WO2020008061A1 - Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall - Google Patents

Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall Download PDF

Info

Publication number
WO2020008061A1
WO2020008061A1 PCT/EP2019/068163 EP2019068163W WO2020008061A1 WO 2020008061 A1 WO2020008061 A1 WO 2020008061A1 EP 2019068163 W EP2019068163 W EP 2019068163W WO 2020008061 A1 WO2020008061 A1 WO 2020008061A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic shielding
shielding wall
wall
substrate
composite electromagnetic
Prior art date
Application number
PCT/EP2019/068163
Other languages
French (fr)
Inventor
Jean-Baptiste Cassard
Original Assignee
Faurecia Systemes D'echappement
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faurecia Systemes D'echappement filed Critical Faurecia Systemes D'echappement
Priority to EP19741982.3A priority Critical patent/EP3818576A1/en
Priority to CN201980045265.4A priority patent/CN112689925A/en
Publication of WO2020008061A1 publication Critical patent/WO2020008061A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0045Casings being rigid plastic containers having a coating of shielding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall
  • the present invention relates to a composite electromagnetic shielding wall, of the type comprising a substrate made of dielectric material and a conductive layer attached to said substrate.
  • the invention also relates to a battery package comprising such a shielding wall.
  • the invention also relates to methods of producing such a shielding wall and such a battery package.
  • An alternative solution consists in making at least part of the packaging in plastic material, and in shielding this part of the packaging by applying an aluminum foil to it or by spraying a conductive material onto said part of the packaging. .
  • the fact of making this envelope conductive gives it this shielding property.
  • This solution has an obvious advantage in weight compared to the first solution.
  • packaging is much more complicated and expensive to produce.
  • An object of the invention is thus to allow the production of electromagnetic shielding parts which are light and easy to produce. Another objective is that these armor pieces are inexpensive.
  • the invention relates to a composite electromagnetic shielding wall of the aforementioned type, in which the conductive layer has been deposited on the substrate by mold coating, the conductive layer comprising a conductive filler embedded in a resin matrix.
  • the composite electromagnetic shielding wall also has one or more of the following characteristics, taken in isolation or according to any technically possible combination (s):
  • the conductive filler comprises carbon nanotubes, in particular single-walled carbon nanotubes
  • the concentration of the conductive filler in the conductive layer is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.01 and 0.1% by weight relative to the total weight of the conductive layer;
  • the resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene, the unsaturated esters being preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates;
  • the conductive layer has a thickness of less than 500 ⁇ m, preferably between 50 and 250 ⁇ m, and in particular between 80 and 150 ⁇ m;
  • the substrate has a thickness greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm;
  • the conductive layer has a surface resistivity of less than 20 W / p, preferably less than 10 W / p, and even more preferably less than or equal to 5
  • the subject of the invention is also a battery package comprising at least one wall of composite electromagnetic shielding as defined above.
  • the subject of the invention is also a method for producing a composite electromagnetic shielding wall, comprising the following steps:
  • the production process also has one or more of the following characteristics, taken in isolation or according to any technically possible combination (s):
  • the mold coating of the substrate is carried out by means of a mold coating process by high pressure injection.
  • the conductive filler comprises carbon nanotubes, in particular single-walled carbon nanotubes
  • the concentration of the conductive filler in the coating material is less than 1.5% by weight, preferably less than 0.5% by weight and is in particular between 0.01 and 0.1% by weight relative to the total weight of the coating material;
  • the resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene, the unsaturated esters being preferably chosen from: polyesters , vinyl esters, acrylates, and methacrylates; and
  • the composite electromagnetic shielding wall obtained is constituted by a composite electromagnetic shielding wall as defined above.
  • the subject of the invention is a process for producing a battery pack, comprising the following steps:
  • FIG. 1 is a sectional view of a battery packaging according to a first embodiment of the invention
  • FIG. 2 is a sectional view of a battery pack according to a second embodiment of the invention
  • FIG. 3 is a view of a detail marked II in Figure 1,
  • FIG. 4 is a schematic view of a first step in a process for producing the packaging of Figure 1,
  • FIG. 5 is a schematic view of a second step in the production process of the packaging of Figure 1, and
  • FIG. 6 is a schematic view of a third step in the production process of the packaging of Figure 1.
  • the battery package 10 shown in Figure 1 comprises a plurality of walls 12 which together surround a battery 16 by forming a closed enclosure around said battery 16.
  • This battery package 10 is typically carried on board a vehicle automobile (not shown), the battery 16 being electrically connected to an electric motor (not shown) of this motor vehicle to supply it with electrical energy.
  • Each wall 12 is adapted to act as a barrier to electromagnetic waves and therefore constitutes an electromagnetic shielding wall.
  • the walls 12 are connected to each other so as to ensure electrical continuity between the walls 12, so that the battery packaging 10 constitutes a Faraday cage around the battery 16.
  • pins 18 of electrically conductive material connect the walls 12 to each other.
  • each wall 12 being shaped like a half-shell.
  • the walls 12 include at least one composite electromagnetic shielding wall 14.
  • this composite electromagnetic shielding wall 14 comprises a substrate 20 made of dielectric material and a conductive layer 22 attached to said substrate 20.
  • the substrate of dielectric material 20 has a thickness e1 greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm.
  • the substrate of dielectric material 20 is made of composite material comprising material fibers (not shown) embedded in a resin matrix (not shown).
  • the substrate of dielectric material 20 is formed of a plurality of layers 24, 26, 28 of material composite superimposed and glued to each other, the material of each layer 24, 26, 28 preferably being identical to the material of each other layer 24, 26, 28 and comprising fibers of material (not shown) embedded in a resin matrix (not shown).
  • the material fibers used in the composition of each layer 24, 26, 28 and therefore constituting the material fibers of the substrate 20 preferably comprise fibers of glass, basalt, carbon, aramid, or high-weight polypropylene molecular (better known under the acronym HMPP for “high-modulus polypropylene”) and are advantageously constituted by such fibers.
  • the fibers of material entering into the composition of each layer 24, 26, 28 and therefore constituting the fibers of material of the substrate 20 comprise bio-sourced fibers such as flax or hemp fibers, and are advantageously constituted by such fibers.
  • the resin matrix entering into the composition of each layer 24, 26, 28 and therefore constituting the resin matrix of the substrate 20 preferably comprises a polyester resin and is advantageously constituted by such a resin.
  • the resin matrix entering into the composition of each layer 24, 26, 28 and therefore constituting the resin matrix of the substrate 20 comprises a vinyl ester or acrylic resin and is typically constituted by such a resin.
  • the layers 24, 26, 28 are here represented three in number. As a variant, the layers 24, 26, 28 are two in number, or their number is strictly greater than three. In another variant, the substrate 20 is formed of a single layer.
  • the conductive layer 22 has a thickness e2 of less than 500 ⁇ m, preferably between 50 and 250 ⁇ m, and in particular between 80 and 150 ⁇ m. It has a surface resistivity less than 20 W / p, preferably less than 10 W / p, and even more preferably less than or equal to 5 W / p.
  • the conductive layer 22 has been deposited on the substrate of dielectric material 20 by coating with a mold (better known under known under the English name "In-Mold Coating” or under the corresponding acronym IMC).
  • the conductive layer 22 and the substrate made of dielectric material 20 are copolymerized.
  • the conductive layer 22 comprises a conductive filler 30 embedded in a resin matrix 32.
  • the conductive filler 30 comprises carbon nanotubes, in particular single-walled carbon nanotubes, better known by the acronym SWCNT (from English “Single Wall Carbon Nanotube”).
  • SWCNT single Wall Carbon Nanotube
  • the conductive filler 30 is formed by these carbon nanotubes.
  • Carbon nanotubes have, for example, a diameter to length ratio of between 1/50000 and 1/40000.
  • the concentration of the conductive filler 30 in the conductive layer 22 is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.1 and 0.01% by weight per relative to the total weight of the conductive layer 22.
  • the resin matrix 32 is made of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene. These unsaturated esters are preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates.
  • a single wall 12 is constituted by such a composite electromagnetic shielding wall 14, the other wall 12 being constituted by a metal wall.
  • each wall 12 is constituted by such a composite electromagnetic shielding wall 14, the pins 18 then being arranged so as to electrically connect to each other the conductive layers 22 of said electromagnetic shielding walls composite 14.
  • This method comprises a first step (not shown) for producing the metal walls 12 of the battery pack 10, a second step for producing the composite electromagnetic shielding wall 14, and a third step (not shown) for assembling the walls 12, 14 to each other so as to form the battery pack 10.
  • the step for producing metal walls 12 is carried out by means of a conventional method for producing metal walls for electromagnetic shielding.
  • the step of producing the composite electromagnetic shielding wall 14 is carried out in parallel with the step of producing the metal walls 12.
  • This step of producing the composite electromagnetic shielding wall 14 comprises the production, in a mold 40, of the substrate 20 of dielectric material, and the coating in the mold of said substrate 20 with a coating material 42 so as to form the conductive layer 22 attached to the dielectric material substrate 20.
  • the mold coating of the substrate of dielectric material 20 is in particular carried out by means of a mold coating process by high pressure injection, better known by the acronym IMC HPIP (coming from the English “In-Mold Coating High Pressure Injection Process ”).
  • the step of producing the composite electromagnetic shielding wall 14 comprises, as shown in FIG. 4, a first sub-step of depositing sheet-shaped molding compositions 44 (better known under the English name “ Sheet Molding Compound ", or under the corresponding acronym SMC) in mold 40, said mold 40 being at an operating temperature typically between 140 and 150 ° C.
  • sheet-shaped molding compositions 44 better known under the English name “ Sheet Molding Compound ", or under the corresponding acronym SMC
  • Each sheet-shaped molding composition 44 includes material fibers (not shown) embedded in a resin matrix (not shown).
  • the material fibers used in the composition of each sheet 44 preferably comprise glass fibers, basalt, carbon, aramid, or high molecular weight polypropylene (better known by the acronym HMPP for “high-modulus” polypropylene ”) and are advantageously constituted by such fibers.
  • the fibers of material entering into the composition of each layer 24, 26, 28 and therefore constituting the fibers of material of the substrate 20 comprise bio-sourced fibers such as flax or hemp fibers, and are advantageously constituted by such fibers.
  • the resin matrix used in the composition of each sheet 44 preferably comprises a polyester resin and is advantageously constituted by such a resin.
  • the resin matrix entering into the composition of each sheet 44 comprises a vinyl ester or acrylic resin and is typically constituted by such a resin.
  • This first sub-step is followed by a second sub-step, shown in FIG. 5, of compression of the molding compositions in the form of sheets 44.
  • the mold 40 is closed and applies a high pressure, typically between 80 and 100 bars, on the sheets 44. Under the effect of this pressure, the sheets 44 merge and take the form of the mold 40, which produces the substrate made of dielectric material 20.
  • the number and the thickness of the sheets 44 are preferably adapted so that the substrate of dielectric material 20 has a thickness e1 greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm. it is preferably checked before inserting the sheets 44 into the mold 40, typically by weighing the sheets 44 and comparing the weight thus obtained with a target weight constituted by the weight of the finished part, excluding deburring and any cuts.
  • the pressure is thus maintained for a duration less than or equal to the gel time of the resin matrix used in the composition of the sheets 44.
  • This second substep is followed by a third substep, shown in FIG. 6, of coating the substrate with dielectric material 20 in a mold.
  • the pressure applied by the mold 40 is reduced, said mold 40 remaining closed, and the coating material 42 is injected at high pressure between the substrate made of dielectric material 20 and a wall 46 of the mold 40
  • the pressure maintained by the mold 40 is then between 40 and 50 bars, the injection pressure being between 200 and 400 bars. Under the effect of this pressure, the coating material 42 is distributed in the space between the substrate of dielectric material 20 and the wall 46 of the mold 40, and thus forms the conductive layer 22.
  • the injection of the coating material 42 is advantageously dosed so as to obtain a conductive layer 22 of thickness e2 less than 500 ⁇ m, preferably between 50 and 250 ⁇ m, and in particular between 80 and 150 ⁇ m.
  • the coating material 42 comprises a conductive filler embedded in a resin matrix.
  • the conductive filler preferably comprises carbon nanotubes, in particular single-walled carbon nanotubes, better known by the acronym SWCNT (from the English “Single Wall Carbon Nanotube”).
  • SWCNT single-walled carbon nanotubes
  • the conductive filler consists of these carbon nanotubes.
  • Carbon nanotubes have, for example, a diameter to length ratio of between 1/50000 and 1/40000.
  • the concentration of the conductive filler in the coating material 42 is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.1 and 0.01% by weight. in relation to the total weight of the coating material 42.
  • the resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene. These unsaturated esters are preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates.
  • the mold 40 is maintained in this configuration after the injection of the coating material 42 has stopped, at least for the time necessary for the polymerization of the resin matrix used in the composition of the coating material 42.
  • the conductive layer 22 and the substrate made of dielectric material 20 have copolymerized.
  • the third sub-step is followed by a fourth sub-step of opening the mold 40 and extracting the composite electromagnetic shielding wall 14 thus formed.
  • a non-porous composite electromagnetic shielding wall 14 is obtained, having an excellent surface condition, with a very tenacious chemical bond between the substrate 20 and the conductive layer 22, in a single operation.
  • the production of the battery pack 10 is particularly quick and easy. It is therefore possible to lighten the battery pack 10 at a lower cost.
  • This economic dimension of the composite electromagnetic shielding wall 14 is reinforced by the particularly low density of carbon nanotubes which it is necessary to incorporate into the conductive layer 22 to obtain the desired electromagnetic shielding effect, and by the thickness e2 particularly weak of the conductive layer 22.
  • the low density of carbon nanotubes in the coating material 42 has little impact on the viscosity of the coating material 42, which allows it to be well distributed in the mold 40 and that the thickness e2 of the conductive layer 22 or, therefore, relatively homogeneous.

Abstract

A composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall. This composite electromagnetic shielding wall (14) comprises a substrate (20) made of dielectric material and a conductive layer (22) applied on said substrate (20). The conductive layer (22) has been deposited onto the substrate (20) by mould coating and comprises a conductive load (30) embedded in a resin matrix (32).

Description

Paroi de blindage électromagnétique composite, emballage de batterie comprenant une telle paroi, et procédé de production d’une telle paroi Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall
La présente invention concerne une paroi de blindage électromagnétique composite, du type comprenant un substrat en matériau diélectrique et une couche conductrice rapportée sur ledit substrat. The present invention relates to a composite electromagnetic shielding wall, of the type comprising a substrate made of dielectric material and a conductive layer attached to said substrate.
L’invention concerne également un emballage de batterie comprenant une telle paroi de blindage.  The invention also relates to a battery package comprising such a shielding wall.
L’invention concerne encore des procédés de production d’une telle paroi de blindage et d’un tel emballage de batterie.  The invention also relates to methods of producing such a shielding wall and such a battery package.
Il est connu d’équiper des véhicules automobiles de moteurs électriques et de batteries pour alimenter ces moteurs. Généralement, le courant fourni par une telle batterie pour alimenter un moteur électrique est conditionné par un convertisseur à découpage hautes fréquences pour adapter la tension du courant à la tension d’alimentation du moteur. Or, ce convertisseur génère des variations très rapides de courant, appelés fronts, dans les câbles électriques d’alimentation du moteur, en conséquence de quoi ces câbles électriques et la batterie produisent des champs électriques et électromagnétiques susceptibles de perturber le fonctionnement des équipements électroniques environnants.  It is known to equip motor vehicles with electric motors and batteries to power these motors. Generally, the current supplied by such a battery to power an electric motor is conditioned by a high frequency switching converter to adapt the voltage of the current to the supply voltage of the motor. However, this converter generates very rapid variations in current, called edges, in the electric cables supplying the motor, as a result of which these electric cables and the battery produce electric and electromagnetic fields liable to disturb the functioning of the surrounding electronic equipment. .
Pour résoudre ce problème, il est connu de réaliser un emballage de batterie conducteur autour de la batterie et de ses bus de distribution de courant, et de blinder chaque câble électrique hors de l’emballage de batterie.  To solve this problem, it is known to make a conductive battery packaging around the battery and its current distribution buses, and to shield each electric cable out of the battery packaging.
La manière actuelle de réaliser les emballages de batterie ne donne toutefois pas entière satisfaction.  The current way of making battery packings is however not entirely satisfactory.
En effet, pour conférer aux emballages de batterie des propriétés de blindage électromagnétique, la solution la plus souvent retenue est de réaliser ces emballages en métal. Or, cette solution n’est pas satisfaisante, car elle alourdit le véhicule.  Indeed, to give battery packaging electromagnetic shielding properties, the solution most often adopted is to produce these metal packaging. However, this solution is not satisfactory, because it weighs down the vehicle.
Une solution alternative consiste à réaliser au moins une partie de l’emballage en matériau plastique, et à blinder cette partie de l’emballage en lui appliquant une feuille d’aluminium ou en déposant par pulvérisation un matériau conducteur sur ladite partie de l’emballage. Le fait de rendre conductrice cette enveloppe lui confère cette propriété de blindage. Cette solution présente un avantage en poids évident par rapport à la première solution. Toutefois, l’emballage est beaucoup plus compliqué et coûteux à réaliser. Un objectif de l’invention est ainsi de permettre la production de pièces de blindage électromagnétique qui soient légères et faciles à réaliser. Un autre objectif est que ces pièces de blindage soient peu coûteuses. An alternative solution consists in making at least part of the packaging in plastic material, and in shielding this part of the packaging by applying an aluminum foil to it or by spraying a conductive material onto said part of the packaging. . The fact of making this envelope conductive gives it this shielding property. This solution has an obvious advantage in weight compared to the first solution. However, packaging is much more complicated and expensive to produce. An object of the invention is thus to allow the production of electromagnetic shielding parts which are light and easy to produce. Another objective is that these armor pieces are inexpensive.
A cet effet, l’invention a pour objet une paroi de blindage électromagnétique composite du type précité, dans laquelle la couche conductrice a été déposée sur le substrat par revêtement en moule, la couche conductrice comprenant une charge conductrice noyée dans une matrice de résine.  To this end, the invention relates to a composite electromagnetic shielding wall of the aforementioned type, in which the conductive layer has been deposited on the substrate by mold coating, the conductive layer comprising a conductive filler embedded in a resin matrix.
Selon des modes de réalisation particuliers de l’invention, la paroi de blindage électromagnétique composite présente également l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :  According to particular embodiments of the invention, the composite electromagnetic shielding wall also has one or more of the following characteristics, taken in isolation or according to any technically possible combination (s):
- la charge conductrice comprend des nanotubes de carbone, en particulier des nanotubes de carbone à simple paroi ;  - The conductive filler comprises carbon nanotubes, in particular single-walled carbon nanotubes;
- la concentration de la charge conductrice dans la couche conductrice est inférieure à 1 ,5 % en poids, de préférence inférieure à 0,5 % en poids, et est en particulier comprise entre 0,01 et 0,1 % en poids par rapport au poids total de la couche conductrice ;  the concentration of the conductive filler in the conductive layer is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.01 and 0.1% by weight relative to the total weight of the conductive layer;
.- la matrice de résine est constituée d’une résine sans solvant composée majoritairement d’esters insaturés réticulés à l’aide d’un monomère styrène associé à du dicyclopentadiène ou sans association avec du dicyclopentadiène, les esters insaturés étant préférentiellement choisis parmi : les polyesters, les vinylesters, les acrylates, et les méthacrylates ;  .- the resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene, the unsaturated esters being preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates;
- la couche conductrice a une épaisseur inférieure à 500 pm, de préférence comprise entre 50 et 250 pm, et en particulier comprise entre 80 et 150 pm ;  the conductive layer has a thickness of less than 500 μm, preferably between 50 and 250 μm, and in particular between 80 and 150 μm;
- le substrat a une épaisseur supérieure à 0,5 mm, de préférence inférieure à 15 mm, et encore plus préférentiellement entre 1 et 5 mm ;  - The substrate has a thickness greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm;
- la couche conductrice a une résistivité de surface inférieure à 20 W/p, de préférence inférieure à 10 W/p, et encore plus préférentiellement inférieure ou égale à 5  the conductive layer has a surface resistivity of less than 20 W / p, preferably less than 10 W / p, and even more preferably less than or equal to 5
L’invention a également pour objet un emballage de batterie comprenant au moins une paroi de blindage électromagnétique composite telle que définie ci-dessus. The subject of the invention is also a battery package comprising at least one wall of composite electromagnetic shielding as defined above.
L’invention a encore pour objet un procédé de production d’une paroi de blindage électromagnétique composite, comprenant les étapes suivantes :  The subject of the invention is also a method for producing a composite electromagnetic shielding wall, comprising the following steps:
production, dans un moule, d’un substrat en matériau diélectrique, et revêtement en moule dudit substrat avec un matériau de revêtement de sorte à former une couche conductrice rapportée sur le substrat, ledit matériau de revêtement comprenant une charge conductrice noyée dans une matrice en résine. production, in a mold, of a substrate of dielectric material, and mold coating of said substrate with a coating material so as to form a conductive layer added to the substrate, said coating material comprising a conductive filler embedded in a resin matrix.
Selon des modes de réalisation particuliers de l’invention, le procédé de production présente également l’une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :  According to particular embodiments of the invention, the production process also has one or more of the following characteristics, taken in isolation or according to any technically possible combination (s):
- le revêtement en moule du substrat est réalisé au moyen d’un procédé de revêtement en moule par injection à haute pression.  - the mold coating of the substrate is carried out by means of a mold coating process by high pressure injection.
- la charge conductrice comprend des nanotubes de carbone, en particulier des nanotubes de carbone à simple paroi ;  - The conductive filler comprises carbon nanotubes, in particular single-walled carbon nanotubes;
- la concentration de la charge conductrice dans le matériau de revêtement est inférieure à 1 ,5 % en poids, de préférence inférieure à 0,5 % en poids et est en particulier comprise entre 0,01 et 0,1 % en poids par rapport au poids total du matériau de revêtement ;  the concentration of the conductive filler in the coating material is less than 1.5% by weight, preferably less than 0.5% by weight and is in particular between 0.01 and 0.1% by weight relative to the total weight of the coating material;
- la matrice de résine est constituée d’une résine sans solvant composée majoritairement d’esters insaturés réticulés à l’aide d’un monomère styrène associé à du dicyclopentadiène ou sans association avec du dicyclopentadiène, les esters insaturés étant préférentiellement choisis parmi : les polyesters, les vinylesters, les acrylates, et les méthacrylates ; et  the resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene, the unsaturated esters being preferably chosen from: polyesters , vinyl esters, acrylates, and methacrylates; and
- la paroi de blindage électromagnétique composite obtenue est constituée par une paroi de blindage électromagnétique composite telle que définie ci-dessus.  - The composite electromagnetic shielding wall obtained is constituted by a composite electromagnetic shielding wall as defined above.
Enfin, l’invention a pour objet un procédé de production d’un emballage de batterie, comprenant les étapes suivantes :  Finally, the subject of the invention is a process for producing a battery pack, comprising the following steps:
production d’au moins une paroi de blindage électromagnétique composite au moyen d’un procédé tel que défini ci-dessus, et  production of at least one composite electromagnetic shielding wall by means of a process as defined above, and
assemblage de la paroi de blindage électromagnétique composite ainsi produite avec au moins une autre paroi pour former l’emballage de batterie. assembling the composite electromagnetic shielding wall thus produced with at least one other wall to form the battery pack.
D’autres caractéristiques et avantages de l’invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, dans lesquels : Other characteristics and advantages of the invention will appear on reading the description which follows, given solely by way of example and made with reference to the appended drawings, in which:
- la Figure 1 est une vue en coupe d’un emballage de batterie selon un premier exemple de réalisation de l’invention, - la Figure 2 est une vue en coupe d’un emballage de batterie selon un deuxième exemple de réalisation de l’invention, FIG. 1 is a sectional view of a battery packaging according to a first embodiment of the invention, FIG. 2 is a sectional view of a battery pack according to a second embodiment of the invention,
- la Figure 3 est une vue d’un détail marqué II de la Figure 1 ,  - Figure 3 is a view of a detail marked II in Figure 1,
- la Figure 4 est une vue d’une schématique d’une première étape d’un procédé de production de l’emballage de la Figure 1 ,  - Figure 4 is a schematic view of a first step in a process for producing the packaging of Figure 1,
- la Figure 5 est une vue d’une schématique d’une deuxième étape du procédé de production de l’emballage de la Figure 1 , et  - Figure 5 is a schematic view of a second step in the production process of the packaging of Figure 1, and
- la Figure 6 est une vue d’une schématique d’une troisième étape du procédé de production de l’emballage de la Figure 1.  - Figure 6 is a schematic view of a third step in the production process of the packaging of Figure 1.
L’emballage de batterie 10 représenté sur la Figure 1 comprend une pluralité de parois 12 qui, ensemble, entourent une batterie 16 en formant une enceinte fermée autour de ladite batterie 16. Cet emballage de batterie 10 est typiquement embarqué à bord d’un véhicule automobile (non représenté), la batterie 16 étant raccordée électriquement à un moteur électrique (non représenté) de ce véhicule automobile pour l’alimenter en énergie électrique.  The battery package 10 shown in Figure 1 comprises a plurality of walls 12 which together surround a battery 16 by forming a closed enclosure around said battery 16. This battery package 10 is typically carried on board a vehicle automobile (not shown), the battery 16 being electrically connected to an electric motor (not shown) of this motor vehicle to supply it with electrical energy.
Chaque paroi 12 est adaptée pour faire barrière aux ondes électromagnétiques et constitue de ce fait une paroi de blindage électromagnétique. De plus, les parois 12 sont raccordées les unes aux autres de façon à assurer une continuité électrique entre les parois 12, de sorte que l’emballage de batterie 10 constitue une cage de Faraday autour de la batterie 16. A cet effet, des broches 18 en matériau électriquement conducteur relient les parois 12 l’une à l’autre.  Each wall 12 is adapted to act as a barrier to electromagnetic waves and therefore constitutes an electromagnetic shielding wall. In addition, the walls 12 are connected to each other so as to ensure electrical continuity between the walls 12, so that the battery packaging 10 constitutes a Faraday cage around the battery 16. For this purpose, pins 18 of electrically conductive material connect the walls 12 to each other.
Dans l’exemple représenté, les parois 12 sont au nombre de deux, chaque paroi 12 étant conformée en forme de demi-coquille.  In the example shown, there are two walls 12, each wall 12 being shaped like a half-shell.
Les parois 12 comprennent au moins une paroi de blindage électromagnétique composite 14.  The walls 12 include at least one composite electromagnetic shielding wall 14.
En référence à la Figure 3, cette paroi de blindage électromagnétique composite 14 comprend un substrat 20 en matériau diélectrique et une couche conductrice 22 rapportée sur ledit substrat 20.  With reference to FIG. 3, this composite electromagnetic shielding wall 14 comprises a substrate 20 made of dielectric material and a conductive layer 22 attached to said substrate 20.
Le substrat en matériau diélectrique 20 a une épaisseur e1 supérieure à 0,5 mm, de préférence inférieure à 15 mm, et encore plus préférentiellement entre 1 et 5 mm.  The substrate of dielectric material 20 has a thickness e1 greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm.
Le substrat en matériau diélectrique 20 est réalisé en matériau composite comprenant des fibres de matériau (non représentées) noyées dans une matrice de résine (non représentée). En particulier, dans l’exemple représenté, le substrat en matériau diélectrique 20 est formé d’une pluralité de couches 24, 26, 28 de matériau composite superposées et collées les unes aux autres, le matériau de chaque couche 24, 26, 28 étant de préférence identique au matériau de chaque autre couche 24, 26, 28 et comprenant des fibres de matériau (non représentées) noyées dans une matrice de résine (non représentée). The substrate of dielectric material 20 is made of composite material comprising material fibers (not shown) embedded in a resin matrix (not shown). In particular, in the example shown, the substrate of dielectric material 20 is formed of a plurality of layers 24, 26, 28 of material composite superimposed and glued to each other, the material of each layer 24, 26, 28 preferably being identical to the material of each other layer 24, 26, 28 and comprising fibers of material (not shown) embedded in a resin matrix (not shown).
Les fibres de matériau entrant dans la composition de chaque couche 24, 26, 28 et constituant donc les fibres de matériau du substrat 20 comprennent de préférence des fibres de verre, de basalte, de carbone, d’aramide, ou de polypropylène à haut poids moléculaire (mieux connu sous l’acronyme HMPP pour « high-modulus polypropylene ») et sont avantageusement constituées par de telles fibres. En variante, les fibres de matériau entrant dans la composition de chaque couche 24, 26, 28 et constituant donc les fibres de matériau du substrat 20 comprennent des fibres bio-sourcées telles que des fibres de lin ou de chanvre, et sont avantageusement constituées par de telles fibres.  The material fibers used in the composition of each layer 24, 26, 28 and therefore constituting the material fibers of the substrate 20 preferably comprise fibers of glass, basalt, carbon, aramid, or high-weight polypropylene molecular (better known under the acronym HMPP for “high-modulus polypropylene”) and are advantageously constituted by such fibers. As a variant, the fibers of material entering into the composition of each layer 24, 26, 28 and therefore constituting the fibers of material of the substrate 20 comprise bio-sourced fibers such as flax or hemp fibers, and are advantageously constituted by such fibers.
La matrice de résine entrant dans la composition de chaque couche 24, 26, 28 et constituant donc la matrice de résine du substrat 20 comprend de préférence une résine polyester et est avantageusement constituée par une telle résine. En variante, la matrice de résine entrant dans la composition de chaque couche 24, 26, 28 et constituant donc la matrice de résine du substrat 20 comprend une résine vinylester ou acrylique et est typiquement constituée par une telle résine.  The resin matrix entering into the composition of each layer 24, 26, 28 and therefore constituting the resin matrix of the substrate 20 preferably comprises a polyester resin and is advantageously constituted by such a resin. As a variant, the resin matrix entering into the composition of each layer 24, 26, 28 and therefore constituting the resin matrix of the substrate 20 comprises a vinyl ester or acrylic resin and is typically constituted by such a resin.
Les couches 24, 26, 28 sont ici représentées au nombre de trois. En variante, les couches 24, 26, 28 sont au nombre de deux, ou leur nombre est strictement supérieur à trois. En variante encore, le substrat 20 est formé d’une unique couche.  The layers 24, 26, 28 are here represented three in number. As a variant, the layers 24, 26, 28 are two in number, or their number is strictly greater than three. In another variant, the substrate 20 is formed of a single layer.
La couche conductrice 22 a une épaisseur e2 inférieure à 500 pm, de préférence comprise entre 50 et 250 pm, et en particulier comprise entre 80 et 150 pm.. Elle a une résistivité de surface inférieure à 20 W/p, de préférence inférieure à 10 W/p, et encore plus préférentiellement inférieure ou égale à 5 W/p.  The conductive layer 22 has a thickness e2 of less than 500 μm, preferably between 50 and 250 μm, and in particular between 80 and 150 μm. It has a surface resistivity less than 20 W / p, preferably less than 10 W / p, and even more preferably less than or equal to 5 W / p.
La couche conductrice 22 a été déposée sur le substrat en matériau diélectrique 20 par revêtement en moule (mieux connu sous connu sous la dénomination anglaise « In-Mould Coating » ou sous l’acronyme IMC correspondant).  The conductive layer 22 has been deposited on the substrate of dielectric material 20 by coating with a mold (better known under known under the English name "In-Mold Coating" or under the corresponding acronym IMC).
En particulier, la couche conductrice 22 et le substrat en matériau diélectrique 20 sont copolymérisés.  In particular, the conductive layer 22 and the substrate made of dielectric material 20 are copolymerized.
La couche conductrice 22 comprend une charge conductrice 30 noyée dans une matrice de résine 32.  The conductive layer 22 comprises a conductive filler 30 embedded in a resin matrix 32.
La charge conductrice 30 comprend des nanotubes de carbone, en particulier de nanotubes de carbone à simple paroi, mieux connus sous l’acronyme SWCNT (de l’anglais « Single Wall Carbone Nanotube »). De préférence, la charge conductrice 30 est constituée par ces nanotubes de carbone. The conductive filler 30 comprises carbon nanotubes, in particular single-walled carbon nanotubes, better known by the acronym SWCNT (from English “Single Wall Carbon Nanotube”). Preferably, the conductive filler 30 is formed by these carbon nanotubes.
Les nanotubes de carbone ont par exemple un rapport de diamètre sur longueur compris entre 1/50000 et 1/40000.  Carbon nanotubes have, for example, a diameter to length ratio of between 1/50000 and 1/40000.
La concentration de la charge conductrice 30 dans la couche conductrice 22 est inférieure à 1 ,5 % en poids, de préférence inférieure à 0,5 % en poids, et est en particulier comprise entre 0,1 et 0,01 % en poids par rapport au poids total de la couche conductrice 22.  The concentration of the conductive filler 30 in the conductive layer 22 is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.1 and 0.01% by weight per relative to the total weight of the conductive layer 22.
La matrice de résine 32 est constituée d’une résine sans solvant composée majoritairement d’esters insaturés réticulés à l’aide d’un monomère styrène associé à du dicyclopentadiène ou sans association avec du dicyclopentadiène. Ces esters insaturés sont de préférence choisis parmi : les polyesters, les vinylesters, les acrylates, et les méthacrylates.  The resin matrix 32 is made of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene. These unsaturated esters are preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates.
Dans la variante de la Figure 1 , une unique paroi 12 est constituée par une telle paroi de blindage électromagnétique composite 14, l’autre paroi 12 étant constituée par une paroi métallique. Dans la variante de la Figure 2, chaque paroi 12 est constituée par une telle paroi de blindage électromagnétique composite 14, les broches 18 étant alors agencées de sorte à connecter électriquement l’une à l’autre les couches conductrices 22 desdites parois de blindage électromagnétique composite 14.  In the variant of Figure 1, a single wall 12 is constituted by such a composite electromagnetic shielding wall 14, the other wall 12 being constituted by a metal wall. In the variant of FIG. 2, each wall 12 is constituted by such a composite electromagnetic shielding wall 14, the pins 18 then being arranged so as to electrically connect to each other the conductive layers 22 of said electromagnetic shielding walls composite 14.
Un procédé de production de l’emballage de batterie 10 va maintenant être écrit, en référence aux Figures 4 à 6.  A process for producing the battery pack 10 will now be written, with reference to Figures 4 to 6.
Ce procédé comprend une première étape (non représentée) de production des parois métalliques 12 de l’emballage de batterie 10, une deuxième étape de production de la paroi de blindage électromagnétique composite 14, et une troisième étape (non représentée) d’assemblage des parois 12, 14 les unes aux autres de sorte à former l’emballage de batterie 10.  This method comprises a first step (not shown) for producing the metal walls 12 of the battery pack 10, a second step for producing the composite electromagnetic shielding wall 14, and a third step (not shown) for assembling the walls 12, 14 to each other so as to form the battery pack 10.
L’étape de production des parois métalliques 12 est réalisée au moyen d’un procédé classique de production de parois métalliques pour blindage électromagnétique.  The step for producing metal walls 12 is carried out by means of a conventional method for producing metal walls for electromagnetic shielding.
L’étape de production de la paroi de blindage électromagnétique composite 14 est menée parallèlement à l’étape de production des parois métalliques 12.  The step of producing the composite electromagnetic shielding wall 14 is carried out in parallel with the step of producing the metal walls 12.
Cette étape de production de la paroi de blindage électromagnétique composite 14 comprend la production, dans un moule 40, du substrat 20 en matériau diélectrique, et le revêtement en moule dudit substrat 20 avec un matériau de revêtement 42 de sorte à former la couche conductrice 22 rapportée sur le substrat en matériau diélectrique 20. Le revêtement en moule du substrat en matériau diélectrique 20 est en particulier réalisé au moyen d’un procédé de revêtement en moule par injection à haute pression, mieux connu sous l’acronyme IMC HPIP (venant de l’anglais « In-Mould Coating High Pressure Injection Process »). This step of producing the composite electromagnetic shielding wall 14 comprises the production, in a mold 40, of the substrate 20 of dielectric material, and the coating in the mold of said substrate 20 with a coating material 42 so as to form the conductive layer 22 attached to the dielectric material substrate 20. The mold coating of the substrate of dielectric material 20 is in particular carried out by means of a mold coating process by high pressure injection, better known by the acronym IMC HPIP (coming from the English “In-Mold Coating High Pressure Injection Process ”).
A cet effet, l’étape de production de la paroi de blindage électromagnétique composite 14 comprend, comme représenté sur la Figure 4, une première sous-étape de dépôt de compositions de moulage en forme de feuilles 44 (mieux connues sous la dénomination anglaise « Sheet Moulding Compound », ou sous l’acronyme SMC correspondant) dans le moule 40, ledit moule 40 étant à une température de fonctionnement typiquement comprise entre 140 et 150°C.  To this end, the step of producing the composite electromagnetic shielding wall 14 comprises, as shown in FIG. 4, a first sub-step of depositing sheet-shaped molding compositions 44 (better known under the English name “ Sheet Molding Compound ", or under the corresponding acronym SMC) in mold 40, said mold 40 being at an operating temperature typically between 140 and 150 ° C.
Chaque composition de moulage en forme de feuille 44 comprend des fibres de matériau (non représentées) noyées dans une matrice de résine (non représentée).  Each sheet-shaped molding composition 44 includes material fibers (not shown) embedded in a resin matrix (not shown).
Les fibres de matériau entrant dans la composition de chaque feuille 44 comprennent de préférence des fibres de verre, de basalte, de carbone, d’aramide, ou de polypropylène à haut poids moléculaire (mieux connu sous l’acronyme HMPP pour « high- modulus polypropylene ») et sont avantageusement constituées par de telles fibres. En variante, les fibres de matériau entrant dans la composition de chaque couche 24, 26, 28 et constituant donc les fibres de matériau du substrat 20 comprennent des fibres bio- sourcées telles que des fibres de lin ou de chanvre, et sont avantageusement constituées par de telles fibres.  The material fibers used in the composition of each sheet 44 preferably comprise glass fibers, basalt, carbon, aramid, or high molecular weight polypropylene (better known by the acronym HMPP for “high-modulus” polypropylene ") and are advantageously constituted by such fibers. As a variant, the fibers of material entering into the composition of each layer 24, 26, 28 and therefore constituting the fibers of material of the substrate 20 comprise bio-sourced fibers such as flax or hemp fibers, and are advantageously constituted by such fibers.
La matrice de résine entrant dans la composition de chaque feuille 44 comprend de préférence une résine polyester et est avantageusement constituée par une telle résine. En variante, la matrice de résine entrant dans la composition de chaque feuille 44 comprend une résine vinylester ou acrylique et est typiquement constituée par une telle résine.  The resin matrix used in the composition of each sheet 44 preferably comprises a polyester resin and is advantageously constituted by such a resin. As a variant, the resin matrix entering into the composition of each sheet 44 comprises a vinyl ester or acrylic resin and is typically constituted by such a resin.
Cette première sous-étape est suivie d’une deuxième sous-étape, représentée sur la Figure 5, de compression des compositions de moulage en forme de feuilles 44. Au cours de cette étape, le moule 40 est refermé et applique une pression importante, typiquement comprise entre 80 et 100 bars, sur les feuilles 44. Sous l’effet de cette pression, les feuilles 44 fusionnent et prennent la forme du moule 40, ce qui produit le substrat en matériau diélectrique 20.  This first sub-step is followed by a second sub-step, shown in FIG. 5, of compression of the molding compositions in the form of sheets 44. During this step, the mold 40 is closed and applies a high pressure, typically between 80 and 100 bars, on the sheets 44. Under the effect of this pressure, the sheets 44 merge and take the form of the mold 40, which produces the substrate made of dielectric material 20.
Le nombre et l’épaisseur des feuilles 44 sont de préférence adaptés pour que le substrat en matériau diélectrique 20 ait une épaisseur e1 supérieure à 0,5 mm, de préférence inférieure à 15 mm, et encore plus préférentiellement entre 1 et 5 mm. Cela est de préférence contrôlé avant insertion des feuilles 44 dans le moule 40, typiquement par pesage des feuilles 44 et comparaison du poids ainsi obtenu avec un poids de consigne constitué par le poids de la pièce finie, hors ébavurage et découpes éventuelles. The number and the thickness of the sheets 44 are preferably adapted so that the substrate of dielectric material 20 has a thickness e1 greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm. it is preferably checked before inserting the sheets 44 into the mold 40, typically by weighing the sheets 44 and comparing the weight thus obtained with a target weight constituted by the weight of the finished part, excluding deburring and any cuts.
La pression est ainsi maintenue pendant une durée inférieure ou égale au temps de gel de la matrice de résine entrant dans la composition des feuilles 44.  The pressure is thus maintained for a duration less than or equal to the gel time of the resin matrix used in the composition of the sheets 44.
A cette deuxième sous-étape succède une troisième sous-étape, représentée sur la Figure 6, de revêtement du substrat en matériau diélectrique 20 en moule. Au cours de cette troisième sous-étape, la pression appliquée par le moule 40 est réduite, ledit moule 40 demeurant fermé, et le matériau de revêtement 42 est injecté à haute pression entre le substrat en matériau diélectrique 20 et une paroi 46 du moule 40. La pression maintenue par le moule 40 est alors comprise entre 40 et 50 bars, la pression d’injection étant comprise 200 et 400 bars. Sous l’effet de cette pression, le matériau de revêtement 42 se répartit dans l’espace entre le substrat en matériau diélectrique 20 et la paroi 46 du moule 40, et forme ainsi la couche conductrice 22.  This second substep is followed by a third substep, shown in FIG. 6, of coating the substrate with dielectric material 20 in a mold. During this third substep, the pressure applied by the mold 40 is reduced, said mold 40 remaining closed, and the coating material 42 is injected at high pressure between the substrate made of dielectric material 20 and a wall 46 of the mold 40 The pressure maintained by the mold 40 is then between 40 and 50 bars, the injection pressure being between 200 and 400 bars. Under the effect of this pressure, the coating material 42 is distributed in the space between the substrate of dielectric material 20 and the wall 46 of the mold 40, and thus forms the conductive layer 22.
L’injection du matériau de revêtement 42 est avantageusement dosée de sorte à obtenir une couche conductrice 22 d’épaisseur e2 inférieure à 500 pm, de préférence comprise entre 50 et 250 pm, et en particulier comprise entre 80 et 150 pm.  The injection of the coating material 42 is advantageously dosed so as to obtain a conductive layer 22 of thickness e2 less than 500 μm, preferably between 50 and 250 μm, and in particular between 80 and 150 μm.
Le matériau de revêtement 42 comprend une charge conductrice noyée dans une matrice en résine.  The coating material 42 comprises a conductive filler embedded in a resin matrix.
La charge conductrice comprend de préférence des nanotubes de carbone, en particulier de nanotubes de carbone à simple paroi, mieux connus sous l’acronyme SWCNT (de l’anglais « Single Wall Carbone Nanotube »). Avantageusement, la charge conductrice est constituée par ces nanotubes de carbone.  The conductive filler preferably comprises carbon nanotubes, in particular single-walled carbon nanotubes, better known by the acronym SWCNT (from the English “Single Wall Carbon Nanotube”). Advantageously, the conductive filler consists of these carbon nanotubes.
Les nanotubes de carbone ont par exemple un rapport de diamètre sur longueur compris entre 1/50000 et 1/40000.  Carbon nanotubes have, for example, a diameter to length ratio of between 1/50000 and 1/40000.
La concentration de la charge conductrice dans le matériau de revêtement 42 est inférieure à 1 ,5 % en poids, de préférence inférieure à 0,5 % en poids, et est en particulier comprise entre 0,1 et 0,01 % en poids par rapport au poids total du matériau de revêtement 42.  The concentration of the conductive filler in the coating material 42 is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.1 and 0.01% by weight. in relation to the total weight of the coating material 42.
La matrice de résine est constituée d’une résine sans solvant composée majoritairement d’esters insaturés réticulés à l’aide d’un monomère styrène associé à du dicyclopentadiène ou sans association avec du dicyclopentadiène. Ces esters insaturés sont de préférence choisis parmi : les polyesters, les vinylesters, les acrylates, et les méthacrylates. Le moule 40 est maintenu dans cette configuration après arrêt de l’injection du matériau de revêtement 42, au moins pendant le temps nécessaire à la polymérisation de la matrice de résine entrant dans la composition du matériau de revêtement 42. The resin matrix consists of a solvent-free resin mainly composed of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene. These unsaturated esters are preferably chosen from: polyesters, vinylesters, acrylates, and methacrylates. The mold 40 is maintained in this configuration after the injection of the coating material 42 has stopped, at least for the time necessary for the polymerization of the resin matrix used in the composition of the coating material 42.
En particulier, à l’issue de cette sous-étape, la couche conductrice 22 et le substrat en matériau diélectrique 20 ont copolymérisé.  In particular, at the end of this sub-step, the conductive layer 22 and the substrate made of dielectric material 20 have copolymerized.
La troisième sous-étape est suivie d’une quatrième sous-étape d’ouverture du moule 40 et d’extraction de la paroi de blindage électromagnétique composite 14 ainsi formée.  The third sub-step is followed by a fourth sub-step of opening the mold 40 and extracting the composite electromagnetic shielding wall 14 thus formed.
Grâce à l’invention décrite ci-dessus, on obtient une paroi de blindage électromagnétique composite 14 non poreuse, présentant un excellent état de surface, avec une liaison chimique très tenace entre le substrat 20 et la couche conductrice 22, en une unique opération. Ainsi, la production de l’emballage de batterie 10 est particulièrement rapide et aisée. Il est donc possible d’alléger l’emballage de batterie 10 à moindre coût.  Thanks to the invention described above, a non-porous composite electromagnetic shielding wall 14 is obtained, having an excellent surface condition, with a very tenacious chemical bond between the substrate 20 and the conductive layer 22, in a single operation. Thus, the production of the battery pack 10 is particularly quick and easy. It is therefore possible to lighten the battery pack 10 at a lower cost.
Cette dimension économique de la paroi de blindage électromagnétique composite 14 est renforcée par la densité particulièrement faible de nanotubes de carbone qu’il est nécessaire d’incorporer à la couche conductrice 22 pour obtenir l’effet de blindage électromagnétique recherché, et par l’épaisseur e2 particulièrement faible de la couche conductrice 22.  This economic dimension of the composite electromagnetic shielding wall 14 is reinforced by the particularly low density of carbon nanotubes which it is necessary to incorporate into the conductive layer 22 to obtain the desired electromagnetic shielding effect, and by the thickness e2 particularly weak of the conductive layer 22.
Par ailleurs, la faible densité des nanotubes de carbone dans le matériau de revêtement 42 impacte peu la viscosité du matériau de revêtement 42, ce qui permet que celui-ci se répartisse bien dans le moule 40 et que l’épaisseur e2 de la couche conductrice 22 soit, de ce fait, relativement homogène.  Furthermore, the low density of carbon nanotubes in the coating material 42 has little impact on the viscosity of the coating material 42, which allows it to be well distributed in the mold 40 and that the thickness e2 of the conductive layer 22 or, therefore, relatively homogeneous.

Claims

REVENDICATIONS
1.- Paroi de blindage électromagnétique composite (14), ladite paroi (14) comprenant un substrat (20) en matériau diélectrique et une couche conductrice (22) rapportée sur ledit substrat (20), caractérisée en ce que la couche conductrice (22) a été déposée sur le substrat (20) par revêtement en moule, la couche conductrice (22) comprenant une charge conductrice (30) noyée dans une matrice de résine (32). 1.- composite electromagnetic shielding wall (14), said wall (14) comprising a substrate (20) of dielectric material and a conductive layer (22) attached to said substrate (20), characterized in that the conductive layer (22 ) was deposited on the substrate (20) by mold coating, the conductive layer (22) comprising a conductive filler (30) embedded in a resin matrix (32).
2.- Paroi de blindage électromagnétique composite (14) selon la revendication 1 , dans laquelle la charge conductrice (30) comprend des nanotubes de carbone, en particulier des nanotubes de carbone à simple paroi.  2. A composite electromagnetic shielding wall (14) according to claim 1, in which the conductive load (30) comprises carbon nanotubes, in particular single-walled carbon nanotubes.
3.- Paroi de blindage électromagnétique composite (14) selon la revendication 1 ou 2, dans laquelle la concentration de la charge conductrice (30) dans la couche conductrice (22) est inférieure à 1 ,5 % en poids, de préférence inférieure à 0,5 % en poids, et est en particulier comprise entre 0,01 et 0,1 % en poids par rapport au poids total de la couche conductrice (22).  3.- composite electromagnetic shielding wall (14) according to claim 1 or 2, wherein the concentration of the conductive charge (30) in the conductive layer (22) is less than 1.5% by weight, preferably less than 0.5% by weight, and is in particular between 0.01 and 0.1% by weight relative to the total weight of the conductive layer (22).
4.- Paroi de blindage électromagnétique composite (14) selon l’une quelconque des revendications précédentes, dans laquelle la matrice de résine (32) est constituée d’une résine sans solvant composée majoritairement d’esters insaturés réticulés à l’aide d’un monomère styrène associé à du dicyclopentadiène ou sans association avec du dicyclopentadiène, les esters insaturés étant préférentiellement choisis parmi : les polyesters, les vinylesters, les acrylates, et les méthacrylates.  4.- composite electromagnetic shielding wall (14) according to any one of the preceding claims, in which the resin matrix (32) consists of a solvent-free resin composed mainly of unsaturated esters crosslinked using a styrene monomer associated with dicyclopentadiene or without association with dicyclopentadiene, the unsaturated esters being preferably chosen from: polyesters, vinyl esters, acrylates, and methacrylates.
5.- Paroi de blindage électromagnétique composite (14) selon l’une quelconque des revendications précédentes, dans laquelle la couche conductrice (22) a une épaisseur (e2) inférieure à 500 pm, de préférence comprise entre 50 et 250 pm, et en particulier comprise entre 80 et 150 pm.  5.- composite electromagnetic shielding wall (14) according to any one of the preceding claims, in which the conductive layer (22) has a thickness (e2) of less than 500 μm, preferably between 50 and 250 μm, and in particular between 80 and 150 pm.
6.- Paroi de blindage électromagnétique composite (14) selon l’une quelconque des revendications précédentes, dans laquelle le substrat (20) a une épaisseur (e1 ) supérieure à 0,5 mm, de préférence inférieure à 15 mm, et encore plus préférentiellement entre 1 et 5 mm.  6.- composite electromagnetic shielding wall (14) according to any one of the preceding claims, in which the substrate (20) has a thickness (e1) greater than 0.5 mm, preferably less than 15 mm, and even more preferably between 1 and 5 mm.
7.- Paroi de blindage électromagnétique composite (14) selon l’une quelconque des revendications précédentes, dans laquelle la couche conductrice (22) a une résistivité de surface inférieure à 20 W/p, de préférence inférieure à 10 W/p, et encore plus préférentiellement inférieure ou égale à 5 W/p. 7.- composite electromagnetic shielding wall (14) according to any one of the preceding claims, in which the conductive layer (22) has a surface resistivity less than 20 W / p, preferably less than 10 W / p, and even more preferably less than or equal to 5 W / p.
8.- Emballage de batterie (10) comprenant au moins une paroi de blindage électromagnétique composite (14) selon l’une quelconque des revendications précédentes. 8.- Battery package (10) comprising at least one electromagnetic composite shielding wall (14) according to any one of the preceding claims.
9.- Procédé de production d’une paroi de blindage électromagnétique composite (14), caractérisé en ce que ledit procédé comprend les étapes suivantes :  9.- Method for producing a composite electromagnetic shielding wall (14), characterized in that said method comprises the following steps:
production, dans un moule (40), d’un substrat en matériau diélectrique (20), et  production, in a mold (40), of a substrate of dielectric material (20), and
revêtement en moule dudit substrat (20) avec un matériau de revêtement (42) de sorte à former une couche conductrice (22) rapportée sur le substrat (20), ledit matériau de revêtement (42) comprenant une charge conductrice noyée dans une matrice en résine.  mold coating of said substrate (20) with a coating material (42) so as to form a conductive layer (22) attached to the substrate (20), said coating material (42) comprising a conductive filler embedded in a matrix resin.
10.- Procédé de production selon la revendication 9, dans lequel le revêtement en moule du substrat (20) est réalisé au moyen d’un procédé de revêtement en moule par injection à haute pression.  10. The production method according to claim 9, wherein the mold coating of the substrate (20) is carried out by means of a mold coating process by high pressure injection.
1 1 .- Procédé de production selon la revendication 9 ou 10, dans lequel la paroi de blindage électromagnétique composite (14) obtenue est constituée par une paroi (14) selon l’une quelconque des revendications 1 à 7.  1 1 .- Production method according to claim 9 or 10, wherein the composite electromagnetic shielding wall (14) obtained is constituted by a wall (14) according to any one of claims 1 to 7.
12.- Procédé de production d’un emballage de batterie (10), comprenant les étapes suivantes :  12.- Method for producing a battery pack (10), comprising the following steps:
production d’au moins une paroi de blindage électromagnétique composite (14) au moyen d’un procédé selon l’une quelconque des revendications 9 à 1 1 , et  production of at least one composite electromagnetic shielding wall (14) by means of a method according to any one of claims 9 to 1 1, and
assemblage de la paroi de blindage électromagnétique composite (14) ainsi produite avec au moins une autre paroi (12) pour former l’emballage de batterie (10).  assembling the composite electromagnetic shielding wall (14) thus produced with at least one other wall (12) to form the battery pack (10).
PCT/EP2019/068163 2018-07-05 2019-07-05 Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall WO2020008061A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19741982.3A EP3818576A1 (en) 2018-07-05 2019-07-05 Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall
CN201980045265.4A CN112689925A (en) 2018-07-05 2019-07-05 Composite electromagnetic shielding plate, battery envelope comprising such composite electromagnetic shielding plate and method for manufacturing such composite electromagnetic shielding plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856200A FR3083648B1 (en) 2018-07-05 2018-07-05 COMPOSITE ELECTROMAGNETIC SHIELDING WALL, BATTERY PACKAGE COMPRISING SUCH A WALL, AND METHOD FOR PRODUCING SUCH A WALL
FR1856200 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008061A1 true WO2020008061A1 (en) 2020-01-09

Family

ID=63963156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068163 WO2020008061A1 (en) 2018-07-05 2019-07-05 Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall

Country Status (4)

Country Link
EP (1) EP3818576A1 (en)
CN (1) CN112689925A (en)
FR (1) FR3083648B1 (en)
WO (1) WO2020008061A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216718A1 (en) * 2021-04-05 2022-10-13 Magna Exteriors Inc. Emi shielding for composite battery enclosure
FR3127849A1 (en) * 2021-10-06 2023-04-07 Valeo Systemes Thermiques COMPARTMENT FOR EQUIPMENT LIKELY TO GENERATE HEAT
WO2023110184A1 (en) * 2021-12-16 2023-06-22 Valeo Systemes Thermiques Compartment for a device liable to give off heat
WO2023164639A1 (en) * 2022-02-24 2023-08-31 Magna Exteriors Inc. In-mold coating containing conductive particles to provide emi shielding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022121915A1 (en) 2022-08-30 2024-02-29 Rehau Automotive Se & Co. Kg Method for producing a battery housing part for a traction battery of an electric vehicle
WO2024088620A1 (en) * 2022-10-27 2024-05-02 Webasto SE Electric heating device for a vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008609A (en) * 2000-06-26 2002-01-11 Sanyo Electric Co Ltd Battery pack having electromagnetic shield case
US20120100414A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. Encapsulated emi/rfi shielding for a non-conductive thermosetting plastic composite phev battery cover
JP2013093151A (en) * 2011-10-25 2013-05-16 Hatachi Kako Co Ltd Battery case

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162425A (en) * 1997-12-02 1999-06-18 Toyoda Gosei Co Ltd Electromagnetic wave shielding box
EP2427038A1 (en) * 2010-09-01 2012-03-07 LANXESS Deutschland GmbH EMF-shielded plastic organo-sheet hybrid structural component
CN104470344A (en) * 2014-12-17 2015-03-25 广州三星通信技术研究有限公司 Electromagnetic shielding composite material and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008609A (en) * 2000-06-26 2002-01-11 Sanyo Electric Co Ltd Battery pack having electromagnetic shield case
US20120100414A1 (en) * 2010-10-22 2012-04-26 Gm Global Technology Operations, Inc. Encapsulated emi/rfi shielding for a non-conductive thermosetting plastic composite phev battery cover
JP2013093151A (en) * 2011-10-25 2013-05-16 Hatachi Kako Co Ltd Battery case

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022216718A1 (en) * 2021-04-05 2022-10-13 Magna Exteriors Inc. Emi shielding for composite battery enclosure
FR3127849A1 (en) * 2021-10-06 2023-04-07 Valeo Systemes Thermiques COMPARTMENT FOR EQUIPMENT LIKELY TO GENERATE HEAT
WO2023110184A1 (en) * 2021-12-16 2023-06-22 Valeo Systemes Thermiques Compartment for a device liable to give off heat
FR3131097A1 (en) * 2021-12-16 2023-06-23 Valeo Systemes Thermiques Compartment for equipment likely to generate heat
WO2023164639A1 (en) * 2022-02-24 2023-08-31 Magna Exteriors Inc. In-mold coating containing conductive particles to provide emi shielding

Also Published As

Publication number Publication date
EP3818576A1 (en) 2021-05-12
FR3083648A1 (en) 2020-01-10
CN112689925A (en) 2021-04-20
FR3083648B1 (en) 2020-06-26

Similar Documents

Publication Publication Date Title
EP3818576A1 (en) Composite electromagnetic shielding wall, battery packaging comprising such a wall, and method for producing such a wall
CA2835270C (en) Compacting and injection mould for fibrous preform intended for the manufacture of a turbomachine flow-straightener vane made of composite material
EP2911866B1 (en) Method for molding a composite material, in which a fiber fabric is stretched in a holding frame before injecting a matrix
EP3111491B1 (en) Cell for storing power, comprising at least one male element and one female element equipped with electrical connection interfaces
EP2931501B1 (en) Shim for a compression mould with improved sealing
FR2740383A1 (en) METHOD FOR MANUFACTURING A COMPOSITE MATERIAL PANEL WITH RESIN TRANSFER MOLDING
FR2980622A1 (en) ELECTRIC ELEMENT COMPRISING A LAYER OF A POLYMERIC MATERIAL WITH A GRADIENT OF ELECTRICAL CONDUCTIVITY
EP3446863A1 (en) Method for sealing a fuel tank
FR3044659A1 (en) METAL-GLASS-TYPE SEALED ROPE, USE AS TERMINAL FOR ELECTROCHEMICAL LITHIUM ACCUMULATOR, METHOD FOR PRODUCING THE SAME
EP0717585B1 (en) Composite material and element with electrical continuity insured through it, its manufacturing process and use on aircraft
EP3126126B1 (en) Process and installation for producing a composite material part
EP0780213B1 (en) Process for manufacturing an article made of composite material by resin transfer moulding and article obtained thereby
BE1024438B1 (en) MULTILAYER DEVICE WITH METAL MOLD SKIN, AND METHOD OF MANUFACTURING SUCH MULTILAYER DEVICE
WO2019016142A1 (en) Method for assembling parts, in particular composite parts with fibrous reinforcements, by gluing
EP0532415B1 (en) Insulating body with high dielectric strength and process for manufacturing the same
FR2640189A1 (en) METHOD OF MANUFACTURING A THERMOPLASTIC REFLECTOR AND REFLECTOR THUS OBTAINED
EP1605474A2 (en) Cable comprising a plurality of insulated conductors contained in the same jacket and manufacturing method of the cable.
FR2803558A1 (en) METHOD FOR PRODUCING AND PLACING AN ELASTOMERIC ENVELOPE AROUND A FULL OR HOLLOW BODY
FR2745037A1 (en) METHOD FOR PRODUCING AN INTERNAL THERMAL PROTECTION FOR A PROPELLER
EP3853918B1 (en) Method for assembling two partially overlapping metal sheets with a triple seal
FR3104061A1 (en) Lightning arrester material and method for making a fiber composite component
WO2024094952A1 (en) Method for manufacturing an electrochemical cell of a polymer matrix battery
FR3059159A1 (en) ELECTRODE FOR ELECTROCHEMICAL BEAM OF A METAL-ION BATTERY WITH HIGH ENERGY DENSITY, CYLINDRICAL OR PRISMATIC ACCUMULATOR
FR3076757A1 (en) HYBRID PIECE OF COMPOSITE MATERIAL COMPRISING AT LEAST ONE METAL INSERT AND METHOD OF MANUFACTURING SUCH A PART
FR3125456A1 (en) Composite material overmolding process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019741982

Country of ref document: EP