WO2020007232A1 - 过载控制方法和装置 - Google Patents

过载控制方法和装置 Download PDF

Info

Publication number
WO2020007232A1
WO2020007232A1 PCT/CN2019/093411 CN2019093411W WO2020007232A1 WO 2020007232 A1 WO2020007232 A1 WO 2020007232A1 CN 2019093411 W CN2019093411 W CN 2019093411W WO 2020007232 A1 WO2020007232 A1 WO 2020007232A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
rrc
access network
network device
frequency
Prior art date
Application number
PCT/CN2019/093411
Other languages
English (en)
French (fr)
Inventor
应江威
杨艳梅
王燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19831245.6A priority Critical patent/EP3796705A4/en
Publication of WO2020007232A1 publication Critical patent/WO2020007232A1/zh
Priority to US17/137,701 priority patent/US20210120624A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections

Definitions

  • Embodiments of the present application relate to the field of communications technologies, and in particular, to an overload control method and device.
  • AMF access and mobility management
  • the embodiments of the present application provide an overload control method and device, which help to relieve overload of access and mobility management network elements (such as AMF network elements).
  • access and mobility management network elements such as AMF network elements.
  • an embodiment of the present application provides an overload control method, including: an access network device receives instruction information from an access and mobility management network element, and the instruction information is used to indicate that the access and mobility management network element is overloaded ;
  • the access network device triggers the first terminal to be set to the RRC idle state according to the indication information and the characteristic information of the first terminal.
  • the access network device triggers setting the first terminal to the RRC deactivated state according to the indication information and the characteristic information of the first terminal.
  • the embodiments of the present application provide a technical solution for setting the RRC state of the terminal according to the characteristic information of the terminal when the access and mobility management network element is overloaded. Because the signaling processing load of the access and mobility management network elements is different when the terminals are in different RRC states, setting the terminal's RRC status in combination with the characteristic information of the terminal can help alleviate the overload of the access and mobility management network elements. For example, when the terminal is in the RRC deactivated state, it may trigger the radio access network notification area (RAN notification area update). In addition, compared with low-speed mobile terminals, high-speed mobile terminals may trigger RNA updates more frequently, so the signaling processing load of access and mobility management network elements is larger. Therefore, by properly setting the RRC state of the terminal in combination with the characteristic information of the terminal, the access and mobility management network element overload can be alleviated.
  • RAN notification area update radio access network notification area
  • RNA updates more frequently, so the signaling processing load of access and mobility management network elements is larger. Therefore, by properly setting the RRC
  • the access and mobility management network element may be an AMF network element in a 5G network architecture
  • the access network device may be an access network (AN) device or a radio access network (radio access) in the 5G network architecture.
  • AN access network
  • radio access radio access network
  • network, RAN radio access equipment
  • the indication information may be an overload start message.
  • this application is not limited to this.
  • triggering the terminal to be set to the RRC idle state may refer to a process of triggering the terminal to be set to the RRC idle state.
  • the process may be an AN release process.
  • the terminal includes a first terminal.
  • triggering the terminal to be set to the RRC deactivated state may refer to the process of triggering the terminal to be set to the RRC deactivated state.
  • the process may be an RRC connection release process.
  • the terminal includes a first terminal.
  • the characteristic information of the terminal may include at least one of the following: the mobile speed of the terminal, the frequency with which the terminal sends and receives data, the frequency at which the terminal switches between the RRC connected state and the RRC deactivated state, and the cell switching of the terminal Frequency, the frequency with which the terminal initiates RNA updates, the trajectory of the terminal, or the range of the terminal.
  • the terminal includes a first terminal. It can be understood that these characteristics can directly or indirectly reflect (or affect) the frequency of the terminal's RNA update, and / or the N3 data channel between the access network device and the user plane function (UPF) network element. Recovery frequency, which affects the signaling processing load of access and mobility management network elements.
  • UPF user plane function
  • the access network device triggering to set the first terminal to the RRC idle state according to the indication information and the characteristic information of the first terminal may include: when the characteristic information of the first terminal meets the first preset condition , The access network device triggers the first terminal to be set to the RRC idle state according to the instruction information.
  • the characteristic information of the first terminal meeting the first preset condition may include at least one of the following: the movement rate of the first terminal is greater than or equal to a first preset threshold; and the frequency at which the first terminal sends and receives data is less than Or equal to the second preset threshold; the frequency at which the first terminal switches between the RRC connected state and the RRC deactivated state is less than or equal to the third preset threshold; the cell switching frequency of the first terminal is greater than or equal to the fourth preset threshold; The frequency at which the first terminal initiates an RNA update is greater than or equal to a fifth preset threshold; the movement trajectory of the first terminal is not a preset movement trajectory; or, the movement range of the first terminal is greater than or equal to a preset range.
  • the indication information is further used to instruct a terminal that triggers setting the feature information to meet a first preset condition to an RRC idle state.
  • the access network device triggers setting the first terminal to the RRC idle state according to the instruction information and the characteristic information of the first terminal, including: the access network device determines the first terminal according to the instruction information The characteristic information of the first terminal satisfies the first preset condition; and triggers setting the first terminal to an RRC idle state.
  • the access network device determines a terminal whose characteristic information meets a first preset condition under the instruction of the access and mobility management network element.
  • the indication information may be an overload start message, which is used to instruct a terminal that triggers setting characteristic information to meet a first preset condition to an RRC idle state, which may be a cell in the overload start message, and the cell may include a type of the terminal,
  • the type may include at least one of the following: high-speed movement type, low-frequency data transmission and reception type, RRC state transition frequency is infrequent type, cell
  • the switching frequency is frequent type
  • the frequency of RNA update is frequent type, non-preset movement track type, or non-preset range type.
  • the access network device triggering the first terminal to be set to the RRC deactivated state according to the indication information and the characteristic information of the first terminal may include: when the characteristic information of the first terminal meets the second preset When the condition occurs, the access network device triggers the first terminal to be set to the RRC deactivated state according to the instruction information.
  • This possible design provides a specific implementation that sets the RRC state of the terminal to the RRC deactivated state in combination with the characteristic information of the terminal, thereby alleviating the overload of the access and mobility management network elements. For specific analysis process, please refer to the detailed implementation section below.
  • the feature information of the first terminal meeting the second preset condition may include at least one of the following: the movement speed of the first terminal is less than the first preset threshold; the frequency of the terminal receiving and sending data is greater than the second preset Threshold; the frequency at which the first terminal switches between the RRC connected state and the RRC deactivated state is greater than the third preset threshold; the cell switching frequency of the first terminal is less than the fourth preset threshold; the frequency at which the first terminal initiates an RNA update is less than the third preset threshold Five preset thresholds; the movement trajectory of the first terminal is a preset movement trajectory; or, the movement range of the first terminal is smaller than the preset range.
  • the indication information is further used to instruct a terminal that triggers setting the characteristic information to meet a second preset condition to an RRC deactivated state.
  • the access network device triggering the setting of the first terminal to the RRC deactivated state according to the instruction information and the characteristic information of the first terminal includes: the access network device determines the first terminal according to the instruction information The characteristic information of the second terminal satisfies the second preset condition; and triggers the first terminal to be set to the RRC deactivated state.
  • the access network device determines a terminal whose characteristic information meets a second preset condition under the instruction of the access and mobility management network element.
  • the indication information may be an overload start message, which is used to indicate that a terminal that triggers setting characteristic information to meet a second preset condition to an RRC deactivated state may be a cell in the overload start message, and the cell may include a type of the terminal.
  • the type may include at least one of the following: a low-speed movement type, a high-frequency transmission and reception data type, and an RRC state transition frequency is frequent
  • the cell switching frequency is an infrequent type
  • the frequency of RNA updates is an infrequent type, a preset moving track type, or a preset range type.
  • an embodiment of the present application provides an overload control method, including: the access and mobility management network element sends instruction information to an access network device, and the instruction information is used to indicate that the access and mobility management network element is overloaded, And triggering the terminal whose characteristic information meets the first preset condition to be set to an RRC idle state.
  • an embodiment of the present application provides an overload control method, including: the access and mobility management network element sends instruction information to an access network device, and the instruction information is used to indicate that the access and mobility management network element is overloaded, And triggering the terminal whose characteristic information satisfies the second preset condition to be set to an RRC deactivated state.
  • an embodiment of the present application provides an overload control method, including: an access network device receives first indication information from an access and mobility management network element; and an access network device receives an access and mobility management element.
  • the second indication information of the network element is used to indicate that the access and mobility management network element is overloaded; when the terminal is in the RRC connected state or the RRC deactivated state, and the first indication information is used to indicate that the access network device is in
  • the access network device triggers the terminal to be set to the RRC idle state according to the second instruction information; or, when the terminal is in the RRC connected state, and the An instruction message is used to instruct the access network device to trigger the terminal to be set to the RRC deactivated state when the access and mobility management network element is overloaded, the access network device is triggered to set the terminal to the RRC deactivated state according to the second instruction information .
  • an embodiment of the present application provides an overload control method, including: the access and mobility management network element sends first instruction information to the access network device according to the characteristic information of the terminal, and the first instruction information is used to indicate When the access network device overloads the access and mobility management network element, it triggers setting the terminal to the RRC idle state or the RRC deactivated state.
  • the first indication information is used to instruct the access network device to trigger the terminal to be set to RRC when the access and mobility management network element is overloaded Idle state.
  • the first indication information is used to instruct the access network device to trigger the setting of the terminal to RRC when the access and mobility management network element is overloaded Deactivated.
  • an embodiment of the present application provides an overload control method, including: the access and mobility management network element obtains RRC status information of the terminal from the access network device; when the access and mobility management network element is overloaded, and When the RRC state information indicates that the terminal is in the RRC connected state or the RRC deactivated state, the access and mobility management network element triggers the terminal to be set to the RRC idle state according to the characteristic information of the terminal; or when the access and mobility management network element is overloaded When the RRC status information indicates that the terminal is in the RRC connected state, the access and mobility management network element triggers the terminal to be set to the RRC deactivated state according to the characteristic information of the terminal.
  • This technical solution provides another technical solution for setting the RRC state of the terminal according to the characteristic information of the terminal when the access and mobility management network element is overloaded.
  • the access and mobility management network element triggers setting the terminal to the RRC idle state according to the characteristic information of the terminal, which may include: when the characteristic information of the terminal meets a first preset condition, the access and mobility The network management element triggers setting the terminal to the RRC idle state.
  • the access and mobility management network element triggers setting the terminal to the RRC deactivated state according to the characteristic information of the terminal, which may include: when the characteristic information of the terminal meets a second preset condition, the access and The mobility management network element triggers setting the terminal to the RRC deactivated state.
  • an embodiment of the present application provides an overload control method, including: when the access and mobility management network element is overloaded, the access and mobility management network element sends an instruction to the access network device according to the characteristic information of the terminal Information, where the instruction information is used to instruct the access network device to trigger the terminal to be set to the RRC idle state or the RRC deactivated state.
  • This technical solution provides another technical solution for setting the RRC state of the terminal according to the characteristic information of the terminal when the access and mobility management network element is overloaded.
  • the indication information is used to instruct the access network device to trigger the terminal to be set to the RRC idle state when the access and mobility management network element is overloaded.
  • the indication information is used to instruct the access network device to trigger the terminal to be set to RRC deactivation when the access and mobility management network element is overloaded state.
  • an embodiment of the present application provides an overload control method, including: an access network device receiving instruction information sent by an access and mobility management network element; and when the instruction information is used to instruct triggering a terminal to be set to an RRC idle state When the access network device has no data transmission on the terminal, it triggers the terminal to be set to the RRC idle state; or when the instruction information is used to instruct the trigger to set the terminal to the RRC deactivated state, the access network device has no data transmission on the terminal. When triggered, the terminal is set to the RRC deactivated state.
  • This technical solution corresponds to the technical solution provided in the seventh aspect.
  • an embodiment of the present application provides an overload control method, including: an access and mobility management network element receiving a request message from a terminal, the request message including a registration request message or a service request message; when access and mobility When the management network element is overloaded and the type of the terminal is the first preset type, the access and mobility management network element sends the first indication information to the access network device according to the request message, and the first indication information is used to indicate that triggering is not allowed Set the terminal to the RRC deactivated state.
  • This technical solution provides another technical solution for setting the RRC state of the terminal according to the characteristic information of the terminal when the access and mobility management network element is overloaded.
  • the first indication information is a first N2 message, and the first N2 message does not include auxiliary information.
  • the auxiliary information is used by an access network device to trigger the terminal to be set to an RRC deactivated state.
  • N2 is an abbreviation for Next Generation Interface 2.
  • the first indication information is carried in a first N2 message.
  • the first indication information is carried in the first N2 message, and the first indication information is a type of the terminal.
  • the terminal of the first preset type has at least one of the following characteristics: the movement rate is greater than or equal to the first preset threshold; the frequency of transmitting and receiving data is less than or equal to the second preset threshold; in the RRC connection state The frequency of switching between the RRC deactivated state is less than or equal to the third preset threshold; the frequency of cell switching is greater than or equal to the fourth preset threshold; the frequency of initiating a radio access network notification area RNA update is greater than or equal to the fifth preset threshold ;
  • the movement track is not a preset movement track; or, the movement range is greater than or equal to the preset range.
  • an embodiment of the present application provides an overload control method, including: an access network device receiving first indication information sent by an access and mobility management network element, where the first indication information is used to indicate that a terminal is not allowed to enter RRC Deactivated state; when the terminal has no data transmission, the access network device triggers setting the terminal to the RRC idle state according to the first instruction information.
  • the first instruction information is carried in the first N2 message, and the first instruction information is the type of the terminal; according to the first instruction information, the access network device triggers the terminal to send data when the terminal has no data transmission.
  • Setting the RRC idle state may include: the access network device determines that the terminal is not allowed to enter the RRC deactivated state according to the type of the terminal; when the terminal has no data transmission, the access network device triggers the terminal to be set to the RRC idle state.
  • the terminal of the first preset type has at least one of the following characteristics: the movement rate is greater than or equal to the first preset threshold; the frequency of transmitting and receiving data is less than or equal to the second preset threshold; in the RRC connection state The frequency of switching between the RRC deactivated state is less than or equal to the third preset threshold; the frequency of cell switching is greater than or equal to the fourth preset threshold; the frequency of initiating a radio access network notification area RNA update is greater than or equal to the fifth preset threshold ;
  • the movement track is not a preset movement track; or, the movement range is greater than or equal to the preset range.
  • an embodiment of the present application provides an overload control method, including: an access and mobility management network element receiving a request message from a terminal, the request message including a registration request message or a service request message; when access and mobility When the mobility management network element is overloaded and the type of the terminal is the second preset type, the access and mobility management network element sends second instruction information to the access network device according to the request message, and the second instruction information is used to indicate that triggering the The terminal is set to the RRC deactivated state.
  • This technical solution provides another technical solution for setting the RRC state of the terminal according to the characteristic information of the terminal when the access and mobility management network element is overloaded.
  • the second indication information is carried in a second N2 message, and the second N2 message further includes auxiliary information, and the second indication information is a type of the terminal; wherein the auxiliary information is used for triggering the access network device.
  • the terminal to the RRC deactivated state.
  • the terminal of the second preset type has at least one of the following characteristics: the movement rate is less than the first preset threshold; the frequency of transmitting and receiving data is greater than the second preset threshold; and the RRC is deactivated in the RRC connection state
  • the frequency of transitions between states is greater than the third preset threshold; the frequency of cell switching is less than the fourth preset threshold; the frequency of initiating RNA updates is less than the fifth preset threshold; the movement trajectory is a preset movement trajectory; or, the movement range is less than the preset range.
  • an embodiment of the present application provides an overload control method, including: an access network device receives second instruction information sent by an access and mobility management network element, and the second instruction information is used to indicate that a terminal is allowed to enter RRC Deactivated state; when the terminal has no data transmission, the access network device triggers setting the terminal to the RRC deactivated state according to the second instruction information.
  • the second indication information is carried in the second N2 message, and the second N2 message further includes auxiliary information, and the second indication information is a type of the terminal; the auxiliary information is used for the access network device to trigger the terminal Set to the RRC deactivated state; according to the second instruction information, the access network device triggers the terminal to be set to the RRC deactivated state when the terminal has no data transmission, which may include: the access network device determines according to the terminal type and auxiliary information The terminal is allowed to enter the RRC deactivated state; when no data is transmitted by the terminal, the access network device triggers the terminal to be set to the RRC deactivated state.
  • the terminal of the second preset type has at least one of the following characteristics: the movement rate is less than the first preset threshold; the frequency of transmitting and receiving data is greater than the second preset threshold; and the RRC is deactivated in the RRC connection state The frequency of transitions between states is greater than the third preset threshold; the frequency of cell switching is less than the fourth preset threshold; the frequency of initiating RNA updates is less than the fifth preset threshold; the movement trajectory is a preset movement trajectory; range.
  • the characteristic information of the terminal satisfies the first preset condition
  • the characteristic information of the terminal satisfies the related content of the second preset condition.
  • an embodiment of the present application provides an overload control device.
  • the apparatus may be used to execute any one of the methods provided in the first aspect.
  • the apparatus may specifically be the access network device described in the first aspect.
  • the device may be a chip.
  • the device may be divided into functional modules according to the method provided in the first aspect, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated in In a processing module.
  • the apparatus may include a memory and a processor.
  • the memory is used to store program code, and when the program code is executed by the processor, any method provided in the foregoing first aspect is executed.
  • an embodiment of the present application further provides an overload control device for performing any one of the methods provided in the second aspect to the twelfth aspect.
  • the device may be an access network device. If the device is used to perform the two, three, five, six, In the method provided by any of the seventh, ninth, and eleventh aspects, the device may be an access and mobility management network element.
  • the device may be divided into functional modules according to the methods provided in the corresponding aspects above.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one.
  • Processing module may be divided into functional modules according to the methods provided in the corresponding aspects above.
  • the apparatus may include a memory and a processor.
  • the memory is used to store program code, and when the program code is executed by the processor, any method provided in the foregoing corresponding aspects is executed.
  • an embodiment of the present application provides a processing device for implementing the functions of the overload control device described above.
  • the processing device includes a processor and an interface.
  • the processing device may be a chip, and the processor may be implemented by hardware. It can be implemented by software.
  • the processor can be a logic circuit, integrated circuit, etc .;
  • the processor can be a general-purpose processor by reading the software code stored in the memory.
  • the memory can be integrated in the processor, can be located outside the processor, and exists independently.
  • An embodiment of the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores program code, where the program code includes a method for executing any one of the methods provided in the first aspect to the twelfth aspect. Instructions for some or all steps.
  • the embodiment of the present application further provides a computer program product, and when the computer program product runs on a computer, the computer is caused to execute part or all of the steps of any one of the methods provided by the first aspect to the twelfth aspect.
  • An embodiment of the present application further provides an overload control system.
  • the system may include: an access network device for performing the method provided in the first aspect; or an access network device for performing the method provided in the first aspect; and An access and mobility management network element for performing the method provided in the second aspect / the third aspect; or an access network device for performing the method provided in the fourth aspect and an implementation of the fifth aspect provided Access and mobility management network element; or access and mobility management network element for performing the method provided in the sixth aspect; or access and mobility management network for performing the method provided in the seventh aspect Element and access network device for performing the method provided in the eighth aspect; or access and mobility management network element for performing the method provided in the ninth aspect and access for performing the method provided in the tenth aspect A network device, or an access and mobility management network element for performing the method provided in the eleventh aspect and an access network device for performing the method provided in the twelfth aspect.
  • FIG. 1 is a schematic diagram of a 5G network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an AN release process applicable to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an RRC connection release process applicable to an embodiment of the present application.
  • FIG. 4A is a first schematic diagram of an overload control method according to an embodiment of the present application.
  • 4B is a second schematic diagram of an overload control method according to an embodiment of the present application.
  • 4C is a third schematic diagram of an overload control method according to an embodiment of the present application.
  • FIG. 5 is a fourth schematic diagram of an overload control method according to an embodiment of the present application.
  • FIG. 6 is a fifth schematic diagram of an overload control method according to an embodiment of the present application.
  • FIG. 7 is a sixth schematic diagram of an overload control method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram VII of an overload control method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an overload control method according to an embodiment of the present application.
  • FIG. 10 is a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • FIG. 11 is another possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the term "plurality” in this application means two or more.
  • the term “and / or” in the present application is merely an association relationship describing an associated object, which means that there can be three kinds of relationships, for example, A and / or B can mean: A exists alone, and A and B exist simultaneously, There are three cases of B alone.
  • the character "/" in this text generally indicates that the related objects are an "or” relationship.
  • the terms “first” and “second” in the present application are used to distinguish different objects, and do not limit the order of the different objects.
  • the wireless communication system may be a 5G system or other communication systems in the future.
  • the wireless communication system may also be a Long Term Evolution (LTE) system, or an LTE-Advanced (LTE-A) system.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • FIG. 1 it is a schematic diagram of a 5G network architecture applicable to the embodiment of the present application.
  • the 5G network architecture may include: a terminal 10, an access network device 20, a core network 30, and a data network (DN) 40.
  • the core network element (or core network function network element) in the core network 30 may include: AMF network element 301, session management function (SMF) network element 302, UPF network element 303, and unified data Management (unified data management, UDM) network element 304, etc.
  • the connection between the foregoing network elements may be a wireless connection or a wired connection. In order to conveniently and intuitively represent the connection relationship between the various network elements, a solid line is used for illustration.
  • the terminal 10 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem; it may also include a subscriber unit, a cellular phone, Smart phone, wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld device (laptop computer), cordless phone (cordless phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal, user equipment (UE), mobile station (MS), terminal equipment (terminal device) or relay user equipment.
  • the relay user equipment may be, for example, a 5G residential gateway (RG).
  • RG 5G residential gateway
  • the access network device 20 may be used to provide a wireless connection and is located between the terminal 10 and the core network 30.
  • the access network device 20 may include a base station, evolved base station (eNB), next generation base station (gNB), new radio base station (new radio base station), macro base station, micro base station, high base station Frequency base stations or transmission and reception points (TRP) and other equipment.
  • eNB evolved base station
  • gNB next generation base station
  • new radio base station new radio base station
  • macro base station macro base station
  • micro base station micro base station
  • TRP transmission and reception points
  • the AMF network element 301 can be used for connection management, mobility management, registration management, access authentication and authorization, reachability management, security context management, and selection of SMF network elements.
  • the SMF network element 302 can be used for session management such as establishment, modification, and release of a session, selection and control of a UPF, selection of a service and session continuity mode, and roaming services.
  • the UPF network element 303 can be used to process events with the user plane, such as transmitting or routing data packets, detecting data packets, reporting traffic, processing quality of service (QoS), legal monitoring, and storing downlink data packets.
  • events such as transmitting or routing data packets, detecting data packets, reporting traffic, processing quality of service (QoS), legal monitoring, and storing downlink data packets.
  • QoS quality of service
  • the UDM network element 304 may be used to store user subscription data and the like.
  • DN40 can be, for example, operator services, Internet access, or third-party services.
  • the above 5G network may also include other network elements, such as a policy control function (PCF) network element, a network slice selection function (NSSF) network element, and a network storage function (network storage). function (NRF) network element, or authentication service function (AUSF) network element, etc., which is not specifically limited in this application.
  • PCF policy control function
  • NSSF network slice selection function
  • AUSF authentication service function
  • the communication equipment involved in FIG. 1 such as the terminal, access network equipment, AMF network element, SMF network element, UPF network element, and UDM network element is only a name, and the name does not constitute a limitation on the device itself.
  • these network elements may also be other names, that is, network elements having the same or similar functions, which are not specifically limited in the embodiments of the present application.
  • the AMF network element may be replaced with an AMF or an AMF entity, etc.
  • the SMF network element may be replaced with an SMF or an SMF entity, etc., which are collectively described herein, and are not described in detail below.
  • the RRC states of the terminal include: RRC connected state, RRC deactivated state, and RRC idle state.
  • N3 is an abbreviation for Interface 3 of the next generation network (N)
  • N3 is an interface between an access network device and a UPF network element.
  • the terminal When the terminal is in the RRC deactivated state, the DRB channel between the terminal and the access network device is released, but the N3 data channel between the access network device and the UPF network element is retained.
  • the terminal When the terminal is in the RRC deactivated state, data cannot be transmitted between the terminal and the DN.
  • the terminal When the terminal is in the RRC idle state, the DRB channel between the terminal and the access network device, and the N3 data channel between the access network device and the UPF network element are released. When the terminal is in the RRC idle state, data cannot be transmitted between the terminal and the DN.
  • the access network device when the access network device determines that the terminal has no data transmission, it triggers setting the terminal to an RRC deactivated state or an RRC idle state. Specifically: if the terminal has the ability to be in the RRC deactivated state, and during the registration process or service request process, the AMF network element sends auxiliary information to the access network device, and the auxiliary information is used by the access network device to trigger the The terminal is set to the RRC deactivated state. When the terminal has no data transmission, the access network device triggers the terminal to be set to the RRC deactivated state.
  • the AMF network element does not send the above auxiliary information to the access network device, then When the terminal has no data to transmit, the access network device triggers the terminal to be set to the RRC idle state.
  • no data transmission by the terminal may refer to that the terminal does not receive data sent by the terminal to the DN within a preset period of time, and / or that the terminal does not receive data sent by the DN to the terminal within the preset time, this application The examples do not limit this.
  • the access network device may set the preset time period by setting a timing duration of an inactivation timer.
  • the above example is only an example of setting the terminal to the RRC deactivated state or the RRC idle state, and does not limit the specific implementation manner of setting the terminal to the RRC deactivated state or the RRC idle state provided in the embodiments of the present application.
  • whether the terminal has the capability of being in the RRC deactivated state may be stored in the terminal's subscription data, or may be reported by the terminal to the network-side network element.
  • the AMF network element can sense or not sense whether the terminal has the capability of being in the RRC deactivated state. If the AMF senses whether the terminal has the capability of being in the RRC deactivated state, the capability may be specifically reported by the terminal to the AMF network element, or may be obtained by the AMF network element according to the terminal's subscription information, etc. This embodiment of the present application does not address this. Limitation.
  • the access network device can sense whether the terminal has the capability of being in an RRC deactivated state. This capability may be specifically reported by the terminal to the access network device or may be notified by the AMF network element to the access network device. This application implements Examples do not limit this.
  • the access network device determines that the terminal has data transmission, it triggers the terminal to be set from the RRC deactivated state to the RRC connected state.
  • the terminal is in the RRC idle state, if the access network device determines that the terminal has data transmission, it triggers setting the terminal from the RRC idle state to the RRC connected state.
  • the access network device allocates RNA to the terminal, so that when the access network device receives the data sent by the DN to the terminal, it pages the terminal within the RNA range of the terminal. If the terminal removes the RNA from the terminal, the terminal triggers the RNA update; or, if the terminal's RNA update timer expires, it triggers periodic RNA RNA update.
  • the RNA update will cause the access network device to trigger a path switch interaction process with the AMF network element (that is, the process of information exchange between the access network device and the AMF network element), which will increase the AMF network element's Signaling processing load.
  • terminals that frequently update RNA may include: terminals with shorter RNA update timers, for example, the duration of the RNA update timer is shorter than the periodic update registration area timer (periodic update timer) set by the core network element. Duration, or a terminal with a smaller RNA range, or a terminal with a higher mobile rate. It can be understood that when the terminal is in an idle state, the access network device does not allocate RNA to the terminal, and therefore, it does not trigger the RNA update.
  • the terminal when the terminal is in the RRC idle state, the protocol data unit (PDU) session initiated by the terminal is in an inactive state. If the terminal has mobile-oriented (MO) data (such as data or signaling) transmission, the terminal initiates a service request process to activate a PDU session.
  • the terminal when the terminal is in the RRC idle state, the terminal may periodically perform registration area update (RAU). These will increase the signaling processing load of the AMF network element. Especially for a terminal that frequently recovers the N3 data channel between the access network device and the UPF network element, the signaling processing load of the AMF network element will be increased significantly. Understandably, when the terminal enters the RRC deactivated state from the RRC deactivated state, the DRB channel between the terminal and the access network device is restored, and the N3 data channel between the access network device and the UPF network element is not restored.
  • RAU registration area update
  • the embodiments of the present application provide an overload control method and device, which specifically include: when the AMF network element is overloaded, setting the RRC state of the terminal according to the characteristic information of the terminal, thereby effectively alleviating the overload of the AMF network element.
  • the characteristic information of the terminal includes: the terminal's movement rate, the frequency with which the terminal sends and receives data, the frequency at which the terminal switches between the RRC connected state and the RRC deactivated state, the cell switching frequency of the terminal, the frequency of the terminal initiating RNA updates, A movement trajectory of the terminal, or a movement range of the terminal. among them:
  • the moving speed of a terminal refers to the distance the terminal moves in a unit time. If the terminal is in the RRC deactivated state, the faster the terminal moves, the greater the frequency of the terminal's RNA update, which will increase the signaling processing load of the AMF network element.
  • the frequency at which the terminal sends and receives data refers to the number of times the terminal sends and receives data per unit time.
  • the frequency at which the terminal sends and receives data may be the frequency at which the terminal receives data, or the frequency at which the terminal sends data, or the frequency at which the terminal receives and sends data. If the terminal is in the RRC idle state, the higher the data transmission and reception rate of the terminal, the more frequently the N3 data channel between the access network device and the UPF network element will be restored, which will cause the signal processing load of the AMF network element to be increased. Bigger.
  • the frequency at which the terminal switches between the RRC connected state and the RRC deactivated state refers to the number of times the terminal switches between the RRC connected state and the RRC deactivated state in a unit time. The higher the frequency at which the terminal switches between the RRC connected state and the RRC deactivated state, the more the N3 data channel recovery frequency between the access network device and the UPF network element will increase, which will cause the signaling processing load of the AMF network element Bigger.
  • the frequency at which the terminal switches between the RRC connected state and the RRC deactivated state may be replaced by the frequency at which the terminal switches between the connection management (CM) connection state and the CM idle state.
  • CM connection management
  • the cell switching frequency of the terminal that is, the switching frequency of the cell in which the terminal is located. It is understandable that the terminal may cause a handover in a cell where the terminal is located due to the location movement. The higher the cell switching frequency of the terminal, the faster the terminal is and the larger the mobile range. If the terminal is in the RRC deactivated state, the frequency of the terminal's RNA update may be higher, which will make the AMF network element's information Make the processing load larger. If the cell before handover and the cell after handover are managed by different access network devices (such as a base station), the cell handover frequency of the terminal can also be considered as the handover frequency of the access network device.
  • the frequency of terminal-initiated RNA updates refers to the number of times that terminals initiate RNA updates in a unit time. For example, each time the terminal removes the RNA from the terminal, an RNA update is triggered.
  • the movement trajectory of the terminal refers to the trajectory generated by the terminal due to movement.
  • the terminal is a public transport (such as a car or a train)
  • the movement trajectory of the terminal is the driving route of the public transport. Since the access network device can allocate RNA to the terminal according to the movement trajectory of the terminal, this helps to reduce the frequency of the terminal switching the RNA update.
  • the AMF network element allocates a band-shaped RNA covering the terminal's moving trajectory to the terminal. It can be seen that the movement trajectory of the terminal can be used to characterize the frequency of RNA updates, which may affect the signaling processing load of the AMF network element.
  • the movement range of the terminal refers to the range where the terminal is located during the movement.
  • the terminal can directly or indirectly reflect (or affect) the frequency of the terminal's RNA update, or can directly or indirectly reflect (or affect) the access.
  • the information of the restoration frequency of the N3 data channel between the network device and the UPF network element may be used as the "characteristic information of the terminal" described in the embodiment of the present application.
  • the characteristic information of the terminal may be obtained according to at least one of historical terminal information of the terminal and subscription information of the terminal.
  • the acquisition of characteristic information of the terminal may be implemented by an access network device.
  • the access network device may be based on the historical record information of the terminal and the core network element (such as an AMF network element) sent by the access network device.
  • At least one of history information of the terminal and contract information of the terminal acquires characteristic information of the terminal.
  • the characteristic information of the terminal may be obtained by an AMF network element.
  • the AMF network element may be based on the historical record information of the terminal and the historical record information of the terminal reported by the access network device based on the AMF network element.
  • at least one of the contract information of the terminal to obtain characteristic information of the terminal. among them:
  • the historical record information of the terminal may include at least one of the following: terminal location information, terminal movement time information, terminal movement rate, terminal RNA range, terminal initiated RAU information, terminal cell switching information, and terminal transmission and reception data. Frequency information, RRC state or CM state where the terminal is in history, terminal movement track information, terminal movement range information, etc.
  • the subscription information of the terminal may include a qualitative description of the type of the terminal.
  • the terminal may be a high-speed mobile terminal; if the terminal is meter reading, the terminal may be a stationary terminal; if the terminal is a monitoring device, the terminal has a fixed frequency of sending data / Period, the terminal may be a high-frequency data transmission terminal; if the terminal is a train, the terminal has a fixed trajectory, so the terminal may be a terminal of a preset trajectory type.
  • the terminal is an enterprise terminal, the terminal is in the enterprise When moving within the campus, the terminal can be a terminal belonging to a preset range because the terminal has a fixed / restricted mobile range.
  • the terminal if the characteristic information of the terminal satisfies the first preset condition, the terminal is set from the RRC connected state or the RRC deactivated state to the RRC idle state.
  • the process of setting the RRC connected state or the RRC deactivated state to the RRC idle state may be triggered by an access network device, or may be triggered by an AMF network element. Specific examples can refer to the following.
  • the characteristic information of the terminal meeting the first preset condition may include at least one of the following: the terminal's movement rate is greater than or equal to the first preset threshold; the frequency of the terminal's sending and receiving data is less than or equal to the second preset threshold; the terminal is connected in RRC The frequency of transition between the state and the RRC deactivated state is less than or equal to the third preset threshold; the cell switching frequency of the terminal is greater than or equal to the fourth preset threshold; the frequency of the terminal initiating the RNA update is greater than or equal to the fifth preset threshold; the terminal The movement track of is not a preset movement track; or, the terminal movement range is greater than or equal to the preset range. From the analysis above, it can be known that this embodiment helps to reduce the overload of the AMF network element.
  • the terminal if the characteristic information of the terminal satisfies the second preset condition, the terminal is set from the RRC connected state to the RRC deactivated state.
  • the process of setting the RRC connected state to the RRC idle state may be triggered by an access network device, or may be triggered by an AMF network element. Specific examples can refer to the following.
  • the characteristic information of the terminal satisfies the second preset condition includes at least one of the following: the mobile speed of the terminal is less than the first preset threshold; the frequency of data transmission and reception by the terminal is greater than the second preset threshold; the terminal deactivates in the RRC connection state and RRC The frequency of transitions between states is greater than the third preset threshold; the cell switching frequency of the terminal is less than the fourth preset threshold; the frequency of the RNA update initiated by the terminal is less than the fifth preset threshold; the movement trajectory of the terminal is the preset movement trajectory; or, The moving range of the terminal is smaller than the preset range.
  • This embodiment helps the specific analysis process of alleviating the overload of the AMF network element, which can be inferred based on the description above, and will not be repeated here. From the analysis above, it can be known that this embodiment helps to reduce the overload of the AMF network element.
  • the embodiments of the present application do not limit the specific values of the first preset threshold, the second preset threshold, the third preset threshold, the fourth preset threshold, and the fifth preset threshold. For example, it can be determined according to actual requirements (such as the degree of control over overload of AMF network elements, etc.).
  • the preset moving track may be a fixed driving route of a terminal (such as a car, a train, etc.).
  • the preset range may be a terminal RNA, where the RNA may include one or more cells, or one or more tracking areas (TA).
  • the type of the terminal when the characteristic information of the terminal satisfies the first preset condition, the type of the terminal may be considered to be the first preset type.
  • the type of the terminal when the characteristic information of the terminal satisfies the second preset condition, the type of the terminal may be considered as the second preset type.
  • the first preset type may be a high-speed mobile type.
  • the second preset type may be a low-speed movement type.
  • the first preset type may be a mobile type.
  • the second preset type may be a stationary type (or a fixed type).
  • the first preset type may be a low-frequency sending and receiving data type.
  • the second preset type may be a high-frequency sending and receiving data type.
  • the first preset type may be the RRC state switching frequency Infrequent (or infrequent) type.
  • the second preset threshold may be the RRC state transition frequency of Frequent (or highly frequent) type.
  • the first preset type may be a type in which the cell switching frequency is frequent (or highly frequent).
  • the second preset type may be a cell switching frequency of infrequent (or infrequent).
  • the first preset type may be a type in which the frequency of RNA updates is frequent (or highly frequent).
  • the second preset type may be a type in which the frequency of the RNA update is infrequent (low frequent).
  • the first preset type may be a non-preset movement track type.
  • the first preset type may be the type of the preset movement trajectory.
  • the first preset type may be a non-preset range type. Accordingly, if the characteristic information of the terminal satisfies the second preset condition including the mobile range of the terminal and the mobile range of the terminal is a preset range, the first preset type may be a preset range type.
  • the first preset type may be High-speed mobile and low-frequency data type.
  • the second preset type may be low-speed movement and high-frequency transceiver type of data. Other examples are not listed one by one.
  • a terminal entering an RRC idle state from an RRC connected state or an RRC deactivated state may be implemented through an access network release (AN release) process.
  • AN release access network release
  • FIG. 2 it is a schematic diagram of an AN release process applicable to the embodiment of the present application. It can include the following steps:
  • the access network device sends an N2 terminal context release request (N2 UE context release request) message to the AMF network element.
  • the N2 terminal context release request message is used to request to release the context of the terminal.
  • the N2 terminal context release request message may include identification information of the terminal, for example, NG-RAN UE NGAP ID or NG-RAN UE N2-AP ID.
  • NG-RAN UENG ID is the terminal next-generation application protocol (NGAP) identification assigned by the next-generation access network equipment
  • NG-RAN UE N2-AP ID is the terminal assigned by the next-generation access network equipment Next-generation N2 interface application protocol identification.
  • the AMF network element releases the context of the terminal according to the N2 terminal context release request message, and then sends an N2 terminal context release command (N2 UE context release command) to the access network device.
  • the access network device releases the access network connection between the access network device and the terminal according to the N2 terminal context release command (that is, the DRB channel between the access network device and the terminal is released).
  • the N2 terminal context release command that is, the DRB channel between the access network device and the terminal is released.
  • N2 UE context release complete N2 UE context release complete
  • the AMF network element sends an update session management context (Nsmf_PDUSession_UpdateSMContext) message to the SMF network element.
  • the update session management context message is used by the SMF network element to deactivate the terminal's PDU session.
  • the SMF network element sends an N4 session modification request (N4 session modification request) message to the UPF network element.
  • N4 session modification request N4 session modification request
  • the UPF network element deletes the AN channel information (Tunnel Info of the AN) of the PDU session of the terminal according to the N4 session modification request message, and sends an N4 session modification response (N4 session modification response) message to the SMF network element.
  • AN channel information Tunnel Info of the AN
  • N4 session modification response N4 session modification response
  • the SMF network element sends an update session management context (Nsmf_PDUSession_UpdateSMContext) message to the UPF network element.
  • Nsmf_PDUSession_UpdateSMContext update session management context
  • the foregoing S201 to S208 may be performed. If it is triggered by the AMF network element to set the terminal in the RRC connected state or the RRC deactivated state to the RRC idle state, the above S202 to S208 may be performed.
  • the method may further include: the access network device paging the terminal, so that the terminal is connected Go to the access network device or another access network device, and then perform S203 by the connected access network device.
  • the access network device may not page the terminal, but delete the context information of the terminal (at this time, the RRC state of the terminal recorded in the access network device is the RRC idle state), and the next time the terminal connects to When accessing network equipment, the terminal sends an RRC connection restoration request message to the access network equipment.
  • the access network equipment After receiving the RRC connection restoration request, the access network equipment sends an RRC connection restoration failure message to the terminal; after the terminal receives the RRC connection restoration failure message To change the RRC state of the terminal to the RRC idle state.
  • a terminal entering an RRC deactivated state from an RRC connected state may be implemented through an RRC connection release process.
  • FIG. 3 it is a schematic diagram of an RRC connection release process applicable to the embodiment of the present application. It can include the following steps:
  • the access network device sends an RRC connection release message to the terminal.
  • the RRC connection release message is used to instruct the terminal to be set to the RRC deactivated state.
  • S302 The terminal releases the DRB channel between the terminal and the access network device according to the RRC connection release message.
  • the access and mobility management network elements described in the embodiments of this application can be used for connection management, mobility management, registration management, access authentication and authorization, reachability management, security context management, and SMF
  • the selection of the network element may be, for example, the AMF network element 301 in FIG. 1.
  • the access network device described in the embodiment of the present application may be the access network device 20 in FIG. 1, and the terminal described in this application may specifically be the terminal 10 in FIG. 1.
  • FIG. 4A a schematic diagram of an overload control method according to an embodiment of the present application is shown.
  • the method shown in FIG. 4A may include the following steps:
  • the AMF network element sends instruction information to the access network device, and the instruction information is used to indicate that the AMF network element is overloaded.
  • Step S401 may include or be replaced by: when the AMF network element determines that it is overloaded, it sends instruction information to the access network device, or when the AMF network element is overloaded, it sends instruction information to the access network device.
  • This embodiment of the present application does not limit how the AMF network element determines that it is overloaded. For example, when the computing processing resource occupancy rate of the AMF network element is greater than or equal to a preset threshold (for example, 99%), it is determined that it is overloaded.
  • a preset threshold for example, 99%
  • the indication information is an overload start (overload start) message, of course, this application is not limited thereto.
  • the indication information is further used to instruct a terminal that triggers setting of characteristic information that meets the first preset condition to an RRC idle state, that is, instructs an access network device to trigger setting of a terminal that meets the characteristic information of the first preset condition to RRC. Idle state.
  • the indication information is further used to instruct a terminal that triggers setting the characteristic information to meet the second preset condition to the RRC deactivated state, that is, instruct the access network device to trigger setting the terminal that has the characteristic information to meet the second preset condition to RRC deactivated.
  • the access network device receives the instruction information.
  • the access network device When the first terminal is in the RRC connected state or the RRC deactivated state, the access network device triggers the first terminal to be set to the RRC idle state according to the instruction information and the characteristic information of the first terminal; or When a terminal is in the RRC connected state, the access network device triggers setting the first terminal to the RRC deactivated state according to the instruction information and the characteristic information of the first terminal.
  • step S403A can be replaced with “and” without limitation.
  • the "first” in the “first terminal” does not limit the terminal itself, and may refer to a certain terminal or any terminal without limitation.
  • For the process of setting the first terminal to the RRC idle state refer to the method shown in FIG. 2, for example, by performing S201 to S208.
  • the triggering of the access network device to set the first terminal to the RRC idle state may be implemented by executing S201.
  • For setting the first terminal to the RRC deactivated state refer to the method shown in FIG. 3, for example, by performing S301 to S302.
  • the triggering of the access network device to set the first terminal to the RRC idle state may be implemented by executing S301.
  • the access network device may determine that the AMF network element is overloaded according to the instruction information. For example, the access network device may determine that the AMF network element is overloaded by identifying that the received message is an overload start message. The access network device identifies whether a message is an overload start message, which has been described in detail in the prior art, and is not repeated here.
  • the access network device can be used to manage the RRC state of the first terminal, and therefore, the access network device can determine whether the first terminal is in an RRC connected state or an RRC deactivated state.
  • the access network device triggering setting the first terminal to the RRC idle state according to the indication information and the characteristic information of the first terminal may include: when the characteristic information of the first terminal meets a first preset condition , The access network device triggers the first terminal to be set to the RRC idle state according to the instruction information; or the access network device triggers to set the first terminal whose characteristic information meets the first preset condition to be the RRC idle state according to the instruction information. Or the access network device determines that the characteristic information of the first terminal satisfies a first preset condition according to the instruction information, and triggers setting the first terminal device to an RRC idle state.
  • the access network device triggers setting the first terminal whose characteristic information meets the first preset condition to the RRC idle state according to the indication information.
  • the access network device triggers setting the first terminal whose characteristic information meets the first preset condition to the RRC idle state according to the indication information.
  • the access network device determines that the AMF network element is overloaded according to the instruction information, the access The network device triggers setting the first terminal to an RRC idle state.
  • the instruction information can be used as a trigger condition to trigger execution of subsequent actions without limitation.
  • the access network device in a case where the indication information is further used to instruct a terminal that triggers setting of characteristic information that meets a first preset condition to an RRC idle state, the access network device according to the instruction information and the characteristic information of the first terminal Triggering the first terminal to be set to the RRC idle state, including: the access network device determines that the characteristic information of the first terminal meets the first preset condition according to the instruction information, and triggers the first terminal device to be set to the RRC idle state state.
  • the access network device when the first terminal is in the RRC connected state or the RRC deactivated state in S403A, the access network device triggers the first terminal to be set to the RRC idle state according to the instruction information and the characteristic information of the first terminal.
  • the access network device determines that the AMF network element is overloaded according to the instruction information, if the first terminal has no data transmission (If there is no data transmission within the preset time period), the access network device triggers setting the first terminal to the RRC idle state.
  • the access network device triggering setting the first terminal to the RRC deactivated state according to the indication information and the characteristic information of the first terminal may include: when the characteristic information of the first terminal meets a second preset condition When the access network device triggers the first terminal to be set to the RRC deactivated state according to the instruction information; or, the access network device triggers the first terminal whose characteristic information meets the second preset condition to be set as The RRC deactivated state; or, based on the instruction information, the access network device determines that the characteristic information of the first terminal meets a second preset condition, and triggers the first terminal to be set to the RRC deactivated state.
  • the access network device when the first terminal is in an RRC connection state, the characteristic information of the first terminal satisfies a second preset condition, and the access network device determines that the AMF network element is overloaded, the access network device triggers setting the first terminal Deactivated for RRC.
  • the instruction information can be used as a trigger condition to trigger execution of subsequent actions without limitation.
  • the access network device in a case where the instruction information is further used to instruct a terminal that triggers setting of characteristic information that meets a second preset condition to an RRC deactivated state, the access network device according to the instruction information and the characteristic of the first terminal Information, triggering the first terminal to be set to the RRC deactivated state, including: according to the instruction information, the access network device determines that the characteristic information of the first terminal meets a second preset condition, and triggers setting the first terminal device to RRC deactivated.
  • the access network device triggers to set the first terminal whose characteristic information meets the first preset condition to the RRC idle state according to the instruction information.
  • the access network device triggers to set the first terminal whose characteristic information meets the first preset condition to the RRC idle state according to the instruction information.
  • the access network device when the first terminal is in the RRC connected state in S403A, the access network device triggers the first terminal to be set to the RRC deactivated state according to the instruction information and the characteristic information of the first terminal, and is replaced by: When the first terminal is in the RRC connection state, the characteristic information of the first terminal meets the second preset condition, and the access network device determines that the AMF network element is overloaded according to the instruction information, if the first terminal has no data transmission (such as a preset time) There is no data transmission in the segment), the access network device triggers setting the first terminal to the RRC deactivated state.
  • the manner in which the access network device obtains the characteristic information of the terminal, and the characteristic information of the terminal meeting the first preset condition or the second preset condition, refer to the foregoing.
  • the embodiment of the present application determines the RRC status of the first terminal for the access network device, determines that the characteristic information of the first terminal meets the first preset condition or the second preset condition, and the access network device receives the instruction for indicating
  • the order of the AMF network element overload indication information is not limited. For example, these steps can be performed simultaneously or sequentially.
  • the access network device may first determine whether the characteristic information of the terminal meets the first preset condition or the second preset condition (for example, first determine whether the type of the terminal is the first preset type or the second preset type according to the characteristic information of the terminal. ), And then, after receiving the indication information for indicating the overload of the AMF network element, determine the RRC state of the terminal.
  • the RRC state of the terminal is set according to the characteristic information of the terminal.
  • FIG. 4B a schematic diagram of an overload control method according to an embodiment of the present application is shown.
  • the embodiment shown in FIG. 4B can be considered as a specific example of the embodiment shown in FIG. 4A.
  • the method shown in FIG. 4B may include the following steps:
  • S401B The AMF network element sends instruction information to the access network device.
  • the indication information is used to indicate that the AMF network element is overloaded.
  • the indication information is further used to instruct a terminal that triggers the feature information to meet the first preset condition to be set to the RRC idle state, and / or to trigger a terminal that sets the feature information to meet the second preset condition to be the RRC deactivated state.
  • the step S401B may include or be replaced by: when the AMF network element is overloaded, the AMF network element sends instruction information to the access network device.
  • the indication information may be a message for instructing the terminal that triggers the feature information to satisfy the first preset condition to be set to the RRC idle state, and / or for instructing the trigger that the feature information meets the second preset condition.
  • the information that the conditional terminal is set to the RRC deactivated state may be a cell in the message.
  • the message may be an overload start message, which is used to instruct the terminal that triggers the feature information to meet the first preset condition to be set to the RRC idle state, and / or is used to instruct the trigger that the feature information meets the second preset condition.
  • the information that the terminal is set to the RRC deactivated state may be a cell in the overload start message.
  • the indication information is used to indicate that the AMF network element is overloaded, and the indication information is also used to instruct to trigger setting of the first preset type terminal to the RRC idle state.
  • the indication information includes the first preset type, and is used to instruct to trigger setting the terminal of the first preset type to an RRC idle state.
  • the first preset type may include at least one of the following: high-speed movement type, low-frequency data transmission and reception type, RRC state transition frequency is infrequent type, cell switching frequency is frequent type, RNA update frequency is frequent type, and non-preliminary Set the movement track type or non-preset range type.
  • the indication information is used to indicate that the AMF network element is overloaded, and the indication information is also used to instruct to trigger setting of the second preset type terminal to the RRC deactivated state.
  • the indication information includes the second preset type to instruct to trigger setting the terminal of the second preset type to an RRC deactivated state, where the second preset type may include at least one of the following: a low-speed movement type, The type of high-frequency transmission and reception data, the frequency of RRC state transitions are frequent, the frequency of cell switching is infrequent, the frequency of RNA updates is infrequent, the preset movement track type, or the preset range type.
  • S402B The access network device receives the instruction information.
  • the access network device triggers, according to the instruction information, to set a terminal whose characteristic information meets a preset condition to a corresponding RRC state.
  • Step S403B may specifically include one of the following situations:
  • Case 1 If the indication information is used to instruct the terminal that triggers the feature information to meet the first preset condition to be set to the RRC idle state, the access network device triggers the terminal that sets the feature information to meet the first preset condition to be set to The RRC idle state, for example, triggers setting a first terminal whose characteristic information meets a first preset condition to the RRC idle state.
  • Case 2 If the indication information is used to instruct the terminal that triggers the feature information to meet the second preset condition to be set to the RRC deactivated state, the access network device triggers the terminal setting that sets the feature information to meet the second preset condition according to the indication information.
  • the RRC deactivated state is triggered, for example, a first terminal that triggers setting characteristic information to meet a second preset condition is set to the RRC deactivated state.
  • Case 3 If the indication information is used to trigger the terminal whose characteristic information satisfies the first preset condition to be set to the RRC idle state, and the terminal whose characteristic information satisfies the second preset condition is set to the RRC deactivated state, the access network The device triggers, according to the instruction information, a terminal whose characteristic information meets the first preset condition to be set to the RRC idle state; and triggers, according to the instruction information, to set a terminal whose characteristic information meets the second preset condition to the RRC deactivated state.
  • triggering, according to the instruction information, to set the terminal whose characteristic information meets the first preset condition to the RRC idle state may include: determining, according to the instruction information, the terminal whose characteristic information satisfies the first predetermined condition, and then setting the determined characteristic information to the first A terminal with a preset condition is set to the RRC idle state.
  • triggering the terminal whose characteristic information satisfies the second preset condition to be RRC deactivated according to the instruction information may include determining the terminal whose characteristic information satisfies the second preset condition according to the instruction information, and then satisfying the determined characteristic information The terminal with the second preset condition is set to the RRC deactivated state.
  • the manner in which the access network device obtains the characteristic information of the terminal, the characteristic information satisfies the first preset condition or the second preset condition, and the determination of the overload of the AMF network element according to the instruction information may refer to the above.
  • the RRC state of the terminal is set according to the characteristic information of the terminal.
  • the information used to indicate that the AMF network element is overloaded and the information used to indicate that the RRC status of the trigger setting terminal is the same information are used as an example for description.
  • the information used to indicate the overload of the AMF network element and the information used to indicate the RRC status of the trigger setting terminal may be two independent pieces of information, and the two pieces of information may be carried in the same message or differently as cells. In the message, or any one of the two messages may be a message.
  • the information used to indicate the RRC status of the trigger setting terminal may include information (hereinafter referred to as information 1) and / or information used to trigger the setting of the terminal whose characteristic information meets the first preset condition to the RRC idle state. It is triggered that the terminal whose characteristic information satisfies the second preset condition is set as RRC deactivated information (hereinafter referred to as information 2). If the information used to indicate the RRC status of the trigger setting terminal includes the foregoing information 1 and information 2, the information 1 and information 2 may be the same information, or may be two independent information. If the two pieces of information are independent, the two pieces of information may be carried as cells in the same message or in different messages, or any one of the two pieces of information may be a message.
  • information 1 and information 2 may be the same information, or may be two independent information. If the two pieces of information are independent, the two pieces of information may be carried as cells in the same message or in different messages, or any one of the two pieces of information may be a message.
  • the AMF network element sends information to the access network device to indicate that the AMF network element is overloaded.
  • the AMF network element may not send information to the access network device to indicate that the AMF network element is overloaded.
  • the specific scheme can be shown in Figure 4C.
  • FIG. 4C a schematic diagram of an overload control method according to an embodiment of the present application is shown.
  • the method shown in FIG. 4C may include the following steps:
  • the instruction information is used to instruct a terminal that triggers the feature information to meet the first preset condition to be set to the RRC idle state, and / or to trigger a terminal that sets the feature information to meet the second preset condition to be the RRC deactivated state.
  • Step S401C may include: the AMF network element determines that an overload occurs according to the load information of the AMF network element; and after determining that the overload occurs, sends the instruction information to the access network device.
  • S402C ⁇ S403C Please refer to the above S402B ⁇ S403B.
  • FIG. 5 it is a schematic diagram of an overload control method according to an embodiment of the present application.
  • the method shown in FIG. 5 may include the following steps:
  • the AMF network element sends the first instruction information to the access network device according to the characteristic information of the terminal.
  • the first indication information is used to instruct the access network device to trigger the terminal to be set to an RRC idle state or an RRC deactivated state when the AMF network element is overloaded.
  • the first indication information is used to instruct the access network device to set the terminal to an RRC idle state when the AMF network element is overloaded.
  • the first indication information is used to instruct the access network device to trigger the terminal to be set to an RRC deactivated state when the AMF network element is overloaded.
  • the manner in which the AMF network element obtains the characteristic information of the terminal and the characteristic information of the terminal satisfying the first preset condition or the second preset condition may refer to the foregoing.
  • the first indication information may have an association relationship with the terminal.
  • the association between the first instruction information and the terminal is achieved by associating any one or more information included in the first instruction information with the terminal, and the first instruction information in this example may not include the identifier of the terminal. information.
  • the first indication information includes identification information of the terminal to achieve an association between the first indication information and the terminal.
  • the first indication information may be a message or a cell in the message, which is not limited in the embodiment of the present application. In addition, the embodiment of the present application does not limit what kind of information the first indication information includes.
  • the first indication information may include the type of the terminal (such as the first preset type or the second preset type) to instruct the terminal to be set to RRC.
  • the idle state is also the RRC deactivated state.
  • the first indication information when the type of the terminal included in the first indication information is the first preset type, it is used to instruct the access network device to set the terminal to the RRC idle state when the AMF network element is overloaded; or, when the first indication information When the type of the included terminal is the second preset type, it is used to instruct the access network device to trigger the terminal to be set to the RRC deactivated state when the AMF network element is overloaded.
  • the first indication information may include a binary number "1" to instruct the trigger to set the terminal to the RRC idle state, and include a binary number "0" to instruct the trigger to set the terminal to the RRC deactivated state.
  • this application is not limited to this.
  • the embodiment of the present application does not limit which messages are carried in the first indication information for transmission.
  • the access network device receives the first indication information from the AMF network element.
  • the AMF network element sends the second instruction information to the access network device.
  • the second indication information is used to indicate that the AMF network element is overloaded.
  • the AMF network element may send the second instruction information to the access network device when it determines that it is overloaded, for example, the second instruction information may be an overload start message.
  • the access network device receives the second indication information from the AMF network element.
  • S501-S502 can be executed first and then S503-S504 can also be executed.
  • S503-S504 can be executed before S501-S502.
  • S503 to S504 are performed during the execution of S501 to S502, or S501 to S502 are performed during the execution of S503 to S504.
  • the access network device when the terminal is in an RRC connected state or an RRC deactivated state, and the first indication information is used to instruct the access network device to trigger the terminal to be set to the AMF when the AMF is overloaded.
  • the access network device In the RRC idle state, if the terminal has no data transmission (for example, there is no data transmission within a preset time period), the access network device triggers the terminal to be configured to the RRC idle state after determining that the second instruction information is received.
  • step S505 when the terminal is in the RRC connected state, and the first indication information is used to instruct the access network device to trigger the terminal to be set to the RRC deactivated state when the AMF is overloaded. If the terminal has no data transmission (such as no data transmission within a preset period of time), the access network device triggers the terminal to be configured to the RRC idle state after determining that the second instruction information is received.
  • the first instruction information is used to instruct the access network device to trigger the terminal to be set to an RRC idle state or an RRC deactivated state when the AMF network element is overloaded and the terminal has no data transmission.
  • the first indication information is used to instruct the access network device: when the AMF network element is overloaded and the terminal has no data transmission, triggering the terminal to be set to the RRC idle state.
  • the first indication information is used to instruct the access network device: when the AMF network element is overloaded and the terminal has no data transmission, triggering the terminal to be set to the RRC deactivated state .
  • the two branches in S505 can be replaced with the above two implementations respectively.
  • the AMF network element sends instruction information to the access network device according to the characteristic information of the terminal, and when the access network device determines that the AMF network element is overloaded, the terminal is set to RRC according to the instruction information. Idle or RRC deactivated.
  • This technical solution helps alleviate the overload of AMF network elements.
  • the specific analysis process can refer to the above.
  • the common features of the embodiments shown in FIG. 4A and FIG. 5 may include: the AMF network element indicates that the AMF network element is overloaded to the access network device; and the access network device triggers the The terminal is set to a specific RRC state.
  • the differences between the two may include: the embodiment shown in FIG. 4A is determined by the access network device to set the terminal to a specific RRC state according to the characteristic information of the terminal; the embodiment shown in FIG. 5 is performed by an AMF network element According to the characteristic information of the terminal, it is determined that the terminal is set to a specific RRC state and then instructed to the access network device. It can be seen that, compared with the embodiment shown in FIG. 5, the embodiment shown in FIG. 4A can further reduce the overload of the AMF network element.
  • FIG. 6 it is a schematic diagram of an overload control method according to an embodiment of the present application.
  • the method shown in FIG. 6 may include the following steps:
  • the AMF network element obtains the RRC status information of the terminal from the access network device.
  • the RRC state information is used to indicate the RRC state of the terminal (for example, an RRC connected state, an RRC deactivated state, or an RRC idle state).
  • the AMF network element sends a request message to the access network device, where the request message is used to request to obtain the current RRC status of the terminal.
  • the access network device may reply a response message to the AMF network element, where the response message carries the RRC status information of the terminal.
  • the request message may be a UE state transition notification request (UE state transition notification request) message
  • the response message may be a terminal notification (UE notification) message.
  • UE state transition notification request UE state transition notification request
  • UE notification terminal notification
  • the AMF network element When the AMF network element is overloaded and the RRC status information indicates that the terminal is in the RRC connected state or the RRC deactivated state, the AMF network element triggers the terminal to be set to the RRC idle state according to the characteristic information of the terminal; or, when the AMF When the network element is overloaded and the RRC status information indicates that the terminal is in the RRC connected state, the AMF network element triggers the terminal to be set to the RRC deactivated state according to the characteristic information of the terminal.
  • setting the terminal to the RRC idle state may refer to the method provided in FIG. 2, for example, by implementing S202 to S208.
  • the AMF network element triggers setting the terminal to the RRC idle state, which is implemented by executing S202.
  • triggering the AMF network element to set the terminal to the RRC deactivated state can be implemented by the AMF network element sending instruction information to the access network device.
  • the instruction information is used to instruct the access network device to perform S301 in FIG. 3.
  • Setting the terminal to the RRC deactivated state can refer to the method provided in FIG. 3, for example, it is implemented by executing the AMF network element to send the instruction information to the access network device, and S301 to S302.
  • the AMF network element triggers setting the terminal to the RRC idle state according to the characteristic information of the terminal, including: when the characteristic information of the terminal meets the first preset condition, the AMF network element triggers setting the terminal to the RRC idle state .
  • the AMF network element triggers setting the terminal to an RRC deactivated state according to the characteristic information of the terminal, including: when the characteristic information of the terminal meets a second preset condition, the AMF network element triggers setting the terminal to an RRC deactivation Active state.
  • the manner in which the AMF network element obtains the characteristic information of the terminal, the characteristic information of the terminal satisfies the first preset condition or the second preset condition, and the AMF network element determines its own overload and other related content can refer to the above. .
  • This embodiment of the present application does not limit the order in which the AMF network element obtains the RRC state of the terminal, the AMF network element determines that the terminal's characteristic information meets the first preset condition or the second preset condition, and the AMF network element determines that its own overload. For example, these steps can be performed simultaneously or sequentially. For example, the AMF network element may first determine that the characteristic information of the terminal meets the first preset condition or the second preset condition (that is, first determine whether the type of the terminal is the first preset type or the second preset type according to the characteristic information of the terminal), After determining that it is overloaded, obtain the RRC status of the terminal from the access network device.
  • the AMF network element performing the AMF can obtain the current RRC state of the terminal one or more times, such as periodically or triggering the current RRC state of the terminal, so that the current When the AMF network element is overloaded, the RRC state of the terminal obtained by the AMF network element last time is the current actual RRC state of the terminal, thereby implementing overload control of the AMF network element.
  • an AMF network element obtains an RRC state of a terminal from an access network device, and when it overloads itself, triggers the terminal to be set to an RRC idle state according to the RRC state and characteristic information of the terminal. Or RRC deactivated.
  • This technical solution helps alleviate the overload of AMF network elements.
  • the specific analysis process can refer to the above.
  • FIG. 7 it is a schematic diagram of an overload control method according to an embodiment of the present application.
  • the method shown in FIG. 7 may include the following steps:
  • the instruction information is used to instruct the access network device to trigger the terminal to be set to an RRC idle state or an RRC deactivated state.
  • the indication information may be carried in a UE context modification request (UE context modification request) message, of course, this application is not limited thereto.
  • the indication information is used to instruct the access network device to set the terminal to an RRC idle state when the AMF network element is overloaded.
  • the indication information is used to instruct the access network device to trigger the terminal to be set to the RRC deactivated state when the AMF network element is overloaded.
  • the indication information is used to instruct the access network device to trigger the terminal to be set to an RRC idle state or an RRC deactivated state when the terminal has no data transmission.
  • the manner in which the AMF network element obtains the characteristic information of the terminal, the characteristic information of the terminal satisfies the first preset condition or the second preset condition, and the AMF network element determines its own overload and other related content can refer to the above. .
  • This embodiment of the present application does not limit the execution order of the AMF network element to determine that it is overloaded, and determine that the indication information is specifically used to instruct the access network device to trigger the terminal to set the terminal to the RRC idle state or the RRC deactivated state according to the characteristic information of the terminal. For example, they can be executed simultaneously or sequentially.
  • the AMF network element may first determine that the indication information is specifically used to instruct the access network device to trigger the terminal to be set to the RRC idle state or the RRC deactivated state according to the characteristic information of the terminal, and then to the access network device when it determines that it is overloaded Send the determined instructions.
  • the access network device receives the indication information from the AMF network element.
  • the terminal when the terminal does not send data, the terminal can be in an RRC connected state or an RRC deactivated state.
  • the AMF network element sends instruction information to the access network device according to the characteristic information of the terminal. After receiving the instruction information, the access network device triggers the terminal to be triggered according to the instruction information. Set to RRC idle or RRC deactivated.
  • the access network device may not know that the AMF network element is overloaded.
  • the differences between the two may include:
  • the AMF network element first obtains the RRC status of the terminal, and then determines to set the terminal to a specific RRC status according to the RRC status of the terminal and the characteristic information of the terminal.
  • the AMF network element does not know the RRC state of the terminal, but determines to set the terminal with certain characteristic information to a specific RRC state according to the characteristic information of the terminal, and then instructs the access to the access.
  • the access network equipment determines, according to the terminal's current RRC status and the indication, to set the terminal to a characteristic RRC status. It can be seen that, compared with the embodiment shown in FIG. 6, the embodiment shown in FIG. 7 can further reduce the overload of the AMF network element.
  • FIG. 8 it is a schematic diagram of an overload control method according to an embodiment of the present application.
  • the method shown in FIG. 8 may include the following steps:
  • S801 The terminal sends a request message to the AMF network element.
  • the request message may include a registration request (service request) message or a service request (service request) message.
  • the terminal in the RRC idle state sends the request message to the AMF network element. Specifically, the terminal in the RRC idle state sends the request message to the AMF network element via the access network device.
  • the terminal when the terminal is in the RRC idle state, if the terminal transmits data (such as the terminal sends data to or receives data from the DN), the terminal sends a registration request message to the AMF network element to trigger the registration process. Or send a service request message to the AMF network element to trigger the service request process, etc., thereby setting the terminal to the RRC connected state.
  • the terminal When the terminal has no data transmission, the terminal is set from the RRC connected state to the RRC deactivated state or the RRC idle state.
  • the terminal when the terminal has the capability in the RRC deactivated state, the terminal is set from the RRC connected state to the RRC deactivated state; when the terminal does not have the capability in the RRC deactivated state, the terminal is connected by the RRC deactivated state. Set to RRC idle.
  • S802 The AMF network element receives the request message from the terminal.
  • the AMF network element When the AMF network element is overloaded and the type of the terminal is the first preset type, the AMF network element sends instruction information to the access network device according to the request message (for example, after receiving the request information).
  • the indication information is used to indicate that the terminal is not allowed (or cannot be) triggered to set the terminal to an RRC deactivated state.
  • the indication information is used to instruct to trigger setting the terminal to an RRC idle state.
  • the embodiment of this application does not limit the sequence of receiving the request message from the terminal by the AMF network element, determining that it is overloaded, and determining that the type of the terminal is the first preset type. For example, they can be performed simultaneously or sequentially.
  • the access network device receives the indication information from the AMF network element.
  • the access network device triggers the terminal to be set to the RRC idle state according to the instruction information.
  • the access network device triggering the terminal to be set to the RRC idle state refer to the foregoing.
  • the terminal when the terminal has no data transmission, the terminal may be in an RRC connected state or an RRC deactivated state.
  • S805 includes: the access network device determines that the terminal is not allowed to enter the RRC deactivated state according to the instruction information.
  • the access network device triggers the terminal to be set to the RRC idle state according to the instruction information.
  • the instruction information can be implemented in any of the following ways:
  • the indication information is an N2 message, and the N2 message does not include auxiliary information.
  • the auxiliary information is used to trigger the access network device to set the terminal to an RRC deactivated state.
  • the N2 message is a message in the registration process and the service request process. If the N2 message does not include auxiliary information, the access network device cannot trigger the terminal to be set to the RRC deactivated state. That is, in this method, no matter whether the terminal has the capability of being in an RRC deactivated state, when the AMF network element is overloaded, if the request process or the service request process is performed, the N2 message does not include auxiliary information.
  • Method 2 The indication information is carried in an N2 message.
  • the indication information may be a type of the terminal (that is, a first preset type).
  • S805 may include: the access network device determines that the terminal is not allowed to enter the RRC deactivated state according to the type of the terminal (that is, the first preset type); when the terminal has no data transmission, the access network device triggers the The terminal is set to the RRC idle state.
  • the N2 message may further include (or carry) auxiliary information.
  • the access network device determines that the terminal has no data transmission, the access network device can trigger the terminal to be set to the RRC deactivated state without the need to interact with the AMF network through signaling The meta gets this auxiliary information, so it is helpful to save signaling overhead.
  • the AMF network element when the AMF network element receives the registration request message or the service request message, determines that it is overloaded, and the type of the terminal is the first preset type, it sends instruction information to the access network device,
  • the indication information is used for triggering the indication that the terminal is not allowed (or cannot be) triggered to set the terminal to the RRC deactivated state.
  • FIG. 9 it is a schematic diagram of an overload control method according to an embodiment of the present application.
  • the method shown in FIG. 9 includes the following steps:
  • S901 to S902 Reference may be made to the above S801 to S802, of course, this application is not limited to this.
  • the instruction information is used to indicate that the terminal is allowed (or can be) triggered to be set to the RRC deactivation state.
  • the embodiment of the present application does not limit the sequence of receiving the request message from the terminal by the AMF network element, determining that it is overloaded, and determining that the type of the terminal is the second preset type. For example, they can be performed simultaneously or sequentially.
  • the access network device receives the indication information from the AMF network element.
  • the access network device triggers the terminal to be set to the RRC deactivated state according to the instruction information.
  • the implementation process of the access network device triggering the terminal to be set to the RRC deactivated state can refer to the above.
  • the indication information may be carried in an N2 message.
  • the indication information may be a type of the terminal (that is, a second preset type).
  • S905 includes: the access network device determines to allow the terminal to enter the RRC deactivated state according to the instruction information; when the terminal has no data transmission, the access network device triggers the terminal to be set to the RRC deactivated state.
  • the N2 message may further include (or carry) auxiliary information.
  • the access network device determining that the terminal is allowed to enter the RRC deactivated state according to the instruction information may include: the access network device determining to allow the terminal according to the type of the terminal (that is, the second preset type) and auxiliary information. The terminal enters the RRC deactivated state.
  • the AMF network element when the AMF network element receives the registration request message or the service request message, determines that it is overloaded, and the type of the terminal is the second preset type, it sends instruction information to the access network device.
  • the indication information is used to indicate that the terminal is allowed (or can be) triggered to set the terminal to an RRC deactivated state. Therefore, it helps to reduce the overload of AMF network elements.
  • the AMF network element after the AMF network element sends auxiliary information to the access network device, whether to trigger the terminal to be set to the RRC deactivated state is determined by the access network device itself. How to determine the prior art specifically No specific implementation is given in.
  • the common points of the embodiments shown in FIG. 8 and FIG. 9 may include: In the process of establishing a connection between a terminal and a network device (such as an access network device, etc.), the AMF network element is based on the characteristics of the terminal. Information to indicate to the access network device whether it is allowed to trigger the terminal to be set to the RRC deactivated state. The differences between the two may include: In the embodiment shown in FIG. 8, when the type of the terminal is the first preset type, the AMF network element indicates to the access network device that it is not allowed to trigger the terminal to be set to the RRC deactivated state. In the embodiment shown in FIG. 9, when the type of the terminal is the second preset type, the AMF network element instructs the access network device to allow triggering to set the terminal to the RRC deactivated state.
  • the access and mobility management network element such as an AMF network element
  • the access network device include a hardware structure and / or a software module corresponding to each function.
  • the embodiments of this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the functional units of the access and mobility management network element and the access network device may be divided according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more of them may be divided
  • the functions are integrated in one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 10 shows a possible exemplary block diagram of a device involved in the embodiment of the present application.
  • the device 1000 may exist in the form of software, hardware, or a combination of software and hardware.
  • FIG. 10 shows a possible schematic block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1000 may include a processing unit 1002 and a transceiving unit 1003; or, the apparatus 1000 may include a transceiving unit 1003.
  • the processing unit 1002 may be used to control and manage the actions of the device.
  • the transceiver unit 1003 may be used to support communication between the device and other devices.
  • the device 1000 may further include a storage unit 1001, and the storage unit 1001 may be used to store program codes and data of the device 1000.
  • the apparatus 1000 shown in FIG. 10 may be an access and mobility management network element or an access network device involved in the embodiment of the present application, and may also be an access and mobility management network element or a chip or on-chip on the access network device. system.
  • the processing unit 1002 can support the device 1000 to perform the actions performed by the AMF network element in the foregoing method embodiments.
  • the transceiver unit 1003 can support communication between the device 1000 and an access network device or terminal.
  • the transceiver unit 1003 may be configured to send instruction information to the access network device, where the instruction information is used to indicate that the access and mobility management network element is overloaded, and trigger the feature information to meet the first preset condition.
  • the terminal is set to the RRC idle state.
  • the transceiver unit 1003 may be used to execute a branch of S401.
  • the transceiver unit 1003 may be configured to send instruction information to the access network device, where the instruction information is used to indicate that the access and mobility management network element is overloaded, and trigger the feature information to meet the second preset condition.
  • the terminal is set to the RRC deactivated state.
  • the transceiver unit 1003 may be used to execute another branch of S401.
  • the transceiver unit 1003 may be configured to send the first indication information to the access network device according to the characteristic information of the terminal, and the first indication information may be used to instruct the access network device to perform access and mobility management.
  • the terminal When the network element is overloaded, the terminal is set to the RRC idle state or the RRC deactivated state.
  • the transceiver unit 1003 may be used to execute S501.
  • the first indication information when the characteristic information of the terminal meets the first preset condition, the first indication information may be used to instruct the access network device to trigger the terminal to be set to an RRC idle state when the access and mobility management network element is overloaded.
  • the first indication information may be used to instruct the access network device to trigger the terminal to be set to an RRC deactivated state when the access and mobility management network element is overloaded.
  • the transceiver unit 1003 may be configured to obtain RRC status information of the terminal from an access network device.
  • the processing unit 1002 may be configured to trigger the terminal to be set to the RRC idle state according to the characteristic information of the terminal when the access and mobility management network element is overloaded and the RRC state information indicates that the terminal is in the RRC connected state or the RRC deactivated state; or When the access and mobility management network element is overloaded and the RRC status information indicates that the terminal is in the RRC connected state, triggering the terminal to be set to the RRC deactivated state according to the characteristic information of the terminal.
  • the transceiver unit 1003 may be used to execute S601, and the processing unit 1002 may be used to execute S602.
  • the processing unit 1002 may be specifically configured to: when the characteristic information of the terminal meets the first preset condition, trigger setting the terminal to an RRC idle state.
  • the processing unit 1002 may be specifically configured to: when the characteristic information of the terminal meets a second preset condition, trigger the terminal to be set to an RRC deactivated state.
  • the transceiver unit 1003 may be configured to send indication information to the access network device according to the characteristic information of the terminal when the access and mobility management network element is overloaded, where the indication information may be used to indicate access
  • the network device triggers setting the terminal to the RRC idle state or the RRC deactivated state.
  • the transceiver unit 1003 may be used to execute S701.
  • the indication information may be used to instruct the access network device to trigger the terminal to be set to the RRC idle state when the access and mobility management network element is overloaded.
  • the indication information may be used to instruct the access network device to trigger the terminal to be set to the RRC deactivated state when the access and mobility management network element is overloaded.
  • the transceiver unit 1003 may be configured to receive a request message from the terminal, where the request message includes a registration request message or a service request message; and when the access and mobility management network element is overloaded, and the type of the terminal is In the first preset type, the first instruction information is sent to the access network device according to the request message, and the first instruction information may be used to indicate that setting the terminal to the RRC deactivated state is not allowed to be triggered.
  • the transceiver unit 1003 may be used to execute S802 and S803.
  • the transceiver unit 1003 may be further configured to: when the access and mobility management network element is overloaded and the type of the terminal is the second preset type, send the second instruction information to the access network device according to the request message.
  • the second indication information may be used to indicate that it is allowed to trigger the terminal to be set to the RRC idle state.
  • the transceiver unit 1003 may be configured to execute S902 and S903.
  • the processing unit 1002 can support the apparatus 1000 to perform the actions performed by the access network device in the foregoing method embodiments.
  • the transceiver unit 1003 can support communication between the device 1000 and an access and mobility management network element or terminal.
  • the transceiver unit 1003 may be configured to receive indication information from the access and mobility management network element, and the indication information may be used to indicate that the access and mobility management network element is overloaded.
  • the processing unit 1002 may be configured to trigger the first terminal to be set to the RRC idle state according to the indication information and the characteristic information of the first terminal when the first terminal is in the RRC connected state or the RRC deactivated state; or, when the first terminal is in the RRC idle state; or When in the RRC connected state, triggering the first terminal to be set to the RRC deactivated state according to the indication information and the characteristic information of the first terminal.
  • the transceiver unit 1003 may be used to execute S402A
  • the processing unit 1002 may be used to execute S403A.
  • the processing unit 1002 may be specifically configured to: when the characteristic information of the first terminal meets a first preset condition, trigger the setting of the first terminal to an RRC idle state according to the indication information. Further optionally, the indication information is further used to instruct a terminal that triggers setting the characteristic information to meet a first preset condition to an RRC idle state. In this case, the processing unit 1002 may be further configured to determine, according to the instruction information, a terminal whose characteristic information meets the first preset condition; wherein a terminal whose characteristic information meets the first preset condition includes the first terminal. For example, in conjunction with FIG. 4B, the processing unit 1002 may be used to perform the steps in case 1 in S403B.
  • the processing unit 1002 may be specifically configured to: when the characteristic information of the first terminal meets the second preset condition, trigger the setting of the first terminal to the RRC deactivated state according to the instruction information. Further optionally, the indication information is also used to instruct a terminal that triggers setting characteristic information to meet a second preset condition to an RRC deactivated state. In this case, the processing unit 1002 may be further configured to determine, according to the instruction information, a terminal whose characteristic information meets the second preset condition; wherein a terminal whose characteristic information meets the second preset condition includes the first terminal. For example, in conjunction with FIG. 4B, the processing unit 1002 may be used to execute the steps in case 2 in S403B.
  • the transceiver unit 1003 may be configured to receive first indication information from the access and mobility management network element; and receive second indication information from the access and mobility management network element.
  • the indication information may be used to indicate that the access and mobility management network element is overloaded.
  • the processing unit 1002 may be used when the terminal is in an RRC connected state or an RRC deactivated state, and the first indication information may be used to instruct an access network device to trigger setting the terminal to RRC idle when the access and mobility management network element is overloaded When the terminal is in the RRC idle state according to the second instruction information; or when the terminal is in the RRC connected state, and the first instruction information may be used to instruct the access network device to overload the access and mobility management network element When the terminal is set to the RRC deactivated state when triggered, the terminal is set to the RRC deactivated state according to the second instruction information.
  • the transceiver unit 1003 may be used to execute S502 and S504, and the processing unit 1002 may be used to execute S505.
  • the transceiver unit 1003 may be configured to receive indication information sent by the access and mobility management network element.
  • the processing unit 1002 may be configured to trigger the setting of the terminal to the RRC idle state when the indication information can be used to instruct the trigger to set the terminal to the RRC idle state; or when the indication information can be used to indicate the trigger
  • the terminal is set to the RRC deactivated state, when the terminal has no data transmission, the terminal is set to the RRC deactivated state.
  • the transceiver unit 1003 may be used to execute S702, and the processing unit 1002 may be used to execute S703.
  • the transceiver unit 1003 may be configured to receive first indication information sent by the access and mobility management network element, and the first indication information may be used to indicate that the terminal is not allowed to enter the RRC deactivated state.
  • the processing unit 1002 may be configured to trigger the terminal to be set to an RRC idle state according to the first instruction information when the terminal has no data transmission.
  • the transceiver unit 1003 may be used to execute S804, the processing unit may be used to execute S805, and the first instruction information may specifically be the instruction information in FIG. 8.
  • the first indication information is carried in the first N2 message, and the first indication information is the type of the terminal; the processing unit 1002 may be specifically configured to: according to the type of the terminal, determine that the terminal is not allowed to enter the RRC deactivated state; in When the terminal has no data transmission, it triggers setting the terminal to the RRC idle state.
  • the transceiver unit 1003 may be further configured to receive second instruction information sent by the access and mobility management network element, and the second instruction information may be used to indicate that the terminal is allowed to enter an RRC deactivated state.
  • the processing unit 1002 may be further configured to trigger the terminal to be set to an RRC deactivated state according to the second instruction information when the terminal has no data transmission. For example, in conjunction with FIG.
  • the transceiver unit 1003 may be used to execute S904, the processing unit may be used to execute S905, and the second instruction information may specifically be the instruction information in FIG. 9.
  • the second indication information is carried in a second N2 message, and the second N2 message further includes auxiliary information, and the second indication information is a type of the terminal; the auxiliary information may be used by an access network device to trigger the terminal to be set to RRC The deactivated state; the processing unit 1002 may be specifically configured to: determine that the terminal is allowed to enter the RRC deactivated state according to the type of the terminal and the auxiliary information; and trigger the setting of the terminal to the RRC deactivated state when the terminal has no data transmission.
  • the processing unit 1002 may be a processor or a controller.
  • the processing unit 1002 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (application).
  • the processor may also be a combination that realizes computing functions, for example, a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transceiver unit 1003 may be a communication interface, which is a collective term. In a specific implementation, the communication interface may include one or more interfaces.
  • the storage unit 1001 may be a memory.
  • the processing unit 1002 is a processor
  • the transceiver unit 1003 is a communication interface
  • the storage unit 1001 is a memory
  • the device 1000 involved in the embodiment of the present application may be the device 1100 shown in FIG. 11.
  • the apparatus 1100 includes a processor 1102 and a communication interface 1103. Further, the apparatus 1100 may further include a memory 1101. Optionally, the device 1100 may further include a bus 1104. The communication interface 1103, the processor 1102, and the memory 1101 may be connected to each other through a bus 1104.
  • the bus 1104 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA). ) Bus and so on.
  • the bus 1104 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor 1102 can execute various functions of the device 1100 by running or executing a program stored in the memory 1101.
  • the apparatus 1100 shown in FIG. 11 may be an AMF network element or an access network device involved in the embodiment of the present application.
  • the processor 1102 may execute or execute a program stored in the memory 1101 to perform actions performed by the AMF network element in the foregoing method embodiments.
  • the processor 1102 can execute the actions performed by the access network device in the foregoing method embodiments by running or executing a program stored in the memory 1101.
  • An embodiment of the present application further provides an overload control system.
  • the overload control system may include access and mobility management network elements, and access network equipment.
  • the access and mobility management network element may be used to perform the steps performed by the AMF network element in FIG. 4A, and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 4A, and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform steps performed by the AMF network element in FIG. 4B, and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 4B, and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform the steps performed by the AMF network element in FIG. 4C, and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 4C, and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform the steps performed by the AMF network element in FIG. 5 and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 5 and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform steps performed by the AMF network element in FIG. 6 and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 6 and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform the steps performed by the AMF network element in FIG. 7 and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 7 and / or other steps described in the embodiments of the present application.
  • the overload control system may further include a terminal.
  • the access and mobility management network element may be used to perform steps performed by the AMF network element in FIG. 8 and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 8 and / or other steps described in the embodiments of the present application.
  • the terminal may be used to perform steps performed by the terminal in FIG. 8 and / or other steps described in the embodiments of the present application.
  • the access and mobility management network element may be used to perform the steps performed by the AMF network element in FIG. 9 and / or other steps described in the embodiments of the present application.
  • the access network device may be configured to perform steps performed by the access network device in FIG. 9 and / or other steps described in the embodiments of the present application.
  • the terminal may be used to perform steps performed by the terminal in FIG. 9 and / or other steps described in the embodiments of the present application.
  • the steps of the method or algorithm described in connection with the disclosure of the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner that a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only memory (erasable (programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, mobile hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may be located in an access and mobility management network element or an access network device.
  • the processor and the storage medium may also exist as discrete components in an access and mobility management network element or an access network device.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了过载控制方法和装置,涉及通信技术领域,有助于缓解接入和移动性管理网元(如AMF网元)过载。该方法可以包括:接入网设备接收来自接入和移动性管理网元的指示信息,指示信息用于指示接入和移动性管理网元过载;当终端处于RRC连接态或RRC去激活态时,接入网设备根据该指示信息以及该终端的特征信息,触发将该终端设置为RRC空闲态;或,当终端处于RRC连接态时,接入网设备根据该指示信息以及该终端的特征信息,触发将该终端设置为RRC去激活态。

Description

过载控制方法和装置
本申请要求于2018年07月03日提交国家知识产权局、申请号为201810717591.2、申请名称为“过载控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及过载控制方法和装置。
背景技术
在第五代(5rd generation,5G)网络架中,接入与移动性管理功能(access and mobility management function,AMF)网元可能因发送或接收的信令较多等原因导致过载(overload),AMF网元过载时,会造成网络整体性能较差。因此,需要提供有效的过载控制方法。
发明内容
本申请实施例提供了过载控制方法和装置,有助于缓解接入和移动性管理网元(如AMF网元)过载。
第一方面,本申请实施例提供了一种过载控制方法,包括:接入网设备接收来自接入和移动性管理网元的指示信息,指示信息用于指示接入和移动性管理网元过载;当第一终端处于无线资源控制(radio resource control,RRC)连接态或RRC去激活态时,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC空闲态;或,当第一终端处于RRC连接态时,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC去激活态。可见,本申请实施例提供了在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。由于终端处于不同RRC状态时,接入和移动性管理网元的信令处理负载不同,因此,结合终端的特征信息设置终端的RRC状态,有助于缓解接入和移动性管理网元过载。例如,当终端处于RRC去激活态时,可能会触发无线接入网通知区域(RAN notification area,RNA)更新(mobility RAN notification area update)。并且,相比低速移动类型的终端,高速移动类型的终端可能更频繁地触发RNA更新,因此接入和移动性管理网元的信令处理负载较大。因此,结合终端的特征信息,合理设置终端的RRC状态,即可缓解接入和移动性管理网元过载。
例如,接入和移动性管理网元可以是5G网络架构中的AMF网元,接入网设备可以是5G网络架构中的接入网络(access network,AN)设备或无线接入网络(radio access network,RAN)设备。
例如,指示信息可以是过载启动(overload start)消息。当然本申请不限于此。
例如,触发将终端设置为RRC空闲态,可以是指触发将终端设置为RRC空闲态的流程。例如,该流程可以是接入网释放(AN release)流程。该终端包括第一终端。
例如,触发将终端设置为RRC去激活态,可以是指触发将终端设置为RRC去激 活态的流程。例如,该流程可以是RRC连接释放流程。该终端包括第一终端。
在一种可能的设计中,终端的特征信息可以包括以下至少一项:终端的移动速率、终端收发数据的频率、终端在RRC连接态与RRC去激活态之间转换的频率、终端的小区切换频率、终端发起RNA更新的频率、终端的移动轨迹、或终端的移动范围等。该终端包括第一终端。可以理解的,这些特征均可以直接或间接反映(或影响)终端的RNA更新的频率,和/或接入网设备与用户面功能(user plane function,UPF)网元之间的N3数据通道的恢复频率,从而影响接入和移动性管理网元的信令处理负载。具体分析过程可以参考下文具体实施方式部分。
在一种可能的设计中,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC空闲态,可以包括:当第一终端的特征信息满足第一预设条件时,接入网设备根据指示信息触发将第一终端设置为RRC空闲态。该可能的设计给出了结合终端的特征信息将终端的RRC状态设置为RRC空闲态,从而缓解接入和移动性管理网元过载的方案。具体可以分析过程可以参考下文具体实施方式部分。
在一种可能的设计中,第一终端的特征信息满足第一预设条件可以包括以下至少一项:第一终端的移动速率大于或等于第一预设门限;第一终端收发数据的频率小于或等于第二预设门限;第一终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;第一终端的小区切换频率大于或等于第四预设门限;第一终端发起RNA更新的频率大于或等于第五预设门限;第一终端的移动轨迹不是预设移动轨迹;或,第一终端移动范围大于或等于预设范围。
在一种可能的设计中,指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态。
基于该可能的设计,可选的,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC空闲态,包括:接入网设备根据指示信息,确定第一终端的特征信息满足第一预设条件;并触发将该第一终端设置为RRC空闲态。该可选的实现方式中,接入网设备在接入和移动性管理网元的指示下,确定特征信息满足第一预设条件的终端。
例如,该指示信息可以是overload start消息,用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态可以是overload start消息中的信元,该信元可以包括终端的类型,来指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态,其中,该类型可以包括以下至少一种:高速移动类型、低频收发数据类型、RRC状态转换频率为非频繁类型、小区切换频率为频繁类型、RNA更新的频率为频繁类型、非预设移动轨迹类型、或非预设范围类型。
在一种可能的设计中,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC去激活态,可以包括:当第一终端的特征信息满足第二预设条件时,接入网设备根据指示信息触发将第一终端设置为RRC去激活态。该可能的设计给出了结合终端的特征信息将终端的RRC状态设置为RRC去激活态,从而缓解接入和移动性管理网元过载的具体实现方式。具体可以分析过程可以参考下文具体实施方式部分。
在一种可能的设计中,第一终端的特征信息满足第二预设条件可以包括以下至少 一项:第一终端的移动速率小于第一预设门限;终端收发数据的频率大于第二预设门限;第一终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;第一终端的小区切换频率小于第四预设门限;第一终端发起RNA更新的频率小于第五预设门限;第一终端的移动轨迹是预设移动轨迹;或,第一终端的移动范围小于预设范围。
在一种可能的设计中,指示信息还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
基于该可能的设计,可选的,接入网设备根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC去激活态包括:接入网设备根据指示信息,确定第一终端的特征信息满足第二预设条件;并触发将第一终端设置为RRC去激活态。该可选的实现方式中,接入网设备在接入和移动性管理网元的指示下,确定特征信息满足第二预设条件的终端。
例如,该指示信息可以是overload start消息,用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态可以是overload start消息中的信元,该信元可以包括终端的类型,来指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态,其中,该类型可以包括以下至少一种:低速移动类型、高频收发数据类型、RRC状态转换频率为频繁类型、小区切换频率为非频繁类型、RNA更新的频率为非频繁类型、预设移动轨迹类型、或预设范围类型。
第二方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元向接入网设备发送指示信息,指示信息用于指示接入和移动性管理网元过载,以及触发将特征信息满足第一预设条件的终端设置为RRC空闲态。其中,特征信息满足第一预设条件的具体实现方式可以参考上述第一方面,此处不再赘述。
第三方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元向接入网设备发送指示信息,指示信息用于指示接入和移动性管理网元过载,以及触发将特征信息满足第二预设条件的终端设置为RRC去激活态。其中,特征信息满足第二预设条件的具体实现方式可以参考上述第一方面,此处不再赘述。
第四方面,本申请实施例提供了一种过载控制方法,包括:接入网设备接收来自接入和移动性管理网元的第一指示信息;接入网设备接收来自接入和移动性管理网元的第二指示信息,第二指示信息用于指示接入和移动性管理网元过载;当终端处于RRC连接态或RRC去激活态,且第一指示信息用于指示接入网设备在接入和移动性管理网元过载时触发将终端设置为RRC空闲态时,接入网设备根据第二指示信息,触发将终端设置为RRC空闲态;或,当终端处于RRC连接态,且第一指示信息用于指示接入网设备在接入和移动性管理网元过载时触发将终端设置为RRC去激活态时,接入网设备根据第二指示信息触发将终端设置为RRC去激活态。该技术方案提供了另一种在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。
第五方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元根据终端的特征信息,向接入网设备发送第一指示信息,第一指示信息用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态或RRC去 激活态。该技术方案与第四方面提供的技术方案相对应。
在一种可能的设计中,当终端的特征信息满足第一预设条件时,第一指示信息用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态。
在一种可能的设计中,当终端的特征信息满足第二预设条件时,第一指示信息用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC去激活态。
第六方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元从接入网设备获得终端的RRC状态信息;当接入和移动性管理网元过载,且RRC状态信息指示终端处于RRC连接态或RRC去激活态时,接入和移动性管理网元根据终端的特征信息触发将终端设置为RRC空闲态;或,当接入和移动性管理网元过载,且RRC状态信息指示终端处于RRC连接态时,接入和移动性管理网元根据终端的特征信息触发将终端设置为RRC去激活态。该技术方案提供了另一种在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。
在一种可能的设计中,接入和移动性管理网元根据终端的特征信息触发将终端设置为RRC空闲态,可以包括:当终端的特征信息满足第一预设条件时,接入和移动性管理网元触发将终端设置为RRC空闲态。
在一种可能的设计中,接入和移动性管理网元根据终端的特征信息触发将终端设置为RRC去激活态,可以包括:当终端的特征信息满足第二预设条件时,接入和移动性管理网元触发将终端设置为RRC去激活态。
第七方面,本申请实施例提供了一种过载控制方法,包括:当接入和移动性管理网元过载时,接入和移动性管理网元根据终端的特征信息向接入网设备发送指示信息;其中,指示信息用于指示接入网设备触发将终端设置为RRC空闲态或RRC去激活态。该技术方案提供了另一种在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。
在一种可能的设计中,当终端的特征信息满足第一预设条件时,指示信息用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态。
在一种可能的设计中,当终端的特征信息满足第二预设条件时,指示信息用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC去激活态。
第八方面,本申请实施例提供了一种过载控制方法,包括:接入网设备接收接入和移动性管理网元发送的指示信息;当指示信息用于指示触发将终端设置为RRC空闲态时,接入网设备在终端没有数据传输时,触发将终端设置为RRC空闲态;或,当指示信息用于指示触发将终端设置为RRC去激活态时,接入网设备在终端没有数据传输时,触发将终端设置为RRC去激活态。该技术方案与第七方面提供的技术方案相对应。
第九方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元接收来自终端的请求消息,请求消息包括注册请求消息或服务请求消息;当接入和移动性管理网元过载,且终端的类型为第一预设类型时,接入和移动性管理网元根据请求消息,向接入网设备发送第一指示信息,第一指示信息用于指示不允许触发将终端设置为RRC去激活态。该技术方案提供了另一种在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。
在一种可能的设计中,第一指示信息为第一N2消息,第一N2消息不包括辅助 信息,辅助信息用于接入网设备触发将终端设置为RRC去激活态。N2是下一代接口2的简称。
在一种可能的设计中,第一指示信息携带在第一N2消息中。
在一种可能的设计中,第一指示信息携带在第一N2消息中,且第一指示信息为终端的类型。
在一种可能的设计中,第一预设类型的终端具有以下至少一项特征:移动速率大于或等于第一预设门限;收发数据的频率小于或等于第二预设门限;在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;小区切换频率大于或等于第四预设门限;发起无线接入网通知区域RNA更新的频率大于或等于第五预设门限;移动轨迹不是预设移动轨迹;或,移动范围大于或等于预设范围。
第十方面,本申请实施例提供了一种过载控制方法,包括:接入网设备接收接入和移动性管理网元发送的第一指示信息,第一指示信息用于指示不允许终端进入RRC去激活态;当终端没有数据传输时,接入网设备根据第一指示信息触发将终端设置为RRC空闲态。该技术方案与第九方面提供的技术方案相对应。
关于第一指示信息具体实现方式可以参考上述第九方面,此处不再赘述。
在一种可能的设计中,第一指示信息携带在第一N2消息中,且第一指示信息为终端的类型;接入网设备根据第一指示信息,在终端没有数据传输时,触发将终端设置为RRC空闲态,可以包括:接入网设备根据终端的类型,确定不允许终端进入RRC去激活态;在终端没有数据传输时,接入网设备触发将终端设置为RRC空闲态。
在一种可能的设计中,第一预设类型的终端具有以下至少一项特征:移动速率大于或等于第一预设门限;收发数据的频率小于或等于第二预设门限;在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;小区切换频率大于或等于第四预设门限;发起无线接入网通知区域RNA更新的频率大于或等于第五预设门限;移动轨迹不是预设移动轨迹;或,移动范围大于或等于预设范围。
第十一方面,本申请实施例提供了一种过载控制方法,包括:接入和移动性管理网元接收来自终端的请求消息,请求消息包括注册请求消息或服务请求消息;当接入和移动性管理网元过载且终端的类型为第二预设类型时,接入和移动性管理网元根据请求消息,向接入网设备发送第二指示信息,第二指示信息用于指示允许触发将终端设置为RRC去激活态。该技术方案提供了另一种在接入和移动性管理网元过载的情况下,根据终端的特征信息设置终端的RRC状态的技术方案。
在一种可能的设计中,第二指示信息携带在第二N2消息中,第二N2消息还包括辅助信息,且第二指示信息为终端的类型;其中,辅助信息用于接入网设备触发将终端设置为RRC去激活态。
在一种可能的设计中,第二预设类型的终端具有以下至少一项特征:移动速率小于第一预设门限;收发数据的频率大于第二预设门限;在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;小区切换频率小于第四预设门限;发起RNA更新的频率小于第五预设门限;移动轨迹是预设移动轨迹;或,移动范围小于预设范围。
第十二方面,本申请实施例提供了一种过载控制方法,包括:接入网设备接收接入和移动性管理网元发送的第二指示信息,第二指示信息用于指示允许终端进入RRC 去激活态;当终端没有数据传输时,接入网设备根据第二指示信息,触发将终端设置为RRC去激活态。该技术方案与第十一方面提供的技术方案相对应。
关于第二指示信息具体实现方式可以参考上述第十一方面,此处不再赘述。
在一种可能的设计中,第二指示信息携带在第二N2消息中,第二N2消息还包括辅助信息,且第二指示信息为终端的类型;辅助信息用于接入网设备触发将终端设置为RRC去激活态;接入网设备根据第二指示信息,在终端没有数据传输时,触发将终端设置为RRC去激活态,可以包括:接入网设备根据终端的类型和辅助信息,确定允许终端进入RRC去激活态;在终端没有数据传输时,接入网设备触发将终端设置为RRC去激活态。
在一种可能的设计中,第二预设类型的终端具有以下至少一项特征:移动速率小于第一预设门限;收发数据的频率大于第二预设门限;在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;小区切换频率小于第四预设门限;发起RNA更新的频率小于第五预设门限;移动轨迹是预设移动轨迹;或,移动范围小于预设范围。
需要说明的是,关于上述第二方面至第十二方面任一项描述的有益效果,以及相关特征的解释以及具体实现方式等均可以参考上述第一方面。例如,上述第五、六、七、九、十一方面中的终端的特征信息、终端的特征信息满足第一预设条件,以及终端的特征信息满足第二预设条件的相关内容的说明,均可以参考上述第一方面。
第十三方面,本申请实施例提供了一种过载控制装置。该装置可以用于执行上述第一方面提供的任一种方法。该装置具体可以是上述第一方面中描述的接入网设备。作为一个实例,该装置可以是芯片。
在一种可能的设计中,可以根据上述第一方面提供的方法对该装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在一种可能的设计中,该装置可以包括存储器和处理器,存储器用于存储程序代码,该程序代码被处理器执行时,使得上述第一方面提供的任一种方法被执行。
类似地,本申请实施例还提供了用于执行上述第二方面至第十二方面提供的任一种方法的过载控制装置。例如,若该装置是用于执行上述第四、八、十、十二方面提供的方法时,该装置可以是接入网设备,若该装置是用于执行上述二、三、五、六、七、九、十一任一方面提供的方法时,该装置可以是接入和移动性管理网元。
在一种可能的设计中,可以根据上述相应方面提供的方法对该装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在一种可能的设计中,该装置可以包括存储器和处理器,存储器用于存储程序代码,该程序代码被处理器执行时,使得上述相应方面提供的任一种方法被执行。
第十四方面,本申请实施例提供了一种处理装置,用以实现上述过载控制装置的功能,该处理装置包括处理器和接口;处理装置可以是一个芯片,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于处理器之外,独 立存在。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,所述程序代码包括用于执行第一方面至第十二方面提供的任一种方法的部分或全部步骤的指令。
本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面至第十二方面提供的任一种方法的部分或全部步骤。
本申请实施例还提供了过载控制系统,该系统可以包括:用于执行上述第一方面提供的方法的接入网设备;或者,用于执行上述第一方面提供的方法的接入网设备以及用于执行上述第二方面/第三方面提供的方法的接入和移动性管理网元;或者,用于执行上述第四方面提供的方法的接入网设备和用于执行上述第五方面提供的接入和移动性管理网元;或者,用于执行第六方面提供的方法的接入和移动性管理网元;或者,用于执行第七方面提供的方法的接入和移动性管理网元和用于执行第八方面提供的方法的接入网设备;或者,用于执行第九方面提供的方法的接入和移动性管理网元和用于执行第十方面提供的方法的接入网设备,或者,用于执行第十一方面提供的方法的接入和移动性管理网元和用于执行第十二方面提供的方法的接入网设备。
上述提供的任一种过载控制装置、处理装置、计算机可读存储介质、计算机程序产品等的具体实现方式及有益效果均可以参考上文第一方面,此处不再赘述。
附图说明
图1为可适用于本申请实施例的一种5G网络架构的示意图;
图2为可适用于本申请实施例的一种AN release流程的示意图;
图3为可适用于本申请实施例的一种RRC连接释放流程的示意图;
图4A为本申请实施例提供的过载控制方法的示意图一;
图4B为本申请实施例提供的过载控制方法的示意图二;
图4C为本申请实施例提供的过载控制方法的示意图三;
图5为本申请实施例提供的过载控制方法的示意图四;
图6为本申请实施例提供的过载控制方法的示意图五;
图7为本申请实施例提供的过载控制方法的示意图六;
图8为本申请实施例提供的过载控制方法的示意图七;
图9为本申请实施例提供的一种过载控制方法的示意图;
图10为本申请实施例中所涉及的一种装置的一种可能的示例性框图;
图11为本申请实施例中所涉及的一种装置的另一种可能的示例性框图。
具体实施方式
本申请中的术语“多个”是指两个或两个以上。本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中的术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请实施例提供的技术方案可以应用于无线通信系统中,该无线通信系统可以 是5G系统,或是未来的其他通信系统中。当然,该无线通信系统也可以是长期演进(long term evolution,LTE)系统、或LTE演进(LTE-Advanced,LTE-A)系统等。以无线通信系统是5G系统为例,如图1所示,为可适用本申请实施例的一种5G网络架构的示意图。
在图1中,5G网络架构可以包括:终端10、接入网设备20、核心网30,以及数据网络(data network,DN)40。其中,核心网30中的核心网网元(或称为核心网功能网元)可以包括:AMF网元301、会话管理功能(session management function,SMF)网元302、UPF网元303和统一数据管理(unified data management,UDM)网元304等。上述各个网元之间的连接可以为无线连接或有线连接,为了方便直观地表示各个网元之间的连接关系,图1中采用实线示意。
终端10可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)或中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。为方便描述,本申请中,将这些设备统称为终端(terminal)。
接入网设备20可以用于提供无线连接,位于终端10和核心网30之间。接入网设备20可以包括基站、演进型基站(evolved node base station,eNB)、下一代基站(next generation node base station,gNB)、新型无线电基站(new radio eNB)、宏基站、微基站、高频基站或发送和接收点(transmission and reception point,TRP)等设备。需要说明的是,下文中的接入网设备20可以理解为RAN中的网元,在此统一说明,下文不再赘述。
AMF网元301可以用于连接管理、移动性管理、注册管理、接入认证和授权、可达性管理、安全上下文管理以及SMF网元的选择等。
SMF网元302可以用于会话管理如会话的建立、修改和释放等、UPF的选择和控制、业务和会话连续性(service and session continuity)模式的选择以及漫游服务等。
UPF网元303可以用于处理与用户面的事件,例如传输或路由数据包、检测数据包、上报业务量、处理服务质量(quality of service,QoS)、合法监听、存储下行数据包等。
UDM网元304可以用于存储用户的签约数据等。
DN40,例如可以是运营商服务,互联网接入或第三方服务等。
可以理解的,上述5G网络还可能包括其他的网元,例如策略控制功能(policy control function,PCF)网元、网络切片选择功能(network slice selection function,NSSF)网元、网络存储功能(network repository function,NRF)网元、或认证服务功能(authentication server function,AUSF)网元等,本申请对此不作具体限定。
需要说明的是,图1中涉及的通信设备,如终端、接入网设备、AMF网元、SMF网元、UPF网元以及UDM网元等仅是一个名字,名字对设备本身不构成限定。在5G网络以及未来其它的网络中,这些网元还可以是其他的名字,即具备相同或相似功能的网元,本申请实施例对此不作具体限定。此外,本申请实施例中,AMF网元可以被替换为AMF或AMF实体等,SMF网元可以被替换为SMF或SMF实体等,在此进行统一说明,以下不再赘述。
为了方便理解本申请提供的技术方案,首先简单介绍本申请涉及的相关技术及术语。
终端的RRC状态包括:RRC连接态、RRC去激活态和RRC空闲态。
当终端处于RRC连接态时,该终端与接入网设备之间的数据无线承载(data radio bearer,DRB)通道,以及接入网设备与UPF网元之间的N3数据通道均已经建立。其中,N3是下一代网络(next generation,N)接口3的简称,N3是接入网设备与UPF网元之间的接口。在终端处于RRC连接态的情况下,该终端与DN之间可以传输数据(例如,终端向DN发送数据或者接收DN发送的数据)。
当终端处于RRC去激活态时,该终端与接入网设备之间的DRB通道被释放,但保留了接入网设备和UPF网元之间的N3数据通道。在终端处于RRC去激活态的情况下,该终端与DN之间不能传输数据。
当终端处于RRC空闲态时,该终端与接入网设备之间的DRB通道,以及接入网设备和UPF网元之间的N3数据通道均被释放。在终端处于RRC空闲态的情况下,该终端与DN之间不能传输数据。
作为一个示例,当接入网设备确定终端没有数据传输时,会触发将该终端设置为RRC去激活态或RRC空闲态。具体的:若终端具有处于RRC去激活态的能力,并且,在注册流程或服务请求流程中,AMF网元向接入网设备发送了辅助信息,该辅助信息用于接入网设备触发将该终端设置为RRC去激活态,则当终端没有数据传输时,接入网设备触发将该终端设置为RRC去激活态。若终端不具有处于RRC去激活态的能力,或者,终端具有处于RRC去激活态的能力,但是,在注册流程和服务请求流程中,AMF网元没有向接入网设备发送上述辅助信息,则当终端没有数据传输时,接入网设备触发将该终端设置为RRC空闲态。
其中,终端没有数据传输可以指的是,终端在预设时间段内没有接收到终端向DN发送的数据,和/或,终端在预设时间内没有接收到DN向终端发送的数据,本申请实施例对此不进行限定。其中,接入网设备可以通过设置去激活定时器(inactivate timer)的定时时长来设置该预设时间段。
上述示例仅为将终端设置为RRC去激活态或RRC空闲态的一种示例,其不对本申请实施例提供的将终端设置为RRC去激活态或RRC空闲态的具体实现方式构成限定。
需要说明的是,终端是否具有处于RRC去激活态的能力,可以是存储在终端的签约数据中的,或者可以是终端上报给网络侧网元的。当然本申请实施例不限于此。另外需要说明的是,AMF网元可以感知或不感知终端是否具有处于RRC去激活态的能力。如果AMF感知终端是否具有处于RRC去激活态的能力,则该能力具体可以是终 端上报给AMF网元的,也可以是AMF网元根据终端的签约信息等获得的,本申请实施例对此不进行限定。此外,接入网设备可以感知终端是否具有处于RRC去激活态的能力,该能力具体可以是终端上报给接入网设备的,也可以是AMF网元通知给接入网设备的,本申请实施例对此不进行限定。
在终端处于RRC去激活态的情况下,如果接入网设备确定终端有数据传输,则触发将该终端由RRC去激活态设置为RRC连接态。在终端处于RRC空闲态的情况下,如果接入网设备确定终端有数据传输,则触发将该终端由RRC空闲态设置为RRC连接态。
在一种示例中,当终端处于RRC去激活态时,接入网设备会为终端分配RNA,以便接入网设备接收到DN发送给终端的数据时,在终端的RNA范围内寻呼终端。若终端移出了该终端的RNA,则该终端触发RNA更新;或者,若终端的RNA更新定时器(RNA update timer)超时,则触发RNA周期性更新(periodic mobility RNA update)。RNA更新会导致接入网设备触发与AMF网元之间的路径切换(path switch)交互过程(即接入网设备与AMF网元之间进行信息交互的过程),这会增加AMF网元的信令处理负载。尤其对于RNA频繁更新的终端,如果处于RRC去激活态,则会更明显地增加AMF网元的信令处理负载。例如,RNA频繁更新的终端可以包括:RNA更新定时器的时长较短的终端例如RNA更新定时器的时长小于核心网网元设置的周期性更新注册区域的定时器(periodic registration area update timer)的时长,或者RNA范围较小的终端,或者移动速率较大的终端等。可以理解的,终端处于空闲态时,接入网设备不会为终端分配RNA,因此,不会触发RNA更新。
在另一种示例中,当终端处于RRC空闲态时,该终端发起建立的协议数据单元(protocol data unit,PDU)会话均处于非激活态。若终端有移动终端发起的(mobile oriented,MO)数据(如数据或信令)传输时,终端发起服务请求(service request)流程,以激活PDU会话。另外,当终端处于RRC空闲态时,终端可以周期性地执行注册区域更新(registration area update,RAU)。这些都会增加AMF网元的信令处理负载。尤其对于频繁恢复接入网设备与UPF网元之间的N3数据通道的终端来说,会更明显地增加AMF网元的信令处理负载。可以理解的,终端由RRC去激活态进入RRC去激活态的过程中,恢复终端与接入网设备之间的DRB通道,不恢复接入网设备与UPF网元之间的N3数据通道。
基于此,本申请实施例提供了一种过载控制方法和装置,具体包括:在AMF网元过载的情况下,根据终端的特征信息设置终端的RRC状态,从而有效缓解AMF网元过载。
可选的,终端的特征信息包括:终端的移动速率、终端收发数据的频率、终端在RRC连接态与RRC去激活态之间转换的频率、终端的小区切换频率、终端发起RNA更新的频率、所述终端的移动轨迹、或终端的移动范围。其中:
终端的移动速率,是指单位时间内终端移动的距离。如果终端处于RRC去激活态,则该终端的移动速率越快,该终端的RNA更新的频率会越大,这会使得AMF网元的信令处理负载越大。
终端收发数据的频率,是指单位时间内终端收发数据的次数。终端收发数据的频 率可以是终端接收数据的频率,或者终端发送数据的频率,或者终端接收数据和发送数据的频率。如果终端处于RRC空闲态,则该终端收发数据的速率越大,恢复接入网设备与UPF网元之间的N3数据通道的频率会越多,这会使得AMF网元的信令处理负载会越大。
终端在RRC连接态与RRC去激活态之间转换的频率,是指单位时间内终端在RRC连接态与RRC去激活态之间转换的次数。终端在RRC连接态与RRC去激活态之间转换的频率越高,接入网设备与UPF网元之间的N3数据通道的恢复频率会越多,这会使得AMF网元的信令处理负载越大。终端在RRC连接态与RRC去激活态之间转换的频率,可以替换为:终端在连接管理(connection management,CM)连接态与CM空闲态之间转换的频率。
终端的小区切换频率,即终端所在的小区的切换频率。可以理解的,终端因位置移动可能使得该终端所在的小区发生切换。终端的小区切换频率越高,说明该终端的速度越快且移动范围越大,如果该终端处于RRC去激活态,则可能使得该终端的RNA更新的频率越高,从而使得AMF网元的信令处理负载会越大。若切换前的小区与切换后的小区由不同接入网设备(如基站)管理,则终端的小区切换频率也可以认为是接入网设备的切换频率。
终端发起RNA更新的频率,是指单位时间内终端发起RNA更新的次数。例如,终端每次移出该终端的RNA,则触发一次RNA更新。
终端的移动轨迹,是指终端因移动而产生的轨迹。例如,若终端是公共交通工具(如汽车或火车等),则该终端的移动轨迹是该公共交通工具的行驶线路。由于接入网设备可以根据终端的移动轨迹为终端分配RNA,这样,有助于减少终端切换RNA更新的频率。例如,如果终端是汽车或火车,则AMF网元会为该终端分配覆盖该终端的移动轨迹的带状的RNA。由此可知,终端的移动轨迹可以用于表征RNA更新的频率,从而可能影响AMF网元的信令处理负载。
终端的移动范围,是指终端在移动过程中所处的位置所在的范围。终端的移动范围越大,该终端移出该终端的RNA的概率就越大,这会使得终端触发RNA更新,从而可能影响AMF网元的信令处理负载。
需要说明的是,上述列举的终端的特征信息仅为示例,实际实现时,终端的可以直接或者间接反映(或影响)终端的RNA更新的频率,或者可以直接或者间接反映(或影响)接入网设备与UPF网元之间的N3数据通道的恢复频率的信息,均可以作为本申请实施例中描述的“终端的特征信息”。
可选的,终端的特征信息可以是根据终端的历史记录信息和终端的签约信息中的至少一种获取的。该终端的特征信息的获取可以由接入网设备来实现,例如,接入网设备可以基于该接入网设备统计的该终端的历史记录信息、核心网网元(如AMF网元)发送的该终端的历史记录信息、该终端的签约信息中的至少一项,获取该终端的特征信息。再例如,该终端的特征信息的获取可以由AMF网元来实现,例如,AMF网元可以基于该AMF网元统计的该终端的历史记录信息、接入网设备上报的该终端的历史记录信息、该终端的签约信息中的至少一项,获取该终端的特征信息。其中:
终端的历史记录信息可以包括以下至少一项:终端的位置信息、终端移动的时间 信息、终端的移动速率、终端的RNA的范围、终端发起RAU的信息、终端的小区切换信息、终端收发数据的频率信息、终端历史所处的RRC状态或CM状态、终端的移动轨迹信息、终端的移动范围信息等。
终端的签约信息可以包括定性描述的终端的类型。例如,若终端是汽车,则该终端可以属于高速移动类型的终端;若终端是抄表,则该终端可以属于静止类型的终端;若终端是监控设备,则该终端具有固定发送数据的频率/周期,则该终端可以属于高频收发数据类型的终端;若终端是火车,则该终端具有固定运动轨迹,因此该终端可以属于预设轨迹类型的终端若终端是企业终端,即该终端在企业园区范围内移动,则由于该终端的移动范围固定/受限,因此该终端可以是属于预设范围的终端。
在本申请的一些实施例中,若终端的特征信息满足第一预设条件,则将该终端由RRC连接态或RRC去激活态设置为RRC空闲态。其中,由RRC连接态或RRC去激活态设置为RRC空闲态的过程可以是由接入网设备触发的,也可以是由AMF网元触发的。具体示例可以参考下文。
其中,终端的特征信息满足第一预设条件可以包括以下至少一项:终端的移动速率大于或等于第一预设门限;终端收发数据的频率小于或等于第二预设门限;终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;终端的小区切换频率大于或等于第四预设门限;终端发起RNA更新的频率大于或等于第五预设门限;终端的移动轨迹不是预设移动轨迹;或,终端移动范围大于或等于预设范围。由上文中的分析可知,本实施例有助于缓解AMF网元过载。
在本申请的一些实施例中,若终端的特征信息满足第二预设条件,则将该终端由RRC连接态设置为RRC去激活态。其中,由RRC连接态设置为RRC空闲态的过程可以是由接入网设备触发的,也可以是由AMF网元触发的。具体示例可以参考下文。
其中,终端的特征信息满足第二预设条件包括以下至少一项:终端的移动速率小于第一预设门限;终端收发数据的频率大于第二预设门限;终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;终端的小区切换频率小于第四预设门限;终端发起RNA更新的频率小于第五预设门限;终端的移动轨迹是预设移动轨迹;或,终端移动范围小于预设范围。
本实施例有助于缓解AMF网元过载的具体分析过程,可以基于上文中的描述,可以推理得到,此处不再赘述。由上文中的分析可知,本实施例有助于缓解AMF网元过载。
其中,本申请实施例对第一预设门限、第二预设门限、第三预设门限、第四预设门限和第五预设门限的具体取值均不进行限定。例如,可以根据实际需求(如对AMF网元过载的控制程度等)来确定。预设移动轨迹可以是终端(如汽车、火车等)的固定行驶路线等。另外,预设范围可以是终端的RNA,其中,RNA可以包括一个或多个小区,或者一个或多个跟踪区(tracking area,TA)。
在本申请的一些实施例中,当终端的特征信息满足第一预设条件时,可以认为该终端的类型是第一预设类型。当终端的特征信息满足第二预设条件时,可以认为该终端的类型是第二预设类型。
例如,若终端的特征信息满足第一预设条件包括终端的移动速率大于或等于第一 预设门限,则第一预设类型可以是高速移动类型。相应的,若终端的特征信息满足第二预设条件包括终端的移动速率小于第一预设门限,则第二预设类型可以是低速移动类型。或者,若终端的特征信息满足第一预设条件包括终端的移动速率大于或等于第一预设门限,则第一预设类型可以是移动类型。相应的,若终端的特征信息满足第二预设条件包括终端的移动速率小于第一预设门限,则第二预设类型可以是静止类型(或固定类型)。
例如,若终端的特征信息满足第一预设条件包括终端收发数据的频率小于或等于第二预设门限,则第一预设类型可以是低频收发数据类型。相应的,若终端的特征信息满足第二预设条件包括终端收发数据的频率大于第二预设门限,则第二预设类型可以是高频收发数据类型。
例如,若终端的特征信息满足第一预设条件包括终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限,则第一预设类型可以是RRC状态转换频率为非频繁(或低频繁)类型。相应的,若终端的特征信息满足第二预设条件包括终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限,则第二预设门限可以是RRC状态转换频率为频繁(或高频繁)类型。
例如,若终端的特征信息满足第一预设条件包括终端的小区切换频率大于或等于第四预设门限,则第一预设类型可以是小区切换频率为频繁(或高频繁)类型。相应的,若终端的特征信息满足第二预设条件包括终端的小区切换频率小于第四预设门限,则第二预设类型可以是小区切换频率为非频繁(或低频繁)类型。
例如,若终端的特征信息满足第一预设条件包括终端发起RNA更新的频率大于或等于第五预设门限,则第一预设类型可以是RNA更新的频率为频繁(或高频繁)类型。相应的,若终端的特征信息满足第二预设条件包括终端发起RNA更新的频率小于第五预设门限,则第二预设类型可以是RNA更新的频率为非频繁(低频繁)类型。
例如,终端的特征信息满足第一预设条件包括终端的移动轨迹不是预设移动轨迹,则第一预设类型可以是非预设移动轨迹类型。相应的,若终端的特征信息满足第二预设条件包括终端的移动轨迹终端的移动轨迹是预设移动轨迹,则第一预设类型可以是预设移动轨迹类型。
例如,终端的特征信息满足第一预设条件包括终端的移动范围不是预设范围,则第一预设类型可以是非预设范围类型。相应的,若终端的特征信息满足第二预设条件包括终端的移动范围终端的移动范围是预设范围,则第一预设类型可以是预设范围类型。
例如,若终端的特征信息满足第一预设条件包括终端的移动速率大于或等于第一预设门限,以及终端收发数据的频率小于或等于第二预设门限,则第一预设类型可以是高速移动且低频收发数据类型。若终端的特征信息满足第二预设条件包括终端的移动速率小于第一预设门限,以及终端收发数据的频率大于第二预设门限,则第二预设类型可以是低速移动且高频收发数据类型。其他示例不再一一列举。
以下,说明将终端设置为RRC空闲态的具体实现方式。
作为一个示例,终端由RRC连接态或RRC去激活态进入RRC空闲态可以通过接入网释放(AN release)流程实现。如图2所示,为可适用于本申请实施例的一种AN  release流程的示意图。具体可以包括如下步骤:
S201:接入网设备向AMF网元发送N2终端上下文释放请求(N2 UE context release request)消息。其中,N2终端上下文释放请求消息用于请求释放终端的上下文。N2终端上下文释放请求消息中可以包含终端的标识信息,例如,NG-RAN UE NGAP ID或者NG-RAN UE N2-AP ID。其中,NG-RAN UE NGAP ID是下一代接入网设备分配的终端下一代应用协议(next generation application protocol,NGAP)标识,NG-RAN UE N2-AP ID是下一代接入网设备分配的终端的下一代N2接口应用协议标识。
S202:AMF网元根据N2终端上下文释放请求消息,释放该终端的上下文,然后向接入网设备发送N2终端上下文释放命令(N2 UE context release command)。
S203:接入网设备根据N2终端上下文释放命令,释放接入网设备与终端之间的接入网连接(即释放接入网设备与终端之间的DRB通道)。
S204:接入网设备执行S203之后,向AMF网元发送N2终端上下文释放完成(N2 UE context release complete)消息。
S205:AMF网元向SMF网元发送更新会话管理上下文(Nsmf_PDUSession_UpdateSMContext)消息。更新会话管理上下文消息用于SMF网元去激活终端的PDU会话。
S206:SMF网元向UPF网元发送N4会话修改请求(N4 session modification request)消息。
S207:UPF网元根据N4会话修改请求消息删除终端的PDU会话的AN通道信息(Tunnel Info of AN),并向SMF网元发送N4会话修改响应(N4session modification response)消息。
S208:SMF网元向UPF网元发送更新会话管理上下文(Nsmf_PDUSession_UpdateSMContext Ack)确认消息。
可以理解的,若由接入网设备触发将处于RRC连接态或RRC去激活态的终端设置为RRC空闲态,则可以执行上述S201~S208。若由AMF网元触发将处于RRC连接态或RRC去激活态的终端设置为RRC空闲态,则可以执行上述S202~S208。
需要说明的是,在将处于RRC去激活态的终端设置为RRC空闲态的过程中,可选的,在执行S203之前,该方法还可以包括:接入网设备寻呼终端,使得该终端连接到该接入网设备或另一接入网设备,然后再由所连接的接入网设执行S203。或者,可选的,接入网设备可以不寻呼终端,而是删除终端的上下文信息(此时,接入网设备中记录的终端的RRC状态为RRC空闲态),当下一次该终端连接到接入网设备时,该终端向接入网设备发送RRC连接恢复请求消息,接入网设备接收到RRC连接恢复请求之后,向终端发送RRC连接恢复失败消息;终端接收到RRC连接恢复失败消息之后,将终端的RRC状态修改为RRC空闲态。
作为一个示例,终端由RRC连接态进入RRC去激活态可以通过RRC连接释放流程实现。如图3所示,为可适用于本申请实施例的一种RRC连接释放流程的示意图。具体可以包括如下步骤:
S301:接入网设备向终端发送RRC连接释放消息,RRC连接释放消息用于指示将终端设置为RRC去激活态。
S302:终端根据RRC连接释放消息,释放终端与接入网设备之间的DRB通道。
以下,结合附图对本申请实施例提供的技术方案进行说明。具体的,下文中均是以本申请实施例应用于如图1所示的系统架构为例进行说明的。
需要说明的是,本申请实施例中描述的接入和移动性管理网元,可以用于连接管理、移动性管理、注册管理、接入认证和授权、可达性管理、安全上下文管理以及SMF网元的选择等,例如,可以是图1中的AMF网元301。本申请实施例中描述的接入网设备,可以是图1中的接入网设备20,本申请中描述的终端具体可以是图1中的终端10。
如图4A所示,为本申请实施例提供的一种过载控制方法的示意图。图4A所示的方法可以包括如下步骤:
S401A:AMF网元向接入网设备发送指示信息,该指示信息用于指示AMF网元过载。
步骤S401可以包括或替换为:AMF网元在确定自身过载时,向接入网设备发送指示信息,或者,当AMF网元发生过载时,向接入网设备发送指示信息。本申请实施例对AMF网元如何确定自身过载不进行限定。例如,AMF网元的计算处理资源占用率大于等于预设阈值(如99%)时,确定自身过载。
可选的,该指示信息是过载启动(overload start)消息,当然本申请不限于此。
可选地,该指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态,即指示接入网设备触发将特征信息满足第一预设条件的终端设置为RRC空闲态。
可选地,该指示信息还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态,即指示接入网设备触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
S402A:接入网设备接收该指示信息。
S403A:当第一终端处于RRC连接态或RRC去激活态时,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC空闲态;或,当第一终端处于RRC连接态时,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC去激活态。
需要指出的是,步骤S403A中的“或”可以替换为“和”,不予限制。
其中,“第一终端”中的“第一”对终端本身不造成限定,可以指的是某一个或任一个终端,不予限制。
其中,将该第一终端设置为RRC空闲态的过程可以参见图2所示的方法,例如,通过执行S201~S208来实现。接入网设备触发将该第一终端设置为RRC空闲态可以通过执行S201来实现。
其中,将该第一终端设置为RRC去激活态可以参见图3所示的方法,例如,通过执行S301~S302来实现。接入网设备触发将该第一终端设置为RRC空闲态可以通过执行S301来实现。
其中,接入网设备根据该指示信息可以确定AMF网元过载。例如,接入网设备可以通过识别接收到的消息是过载启动消息,来确定AMF网元过载。关于接入网设 备识别一个消息是否是过载启动消息,在现有技术中已有详细描述,此处不再赘述。
可以理解的,接入网设备可以用于管理第一终端的RRC状态,因此,接入网设备可以确定第一终端是否处于RRC连接态或RRC去激活态。
可选的,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC空闲态,可以包括:当第一终端的特征信息满足第一预设条件时,接入网设备根据该指示信息触发将该第一终端设置为RRC空闲态;或者,接入网设备根据该指示信息,触发将特征信息满足第一预设条件的第一终端设置为RRC空闲态;或者,接入网设备根据该指示信息,确定第一终端的特征信息满足第一预设条件,并触发将该第一终端设备设置为RRC空闲态。
示例性地,接入网设备根据该指示信息,触发将特征信息满足第一预设条件的第一终端设置为RRC空闲态,参见403B的相关描述,不再赘述。
示例性地,当第一终端处于RRC连接态或RRC去激活态、该第一终端的特征信息满足第一预设条件、且接入网设备根据该指示信息确定AMF网元过载时,接入网设备触发将该第一终端设置为RRC空闲态。其中,该指示信息可以作为触发条件,触发执行后续的动作,不予限制。
示例性地,在该指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态的情况下,上述接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC空闲态,包括:接入网设备根据该指示信息,确定第一终端的特征信息满足第一预设条件,并触发将该第一终端设备设置为RRC空闲态。
可选的,S403A中当第一终端处于RRC连接态或RRC去激活态时,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC空闲态,替换为:当第一终端处于RRC连接态,该第一终端的特征信息满足第一预设条件、且接入网设备根据该指示信息确定AMF网元过载时,如果该第一终端没有数据传输(如预设时间段内没有数据传输),则接入网设备触发将该第一终端设置为RRC空闲态。
可选的,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC去激活态,可以包括:当第一终端的特征信息满足第二预设条件时,接入网设备根据该指示信息触发将该第一终端设置为RRC去激活态;或者,接入网设备根据该指示信息,触发将特征信息满足第二预设条件的第一终端设置为RRC去激活态;或者,接入网设备根据该指示信息,确定该第一终端的特征信息满足第二预设条件,并触发将该第一终端设置为RRC去激活态。
示例性地,当第一终端处于RRC连接态、该第一终端的特征信息满足第二预设条件、且接入网设备确定AMF网元过载时,接入网设备触发将该第一终端设置为RRC去激活态。其中,该指示信息可以作为触发条件,触发执行后续的动作,不予限制。
示例性地,在该指示信息还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态的情况下,上述接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC去激活态,包括:接入网设备根据该指示信息,确定第一终端的特征信息满足第二预设条件,并触发将该第一终端设备设置为RRC去激活态。
示例性地,接入网设备根据该指示信息,触发将特征信息满足第一预设条件的第 一终端设置为RRC空闲态,参见403B的相关描述,不再赘述。
可选的,S403A中当第一终端处于RRC连接态时,接入网设备根据该指示信息以及该第一终端的特征信息,触发将该第一终端设置为RRC去激活态,替换为:当第一终端处于RRC连接态,该第一终端的特征信息满足第二预设条件、且接入网设备根据指示信息确定AMF网元过载时,如果该第一终端没有数据传输(如预设时间段内没有数据传输),则接入网设备触发将该第一终端设置为RRC去激活态。
其中,关于终端的特征信息,接入网设备获得终端的特征信息的方式,以及终端的特征信息满足第一预设条件或第二预设条件等相关内容可以参考上文。
本申请实施例对接入网设备确定第一终端的RRC状态、接入网设备确定第一终端的特征信息满足第一预设条件或第二预设条件,以及接入网设备接收用于指示AMF网元过载的指示信息的先后顺序不进行限定。例如,这几个步骤可以同时执行,或者先后执行。例如,接入网设备可以先确定终端的特征信息是否满足第一预设条件或第二预设条件(如先根据终端的特征信息确定终端的类型是第一预设类型或第二预设类型),然后,在接收到用于指示AMF网元过载的指示信息之后,再确定该终端的RRC状态。
本实施例提供的过载控制方法中,接入网设备接收到AMF网元发送的用于指示AMF网元过载的指示信息之后,根据终端的特征信息设置终端的RRC状态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
如图4B所示,为本申请实施例提供的一种过载控制方法的示意图。图4B所示的实施例可以认为是图4A所示的实施例的一个具体示例。图4B所示的方法可以包括如下步骤:
S401B:AMF网元向接入网设备发送指示信息。
其中,该指示信息用于指示AMF网元过载。该指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态,和/或,触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
其中,步骤S401B可以包括或替换为:当AMF网元发生过载时,AMF网元向接入网设备发送指示信息。
可选的,该指示信息可以是一个消息,用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态的信息,和/或,用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态的信息可以是该消息中的信元。例如,该消息可以是overload start消息,用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态的信息,和/或,用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态的信息可以是overload start消息中的信元。
可替换地,该指示信息用于指示AMF网元过载,该指示信息还用于指示触发将第一预设类型的终端设置为RRC空闲态。例如,指示信息包括该第一预设类型,用来指示触发将该第一预设类型的终端设置为RRC空闲态。其中,该第一预设类型可以包括以下至少一种:高速移动类型、低频收发数据类型、RRC状态转换频率为非频繁类型、小区切换频率为频繁类型、RNA更新的频率为频繁类型、非预设移动轨迹类型、或非预设范围类型。
可替换地,该指示信息用于指示AMF网元过载,该指示信息还用于指示触发将第二预设类型的终端设置为RRC去激活态。例如,指示信息包括该第二预设类型,来指示触发将该第二预设类型的终端设置为RRC去激活态,其中,该第二预设类型可以包括以下至少一种:低速移动类型、高频收发数据类型、RRC状态转换频率为频繁类型、小区切换频率为非频繁类型、RNA更新的频率为非频繁类型、预设移动轨迹类型、或预设范围类型。
S402B:接入网设备接收该指示信息。
S403B:接入网设备根据该指示信息,触发将特征信息满足预设条件的终端设置为相应的RRC状态。
步骤S403B具体可以包括如下情况之一:
情况1:若指示信息用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态,则接入网设备根据该指示信息触发将特征信息满足第一预设条件的终端设置为RRC空闲态,例如,触发将特征信息满足第一预设条件的第一终端设置为RRC空闲态。
情况2:若指示信息用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态,则接入网设备根据该指示信息触发将特征信息满足第二预设条件的终端设置为RRC去激活态,例如,触发将特征信息满足第二预设条件的第一终端设置为RRC去激活态。
情况3:若指示信息用于触发将特征信息满足第一预设条件的终端设置为RRC空闲态,且触发将特征信息满足第二预设条件的终端设置为RRC去激活态,则接入网设备根据该指示信息,触发将特征信息满足第一预设条件的终端设置为RRC空闲态;以及,根据指示信息触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
其中,根据指示信息触发将特征信息满足第一预设条件的终端设置为RRC空闲态,可以包括:根据指示信息确定特征信息满足第一预设条件的终端,然后将所确定的特征信息满足第一预设条件的终端设置为RRC空闲态。
其中,根据指示信息触发将特征信息满足第二预设条件的终端设置为RRC去激活态,可以包括:根据指示信息确定特征信息满足第二预设条件的终端,然后将所确定的特征信息满足第二预设条件的终端设置为RRC去激活态。
关于终端的特征信息,接入网设备获得终端的特征信息的方式,特征信息满足第一预设条件或第二预设条件,以及根据指示信息确定AMF网元过载等相关内容可以参考上文。
本实施例提供的过载控制方法中,接入网设备接收到AMF网元发送的用于指示AMF网元过载的指示信息之后,根据终端的特征信息设置终端的RRC状态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
上述图4B所示的实施例中,是以用于指示AMF网元过载的信息和用于指示触发设置终端的RRC状态的信息均是同一信息为例进行说明的。可替换的,用于指示AMF网元过载的信息和用于指示触发设置终端的RRC状态的信息也可以是独立的两个信息,且这两个信息可以作为信元携带在同一消息中或不同消息中,或者这两个信息中的任意一个信息可以是消息。
其中,用于指示触发设置终端的RRC状态的信息,可以包括:用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态的信息(下文中称为信息1)和/或触发将特征信息满足第二预设条件的终端设置为RRC去激活态的信息(下文中称为信息2)。如果用于指示触发设置终端的RRC状态的信息包括上述信息1和信息2,则该信息1和信息2可以是同一个信息,也可以是独立的两个信息。若是独立的两个信息,则这两个信息可以作为信元携带在同一消息中或不同消息中,或者,这两个信息中的任意一个信息可以是消息。
上述图4B所示的实施例,以及图4B的可替换的实施例中,均基于AMF网元向接入网设备发送用于指示AMF网元过载的信息。可替换的,AMF网元可以不向接入网设备发送用于指示AMF网元过载的信息。具体方案可以如图4C所示。
如图4C所示,为本申请实施例提供的一种过载控制方法的示意图。图4C所示的方法可以包括如下步骤:
S401C:当AMF网元发生过载时,AMF网元向接入网设备发送指示信息。
其中,该指示信息用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态,和/或,触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
其中,步骤S401C可以包括:AMF网元根据该AMF网元的负载信息,确定其发生过载;并在确定发生过载之后,向接入网设备发送指示信息。
S402C~S403C:可以参考上述S402B~S403B。
如图5所示,为本申请实施例提供的一种过载控制方法的示意图。图5所示的方法可以包括如下步骤:
S501:AMF网元根据终端的特征信息,向接入网设备发送第一指示信息。
其中,第一指示信息用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC空闲态或RRC去激活态。
可选的,当终端的特征信息满足第一预设条件时,第一指示信息用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC空闲态。
可选的,当终端的特征信息满足第二预设条件时,第一指示信息用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC去激活态。
其中,关于终端的特征信息,AMF网元获得终端的特征信息的方式,以及终端的特征信息满足第一预设条件或第二预设条件等相关内容可以参考上文。
其中,第一指示信息与终端之间可以具有关联关系。例如,通过第一指示信息包括的任意一个或多个信息与该终端相关联等来实现第一指示信息与该终端之间具有关联关系,该示例中第一指示信息可以不包括该终端的标识信息。又如,通过第一指示信息包括该终端的标识信息来实现第一指示信息与终端之间具有关联关系。
其中,第一指示信息可以是消息,也可以是消息中的信元,本申请实施例对此不进行限定。此外,本申请实施例对第一指示信息包括何种信息不进行限定,第一指示信息可以包括终端的类型(如第一预设类型或第二预设类型)来指示触发将终端设置为RRC空闲态还是RRC去激活态。其中,当第一指示信息包括的终端的类型是第一预设类型时,用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC空闲态;或,当第一指示信息包括的终端的类型是第二预设类型时,用于指示接入网设备 在AMF网元过载时,触发将终端设置为RRC去激活态。又如,第一指示信息可以通过包括二进制数“1”来指示触发将终端设置为RRC空闲态,通过包括二进制数“0”来指示触发将终端设置为RRC去激活态。当然本申请不限于此。另外,本申请实施例对第一指示信息携带在哪些消息中进行发送不进行限定。
S502:接入网设备接收来自AMF网元的第一指示信息。
S503:AMF网元向接入网设备发送第二指示信息。
其中,第二指示信息用于指示AMF网元过载。
具体的,AMF网元可以在确定自身过载时,向接入网设备发送第二指示信息,例如第二指示信息可以是overload start消息。
S504:接入网设备接收来自AMF网元的第二指示信息。
本申请实施例对S501~S502与S503~S504之间的先后顺序不进行限定,例如可以先执行S501~S502再执行S503~S504,也可以先执行S503~S504再执行S501~S502,还可以在执行S501~S502的过程中执行S503~S504,或在执行S503~S504的过程中执行S501~S502等。
S505:当终端处于RRC连接态或RRC去激活态,且第一指示信息用于指示接入网设备在AMF过载时触发将该终端设置为RRC空闲态时,接入网设备根据第二指示信息(例如,在确定接收到第二指示信息之后),触发将终端设置为RRC空闲态;或,当终端处于RRC连接态,且第一指示信息用于指示接入网设备在AMF过载时触发将该终端设置为RRC去激活态时,接入网设备根据第二指示信息(例如,在确定接收到第二指示信息之后),触发将终端设置为RRC去激活态。
其中,接入网设备触发将终端设置为RRC空闲态或RRC去激活态的实现过程可以参考上文。
在步骤S505中第一个分支的一种具体实现方式中,当终端处于RRC连接态或RRC去激活态,且第一指示信息用于指示接入网设备在AMF过载时触发将该终端设置为RRC空闲态时,若终端没有数据传输(如预设时间段内没有数据传输),则接入网设备在确定接收到第二指示信息之后,触发将终端配置为RRC空闲态。
在步骤S505中第二个分支的一种具体实现方式中,当终端处于RRC连接态,且第一指示信息用于指示接入网设备在AMF过载时触发将该终端设置为RRC去激活态时,若终端没有数据传输(如预设时间段内没有数据传输),则接入网设备在确定接收到第二指示信息之后,触发将终端配置为RRC空闲态。
可替换的,第一指示信息用于指示接入网设备在AMF网元过载,且终端没有数据传输时,触发将终端设置为RRC空闲态或RRC去激活态。例如,当终端的特征信息满足第一预设条件时,第一指示信息用于指示接入网设备:在AMF网元过载,且终端没有数据传输时,触发将终端设置为RRC空闲态。再例如,当终端的特征信息满足第二预设条件时,第一指示信息用于指示接入网设备:在AMF网元过载,且终端没有数据传输时,触发将终端设置为RRC去激活态。相应地,S505中的两个分支分别可以替换为上述两种实现方式。
本实施例提供的过载控制方法中,AMF网元根据终端的特征信息向接入网设备发送指示信息,接入网设备在确定AMF网元过载时,根据该指示信息触发将该终端设 置为RRC空闲态或RRC去激活态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
可以理解的,图4A和图5所示的实施例的共同点可以包括:AMF网元向接入网设备指示AMF网元过载;以及,由接入网设备根据终端当前的RRC状态,触发将终端设置为特定的RRC状态。二者的不同点可以包括:图4A所示的实施例是由接入网设备根据终端的特征信息,确定将终端设置为特定的RRC状态的;图5所示的实施例是由AMF网元根据终端的特征信息,确定将终端设置为特定的RRC状态之后,再指示给接入网设备的。由此可知,相比图5所示的实施例,图4A所示的实施例能够进一步缓解AMF网元过载。
如图6所示,为本申请实施例提供的一种过载控制方法的示意图。图6所示的方法可以包括如下步骤:
S601:AMF网元从接入网设备获得终端的RRC状态信息。
其中,RRC状态信息用于指示终端的RRC状态(如,RRC连接态、RRC去激活态或RRC空闲态)。
示例性的,AMF网元向接入网设备发送请求消息,该请求消息用于请求获得终端当前的RRC状态。接入网设备接收到该请求消息之后,可以向AMF网元回复响应消息,该响应消息中携带终端的RRC状态信息。其中,该请求消息可以是终端状态转换通知请求(UE state transition notification request)消息,该响应消息可以是终端通知(UE notification)消息。当然本申请不限于此。
S602:当AMF网元过载,且该RRC状态信息指示该终端处于RRC连接态或RRC去激活态时,AMF网元根据该终端的特征信息触发将该终端设置为RRC空闲态;或,当AMF网元过载,且该RRC状态信息指示该终端处于RRC连接态时,AMF网元根据该终端的特征信息触发将该终端设置为RRC去激活态。
其中,将该终端设置为RRC空闲态可以参见图2提供的方法,例如,通过执行S202~S208来实现。AMF网元触发将该终端设置为RRC空闲态,通过执行S202来实现。
其中,AMF网元触发将该终端设置为RRC去激活态可以由AMF网元向接入网设备发送指示信息来实现。该指示信息用于指示接入网设备执行图3中的S301。将该终端设置为RRC去激活态可以参见图3提供的方法,例如,通过执行AMF网元向接入网设备发送该指示信息,以及S301~S302来实现。
可选的,AMF网元根据该终端的特征信息触发将该终端设置为RRC空闲态,包括:当终端的特征信息满足第一预设条件时,AMF网元触发将该终端设置为RRC空闲态。
可选的,AMF网元根据该终端的特征信息触发将该终端设置为RRC去激活态,包括:当终端的特征信息满足第二预设条件时,AMF网元触发将该终端设置为RRC去激活态。
其中,关于终端的特征信息,AMF网元获得终端的特征信息的方式,终端的特征信息满足第一预设条件或第二预设条件,以及AMF网元确定自身过载等相关内容可以参考上文。
本申请实施例对AMF网元获取终端的RRC状态、AMF网元确定终端的特征信息满足第一预设条件或第二预设条件,以及AMF网元确定自身过载的先后顺序不进行限定。例如,这几个步骤可以同时执行,或者先后执行。例如,AMF网元可以先确定终端的特征信息满足第一预设条件或第二预设条件(即先根据终端的特征信息确定终端的类型是第一预设类型或第二预设类型),再在确定自身过载之后,向接入网设备获取终端的RRC状态。
需要说明的是,由于终端的RRC状态可能发生改变,因此,执行AMF网元可以单次或多次获得终端当前的RRC状态,例如周期性或触发性地获得终端当前的RRC状态,从而使得当AMF网元过载时,AMF网元最近一次获得的终端的RRC状态是终端当前的实际RRC状态,从而实现对AMF网元的过载控制。
本实施例提供的过载控制方法中,AMF网元向接入网设备获取终端的RRC状态,并且,当自身过载时,根据该RRC状态和终端的特征信息,触发将该终端设置为RRC空闲态或RRC去激活态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
如图7所示,为本申请实施例提供的一种过载控制方法的示意图。图7所示的方法可以包括如下步骤:
S701:当AMF网元过载时,AMF网元根据终端的特征信息向接入网设备发送指示信息。
其中,该指示信息用于指示接入网设备触发将终端设置为RRC空闲态或RRC去激活态。该指示信息可以携带在终端上下文修改请求(UE context modification request)消息中,当然本申请不限于此。
示例性的,当终端的特征信息满足第一预设条件时,指示信息用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC空闲态。
示例性的,当终端的特征信息满足第二预设条件时,指示信息用于指示接入网设备在AMF网元过载时,触发将终端设置为RRC去激活态。
可替换的,该指示信息用于指示接入网设备在终端没有数据传输时,触发将终端设置为RRC空闲态或RRC去激活态。
其中,关于终端的特征信息,AMF网元获得终端的特征信息的方式,终端的特征信息满足第一预设条件或第二预设条件,以及AMF网元确定自身过载等相关内容可以参考上文。
本申请实施例对AMF网元确定自身过载,以及根据终端的特征信息确定该指示信息具体用于指示接入网设备触发将终端设置为RRC空闲态还是RRC去激活态的执行顺序不进行限定,例如,可以同时执行,也可以先后执行。例如,AMF网元可以先根据终端的特征信息确定该指示信息具体用于指示接入网设备触发将终端设置为RRC空闲态还是RRC去激活态,然后在确定自身过载时,向接入网设备发送所确定的指示信息。
S702:接入网设备接收来自AMF网元的该指示信息。
S703:当该指示信息用于指示接入网设备触发将该终端设置为RRC空闲态时,接入网设备在该终端没有数据传输时,将该终端设置为RRC空闲态;或,当该指示信息 用于指示接入网设备触发将该终端设置为RRC去激活态时,接入网设备在该终端没有数据传输时,触发将该终端设置为RRC去激活态。
其中,接入网设备触发将终端设置为RRC空闲态或RRC去激活态的实现过程可以参考上文。
其中,终端没有数据传输可以参考上文,不再赘述。
根据上文中的描述,可以理解的,当终端没有数据发送时,该终端可以处于RRC连接态或RRC去激活态。
本实施例提供的过载控制方法中,AMF网元在过载控制时,根据终端的特征信息向接入网设备发送指示信息,接入网设备接收到该指示信息之后,根据该指示信息触发将终端设置为RRC空闲态或RRC去激活态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
可以理解的,图6和图7所示的实施例的共同点可以包括:接入网设备可以不获知AMF网元过载。二者的不同点可以包括:图6所示的实施例中是由AMF网元首先获得终端的RRC状态,然后根据终端的RRC状态以及终端的特征信息,确定将该终端设置为特定的RRC状态的;图7所示的实施例中,AMF网元不获知终端的RRC状态,而是根据终端的特征信息,确定将具有某种特征信息的终端设置为特定的RRC状态,然后指示给接入网设备,再由接入网设备根据终端当前的RRC状态和该指示,确定将该终端设置为特征的RRC状态的。由此可知,相比图6所示的实施例,图7所示的实施例能够进一步缓解AMF网元过载。
如图8所示,为本申请实施例提供的一种过载控制方法的示意图。图8所示的方法可以包括如下步骤:
S801:终端向AMF网元发送请求消息。
其中,该请求消息可以包括注册请求(registration request)消息或服务请求(service request)消息。
示例性地,处于RRC空闲态的终端向AMF网元发送该请求消息。具体地,处于RRC空闲态的终端经接入网设备向AMF网元发送该请求消息。
可以理解的,当终端处于RRC空闲态时,若该终端进行数据传输(如该终端向DN发送数据,或者接收DN发送的数据),则该终端向AMF网元发送注册请求消息以触发注册流程,或者向AMF网元发送服务请求消息以触发服务请求流程等,从而将终端设置为RRC连接态。当终端没有数据传输时,将终端由RRC连接态设置为RRC去激活态或RRC空闲态。在一种示例中,当终端具有处于RRC去激活态的能力时,将终端由RRC连接态设置为RRC去激活态;当终端不具有处于RRC去激活态的能力时,将终端由RRC连接态设置为RRC空闲态。
S802:AMF网元接收来自终端的该请求消息。
S803:当AMF网元过载,且终端的类型为第一预设类型时,AMF网元根据该请求消息(例如在接收到该请求信息之后),向接入网设备发送指示信息。
其中,该指示信息用于指示不允许(或不能)触发将该终端设置为RRC去激活态。
可替换地,该指示信息用于指示触发将该终端设置为RRC空闲态。
本申请实施例对AMF网元接收来自终端的请求消息,与确定自身过载,以及确 定终端的类型是第一预设类型的先后顺序不进行限定。例如,可以同时执行,或者先后执行。
S804:接入网设备接收来自AMF网元的该指示信息。
S805:当该终端没有数据传输时,接入网设备根据该指示信息触发将该终端设置为RRC空闲态。其中,接入网设备触发将终端设置为RRC空闲态的实现过程可以参考上文。
其中,当终端没有数据传输时,该终端可以处于RRC连接态或RRC去激活态。
可选的,S805包括:接入网设备根据该指示信息,确定不允许该终端进入RRC去激活态。当该终端没有数据传输时,接入网设备根据该指示信息触发将该终端设置为RRC空闲态。
可选的,该指示信息可以通过以下任一方式实现:
方式1:该指示信息为N2消息,N2消息不包括辅助信息。其中,辅助信息用于接入网设备触发将该终端设置为RRC去激活态。
可以理解的,N2消息是注册流程和服务请求流程中的消息,若N2消息中不包括辅助信息,则接入网设备不能触发该终端设置为RRC去激活态。也就是说,该方式中,无论终端是否具有处于RRC去激活态的能力,当AMF网元过载时,若执行请求流程或服务请求流程,则N2消息中不包括辅助信息。
方式2:该指示信息携带在N2消息中。
例如,该指示信息可以是终端的类型(即第一预设类型)。在该示例中,S805可以包括:接入网设备根据终端的类型(即第一预设类型),确定不允许该终端进入RRC去激活态;在终端没有数据传输时,接入网设备触发将终端设置为RRC空闲态。
可选的,N2消息还可以包括(或携带)辅助信息。这样,当AMF网元过载减轻或消除之后,如果接入网设备确定终端没有数据传输,则接入网设备可以触发将该终端设置为RRC去激活态,而不需要通过信令交互向AMF网元获取该辅助信息,因此有利于节省信令开销。
本申请实施例提供的过载控制方法中,当AMF网元接收到注册请求消息或服务请求消息,确定自身过载,以及终端的类型是第一预设类型时,向接入网设备发送指示信息,该指示信息用于触发指示不允许(或不能)触发将该终端设置为RRC去激活态。该技术方案有助于缓解AMF网元过载,具体分析过程可以参考上文。
如图9所示,为本申请实施例提供的一种过载控制方法的示意图。图9所示的方法包括如下步骤:
S901~S902:可以参考上述S801~S802,当然本申请不限于此。
S903:当AMF网元过载,且终端的类型为第二预设类型时,AMF网元根据请求消息(例如在接收到该请求消息之后),向接入网设备发送指示信息。
其中,该指示信息用于指示允许(或能够)触发将该终端设置为RRC去激活态。
本申请实施例对AMF网元接收来自终端的请求消息,与确定自身过载,以及确定终端的类型是第二预设类型的先后顺序不进行限定。例如,可以同时执行,或者先后执行。
S904:接入网设备接收来自AMF网元的该指示信息。
S905:当该终端没有数据传输时,接入网设备根据该指示信息触发将该终端设置为RRC去激活态。
例如,接入网设备触发将终端设置为RRC去激活态的实现过程可以参考上文。
可选的,该指示信息可以携带在N2消息中。例如,该指示信息可以是终端的类型(即第二预设类型)。
可选的,S905包括:接入网设备根据该指示信息,确定允许该终端进入RRC去激活态;在终端没有数据传输时,接入网设备触发将终端设置为RRC去激活态。
可选的,N2消息还可以包括(或携带)辅助信息。进一步地,上述接入网设备根据该指示信息,确定允许该终端进入RRC去激活态,可以包括:接入网设备根据该终端的类型(即第二预设类型)和辅助信息,确定允许该终端进入RRC去激活态。
本实施例提供的过载控制方法中,当AMF网元接收到注册请求消息或服务请求消息,确定自身过载,以及终端的类型是第二预设类型时,向接入网设备发送指示信息,该指示信息用于指示允许(或能够)触发将该终端设置为RRC去激活态。因此,有助于缓解AMF网元过载。需要说明的是,现有技术中,AMF网元向接入网设备发送了辅助信息之后,是否触发将终端设置为RRC去激活态是由接入网设备自身确定的,具体如何确定现有技术中没有给出具体的实现方式。
可以理解的,图8和图9所示的实施例的共同点可以包括:在建立终端与网络设备(如接入网设备等)之间的连接的过程中,AMF网元根据该终端的特征信息,向接入网设备指示是否允许触发将该终端设置为RRC去激活态。二者的不同点可以包括:图8所示的实施例中,当终端的类型为第一预设类型时,AMF网元向接入网设备指示不允许触发将该终端设置为RRC去激活态;图9所示的实施例中,当终端的类型为第二预设类型时,AMF网元向接入网设备指示允许触发将该终端设置为RRC去激活态。
上述主要从不同网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,接入和移动性管理网元(如AMF网元)和接入网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对接入和移动性管理网元和接入网设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10示出了本申请实施例中所涉及的一种装置的一种可能的示例性框图,该装置1000可以以软件、硬件或软硬结合的形式存在。图10示出了本申请实施例中所涉及的装置的一种可能的示意性框图。装置1000可以包括处理单元1002和收发单元1003;或者,装置1000可以包括收发单元1003。处理单元 1002可以用于对装置的动作进行控制管理。收发单元1003可以用于支持装置与其他设备的通信。可选的,装置1000还可以包括存储单元1001,存储单元1001可以用于存储装置1000的程序代码和数据。
图10所示的装置1000可以是本申请实施例涉及的接入和移动性管理网元或接入网设备,也可以是接入和移动性管理网元或接入网设备上的芯片或片上系统。
当图10所示的装置1000为接入和移动性管理网元(如AMF网元)时,处理单元1002能够支持装置1000执行上述各方法实施例中由AMF网元执行的动作。收发单元1003能够支持装置1000与接入网设备或终端等之间的通信。
在一种实现方式中,收发单元1003,可以用于向接入网设备发送指示信息,该指示信息用于指示接入和移动性管理网元过载,以及触发将特征信息满足第一预设条件的终端设置为RRC空闲态。例如,结合图4B,收发单元1003,可以用于执行S401的一个分支。
在一种实现方式中,收发单元1003,可以用于向接入网设备发送指示信息,该指示信息用于指示接入和移动性管理网元过载,以及触发将特征信息满足第二预设条件的终端设置为RRC去激活态。例如,结合图4B,收发单元1003,可以用于执行S401的另一个分支。
在一种实现方式中,收发单元1003,可以用于根据终端的特征信息,向接入网设备发送第一指示信息,第一指示信息可以用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态或RRC去激活态。例如,结合图5,收发单元1003可以用于执行S501。可选的,当终端的特征信息满足第一预设条件时,第一指示信息可以用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态。可选的,终端的特征信息满足第二预设条件时,第一指示信息可以用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC去激活态。
在一种实现方式中,收发单元1003,可以用于从接入网设备获得终端的RRC状态信息。处理单元1002,可以用于当接入和移动性管理网元过载,且RRC状态信息指示终端处于RRC连接态或RRC去激活态时,根据终端的特征信息触发将终端设置为RRC空闲态;或,当接入和移动性管理网元过载,且RRC状态信息指示终端处于RRC连接态时,根据终端的特征信息触发将终端设置为RRC去激活态。例如,结合图6,收发单元1003可以用于执行S601,处理单元1002可以用于执行S602。可选的,处理单元1002具体可以用于:当终端的特征信息满足第一预设条件时,触发将终端设置为RRC空闲态。可选的,处理单元1002具体可以用于:当终端的特征信息满足第二预设条件时,触发将终端设置为RRC去激活态。
在一种实现方式中,收发单元1003,可以用于当接入和移动性管理网元过载时,根据终端的特征信息向接入网设备发送指示信息;其中,指示信息可以用于指示接入网设备触发将终端设置为RRC空闲态或RRC去激活态。例如,结合图7,收发单元1003可以用于执行S701。可选的,当终端的特征信息满足第一预设条件时,指示信息可以用于指示接入网设备在接入和移动性管理网元过载时,触发将终端设置为RRC空闲态。可选的,当终端的特征信息满足第二预设条件时,指示信息可以用于指示接入 网设备在接入和移动性管理网元过载时,触发将终端设置为RRC去激活态。
在一种实现方式中,收发单元1003,可以用于接收来自终端的请求消息,请求消息包括注册请求消息或服务请求消息;以及,当接入和移动性管理网元过载,且终端的类型为第一预设类型时,根据请求消息,向接入网设备发送第一指示信息,第一指示信息可以用于指示不允许触发将终端设置为RRC去激活态。例如,结合图8,收发单元1003可以用于执行S802以及S803。可选的,收发单元1003还可以用于:当接入和移动性管理网元过载且终端的类型为第二预设类型时,根据请求消息,向接入网设备发送第二指示信息,第二指示信息可以用于指示允许触发将终端设置为RRC空闲态。例如,结合图9,收发单元1003可以用于执行S902以及S903。
当图10所示的装置1000为接入网设备时,处理单元1002能够支持装置1000执行上述各方法实施例中由接入网设备完成的动作。收发单元1003能够支持装置1000与接入和移动性管理网元或终端等之间的通信。
在一种实现方式中,收发单元1003,可以用于接收来自接入和移动性管理网元的指示信息,指示信息可以用于指示接入和移动性管理网元过载。处理单元1002,可以用于当第一终端处于RRC连接态或RRC去激活态时,根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC空闲态;或,当第一终端处于RRC连接态时,根据指示信息以及第一终端的特征信息,触发将第一终端设置为RRC去激活态。例如,结合图4A,收发单元1003可以用于执行S402A,处理单元1002可以用于执行S403A。
基于该实现方式,可选的,处理单元1002具体可以用于:当第一终端的特征信息满足第一预设条件时,根据指示信息触发将第一终端设置为RRC空闲态。进一步可选的,指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态。该情况下,处理单元1002还可以用于,根据该指示信息,确定特征信息满足所述第一预设条件的终端;其中,特征信息满足所述第一预设条件的终端包括所述第一终端。例如,结合图4B,处理单元1002可以用于执行S403B中的情况1中的步骤。
基于该实现方式,可选的,处理单元1002具体可以用于:当第一终端的特征信息满足第二预设条件时,根据指示信息触发将第一终端设置为RRC去激活态。进一步可选的,指示信息还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态。该情况下,处理单元1002还可以用于,根据该指示信息,确定特征信息满足所述第二预设条件的终端;其中,特征信息满足所述第二预设条件的终端包括所述第一终端。例如,结合图4B,处理单元1002可以用于执行S403B中情况2中的步骤。
在一种实现方式中,收发单元1003,可以用于接收来自接入和移动性管理网元的第一指示信息;以及,接收来自接入和移动性管理网元的第二指示信息,第二指示信息可以用于指示接入和移动性管理网元过载。处理单元1002,可以用于当终端处于RRC连接态或RRC去激活态,且第一指示信息可以用于指示接入网设备在接入和移动性管理网元过载时触发将终端设置为RRC空闲态时,根据第二指示信息,触发将终端设置为RRC空闲态;或,当终端处于RRC连接态,且第一指示信息可以用于指示接入网设备在接入和移动性管理网元过载时触发将终端设置为RRC去激活态时,根据第二指示信息触发将终端设置为RRC去激活态。例如,结合图5,收发单元1003可以用于执行S502和S504,处理单元1002可以用于执行S505。
在一种实现方式中,收发单元1003,可以用于接收接入和移动性管理网元发送的指示信息。处理单元1002,可以用于当指示信息可以用于指示触发将终端设置为RRC空闲态时,在终端没有数据传输时,触发将终端设置为RRC空闲态;或,当指示信息可以用于指示触发将终端设置为RRC去激活态时,在终端没有数据传输时,触发将终端设置为RRC去激活态。例如,结合图7,收发单元1003可以用于执行S702,处理单元1002可以用于执行S703。
在一种实现方式中,收发单元1003,可以用于接收接入和移动性管理网元发送的第一指示信息,第一指示信息可以用于指示不允许终端进入RRC去激活态。处理单元1002,可以用于当终端没有数据传输时,根据第一指示信息触发将终端设置为RRC空闲态。例如,结合图8,收发单元1003可以用于执行S804,处理单元可以用于执行S805,第一指示信息具体可以是图8中的指示信息。可选的,第一指示信息携带在第一N2消息中,且第一指示信息为终端的类型;处理单元1002具体可以用于:根据终端的类型,确定不允许终端进入RRC去激活态;在终端没有数据传输时,触发将终端设置为RRC空闲态。可选的,收发单元1003还可以用于,接收接入和移动性管理网元发送的第二指示信息,第二指示信息可以用于指示允许终端进入RRC去激活态。处理单元1002还可以用于,当终端没有数据传输时,根据第二指示信息,触发将终端设置为RRC去激活态。例如,结合图9,收发单元1003可以用于执行S904,处理单元可以用于执行S905,第二指示信息具体可以是图9中的指示信息。可选的,第二指示信息携带在第二N2消息中,第二N2消息还包括辅助信息,且第二指示信息为终端的类型;辅助信息可以用于接入网设备触发将终端设置为RRC去激活态;处理单元1002具体可以用于:根据终端的类型和辅助信息,确定允许终端进入RRC去激活态;在终端没有数据传输时,触发将终端设置为RRC去激活态。
示例性地,处理单元1002可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital Signal Processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,单元和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发单元1003可以是通信接口,该通信接口是统称,在具体实现中,该通信接口可以包括一个或多个接口。存储单元1001可以是存储器。
当处理单元1002为处理器,收发单元1003为通信接口,存储单元1001为存储器时,本申请实施例所涉及的装置1000可以为图11所示的装置1100。
参阅图11所示,该装置1100包括:处理器1102和通信接口1103。进一步地,该装置1100还可以包括存储器1101。可选的,装置1100还可以包括总线1104。其中,通信接口1103、处理器1102以及存储器1101可以通过总线1104相互连接;总线1104可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线1104可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示, 但并不表示仅有一根总线或一种类型的总线。其中,处理器1102可以通过运行或执行存储在存储器1101内的程序,执行装置1100的各种功能。
示例性的,图11所示的装置1100可以是本申请实施例所涉及的AMF网元或接入网设备。
当装置1100为接入和移动性管理网元时,处理器1102可以通过运行或执行存储在存储器1101内的程序,执行上述各方法实施例中由AMF网元完成的动作。
当装置1100为会话管理网元时,处理器1102可以通过运行或执行存储在存储器1101内的程序,执行上述各方法实施例中由接入网设备完成的动作。
本申请实施例还提供了一种过载控制系统。该过载控制系统可以包括接入和移动性管理网元,以及接入网设备。
在一种实现方式中,该接入和移动性管理网元可以用于执行图4A中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图4A中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图4B中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图4B中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图4C中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图4C中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图5中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图5中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图6中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图6中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图7中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图7中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。
可选的,该过载控制系统还可以包括终端。
在一种实现方式中,该接入和移动性管理网元可以用于执行图8中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图8中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。该终端可以用于执行图8中终端所执行的步骤,和/或本申请实施例中描述的其他步骤。
在一种实现方式中,该接入和移动性管理网元可以用于执行图9中AMF网元所执行的步骤,和/或本申请实施例中描述的其他步骤。该接入网设备可以用于执行图9中接入网设备所执行的步骤,和/或本申请实施例中描述的其他步骤。该终端可以用于执行图9中终端所执行的步骤,和/或本申请实施例中描述的其他步骤。
上述提供的任一种过载控制系统的每个示例中相关内容的解释及有益效果等均可以参考上文对应的方法,此处不再赘述。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入和移动性管理网元或接入网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入和移动性管理网元或接入网设备中。
本申请实施例中描述的装置1000和装置1100中相关内容的解释,以及有益效果等均可以参考上文方法实施例,此处不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (23)

  1. 一种过载控制方法,其特征在于,包括:
    接入网设备接收来自接入和移动性管理网元的指示信息,所述指示信息用于指示所述接入和移动性管理网元过载;
    当第一终端处于无线资源控制RRC连接态或RRC去激活态时,所述接入网设备根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC空闲态;或,
    当第一终端处于RRC连接态时,所述接入网设备根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC去激活态。
  2. 根据权利要求1所述的过载控制方法,其特征在于,所述第一终端的特征信息包括以下至少一项:所述第一终端的移动速率、所述第一终端收发数据的频率、所述第一终端在RRC连接态与RRC去激活态之间转换的频率、所述第一终端的小区切换频率、所述第一终端发起无线接入网通知区域RNA更新的频率、所述第一终端的移动轨迹、或所述第一终端的移动范围。
  3. 根据权利要求1或2所述的过载控制方法,其特征在于,所述接入网设备根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC空闲态,包括:
    当所述第一终端的特征信息满足第一预设条件时,所述接入网设备根据所述指示信息触发将所述第一终端设置为RRC空闲态;所述第一终端的特征信息满足所述第一预设条件包括以下至少一项:
    所述第一终端的移动速率大于或等于第一预设门限;
    所述第一终端收发数据的频率小于或等于第二预设门限;
    所述第一终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;
    所述第一终端的小区切换频率大于或等于第四预设门限;
    所述第一终端发起RNA更新的频率大于或等于第五预设门限;
    所述第一终端的移动轨迹不是预设移动轨迹;或,
    所述第一终端的移动范围大于或等于预设范围。
  4. 根据权利要求1至3任一项所述的过载控制方法,其特征在于,所述指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态。
  5. 根据权利要求1或2所述的过载控制方法,其特征在于,所述接入网设备根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC去激活态,包括:
    当所述第一终端的特征信息满足第二预设条件时,所述接入网设备根据所述指示信息触发将所述第一终端设置为RRC去激活态;所述第一终端的特征信息满足所述第二预设条件包括以下至少一项:
    所述第一终端的移动速率小于第一预设门限;
    所述第一终端收发数据的频率大于第二预设门限;
    所述第一终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;
    所述第一终端的小区切换频率小于第四预设门限;
    所述第一终端发起RNA更新的频率小于第五预设门限;
    所述第一终端的移动轨迹是预设移动轨迹;或,
    所述第一终端的移动范围小于预设范围。
  6. 根据权利要求1、2或5所述的过载控制方法,其特征在于,所述指示信息还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
  7. 一种过载控制方法,其特征在于,包括:
    接入和移动性管理网元向接入网设备发送指示信息,所述指示信息用于指示所述接入和移动性管理网元过载,所述指示信息还用于指示所述接入网设备触发将特征信息满足第一预设条件的终端设置为无线资源控制RRC空闲态;
    其中,特征信息满足所述第一预设条件包括以下至少一项:
    所述终端的移动速率大于或等于第一预设门限;
    所述终端收发数据的频率小于或等于第二预设门限;
    所述终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;
    所述终端的小区切换频率大于或等于第四预设门限;
    所述终端发起RNA更新的频率大于或等于第五预设门限;
    所述终端的移动轨迹不是预设移动轨迹;或,
    所述终端的移动范围大于或等于预设范围。
  8. 一种过载控制方法,其特征在于,包括:
    接入和移动性管理网元向接入网设备发送指示信息,所述指示信息用于指示所述接入和移动性管理网元过载,所述指示信息还用于指示所述接入网设备触发将特征信息满足第二预设条件的终端设置为无线资源控制RRC去激活态;
    其中,特征信息满足所述第二预设条件包括以下至少一项:
    所述终端的移动速率小于第一预设门限;
    所述终端收发数据的频率大于第二预设门限;
    所述终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;
    所述终端的小区切换频率小于第四预设门限;
    所述终端发起RNA更新的频率小于第五预设门限;
    所述终端的移动轨迹是预设移动轨迹;或,
    所述终端的移动范围小于预设范围。
  9. 一种过载控制方法,其特征在于,包括:
    当接入和移动性管理网元过载时,所述接入和移动性管理网元根据终端的特征信息向接入网设备发送指示信息;其中,所述指示信息用于指示所述接入网设备触发将所述终端设置为无线资源控制RRC空闲态或RRC去激活态。
  10. 根据权利要求9所述的过载控制方法,其特征在于,所述终端的特征信息包括以下至少一项:所述终端的移动速率、所述终端收发数据的频率、所述终端在RRC连接态与RRC去激活态之间转换的频率、所述终端的小区切换频率、所述终端发起无线接入网通知区域RNA更新的频率、所述终端的移动轨迹、所述终端的移动范围。
  11. 一种接入网设备,其特征在于,包括:
    收发单元,用于接收来自接入和移动性管理网元的指示信息,所述指示信息用于指示所述接入和移动性管理网元过载;
    处理单元,用于当第一终端处于无线资源控制RRC连接态或RRC去激活态时,根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC空闲态;或,
    当第一终端处于RRC连接态时,根据所述指示信息以及所述第一终端的特征信息,触发将所述第一终端设置为RRC去激活态。
  12. 根据权利要求11所述的接入网设备,其特征在于,所述第一终端的特征信息包括以下至少一项:所述第一终端的移动速率、所述第一终端收发数据的频率、所述第一终端在RRC连接态与RRC去激活态之间转换的频率、所述第一终端的小区切换频率、所述第一终端发起无线接入网通知区域RNA更新的频率、所述第一终端的移动轨迹、或所述第一终端的移动范围。
  13. 根据权利要求11或12所述的接入网设备,其特征在于,
    所述处理单元具体用于,当所述第一终端的特征信息满足第一预设条件时,根据所述指示信息触发将所述第一终端设置为RRC空闲态;所述第一终端的特征信息满足所述第一预设条件包括以下至少一项:
    所述第一终端的移动速率大于或等于第一预设门限;
    所述第一终端收发数据的频率小于或等于第二预设门限;
    所述第一终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;
    所述第一终端的小区切换频率大于或等于第四预设门限;
    所述第一终端发起RNA更新的频率大于或等于第五预设门限;
    所述第一终端的移动轨迹不是预设移动轨迹;或,
    所述第一终端的移动范围大于或等于预设范围。
  14. 根据权利要求11至13任一项所述的接入网设备,其特征在于,所述指示信息还用于指示触发将特征信息满足第一预设条件的终端设置为RRC空闲态。
  15. 根据权利要求11或12所述的接入网设备,其特征在于,
    所述处理单元具体用于,当所述第一终端的特征信息满足第二预设条件时,根据所述指示信息触发将所述第一终端设置为RRC去激活态;所述第一终端的特征信息满足所述第二预设条件包括以下至少一项:
    所述第一终端的移动速率小于第一预设门限;
    所述第一终端收发数据的频率大于第二预设门限;
    所述第一终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;
    所述第一终端的小区切换频率小于第四预设门限;
    所述第一终端发起RNA更新的频率小于第五预设门限;
    所述第一终端的移动轨迹是预设移动轨迹;或,
    所述第一终端的移动范围小于预设范围。
  16. 根据权利要求11、12或15所述的接入网设备,其特征在于,所述指示信息 还用于指示触发将特征信息满足第二预设条件的终端设置为RRC去激活态。
  17. 一种接入和移动性管理网元,其特征在于,包括:
    收发单元,用于向接入网设备发送指示信息,所述指示信息用于指示所述接入和移动性管理网元过载,所述指示信息还用于指示所述接入网设备触发将特征信息满足第一预设条件的终端设置为无线资源控制RRC空闲态;其中,特征信息满足所述第一预设条件包括以下至少一项:
    所述终端的移动速率大于或等于第一预设门限;
    所述终端收发数据的频率小于或等于第二预设门限;
    所述终端在RRC连接态与RRC去激活态之间转换的频率小于或等于第三预设门限;
    所述终端的小区切换频率大于或等于第四预设门限;
    所述终端发起RNA更新的频率大于或等于第五预设门限;
    所述终端的移动轨迹不是预设移动轨迹;或,
    所述终端的移动范围大于或等于预设范围。
  18. 一种接入和移动性管理网元,其特征在于,包括:
    收发单元,用于向接入网设备发送指示信息,所述指示信息用于指示所述接入和移动性管理网元过载,所述指示信息还用于指示所述接入网设备触发将特征信息满足第二预设条件的终端设置为无线资源控制RRC去激活态;其中,特征信息满足所述第二预设条件包括以下至少一项:
    所述终端的移动速率小于第一预设门限;
    所述终端收发数据的频率大于第二预设门限;
    所述终端在RRC连接态与RRC去激活态之间转换的频率大于第三预设门限;
    所述终端的小区切换频率小于第四预设门限;
    所述终端发起RNA更新的频率小于第五预设门限;
    所述终端的移动轨迹是预设移动轨迹;或,
    所述终端的移动范围小于预设范围。
  19. 一种接入和移动性管理网元,其特征在于,包括:
    收发单元,用于当所述接入和移动性管理网元过载时,根据终端的特征信息向接入网设备发送指示信息;其中,所述指示信息用于指示所述接入网设备触发将所述终端设置为无线资源控制RRC空闲态或RRC去激活态。
  20. 根据权利要求19所述的接入和移动性管理网元,其特征在于,所述终端的特征信息包括以下至少一项:所述终端的移动速率、所述终端收发数据的频率、所述终端在RRC连接态与RRC去激活态之间转换的频率、所述终端的小区切换频率、所述终端发起无线接入网通知区域RNA更新的频率、所述终端的移动轨迹、所述终端的移动范围。
  21. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得如权利要求1至10任一项所述的过载控制方法被执行。
  22. 一种过载控制装置,其特征在于,包括存储器和处理器,所述存储器用于存储程序代码,所述程序代码被所述处理器执行时,使得如权利要求1至10任一项所述 的过载控制方法被执行。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至10任一项所述的过载控制方法。
PCT/CN2019/093411 2018-07-03 2019-06-27 过载控制方法和装置 WO2020007232A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19831245.6A EP3796705A4 (en) 2018-07-03 2019-06-27 OVERLOAD CONTROL PROCESS AND DEVICE
US17/137,701 US20210120624A1 (en) 2018-07-03 2020-12-30 Overload control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810717591.2A CN110677870B (zh) 2018-07-03 2018-07-03 过载控制方法和装置
CN201810717591.2 2018-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/137,701 Continuation US20210120624A1 (en) 2018-07-03 2020-12-30 Overload control method and apparatus

Publications (1)

Publication Number Publication Date
WO2020007232A1 true WO2020007232A1 (zh) 2020-01-09

Family

ID=69060746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093411 WO2020007232A1 (zh) 2018-07-03 2019-06-27 过载控制方法和装置

Country Status (4)

Country Link
US (1) US20210120624A1 (zh)
EP (1) EP3796705A4 (zh)
CN (1) CN110677870B (zh)
WO (1) WO2020007232A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147513A1 (zh) * 2020-01-21 2021-07-29 大唐移动通信设备有限公司 终端状态处理方法、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405644B (zh) * 2020-03-07 2021-06-18 广州爱浦路网络技术有限公司 一种中心控制的5g通信网元智能节能网及节能方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199898A1 (en) * 2010-02-16 2011-08-18 Samsung Electronics Co. Ltd. Method and apparatus for controlling network access of ue in wireless communication system
CN102595555A (zh) * 2011-01-12 2012-07-18 中兴通讯股份有限公司 控制终端发起业务的方法及系统
CN105282768A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 重配置方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771260B1 (ko) * 2011-10-04 2017-08-24 삼성전자주식회사 이동 통신 시스템에서 사용자 단말의 접속 제어 방법 및 장치
US10009908B2 (en) * 2015-01-30 2018-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods of operating wireless terminals and network nodes using high speed vehicle network indicators and related wireless terminals and network nodes
US10531418B2 (en) * 2015-03-12 2020-01-07 Lg Electronics Inc. Communication method of user equipment installed in vehicle in V2X communication system, and user equipment
JP6657424B2 (ja) * 2016-04-20 2020-03-04 コンヴィーダ ワイヤレス, エルエルシー モビリティシグナリング負荷低減
US10397855B2 (en) * 2017-01-12 2019-08-27 Lg Electronics Inc. Access attempt method and user equipment, and access control method and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110199898A1 (en) * 2010-02-16 2011-08-18 Samsung Electronics Co. Ltd. Method and apparatus for controlling network access of ue in wireless communication system
CN102595555A (zh) * 2011-01-12 2012-07-18 中兴通讯股份有限公司 控制终端发起业务的方法及系统
CN105282768A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 重配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796705A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147513A1 (zh) * 2020-01-21 2021-07-29 大唐移动通信设备有限公司 终端状态处理方法、设备及介质

Also Published As

Publication number Publication date
EP3796705A4 (en) 2021-07-28
CN110677870B (zh) 2021-06-22
US20210120624A1 (en) 2021-04-22
CN110677870A (zh) 2020-01-10
EP3796705A1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
EP3783862B1 (en) Session management method and session management function network element
US11224085B2 (en) Method and apparatus for initiating user plane path re-establishment and communications system
US20220217597A1 (en) Conditional handovers and measurement reports
EP3565309B1 (en) Information transmission method, base station and user equipment
WO2019228434A1 (zh) 一种传输策略的方法、pcf网元及计算机存储介质
US11012825B2 (en) Short message transmission method, device, and system
AU2019272212B2 (en) Device monitoring method and apparatus and deregistration method and apparatus
US11405965B2 (en) Signaling processing method and apparatus
WO2016145575A1 (zh) 一种业务处理方法、相关装置及系统
WO2014164003A1 (en) Method and apparatus for lte handover reduction
CN112929936A (zh) 小区切换方法及装置、存储介质、用户设备、基站设备
US20210385723A1 (en) Policy Management Method and Apparatus
AU2017427860A1 (en) Method for paging, and access network device, terminal device and core network device
CN116671085A (zh) 从测量报告中删除不支持新无线电语音的新无线电小区的装置和方法
US20210120624A1 (en) Overload control method and apparatus
WO2023071770A1 (zh) 获取数据分析结果的方法及通信装置
KR102316348B1 (ko) 통신 방법, 네트워크 기기 및 단말 기기
CN116325924A (zh) 移动终端用户设备连接至回退网络的装置和方法
CN111133826B (zh) 用于在无线通信系统中的共享上行链路资源上发送对于冲突具有鲁棒性的上行链路数据的方法及其装置
JP6828053B2 (ja) 通信方法、コアネットワーク装置、アクセスネットワーク装置、端末装置と通信システム
WO2019157716A1 (zh) 通信方法、网络设备和终端设备
CN109548171B (zh) 一种无线连接方法及装置
WO2019193879A1 (ja) ユーザ装置、ネットワーク装置及び無線通信方法
JP2021013195A (ja) 通信方法、コアネットワーク装置、アクセスネットワーク装置、端末装置と通信システム
EP3576364A1 (en) Call setup method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831245

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019831245

Country of ref document: EP

Effective date: 20201216

NENP Non-entry into the national phase

Ref country code: DE