WO2020007772A1 - Oligonucléotides antisens ciblant gbp-1 - Google Patents

Oligonucléotides antisens ciblant gbp-1 Download PDF

Info

Publication number
WO2020007772A1
WO2020007772A1 PCT/EP2019/067537 EP2019067537W WO2020007772A1 WO 2020007772 A1 WO2020007772 A1 WO 2020007772A1 EP 2019067537 W EP2019067537 W EP 2019067537W WO 2020007772 A1 WO2020007772 A1 WO 2020007772A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
oligonucleotide
nucleosides
region
nucleotide sequence
Prior art date
Application number
PCT/EP2019/067537
Other languages
English (en)
Inventor
Marie Wirkström LINDHOLM
Steffen Schmidt
Original Assignee
Roche Innovation Center Copenhagen A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Innovation Center Copenhagen A/S filed Critical Roche Innovation Center Copenhagen A/S
Publication of WO2020007772A1 publication Critical patent/WO2020007772A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • C12N2310/33415-Methylcytosine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate

Definitions

  • the present invention relates to antisense oligonucleotides (oligomers) complementary to GBP-1 pre-mRNA intron and exon sequences, which are capable of inhibiting the expression of GBP-1. Inhibition of GBP-1 expression is beneficial for a range of medical disorders including cancer or osteoporosis.
  • GBP-1 Guanylate Binding Protein 1
  • GBP-1 is a member of the large GTPases, and is a secreted GTPase that is induced by IFNy and mediate the antibacterial and antiviral activities of IFNy.
  • GBP-1 is a key mediator of the inhibitory effects of inflammatory cytokines on endothelial cells, regulating the proliferation and invasiveness of endothelial cells, and has been reported as a potential target for modulation of blood vessel growth and tumor
  • GBP1 inhibits osteogenic differentiation of MSCs, and inhibition of GBP1 expression may prevent development of osteoporosis and facilitate MSC-based bone regeneration.
  • GBP-1 inhibitors for example for use in the treatment of cancer or osteoporosis.
  • the inventors have identified regions of the GBP-1 pre-mRNA and mRNA for antisense inhibition in vitro or in vivo.
  • the invention therefore provides for antisense oligonucleotides, including LNA gapmer oligonucleotides, which target these regions of the GBP-1 pre-mRNA or mature mRNA.
  • the present invention provides oligonucleotides which inhibit mammalian, such as human, GBP-1 which are useful in the treatment of a range of medical disorders including cancer or osteoporosis.
  • the invention provides for an antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90%
  • the antisense oligonucleotide is capable of inhibiting the expression of GBP-1 in a cell which is expressing GBP-1.
  • the invention provides for an LNA antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90%
  • the antisense oligonucleotide is capable of inhibiting the expression of GBP-1 in a cell which is expressing GBP-1.
  • the invention provides for an gapmer antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90%
  • the invention provides for an LNA gapmer antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary to any of SEQ ID NO 11 wherein the antisense oligonucleotide is capable of inhibiting the expression of GBP-1 in a cell which is expressing GBP-1.
  • the oligonucleotides targeting GBP-1 are antisense oligonucleotides, i.e. are
  • the antisense oligonucleotide of the invention is capable of inhibiting human GBP-1 in a cell which is expressing human GBP-1.
  • the invention provides for an antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary to SEQ ID NO 11.
  • the antisense oligonucleotide is capable of inhibiting the expression of human GBP-1 transcript in a cell which is expressing human GBP-1 transcript.
  • the oligonucleotide of the invention as referred to or claimed herein may be in the form of a pharmaceutically acceptable salt, such as a sodium salt or a potassium salt.
  • the invention provides for a conjugate comprising the oligonucleotide according to the invention, and at least one conjugate moiety covalently attached to said oligonucleotide.
  • the invention provides for a pharmaceutical composition
  • a pharmaceutical composition comprising the oligonucleotide or conjugate of the invention and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.
  • the invention provides for an in vivo or in vitro method for modulating GBP-1 expression in a target cell which is expressing GBP-1 , said method comprising administering an oligonucleotide or conjugate or pharmaceutical composition of the invention in an effective amount to said cell.
  • the invention provides for a method for treating or preventing a disease comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide or a conjugate or a pharmaceutical composition of the invention to a subject suffering from or susceptible to the disease.
  • the disease is one that is mediated by or associated with GBP-1 expression, or increased GBP-1 expression. In some embodiments, the disease is selected from the group consisting of: cancer or osteoporosis.
  • the invention provides for the oligonucleotide, the conjugate or the pharmaceutical composition of the invention for use in medicine.
  • the invention provides for the oligonucleotide, the conjugate or the pharmaceutical composition of the invention for use in the treatment or prevention of a disease selected from the group consisting of: cancer or osteoporosis.
  • the invention provides for the use of the oligonucleotide, the conjugate or the pharmaceutical composition of the invention, for the preparation of a medicament for treatment or prevention of a disease selected from the group consisting of: cancer or osteoporosis.
  • Figure 1 Testing in vitro efficacy of various antisense oligonucleotides targeting human and mouse GBP-1 mRNA in A431 and MDA-MB-231 cell lines at single concentration.
  • Figure 2 Comparison of in vitro efficacy for antisense oligonucleotides targeting human GBP-1 mRNA in A431 and MDA-MB-231 cell lines at single concentration shows good correlation.
  • Figure 3 Testing selected oligonucleotides targeting human GBP-1 mRNA in vitro for concentration dependent potency and efficacy in A231 cell line.
  • Figure 4 Testing selected oligonucleotides targeting human GBP-1 mRNA in vitro for concentration dependent potency and efficacy in MDA-MB-231 cell line.
  • oligonucleotide as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides may also be referred to as nucleic acid molecules or oligomers. Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides.
  • the oligonucleotide of the invention is man-made, and is chemically synthesized, and is typically purified or isolated.
  • the oligonucleotide of the invention may comprise one or more modified nucleosides or nucleotides.
  • Antisense oligonucleotide as used herein is defined as an oligonucleotide capable of modulating expression of a target gene by hybridizing to a target nucleic acid, in particular to a contiguous sequence on a target nucleic acid.
  • the antisense oligonucleotides are not essentially double stranded and are therefore not siRNAs or shRNAs.
  • the antisense oligonucleotides of the present invention are single stranded.
  • single stranded oligonucleotides of the present invention can form hairpins or intermolecular duplex structures (duplex between two molecules of the same oligonucleotide), as long as the degree of intra or inter self-complementarity is less than 50% across of the full length of the oligonucleotide
  • contiguous nucleotide sequence refers to the region of the oligonucleotide which is complementary to or hybridizes to the target nucleic acid. Although this region of the oligonucleotide is complementary to the target sequence, in some embodiments, not every nucleobase within the contiguous sequence need be complementary provided the the contiguous nucleotide sequence can hybridize to the target sequence and inhibit its expression then a mismatch, or in some embodiments more than 1 mismatch may exist. Adventurously, the contiguous nucleotide sequence is 100% complementary to the target nucleic acid.
  • the term“contiguous nucleotide sequence” is used interchangeably herein with the term“contiguous nucleobase sequence” and the term“oligonucleotide motif sequence”. In some embodiments all the nucleotides of the oligonucleotide constitute the contiguous nucleotide sequence. In some embodiments the oligonucleotide comprises the contiguous nucleotide sequence, such as a F-G-F’ gapmer region, and may optionally comprise further nucleotide(s), for example a nucleotide linker region which may be used to attach a functional group to the contiguous nucleotide sequence. The nucleotide linker region may or may not be complementary to the target nucleic acid.
  • Nucleotides are the building blocks of oligonucleotides and polynucleotides, and for the purposes of the present invention include both naturally occurring and non-naturally occurring nucleotides.
  • nucleotides such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides).
  • Nucleosides and nucleotides may also interchangeably be referred to as“units” or“monomers”.
  • modified nucleoside or“nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo)base moiety.
  • the modified nucleoside comprise a modified sugar moiety.
  • modified nucleoside may also be used herein interchangeably with the term“nucleoside analogue” or modified“units” or modified“monomers”.
  • Nucleosides with an unmodified DNA or RNA sugar moiety are termed DNA or RNA nucleosides herein. Nucleosides with modifications in the base region of the DNA or RNA nucleoside are still generally termed DNA or RNA if they allow Watson Crick base pairing.
  • modified internucleoside linkage is defined as generally understood by the skilled person as linkages other than phosphodiester (PO) linkages, that covalently couples two nucleosides together.
  • the oligonucleotides of the invention may therefore comprise modified internucleoside linkages.
  • the modified internucleoside linkage increases the nuclease resistance of the oligonucleotide compared to a phosphodiester linkage.
  • the internucleoside linkage includes phosphate groups creating a phosphodiester bond between adjacent nucleosides.
  • Modified internucleoside linkages are particularly useful in stabilizing oligonucleotides for in vivo use, and may serve to protect against nuclease cleavage at regions of DNA or RNA nucleosides in the oligonucleotide of the invention, for example within the gap region of a gapmer oligonucleotide, as well as in regions of modified nucleosides, such as region F and F’.
  • the oligonucleotide comprises one or more internucleoside linkages modified from the natural phosphodiester, such one or more modified internucleoside linkages that is for example more resistant to nuclease attack.
  • Nuclease resistance may be determined by incubating the oligonucleotide in blood serum or by using a nuclease resistance assay (e.g. snake venom phosphodiesterase (SVPD)), both are well known in the art.
  • SVPD snake venom phosphodiesterase
  • Internucleoside linkages which are capable of enhancing the nuclease resistance of an oligonucleotide are referred to as nuclease resistant internucleoside linkages.
  • At least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof are modified, such as at least 60%, such as at least 70%, such as at least 80 or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are nuclease resistant internucleoside linkages.
  • all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof are nuclease resistant internucleoside linkages. It will be recognized that, in some embodiments the nucleosides which link the oligonucleotide of the invention to a non-nucleotide functional group, such as a conjugate, may be phosphodiester.
  • a preferred modified internucleoside linkage is phosphorothioate.
  • Phosphorothioate internucleoside linkages are particularly useful due to nuclease resistance, beneficial pharmacokinetics and ease of manufacture.
  • at least 50% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof are phosphorothioate, such as at least 60%, such as at least 70%, such as at least 80% or such as at least 90% of the internucleoside linkages in the oligonucleotide, or contiguous nucleotide sequence thereof, are phosphorothioate.
  • all of the internucleoside linkages of the oligonucleotide, or contiguous nucleotide sequence thereof are phosphorothioate.
  • Nuclease resistant linkages such as phosphorothioate linkages, are particularly useful in oligonucleotide regions capable of recruiting nuclease when forming a duplex with the target nucleic acid, such as region G for gapmers.
  • Phosphorothioate linkages may, however, also be useful in non-nuclease recruiting regions and/or affinity enhancing regions such as regions F and F’ for gapmers.
  • Gapmer oligonucleotides may, in some embodiments comprise one or more phosphodiester linkages in region F or F’, or both region F and F’, which the internucleoside linkage in region G may be fully phosphorothioate.
  • all the internucleoside linkages in the contiguous nucleotide sequence of the oligonucleotide are phosphorothioate linkages.
  • antisense oligonucleotide may comprise other internucleoside linkages (other than phosphodiester and phosphorothioate), for example alkyl phosphonate / methyl phosphonate internucleosides, which according to EP2 742 135 may for example be tolerated in an otherwise DNA phosphorothioate gap region.
  • nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization.
  • pyrimidine e.g. uracil, thymine and cytosine
  • nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases but are functional during nucleic acid hybridization.
  • nucleobase refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid
  • the nucleobase moiety is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobased selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5- thiazolo-uracil, 2-thio-uracil, 2’thio-thymine, inosine, diaminopurine, 6-aminopurine, 2- aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.
  • a nucleobased selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromour
  • the nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified nucleobases of equivalent function.
  • the nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine.
  • 5-methyl cytosine LNA nucleosides may be used.
  • modified oligonucleotide describes an oligonucleotide comprising one or more sugar-modified nucleosides and/or modified internucleoside linkages.
  • chimeric oligonucleotide is a term that has been used in the literature to describe oligonucleotides with modified nucleosides.
  • Watson-Crick base pairs are guanine (G)-cytosine (C) and adenine (A) - thymine (T)/uracil (U).
  • G guanine
  • A adenine
  • T thymine
  • U uracil
  • oligonucleotides may comprise nucleosides with modified nucleobases, for example 5-methyl cytosine is often used in place of cytosine, and as such the term complementarity encompasses Watson Crick base-paring between non-modified and modified nucleobases (see for example Hirao et al (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009)
  • % complementary refers to the number of nucleotides in percent of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which, at a given position, are complementary to ( i.e . form Watson Crick base pairs with) a contiguous sequence of nucleotides, at a given position of a separate nucleic acid molecule (e.g. the target nucleic acid or target sequence).
  • a nucleic acid molecule e.g. oligonucleotide
  • the percentage is calculated by counting the number of aligned bases that form pairs between the two sequences (when aligned with the target sequence 5’-3’ and the oligonucleotide sequence from 3’-5’), dividing by the total number of nucleotides in the oligonucleotide and multiplying by 100. In such a comparison a nucleobase/nucleotide which does not align (form a base pair) is termed a mismatch.
  • insertions and deletions are not allowed in the calculation of % complementarity of a contiguous nucleotide sequence.
  • nucleic acid molecule refers to the proportion of nucleotides (expressed in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g.
  • oligonucleotide which across the contiguous nucleotide sequence, are identical to a reference sequence (e.g. a sequence motif).
  • nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).
  • hybridizing or“hybridizes” as used herein is to be understood as two nucleic acid strands (e.g. an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex.
  • the affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (T m ) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions T m is not strictly proportional to the affinity (Mergny and Lacroi. Oligonucleotides 13:515-537, 2003).
  • oligonucleotide hybridization between the oligonucleotide and target nucleic acid.
  • AG° is the energy associated with a reaction where aqueous concentrations are 1 M, the pH is 7, and the temperature is 37°C.
  • the hybridization of oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions DQ° is less than zero. DQ° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, Chem. Comm. 36-38 and Holdgate et al.,
  • oligonucleotides of the present invention hybridize to a target nucleic acid with estimated DQ° values below -10 kcal for oligonucleotides that are 10-30 nucleotides in length.
  • the degree or strength of hybridization is measured by the standard state Gibbs free energy AG°.
  • the oligonucleotides may hybridize to a target nucleic acid with estimated AG° values below the range of -10 kcal, such as below -15 kcal, such as below -20 kcal and such as below -25 kcal for oligonucleotides that are 8-30 nucleotides in length.
  • the oligonucleotides hybridize to a target nucleic acid with an estimated AG° value of -10 to -60 kcal, such as -12 to -40, such as from -15 to -30 kcal or-16 to -27 kcal such as -18 to -25 kcal.
  • the target nucleic acid is a nucleic acid which encodes mammalian GBP-1 and may for example be a gene, a GBP-1 RNA, a mRNA, a pre-mRNA, a mature mRNA or a cDNA sequence.
  • the target may therefore be referred to as an GBP-1 target nucleic acid.
  • the target nucleic acid encodes an GBP-1 protein, in particular mammalian GBP-1 , such as the human GBP-1 encoding pre-mRNA or mRNA sequences provided herein as SEQ ID NO 11.
  • the target nucleic acid is SEQ ID NO: 1 1 or naturally occurring variants thereof (e.g. GBP-1 sequences encoding a mammalian GBP-1 protein).
  • the target nucleic acid may be a cDNA or a synthetic nucleic acid derived from DNA or RNA.
  • the oligonucleotide of the invention is typically capable of inhibiting the expression of the GBP-1 target nucleic acid in a cell which is expressing the GBP-1 target nucleic acid.
  • the contiguous sequence of nucleobases of the oligonucleotide of the invention is typically complementary to the GBP-1 target nucleic acid, as measured across the length of the oligonucleotide, optionally with no more than one mismatch, excluding the optional nucleotide based linker regions which may link the oligonucleotide to an optional functional group such as a conjugate, or other non-complementary terminal nucleotides (e.g. region D’ or D”).
  • the target nucleic acid is a messenger RNA, such as a mature mRNA or a pre-mRNA which encodes mammalian GBP-1 protein, such as human GBP-1 , e.g. the human GBP-1 pre-mRNA sequence, such as that disclosed as SEQ ID NO 1 1.
  • target RNA sequences have uracil (U) bases in place of the thymidine bases (T).
  • target sequence refers to a sequence of nucleotides present in the target nucleic acid which comprises the nucleobase sequence which is complementary to the oligonucleotide of the invention.
  • the target sequence consists of a region on the target nucleic acid which is complementary to the contiguous nucleotide sequence of the oligonucleotide of the invention.
  • numerous target sequence regions as defined by regions of the human GBP-1 pre-mRNA (SEQ ID NO 1 1 ) which may be targeted by the oligonucleotides of the invention.
  • the target sequence is longer than the complementary sequence of a single oligonucleotide, and may, for example represent a preferred region of the target nucleic acid which may be targeted by several oligonucleotides of the invention.
  • the oligonucleotide of the invention comprises a contiguous nucleotide sequence which is complementary to or hybridizes to the target nucleic acid, such as a sub-sequence of the target nucleic acid, such as a target sequence described herein.
  • the oligonucleotide comprises a contiguous nucleotide sequence which are complementary to a target sequence present in the target nucleic acid molecule.
  • the contiguous nucleotide sequence (and therefore the target sequence) comprises of at least 10 contiguous nucleotides, such as 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous nucleotides, such as from 12-25, such as from 14-18 contiguous nucleotides.
  • the oligonucleotide of the invention or contiguous nucleotide sequence thereof is complementary, such as fully complementary, to a sequence selected from the group consisting of SEQ ID NO 12, 13, 14, 15, 16, 17, 18 and 19.
  • the oligonucleotide of the invention is complementary, such as fully complementary, to a region of SEQ ID NO 11, selected from the group consisting of 13 - 65; 114 - 135; 137 - 171; 175 - 213; 230 - 265; 267 - 282; 284 - 314; 325 - 339; 341 - 373; 381 - 422; 424 - 449; 456 - 473; 495 - 524; 544 - 558; 644 - 667; 681 - 706; 736 - 753; 759 - 831 ; 840 - 872; 874 - 891 ; 893 - 908; 920 - 955;
  • the invention provides for an antisense oligonucleotide, 10-30
  • said antisense oligonucleotide comprises a contiguous nucleotide sequence 10-30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary, such as fully complementary to any of target sequence regions R_1 - R_295 (listed in table 1).
  • Table 1 Further exemplary regions of SEQ ID NO 11 which may be targeted by the oligonucleotides of the invention.
  • a“target cell” as used herein refers to a cell which is expressing the target nucleic acid.
  • the target cell may be in vivo or in vitro.
  • the target cell is a mammalian cell such as a rodent cell, such as a mouse cell or a rat cell, or a primate cell such as a monkey cell or a human cell.
  • the target cell is an in vitro cell line, such as A431 or MDA-MB-231 (available from ATCC).
  • the target cell expresses GBP-1 mRNA, such as the GBP-1 pre- mRNA, e.g. SEQ ID NO 11.
  • GBP-1 mRNA such as the GBP-1 pre- mRNA, e.g. SEQ ID NO 11.
  • the poly A tail of GBP-1 mRNA is typically disregarded for antisense oligonucleotide targeting.
  • naturally occurring variant refers to variants of GBP-1 gene or transcripts which originate from the same genetic loci as the target nucleic acid, but may differ for example, by virtue of degeneracy of the genetic code causing a multiplicity of codons encoding the same amino acid, or due to alternative splicing of pre-mRNA, or the presence of polymorphisms, such as single nucleotide polymorphisms (SNPs), and allelic variants.
  • SNPs single nucleotide polymorphisms
  • the oligonucleotide of the invention may therefore target the target nucleic acid and naturally occurring variants thereof.
  • the homo sapiens GBP-1 gene is located at chromosome 1 : 89,052,319-89,065,360 reverse strand.
  • the key database entries for GBP-1 including the exon and intron start and end locations, are disclosed in Table 4 below:
  • the contiguous nucleotide sequence of the oligonucleotide of the invention is complementary, such as fully complementary to an exonic region of the human GBP-1 pre-mRNA, selected from the group consisting of EX_1 , EX_2, EX_3, EX_4, EX_5, EX_6, EX_7, EX_8, EX_9, EX_10.
  • the invention provides for an antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary, such as fully complementary to any of target sequence regions selected from the group consisting of 1 - 201 ; 2108 - 2316; 5037 - 5164; 5935 - 6044; 6318 - 6520; 7127 - 7369; 8227 - 8507; 9133 - 9345; 10146 - 10248; and 10486 - 10679, of SEQ ID NO 1 1.
  • the contiguous nucleotide sequence of the oligonucleotide of the invention is complementary, such as fully complementary to an exonic region of the human GBP-1 pre-mRNA, selected from the group consisting of INT_1 , INT_2, INT_3, INT_4, INT_5, INT_6, INT_7, INT_8, INT_9, INT_10.
  • the invention provides for an antisense oligonucleotide, 10-30 nucleotides in length, wherein said antisense oligonucleotide comprises a contiguous nucleotide sequence 10 - 30 nucleotides in length, wherein the contiguous nucleotide sequence is at least 90% complementary, such as fully complementary to any of target sequence regions selected from the group consisting of 201 - 2108; 2316 - 5037; 5164 - 5935; 6044 - 6318; 6520 - 7127; 7369 - 8227; 8507 - 9133; 9345 - 10146; 10248 - 10486; and 10679 - 1 1893, of SEQ ID NO 1 1.
  • the naturally occurring variants have at least 95% such as at least 98% or at least 99% homology to a mammalian GBP-1 target nucleic acid, such as SEQ ID NO 1 1 .
  • modulation of expression is to be understood as an overall term for an oligonucleotide’s ability to alter the amount of GBP-1 protein or GBP-1 mRNA when compared to the amount of GBP-1 or GBP-1 mRNA prior to administration of the
  • modulation of expression may be determined by reference to a control experiment. It is generally understood that the control is an individual or target cell treated with a saline composition or an individual or target cell treated with a non-targeting oligonucleotide (mock).
  • One type of modulation is an oligonucleotide’s ability to inhibit, down-regulate, reduce, suppress, remove, stop, block, prevent, lessen, lower, avoid or terminate expression of GBP-1 , e.g. by degradation of GBP-1 mRNA.
  • the oligonucelotides of the invention are capable of inhibiting the expression of GBP-1 mRNA in a cell which is expressing GBP-1 mRNA.
  • a high affinity modified nucleoside is a modified nucleotide which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (T m ).
  • a high affinity modified nucleoside of the present invention preferably result in an increase in melting temperature between +0.5 to +12°C, more preferably between +1.5 to +10°C and most preferably between+3 to +8°C per modified nucleoside.
  • Numerous high affinity modified nucleosides are known in the art and include for example, many 2’ substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr.
  • the oligomer of the invention may comprise one or more nucleosides which have a modified sugar moiety, i.e. a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA.
  • nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance.
  • Such modifications include those where the ribose ring structure is modified, e.g. by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradicle bridge between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA).
  • HNA hexose ring
  • LNA ribose ring
  • UNA unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons
  • Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (WO201 1/017521 ) or tricyclic nucleic acids (WO2013/154798). Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the
  • Sugar modifications also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2’-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2’, 3’, 4’ or 5’ positions.
  • a 2’ sugar modified nucleoside is a nucleoside which has a substituent other than H or -OH at the 2’ position (2’ substituted nucleoside) or comprises a 2’ linked biradicle capable of forming a bridge between the 2’ carbon and a second carbon in the ribose ring, such as LNA (2’ - 4’ biradicle bridged) nucleosides.
  • the 2’ modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide.
  • 2’ substituted modified nucleosides are 2’-0-alkyl-RNA, 2’-0-methyl-RNA, 2’- alkoxy-RNA, 2’-0-methoxyethyl-RNA (MOE), 2’-amino-DNA, 2’-Fluoro-RNA, and 2’-F-ANA nucleoside.
  • LNA Locked Nucleic Acids
  • A“LNA nucleoside” is a 2’- modified nucleoside which comprises a biradical linking the C2’ and C4’ of the ribose sugar ring of said nucleoside (also referred to as a“2’- 4’ bridge”), which restricts or locks the conformation of the ribose ring.
  • These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature.
  • BNA bicyclic nucleic acid
  • the locking of the conformation of the ribose is associated with an enhanced affinity of hybridization (duplex stabilization) when the LNA is incorporated into an oligonucleotide for a complementary RNA or DNA molecule. This can be routinely determined by measuring the melting temperature of the oligonucleotide/complement duplex.
  • Non limiting, exemplary LNA nucleosides are disclosed in WO 99/014226, WO 00/66604, WO 98/039352, WO 2004/046160, WO 00/047599, WO 2007/134181 , WO 2010/077578, WO 2010/036698, WO 2007/090071 , WO 2009/006478, WO 201 1/156202, WO
  • LNA nucleosides are beta-D-oxy-LNA, 6’-methyl-beta-D-oxy LNA such as (S)-6’- methyl-beta-D-oxy-LNA (ScET) and ENA.
  • a particularly advantageous LNA is beta-D-oxy-LNA.
  • the RNase H activity of an antisense oligonucleotide refers to its ability to recruit RNase H when in a duplex with a complementary RNA molecule.
  • WO01/23613 provides in vitro methods for determining RNaseH activity, which may be used to determine the ability to recruit RNaseH.
  • an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10% or more than 20% of the of the initial rate determined when using a oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers with
  • the antisense oligonucleotide of the invention may be a gapmer.
  • Various gapmer designs are described herein.
  • the antisense gapmers are commonly used to inhibit a target nucleic acid via RNase H mediated degradation.
  • a gapmer oligonucleotide comprises at least three distinct structural regions a 5’-flank, a gap and a 3’-flank, F-G-F’ in the‘5 -> 3’ orientation..
  • The“gap” region (G) comprises a stretch of contiguous DNA nucleotides which enable the oligonucleotide to recruit RNase H.
  • the gap region is flanked by a 5’ flanking region (F) comprising one or more sugar modified nucleosides, advantageously high affinity sugar modified nucleosides, and by a 3’ flanking region (F’) comprising one or more sugar modified nucleosides, advantageously high affinity sugar modified nucleosides.
  • the one or more sugar modified nucleosides in region F and F’ enhance the affinity of the oligonucleotide for the target nucleic acid ( i.e . are affinity enhancing sugar modified nucleosides).
  • the one or more sugar modified nucleosides in region F and F’ are 2’ sugar modified nucleosides, such as high affinity 2’ sugar modifications, such as independently selected from LNA and 2 -MOE.
  • the 5’ and 3’ most nucleosides of the gap region are DNA nucleosides, and are positioned adjacent to a sugar modified nucleoside of the 5’ (F) or 3’ (F’) region respectively.
  • the flanks may be further defined by having at least one sugar modified nucleoside at the end most distant from the gap region, i.e. at the 5’ end of the 5’ flank and at the 3’ end of the 3’ flank.
  • Regions F-G-F’ form a contiguous nucleotide sequence.
  • Antisense oligonucleotides of the invention, or the contiguous nucleotide sequence thereof, may comprise a gapmer region of formula F-G-F’.
  • the overall length of the gapmer design F-G-F’ may be, for example 10 to 30 nucleosides, such as 13 to 24, such as 14 to 22 nucleosides, Such as from 14 to 18, such as 15 to17 nucleosides.
  • the gapmer oligonucleotide of the present invention can be represented by the following formulae:
  • the overall length of the gapmer regions F-G-F’ is at least 12, such as at least 14 nucleotides in length.
  • Regions F, G and F’ are further defined below and can be incorporated into the F-G-F’ formula.
  • Region G is a region of nucleosides which enables the oligonucleotide to recruit RNaseH, such as human RNase H1 , typically DNA nucleosides.
  • RNaseH is a cellular enzyme which recognizes the duplex between DNA and RNA, and enzymatically cleaves the RNA molecule.
  • gapmers may have a gap region (G) of at least 5 or 6 contiguous DNA nucleosides, such as 5 - 16 contiguous DNA nucleosides, such as 6 - 15 contiguous DNA nucleosides, such as 7-14 contiguous DNA nucleosides, such as 8 - 12 contiguous DNA nucleotides, such as 8 - 12 contiguous DNA nucleotides in length.
  • the gap region G may, in some embodiments consist of 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15 or 16 contiguous DNA nucleosides.
  • One or more cytosine (C) DNA in the gap region may in some instances be methylated (e.g.
  • the gap region G may consist of 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15 or 16 contiguous phosphorothioate linked DNA nucleosides. In some embodiments, all internucleoside linkages in the gap are phosphorothioate linkages.
  • Modified nucleosides which allow for RNaseH recruitment when they are used within the gap region include, for example, alpha-L-LNA, C4’ alkylated DNA (as described in PCT/EP2009/050349 and Vester et a!., Bioorg. Med. Chem. Lett. 18 (2008) 2296 - 2300, both incorporated herein by reference), arabinose derived nucleosides like ANA and 2'F-ANA (Mangos et al. 2003 J. AM. CHEM. SOC. 125, 654-661 ), UNA
  • UNA unlocked nucleic acid
  • the modified nucleosides used in such gapmers may be nucleosides which adopt a 2’ endo (DNA like) structure when introduced into the gap region, i.e. modifications which allow for RNaseH recruitment).
  • the DNA Gap region (G) described herein may optionally contain 1 to 3 sugar modified nucleosides which adopt a 2’ endo (DNA like) structure when introduced into the gap region.
  • gapmers with a gap region comprising one or more 3’endo modified nucleosides are referred to as“gap-breaker” or“gap-disrupted” gapmers, see for example WO2013/022984.
  • Gap-breaker oligonucleotides retain sufficient region of DNA nucleosides within the gap region to allow for RNaseH recruitment. The ability of gapbreaker
  • oligonucleotide design to recruit RNaseH is typically sequence or even compound specific - see Rukov et al. 2015 Nucl. Acids Res. Vol. 43 pp. 8476-8487, which discloses“gapbreaker” oligonucleotides which recruit RNaseH which in some instances provide a more specific cleavage of the target RNA.
  • Modified nucleosides used within the gap region of gap- breaker oligonucleotides may for example be modified nucleosides which confer a 3’endo confirmation, such 2’ -O-methyl (OMe) or 2’-0-MOE (MOE) nucleosides, or beta-D LNA nucleosides (the bridge between C2’ and C4’ of the ribose sugar ring of a nucleoside is in the beta conformation), such as beta-D-oxy LNA or ScET nucleosides.
  • 2’ -O-methyl (OMe) or 2’-0-MOE (MOE) nucleosides or beta-D LNA nucleosides (the bridge between C2’ and C4’ of the ribose sugar ring of a nucleoside is in the beta conformation), such as beta-D-oxy LNA or ScET nucleosides.
  • the gap region of gap-breaker or gap-disrupted gapmers have a DNA nucleoside at the 5’ end of the gap (adjacent to the 3’ nucleoside of region F), and a DNA nucleoside at the 3’ end of the gap (adjacent to the 5’ nucleoside of region F’).
  • Gapmers which comprise a disrupted gap typically retain a region of at least 3 or 4 contiguous DNA nucleosides at either the 5’ end or 3’ end of the gap region.
  • Exemplary designs for gap-breaker oligonucleotides include
  • region G is within the brackets [D n -E r - D m ], D is a contiguous sequence of DNA nucleosides, E is a modified nucleoside (the gap-breaker or gap-disrupting nucleoside), and F and F’ are the flanking regions as defined herein, and with the proviso that the overall length of the gapmer regions F-G-F’ is at least 12, such as at least 14 nucleotides in length.
  • region G of a gap disrupted gapmer comprises at least 6 DNA nucleosides, such as 6, 7, 8, 9, 10, 1 1 , 12, 13, 14, 15 or 16 DNA nucleosides.
  • the DNA nucleosides may be contiguous or may optionally be interspersed with one or more modified nucleosides, with the proviso that the gap region G is capable of mediating RNaseH recruitment.
  • Region F is positioned immediately adjacent to the 5’ DNA nucleoside of region G.
  • the 3’ most nucleoside of region F is a sugar modified nucleoside, such as a high affinity sugar modified nucleoside, for example a 2’ substituted nucleoside, such as a MOE nucleoside, or an LNA nucleoside.
  • Region F’ is positioned immediately adjacent to the 3’ DNA nucleoside of region G.
  • the 5’ most nucleoside of region F’ is a sugar modified nucleoside, such as a high affinity sugar modified nucleoside, for example a 2’ substituted nucleoside, such as a MOE nucleoside, or an LNA nucleoside.
  • Region F is 1 - 8 contiguous nucleotides in length, such as 2-6, such as 3-4 contiguous nucleotides in length.
  • the 5’ most nucleoside of region F is a sugar modified nucleoside.
  • the two 5’ most nucleoside of region F are sugar modified nucleoside.
  • the 5’ most nucleoside of region F is an LNA nucleoside. In some embodiments the two 5’ most nucleoside of region F are LNA nucleosides. In some embodiments the two 5’ most nucleoside of region F are 2’ substituted nucleoside nucleosides, such as two 3’ MOE nucleosides. In some embodiments the 5’ most nucleoside of region F is a 2’ substituted nucleoside, such as a MOE nucleoside.
  • Region F’ is 2 - 8 contiguous nucleotides in length, such as 3-6, such as 4-5 contiguous nucleotides in length.
  • the 3’ most nucleoside of region F’ is a sugar modified nucleoside.
  • the two 3’ most nucleoside of region F’ are sugar modified nucleoside.
  • the two 3’ most nucleoside of region F’ are LNA nucleosides.
  • the 3’ most nucleoside of region F’ is an LNA nucleoside.
  • the two 3’ most nucleoside of region F’ are 2’ substituted nucleoside nucleosides, such as two 3’ MOE nucleosides.
  • the 3’ most nucleoside of region F’ is a 2’ substituted nucleoside, such as a MOE nucleoside. It should be noted that when the length of region F or F’ is one, it is advantageously an LNA nucleoside.
  • region F and F’ independently consists of or comprises a contiguous sequence of sugar modified nucleosides.
  • the sugar modified nucleosides of region F may be independently selected from 2’-0-alkyl-RNA units, 2’-0- methyl-RNA, 2’-amino-DNA units, 2’-fluoro-DNA units, 2’-alkoxy-RNA, MOE units, LNA units, arabino nucleic acid (ANA) units and 2’-fluoro-ANA units.
  • region F and F’ independently comprises both LNA and a 2’ substituted modified nucleosides (mixed wing design).
  • region F and F’ consists of only one type of sugar modified nucleosides, such as only MOE or only beta-D-oxy LNA or only ScET. Such designs are also termed uniform flanks or uniform gapmer design.
  • all the nucleosides of region F or F’, or F and F’ are LNA
  • nucleosides such as independently selected from beta-D-oxy LNA, ENA or ScET
  • region F consists of 1-5, such as 2-4, such as 3-4 such as 1 , 2, 3, 4 or 5 contiguous LNA nucleosides. In some embodiments, all the nucleosides of region F and F’ are beta-D-oxy LNA nucleosides.
  • all the nucleosides of region F or F’, or F and F’ are 2’ substituted nucleosides, such as OMe or MOE nucleosides.
  • region F consists of 1 , 2, 3, 4, 5, 6, 7, or 8 contiguous OMe or MOE nucleosides.
  • only one of the flanking regions can consist of 2’ substituted nucleosides, such as OMe or MOE nucleosides.
  • the 5’ (F) flanking region that consists 2’ substituted nucleosides, such as OMe or MOE nucleosides whereas the 3’ (F’) flanking region comprises at least one LNA nucleoside, such as beta-D-oxy LNA nucleosides or cET nucleosides.
  • the 3’ (F’) flanking region that consists 2’ substituted nucleosides, such as OMe or MOE nucleosides
  • the 5’ (F) flanking region comprises at least one LNA nucleoside, such as beta-D-oxy LNA nucleosides or cET nucleosides.
  • all the modified nucleosides of region F and F’ are LNA nucleosides, such as independently selected from beta-D-oxy LNA, ENA or ScET nucleosides, wherein region F or F’, or F and F’ may optionally comprise DNA nucleosides (an alternating flank, see definition of these for more details).
  • all the modified nucleosides of region F and F’ are beta-D-oxy LNA nucleosides, wherein region F or F’, or F and F’ may optionally comprise DNA nucleosides (an alternating flank, see definition of these for more details).
  • the 5’ most and the 3’ most nucleosides of region F and F’ are LNA nucleosides, such as beta-D-oxy LNA nucleosides or ScET nucleosides.
  • the internucleoside linkage between region F and region G is a phosphorothioate internucleoside linkage. In some embodiments, the internucleoside linkage between region F’ and region G is a phosphorothioate internucleoside linkage. In some embodiments, the internucleoside linkages between the nucleosides of region F or F’, F and F’ are phosphorothioate internucleoside linkages.
  • An LNA gapmer is a gapmer wherein either one or both of region F and F’ comprises or consists of LNA nucleosides.
  • a beta-D-oxy gapmer is a gapmer wherein either one or both of region F and F’ comprises or consists of beta-D-oxy LNA nucleosides.
  • the LNA gapmer is of formula: [LNA]i_ 5 -[region G] -[LNA] I-5 , wherein region G is as defined in the Gapmer region G definition.
  • a MOE gapmers is a gapmer wherein regions F and F’ consist of MOE nucleosides.
  • the MOE gapmer is of design [MOE]i-e-[Region G]-[MOE] i_e, such as [MOE]2-7-[Region G]s-i 6 -[MOE] 2-7, such as [MOE]3-6-[Region G]-[MOE] 3-6, wherein region G is as defined in the Gapmer definition.
  • MOE gapmers with a 5-10-5 design (MOE-DNA-MOE) have been widely used in the art.
  • a mixed wing gapmer is an LNA gapmer wherein one or both of region F and F’ comprise a 2’ substituted nucleoside, such as a 2’ substituted nucleoside independently selected from the group consisting of 2’-0-alkyl-RNA units, 2’-0-methyl-RNA, 2’-amino-DNA units, 2’- fluoro-DNA units, 2’-alkoxy-RNA, MOE units, arabino nucleic acid (ANA) units and 2’-fluoro- ANA units, such as a MOE nucleosides.
  • a 2’ substituted nucleoside independently selected from the group consisting of 2’-0-alkyl-RNA units, 2’-0-methyl-RNA, 2’-amino-DNA units, 2’- fluoro-DNA units, 2’-alkoxy-RNA, MOE units, arabino nucleic acid (ANA) units and 2’-fluoro- ANA units, such as a MOE nucleosides.
  • region F and F’, or both region F and F’ comprise at least one LNA nucleoside
  • the remaining nucleosides of region F and F’ are independently selected from the group consisting of MOE and LNA.
  • at least one of region F and F’, or both region F and F’ comprise at least two LNA nucleosides
  • the remaining nucleosides of region F and F’ are independently selected from the group consisting of MOE and LNA.
  • one or both of region F and F’ may further comprise one or more DNA nucleosides.
  • Oligonucleotides with alternating flanks are LNA gapmer oligonucleotides where at least one of the flanks (F or F’) comprises DNA in addition to the LNA nucleoside(s).
  • at least one of region F or F’, or both region F and F’ comprise both LNA nucleosides and DNA nucleosides.
  • the flanking region F or F’, or both F and F’ comprise at least three nucleosides, wherein the 5’ and 3’ most nucleosides of the F and/or F’ region are LNA nucleosides.
  • region F or F’, or both region F and F’ comprise both LNA nucleosides and DNA nucleosides.
  • the flanking region F or F’, or both F and F’ comprise at least three nucleosides, wherein the 5’ and 3’ most nucleosides of the F or F’ region are LNA nucleosides, and there is at least one DNA nucleoside positioned between the 5’ and 3’ most LNA nucleosides of region F or F’ (or both region F and F’).
  • the oligonucleotide of the invention may in some embodiments comprise or consist of the contiguous nucleotide sequence of the oligonucleotide which is complementary to the target nucleic acid, such as the gapmer F-G-F’, and further 5’ and/or 3’ nucleosides.
  • the further 5’ and/or 3’ nucleosides may or may not be fully complementary to the target nucleic acid.
  • region D’ and D Such further 5’ and/or 3’ nucleosides may be referred to as region D’ and D” herein.
  • region D’ or D may be used for the purpose of joining the contiguous nucleotide sequence, such as the gapmer, to a conjugate moiety or another functional group.
  • region D or D
  • When used for joining the contiguous nucleotide sequence with a conjugate moiety is can serve as a biocleavable linker. Alternatively, it may be used to provide exonucleoase protection or for ease of synthesis or manufacture.
  • Region D’ and D can be attached to the 5’ end of region F or the 3’ end of region F’, respectively to generate designs of the following formulas D’-F-G-F’, F-G-F’-D” or
  • F-G-F’ is the gapmer portion of the oligonucleotide and region D’ or D” constitute a separate part of the oligonucleotide.
  • Region D’ or D may independently comprise or consist of 1 , 2, 3, 4 or 5 additional nucleotides, which may be complementary or non-complementary to the target nucleic acid.
  • the nucleotide adjacent to the F or F’ region is not a sugar-modified nucleotide, such as a DNA or RNA or base modified versions of these.
  • the D’ or D’ region may serve as a nuclease susceptible biocleavable linker (see definition of linkers).
  • the additional 5’ and/or 3’ end nucleotides are linked with phosphodiester linkages and are DNA or RNA.
  • Nucleotide based biocleavable linkers suitable for use as region D’ or D are disclosed in WO2014/076195, which include by way of example a phosphodiester linked DNA dinucleotide.
  • the use of biocleavable linkers in poly-oligonucleotide constructs is disclosed in WO2015/113922, where they are used to link multiple antisense constructs (e.g. gapmer regions) within a single oligonucleotide.
  • the oligonucleotide of the invention comprises a region D’ and/or D” in addition to the contiguous nucleotide sequence which constitutes the gapmer.
  • the oligonucleotide of the present invention can be represented by the following formulae:
  • F-G-F in particular F1-8-G5-16-F 2-8
  • D’-F-G-F’-D in particular D’ I-3 - Fi-8-G5-i6-F’2-8-D”i -3
  • the internucleoside linkage positioned between region D’ and region F is a phosphodiester linkage. In some embodiments the internucleoside linkage positioned between region F’ and region D” is a phosphodiester linkage.
  • conjugate refers to an oligonucleotide which is covalently linked to a non-nucleotide moiety (conjugate moiety or region C or third region). Conjugation of the oligonucleotide of the invention to one or more non-nucleotide moieties may improve the pharmacology of the oligonucleotide, e.g. by affecting the activity, cellular distribution, cellular uptake or stability of the oligonucleotide.
  • the conjugate moiety modifies or enhances the pharmacokinetic properties of the oligonucleotide by improving cellular distribution, bioavailability, metabolism, excretion, permeability, and/or cellular uptake of the oligonucleotide.
  • the conjugate may target the
  • the conjugate may serve to reduce activity of the oligonucleotide in non-target cell types, tissues or organs, e.g. off target activity or activity in non-target cell types, tissues or organs.
  • the non-nucleotide moiety is selected from the group consisting of carbohydrates, cell surface receptor ligands, drug substances, hormones, lipophilic substances, polymers, proteins, peptides, toxins (e.g. bacterial toxins), vitamins, viral proteins (e.g. capsids) or combinations thereof.
  • a linkage or linker is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds.
  • Conjugate moieties can be attached to the oligonucleotide directly or through a linking moiety (e.g. linker or tether).
  • Linkers serve to covalently connect a third region, e.g. a conjugate moiety (Region C), to a first region, e.g. an oligonucleotide or contiguous nucleotide sequence or gapmer region F-G-F’ (region A).
  • the conjugate or oligonucleotide conjugate of the invention may optionally, comprise a linker region (second region or region B and/or region Y) which is positioned between the oligonucleotide or contiguous nucleotide sequence complementary to the target nucleic acid (region A or first region) and the conjugate moiety (region C or third region).
  • a linker region second region or region B and/or region Y
  • Region B refers to biocleavable linkers comprising or consisting of a physiologically labile bond that is cleavable under conditions normally encountered or analogous to those encountered within a mammalian body.
  • Conditions under which physiologically labile linkers undergo chemical transformation include chemical conditions such as pH, temperature, oxidative or reductive conditions or agents, and salt concentration found in or analogous to those encountered in mammalian cells.
  • Mammalian intracellular conditions also include the presence of enzymatic activity normally present in a mammalian cell such as from proteolytic enzymes or hydrolytic enzymes or nucleases.
  • the biocleavable linker is susceptible to S1 nuclease cleavage.
  • DNA phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195 (hereby incorporated by reference) - see also region D’ or D” herein.
  • Region Y refers to linkers that are not necessarily biocleavable but primarily serve to covalently connect a conjugate moiety (region C or third region), to an oligonucleotide (region A or first region).
  • the region Y linkers may comprise a chain structure or an oligomer of repeating units such as ethylene glycol, amino acid units or amino alkyl groups.
  • the oligonucleotide conjugates of the present invention can be constructed of the following regional elements A-C, A-B-C, A-B-Y-C, A-Y-B-C or A-Y-C.
  • the linker (region Y) is an amino alkyl, such as a C2 - C36 amino alkyl group, including, for example C6 to C12 amino alkyl groups. In a preferred embodiment the linker (region Y) is a C6 amino alkyl group.
  • treatment refers to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease, i.e. prophylaxis. It will therefore be recognized that treatment as referred to herein may, in some embodiments, be prophylactic.
  • the invention relates to oligonucleotides, such as antisense oligonucleotides, capable of inhibiting the expression of GBP-1.
  • the oligonucleotides of the invention targeting GBP-1 are capable of hybridizing to and inhibiting the expression of a GBP-1 target nucleic acid in a cell which is expressing the GBP-1 target nucleic acid.
  • the GBP-1 target nucleic acid may be a mammalian GBP-1 mRNA or pre-mRNA, such as a human GBP-1 mRNA or pre-mRNA, for example a pre-mRNA or mRNA originating from the Homo sapiens GBP-1 gene (Homo sapiens Chromosome 1 : 89,052,319-89,065,360 reverse strand) - such as SEQ ID NO 1 1.
  • Homo sapiens GBP-1 gene Homo sapiens Chromosome 1 : 89,052,319-89,065,360 reverse strand
  • the oligonucleotides of the invention are capable of inhibiting the expression of GBP-1 target nucleic acid, such as the GBP-1 mRNA, in a cell which is expressing the target nucleic acid, such as the GBP-1 mRNA.
  • oligonucleotides of the invention are capable of inhibiting the expression of GBP-1 target nucleic acid in a cell which is expressing the target nucleic acid, so to reduce the level of GBP-1 target nucleic acid (e.g. the mRNA) by at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% inhibition compared to the expression level of the GBP-1 target nucleic acid (e.g. the mRNA) in the cell.
  • the cell is selected from the group consisting of A431 and MDA-MB-231 cells.
  • Example 1 provides a suitable assay for evaluating the ability of the oligonucleotides of the invention to inhibit the expression of the target nucleic acid.
  • the evaluation of a compounds ability to inhibit the expression of the target nucleic acid is performed in vitro, such a gymnotic in vitro assay, for example as according to Example 1.
  • An aspect of the present invention relates to an antisense oligonucelotide, such as an LNA antisense oligonucleotide gapmer which comprises a contiguous nucleotide sequence of 10 to 30 nucleotides in length with at least 90% complementarity, such as is fully
  • An aspect of the present invention relates to an antisense oligonucleotide, such as an LNA antisense oligonucleotide gapmer which comprises a contiguous nucleotide sequence of 10 to 30 nucleotides in length with at least 90% complementarity, such as is fully
  • the oligonucleotide comprises a contiguous sequence of 10 - 30 nucleotides, which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary with a region of the target nucleic acid or a target sequence, such as one selected from SEQ ID Nos 12 - 19.
  • the inventors have identified particularly effective sequences of the GBP-1 target nucleic acid which may be targeted by the oligonucleotide of the invention.
  • the target sequence is SEQ ID NO 12.
  • the target sequence is SEQ ID NO 13.
  • the target sequence is SEQ ID NO 14.
  • the target sequence is SEQ ID NO 15.
  • the target sequence is SEQ ID NO 16.
  • the target sequence is SEQ ID NO 17.
  • the target sequence is SEQ ID NO 18.
  • the target sequence is SEQ ID NO 19.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 12
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 13.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 14.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 15.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 16.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, or 15 contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 17.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 16, such as 13, 14, or 15, contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 18.
  • the oligonucleotide of the invention comprises a contiguous nucleotides sequence of 12 - 19, such as 13, 14, 15, 16, 17 or 18 contiguous nucleotides in length, wherein the contiguous nucleotide sequence is fully complementary to SEQ ID NO 19.
  • the antisense oligonucleotide of the invention or the contiguous nucleotide sequence thereof is a gapmer, such as an LNA gapmer, a mixed wing gapmer, or an alternating flank gapmer.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, such as at least 17 contiguous nucleotides, which is fully
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 12.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 13.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 14.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 15.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 16.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 17.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, which is fully complementary to SEQ ID NO 18.
  • the antisense oligonucleotide according to the invention comprises a contiguous nucleotide sequence of at least 10 contiguous nucleotides, such as at least 12 contiguous nucleotides, such as at least 13 contiguous nucleotides, such as at least 14 contiguous nucleotides, such as at least 15 contiguous nucleotides, such as at least 16 contiguous nucleotides, such as at least 17 contiguous nucleotides, which is fully complementary to SEQ ID NO 19.
  • the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is less than 20 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12 - 24 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12 - 22 nucleotides in length.
  • the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12 - 20 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 12 - 18 nucleotides in length. In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide according to the invention is 14 - 17 nucleotides in length.
  • all of the internucleoside linkages between the nucleosides of the contiguous nucleotide sequence are phosphorothioate internucleoside linkages.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 12.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 13.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 14.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 15.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 16.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 17.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 18.
  • the contiguous nucleotide sequence is fully complementary to SEQ ID NO 19.
  • the antisense oligonucleotide is a gapmer oligonucleotide comprising a contiguous nucleotide sequence of formula 5’-F-G-F’-3’, where region F and F’ independently comprise 1 - 8 sugar modified nucleosides, and G is a region between 5 and 16 nucleosides which are capable of recruiting RNaseH.
  • the sugar modified nucleosides of region F and F’ are independently selected from the group consisting of 2’-0-alkyl-RNA, 2’-0-methyl-RNA, 2’-alkoxy-RNA, 2’- O-methoxyethyl-RNA, 2’-amino-DNA, 2’-fluoro-DNA, arabino nucleic acid (ANA), 2’-fluoro- ANA and LNA nucleosides.
  • region G comprises 5 - 16 contiguous DNA nucleosides.
  • the antisense oligonucleotide is a gapmer oligonucleotide, such as an LNA gapmer oligonucleotide.
  • the LNA nucleosides are beta-D-oxy LNA nucleosides.
  • the internucleoside linkages between the contiguous nucleotide sequence are phosphorothioate internucleoside linkages.
  • the invention provides antisense oligonucleotides according to the invention, such as antisense oligonucleotides 12 - 24 nucleosides in length, wherein the antisense
  • oligonucleotide comprises a contiguous nucleotide sequence comprising at least 12 contiguous nucleotides present in SEQ ID NOs - 1 - 10.
  • the invention provides antisense oligonucleotides according to the invention, such as antisense oligonucleotides 14 - 24 nucleosides in length, wherein the antisense
  • oligonucleotide comprises a contiguous nucleotide sequence comprising at least 14 contiguous nucleotides present in SEQ ID NOs - 1 - 10.
  • the invention provides LNA gapmers according to the invention comprising or consisting of a contiguous nucleotide sequence selected from SEQ ID NO 1 - 10.
  • the invention provides LNA gapmers as depicted in Table 5 (Compound).
  • the invention provides LNA gapmers as depicted in Table 6 (see Examples).
  • the invention provides antisense oligonucleotides selected from the group consisting of: TCAAatgtagtgacGC; CAaatgtagtgACGC; TGAggattatacaTGG; GTTtggtaagatcCTC;
  • CCCattgaagttaTAA CCtaatcacagcATAC; TTTAgcttatggtaCA; CTGtataaggtggTTT;
  • LNA cytosine may be 5-methyl cytosine.
  • DNA cytosine may be 5-methyl cytosine.
  • the invention provides antisense oligonucleotides selected from the group consisting of: TCAAatgtagtgacGC; CAaatgtagtgACGC; TGAggattatacaTGG; GTTtggtaagatcCTC;
  • CCCattgaagttaTAA CCtaatcacagcATAC; TTTAgcttatggtaCA; CTGtataaggtggTTT;
  • LNA cytosine may be 5-methyl cytosine.
  • DNA cytosine may be 5-methyl cytosine.
  • the invention provides antisense oligonucleotides selected from the group consisting of: TCAAatgtagtgacGC; CAaatgtagtgACGC; TGAggattatacaTGG; GTTtggtaagatcCTC;
  • CCCattgaagttaTAA CCtaatcacagcATAC; TTTAgcttatggtaCA; CTGtataaggtggTTT;
  • the invention provides methods for manufacturing the oligonucleotides of the invention comprising reacting nucleotide units and thereby forming covalently linked contiguous nucleotide units comprised in the oligonucleotide.
  • the method uses phophoramidite chemistry (see for example Caruthers et al, 1987, Methods in Enzymology vol. 154, pages 287-313).
  • the method further comprises reacting the contiguous nucleotide sequence with a conjugating moiety (ligand) to covalently attach the conjugate moiety to the oligonucleotide.
  • composition of the invention comprising mixing the oligonucleotide or conjugated oligonucleotide of the invention with a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.
  • the compounds according to the present invention may exist in the form of their
  • pharmaceutically acceptable salts refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of the present invention and are formed from suitable non- toxic organic or inorganic acids or organic or inorganic bases.
  • Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as p-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid, citric acid, malic acid, lactic acid, fumaric acid, and the like.
  • Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide.
  • the chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain improved physical and chemical stability, hygroscopicity, flowability and solubility of compounds. It is for example described in Bastin, Organic Process Research & Development 2000, 4, 427-435 or in Ansel, In: Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed. (1995), pp. 196 and 1456-1457.
  • the pharmaceutically acceptable salt of the compounds provided herein may be a sodium salt.
  • the invention provides pharmaceutical compositions comprising any of the aforementioned oligonucleotides and/or oligonucleotide conjugates or salts thereof and a pharmaceutically acceptable diluent, carrier, salt and/or adjuvant.
  • a pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS) and pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.
  • the pharmaceutically acceptable diluent is sterile phosphate buffered saline.
  • the oligonucleotide is used in the pharmaceutically acceptable diluent at a concentration of 50 - 300mM solution. In some embodiments, the oligonucleotide of the invention is administered at a dose of 10 - 1000pg.
  • WO 2007/031091 provides further suitable and preferred examples of pharmaceutically acceptable diluents, carriers and adjuvants (hereby incorporated by reference). Suitable dosages, formulations, administration routes, compositions, dosage forms, combinations with other therapeutic agents, pro-drug formulations are also provided in W02007/031091. Oligonucleotides or oligonucleotide conjugates of the invention may be mixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of
  • compositions are dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.
  • compositions may be sterilized by conventional sterilization techniques or may be sterile filtered.
  • the resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the preparations typically will be between 3 and 1 1 , more preferably between 5 and 9 or between 6 and 8, and most preferably between 7 and 8, such as 7 to 7.5.
  • the resulting compositions in solid form may be packaged in multiple single dose units, each containing a fixed amount of the above-mentioned agent or agents, such as in a sealed package of tablets or capsules.
  • the composition in solid form can also be packaged in a container for a flexible quantity, such as in a squeezable tube designed for a topically applicable cream or ointment.
  • the oligonucleotide or oligonucleotide conjugate of the invention is a prodrug.
  • the conjugate moiety is cleaved of the oligonucleotide once the prodrug is delivered to the site of action, e.g. the target cell.
  • oligonucleotides of the invention may be utilized as research reagents for, for example, diagnostics, therapeutics and prophylaxis.
  • such oligonucleotides may be used to specifically modulate the synthesis of GBP-1 protein in cells (e.g. in vitro cell cultures) and experimental animals thereby facilitating functional analysis of the target or an appraisal of its usefulness as a target for therapeutic intervention.
  • the target modulation is achieved by degrading or inhibiting the mRNA producing the protein, thereby prevent protein formation or by degrading or inhibiting a modulator of the gene or mRNA producing the protein.
  • the target nucleic acid may be a cDNA or a synthetic nucleic acid derived from DNA or RNA.
  • the present invention provides an in vivo or in vitro method for modulating GBP-1 expression in a target cell which is expressing GBP-1 , said method comprising administering an oligonucleotide of the invention in an effective amount to said cell.
  • the target cell is a mammalian cell such as a human, cynomolgus monkey or murine cell.
  • the target cell may be an in vitro cell culture or an in vivo cell forming part of a tissue in a mammal.
  • the cell is a cancer cell.
  • the oligonucleotides may be used to detect and quantitate GBP-1 expression in cell and tissues by northern blotting, in-situ hybridisation or similar techniques.
  • the oligonucleotides of the invention can be used to modulate the expression of GBP-1 in an animal (e.g. a human) suspected of having a disease or disorder mediated by or associated with aberrant GBP-1 expression.
  • an oligonucleotide of the invention is used to inhibit the expression of GBP-1 in an animal suspected of having a disease or disorder mediated by or associated with aberrant GBP-1 expression.
  • the disease or disorder is one mediated by or associated with elevated expression of GBP-1 in the affected cells.
  • the affected cells could be tumour/cancer cells that may express higher than normal amounts of GBP-1.
  • the invention provides methods for treating or preventing a disease, comprising administering a therapeutically or prophylactically effective amount of an oligonucleotide, an oligonucleotide conjugate or a pharmaceutical composition of the invention to a subject suffering from or susceptible to the disease.
  • the invention also relates to an oligonucleotide, or an oligonucleotide conjugate or a pharmaceutical composition as defined herein for use as a medicament.
  • oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition according to the invention is typically administered in an effective amount.
  • the invention also provides for the use of the oligonucleotide or oligonucleotide conjugate or pharmaceutical composition as defined or described herein for the manufacture of a medicament for the treatment of a disease or disorder as referred to herein, or for a method of the treatment of a disease or disorder as referred to herein.
  • the disease or disorder is associated with expression of GBP-1.
  • the disease or disorder may be associated with a mutation in the GBP-1 gene. Therefore, in some embodiments, the target nucleic acid is a mutated form of the GBP-1 sequence.
  • the methods of the invention may be employed for treatment or prophylaxis against diseases caused by abnormal levels and/or activity of GBP-1.
  • the methods of the invention may be employed for treatment or prophylaxis against diseases caused by elevated levels and/or activity of GBP-1.
  • elevated we mean greater than the level typically found in normal tissues.
  • the degree of elevated expression indicative of a diseased cell/tissue can be determined by a clinician.
  • the amount of increase in expression relative to normal cells/tissues could by an increase of 5%, 10%, 15%, .20%, 25%, 30%, 50%, 75%, 90%, 100%, 150%, 175%, 200%, 250% or more above normal levels.
  • Such typical“normal” levels can be determined by measurement of levels in normal (non- diseased) cells or from a reference data set.
  • a reference normal level be it from direct measurements or from a reference data set, is usually one that is an average from multiple (e.g. >5) measurements.
  • the patient is identified as having a disease or condition characterised by elevated GBP-1 expression prior to administration of the oligonucleotide, conjugate or pharmaceutical composition according to the invention.
  • identification can be carried out according to a variety of methods as described herein.
  • the level of GBP-1 expression is determined from a biological sample previously isolated from the patient/subject .
  • a biological sample could be a biopsy (such as tumour tissue) or fluid (such as blood) sample.
  • Immunohistochemistry ELISA
  • mass spectroscopy methods such as liquid- chromatography mass spectroscopy (LC-MS) are particularly suitable methods.
  • RNA determination methods involving hybridisation to the target mRNA using a complementary nucleic acid can be employed.
  • RT-PCR reverse transcription polymerase chain reaction
  • the person skilled in the art is able to employ a suitable method for detection of the amount or protein or mRNA in the cell or cells.
  • the invention further relates to use of an oligonucleotide, oligonucleotide conjugate or a pharmaceutical composition as defined herein for the manufacture of a medicament for the treatment of abnormal levels and/or activity of GBP-1. As noted above, such abnormal levels may be elevated levels.
  • the invention relates to oligonucleotides, oligonucleotide conjugates or pharmaceutical compositions for use in the treatment of diseases or disorders selected from cancer (such as breast cancer or metastases breast cancer) and osteoporosis.
  • cancer such as breast cancer or metastases breast cancer
  • osteoporosis selected from cancer (such as breast cancer or metastases breast cancer) and osteoporosis.
  • oligonucleotides or pharmaceutical compositions of the present invention may be administered topical or enteral or parenteral (such as, intravenous, subcutaneous, intra- muscular, intracerebral, intracerebroventricular or intrathecal).
  • oligonucleotide or pharmaceutical compositions of the present invention are administered by a parenteral route including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion, intrathecal or
  • intracranial e.g. intracerebral or intraventricular, intravitreal administration.
  • intracranial e.g. intracerebral or intraventricular, intravitreal administration.
  • the active oligonucleotide or oligonucleotide conjugate is administered intravenously. In another embodiment the active oligonucleotide or oligonucleotide conjugate is administered subcutaneously.
  • the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is administered at a dose of 0.1 - 15 mg/kg, such as from 0.2 - 10 mg/kg, such as from 0.25 - 5 mg/kg.
  • the administration can be once a week, every 2 nd week, every third week or even once a month.
  • the oligonucleotide, oligonucleotide conjugate or pharmaceutical composition of the invention is for use in a combination treatment with another therapeutic agent.
  • the therapeutic agent can for example be the standard of care for the diseases or disorders described above.
  • Example 1 Testing in vitro efficacy of antisense oligonucleotides targeting human GBP1 mRNA in A431 and MDA-MB-231 cells at single concentration.
  • oligonucleotides were made by standard automated phosphoramidite oligonucleotide synthesis.
  • A431 and MDA-MB-231 cell lines were purchased from ATCC and maintained as
  • One Step RT-qPCR was performed using qScriptTM XLT One-Step RT-qPCR ToughMix®, Low ROXTM (Quantabio) in a duplex set up.
  • the following TaqMan primer assays were used for qPCR: GBP1 Hs00977005_m1 (FAM-MGB) and endogenous control GAPDH, Hs99999905_m1 (VIC-MGB). All primer sets were purchased from Thermo Fisher Scientific.
  • the relative GBP1 mRNA expression level in the table is shown as percent of control (PBS-treated cells).
  • LNA nucleosides (beta-D-oxy LNA nucleosides were used), all LNA cytosines are 5-methyl cytosine, lower case letters represent DNA nucleosides, DNA cytosines preceded with a superscript m represents a 5-methyl C-DNA nucleoside. All internucleoside linkages are phosphorothioate internucleoside linkages.
  • Example 2 Testing in vitro potency and efficacy of selected oligonucleotides targeting human GBP1 mRNA in A431 and MDA-MB-231 cells at different
  • PBS percent of control

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne des oligonucléotides LNA antisens (oligomères) complémentaires des séquences de pré-ARNm de GBP-1, qui sont capables d'inhiber L'expression de la protéine GBP-1. L'inhibition de l'expression de GBP-1 est bénéfique pour une gamme de troubles médicaux y compris le cancer ou l'ostéoporose.
PCT/EP2019/067537 2018-07-02 2019-07-01 Oligonucléotides antisens ciblant gbp-1 WO2020007772A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18181121.7 2018-07-02
EP18181121 2018-07-02

Publications (1)

Publication Number Publication Date
WO2020007772A1 true WO2020007772A1 (fr) 2020-01-09

Family

ID=62841950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/067537 WO2020007772A1 (fr) 2018-07-02 2019-07-01 Oligonucléotides antisens ciblant gbp-1

Country Status (1)

Country Link
WO (1) WO2020007772A1 (fr)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039352A1 (fr) 1997-03-07 1998-09-11 Takeshi Imanishi Nouveaux analogues de bicyclonucleoside et d'oligonucleotide
WO1999014226A2 (fr) 1997-09-12 1999-03-25 Exiqon A/S Analogues d'oligonucleotides
WO2000047599A1 (fr) 1999-02-12 2000-08-17 Sankyo Company, Limited Nouveaux analogues de nucleosides et d'oligonucleotides
WO2000066604A2 (fr) 1999-05-04 2000-11-09 Exiqon A/S Analogues de l-ribo-lna
WO2001023613A1 (fr) 1999-09-30 2001-04-05 Isis Pharmaceuticals, Inc. Rnase h humaine et compositions nucleotidiques correspondantes
WO2004046160A2 (fr) 2002-11-18 2004-06-03 Santaris Pharma A/S Conception antisens
WO2007031091A2 (fr) 2005-09-15 2007-03-22 Santaris Pharma A/S Composes antagonistes d'arn de modulation de l'expression de p21 ras
WO2007090071A2 (fr) 2006-01-27 2007-08-09 Isis Pharmaceuticals, Inc. Analogues d'acides nucleiques bicycliques modifies en position 6
WO2007134181A2 (fr) 2006-05-11 2007-11-22 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques modifiés en 5'
WO2008049085A1 (fr) 2006-10-18 2008-04-24 Isis Pharmaceuticals, Inc. Composés antisens
WO2008150729A2 (fr) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques pontés par aminométhylène n-substitué
WO2008154401A2 (fr) 2007-06-08 2008-12-18 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique bicyclique carbocylique
WO2009006478A2 (fr) 2007-07-05 2009-01-08 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques disubstitués en position 6
WO2009067647A1 (fr) 2007-11-21 2009-05-28 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique alpha-l-bicyclique carbocyclique
WO2010036698A1 (fr) 2008-09-24 2010-04-01 Isis Pharmaceuticals, Inc. Nucléosides alpha-l-bicycliques substitués
WO2010077578A1 (fr) 2008-12-09 2010-07-08 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique bicyclique bis-modifié
WO2011017521A2 (fr) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques cyclohexoses bicycliques
WO2011156202A1 (fr) 2010-06-08 2011-12-15 Isis Pharmaceuticals, Inc. 2'‑amino- et 2'‑thio-nucléosides bicycliques substitués et composés oligomères préparés à partir de ces derniers
WO2012109395A1 (fr) 2011-02-08 2012-08-16 Isis Pharmaceuticals, Inc. Composés oligomères comprenant des nucléotides bicycliques et leurs utilisations
WO2013022984A1 (fr) 2011-08-11 2013-02-14 Isis Pharmaceuticals, Inc. Composés antisens sélectifs et utilisations de ceux-ci
WO2013154798A1 (fr) 2012-04-09 2013-10-17 Isis Pharmaceuticals, Inc. Analogues tricycliques d'acide nucléique
WO2014076195A1 (fr) 2012-11-15 2014-05-22 Santaris Pharma A/S Conjugués d'oligonucléotides
EP2850184A1 (fr) * 2012-05-16 2015-03-25 Rana Therapeutics Inc. Compositions et méthodes pour moduler l'expression génique
WO2015113922A1 (fr) 2014-01-30 2015-08-06 Roche Innovation Center Copenhagen A/S Composé poly-oligomérique à conjugués bioclivables
WO2017157899A1 (fr) * 2016-03-14 2017-09-21 F. Hoffmann-La Roche Ag Oligonucléotides destinés à la réduction de l'expression de pd-l1
WO2018002105A1 (fr) * 2016-07-01 2018-01-04 F. Hoffmann-La Roche Ag Oligonucléotides antisens pour la modulation de l'expression de htra1

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039352A1 (fr) 1997-03-07 1998-09-11 Takeshi Imanishi Nouveaux analogues de bicyclonucleoside et d'oligonucleotide
WO1999014226A2 (fr) 1997-09-12 1999-03-25 Exiqon A/S Analogues d'oligonucleotides
WO2000047599A1 (fr) 1999-02-12 2000-08-17 Sankyo Company, Limited Nouveaux analogues de nucleosides et d'oligonucleotides
WO2000066604A2 (fr) 1999-05-04 2000-11-09 Exiqon A/S Analogues de l-ribo-lna
WO2001023613A1 (fr) 1999-09-30 2001-04-05 Isis Pharmaceuticals, Inc. Rnase h humaine et compositions nucleotidiques correspondantes
WO2004046160A2 (fr) 2002-11-18 2004-06-03 Santaris Pharma A/S Conception antisens
WO2007031091A2 (fr) 2005-09-15 2007-03-22 Santaris Pharma A/S Composes antagonistes d'arn de modulation de l'expression de p21 ras
WO2007090071A2 (fr) 2006-01-27 2007-08-09 Isis Pharmaceuticals, Inc. Analogues d'acides nucleiques bicycliques modifies en position 6
WO2007134181A2 (fr) 2006-05-11 2007-11-22 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques modifiés en 5'
WO2008049085A1 (fr) 2006-10-18 2008-04-24 Isis Pharmaceuticals, Inc. Composés antisens
WO2008150729A2 (fr) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques pontés par aminométhylène n-substitué
WO2008154401A2 (fr) 2007-06-08 2008-12-18 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique bicyclique carbocylique
WO2009006478A2 (fr) 2007-07-05 2009-01-08 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques bicycliques disubstitués en position 6
WO2009067647A1 (fr) 2007-11-21 2009-05-28 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique alpha-l-bicyclique carbocyclique
WO2010036698A1 (fr) 2008-09-24 2010-04-01 Isis Pharmaceuticals, Inc. Nucléosides alpha-l-bicycliques substitués
WO2010077578A1 (fr) 2008-12-09 2010-07-08 Isis Pharmaceuticals, Inc. Analogues d'acide nucléique bicyclique bis-modifié
WO2011017521A2 (fr) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Analogues d'acides nucléiques cyclohexoses bicycliques
WO2011156202A1 (fr) 2010-06-08 2011-12-15 Isis Pharmaceuticals, Inc. 2'‑amino- et 2'‑thio-nucléosides bicycliques substitués et composés oligomères préparés à partir de ces derniers
WO2012109395A1 (fr) 2011-02-08 2012-08-16 Isis Pharmaceuticals, Inc. Composés oligomères comprenant des nucléotides bicycliques et leurs utilisations
WO2013022984A1 (fr) 2011-08-11 2013-02-14 Isis Pharmaceuticals, Inc. Composés antisens sélectifs et utilisations de ceux-ci
EP2742135A1 (fr) 2011-08-11 2014-06-18 Isis Pharmaceuticals, Inc. Composés oligomères à brèche modifiés par liaison et leurs utilisations
WO2013154798A1 (fr) 2012-04-09 2013-10-17 Isis Pharmaceuticals, Inc. Analogues tricycliques d'acide nucléique
EP2850184A1 (fr) * 2012-05-16 2015-03-25 Rana Therapeutics Inc. Compositions et méthodes pour moduler l'expression génique
WO2014076195A1 (fr) 2012-11-15 2014-05-22 Santaris Pharma A/S Conjugués d'oligonucléotides
WO2015113922A1 (fr) 2014-01-30 2015-08-06 Roche Innovation Center Copenhagen A/S Composé poly-oligomérique à conjugués bioclivables
WO2017157899A1 (fr) * 2016-03-14 2017-09-21 F. Hoffmann-La Roche Ag Oligonucléotides destinés à la réduction de l'expression de pd-l1
WO2018002105A1 (fr) * 2016-07-01 2018-01-04 F. Hoffmann-La Roche Ag Oligonucléotides antisens pour la modulation de l'expression de htra1

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY
ANDERSON S L ET AL: "Interferon-Induced Guanylate Binding Protein-1 (GBP-1) Mediates an Antiviral Effect against Vesicular Stomatitis Virus and Encephalomyocarditis Virus", VIROLOGY, vol. 256, no. 1, 30 March 1999 (1999-03-30), pages 8 - 14, XP004439990, ISSN: 0042-6822, DOI: 10.1006/VIRO.1999.9614 *
ANSEL: "Pharmaceutical Dosage Forms and Drug Delivery Systems", 1995, pages: 196,1456 - 1457
BAI ET AL., SCIENTIFI REPORTS, vol. 8, 2018, pages 1048
BASTIN, ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 4, 2000, pages 427 - 435
BERGSTROM, CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY, 2009
BERGSTROM, PROTOCOLS IN NUCLEIC ACID CHEMISTRY, 2009
CAPALDO ET AL., MUCOSAL IMMUNOLOGY, vol. 5, 2012, pages 681 - 690
CARUTHERS ET AL., METHODS IN ENZYMOLOGY, vol. 154, 1987, pages 287 - 313
DATABASE EMBL [online] 7 June 2015 (2015-06-07), "Sequence 664929 from Patent EP2850184.", XP002794230, retrieved from EBI accession no. EM_PAT:JE353062 Database accession no. JE353062 *
DELEAVEYDAMHA, CHEMISTRY AND BIOLOGY, vol. 19, 2012, pages 937
FLUITER ET AL., MOL. BIOSYST., vol. 10, 2009, pages 1039
FREIERALTMANN, NUCL. ACID RES., vol. 25, 1997, pages 4429 - 4443
HANSEN ET AL., CHEM. COMM., 1965, pages 36 - 38
HIRAO ET AL., ACCOUNTS OF CHEMICAL RESEARCH, vol. 45, 2012, pages 2055
HOLDGATE ET AL., DRUG DISCOV TODAY, 2005
JEPSEN, J. & WENGEL, J.: "LNA-ANTISENSE RIVALS SIRNA FOR GENE SILENCING.", CURRENT OPINION IN DRUG DISCOVERY AND DEVELOPMENT, vol. 7, no. 2, 2004, pages 188 - 194, XP009083873, ISSN: 1367-6733 *
LANGER, SCIENCE, vol. 249, 1990, pages 1527 - 1533
MANGOS ET AL., J. AM. CHEM. SOC., vol. 125, 2003, pages 654 - 661
MCTIGUE ET AL., BIOCHEMISTRY, vol. 43, 2004, pages 5388 - 5405
MERGNYLACROI, OLIGONUCLEOTIDES, vol. 13, 2003, pages 515 - 537
MING LI ET AL: "Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 208, no. 13, 12 December 2011 (2011-12-12), US, pages 2657 - 2673, XP055621088, ISSN: 0022-1007, DOI: 10.1084/jem.20111102 *
MITSUOKA ET AL., NUCLEIC ACIDS RESEARCH, vol. 37, no. 4, 2009, pages 1225 - 1238
MORITA ET AL., BIOORGANIC & MED.CHEM. LETT., vol. 12, pages 73 - 76
MUSTAFA DANA A ET AL: "T lymphocytes facilitate brain metastasis of breast cancer by inducing Guanylate-Binding Protein 1 expression", ACTA NEUROPATHOLOGICA, vol. 135, no. 4, 19 January 2018 (2018-01-19), pages 581 - 599, XP036464432, ISSN: 0001-6322, DOI: 10.1007/S00401-018-1806-2 *
MUSTAFA ET AL., ACTA NEUROPATHOLOGICA, vol. 135, 2018, pages 581 - 599
NASCHBERGER ET AL., ADVAN. ENZYME REGUL., vol. 45, 2005, pages 215 - 227
PAN ET AL., VIROLOGY JOURNAL, vol. 9, 2012, pages 292
RUKOV ET AL., NUCL. ACIDS RES., vol. 43, 2015, pages 8476 - 8487
SANTALUCIA, PROC NATL ACAD SCI USA, vol. 95, 1998, pages 1460 - 1465
SCHNOOR ET AL., MUCOSAL IMMUNOLOGY, vol. 2, no. 1, 2009, pages 33 - 42
SETH ET AL., J. ORG. CHEM., vol. 75, no. 5, 2010, pages 1569 - 81
SHI BAI ET AL: "Guanylate Binding Protein 1 Inhibits Osteogenic Differentiation of Human Mesenchymal Stromal Cells Derived from Bone Marrow", SCIENTIFIC REPORTS, vol. 8, no. 1, 1048, 18 January 2018 (2018-01-18), pages 1 - 8, XP055621531, DOI: 10.1038/s41598-018-19401-2 *
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216
UHLMANN, CURR. OPINION IN DRUG DEVELOPMENT, vol. 3, no. 2, 2000, pages 293 - 213
VESTER ET AL., BIOORG. MED. CHEM. LETT., vol. 18, 2008, pages 2296 - 2300
WANSETH, J. MEDICAL CHEMISTRY, vol. 59, 2016, pages 9645 - 9667

Similar Documents

Publication Publication Date Title
US11542501B2 (en) Antisense oligonucleotides targeting ATXN3
EP3810776A1 (fr) Oligonucléotides pour moduler l'expression de scn9a
WO2019215175A1 (fr) Oligonucléotides pour moduler l'expression de myh7
WO2019233922A1 (fr) Oligonucléotides pour moduler l'expression d'atxn2
WO2018130584A1 (fr) Oligonucléotides antisens pour la modulation de l'expression de nfkb2
EP3947677A1 (fr) Oligonucléotides pour moduler l'expression d'atxn2
WO2023117738A1 (fr) Oligonucléotides antisens d'acide nucléique à thréose et procédés associés
WO2020038976A1 (fr) Oligonucléotides antisens ciblant l'usp8
EP3898975A2 (fr) Oligonucléotides antisens ciblant la card9
WO2020011869A2 (fr) Oligonucléotides antisens ciblant tlr2
WO2020007772A1 (fr) Oligonucléotides antisens ciblant gbp-1
WO2020038973A1 (fr) Oligonucléotides antisens ciblant sptlc1
WO2020007889A1 (fr) Oligonucléotides antisens ciblant stat1
EP3873920A1 (fr) Oligonucléotides antisens ciblant tia1
WO2020011653A1 (fr) Oligonucléotides antisens ciblant le kynu
EP3568477A1 (fr) Oligonucléotides antisens pour moduler l'expression de rela
WO2018130583A1 (fr) Oligonucléotides antisens pour moduler l'expression de nfkb1
WO2020007826A1 (fr) Oligonucléotides antisens ciblant mbtps1
WO2020038971A1 (fr) Oligonucléotides antisens ciblant la vcan
WO2020011743A1 (fr) Oligonucléotides antisens ciblant mafb
WO2020011744A2 (fr) Oligonucléotides antisens ciblant cers5
WO2020007700A1 (fr) Oligonucléotides antisens ciblant spi1
WO2020007702A1 (fr) Oligonucléotides antisens ciblant bcl2l11
WO2020011745A2 (fr) Oligonucléotides antisens ciblant cers6
EP4332221A1 (fr) Oligonucléotides antisens d'acide nucléique à thréose et procédés associés

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19733808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19733808

Country of ref document: EP

Kind code of ref document: A1