WO2020006800A1 - 一种双波长激光器及激光治疗仪 - Google Patents

一种双波长激光器及激光治疗仪 Download PDF

Info

Publication number
WO2020006800A1
WO2020006800A1 PCT/CN2018/098898 CN2018098898W WO2020006800A1 WO 2020006800 A1 WO2020006800 A1 WO 2020006800A1 CN 2018098898 W CN2018098898 W CN 2018098898W WO 2020006800 A1 WO2020006800 A1 WO 2020006800A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wavelength
mirror
power supply
therapeutic apparatus
Prior art date
Application number
PCT/CN2018/098898
Other languages
English (en)
French (fr)
Inventor
刘腾
刘明
刘普霞
袁哲
王占辉
Original Assignee
瑞尔通(苏州)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞尔通(苏州)医疗科技有限公司 filed Critical 瑞尔通(苏州)医疗科技有限公司
Priority to GB2014567.8A priority Critical patent/GB2586364B/en
Publication of WO2020006800A1 publication Critical patent/WO2020006800A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00973Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00625Vaporization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00672Sensing and controlling the application of energy using a threshold value lower
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00892Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2065Multiwave; Wavelength mixing, e.g. using four or more wavelengths
    • A61B2018/207Multiwave; Wavelength mixing, e.g. using four or more wavelengths mixing two wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2238Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with means for selectively laterally deflecting the tip of the fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2255Optical elements at the distal end of probe tips
    • A61B2018/2272Optical elements at the distal end of probe tips with reflective or refractive surfaces for deflecting the beam

Definitions

  • the present application relates to the field of laser therapeutic apparatus, and specifically relates to a switchable dual-wavelength fiber-coupled dual-wavelength laser and a laser therapeutic apparatus, which are used for the treatment of soft tissue diseases and hemostasis, especially for benign prostatic hyperplasia.
  • High-power lasers with a wavelength of 2um such as 100W Ho: YAG holmium laser and 120W Tm: YAG laser, are also competitive in prostate hyperplasia surgery. It is mainly absorbed by water in tissues, and the high absorption rate leads to shallow and deep tissues and poor hemostasis. The effect of tissue resection is very strong, but the coagulation and hemostasis are poor, and the characteristics of the fiber must be close to the tissue, which makes the operation difficult to master. Near-infrared light with a wavelength of about 980nm to 1470nm and a tissue depth of about 7-10mm are conducive to hemostasis.
  • Green laser used in soft tissue gasification cutting has gained a lot of practice in clinical practice, which has fully proved its safety and effectiveness.
  • “gold standard” "transurethral prostatectomy” TURP
  • its side effects are almost no, and it is expected to become a replacement for TURP Next-generation "gold standard”.
  • green lasers are mainly absorbed by hemoglobin in the human body, and can be transmitted over long distances in the human body's water environment, which directly vaporizes tissue into powder and flushes it out with water, without the need to pulverize large pieces of tissue.
  • Patent No. US20180078310A1 describes a combination of a 532nm green laser with a power of 20W and a 980nm near-infrared laser with a power of 40W.
  • the power of this combination of two wavelengths is relatively low, and the two lasers are transmitted into the surgical surgical optical fiber by means of fiber bundles.
  • the system is complex, the stability is poor, and it is difficult to maintain.
  • a dual-wavelength laser therapy instrument with a simple structure and high stability, which can switch between a high-power 532nm green laser and a 1064nm near-infrared laser.
  • the 532nm laser is used for soft tissue gasification resection
  • the 1064nm laser is used for soft tissue cutting, hemostasis of large blood vessels and sinuses to meet surgical requirements, and become a better solution for soft tissue surgery.
  • the technical problem to be solved in the present application is to provide a dual-wavelength laser and a laser treatment instrument.
  • the laser includes a pumping system, a first semi-transparent mirror, a movable reflective lens, a frequency doubling crystal, a total reflection cavity mirror, and an infrared output mirror.
  • a first reflecting mirror, a second reflecting mirror, a second transflective mirror, and a fiber coupling device the movable reflecting lens has a first position and a second position, and when the movable reflecting lens is located at the first When in the position, the first wavelength light beam generated by the pumping system passes through the first half mirror and the movable reflection lens, and then passes through the infrared output mirror, and then passes through the first mirror and the second half mirror in order.
  • the reflection of the half mirror reaches the fiber coupling device; when the movable reflection lens is in the second position, the first wavelength light beam generated by the pumping system passes through the reflection of the first half mirror and passes through The frequency-doubling crystal is reflected by the total reflection cavity mirror to form a second wavelength beam.
  • the second wavelength beam passes through the first half mirror, is reflected by the second mirror, passes through the second half mirror, and reaches Fiber coupling Opposite said first half mirror and a second half-mirror capable of reflecting a first wavelength light, second wavelength light beam transmittance.
  • the first wavelength beam is an infrared laser having a wavelength of 1064 nm
  • the second wavelength beam is a visible laser having a wavelength of 532 nm.
  • the pump system includes a pump cavity, a Q switch, and a rear mirror.
  • the movable reflection lens is a slidable device mounted on a sliding block and capable of sliding between a first position and a second position.
  • the present application further provides a laser treatment instrument, comprising the laser according to any one of claims 1 to 4, and the laser treatment instrument further comprises a power supply control system for supplying power to the laser.
  • the laser therapeutic apparatus further includes a laser cooling system for cooling the pump cavity and the Q switch.
  • the laser cooling system is a water flow cooling system, which includes a water flow protection switch, and the water flow protection switch is configured to give a signal to a power supply control system when a water flow break occurs in a laser working state, and the power supply The control system is used to cut off the laser power supply according to the signal fed back by the water flow protection switch.
  • the laser treatment instrument further includes a multi-mode energy-transmitting optical fiber, and a coupling lens in the fiber coupling device couples laser energy into the multi-mode energy-transmitting optical fiber
  • the laser further includes a device for monitoring
  • the temperature sensor for the temperature of the fiber coupling device the temperature sensor is configured to send a feedback signal to a power supply control system when the temperature of the fiber coupling device exceeds a set value, and the power supply control system is based on the temperature sensor
  • the hairpin signal is sent to cut off the laser power.
  • the laser therapeutic apparatus further includes a power detection device for detecting real-time power of the laser, and the power supply control system is further configured for when the power measured by the power detection device is lower than or higher than a prescribed value. At 20%, an alarm is issued.
  • the laser therapeutic apparatus further includes a foot switch for switching the output wavelength of the laser, and the foot switch includes left and right foot-type control switches that respectively control the output of the first wavelength light beam and the second wavelength light beam.
  • the foot switch is signally connected to the power supply control system, and the power supply control system is configured to control the movable reflective lens to move in the first position or the second position according to an output signal of the foot switch.
  • the dual-wavelength laser and laser treatment instrument of the present application have a simple structure and a high-stability dual-wavelength laser treatment instrument.
  • the high-power 532 nm green switch can be switched.
  • Laser and 1064nm near-infrared laser The 532nm laser is used for soft tissue gasification resection, and the 1064nm laser is used for soft tissue cutting, hemostasis of large blood vessels and sinuses to meet surgical requirements, and become a better solution for soft tissue surgery.
  • the 532nm laser resonator and the 1064nm laser resonator share a pump, Q switch and rear cavity mirror. Through a movable reflective lens, one laser is turned into two lasers, and the 532nm visible laser and 1064nm infrared laser can be switched and output respectively.
  • FIG. 1 is a schematic structural diagram of a dual-wavelength laser therapeutic apparatus according to the present invention.
  • FIG. 2 is a schematic structural diagram of a laser green laser output according to the present invention.
  • FIG. 3 is a schematic structural diagram of an infrared laser output of the laser according to the present invention.
  • FIG. 4 is a schematic structural diagram of straight out light from an energy transmission fiber according to the present invention.
  • FIG. 5 is a schematic structural diagram of light exiting from an energy transmission fiber side according to the present invention.
  • the laser 1 includes a pumping system, a first semi-transparent mirror 11, a movable reflective lens 12, and a frequency doubling crystal 14. , Total reflection cavity mirror 15, infrared output mirror 16, first reflection mirror 18, second reflection mirror 13, second half mirror 17, and fiber coupling device 19, the movable reflection lens 12 has a first position And second position.
  • the first wavelength light beam generated by the pumping system passes through the first half mirror 11 and the movable reflective lens 12 in order. Then, it passes through the infrared output mirror 16, passes through the reflection of the first mirror 18 and the second half mirror 17 in order, and then reaches the fiber coupling device 19.
  • the first wavelength light beam generated by the pumping system passes through the first half mirror 11 and passes through the frequency doubling crystal. 14 is reflected by the total reflection cavity mirror 15 to form a second wavelength light beam, the second wavelength light beam passes through the first half mirror 11, is reflected by the second mirror 13, and passes through the second half mirror 17 , Reached the fiber coupling device 19.
  • the first half mirror 11 and the second half mirror 17 are plated with a 45 ° 1064 nm high-reflection coating and a 532 nm anti-reflection coating, which can reflect the first wavelength light beam and transmit the second wavelength light beam.
  • the first wavelength beam is an infrared laser with a wavelength of 1064 nm
  • the second wavelength beam is a visible laser with a wavelength of 532 nm.
  • the pump system includes a pump cavity 10, a Q switch 9 and a rear mirror 8.
  • the movable reflecting lens 12 is a slidable device mounted on a sliding block and capable of sliding between a first position and a second position.
  • the L-type 532nm laser resonant cavity and the Z-type 1064nm laser resonant cavity form a common pump cavity 10, Q switch 9, and rear cavity mirror.
  • a movable reflection lens 12 is used to change one laser 1 into two lasers 1.
  • the first mirror 18 and the second mirror 13 are 45-degree mirrors.
  • the frequency-doubling crystal 14 is an LBO crystal or a KTP crystal.
  • the frequency-doubling efficiency is controlled by a temperature matching method, and the temperature control accuracy is ⁇ 0.1 degrees Celsius.
  • the pumping chamber 10 is a side pump, which may be a continuous semiconductor pump or a lamp pump.
  • the laser medium can be Nd: YAG, Nd: YLF or Nd: YVO4.
  • the diameter of the crystal rod is from 2mm to 10mm, and the doping concentration is from 0.5% to 1.2%.
  • the crystal can be made into two concave double-concave 1mCC or directly use a bonded crystal, where the doping length depends on the pump The length of the light distribution.
  • the two lasers share a method for debugging a fiber coupling device 19.
  • the 532nm green laser output mode first adjust the second mirror 13, adjust the 532nm laser to the center of the fiber coupling device 19, and then fine-tune the fiber coupling device 19.
  • the coupling lens 20 inputs the 532nm laser from the center of the optical fiber.
  • the second mirror 13 and the coupling lens 20 are fixed and locked to switch to the 1064nm output mode.
  • the first mirror 18 is adjusted to adjust the 1064nm laser. Enter the center of the fiber coupler, and then fine-tune the second reflector 13 to obtain the optimal laser energy output of 1064 nm through the fiber.
  • a laser therapeutic apparatus of the present application includes a laser 1, a power supply control system 3 for supplying power to the laser 1, a laser cooling system 4 for cooling the pump cavity 10 and the Q switch 9, Multi-mode energy transmission optical fiber 2, power detection device 6, foot switch 5, display device 7.
  • the laser cooling system 4 is a water flow cooling system, which includes a water flow protection switch, and the water flow protection switch is used to provide a signal to the power supply control system 3 when a water flow break occurs in the laser 1 working state.
  • the power supply control system 3 is used to cut off the power supply of the laser 1 according to a signal fed back by the water flow protection switch. All output power is DC power supply, including ultrasonic drive of Q switch 9, DC power supply of pump cavity 10, temperature control of LBO crystal, control of moving lens, etc.
  • the power supply and control system (3) also includes signal processing and alarms for various sensors, such as waterway detection signals, current and voltage monitoring signals, light energy feedback signals, interlocking control signals, and optical fiber sensor temperature signals.
  • the coupling lens 20 in the fiber coupling device 19 couples laser energy into the multimode energy transmission fiber 2.
  • the laser 1 further includes a temperature sensor for monitoring the temperature of the fiber coupling device 19.
  • the temperature sensor is used to send a feedback signal to the power supply control system 3 when the temperature of the optical fiber coupling device 19 exceeds a set value, and the power supply control system 3 cuts off the laser 1 according to a signal generated by the temperature sensor. powered by.
  • the multimode energy-transmitting optical fiber 2 is composed of a step-index multimode quartz energy-transmitting optical fiber, and has a core diameter of 62.5-1200um and a cladding diameter of 125-1250um. During the surgery, laser energy is transmitted to the human body's diseased part through optical fiber for treatment, which is mainly a soft tissue disease.
  • the power supply control system 3 is further configured to issue an alarm when the power measured by the power detection device 6 is lower than or higher than 20% of a prescribed value.
  • the foot switch 5 includes two left and right foot control switches that respectively control the output of the first wavelength light beam and the second wavelength light beam.
  • the foot switch 5 is signal-connected to the power supply control system 3.
  • the power supply control system 3 is configured to control the movable reflective lens 12 to move in the first position or the second position according to the output signal of the foot switch 5.
  • the output end of the multi-mode energy-transmitting optical fiber 2 may be directly output along an optical fiber axis, or may be a lateral output having a certain angle with the optical fiber axis.
  • the output end face of the optical fiber forms an angle of 90 degrees with the axis.
  • the output end face of the fiber forms an angle of 45 degrees with the axis.
  • the laser 1 has an output wavelength of 532 nm and 1064 nm, a frequency of 10--15 KHz and CW mode, a pulse width of 100 ns to 200 ns, and a maximum average power of 200 W and 120 W, respectively. It is used for human soft tissue Treatment of the disease and hemostasis.
  • the doctor steps on a foot switch 5 and the treatment device outputs a wavelength of laser light.
  • the signal enters the control system, and the control system sends a control signal to move the movable reflective lens 12 and switch to another Laser output at one wavelength.
  • the two lasers are output separately, and two foot switches 5 cannot be pressed simultaneously to output lasers of two wavelengths at the same time.
  • the two exposed control switches are covered with a cover to prevent malfunction.
  • the display device 7 is a touchable display. After the therapy device is turned on, the surgeon adjusts the control button on the display device 7 to adjust the required power according to the needs of the operation to perform the operation.
  • the display device 7 simultaneously displays the length of the operation time and the cumulative output laser energy, which is convenient for doctors to perform postoperative analysis.
  • the display device 7 displays the details of the alarm information, which is convenient for after-sales feedback maintenance.
  • the laser energy is transmitted to the diseased part of the human body through optical fiber for treatment, which is mainly a soft tissue disease.
  • the output end of the multi-mode energy-transmitting optical fiber 2 may be a forward output along the fiber axis, or a lateral output having a certain angle with the fiber axis. The doctor chooses the output method according to the actual operation situation.
  • the dual-wavelength laser 1 and the laser treatment instrument of the present application have a simple structure and a high-stability dual-wavelength laser treatment instrument.
  • the high-power 532 nm can be switched and output.
  • Green laser and 1064nm near-infrared laser The 532nm laser is used for soft tissue gasification resection, and the 1064nm laser is used for soft tissue cutting, hemostasis of large blood vessels and sinuses to meet surgical requirements, and become a better solution for soft tissue surgery.
  • the 532nm laser resonator and the 1064nm laser resonator share a pump, Q switch 9 and a rear cavity mirror.
  • a laser 1 is turned into two lasers 1, and the 532nm visible laser and 1064nm can be switched respectively. Infrared laser.

Abstract

一种双波长激光器及激光治疗仪,结构简单,稳定性高的双波长激光治疗仪,通过可活动反射镜片(12)在第一位置和第二位置的移动,可以切换输出高功率532nm的绿激光和1064nm的近红外激光。532nm激光用于软组织气化切除,1064nm激光用于软组织切割、大血管和静脉窦的止血以满足手术要求,成为软组织手术更好的解决方案。532nm激光谐振腔和1064nm激光谐振腔共用一个泵浦、Q开关和后腔镜,通过一个可活动反射镜片,将一个激光器变成两个激光器,可以分别切换输出532nm可见激光和1064nm红外激光。

Description

一种双波长激光器及激光治疗仪 技术领域
本申请涉及激光治疗仪领域,具体的一种可切换双波长光纤耦合双波长激光器及激光治疗仪,用于软组织疾病的治疗和止血,特别是良性前列腺增生的治疗。
背景技术
今年来激光技术在医疗领域的应用迅速发展,在软组织领域,激光将很快替代电切成为治疗的金标准。激光出血少,无创面感染的风险,无闭孔反应等特点让激光软组织手术在竞争中逐渐胜出。
波长2um的高功率激光,例如100W的Ho:YAG钬激光和120W的Tm:YAG激光在前列腺增生切除手术中的应用也具有一定的竞争力。其在组织中主要由水吸收,吸收率高导致组织深入深度浅,止血差。组织切除效果很强,但是凝固和止血差、光纤必须贴着组织作用的特点导致手术难掌握等。波长980nm—1470nm左右的近红外光,组织深入深度7—10mm左右,有利于止血。公告号:CN 102090926 B的专利,采用了多波长的组合,用2um的波长进行切割,用1470nm波长进行止血。该技术复杂,实现难度大,系统体积大难于维护,不利于新技术的推广。
绿激光用于软组织气化切割在临床中获得大量的实践,充分证明其安全有效,相比于前代“金标准”“经尿道前列腺切除术”TURP,其副作用几乎没有,有望成为取代TURP的新一代“金标准”。不同于其他波长的光,绿激光在人体中主要由血红蛋白吸收,在人体的水环境下可以远距离传输,直接将组织气化成粉末通过水冲出,不需要再进行大块组织粉碎。这些独特的优势导致绿激光这个波长必然成为软组织疾病治疗的最优选择。但是由于没有切割作用,不能取病理,对于大血管和静脉窦出血也比较难止血,因此双波长输出成为绿激光手术推广的更好选择。
专利号US 20180078310A1的专利,描述了一种功率20W的532nm绿激光 加40W的980nm近红外激光的组合。该组合两种波长的功率都比较低,而且是两种激光器通过光纤合束的方式传输进入治疗手术光纤,系统复杂,稳定性差,难于维护。
因此,需要一种结构简单,稳定性高的双波长激光治疗仪,可以切换输出高功率532nm的绿激光和1064nm的近红外激光。532nm激光用于软组织气化切除,1064nm激光用于软组织切割、大血管和静脉窦的止血以满足手术要求,成为软组织手术更好的解决方案。
发明内容
本申请要解决的技术问题是提供一种双波长激光器及激光治疗仪。
为了解决上述技术问题,本申请提供了一种双波长激光器,所述的激光器包括泵浦系统、第一半透半反镜、可活动反射镜片、倍频晶体、全反射腔镜、红外输出镜、第一反射镜、第二反射镜、第二半透半反镜、光纤耦合装置,所述的可活动反射镜片具有第一位置和第二位置,当所述的可活动反射镜片位于第一位置时,所述的泵浦系统产生的第一波长光束依次经过第一半透半反镜和可活动反射镜片的反射后,穿过红外输出镜,依次经过第一反射镜和第二半透半反镜的反射后到达光纤耦合装置;当所述的可活动反射镜片位于第二位置时,所述的泵浦系统产生的第一波长光束经过第一半透半反镜的反射后穿过倍频晶体被所述的全反射腔镜反射形成第二波长光束,第二波长光束穿过第一半透半反镜,被第二反射镜反射,穿过第二半透半反镜,到达光纤耦合装置,所述的第一半透半反镜和第二半透半反镜能够反射第一波长光束,透射第二波长光束。
优选地,所述的第一波长光束为波长为1064nm的红外激光,所述的第二波长光束为波长为532nm可见激光。
优选地,所述的泵浦系统包括泵浦腔、Q开关和后反镜。
优选地,所述的可活动反射镜片为安装在一个滑动块上的能够在第一位置和第二位置之间滑动的可滑动装置。
本申请还提供一种激光治疗仪,包括权利要求1~4任意一项所述的激光器,所述的激光治疗仪还包括用于对激光器供电的供电控制系统。
优选地,所述的激光治疗仪还包括用于对泵浦腔和Q开关冷却的激光冷却 系统。
优选地,所述的激光冷却系统为水流冷却系统,包括水流保护开关,所述的水流保护开关用于当激光器工作状态下发生水流断路时,给出信号反馈到供电控制系统,所述的供电控制系统用于根据水流保护开关反馈的信号切断激光器供电。
优选地,所述的激光治疗仪还包括多模传能光纤,所述的光纤耦合装置中的耦合镜片将激光能量耦合进入所述的多模传能光纤,所述的激光器还包括用于监控所述的光纤耦合装置温度的温度传感器,所述的温度传感器用于当光纤耦合装置的温度超过设定值时,发送反馈信号至供电控制系统,所述的供电控制系统根据所述的温度传感器发出的发聩信号,切断激光器供电。
优选地,所述的激光治疗仪还包括用于检测激光器实时功率的功率检测装置,所述的供电控制系统还用于当所述的功率检测装置所测的功率低于或高于规定值的20%时,发出报警。
优选地,所述的激光治疗仪还包括用于切换激光器输出波长的脚踏开关,所述的脚踏开关包括分别控制第一波长光束和第二波长光束输出的左右两个脚踏式控制开关,所述的脚踏开关与所述的供电控制系统信号连接,所述的供电控制系统用于根据脚踏开关的输出信号控制所述的可活动反射镜片在第一位置或第二位置移动。
本申请的一种双波长激光器及激光治疗仪,结构简单,稳定性高的双波长激光治疗仪,通过可活动反射镜片在第一位置和第二位置的移动,可以切换输出高功率532nm的绿激光和1064nm的近红外激光。532nm激光用于软组织气化切除,1064nm激光用于软组织切割、大血管和静脉窦的止血以满足手术要求,成为软组织手术更好的解决方案。532nm激光谐振腔和1064nm激光谐振腔共用一个泵浦、Q开关和后腔镜,通过一个可活动反射镜片,将一个激光器变成两个激光器,可以分别切换输出532nm可见激光和1064nm红外激光。
附图说明
图1是本发明所述的一种双波长激光治疗仪的结构示意图;
图2是本发明所述的激光器绿激光输出的结构示意图;
图3是本发明所述的激光器红外激光输出的结构示意图;
图4是本发明所述的传能光纤直出光的结构示意图;
图5是本发明所述的传能光纤侧出光的结构示意图,
其中:1、激光器;2、多模传能光纤;3、供电控制系统;4、激光冷却系统;5、脚踏开关;6、功率检测装置;7、显示装置;8、后反镜;9、Q开关;10、泵浦腔;11、第一半透半反镜;12、可活动反射镜片;13、第二反射镜;14、倍频晶体;15、全反射腔镜;16、红外输出镜;17、第二半透半反镜;18、第一反射镜;19、光纤耦合装置;20、耦合镜片。
具体实施方式
下面结合附图和具体实施例对本申请作进一步说明,以使本领域的技术人员可以更好地理解本申请并能予以实施,但所举实施例不作为对本申请的限定。
如图2和3所示,为本申请所述的一种双波长激光器1,所述的激光器1包括泵浦系统、第一半透半反镜11、可活动反射镜片12、倍频晶体14、全反射腔镜15、红外输出镜16、第一反射镜18、第二反射镜13、第二半透半反镜17、光纤耦合装置19,所述的可活动反射镜片12具有第一位置和第二位置。
如图3所示,所述的可活动反射镜片12位于第一位置时,所述的泵浦系统产生的第一波长光束依次经过第一半透半反镜11和可活动反射镜片12的反射后,穿过红外输出镜16,依次经过第一反射镜18和第二半透半反镜17的反射后到达光纤耦合装置19。
如图2所示,当所述的可活动反射镜片12位于第二位置时,所述的泵浦系统产生的第一波长光束经过第一半透半反镜11的反射后穿过倍频晶体14被所述的全反射腔镜15反射形成第二波长光束,第二波长光束穿过第一半透半反镜11,被第二反射镜13反射,穿过第二半透半反镜17,到达光纤耦合装置19。
所述的第一半透半反镜11和第二半透半反镜17镀45度1064nm高反膜和532nm增透膜,能够反射第一波长光束,透射第二波长光束。所述的第一波长光束为波长为1064nm的红外激光,所述的第二波长光束为波长为532nm可见激光。所述的泵浦系统包括泵浦腔10、Q开关9和后反镜8。所述的可活动反 射镜片12为安装在一个滑动块上的能够在第一位置和第二位置之间滑动的可滑动装置。L型532nm激光谐振腔和Z型1064nm激光谐振腔组成共用一个泵浦腔10、Q开关9和后腔镜,通过一个可活动反射镜片12,将一个激光器1变成两个激光器1,可以分别切换输出532nm可见激光和1064nm红外激光。所述的第一反射镜18和第二反射镜13为45度反射镜。
所述的倍频晶体14是LBO晶体或KTP晶体,通过温度匹配的方式控制倍频效率,温度控制精度为±0.1摄氏度。所述的泵浦腔10是侧面泵浦,可以是连续半导体泵浦的,也可以是灯泵浦的。其激光介质可以是Nd:YAG,也可以是Nd:YLF或Nd:YVO4。晶体棒的直径从2mm—10mm,掺杂浓度从0.5%--1.2%,为了提高光束质量,晶体可以做成两个端面双凹1mCC或者直接使用键合晶体,其中掺杂长度取决于泵浦光的分布长度。
所述的两路激光共用一个光纤耦合装置19的调试方法,在532nm绿激光输出模式下,先调节第二反射镜13,将532nm激光调节至光纤耦合装置19中央位置,再微调光纤耦合装置19的耦合镜片20,将532nm的激光从光纤的中心输入;调好后固定锁紧第二反射镜13和耦合镜片20,切换至1064nm输出模式,再调节第一反射镜18,将1064nm的激光调节进入光纤耦合器中心,再微调第二反射镜13,通过光纤获得最佳的1064nm的激光能量输出。
如图1所示,为本申请的一种激光治疗仪,包括激光器1、用于对激光器1供电的供电控制系统3、用于对泵浦腔10和Q开关9冷却的激光冷却系统4、多模传能光纤2、功率检测装置6、脚踏开关5、显示装置7。
所述的激光冷却系统4为水流冷却系统,包括水流保护开关,所述的水流保护开关用于当激光器1工作状态下发生水流断路时,给出信号反馈到供电控制系统3。
所述的供电控制系统3用于根据水流保护开关反馈的信号切断激光器1供电。所有输出电源均为直流供电,包括Q开关9的超声驱动,泵浦腔10的直流供电,LBO晶体的温度控制,移动镜片的控制等。供电和控制系统(3)还包括对各个传感器的信号处理和报警,如水路检测信号,电流电压实时监控信号,光能量反馈信号,连锁控制信号,光纤传感器温度信号等。
所述的光纤耦合装置19中的耦合镜片20将激光能量耦合进入所述的多模 传能光纤2,所述的激光器1还包括用于监控所述的光纤耦合装置19温度的温度传感器,所述的温度传感器用于当光纤耦合装置19的温度超过设定值时,发送反馈信号至供电控制系统3,所述的供电控制系统3根据所述的温度传感器发出的发聩信号,切断激光器1供电。所述的多模传能光纤2由阶跃折射率多模石英传能光纤构成,其芯径为62.5-1200um,包层直径为125-1250um。手术过程中,通过光纤将激光能量传导至人体病变部位,进行治疗,所述病变主要是软组织疾病。
所述的供电控制系统3还用于当所述的功率检测装置6所测的功率低于或高于规定值的20%时,发出报警。所述的脚踏开关5包括分别控制第一波长光束和第二波长光束输出的左右两个脚踏式控制开关,所述的脚踏开关5与所述的供电控制系统3信号连接,所述的供电控制系统3用于根据脚踏开关5的输出信号控制所述的可活动反射镜片12在第一位置或第二位置移动。
如图4和5所示,所述多模传能光纤2的输出端,可以是沿光纤轴线直接输出,也可以是与光纤轴线成一定夹角的侧向输出。当光纤直接输出时,光纤输出端面与轴线成90度夹角。当光纤侧向输出时,光纤输出端面与轴线成45度夹角。
在一种实施例中,所述激光器1的,输出波长为532nm和1064nm,频率为10--15KHz和CW模式,脉宽为100ns—200ns,最大平均功率分别为200W和120W,用于人体软组织疾病的治疗和止血。
本申请所述的激光治疗仪的使用方法如下:
医生手术过程中,踩住一个脚踏开关5,治疗仪输出一个波长的激光,踩下另外一个脚踏开关5,信号进入控制系统,控制系统发出控制信号移动可活动反射镜片12,切换到另外一个波长的激光输出。两种激光分别输出,不可同时踩下两个脚踏开关5同时输出两种波长的激光。外露的两个控制开关用罩遮起来,防止误动作。所述的显示装置7,为可触摸显示。治疗仪开机后,术者通过调节显示装置7上控制按钮,根据手术需要调节至需要的功率大小,进行手术。显示装置7同时显示手术时间长度和累计输出的激光能量,便于医生术后分析。当系统发生报警时,显示装置7显示报警信息详情,便于售后反馈维修。手术过程中,通过光纤将激光能量传导至人体病变部位,进行治疗,所述 病变主要是软组织疾病。所述的多模传能光纤2的输出端,可以是沿光纤轴线前向输出,也可以是与光纤轴线成一定夹角的侧向输出。医生根据实际手术情况的需要选择输出方式。
本申请的一种双波长激光器1及激光治疗仪,结构简单,稳定性高的双波长激光治疗仪,通过可活动反射镜片12在第一位置和第二位置的移动,可以切换输出高功率532nm的绿激光和1064nm的近红外激光。532nm激光用于软组织气化切除,1064nm激光用于软组织切割、大血管和静脉窦的止血以满足手术要求,成为软组织手术更好的解决方案。532nm激光谐振腔和1064nm激光谐振腔共用一个泵浦、Q开关9和后腔镜,通过一个可活动反射镜片12,将一个激光器1变成两个激光器1,可以分别切换输出532nm可见激光和1064nm红外激光。
以上所述实施例仅是为充分说明本申请而所举的较佳的实施例,本申请的保护范围不限于此。本技术领域的技术人员在本申请基础上所作的等同替代或变换,均在本申请的保护范围之内。本申请的保护范围以权利要求书为准。

Claims (10)

  1. 一种双波长激光器,其特征在于,所述的激光器包括泵浦系统、第一半透半反镜、可活动反射镜片、倍频晶体、全反射腔镜、红外输出镜、第一反射镜、第二反射镜、第二半透半反镜、光纤耦合装置,
    所述的可活动反射镜片具有第一位置和第二位置,
    当所述的可活动反射镜片位于第一位置时,所述的泵浦系统产生的第一波长光束依次经过第一半透半反镜和可活动反射镜片的反射后,穿过红外输出镜,依次经过第一反射镜和第二半透半反镜的反射后到达光纤耦合装置;
    当所述的可活动反射镜片位于第二位置时,所述的泵浦系统产生的第一波长光束经过第一半透半反镜的反射后穿过倍频晶体被所述的全反射腔镜反射形成第二波长光束,第二波长光束穿过第一半透半反镜,被第二反射镜反射,穿过第二半透半反镜,到达光纤耦合装置,
    所述的第一半透半反镜和第二半透半反镜能够反射第一波长光束,透射第二波长光束。
  2. 如权利要求1所述的激光器,其特征在于,所述的第一波长光束为波长为1064nm的红外激光,所述的第二波长光束为波长为532nm可见激光。
  3. 如权利要求1所述的激光器,其特征在于,所述的泵浦系统包括泵浦腔、Q开关和后反镜。
  4. 如权利要求1所述的激光器,其特征在于,所述的可活动反射镜片为安装在一个滑动块上的能够在第一位置和第二位置之间滑动的可滑动装置。
  5. 一种激光治疗仪,其特征在于,包括权利要求1~4任意一项所述的激光器,所述的激光治疗仪还包括用于对激光器供电的供电控制系统。
  6. 如权利要求5所述的激光治疗仪,其特征在于,所述的激光治疗仪还包括用于对泵浦腔和Q开关冷却的激光冷却系统。
  7. 如权利要求6所述的激光治疗仪,其特征在于,所述的激光冷却系统为水流冷却系统,包括水流保护开关,所述的水流保护开关用于当激光器工作状 态下发生水流断路时,给出信号反馈到供电控制系统,所述的供电控制系统用于根据水流保护开关反馈的信号切断激光器供电。
  8. 如权利要求6所述的激光治疗仪,其特征在于,所述的激光治疗仪还包括多模传能光纤,所述的光纤耦合装置中的耦合镜片将激光能量耦合进入所述的多模传能光纤,所述的激光器还包括用于监控所述的光纤耦合装置温度的温度传感器,所述的温度传感器用于当光纤耦合装置的温度超过设定值时,发送反馈信号至供电控制系统,所述的供电控制系统根据所述的温度传感器发出的发聩信号,切断激光器供电。
  9. 如权利要求6所述的激光治疗仪,其特征在于,所述的激光治疗仪还包括用于检测激光器实时功率的功率检测装置,所述的供电控制系统还用于当所述的功率检测装置所测的功率低于或高于规定值的20%时,发出报警。
  10. 如权利要求6所述的激光治疗仪,其特征在于,所述的激光治疗仪还包括用于切换激光器输出波长的脚踏开关,所述的脚踏开关包括分别控制第一波长光束和第二波长光束输出的左右两个脚踏式控制开关,所述的脚踏开关与所述的供电控制系统信号连接,所述的供电控制系统用于根据脚踏开关的输出信号控制所述的可活动反射镜片在第一位置或第二位置移动。
PCT/CN2018/098898 2018-07-03 2018-08-06 一种双波长激光器及激光治疗仪 WO2020006800A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2014567.8A GB2586364B (en) 2018-07-03 2018-08-06 Dual-wavelength laser and laser therapeutic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810715657.4 2018-07-03
CN201810715657.4A CN109044526B (zh) 2018-07-03 2018-07-03 一种双波长激光器及激光治疗仪

Publications (1)

Publication Number Publication Date
WO2020006800A1 true WO2020006800A1 (zh) 2020-01-09

Family

ID=64818965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098898 WO2020006800A1 (zh) 2018-07-03 2018-08-06 一种双波长激光器及激光治疗仪

Country Status (3)

Country Link
CN (1) CN109044526B (zh)
GB (1) GB2586364B (zh)
WO (1) WO2020006800A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425509A (zh) * 2022-11-03 2022-12-02 山东省科学院激光研究所 基于v型动态稳定腔设计的短脉冲激光器及激光装备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109568806A (zh) * 2019-01-23 2019-04-05 北京特安电源科技有限公司 工作激光为双波长的多功能半导体激光牙科治疗仪
CN112886387A (zh) * 2021-02-01 2021-06-01 武汉锐科光纤激光技术股份有限公司 一种光路调节结构和光路调节系统
CN114632268B (zh) * 2022-03-18 2023-04-07 温州眼视光国际创新中心 一种二维可调光学双镜片夹持器
CN117805970A (zh) * 2024-02-27 2024-04-02 中国科学院苏州生物医学工程技术研究所 一种光束集成装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2089662U (zh) * 1991-03-09 1991-11-27 福建师范大学 用于激光器冷却装置的断水保护器
JP2002543984A (ja) * 1999-05-06 2002-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーザを用いた工作物の除去装置
CN2909638Y (zh) * 2006-06-28 2007-06-06 西北大学 侧面泵浦高功率红、绿、蓝同时运转的三基色激光器
CN201054458Y (zh) * 2007-05-28 2008-04-30 北京光电技术研究所 医用多波长激光装置
CN202167754U (zh) * 2011-06-30 2012-03-14 北京镭宝光电技术有限公司 一种激光器分光装置
CN106654842A (zh) * 2017-03-03 2017-05-10 深圳市杰普特光电股份有限公司 激光器及其倍频模组
CN108767651A (zh) * 2018-08-08 2018-11-06 深圳市吉斯迪科技有限公司 一种可实现激光模式切换的医用双脉冲调q激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833417B1 (fr) * 2001-12-12 2005-06-17 Univ Rennes Resonateur optique en anneau sans surface, appareil de telecommunication et/ou de projection video correspondant
US8137340B2 (en) * 2004-06-23 2012-03-20 Applied Harmonics Corporation Apparatus and method for soft tissue ablation employing high power diode-pumped laser
CN1891173A (zh) * 2005-02-12 2007-01-10 北京瑞尔通激光科技有限公司 双波长连续泵浦的固定激光软组织治疗仪和方法
CN2826767Y (zh) * 2005-09-15 2006-10-11 北京光电技术研究所 一种医用双波长激光发生装置
CN206774872U (zh) * 2017-03-03 2017-12-19 深圳市杰普特光电股份有限公司 激光器及其倍频模组
CN209360891U (zh) * 2018-07-03 2019-09-10 瑞尔通(苏州)医疗科技有限公司 一种双波长激光器及激光治疗仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2089662U (zh) * 1991-03-09 1991-11-27 福建师范大学 用于激光器冷却装置的断水保护器
JP2002543984A (ja) * 1999-05-06 2002-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング レーザを用いた工作物の除去装置
CN2909638Y (zh) * 2006-06-28 2007-06-06 西北大学 侧面泵浦高功率红、绿、蓝同时运转的三基色激光器
CN201054458Y (zh) * 2007-05-28 2008-04-30 北京光电技术研究所 医用多波长激光装置
CN202167754U (zh) * 2011-06-30 2012-03-14 北京镭宝光电技术有限公司 一种激光器分光装置
CN106654842A (zh) * 2017-03-03 2017-05-10 深圳市杰普特光电股份有限公司 激光器及其倍频模组
CN108767651A (zh) * 2018-08-08 2018-11-06 深圳市吉斯迪科技有限公司 一种可实现激光模式切换的医用双脉冲调q激光器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425509A (zh) * 2022-11-03 2022-12-02 山东省科学院激光研究所 基于v型动态稳定腔设计的短脉冲激光器及激光装备

Also Published As

Publication number Publication date
CN109044526A (zh) 2018-12-21
GB2586364A (en) 2021-02-17
CN109044526B (zh) 2024-05-07
GB2586364B (en) 2022-05-04
GB202014567D0 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
WO2020006800A1 (zh) 一种双波长激光器及激光治疗仪
US11316318B2 (en) Dual wavelength surgical laser system
US8636726B1 (en) Multiple-mode device for high-power short-pulse laser ablation and CW cauterization of bodily tissues
EP1349509B1 (en) Laser treatment of soft tissue
US5139494A (en) Multiwavelength medical laser method
US7063694B2 (en) Method and system for photoselective vaporization for gynecological treatments
US20070225696A1 (en) Surgical apparatus for laser ablation of soft tissue
US20050256513A1 (en) Method and system for vaporization of tissue using direct visualization
Adelman et al. Laser technology and applications in gynaecology
CN115021062B (zh) 一种用于多脉宽多模式输出的激光器及激光治疗仪
Bhatta et al. Comparative study of different laser systems
CN209360891U (zh) 一种双波长激光器及激光治疗仪
CN103830846A (zh) 一种腔内倍频全固体拉曼黄橙激光皮肤血管性病变治疗仪
CN203235152U (zh) 一种腔内倍频全固体拉曼黄橙激光皮肤血管性病变治疗仪
KR102022657B1 (ko) 삼 파장 레이저 발생 장치
US5910140A (en) Laser medical device
CN104184033A (zh) 一种医用532nm绿激光发生装置
CN210056216U (zh) 前列腺激光切除用双波长高功率手术仪
CN109602491A (zh) 前列腺激光切除用双波长高功率手术仪
Manni Dental applications of advanced lasers (DAALtm)
Colt Basic principles of medical lasers
Manni Basic aspects of medical and dental lasers
Zgoda Laser Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202014567

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180806

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925251

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18925251

Country of ref document: EP

Kind code of ref document: A1