WO2020006777A1 - 一种双光束激光测量仪及双光束测量方法 - Google Patents

一种双光束激光测量仪及双光束测量方法 Download PDF

Info

Publication number
WO2020006777A1
WO2020006777A1 PCT/CN2018/095715 CN2018095715W WO2020006777A1 WO 2020006777 A1 WO2020006777 A1 WO 2020006777A1 CN 2018095715 W CN2018095715 W CN 2018095715W WO 2020006777 A1 WO2020006777 A1 WO 2020006777A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
measuring instrument
circuit module
main control
laser measuring
Prior art date
Application number
PCT/CN2018/095715
Other languages
English (en)
French (fr)
Inventor
邹博
苏国林
Original Assignee
新意范(珠海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810713309.3A external-priority patent/CN108873011A/zh
Priority claimed from CN201821052376.7U external-priority patent/CN208689162U/zh
Application filed by 新意范(珠海)科技有限公司 filed Critical 新意范(珠海)科技有限公司
Publication of WO2020006777A1 publication Critical patent/WO2020006777A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Definitions

  • the invention relates to the technical field of optical distance measurement, in particular to a dual-beam laser measuring instrument and a dual-beam measuring method.
  • Laser rangefinders have been widely used in: electricity, water conservancy, communication, environment, construction, geology, police, fire protection, blasting, navigation, railway, counter-terrorism / military, agriculture, forestry, real estate, leisure / outdoor sports, etc.
  • Laser ranging is the use of lasers to accurately measure the distance of a target.
  • the laser rangefinder emits a very thin laser beam to the target during work.
  • the photoelectric element receives the laser beam reflected by the target.
  • the timer measures the time from launch to reception of the laser beam and calculates the distance from the laser rangefinder to the target. .
  • the current laser ranging in the market is based on the ranging point A, the distance of the target point B, or the vertical ranging of 90 degrees and the third point C.
  • the rangefinder Cannot reach any of the target point B or target C, and measure the distance from point B to point C. Therefore, the existing rangefinder and measurement technology cannot meet the target B point of non-90 degrees for some customers The distance to the second target C point.
  • the present invention provides a dual-beam laser measuring instrument and a dual-beam measuring method, which can measure the distance between two points at a long distance at a fixed point, and can not directly measure due to geographical constraints The problem.
  • a dual-beam laser measuring instrument includes a first laser measuring instrument and a second laser measuring instrument.
  • the first laser measuring instrument and the second laser measuring instrument are connected up and down through a rotary connection shaft, and the first laser measuring instrument
  • the instrument includes a lower casing, a laser lower projection window is provided in front of the lower casing, a first laser emitting head is disposed behind the laser lower projection window, and a power supply board is disposed at the bottom of the lower casing.
  • the second laser measuring instrument includes an upper casing, a laser upper projection window is disposed in front of the upper casing, a second laser emitting head is disposed behind the laser upper projection window, and a main control board is disposed inside the upper casing.
  • the first laser emission head and the second laser emission head are electrically connected to the power supply board and the main control board, respectively, and the main control board is used to collect the emission of the first laser emission head and the second laser emission head.
  • the feedback signal is used to collect an angular value signal of the relative rotation angle between the first laser measuring instrument and the second laser measuring instrument, and perform access calculation according to the transmitted feedback signal and the angular value signal.
  • An LED screen is arranged on the top of the upper casing, and the LED screen is electrically connected to the main control board, and the LED screen is used to display the access calculation result of the main control board.
  • the main control board includes a main control microcontroller, which is electrically connected to a laser transmitting circuit module, a laser receiving circuit module, a logic circuit module, a digital-to-analog conversion circuit module, a display circuit module, a Bluetooth communication circuit module, and a gyroscope circuit module.
  • the master single-chip microcomputer sends the transmission feedback signal data measured by the laser transmitting circuit module and the laser receiving circuit module, and the angular numerical signal data of the rotation angle measured by the gyroscope circuit module, to the logic circuit module for calculation, and The calculation result is converted into a digital signal by a digital-to-analog conversion circuit module, and sent to the LED screen for display through the display circuit module, and sent to the Bluetooth communication circuit module for external download and acquisition.
  • a two-beam measurement method includes the following steps:
  • the first laser measuring instrument measures the emitted laser signal to measure point B, and obtains the point B feedback signal data B ′ by receiving the laser signal reflected at point B;
  • the rotation angle signal data ⁇ ′ is obtained through the internal gyroscope, and then a laser signal is emitted to point C, and the point C is obtained by receiving the laser signal emitted from point C Feedback signal data C ';
  • the main control board calculates the feedback signal data B 'of point B, the feedback signal data C' of point C, and the angle signal data ⁇ 'to obtain the specific BC' straight line between point B and point C.
  • the technical solution provided by the present invention has the beneficial effect that, by using the dual-beam laser measuring instrument of the present invention, it is possible to measure the straight-line distance between two other points at a relatively long distance using any location as a coordinate, and solve the problem due to geographical The conditions are limited, and the problem of direct measurement cannot be achieved. Furthermore, the dual-beam laser measuring instrument of the present invention has a simple structure and is convenient to use. Its measurement calculation display is completed together with a high degree of automation.
  • FIG. 1 is a perspective view of the overall structure of a dual-beam laser measuring instrument of the present invention
  • FIG. 2 is a schematic diagram of an internal structure of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 3 is a schematic diagram of a main control single-chip microcomputer circuit of a main control board of a dual-beam laser measuring instrument according to the present invention
  • FIG. 4 is a circuit schematic diagram of a laser emission circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 5 is a circuit schematic diagram of a laser receiving circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 6 is a circuit schematic diagram of a logic circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 7 is a digital-analog conversion circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 8 is a circuit schematic diagram of a display circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 9 is a circuit schematic diagram of a Bluetooth communication circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 10 is a circuit schematic diagram of a gyroscope circuit module of a main control board of a dual-beam laser measuring instrument according to the present invention.
  • FIG. 11 is a method principle diagram of a two-beam measurement method according to the present invention.
  • a dual-beam laser measuring instrument includes a first laser measuring instrument 1 and a second laser measuring instrument 2.
  • the first laser measuring instrument 1 and the second laser measuring instrument 2 are rotated by rotation.
  • the connecting shaft 3 is connected downward and upward.
  • the first laser measuring instrument 1 includes a lower casing 11.
  • a laser lower projection window 12 is disposed in front of the lower casing 11, and a first laser projection window 12 is disposed behind the lower casing 11.
  • the laser emitting head 13 is provided with a power supply plate 14 at the bottom of the lower casing 11, and the second laser measuring instrument 2 includes an upper casing 21.
  • a laser upper projection window 22 is disposed in front of the upper casing 21.
  • a second laser emitting head 23 is provided behind the laser upper projection window 22, a main control board 24 is provided inside the upper casing 21, and the first laser emitting head 13 and the second laser emitting head 23 are electrically connected respectively.
  • the power supply board 14 and the main control board 24 are used to collect the emission feedback signals of the first laser transmitting head 13 and the second laser transmitting head 23, and collect the first laser measuring instrument 1 and the first The numerical value signal of the relative rotation angle between the two laser measuring instruments 2 according to the emission feedback Number and angular value calculation signal access.
  • an LED screen 25 is provided on the top of the upper casing 21, and the LED screen 25 is electrically connected to the main control board 24, and the LED screen 25 is used to display the access calculation result of the main control board 24 .
  • the main control board includes a main control microcontroller, which is electrically connected to a laser transmitting circuit module, a laser receiving circuit module, a logic circuit module, a digital-to-analog conversion circuit module, and a display circuit module.
  • the Bluetooth communication circuit module and the gyroscope circuit module, the master control single-chip computer sends the transmission feedback signal data measured by the laser transmitting circuit module and the laser receiving circuit module, and the angular numerical signal data of the rotation angle measured by the gyroscope circuit module, and sends them together.
  • the circuit principle of the present invention is as follows:
  • the CPLD part Under the control of the microcontroller, the CPLD part generates a modulation signal to convert the electric power into optical power to the laser component through the modulation and demodulation circuit.
  • the optical system projects the pulse signal to the target, and the measured target reflects the light.
  • the receiving system collects the transmission signal, the counter opens the door pulse signal to start the counter, and the clock frequency oscillator inputs the clock frequency pulse to the counter.
  • the laser echo reflected by the target is transmitted to the receiving optical system through the atmosphere, and acts on the photodetector.
  • the signal is converted into an electric pulse signal and amplified by the amplifier to enter the count.
  • As a counter closing signal the count stops counting.
  • the target distance is obtained by calculation based on the number of clock pulses entered during the counter's opening to closing process. Circuit conversion displays the data on the display in a scanned manner.
  • Laser transmitting circuit module :
  • HL8325G laser diode is used, the threshold current is 40mA-70mA, the wavelength is 830nm, there are two kinds of working modes: continuous and pulse. modulation. Provides stable DC bias for semiconductor lasers.
  • a PIN photodiode packaged inside the laser emitting device is used to detect the laser output optical signal, and the bias current of the laser emitting device is automatically changed according to the output current of the PIN. Its output power is kept constant.
  • the built-in PIN photodiode receives the optical signal of the semiconductor laser emitting device and converts it into a current signal. It is connected to the non-inverting terminal of the second-stage TL072 amplifier through the first-stage TL072 voltage follower, and the DC reference voltage is connected to the other side.
  • the inverting end of the second-stage TL072 amplifier is connected to the base of transistor Q5 after comparison. When the light intensity is too large or too small, it acts as a negative current feedback to control the stability of the light intensity.
  • the photoelectric receiving circuit is used to convert the optical signal into an electrical signal and amplify the weak electrical signal.
  • the photoelectric receiving circuit includes a photoelectric conversion circuit and an amplification circuit that it wants to connect.
  • the photoelectric receiving circuit is composed of an APD (D3) avalanche photodiode, an RC filter network, an LC band-pass filter, a two-stage amplifier, and a hysteretic comparator.
  • APD D3 avalanche photodiode
  • RC filter network a filter network that filters the reflected ranging wave.
  • LC band-pass filter a filter that filters the reflected ranging wave.
  • a photocurrent is generated on the photodiode APD, and the magnitude of this current varies with the ranging light wave. Therefore, the voltage signal with the same law as the frequency variation of the ranging light wave is obtained at the load.
  • the APD avalanche photodiode uses In negative bias mode, one end is connected to ground, and one end is connected to the reverse high voltage output of the APD high bias circuit.
  • the main role of the RC filter network is to filter out the high-frequency components of the modulated signal and compress the bandwidth of the crying system.
  • the LC band-pass filter is a narrow-band filter whose main function is to pass a certain bandwidth signal with a center frequency of 15mhz.
  • the signals outside the bandwidth are filtered out, and the amplifier circuit consists of U10 (SA5211) and op amp TL072.
  • the hysteretic comparator consists of op amp TL072.
  • the function is to convert the amplified received signal into a standard continuous pulse signal.
  • APD high voltage bias circuit :
  • Avalanche photodiodes have very high internal gain and fast response speed. In order for APD to exert its excellent characteristics, it is necessary to configure a suitable high reverse bias voltage. It is usually several tens of volts to several hundred volts and makes the work in the reverse breakdown voltage state.
  • the effect tube Q8 when the effect tube Q8 is turned on, the energy flows from the power supply and is stored in the inductor L7. During the on time, the forward saturation voltage drop is small, and D2 is reverse biased. The load is supplied with energy by the RC filter circuit. When the field effect tube is turned off At this time, the current in the inductor cannot be abruptly changed. The induced electromotive force prevents the reduction of the current. The polarity of the induced electromotive force is positive, negative, and positive. The diode D2 conducts energy. The energy stored in the inductor flows into the filter circuit to charge and supply the load.
  • the function of MC34129 is to generate a square wave signal with a certain frequency, so that the field Q8 is periodically turned on and off, thereby generating a higher voltage at the output end.
  • the PWM wave and CPLD are generated under the control of a single chip to automatically control the gain of the APD.
  • the single-chip microcomputer is the core of the entire logic system. It is mainly responsible for controlling the entire ranging process, coordinating the work of various modules, and processing the data to obtain the distance value, which is finally displayed on the display screen.
  • MSP430F437 is a 16-bit microcontroller with a reduced instruction set and ultra-low power consumption.
  • Serial communication interface software selects asynchronous UART or synchronous SPI interface
  • MSP430F437 The main function of MSP430F437 is to control the distance measurement process through CPLD.
  • CPLD reads the value and A / D conversion sampling value, and studies the processed data. It shows that the APD high-voltage sampling is performed by using the A / D conversion of the single-chip microcomputer. Control the CPLD to make its product PWM signal, and then perform automatic gain control on the APD.
  • the CPLD is composed of a logic array unit, and the logic array is composed of an AND gate, an OR gate, and an inverter.
  • the CPLD function is to fill and count the coarse measurement pulses, and provide a trigger signal for the precise measurement voltage conversion circuit. It can generate 150KHZ coarse measurement modulation frequency pulses by dividing the frequency. It provides the 5MHZ clock signal to the ADC through frequency division and provides PWM to the APD high-voltage circuit. Wave, decode the control instructions of the single-chip microcomputer to control the distance measurement process, perform level conversion on the ADC sampling signal and output to the single-chip microcomputer,
  • the bit number is ADCSD0 ⁇ ADCSD11 for level conversion, and the converted signal is sent to the microcontroller through data MC-D12 ⁇ MC-D23.
  • the other control and data lines of the CPLD and the MCU are MC-D1 ⁇ MC-D11. Among them, MC-D1 ⁇ MC-D3 form a 3-bit input decoder.
  • CPLD generates 8 different duty cycles based on this control signal.
  • the PWM wave, the PWM wave provides a voltage bias to the APD avalanche photodiode through a high-voltage circuit to control the gain of the APD.
  • MC-D8 to MC-D11 are 4-bit output data lines, which are used by the single-chip microcomputer to read the coarse count value and count The value is 8 bits, 4 bits are high 4 bits or low 4 bits.
  • MC-D4 ⁇ MC-D7 are 4-bit input decoders, which receive instructions from the microcontroller and translate them into 12 control instructions for ranging process control.
  • a digital-to-analog converter converts an unknown analog input signal into an N-bit binary digital signal that can be controlled by a single-chip microcomputer.
  • ADC12081 can work in normal mode and power-down mode. When PD pin is at high level, it is power-down mode. When PD pin is at low level, it is power-down mode. When the CAL pin is high, its high time is at least three clock cycles. ADC12081 starts calibration. Calibration needs 4000 clock cycles. The READY pin is used to indicate conversion is ready. The high level is valid. The OR pin is Out-of-range indication signal. When the analog input signal is lower than ground or exceeds VREF, this pin outputs a high level. The internal sample-and-hold keeps the input voltage after the analog signal is input. The ADC starts the conversion. After the conversion is complete, it is output to the data lines D0-D11. .
  • MSP430F437 has four driving modes: static, 2MUX, 3MUX, and 4MUX.
  • the LCD display is decoded by software, and the BCD or binary code is converted into the display information of each group of SEG / COM.
  • the bit information of the memory corresponds to one SEG line and one COM line.
  • the P39 / P41 of the Bluetooth module is connected to the P74 / P75 of the stand-alone MSP430F437 to exchange data in real time.
  • Gyroscope circuit module
  • the SPI communication protocol is used with the single-chip microcomputer, and P20-P23 of the module is connected with P68-P71 of the single-chip microcomputer to implement data exchange.
  • the power circuit is designed with 3.3V and 5V, with communication function, the device cannot be charged when the logic data is incorrect.
  • U4 provides a stable 3.3V supply voltage.
  • this embodiment provides a dual-beam measurement method, including the following steps:
  • the first laser measuring instrument measures the emitted laser signal and measures point B, and obtains the point B feedback signal data B 'by receiving the laser signal reflected at point B;
  • the rotation angle signal data ⁇ ′ is obtained through the internal gyroscope, and then a laser signal is emitted to point C, and the point C is obtained by receiving the laser signal emitted from point C Feedback signal data C ';
  • the main control board calculates the feedback signal data B 'of point B, the feedback signal data C' of point C, and the angle signal data ⁇ 'to obtain the specific BC' straight line between point B and point C.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种双光束激光测量仪及双光束测量方法。其结构包括第一激光测量仪(1)和第二激光测量仪(2),第一激光测量仪(1)和第二激光测量仪(2)通过旋转连接轴(3)下上连接,第一激光测量仪(1)包括下壳体(11),下壳体(11)前方设置有激光下投射窗(12),激光下投射窗(12)后方设置第一激光发射头(13),下壳体(11)底部设置有供电板(14),第二激光测量仪(2)包括上壳体(21),上壳体(21)前方设置激光上投射窗(22),激光上投射窗(22)后方设置第二激光发射头(23),上壳体(21)内部设置有主控板(24),第一激光发射头(13)和第二激光发射头(23)分别电连接供电板(14)和主控板(24),主控板(24)用于采集第一激光发射头(13)和第二激光发射头(23)的发射反馈信号,并采集第一激光测量仪(1)和第二激光测量仪(2)之间相对转动角度的角度数值信号,根据发射反馈信号和角度数值信号进行存取计算。能够在固定点测量远距离处两点之间的距离,解决因地理条件限制而无法直接测量的问题。

Description

一种双光束激光测量仪及双光束测量方法 技术领域
本发明涉及一种光学测距技术领域,特别涉及一种双光束激光测量仪及双光束测量方法。
背景技术
激光测距仪已经被广泛应用于:电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,反恐/军事,农业,林业,房地产,休闲/户外运动等领域,激光测距是利用激光对目标的距离进行准确的距离测定。激光测距在工作时向目标射出一束很细的激光光束,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从激光测距仪到目标的距离。
市场现有的激光测距都是立于测距点A,测量目标点B的距离,或90度第三点C的垂直测距,然而很多应用场所(如:户外、林业),测距者无法到达目标B点或目标C点的任意一目标点,而进行测量B点到C点的距离,故而,现有的测距仪和测量技术无法满足部分客户非90度情况下,目标B点到第二目标C点的距离。
发明内容
为了解决现有技术的问题,本发明提供了一种双光束激光测量仪及双光束测量方法,其能够在固定点测量远距离处两点之间的距离,解决因地理条件限制而无法直接测量的问题。
本发明所采用的技术方案如下:
一种双光束激光测量仪,包括第一激光测量仪和第二激光测量仪,所述的第一激光测量仪和第二激光测量仪通过旋转连接轴下上连接,所述的第一激光测量仪包括下壳体,所述的下壳体前方设置有激光下投射窗,所述的激光下投射窗后方设置第一激光发射头,所述的下壳体底部设置有供电板,所述的第二激光测量仪包括上壳体,所述的上壳体前方设置激光上投射窗,所述的激光上投射窗后方设置第二激光发射头,所述的上壳体内部设置有主控板,所述的第一激光发射头和第二激光发射头分别电连接所述的供电板和主控板,所述的主控板用于采集第一激光发射头和第二激光发射头的发射反馈信号,并采集第一激光测量仪和第二激光测量仪之间相对转动角度的角度数值信号,根据所述的发射反馈信号和角度数值信号进 行存取计算。
上壳体顶部设置有LED屏,所述的LED屏电连接所述的主控板,所述的LED屏用于显示主控板的存取计算结果。
主控板包括主控单片机,所述的主控单片机分别电连接激光发射电路模块,激光接收电路模块,逻辑电路模块,数模转换电路模块,显示电路模块,蓝牙通信电路模块和陀螺仪电路模块,所述的主控单片机将激光发射电路模块和激光接收电路模块测量的发射反馈信号数据,以及陀螺仪电路模块测量的转动角度的角度数值信号数据,一起发送给逻辑电路模块进行计算,并将计算结果通过数模转换电路模块转化为数字信号,分别通过显示电路模块发送给LED屏进行显示,并发送给蓝牙通信电路模块,用于外部下载获取。
一种双光束测量方法,包括以下步骤:
A、将本发明的双光束激光测量仪固定于A点,第一激光测量仪测量发射激光信号测量B点,通过接收B点反射的激光信号获取B点反馈信号数据B';
B、于此同时,第二激光测量仪旋转角度α后,通过内部陀螺仪获得旋转的角度信号数据α',然后对C点发射激光信号,并通过接收C点发射的激光信号,获取C点反馈信号数据C';
C、主控板将获取的B点反馈信号数据B',C点反馈信号数据C',角度信号数据α'进行计算,得到B点与C点之间的直线具体BC',计算公式如下:BC'^2=B'^2+C'^2-2B'C'*cos B'C'。
本发明提供的技术方案带来的有益效果是:通过本发明的双光束激光测量仪,可以实现以任何地点为坐标,测量较远距离下的其他两点之间的直线距离,解决了由于地理条件限制,无法直接测量的问题,并且本发明的双光束激光测量仪结构简单,使用方便,其测量计算显示一并完成,自动化程度高,是野外作业的最佳测距设备。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的一种双光束激光测量仪的整体结构立体图;
图2为本发明的一种双光束激光测量仪的内部结构示意图;
图3为本发明的一种双光束激光测量仪的主控板的主控单片机电路原理图;
图4为本发明的一种双光束激光测量仪的主控板的激光发射电路模块的电路原理图;
图5为本发明的一种双光束激光测量仪的主控板的激光接收电路模块的电路原理图;
图6为本发明的一种双光束激光测量仪的主控板的逻辑电路模块的电路原理图;
图7为本发明的一种双光束激光测量仪的主控板的数模转换电路模块
图8为本发明的一种双光束激光测量仪的主控板的显示电路模块的电路原理图;
图9为本发明的一种双光束激光测量仪的主控板的蓝牙通信电路模块的电路原理图;
图10为本发明的一种双光束激光测量仪的主控板的陀螺仪电路模块的电路原理图;
图11为本发明的一种双光束测量方法的方法原理图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
如附图1、2所示,一种双光束激光测量仪,包括第一激光测量仪1和第二激光测量仪2,所述的第一激光测量仪1和第二激光测量仪2通过旋转连接轴3下上连接,所述的第一激光测量仪1包括下壳体11,所述的下壳体11前方设置有激光下投射窗12,所述的激光下投射窗12后方设置第一激光发射头13,所述的下壳体11底部设置有供电板14,所述的第二激光测量仪2包括上壳体21,所述的上壳体21前方设置激光上投射窗22,所述的激光上投射窗22后方设置第二激光发射头23,所述的上壳体21内部设置有主控板24,所述的第一激光发射头13和第二激光发射头23分别电连接所述的供电板14和主控板24,所述的主控板24用于采集第一激光发射头13和第二激光发射头23的发射反馈信号,并采集第一激光测量仪1和第二激光测量仪2之间相对转动角度的角度数值信号,根据所述的发射反馈信号和角度数值信号进行存取计算。
本实施例中,上壳体21顶部设置有LED屏25,所述的LED屏25电连接所述的主控板24,所述的LED屏25用于显示主控板24的存取计算结果。
如附图3-10所示,主控板包括主控单片机,所述的主控单片机分别电连接激光发射电路模块,激光接收电路模块,逻辑电路模块,数模转换电路模块,显示电路模块,蓝牙通信电路模块和陀螺仪电路模块,所述的主控单片机将激光发射电路模块和激光接收电路模块测量的发射反馈信号数据,以及陀螺仪电路模块测量的转动角度的角度数值信号数据,一起发送给逻辑电路模块进行计算,并将计算结果通过数模转换电路模块转化为数字信号,分别通过显示电路模块发送给LED屏进行显示,并发送给蓝牙通信电路模块,用于外部下载获取。
本发明的电路原理如下:
接通电源,启动激光发射器,在单片机的控制下,CPLD部分产生调制信号通过调制解调电路将电功率转化为光功率向激光组件,光学系统把脉冲信号投射到目标,被测目标将光反射后接收系统采集发射信号,计数器开门脉冲信号启动计数器,钟频振荡器向计数器输入法钟频脉冲,由目标反射回来的激光回波经过大气传输进入接收光学系统,作用在光电探测器上,再转变为电脉冲信号,经过放大器放大进入计数,作为计数器的关门信号,计数停止计数,根据计数器从开门到关门期间所进入的钟频脉冲个数经过运算得到目标距离,同时单片机得出的结果经电路转换可显示数据以扫描方式显示在显示屏上。
激光发射电路模块:
采用HL8325G型激光二极管,阈值电流为40mA-70mA,波长为830nm,有连续和脉冲两种工作方式,由CPLD提供的150KHZ调制信号通过Q3、Q6、Q7组成的差分放大电路对半导体激光发射装置进行调制。为半导体激光提供稳定的直流偏置。
为了稳定激光发射装置的输出功率,利用封装在激光发射装置内部的一保PIN光电二极管检测激光输出光信号,根据PIN输出电流大小自动改变激光发射装置的偏置电流。使其输出功率保持恒定,内置PIN光电二极管接收半导体激光发射装置的光信号转换为电流信号,通过第一级TL072电压跟随器后接第二级TL072放大器同相端,另外一方面直流参考电压接至第二级TL072放大器反相端,经比较后接晶体管Q5的基极,当光强过大或过小时起电流负反馈作用,以控制光强的稳定性。
激光接收电路模块:
光电接收电路是用来把光信号转变为电信号,并对微弱的电信号进行放大,光电接收电路包括光电转换电路及其想衔接的放大电路,
光电接收电路由APD(D3)雪崩光电二极管、RC滤波网络、LC带通滤波器、两级放大和一个滞回比较器组成,反射回来的测距光波被光学接收,并聚到雪崩光电二极管上,在测距光波的照射下,光电二极管APD上产生光电流,该电流的大小随测距光波而变化,因此在负载得到了与测距光波频率变化规律相同的电压信号,APD雪崩光电二极管采用负偏压工作方式,一端接地,一端接APD高夺偏置电路输出的反向高压。RC滤波网络的主要作用是滤除调制信号的高频分量,以及压缩系统哭声带宽。从而抑制光电系统噪声,提高检测灵敏度,LC带通滤波器是一个窄带滤波器,主要作用是让中心频率为15mhz的一定带宽信号通过。而带宽以外的信号则被滤掉,放大电路由U10(SA5211)和运放TL072构成。滞回比较器由运放TL072组成。作用是将放大后的接收信号转换成标准的连续脉冲信号。
APD高压偏置电路:
雪崩光电二极管具有很高的内部增益和响应速度快,要使APD正常发挥其优异的特性,必须以配置适合的高反向偏置电压。一般为几十伏至几百伏并使工作在反向击穿电压状态。
如电路,当效应管Q8导通时,能量从电源流入,并储存在电感L7中,导通期间正向饱和压降很小,D2反偏,负载由RC滤波电路供给能量,当场效应管截止时,电感中的电流不能突变,产生的感应电动势阻止电流的减小,感应电动势极性为上负下正,二极管D2导能,电感中储存的能量流入滤波电路充电,并供给负载。MC34129作用是产生一定频率的方波信号,使场Q8周期性的导通有截止,从而在输出端产生较高的电压,PWM波同CPLD在单片的控制下产生,自动控制APD的增益。
主控单片机:
单片机是整个逻辑系统的核心,主要负责控制整个测距流程,使各模块协调工作,并进行数据处理得出距离值,最后显示在显示屏上。
MSP430F437是16位具有精简指令集及超低功耗的单片机。
供电电压1.8-3.6V,
125ns指令时间周期,
具有参考电平,采样保持和自动扫描特性的12位A/D转换器。
串行通信接口,软件选择异步UART或者同步SPI接口
具有可编程电平检测电压管理器
串行在线编程
集成160段LCD驱动器
MSP430F437的主要作用通过CPLD进行测距流程控制,由CPLD读取数值和A/D转换采样值,并将处理好的数据进行研究衽显示,利用单片机的A/D转换对APD高压采样,并通过控制CPLD使其产品PWM信号,进而对APD进行自动增益控制。
逻辑电路模块:
CPLD由逻辑阵列单元组成,逻辑阵列是由与门、或门和反相器组成。CPLD功能是对粗测脉冲填充脉冲并计数,为精测电压转换电路提供触发信号,能过分频产生150KHZ粗测调制频率脉冲,通过分频为ADC提供5MHZ时钟信号,给APD高压电路提供PWM波,对单片机控制指令译码从而控制测距流程,对ADC采样信号进行电平转换并输出到单片机,
位号为ADCSD0~ADCSD11进行电平转换,并将转换后的信号通过数据MC-D12~MC-D23送给单片机。CPLD与单片机部分的其它控制和数据线有MC-D1~MC-D11,其中MC-D1~MC-D3组成一个3位输入的译码器,CPLD根据此控制信号产生8种不同占空 比的PWM波,PWM波经过高压电路给APD雪崩光电二极管提供是压偏置,从而控制APD的增益,MC-D8~MC-D11为4位输出数据线,用于单片机读取粗测计数值,计数值为8位,4位为高4位或低4位,MC-D4~MC-D7为4位输入译码器,从单片机接收指令并译成12条控制指令进行测距流程控制。
数模转换电路模块(ADC12081):
数模转换器是把一个未知的模拟输入信号转换成能被单片机控制的一个N位二进制数字信号,
工作电压:5V
分辨率12位
转换速率5Msps
功耗105mW
ADC12081可以工作在正常模式和掉电模式,当PD脚为高度电平时为掉电模式,当PD脚为低电平时为掉电模式。当CAL脚为高电平时,其电平为高的时间至少为三个时钟周期,ADC12081开始进行校准,校准需要4000个时钟周期,READY脚用来指示转换就绪,高电平有效,OR脚为超出范围指示信号,当模拟输入信号低于地或者超过VREF该脚输出高电平,模拟信号输入后内部采样保持器保持住输入电压,ADC开始转换,转换结束后输出到数据线D0-D11上。
显示电路模块:
MSP430F437有静态、2MUX、3MUX、4MUX四种驱动模式,LCD显示由软件解码,将BCD或二进制码转换成各组SEG/COM的显示信息,显存的位信息一条SEG线和一条COM线对应,
蓝牙通信电路模块:
蓝牙与单机使用TTL电平通信,。蓝牙模块的P39/P41与单机MSP430F437的P74/P75连接,实时交换数据,
陀螺仪电路模块:
采用MSG7100微型模块,带宽62HZ,功耗125mW,启动时间1S。
与单片机采用SPI通信协议,模块的P20-P23与单片机的P68-P71连接,实行数据交换。
电源电路:
电源电路设计有3.3V和5V,具有通信功能,在逻辑数据不正确状态不能给设备充电。U4提供稳定3.3V供电电压。
实施例二:
如附图11所示,本实施例提供一种双光束测量方法,包括以下步骤:
A、将双光束激光测量仪固定于A点,第一激光测量仪测量发射激光信号测量B点,通过接收B点反射的激光信号获取B点反馈信号数据B';
B、于此同时,第二激光测量仪旋转角度α后,通过内部陀螺仪获得旋转的角度信号数据α',然后对C点发射激光信号,并通过接收C点发射的激光信号,获取C点反馈信号数据C';
C、主控板将获取的B点反馈信号数据B',C点反馈信号数据C',角度信号数据α'进行计算,得到B点与C点之间的直线具体BC',计算公式如下:BC'^2=B'^2+C'^2-2B'C'*cos B'C'。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种双光束激光测量仪,包括第一激光测量仪和第二激光测量仪,其特征在于,所述的第一激光测量仪和第二激光测量仪通过旋转连接轴下上连接,所述的第一激光测量仪包括下壳体,所述的下壳体前方设置有激光下投射窗,所述的激光下投射窗后方设置第一激光发射头,所述的下壳体底部设置有供电板,所述的第二激光测量仪包括上壳体,所述的上壳体前方设置激光上投射窗,所述的激光上投射窗后方设置第二激光发射头,所述的上壳体内部设置有主控板,所述的第一激光发射头和第二激光发射头分别电连接所述的供电板和主控板,所述的主控板用于采集第一激光发射头和第二激光发射头的发射反馈信号,并采集第一激光测量仪和第二激光测量仪之间相对转动角度的角度数值信号,根据所述的发射反馈信号和角度数值信号进行存取计算。
  2. 根据权利要求1所述的一种双光束激光测量仪,其特征在于,所述的上壳体顶部设置有LED屏,所述的LED屏电连接所述的主控板,所述的LED屏用于显示主控板的存取计算结果。
  3. 根据权利要求2所述的一种双光束激光测量仪,其特征在于,所述的主控板包括主控单片机,所述的主控单片机分别电连接激光发射电路模块、激光接收电路模块、逻辑电路模块、数模转换电路模块、显示电路模块、蓝牙通信电路模块和陀螺仪电路模块;
    所述的主控单片机将激光发射电路模块和激光接收电路模块测量的发射反馈信号数据,以及陀螺仪电路模块测量的转动角度的角度数值信号数据,一起发送给逻辑电路模块进行计算,并将计算结果通过数模转换电路模块转化为数字信号,分别通过显示电路模块发送给LED屏进行显示,并发送给蓝牙通信电路模块,用于外部下载获取。
  4. 一种双光束激光测量仪进行的双光束测量方法,包括以下步骤:
    A、将本发明的双光束激光测量仪固定于A点,第一激光测量仪测量发射激光信号测量B点,通过接收B点反射的激光信号获取B点反馈信号数据B';
    B、于此同时,第二激光测量仪旋转角度α后,通过内部陀螺仪获得旋转的角度信号数据α',然后对C点发射激光信号,并通过接收C点发射的激光信号,获取C点反馈信号数据C';
    C、主控板将获取的B点反馈信号数据B',C点反馈信号数据C',角度信号数据α'进行计算,得到B点与C点之间的直线具体BC',计算公式如下:BC'^2=B'^2+C'^2-2B'C'*cos B'C'。
  5. 根据权利要求4所述的一种双光束激光测量仪进行的双光束测量方法,其特征在于, 使所述的第一激光测量仪和第二激光测量仪通过旋转连接轴下上连接,所述的第一激光测量仪包括下壳体,在所述的下壳体前方设置有激光下投射窗,在所述的激光下投射窗后方设置第一激光发射头,在所述的下壳体底部设置有供电板;
    所述的第二激光测量仪包括上壳体,在所述的上壳体前方设置激光上投射窗,在所述的激光上投射窗后方设置第二激光发射头,在所述的上壳体内部设置有主控板;
    使所述的第一激光发射头和第二激光发射头分别电连接所述的供电板和主控板,通过主控板采集第一激光发射头和第二激光发射头的发射反馈信号,并采集第一激光测量仪和第二激光测量仪之间相对转动角度的角度数值信号,根据发射反馈信号和角度数值信号进行存取计算。
  6. 根据权利要求5所述的一种双光束激光测量仪进行的双光束测量方法,其特征在于,所述的上壳体顶部设置有LED屏,所述的LED屏电连接所述的主控板,通过LED屏显示主控板的存取计算结果。
  7. 根据权利要求6所述的一种双光束激光测量仪进行的双光束测量方法,其特征在于,所述的主控板包括主控单片机,使主控单片机分别电连接激光发射电路模块、激光接收电路模块、逻辑电路模块、数模转换电路模块、显示电路模块、蓝牙通信电路模块和陀螺仪电路模块;
    通过主控单片机将激光发射电路模块和激光接收电路模块测量的发射反馈信号数据,以及陀螺仪电路模块测量的转动角度的角度数值信号数据,一起发送给逻辑电路模块进行计算,并将计算结果通过数模转换电路模块转化为数字信号,分别通过显示电路模块发送给LED屏进行显示,并发送给蓝牙通信电路模块,通过外部下载获取。
PCT/CN2018/095715 2018-07-04 2018-07-14 一种双光束激光测量仪及双光束测量方法 WO2020006777A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810713309.3A CN108873011A (zh) 2018-07-04 2018-07-04 一种双光束激光测量仪及双光束测量方法
CN201810713309.3 2018-07-04
CN201821052376.7 2018-07-04
CN201821052376.7U CN208689162U (zh) 2018-07-04 2018-07-04 一种双光束激光测量仪

Publications (1)

Publication Number Publication Date
WO2020006777A1 true WO2020006777A1 (zh) 2020-01-09

Family

ID=69059658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095715 WO2020006777A1 (zh) 2018-07-04 2018-07-14 一种双光束激光测量仪及双光束测量方法

Country Status (1)

Country Link
WO (1) WO2020006777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019524A (zh) * 2021-11-30 2022-02-08 龙信建设集团有限公司 一种多功能双目激光检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus
CN106802413A (zh) * 2017-03-28 2017-06-06 昌邑市创通电子科技有限公司 一种激光测距仪
CN107202991A (zh) * 2016-09-08 2017-09-26 江苏科技大学 船模水面位置实时监测实验的光学测试系统及方法
CN107255820A (zh) * 2017-05-25 2017-10-17 深圳拓邦股份有限公司 一种激光测距装置
CN206671550U (zh) * 2017-03-28 2017-11-24 昌邑市创通电子科技有限公司 一种激光测距仪
CN107655446A (zh) * 2017-10-30 2018-02-02 成都捷测科技有限公司 激光测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus
CN107202991A (zh) * 2016-09-08 2017-09-26 江苏科技大学 船模水面位置实时监测实验的光学测试系统及方法
CN106802413A (zh) * 2017-03-28 2017-06-06 昌邑市创通电子科技有限公司 一种激光测距仪
CN206671550U (zh) * 2017-03-28 2017-11-24 昌邑市创通电子科技有限公司 一种激光测距仪
CN107255820A (zh) * 2017-05-25 2017-10-17 深圳拓邦股份有限公司 一种激光测距装置
CN107655446A (zh) * 2017-10-30 2018-02-02 成都捷测科技有限公司 激光测量装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019524A (zh) * 2021-11-30 2022-02-08 龙信建设集团有限公司 一种多功能双目激光检测系统

Similar Documents

Publication Publication Date Title
US11726180B2 (en) Light emitting module, light emitting unit, optical signal detection module, optical system and laser radar system
CN105548988A (zh) 一种具有多传感器的光探测与测量雷达
JPS5951338A (ja) 光フアイバ−結合型イオン濃度測定装置
WO2020006777A1 (zh) 一种双光束激光测量仪及双光束测量方法
CN109099942A (zh) 一种集成硅基光电探测器的光电模数转换芯片
CN112798558A (zh) 一种自动调焦激光气体遥测装置
CN116990826B (zh) 高动态精度激光相位式测距仪
CN214895382U (zh) 一种具有角度补偿功能的便携式激光测速仪
CN109917415A (zh) 一种激光测距仪
CN112014853B (zh) 一种激光测距专用电路及基于电路的测距方法
CN212324424U (zh) 一种数字式时钟的秒脉冲发生装置及测量系统
CN205404795U (zh) 一种具有多传感器的光探测与测量雷达
CN111983626B (zh) 一种激光测距传感器系统
CN208689162U (zh) 一种双光束激光测量仪
WO2023186057A1 (zh) 一种激光雷达探测参数调整控制方法及装置
CN203786138U (zh) 一种多功能物理量测量仪
CN110455271B (zh) 光纤陀螺仪
CN108873011A (zh) 一种双光束激光测量仪及双光束测量方法
CN109406452A (zh) 一种基于中红外可调谐激光器的甲醛检测装置及检测方法
CN202351429U (zh) 一种激光相位法测距装置
CN212845916U (zh) 光发射模块、光信号检测模块、光学系统和激光雷达系统
CN212723359U (zh) 一种脉冲相位混合测距激光雷达
CN210129002U (zh) 二氧化碳激光器的激光光功率效率比值测量装置
CN208297734U (zh) 双足机器人智能循迹装置
CN115047482B (zh) 一种基于单光子雪崩二极管阵列探测器的激光探测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925488

Country of ref document: EP

Kind code of ref document: A1