisée en fin de fabrication.
[0054] Dans certains modes de réalisation, la portion à maintenir de la pièce à fabriquer présente une face élancée.
[0055] Par « élancée », on comprend une pièce dont au moins une dimension est au moins 10 fois, de préférence au moins 50 fois supérieure à une autre dimension. Par exemple, une plaque plane peut présenter une longueur et une largeur très supérieures à son épaisseur.
[0056] Dans certains modes de réalisation, la pièce à fabriquer est une pièce aéronautique, en particulier de turbomachine, et les surfaces latérales de la portion à maintenir sont des surfaces destinées à être en contact avec un flux d'un fluide de travail.
[0057] Les surfaces destinées à être en contact avec un flux d'un fluide de travail peuvent être des surfaces délimitant une veine d'écoulement du fluide de travail dans une turbomachine par exemple. La présence des éléments de maintien permet donc de limiter la déformation de ces surfaces au cours de la fabrication, et ainsi de limiter les risques de dégrader les performances de la turbomachine.
[0058] Dans certains modes de réalisation, la pièce à fabriquer est une pale de turbomachine, la première surface latérale étant l'intrados de la pale, la deuxième surface latérale étant l'extrados de la pale.
[0059] Selon cette configuration, la surface à maintenir, comportant l'intrados et l'extrados, est orientée de manière à ce que l'angle qu'elle forme par rapport à la direction de construction, en fonction de la courbure de l'intrados et de l'extrados, reste inférieur à 45°. Par ailleurs, en considérant que la direction principale de la pale est la corde de cette dernière, la corde forme un angle inférieur à 30° par rapport à la direction de construction. Au cours de la fabrication, le bord d'attaque de la pale peut prendre appui soit sur un support, soit directement sur le plateau de construction, la construction de la pale commençant donc par son bord d'attaque, et allant couche après couche jusqu'à son bord de fuite, suivant le sens de construction. Dans ce cas, les éléments de maintien, et plus spécifiquement les contacts linéaires entre ces derniers et la pale, suivent la courbure de l'intrados et de l'extrados. L'utilisation de ces éléments de maintien pour maintenir l'intrados et l'extrados de la pale au cours de la fabrication de celle-ci permet de limiter une déformation, engendrant la modification la courbure de celle-ci, et donc une modification de ses propriétés aérodynamiques. De plus, ces éléments de maintien permettent, après leur retrait, de limiter la présence de résidus sur l'intrados et l'extrados de la pale. Il est donc possible de se passer d'une étape de polissage manuel de ces surfaces après obtention de la pale finale.
[0060] Dans certains modes de réalisation, le procédé comprend en outre :
une étape de réalisation de la pièce à fabriquer couche par couche à l'aide d'une technique de fabrication additive sur la base du modèle numérique, et
une étape d'enlèvement des éléments de maintien. [0061] Dans certains modes de réalisation, le procédé comprend en outre, après l'enlèvement des éléments de maintien, une étape de polissage automatisé de la surface à épargner de la pièce ainsi obtenue.
[0062] Bien que les éléments de maintien décrits dans les modes de réalisation précédents permettent de limiter la présence de résidus après le retrait de ces derniers, l'étape de polissage automatisé de la surface à épargner de la pièce obtenue permet d'améliorer encore l'homogénéité de ladite surface.
[0063] Le présent exposé concerne également une ébauche comportant :
une pièce présentant au moins une portion à maintenir formant un angle inférieur à 45° par rapport à une direction de construction de la pièce, la portion à maintenir présentant une première surface latérale et une deuxième surface latérale opposées l'une à l'autre, et
au moins deux éléments de maintien, un premier élément de maintien étant positionné d'un premier côté de la portion à maintenir, de manière à être en contact avec ladite première surface latérale et un deuxième élément de maintien étant positionné d'un côté de la portion à maintenir de manière à être en contact avec ladite deuxième surface latérale.
BREVE DESCRIPTION DES DESSINS
[0064] L'invention et ses avantages seront mieux compris à la lecture de la description détaillée faite ci-après de différents modes de réalisation de l'invention donnés à titre d'exemples non limitatifs. Cette description fait référence aux pages de figures annexées, sur lesquelles :
- la figure 1 représente une vue d'ensemble d'un dispositif de fabrication additive par fusion sélective de lits de poudre ;
- la figure 2a représente une vue en perspective d'un modèle numérique d'une pièce à fabriquer, et la figure 2b représente une section transversale selon A-A de la pièce de la figure 2a ;
- la figure 3a représente la section transversale de la figure 2b, comportant des éléments de maintiens selon le présent exposé, et la figure 3b représente une vue en coupe de la figure 3a selon la ligne B-B ;
- la figure 4 représente une vue en perspective d'un élément de maintien selon le présent exposé ; - la figure 5 représente une section transversale d'une portion supérieure de la pièce à fabriquer.
- la figure 6 représente une vue en coupe de la pièce à fabriquer et d'une coquille.
DESCRIPTION DETAILLEE D'EXEMPLES DE REALISATION
[0065] Dans la suite de la description, la hauteur de la pièce à fabriquer est considérer selon la direction verticale Z, correspondant à la direction de construction. Par conséquent, les termes « supérieur », « inférieur » et leurs dévirés sont considérés selon cette direction Z. Par ailleurs, une direction longitudinale de la pièce à fabriquer est considérée selon une direction horizontale X, perpendiculaire à la direction verticale Z. De plus, l'épaisseur de la pièce à fabriquer est considérée selon une direction Y, perpendiculaire à la direction x et à la direction Z.
[0066] Par ailleurs, par soucis de simplicité, on comprendra dans la suite de la description que toute référence à la pale ou aux éléments de maintien se réfère en fait au modèle numérique de la pièce à fabriquer, le modèle numérique comportant ladite pale et lesdits éléments de maintien.
[0067] La figure 2a représente une vue en perspective d'un modèle 1 d'une pièce à fabriquer sur un plateau de construction P, par un procédé de fabrication de pièce par fabrication additive. La direction de construction, correspondant à l'axe vertical Z, est perpendiculaire au plan de construction, correspondant à la surface supérieure du plateau de construction P. Dans ce mode de réalisation, la pièce à fabriquer 1 est une pale de turbomachine. La pale 1 comporte un intrados la et un extrados lb. L'intrados la et l'extrados lb sont des surfaces latérales de la portion à maintenir au cours de la fabrication de la pale 1 par fabrication additive.
[0068] En effet, au cours de la fabrication de la pale 1 par fabrication additive, l'intrados la et l'extrados lb de la pale 1 s'étendent sensiblement selon la direction verticale Z, une extrémité inférieure de la pale 1, par exemple le bord de fuite, étant supportée par au moins un support 2, ou reposant directement sur le plateau de construction P. Plus précisément, le modèle de la pale 1 est orienté de manière à ce que la corde de la pale forme une angle de préférence inférieur à 30° par rapport à la direction de construction, c'est-à-dire la direction verticale Z. [0069] La figure 3a représente une portion inférieure de la section transversale de la figure 2b, dans laquelle des éléments de maintien 10 et 20 sont disposés de part et d'autre de la pale 1. L'élément de maintien 10 est un maintien extrados permettant de maintenir l'extrados lb de la pale 1 au cours de la fabrication, et l'élément de maintien 20 est un maintien intrados permettant de maintenir l'intrados la de la pale 1 au cours de la fabrication. Dans ce mode de réalisation, chaque élément de maintien 10, 20 est supporté par le plateau de construction P, et est en contact avec la pale 1 le long d'une ligne de contact s'étendant sur toute la hauteur de cette dernière, c'est-à-dire du bord d'attaque au bord de fuite de celle-ci. De manière alternative, les éléments de maintien 10, 20 peuvent n'être en contact avec la pale 1 que sur une portion de la hauteur de celle-ci. En outre, les éléments de maintien 10 et 20 sont disposés de manière à ce qu'ils soient alignés l'un avec l'autre le long de la direction d'épaisseur Y (cf. figure 3b). En d'autres termes, la ligne de contact entre l'élément de maintien intrados 20 et l'intrados la, et la ligne de contact entre l'élément de maintien extrados 10 et l'extrados lb, sont toutes les deux comprises dans le plan Y-Z.
[0070] La figure 4 représente une vue en perspective d'un élément de maintien extrados 10 selon le présent exposé. L'élément de maintien 10 s'étend principalement selon la direction de construction, en suivant la forme, ou plus précisément la courbure, de l'extrados lb de la pale 1. L'élément de maintien 10 comporte une portion structurale 10a, et une portion de contact 10b. Une extrémité de la portion de contact 10b est prévue pour être en contact avec l'extrados 1 b de la pale 1. La portion de contact 10b présente une forme convergente depuis la portion structurale 10a jusqu'à l'extrémité en contact avec l'extrados lb. La portion structurale 10a est la portion de l'élément de maintien permettant de limiter les déformations de celle-ci. En d'autres termes, la portion structurale 10a permet de conférer à l'élément de maintien 10 une rigidité suffisante pour résister aux déformations de la pale 1.
[0071] La partie droite de la figure 4 présente des sections transversales de l'élément de maintien 10 perpendiculaires à la direction de construction, sur une portion inférieure et une portion supérieure de ce dernier. La portion structurale 10a et la portion de contact 10b présentent une largeur, c'est-à-dire une dimension selon la direction longitudinale X, sensiblement constante, et faible par rapport à leur dimension selon la direction verticale Z. En revanche, l'épaisseur, c'est-à-dire la dimension selon la direction Y, de la portion structurale 10a, diminue le long de la direction de construction, depuis l'extrémité inférieure jusqu'à l'extrémité supérieure de l'élément de maintien 10. En d'autres termes, la section totale de l'élément de maintien 10 est décroissante le long de la direction de construction. En effet, la nécessité de maintenir cette dernière est plus importante dans les portions inférieures, c'est-à-dire proche du plateau de construction, nécessitant que l'élément de maintien 10 soit plus rigide pour limiter les déformations dans cette zone. A l'inverse, la rigidité de l'élément de maintien 10 peut être plus faible dans les portions supérieures de la pale 1.
[0072] En outre, l'extrémité de la portion de contact 10b, en contact avec l'extrados lb, comporte une pluralité de dents 12. Chaque élément de maintien peut comporter entre trois à dix dents 12 par cm le long de la ligne selon laquelle sont alignées les dents 12. Les dents 12 sont alignées les unes par rapport aux autres dans un plan perpendiculaire à l'axe longitudinal X, de manière à ce qu'un contact linéaire discontinu, sous la forme d'une succession de contacts ponctuels, soit établi entre l'extrados lb et l'élément de maintien 10, sur toute la hauteur de l'extrados. Suivant une section transversale perpendiculaire à l'axe longitudinal X, correspondant à la vue des figures 3a et 5, les dents 12 présentent la forme de dents de scie. Plus précisément, chaque dent 12 comporte une face portante 12a, la face portante 12a présentant, dans cette section, un angle b compris entre 30° et 70°, de préférence compris entre 40° et 60°, de préférence encore égal à 45°, par rapport à l'horizontale, c'est-à-dire par rapport au plan de construction. Cet angle permet d'éviter la mise en place de supports sur celles-ci.
[0073] Par ailleurs, suivant une section transversale perpendiculaire à l'axe Z, correspondant à la vue de la figure 3b, chaque dent 12 comporte une extrémité arrondie 14. Ainsi, le contact linéaire entre l'extrados lb et l'élément de maintien 10 se présente sous la forme d'une succession de points de contact alignés les uns par rapport aux autres sur toute la hauteur de la pale 1. Cette forme arrondie permet de limiter la surface de contact entre l'élément de maintien 10 et l'extrados lb, et ainsi de limiter la présente de résidu après enlèvement de l'élément de maintien 10.
[0074] Bien qu'ils ne soient pas décrits en détail, les éléments de maintien intrados 20 présentent les mêmes caractéristiques structurelles que l'élément de maintien extrados 10, hormis le fait que la courbure de l'élément de maintien intrados 20 suit la courbure de l'intrados la. L'extrémité des portions de contact en contact avec l'intrados la, comporte notamment une pluralité de dents 22.
[0075] Par ailleurs, les figures 3a et 3b représentent des sections de la pale 1 dans lesquelles un seul élément de maintien extrados 10 et un seul élément de maintien intrados 20 sont visibles. Néanmoins, le modèle numérique peut comporter deux, ou plus, éléments de maintien extrados 10 le long de la direction longitudinale X, et deux, ou plus, éléments de maintien intrados 20 le long de la direction longitudinale X. Le nombre d'éléments de maintien de chaque côté de la pale, ainsi que leurs positions, sont déterminés en fonction des besoins, c'est-à-dire en fonction des portions de la pale les plus susceptibles de se déformer au cours de la fabrication.
[0076] La figure 6 représente une vue en coupe de la pièce à fabriquer selon un autre mode de réalisation dans lequel, à la place des éléments de maintien 10, 20, une coquille 30 est disposée de part et d'autre de la pièce à fabriquer. La coquille 30 comporte des appuis 32 présentant les même caractéristiques que les éléments de maintien 10, 20, notamment une pluralité de dents alignées et en contact avec les surfaces latérales la, lb de la portion à maintenir. La coquille comporte également des portions intermédiaires 34 entre deux appuis 32 adjacents. Les portions intermédiaires 34 présentent une surface dont la forme épouse celle de la surface latérale la, lb correspondante de la portion à maintenir, ces deux surfaces étant en vis-à-vis l'une de l'autre. Les portions intermédiaires 34 ne sont pas en contact avec les surfaces latérales de la portion à maintenir, mais présentent un jeu J compris entre 0,1 et 0,5 mm avec celles-ci. Les portions intermédiaires 34 comportent également des orifices 36. Les orifices 36 permettent de pouvoir récupérer plus facilement la poudre et de recycler la poudre non utilisée en fin de fabrication. [0077] Bien que la présente invention ait été décrite en se référant à des exemples de réalisation spécifiques, il est évident que des modifications et des changements peuvent être effectués sur ces exemples sans sortir de la portée générale de l'invention telle que définie par les revendications. En particulier, des caractéristiques individuelles des différents modes de réalisation illustrés/mentionnés peuvent être combinées dans des modes de réalisation additionnels. Par conséquent, la description et les dessins doivent être considérés dans un sens illustratif plutôt que restrictif.
[0078] Il est également évident que toutes les caractéristiques décrites en référence à un procédé sont transposables, seules ou en combinaison, à un dispositif, et inversement, toutes les caractéristiques décrites en référence à un dispositif sont transposables, seules ou en combinaison, à un procédé.

Claims

REVENDICATIONS
1. Procédé de préparation d'un modèle numérique pour la fabrication de pièce par fabrication additive, la pièce à fabriquer (1) comportant au moins une portion à maintenir formant un angle inférieur à 45° par rapport à une direction de construction de la pièce à fabriquer, la portion à maintenir présentant une première surface latérale (la) et une deuxième surface latérale (lb) opposées l'une à l'autre, le procédé comprenant les étapes suivantes :
fourniture d'un modèle numérique de la pièce à fabriquer (1), ajout au modèle numérique d'au moins un élément de maintien (10, 20) comportant une pluralité de dents (12) alignées les unes par rapport aux autres, et étant positionné d'un côté de la portion à maintenir de manière à ce que les dents (12) soient en contact avec ladite première surface latérale (la) ou avec ladite deuxième surface latérale (lb).
2. Procédé selon la revendication 1, dans lequel l'élément de maintien (10, 20) est un premier élément de maintien (20) positionné d'un premier côté de la portion à maintenir, de manière à être en contact avec ladite première surface latérale (la), et le modèle numérique comprend au moins un deuxième élément de maintien (10) positionné d'un deuxième côté de la portion à maintenir de manière à être en contact avec ladite deuxième surface latérale (lb).
3. Procédé selon la revendication 2, dans lequel le contact entre le premier élément de maintien (20) et la première surface latérale (la), et le contact entre le deuxième élément de maintien (10) et la deuxième surface latérale (lb), sont des contacts linéaires.
4. Procédé selon la revendication 2 ou 3, dans lequel les premier et deuxième éléments de maintien (10, 20) sont en vis-à-vis l'un par rapport à l'autre.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel une extrémité de contact d'au moins un élément de maintien (10, 20), en contact avec la surface latérale (la, lb) correspondante de la portion à maintenir, présente une forme amincie.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel au moins une dent (12) d'au moins un élément de maintien (10, 20) comporte une face présentant un angle compris entre 30° et 70°, de préférence compris entre 40° et 60°, par rapport à la direction de construction.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel au moins un élément de maintien (10, 20) présente, suivant la direction de construction de la pièce à fabriquer (1), une section décroissante.
8. Procédé selon l'une quelconque des revendications 2 à 7, dans lequel le modèle numérique comporte une pluralité de premiers éléments de maintien (20) en contact avec la première surface latérale (la) de la portion à maintenir, et une pluralité de deuxièmes éléments de maintien (10) en contact avec la deuxième surface latérale (lb) de la portion à maintenir.
9. Procédé selon la revendication 8, dans lequel chaque premier élément de maintien (20) de la pluralité de premiers éléments de maintien (20) en contact avec la première surface latérale (la) de la portion à maintenir, est positionné en vis-à-vis d'un des deuxièmes éléments de maintien de la pluralité de deuxièmes éléments de maintien (10) en contact avec la deuxième surface latérale (lb) de la portion à maintenir.
10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la pièce à fabriquer (1) est une pièce aéronautique, en particulier de turbomachine, et dans lequel les surfaces latérales de la portion à maintenir sont des surfaces destinées à être en contact avec un flux d'un fluide de travail.
11. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel la pièce à fabriquer (1) est une pale de turbomachine, la première surface latérale (la) étant l'intrados de la pale, la deuxième surface latérale (lb) étant l'extrados de la pale.
12. Procédé de fabrication d'une pièce par fabrication additive comportant la préparation d'un modèle numérique obtenu à l'aide d'un procédé selon l'une quelconque des revendications l à 11, et la fabrication de la pièce par fabrication additive.
13. Ebauche comportant :
une pièce (1) présentant au moins une portion à maintenir formant un angle inférieur à 45° par rapport à une direction de construction de la pièce (1), la portion à maintenir présentant une première surface latérale (la) et une deuxième surface latérale (lb) opposées l'une à l'autre, et au moins deux éléments de maintien (10, 20), un premier élément de maintien (20) comportant une pluralité de dents (12) alignées les unes par rapport aux autres, et étant positionné d'un premier côté de la portion à maintenir, de manière à ce que les dents (12) soient en contact avec ladite première surface latérale (la), et un deuxième élément de maintien (20) comportant une pluralité de dents (12) alignées les unes par rapport aux autres, et étant positionné d'un côté de la portion à maintenir de manière à ce que les dents (12) soient en contact avec ladite deuxième surface latérale (lb).
PCT/FR2019/051634 2018-07-02 2019-07-02 Procede ameliore de fabrication de piece par fabrication additive WO2020008137A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980039935.1A CN112334903A (zh) 2018-07-02 2019-07-02 通过增材制造来制造工件的改进方法
US17/054,592 US11511349B2 (en) 2018-07-02 2019-07-02 Method for manufacturing a workpiece by additive manufacturing
EP19753141.1A EP3818463A1 (fr) 2018-07-02 2019-07-02 Procede ameliore de fabrication de piece par fabrication additive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856085 2018-07-02
FR1856085A FR3083159B1 (fr) 2018-07-02 2018-07-02 Procede ameliore de fabrication de piece par fabrication additive

Publications (1)

Publication Number Publication Date
WO2020008137A1 true WO2020008137A1 (fr) 2020-01-09

Family

ID=65031350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051634 WO2020008137A1 (fr) 2018-07-02 2019-07-02 Procede ameliore de fabrication de piece par fabrication additive

Country Status (5)

Country Link
US (1) US11511349B2 (fr)
EP (1) EP3818463A1 (fr)
CN (1) CN112334903A (fr)
FR (1) FR3083159B1 (fr)
WO (1) WO2020008137A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001324A1 (fr) * 2010-07-01 2012-01-05 Snecma Procédé de fabrication d'une pièce métallique par fusion sélective d'une poudre

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150224607A1 (en) * 2014-02-07 2015-08-13 Siemens Energy, Inc. Superalloy solid freeform fabrication and repair with preforms of metal and flux
US9757936B2 (en) * 2014-12-29 2017-09-12 General Electric Company Hot gas path component
CN205209880U (zh) * 2015-12-16 2016-05-04 中冶建筑研究总院有限公司 预应力拉力试验机夹具
US10000011B1 (en) * 2016-12-02 2018-06-19 Markforged, Inc. Supports for sintering additively manufactured parts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001324A1 (fr) * 2010-07-01 2012-01-05 Snecma Procédé de fabrication d'une pièce métallique par fusion sélective d'une poudre

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Inside Metal Additive Manufacturing - Considerations for supports design in metal SLM", 14 February 2015 (2015-02-14), XP055588169, Retrieved from the Internet <URL:http://www.insidemetaladditivemanufacturing.com/blog/considerations-for-supports-design-in-metal-slm> [retrieved on 20190513] *
CALIGNANO F: "Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting", MATERIALS AND DESIGN, LONDON, GB, vol. 64, 1 August 2014 (2014-08-01), pages 203 - 213, XP029064731, ISSN: 0261-3069, DOI: 10.1016/J.MATDES.2014.07.043 *

Also Published As

Publication number Publication date
US11511349B2 (en) 2022-11-29
FR3083159A1 (fr) 2020-01-03
FR3083159B1 (fr) 2021-12-03
US20210187615A1 (en) 2021-06-24
CN112334903A (zh) 2021-02-05
EP3818463A1 (fr) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2017118806A1 (fr) Procédé de fabrication de pièce par fabrication additive
CA2908960C (fr) Procede de fabrication de piece dissymetrique par fabrication additive
EP3377254B1 (fr) Procede de fabrication d&#39;une preforme d&#39;aube, d&#39;une aube et d&#39;un secteur de distributeur par fusion selective sur lit de poudre
EP2588263B1 (fr) Procédé de fabrication d&#39;une pièce métallique par fusion sélective d&#39;une poudre
FR3058510B1 (fr) Echangeur de chaleur
EP3509774B1 (fr) Procede de fabrication d&#39;une piece en materiau electroconducteur par fabrication additive
EP3577357B1 (fr) Chape de turbomachine a filtre integre et son procede de realisation
EP3624967B1 (fr) Aube de turbomachine d&#39;aeronef et son procede de realisation par fabrication additive
WO2020008137A1 (fr) Procede ameliore de fabrication de piece par fabrication additive
FR2825302A1 (fr) Procede de fabrication de profiles metalliques
FR3060608A1 (fr) Procede de fabrication d&#39;une structure abradable pour une turbomachine
EP4277762A1 (fr) Procede ameliore de fabrication de piece par fabrication additive
EP4003690B1 (fr) Prefiliere de coextrusion multi-voies possedant un raidisseur traversant monolithique pouvant etre obtenu par fabrication additive
EP4196300A1 (fr) Fabrication additive sur ebauche de piece de turbomachine comportant une zone rugueuse
FR3095365A1 (fr) Support et systeme pour fabrication additive et procede de fabrication additive mettant en œuvre un tel support
FR3129308A1 (fr) Dispositif de fabrication additive et procédé de fabrication associé
FR3098742A1 (fr) Fabrication additive selective sur lit de poudre, notamment pour pieces de turbomoteur
FR3135219A1 (fr) Procédé de fabrication d&#39;une pièce par fabrication additive par dépôt de fil
FR3053631A1 (fr) Procede de fabrication additive utilisant des elements de surface discrets.
FR3056426A1 (fr) Outillage pour la fabrication de pieces par fusion selective ou frittage selectif sur lit de poudre, et procede associe

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019753141

Country of ref document: EP

Effective date: 20210202