WO2020006758A1 - Methods, devices and computer readable media for aul transmission and aul transmission configuration - Google Patents

Methods, devices and computer readable media for aul transmission and aul transmission configuration Download PDF

Info

Publication number
WO2020006758A1
WO2020006758A1 PCT/CN2018/094858 CN2018094858W WO2020006758A1 WO 2020006758 A1 WO2020006758 A1 WO 2020006758A1 CN 2018094858 W CN2018094858 W CN 2018094858W WO 2020006758 A1 WO2020006758 A1 WO 2020006758A1
Authority
WO
WIPO (PCT)
Prior art keywords
aul
transmission
slot
terminal device
cca
Prior art date
Application number
PCT/CN2018/094858
Other languages
French (fr)
Inventor
Lin Liang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2018/094858 priority Critical patent/WO2020006758A1/en
Publication of WO2020006758A1 publication Critical patent/WO2020006758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance

Definitions

  • the non-limiting and exemplary embodiments of the present disclosure generally relate to the field of wireless communication techniques, and more particularly relate to a method, device and computer readable media for AUL transmission and a method, device and computer readable media for AUL transmission configuration in a wireless communication system.
  • New radio access system which is also called as NR system or NR network
  • NR system is the next generation communication system.
  • RAN Radio Access Network
  • 3GPP Third Generation Partnership Project
  • the NR system will consider frequency ranging up to 100Ghz with an object of a single technical framework addressing all usage scenarios, requirements and deployment scenarios defined in Technical Report TR 38.913, which includes requirements such as enhanced mobile broadband, massive machine-type communications, and ultra-reliable and low latency communications.
  • LAA License Assisted Access
  • AUL Autonomous Uplink
  • CCA Clear Channel Access
  • LBT Listen Before Talk
  • AUL transmission is based on a fixed subcarrier spacing and the same Orthogonal Frequency Division Multiplexing (OFDM) symbol duration, and thus for the NR system which supports a plurality of subcarrier spacings and different symbol durations , the AUL channel access solution shall be modified to adapt to the higher subcarrier spacings such as 60KHz.
  • AUL in NR unlicensed band (NR-U) is also called as a configured grant in NR-U, where the configured grant means a pre-configured periodic transmission mode of 5G NR.
  • example embodiments of the present disclosure provide a new solution for AUL transmission and AUL transmission configuration in a wireless communication system.
  • a method for AUL transmission in a wireless communication system may be performed at a terminal device such as UE or any other terminal device.
  • the method may comprise receiving a slot state indication information for AUL transmission, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot; and performing the AUL transmission based on the slot state indication information.
  • the method may be implemented at a network device such as the base station (gNB for example) or any other network device.
  • the network device may comprise transmitting a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • a terminal device may comprise a processor and a memory.
  • the memory may be coupled with the processor and having program codes therein, which, when executed on the processor, cause the terminal device to perform operations of the first aspect.
  • the network device may comprise a processor and a memory.
  • the memory may be coupled with the processor and have program codes therein, which, when executed on the processor, cause the network node to perform operations of the second aspect.
  • a computer-readable storage medium with computer program codes embodied thereon, the computer program codes configured to, when executed, cause an apparatus to perform actions in the method according to any embodiment in the first aspect.
  • a computer-readable storage medium with computer program codes embodied thereon, the computer program codes configured to, when executed, cause an apparatus to perform actions in the method according to any embodiment in the second aspect.
  • a computer program product comprising a computer-readable storage medium according to the fifth aspect.
  • a computer program product comprising a computer-readable storage medium according to the sixth aspect.
  • Fig. 1 illustrates am example scenario of AUL transmission in the LTE system
  • Fig 2 schematically illustrates different parameter configurations /numerologies in the NR system
  • Fig. 3 schematically illustrates a flow chart of a method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 4A to 4C schematically illustrate example transmission cases according to embodiments of the present disclosure
  • Fig. 5 schematically illustrates a flow chart of another method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 6 schematically illustrates a flow chart of a further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Figs. 7A and 7B schematically illustrate example transmission cases according to embodiments of the present disclosure
  • Fig. 8 schematically illustrates a flow chart of a still further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 9 schematically illustrates a flow chart of an example specific implementation of AUL transmission based on priority number according to an embodiment of the present disclosure
  • Fig. 10 schematically illustrates a flow chart of an example specific implementation of transmission threshold adjustment according to an embodiment of the present disclosure
  • Fig. 11 schematically illustrates a flow chart of a method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 12 schematically illustrates a flow chart of another method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 13 schematically illustrates a flow chart of a further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 14 schematically illustrates a flow chart of a still further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 15 schematically illustrates a block diagram of an apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 16 schematically illustrates a block diagram of another apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 17 schematically illustrates a block diagram of a further apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 18 schematically illustrates a block diagram of a still further for AUL transmission in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 19 schematically illustrates a block diagram of an apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 20 schematically illustrates a block diagram of another apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 21 schematically illustrates a block diagram of a further apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 22 schematically illustrates a block diagram of a still further for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure
  • Fig. 23 schematically illustrates a simplified block diagram of an apparatus 2310 that may be embodied as or comprised in a terminal device like UE, and an apparatus 2320 that may be embodied as or comprised in a network device like gNB as described herein.
  • each block in the flowcharts or blocks may represent a module, a program, or a part of code, which contains one or more executable instructions for performing specified logic functions, and in the present disclosure, a dispensable block is illustrated in a dotted line.
  • these blocks are illustrated in particular sequences for performing the steps of the methods, as a matter of fact, they may not necessarily be performed strictly according to the illustrated sequence. For example, they might be performed in reverse sequence or simultaneously, which is dependent on natures of respective operations.
  • block diagrams and/or each block in the flowcharts and a combination of thereof may be implemented by a dedicated hardware-based system for performing specified functions/operations or by a combination of dedicated hardware and computer instructions.
  • references in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • wireless communication network refers to a network following any suitable wireless communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • wireless communication network may also be referred to as a “wireless communication system.
  • communications between network devices, between a network device and a terminal device, or between terminal devices in the wireless communication network may be performed according to any suitable communication protocol, including, but not limited to, Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , New Radio (NR) , wireless local area network (WLAN) standards, such as the IEEE 802.11 standards, and/or any other appropriate wireless communication standard either currently known or to be developed in the future.
  • GSM Global System for Mobile Communications
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • NR New Radio
  • WLAN wireless local area network
  • IEEE 802.11 any other appropriate wireless communication standard either currently known or to be developed in the future.
  • the term “network device” refers to a node in a wireless communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communications.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) and the like.
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment.
  • the terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device.
  • M2M machine-to-machine
  • MTC machine-type communication
  • the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, for example refrigerators, televisions, personal wearables such as watches etc.
  • a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
  • a downlink (DL) transmission refers to a transmission from a network device to UE
  • an uplink (UL) transmission refers to a transmission in an opposite direction.
  • the AUL access as one of unlicensed channel access solutions, can increase uplink performance (such as throughput and latency) on unlicensed band by means of CCA and it has been studied as one of objectives in the Work Item (WI) responsible for studying enhancements to LTE operations in unlicensed spectrum.
  • the AUL access it may allocate the same time and frequency recourse for different UEs by means of orthogonal resource allocation; however this orthogonal resource allocation is less efficient since many UEs might have no uplink data at the allocated resources.
  • a separate AUL-specific set of PUSCH starting offset values can be configured by the base station, and the UE could randomly select one start off set from the AUL-specific set as a UE specific offset.
  • the UEs will transmit the uplink data based on the UE specific offset and only the UE with a smaller offset can transmit its uplink data, as illustrated the right part in Fig. 1.
  • the separate AUL-specific set can be for example ⁇ 0, 16, 25, 34, 43, 52, 61, OS#1 ⁇ .
  • a basic enhanced CCA (ECCA) slot on unlicensed band is 9 ⁇ s and 25 ⁇ s CCA is required for UL transmission after downlink transmission if the UL transmission is performed within the eNB obtained Maximum Channel Occupancy Time (MCOT) .
  • MCOT Maximum Channel Occupancy Time
  • AUL transmission shall have a lower priority than scheduled uplink (SUL) transmission and/or downlink transmission, thus, for the following two difference case, the configured AUL-specific set is different:
  • Case 1 For AUL transmission outside of the eNB obtained MCOT, the configured set could be ⁇ 16, 25, 34, 43, 52, 61, OS#1 ⁇ .
  • OFDM symbol duration is 66.67 us and thus the LTE OFDM symbol duration contains only 7 ECCA slots.
  • the NR system has various configurations/numerologies having flexible SCS and symbol durations which are different for different SCS configurations. For example, for the SCS of 60KHz, the symbol duration is 16.7us, which can contains no more than two ECCA slots.
  • OFDM symbol (OS) #1 is the start position for UL transmission; while for other SCSs, the UL transit might start from a rather later position.
  • OS#4 is the start position for UL transmission. However, the later the start position is, the higher the waste ratio is.
  • DMRS symbols only can be located at OS #0 and OS#2 according to the current specification, and it would be affected by the CAA procedure if too many symbols are occupied for CCA.
  • the occupied symbols are constrained to start the PUSCH earlier, available PUSCH start positions will be limited too, which cannot avoid the collision efficiently.
  • Embodiments of the present disclosure provide a new solution for AUL transmission and AUL configuration transmission.
  • reference will be further made to accompanying drawings to describe the solutions as proposed in the present disclosure in details.
  • the following embodiments are given only for illustrative purposes and the present disclosure is not limited thereto.
  • an AUL transmission solution particularly an AUL transmission solution based on a new slot state indication.
  • a new slot state indication to indicate various slot state so that the terminal device could perform the AUL more efficiently and fairly.
  • Fig. 3 schematically illustrates a flow chart of a method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the method 300 can be implemented at a terminal device like UE or any other terminal device.
  • the terminal device may receive slot state indication information for AUL transmission.
  • the slot state indication information may indicate any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • new slot state indication information will be used to indicate at least four slot states including for example a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • the non-AUL slot means that a slot is not used for AUL transmission;
  • the AUL start slot means that a slot can be used for AUL transmission and the CCA procedure is always active in the slot;
  • the AUL transmission slot means that a slot can be used for the AUL transmission but the CCA procedure is inactive;
  • the AUL start or transmission slot means that the slot can be used for AUL transmission and CCA procedure is also active.
  • the slot state indication information can be in a form of bitmap with at least two bits.
  • a two-bit bitmap can be used to indicate the above four slot states.
  • the two-bit bitmap can be configured by the gNB and transmitted to the terminal device.
  • the two-bit bitmap could provide four different values respectively the four slot states.
  • “00” may be used to indicate the non-AUL slot
  • “01” may be used to indicate the AUL starting slot
  • “10” may be used to indicate AUL transmitting slot
  • “11” may be used to indicate the AUL starting or transmitting slot.
  • the slot state indication information is not limited to the bitmap and it may be implemented in any other way.
  • the number of bits in the bitmap (if used) is not limited to 2 and another number of bits such as 3 bits are also possible.
  • specific bit values for different slot states are just given for illustrative purposes and it is also possible to use a different value to indicate a specific slot state.
  • the above example bit values for respective slot states will be used as examples to describe embodiments of the present disclosure hereinafter.
  • step 320 the terminal device performs the AUL transmission based on the slot state indication information.
  • the terminal device could learn slot states for respective slots.
  • the bit value of the bitmap for a slot is “00”
  • the bit map is “01”
  • the bit map is “10”
  • the bit map is “11” , it could learn that this slot is AUL start or transmission slot, and thus it could either continue performing the AUL transmission when it already starts an AUL transmission or perform a CCA procedure to start a new one when it has AUL transmission requirements.
  • the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it could give terminal devices a more fair chance for AUL transmission.
  • Figs. 4A to 4C schematically illustrate example transmission cases according to embodiments of the present disclosure.
  • the bitmap has a value “00” for the first slot and has a value “01” for all remaining slots.
  • the first slot is a non-AUL slot and the other nine slots are AUL slot.
  • a terminal device should perform a CCA procedure in each of AUL slots if it requires AUL transmission, which means that a portion of resource of each AUL slot will be used for CCA.
  • the bitmap has a value “00” for the first slot, a value “01” for the second, fifth and ninth slots, and a value of “10” for the remaining slots.
  • the first slot is a non-AUL slot
  • the second, fifth and eighth slot are AUL start slots
  • the other slots are AUL transmission slots.
  • the bitmap has a value “00” for the first slot, a value “01” for the fifth and ninth slots, and a value of “11” for the remaining slots.
  • the first slot is a non-AUL slot
  • the fifth and ninth slot are AUL start slots
  • the other slots are AUL start or transmission slot. Therefore, in this transmission case, it does not require the terminal device to perform a CCA procedure in each AUL slot either and at the same time other UE could also have transmission chance in the start or transmission slot.
  • another AUL transmission solution and particularly an AUL transmission solution based on a new AUL slot length indication is further provided.
  • it is to limit the slot length for a continuous AUL transmission of a terminal device to use the transmission resource more fairly and efficiently.
  • Fig. 5 schematically illustrates a flow chart of another method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the method 500 could be implemented at a terminal device like UE or any other terminal device.
  • the terminal device may receive slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot.
  • the non-AUL slot means that a slot is not used for AUL transmission; the AUL slot means that a slot can be used for AUL transmission.
  • the slot state indication information is in a form of bitmap with at least one bit.
  • a one-bit bitmap can be used to indicate the above two slot states.
  • the one-bit bitmap can be configured by the gNB and transmitted to the terminal device.
  • the one-bit bitmap could provide two different values respectively for the two slot states. As an example, “0” may be used to indicate the non-AUL slot, and “1” may be used to indicate the AUL slot.
  • the slot state indication information is not limited to the bitmap and it may be implemented in any other way.
  • the number of bits in the bitmap is not limited to 1 and another number of bits (such as 2 bits) are also possible.
  • specific bit values for different slot states are just given for illustrative purposes and it is also possible to use a different value to indicate a specific slot state.
  • the above example bit values for respective slot states will be used as examples to describe embodiments of the present disclosure hereinafter.
  • the terminal device receives an AUL slot length parameter from the network device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission.
  • the AUL transmission does not only rely on different slot states but also uses the AUL slot length parameter to limit the number of slots which can be used for continuous AUL transmission for one terminal device. If the terminal device uses the maximum permissible slot length already, it has to end the AUL transmission or continue transmission by inserting a 25us CCA with PUSCH offset randomly in AUL-specific set, which could give transmission opportunity to other terminal devices.
  • step 530 the terminal device performs the AUL transmission based on the slot state indication information and AUL slot length parameter.
  • the terminal device could learn slot states for respective slots and the maximum permissible slot length for continuous AUL transmission. Based on the slot state indicated in the slot state information, the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it will end the AUL transmission if it already uses the maximum permissible slot and give the transmission opportunity to other terminal devices. The terminal device could perform CCA again if it still has AUL transmission requirements.
  • the start position is the later the start position is, the higher the waste ratio is.
  • the later the start position is, the higher the waste ratio is.
  • an AUL transmission solution and particularly an AUL transmission solution based on a maximum CCA occupation symbol indication is proposed.
  • it is to limit the maximum for a continuous AUL transmission of a terminal device so that DMRS will not be affected by the CCA procedure.
  • Figs. 6 to 7 describe the basic idea of the AUL transmission based on maximum CCA occupation symbol indication.
  • Fig. 6 schematically illustrates a flow chart of a further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the method 600 can be implemented at a terminal device like UE or any other terminal device.
  • the terminal device receives an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission.
  • the terminal device may receive a maximum CCA occupation symbol indication to the terminal device, wherein the maximum CCA occupation symbol indication indicates the maximum number of symbols which can be used for a CCA.
  • the maximum CCA occupation symbol indication can be configured to the terminal device for a slot where AUL channel access is proceeding so as to indicate the maximum CCA occupation symbol.
  • the maximum CCA occupation symbol indication may indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 4 symbols for 60KHz. In such a way, it will have the same time duration with 15KHz in the LTE system (1 OFDM symbol of 15KHz) . In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 2 symbols for 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may also indicate 7 symbols for 60KHz since it may be compatible to mini-slot transmission which may allow more position offset.
  • the UE may select an offset value from available offset values for the terminal device. That is to say the selected offset value shall not be later than the position indicated by the maximum CCA occupation symbol indication.
  • an available offset subset can be first determined based on the AUL-specific offset set indicated by the AUL-specific offset set configuration and the number of symbols indicated by the maximum CCA occupation symbol indication. Thus, only those offsets smaller than the maximum CCA occupation symbol indication can be contained within the available offset subset, and the UE may just randomly select an offset value from the available offset set for the terminal device.
  • the terminal device could use select an offset value from the AUL-specific offset set with the maximum CCA occupation symbol as one of its selection criteria.
  • DMRS can be transmitted after symbols indicated by the end of the maximum CCA occupation symbol as illustrated in Figs. 7A and 7B, no matter when the CCA actually ends. Therefore, DMRS will not be affected by the CCA any longer.
  • the actual start position based on CCA can be signaled to the network device in AUL downlink control information (DCI) .
  • DCI AUL downlink control information
  • the PUSCH transmission OFDM symbols can start from the next symbol after the maximum CCA occupation symbol to the end symbol of the slot.
  • puncture or repetition scheme could be used.
  • the data mapping assumes presence of OFDM symbol and thus it will not transmit any data based on the result of CCA.
  • the data mapping assumes absence of OFDM symbol and thus it will transmit data signal based on the result of CCA. For example, it may transmit data signal before the DMRS and UCI in a mirror manner.
  • the first symbol before the DMRS and UCI will be used to transmit same data as the first symbol after the DMRS and UCI
  • the second symbol before the DMRS and UCI will be used to transmit same data as the second symbol after the DMRS and so on.
  • the start position is the later the start position is, the higher the waste ratio is.
  • the start symbols are constrained to start the PUSCH earlier, available PUSCH start positions will be limited too, which cannot avoid the collision effectively.
  • an AUL transmission solution particularly an AUL transmission based on a new transmission priority number.
  • it is to newly introduce a transmission priority number, which can be randomly generated by the terminal device and the terminal device cannot transmit in the current transmission opportunity if the generated priority number is lower than a transmission threshold.
  • a transmission priority number which can be randomly generated by the terminal device and the terminal device cannot transmit in the current transmission opportunity if the generated priority number is lower than a transmission threshold.
  • Fig. 8 schematically illustrates a flow chart of a still further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the method 800 can be implemented at a terminal device like UE or any other terminal device.
  • the terminal device may generate, for a terminal device, a priority number of AUL transmission within a predetermined value range.
  • an inner priority number is further introduced.
  • the inner priority number P has a range for example [0, Pmax] , and the terminal device can randomly generate a priority number within [0, Pmax] before CCA.
  • the priority number P is UE specific, and parameter Pmax denotes the maximum value of priority number P, which can be UE specific and maintained by the terminal device or configured by the network device.
  • the terminal device may determine whether the terminal device can perform an AUL transmission in the current transmission opportunity based on the generated priority number and the transmission threshold.
  • the transmission threshold T is a threshold for performing CCA. If the generated priority number P is less than the transmission threshold T, the terminal device cannot perform CCA but wait till the next transmission opportunity to participate the next round of comparison with the transmission threshold T. If the generated priority number P is larger than or equal to the transmission threshold T, the terminal device can perform the CCA in the current transmission opportunity.
  • the priority number P and the transmission threshold T at least a part of terminal devices cannot perform CCA, the number of terminal devices participating the AUL transmission is reduced and thus transmission collision can be decreased accordingly.
  • a delta value may be added to the generated priority number for a non-first AUL transmission attempt as illustrated in step 830, so as to give a priority to the non-first AUL transmission attempt.
  • the terminal device could have a larger chance to perform CCA if it is already waiting.
  • Fig. 9 schematically illustrates a flow chart of an example specific implementation of AUL transmission based on priority number according to an embodiment of the present disclosure.
  • the terminal device in step 910, the terminal device generates AUL offset value k.
  • it determines whether P_first is 1, i.e., whether it is the first AUL transmission attempt.
  • the parameter P_first indicates whether the AUL transmission attempt is performed at the first time.
  • the parameter P_first may have a value “1” for a first AUL transmission and a value “0” for a non-first AUL transmission.
  • the terminal device If it is determined that the AUL transmission attempt is the first attempt, the terminal device generates a random number P within [0, P max ] in step 930; if it is not the first attempt, the method may proceed to step 940 to determine a new priority number based on the previously generated priority number P and a delta value delta_P. In step 950, the terminal device may determine whether the priority number P is larger or equal to the transmission threshold T. If no, the method proceeds to step 960 in which P_first is set as zero; if yes, it determines that the terminal device could perform AUL transmission after the offset K ⁇ s in step 970 and set the parameter P_first set as 1 in step 980.
  • the transmission threshold T can also be UE-specific. It could be adjusted by the terminal device or configured by the network device. In an embodiment of the present disclosure, the transmission threshold can be updated by the terminal device based on feedback for AUL transmissions from the network device. For example, if the HARQ feedback is ACK, the transmission threshold T can be decreased; if the HARQ feedback is NACK, the transmission threshold T can be increased.
  • Fig. 10 schematically illustrates a flow chart of an example specific implementation of transmission threshold adjustment according to embodiments of the present disclosure.
  • the transmission threshold adjustment can be performed at the terminal device such as UE or any other terminal device.
  • step 1010 the terminal device determines whether the HARQ feedback information is ACK or NACK. If the feedback is ACK, the transmission threshold T is decreased by delta_t in step 1030; if the feedback is NACK, the transmission threshold T is decreased by delta_t in step 1040.
  • the transmission threshold T can also be indicated by eNB in DCI.
  • the network device could adjust the transmission threshold based on performance of AUL transmission from terminal devices. For example, when the AUL transmission is decoded correctly, the transmission threshold T will be reduced by a delta value; otherwise, the transmission threshold T will be increased by a delta value. As another example, if the number of terminal devices is increased, the transmission threshold T can be increased; if the number of terminal devices is decreased, the transmission threshold T can be decreased. As a further example, if the channel condition is better, the transmission threshold T can be increased; if the channel condition is worse, the transmission threshold T can be decreased.
  • Fig. 11 schematically illustrates a flow chart of a method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the method 1100 can be implemented at the network device such as gNB or any other network device.
  • the network device transmits a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • the new slot state indication information will be used to indicate at least the above four slot states.
  • the non-AUL slot means that a slot is not used for AUL transmission;
  • the AUL start slot means that a slot can be used for AUL transmission and the CCA procedure is always active in the slot;
  • the AUL transmission slot means that a slot can be used for the AUL transmission but the CCA procedure is inactive;
  • the AUL start or transmission slot means that the slot can be used for AUL continuous transmission or the CCA procedure for a new access attempt.
  • the slot state indication information is in a form of bitmap with at least two bits.
  • a two-bit bitmap can be used to indicate the above four slot states.
  • the two-bit bitmap can be configured by the gNB and transmitted to the terminal device.
  • the two-bit bitmap could provide four different values respectively the four slot states. For an example, “00” may be used to indicate the non-AUL slot, “01” may be used to indicate the AUL starting slot; “10” may be used to indicate AUL transmitting slot; “11” may be used to denote the AUL starting or transmitting slot.
  • Fig. 12 schematically illustrates a flow chart of another method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the method 1200 can be implemented at the network device such as gNB or any other network device.
  • the network device may transmit slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot.
  • the non-AUL slot means that a slot is not used for AUL transmission; the AUL slot means that a slot can be used for AUL transmission.
  • the slot state indication information is in a form of bitmap with at least one bit.
  • a one-bit bitmap can be used to indicate the above two slot states.
  • the one-bit bitmap can be configured by the gNB and transmitted to the terminal device.
  • the one-bit bitmap could provide two different values respectively for the two slot states. As an example, “0” may be used to indicate the non-AUL slot, and “1” may be used to indicate the AUL slot.
  • the network device transmits an AUL slot length parameter to the terminal device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission.
  • the AUL slot length parameter is further used to limit the number of slots which can be used for continuous AUL transmission for one terminal device. If the terminal device has already used the maximum permissible length of slot, it has to end the AUL transmission and give the transmission opportunity to other terminal devices.
  • the terminal device could learn slot state for respective slots and the maximum permissible slot length for continuous AUL transmission. Based on the slot state indicated in the slot state information, the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it will end the AUL transmission and give the transmission opportunity to other terminal devices if it already uses the maximum permissible slot.
  • Fig. 13 schematically illustrates a flow chart of a further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the method 1300 can be implemented at the network device such as gNB or any other network device.
  • the network device transmits an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission.
  • the network device may transmit a maximum clear CCA occupation symbol indication to the terminal device, wherein the maximum CCA occupation symbol indication indicates the maximum number of symbols which can be used for a CCA.
  • the maximum CCA occupation symbol indication can be configured to the terminal device for a slot where AUL channel access is proceeding, so as to indicate the maximum CCA occupation symbol.
  • the maximum CCA occupation symbol indication may indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 4 symbols for 60KHz. In such a way, it will have the same time duration with 15KHz in the LTE system (1 OFDM symbol of 15KHz) . In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 2 symbols for 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may also indicate 7 symbols for 60KHz since it may be compatible to mini-slot transmission which may allow more position offset.
  • Fig. 14 schematically illustrates a flow chart of a still further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the method 1400 can be implemented at the network device such as gNB or any other network device.
  • the terminal device will use the priority number and the transmission threshold to determine whether to perform an AUL transmission.
  • the transmission threshold can be configured by the network device.
  • the network device may determine a transmission threshold based on performance of AUL transmission from terminal devices, wherein the transmission threshold indicates a threshold for priority number generated by a terminal device, lower than which an AUL transmission shall wait till the next transmission.
  • the network device may transmit the determined transmission threshold to the terminal device.
  • the terminal device could use the updated transmission threshold to determine whether to perform AUL transmission in a more resource efficient way.
  • Fig. 15 schematically illustrates a block diagram of an apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 1500 can be implemented at a terminal device or any other terminal device.
  • the apparatus may include an indication receiving module 1510, and an AUL transmission module 1520.
  • the indication receiving module 1510 is configured to receive a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • the AUL transmission module 1520 is configured to perform the AUL transmission based on the slot state indication information.
  • the slot state indication information is a bitmap with at least two bits.
  • Fig. 16 schematically illustrates a block diagram of another apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 1600 can be implemented at a terminal device or any other terminal device.
  • the apparatus 1600 may include an indication receiving module 1610, a parameter receiving module 1620, and an AUL transmission module 1630.
  • the indication receiving module 1610 may be configured to receive slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot.
  • the a parameter receiving module 1620 may be configured to receive an AUL slot length parameter from the network device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission.
  • the AUL transmission module 1630 may be configured to perform the AUL transmission based on the slot state indication information and AUL slot length parameter.
  • Fig. 17 schematically illustrates a block diagram of a further apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 1700 can be implemented at a terminal device or any other terminal device.
  • the apparatus 1700 may include a configuration receiving module 1710, an occupation indication receiving module 1720, and a value selection module 1730.
  • the indication receiving module 1710 may be configured to receive an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission.
  • the parameter receiving module 1720 may be configured to receive a maximum clear channel assessment (CCA) occupation symbol indication to the terminal device, the maximum CCA occupation symbol indication indicating the number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication.
  • the offset selection module 1730 can be configured to select an offset value from available offset values for the terminal device.
  • the maximum CCA occupation symbol indication indicates 2 symbols for a subcarrier spacing of 60KHZ. In another embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 4 symbols for a subcarrier spacing of 60KHZ. In a further embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 7 symbols for a subcarrier spacing of 60KHz.
  • Fig. 18 schematically illustrates a block diagram of a still further for AUL transmission in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 1800 can be implemented at a terminal device or any other terminal device.
  • the apparatus may include a number generation module 1810, and a transmission determination module 1820.
  • the number generation module 1810 may be configured to generate, for a terminal device, a priority number of AUL transmission within a predetermined value range.
  • the transmission determination module 1820 may be configured to determine whether the terminal device can perform an AUL transmission in the current transmission opportunity based on the generated priority number and a transmission threshold.
  • the transmission determination module 1820 may be configured to determine the terminal device can perform the AUL transmission in the current transmi ssion opportunity if the priority number reaches the transmission thresho1d and determine the terminal device shall wait till the next transmission opportunity if the priority number is lower than the transmission threshold.
  • the apparatus 1800 may further comprise a delta adding module 1830, which can be configured to add a delta value to the generated priority number for a non-first AUL transmission attempt.
  • the apparatus 1800 may further comprise a threshold determination module 1840, configured to update the transmission threshold based on feedback for AUL transmissions from the network device.
  • the apparatus 1800 may further comprise a threshold update receiving module 1850 configured to receive an update of the transmission threshold from the network device.
  • Fig. 19 schematically illustrates a block diagram of an apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 1900 can be implemented at the network device such as gNB or any other network device.
  • the apparatus 1900 may include an indication transmission module 1910, which can be configured to transmit a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • an indication transmission module 1910 which can be configured to transmit a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  • the slot state indication information may be in a form of bitmap with at least two bits.
  • Fig. 20 schematically illustrates a block diagram of another apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 2000 can be implemented at the network device such as gNB or any other network device.
  • the apparatus 2000 may include an indication transmission module 2010 and a parameter transmission module 2020.
  • the indication transmission module 2010 may be configured to transmit slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot.
  • the parameter transmission module 2020 may be configured to transmit an AUL slot length parameter to the terminal device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission.
  • Fig. 21 schematically illustrates a block diagram of a further apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 2100 can be implemented at the network device such as gNB or any other network device.
  • the apparatus 2100 may include a configuration transmission module 2110 and an occupation transmission module 2120.
  • the configuration transmission module 2110 may transmit an AUL-specific offset set configuration indicating AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission.
  • the occupation transmission module 2120 may be configured to transmit a maximum clear channel assessment (CCA) occupation symbol indication to the terminal device, the maximum CCA occupation symbol indication indicating the number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication.
  • CCA clear channel assessment
  • the maximum CCA occupation symbol indication indicates 2 symbols for a subcarrier spacing of 60KHZ. In another embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 4 symbols for a subcarrier spacing of 60KHZ. In a further embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 7 symbols for a subcarrier spacing of 60KHz.
  • Fig. 22 schematically illustrates a block diagram of a still further for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure.
  • the apparatus 2200 can be implemented at the network device such as gNB or any other network device.
  • the apparatus 2200 may include a threshold update determination module 2310 and a threshold update transmission module 2320.
  • the threshold update determination module 2310 may be configured to determine a transmission threshold based on performance of AUL transmission from terminal devices, wherein the transmission threshold indicates a threshold for priority number generated by a terminal device, lower than which an AUL transmission shall wait till the next transmission.
  • the threshold update transmission module 2320 may be configured to transmit the determined transmission threshold to the terminal device.
  • the terminal device could use the updated transmission threshold to determine whether to perform AUL transmission in a more resource efficient way.
  • apparatuses 1500 to 2200 are described with reference to Figs. 15 and 22 in brief. It can be noted that the apparatuses 1500 and 2200 may be configured to implement functionalities as described with reference to Figs. 3 to 14. Therefore, for details about the operations of modules in these apparatuses, one may refer to those descriptions made with respect to the respective steps of the methods with reference to Figs. 3 to 14.
  • components of the apparatuses 1500 to 2200 may be embodied in hardware, software, firmware, and/or any combination thereof.
  • the components of apparatuses 1500 to 2200 may be respectively implemented by a circuit, a processor or any other appropriate selection device.
  • apparatuses 1500 to 2200 may include at least one processor.
  • the at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future.
  • Apparatuses 1500 to 2200 may further include at least one memory.
  • the at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices.
  • the at least one memory may be used to store program of computer executable instructions.
  • the program can be written in any high-level and/or low-level compliable or interpretable programming languages.
  • the computer executable instructions may be configured, with the at least one processor, to cause apparatuses 1500 to 2200 to at least perform operations according to the method as discussed with reference to Figs. 3 to 14 respectively.
  • FIG. 23 schematically illustrates a simplified block diagram of an apparatus 2310 that may be embodied as or comprised in a terminal device like UE, and an apparatus 2320 that may be embodied as or comprised in a network device like gNB as described herein.
  • the apparatus 2310 comprises at least one processor 2311, such as a data processor (DP) and at least one memory (MEM) 2312 coupled to the processor 2311.
  • the apparatus 2310 may further include a transmitter TX and receiver RX 2313 coupled to the processor 2311, which may be operable to communicatively connect to the apparatus 2320.
  • the MEM 2312 stores a program (PROG) 2314.
  • the PROG 2314 may include instructions that, when executed on the associated processor 2311, enable the apparatus 2310 to operate in accordance with embodiments of the present disclosure, for example method 300, 500, 600, or 800.
  • a combination of the at least one processor 2311 and the at least one MEM 2312 may form processing means 2315 adapted to implement various embodiments of the present disclosure.
  • the apparatus 2320 comprises at least one processor 2321, such as a DP, and at least one MEM 2322 coupled to the processor 2321.
  • the apparatus 2320 may further include a suitable TX/RX 2323 coupled to the processor 2321, which may be operable for wireless communication with the apparatus 2310.
  • the MEM 2322 stores a PROG 2324.
  • the PROG 2324 may include instructions that, when executed on the associated processor 2321, enable the apparatus 2320 to operate in accordance with the embodiments of the present disclosure, for example to perform method 1100, 1200, 1300, or 1400.
  • a combination of the at least one processor 2321 and the at least one MEM 2322 may form processing means 2325 adapted to implement various embodiments of the present disclosure.
  • Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the processors 2311, 2321, software, firmware, hardware or in a combination thereof.
  • the MEMs 2312 and 2322 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
  • the processors 2311 and 2321 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors DSPs and processors based on multicore processor architecture, as non-limiting examples.
  • the present disclosure may also provide a carrier containing the computer program as mentioned above, wherein the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium.
  • the computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
  • an apparatus implementing one or more functions of a corresponding apparatus described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions.
  • these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof.
  • firmware or software implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to a method, device and computer readable medium for autonomous uplink (AUL) transmission and a method, device and apparatus for AUL transmission configuration. In an embodiment of the present disclosure, at a terminal device, a slot state indication information for AUL transmission is received, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot. Then, the AUL transmission is performed based on the slot state indication information.

Description

METHODS, DEVICES AND COMPUTER READABLE MEDIA FOR AUL TRANSMISSION AND AUL TRANSMISSION CONFIGURATION FIELD OF THE INVENTION
The non-limiting and exemplary embodiments of the present disclosure generally relate to the field of wireless communication techniques, and more particularly relate to a method, device and computer readable media for AUL transmission and a method, device and computer readable media for AUL transmission configuration in a wireless communication system.
BACKGROUND OF THE INVENTION
This section introduces aspects that may facilitate better understanding of the disclosure. Accordingly, the statements of this section are to be read in this light and are not to be understood as admissions about what is in the prior art or what is not in the prior art.
New radio access system, which is also called as NR system or NR network, is the next generation communication system. In Radio Access Network (RAN) #71 meeting for the third generation Partnership Project (3GPP) working group, study of the NR system was approved. The NR system will consider frequency ranging up to 100Ghz with an object of a single technical framework addressing all usage scenarios, requirements and deployment scenarios defined in Technical Report TR 38.913, which includes requirements such as enhanced mobile broadband, massive machine-type communications, and ultra-reliable and low latency communications.
In order to improve the data rate performance, in 3GPP Long Term Evolution (LTE) , there was introduced License Assisted Access (LAA) for both downlink and uplink transmission. As the LTE network enters its next phase of evolution with the study of wider bandwidth waveform under the NR project, it is natural for the LAA networks to evolve into the 5G NR system. Many features (like Autonomous Uplink (AUL) , Clear Channel Access (CCA) , Listen Before Talk (LBT) mechanism, etc. ) used in LAA in the LTE system may be maintained due to the similarity between the NR unlicensed band and the LTE unlicensed band.
However, there are also some obvious differences, one of which lies in that the NR system supports flexible frame structure. It is known that AUL transmission is based on a fixed subcarrier spacing and the same Orthogonal Frequency Division Multiplexing (OFDM) symbol duration, and thus for the NR system which supports a plurality of subcarrier spacings and different symbol durations , the AUL channel access solution shall be modified to adapt to the higher subcarrier spacings such as 60KHz. AUL in NR unlicensed band (NR-U) is also called as a configured grant in NR-U, where the configured grant means a pre-configured periodic transmission mode of 5G NR.
SUMMARY OF THE INVENTION
In general, example embodiments of the present disclosure provide a new solution for AUL transmission and AUL transmission configuration in a wireless communication system.
In a first aspect of the present disclosure, there is provided a method for AUL transmission in a wireless communication system. The method may be performed at a terminal device such as UE or any other terminal device. The method may comprise receiving a slot state indication information for AUL transmission, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot; and performing the AUL transmission based on the slot state indication information.
In a second aspect of the present disclosure, there is provided another method for AUL transmission configuration. The method may be implemented at a network device such as the base station (gNB for example) or any other network device. The network device may comprise transmitting a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
In a third aspect of the present disclosure, there is provided a terminal device. The terminal device may comprise a processor and a memory. The memory may be coupled with the processor and having program codes therein, which, when  executed on the processor, cause the terminal device to perform operations of the first aspect.
In a fourth aspect of the present disclosure, there is provided a network device. The network device may comprise a processor and a memory. The memory may be coupled with the processor and have program codes therein, which, when executed on the processor, cause the network node to perform operations of the second aspect.
In a fifth aspect of the present disclosure, there is provided a computer-readable storage medium with computer program codes embodied thereon, the computer program codes configured to, when executed, cause an apparatus to perform actions in the method according to any embodiment in the first aspect.
In a sixth aspect of the present disclosure, there is provided a computer-readable storage medium with computer program codes embodied thereon, the computer program codes configured to, when executed, cause an apparatus to perform actions in the method according to any embodiment in the second aspect.
In a seventh aspect of the present disclosure, there is provided a computer program product comprising a computer-readable storage medium according to the fifth aspect.
In an eighth aspect of the present disclosure, there is provided a computer program product comprising a computer-readable storage medium according to the sixth aspect.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other aspects, features, and benefits of various embodiments of the present disclosure will become more fully apparent from the following detailed description with reference to the accompanying drawings, in which like reference signs are used to designate like or equivalent elements. The drawings are illustrated for facilitating better understanding of the embodiments of the disclosure and are not necessarily drawn to scale, in which:
Fig. 1 illustrates am example scenario of AUL transmission in the LTE system;
Fig 2 schematically illustrates different parameter configurations /numerologies in the NR system;
Fig. 3 schematically illustrates a flow chart of a method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Figs. 4A to 4C schematically illustrate example transmission cases according to embodiments of the present disclosure;
Fig. 5 schematically illustrates a flow chart of another method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 6 schematically illustrates a flow chart of a further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Figs. 7A and 7B schematically illustrate example transmission cases according to embodiments of the present disclosure;
Fig. 8 schematically illustrates a flow chart of a still further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 9 schematically illustrates a flow chart of an example specific implementation of AUL transmission based on priority number according to an embodiment of the present disclosure;
Fig. 10 schematically illustrates a flow chart of an example specific implementation of transmission threshold adjustment according to an embodiment of the present disclosure;
Fig. 11 schematically illustrates a flow chart of a method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 12 schematically illustrates a flow chart of another method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 13 schematically illustrates a flow chart of a further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 14 schematically illustrates a flow chart of a still further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 15 schematically illustrates a block diagram of an apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 16 schematically illustrates a block diagram of another apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 17 schematically illustrates a block diagram of a further apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 18 schematically illustrates a block diagram of a still further for AUL transmission in a wireless communication system according to an embodiment of the present disclosure;
Fig. 19 schematically illustrates a block diagram of an apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 20 schematically illustrates a block diagram of another apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 21 schematically illustrates a block diagram of a further apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 22 schematically illustrates a block diagram of a still further for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure;
Fig. 23 schematically illustrates a simplified block diagram of an apparatus 2310 that may be embodied as or comprised in a terminal device like UE, and  an apparatus 2320 that may be embodied as or comprised in a network device like gNB as described herein.
DETAILED DESCRIPTION OF EMBODIMENTS
Hereinafter, the solution as provided in the present disclosure will be described in details through embodiments with reference to the accompanying drawings. It should be appreciated that these embodiments are presented only to enable those skilled in the art to better understand and implement the present disclosure, not intended to limit the scope of the present disclosure in any manner. For example, features illustrated or described as part of one embodiment may be used with another embodiment to yield still a further embodiment. In the interest of clarity, not all features of an actual implementation are described in this specification.
In the accompanying drawings, various embodiments of the present disclosure are illustrated in block diagrams, flow charts and other diagrams. Each block in the flowcharts or blocks may represent a module, a program, or a part of code, which contains one or more executable instructions for performing specified logic functions, and in the present disclosure, a dispensable block is illustrated in a dotted line. Besides, although these blocks are illustrated in particular sequences for performing the steps of the methods, as a matter of fact, they may not necessarily be performed strictly according to the illustrated sequence. For example, they might be performed in reverse sequence or simultaneously, which is dependent on natures of respective operations. It should also be noted that block diagrams and/or each block in the flowcharts and a combination of thereof may be implemented by a dedicated hardware-based system for performing specified functions/operations or by a combination of dedicated hardware and computer instructions.
References in the specification to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the  knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be liming of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used herein, the term “wireless communication network” refers to a network following any suitable wireless communication standards, such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , and so on. The “wireless communication network” may also be referred to as a “wireless communication system. ” Furthermore, communications between network devices, between a network device and a terminal device, or between terminal devices in the wireless communication network may be performed according to any suitable communication protocol, including, but not limited to, Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , Long Term Evolution (LTE) , New Radio (NR) , wireless local area network (WLAN) standards, such as the IEEE 802.11 standards, and/or any other appropriate wireless communication standard either currently known or to be developed in the future.
As used herein, the term “network device” refers to a node in a wireless communication network via which a terminal device accesses the network and receives  services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communications. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As yet another example, in an Internet of Things (IOT) scenario, a terminal device may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another terminal device and/or network equipment. The terminal device may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as a machine-type communication (MTC) device. As one particular example, the terminal device may be a UE implementing the 3GPP narrow band internet of things (NB-IoT) standard. Examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances, for example refrigerators, televisions, personal wearables such as watches etc. In other scenarios, a terminal device may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation.
As used herein, a downlink (DL) transmission refers to a transmission from a network device to UE, and an uplink (UL) transmission refers to a transmission in an opposite direction.
As mentioned hereinbefore, many features like AUL access used in the LAA in the LTE system might be maintained in the NR system. The AUL access, as one of unlicensed channel access solutions, can increase uplink performance (such as throughput and latency) on unlicensed band by means of CCA and it has been studied as one of objectives in the Work Item (WI) responsible for studying enhancements to LTE operations in unlicensed spectrum. For the AUL access, it may allocate the same time and frequency recourse for different UEs by means of orthogonal resource allocation; however this orthogonal resource allocation is less efficient since many UEs might have no uplink data at the allocated resources. On the other hand, if all UEs share the same resource, some of them might attempt to transmit uplink data at the same time without control from a base station and in such a case collision will happen even if they have different backoff (BO) value, as illustrated the left part in Fig. 1A. To overcome this problem, a separate AUL-specific set of PUSCH starting offset values can be configured by the base station, and the UE could randomly select one start off set from the AUL-specific set as a UE specific offset. The UEs will transmit the uplink data based on the UE specific offset and only the UE with a smaller offset can transmit its uplink data, as illustrated the right part in Fig. 1. The separate AUL-specific set can be for example {0, 16, 25, 34, 43, 52, 61, OS#1} .
In the NR system, a basic enhanced CCA (ECCA) slot on unlicensed band is 9μs and 25μs CCA is required for UL transmission after downlink transmission if the UL transmission is performed within the eNB obtained Maximum Channel Occupancy Time (MCOT) . In addition, AUL transmission shall have a lower priority than scheduled uplink (SUL) transmission and/or downlink transmission, thus, for the following two difference case, the configured AUL-specific set is different:
■ Case 1: For AUL transmission outside of the eNB obtained MCOT, the configured set could be {16, 25, 34, 43, 52, 61, OS#1} .
■ Case 2: For AUL transmission inside of the eNB obtained MCOT, the configured set could be {34, 43, 52, 61, OS#1} .
In the LTE system, OFDM symbol duration is 66.67 us and thus the LTE OFDM symbol duration contains only 7 ECCA slots. However, as illustrated in Fig. 2, the NR system has various configurations/numerologies having flexible SCS and symbol durations which are different for different SCS configurations. For example, for the SCS of 60KHz, the symbol duration is 16.7us, which can contains no more than two ECCA slots. Thus, for the SCS of 15KHz, OFDM symbol (OS) #1 is the start position for UL transmission; while for other SCSs, the UL transit might start from a rather later position. For example, for the SCS of 60Hz, OS#4 is the start position for UL transmission. However, the later the start position is, the higher the waste ratio is. In addition, it might also have some issues on DMRS since DMRS symbols only can be located at OS #0 and OS#2 according to the current specification, and it would be affected by the CAA procedure if too many symbols are occupied for CCA. On the other hand, if the occupied symbols are constrained to start the PUSCH earlier, available PUSCH start positions will be limited too, which cannot avoid the collision efficiently.
In 3GPP technical document R1-1804832, it is proposed to study resource allocation and potential transmission start positions for AUL transmission on unlicensed band for the NR system but no any detailed solution is provided.
Embodiments of the present disclosure provide a new solution for AUL transmission and AUL configuration transmission. Hereinafter, reference will be further made to accompanying drawings to describe the solutions as proposed in the present disclosure in details. However, it shall be appreciated that the following embodiments are given only for illustrative purposes and the present disclosure is not limited thereto.
In a first aspect of the present disclosure, an AUL transmission solution, particularly an AUL transmission solution based on a new slot state indication. In this aspect, it is proposed to use a new slot state indication to indicate various slot state so that the terminal device could perform the AUL more efficiently and fairly. Reference will be first made to Figs. 3 to 4 to describe the basic idea of the AUL transmission based on the new slot state indication.
Fig. 3 schematically illustrates a flow chart of a method for AUL transmission in a wireless communication system according to an embodiment of the  present disclosure. The method 300 can be implemented at a terminal device like UE or any other terminal device.
As illustrated in Fig. 3, the terminal device may receive slot state indication information for AUL transmission. The slot state indication information may indicate any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
Thus, in embodiments of the present disclosure, new slot state indication information will be used to indicate at least four slot states including for example a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot. The non-AUL slot means that a slot is not used for AUL transmission; the AUL start slot means that a slot can be used for AUL transmission and the CCA procedure is always active in the slot; the AUL transmission slot means that a slot can be used for the AUL transmission but the CCA procedure is inactive; the AUL start or transmission slot means that the slot can be used for AUL transmission and CCA procedure is also active.
In an embodiment of the present disclosure, the slot state indication information can be in a form of bitmap with at least two bits. For example, a two-bit bitmap can be used to indicate the above four slot states. The two-bit bitmap can be configured by the gNB and transmitted to the terminal device. The two-bit bitmap could provide four different values respectively the four slot states. As an example but non-limiting implementation, “00” may be used to indicate the non-AUL slot, “01” may be used to indicate the AUL starting slot; “10” may be used to indicate AUL transmitting slot; “11” may be used to indicate the AUL starting or transmitting slot.
The skilled in the art shall be appreciated that the slot state indication information is not limited to the bitmap and it may be implemented in any other way. Moreover, the number of bits in the bitmap (if used) is not limited to 2 and another number of bits such as 3 bits are also possible. In addition, specific bit values for different slot states are just given for illustrative purposes and it is also possible to use a different value to indicate a specific slot state. However, for illustrative purposes, the above example bit values for respective slot states will be used as examples to describe embodiments of the present disclosure hereinafter.
Then in step 320, the terminal device performs the AUL transmission based on the slot state indication information.
By means of the slot state indication information, the terminal device could learn slot states for respective slots. In a case of the above example two-bit bitmap, if the bit value of the bitmap for a slot is “00” , it could know that this slot is a non-AUL slot and thus it will not perform AUL transmission in this slot; if the bit map is “01” , it could learn that this slot is an AUL starting slot, and it shall perform a CCA procedure to start the AUL transmission when it has an AUL transmission requirement; if the bit map is “10” , it could learn that this slot is AUL transmission slot, and it could continue performing the AUL transmission when it already starts an AUL transmission but cannot perform a CCA procedure to start a new one; if the bit map is “11” , it could learn that this slot is AUL start or transmission slot, and thus it could either continue performing the AUL transmission when it already starts an AUL transmission or perform a CCA procedure to start a new one when it has AUL transmission requirements.
Based on the slot state indicated in the slot state information, the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it could give terminal devices a more fair chance for AUL transmission.
Figs. 4A to 4C schematically illustrate example transmission cases according to embodiments of the present disclosure. In Fig. 4A, there are illustrated ten slots, the bitmap has a value “00” for the first slot and has a value “01” for all remaining slots. Thus, only the first slot is a non-AUL slot and the other nine slots are AUL slot. In this case, a terminal device should perform a CCA procedure in each of AUL slots if it requires AUL transmission, which means that a portion of resource of each AUL slot will be used for CCA.
In Fig. 4B, the bitmap has a value “00” for the first slot, a value “01” for the second, fifth and ninth slots, and a value of “10” for the remaining slots. In such a transmission case, the first slot is a non-AUL slot, the second, fifth and eighth slot are AUL start slots, and the other slots are AUL transmission slots. Thus, it does not require the terminal device to perform a CCA procedure in each AUL slot, which could save transmission resources.
In Fig. 4C, the bitmap has a value “00” for the first slot, a value “01” for the fifth and ninth slots, and a value of “11” for the remaining slots. In such a transmission case, the first slot is a non-AUL slot, the fifth and ninth slot are AUL start slots, and the other slots are AUL start or transmission slot. Therefore, in this transmission case, it does not require the terminal device to perform a CCA procedure in each AUL slot either and at the same time other UE could also have transmission chance in the start or transmission slot.
In another aspect of the present disclosure, there is further provided another AUL transmission solution and particularly an AUL transmission solution based on a new AUL slot length indication. In this aspect, it is to limit the slot length for a continuous AUL transmission of a terminal device to use the transmission resource more fairly and efficiently. Reference will be made to Fig. 5 to describe the basic idea of the AUL transmission based on the new AUL slot length indication.
Fig. 5 schematically illustrates a flow chart of another method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The method 500 could be implemented at a terminal device like UE or any other terminal device.
As illustrated in Fig. 5, in step 510, the terminal device may receive slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot. The non-AUL slot means that a slot is not used for AUL transmission; the AUL slot means that a slot can be used for AUL transmission.
In an embodiment of the present disclosure, the slot state indication information is in a form of bitmap with at least one bit. For example, a one-bit bitmap can be used to indicate the above two slot states. The one-bit bitmap can be configured by the gNB and transmitted to the terminal device. The one-bit bitmap could provide two different values respectively for the two slot states. As an example, “0” may be used to indicate the non-AUL slot, and “1” may be used to indicate the AUL slot.
The skilled in the art shall be appreciated that the slot state indication information is not limited to the bitmap and it may be implemented in any other way. Moreover, the number of bits in the bitmap (if used) is not limited to 1 and another  number of bits (such as 2 bits) are also possible. In addition, specific bit values for different slot states are just given for illustrative purposes and it is also possible to use a different value to indicate a specific slot state. However, for illustrative purposes, the above example bit values for respective slot states will be used as examples to describe embodiments of the present disclosure hereinafter.
In step 520, the terminal device receives an AUL slot length parameter from the network device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission. In other words, in this aspect, the AUL transmission does not only rely on different slot states but also uses the AUL slot length parameter to limit the number of slots which can be used for continuous AUL transmission for one terminal device. If the terminal device uses the maximum permissible slot length already, it has to end the AUL transmission or continue transmission by inserting a 25us CCA with PUSCH offset randomly in AUL-specific set, which could give transmission opportunity to other terminal devices.
Then in step 530, the terminal device performs the AUL transmission based on the slot state indication information and AUL slot length parameter.
By means of the slot state indication information and the AUL slot length parameter, the terminal device could learn slot states for respective slots and the maximum permissible slot length for continuous AUL transmission. Based on the slot state indicated in the slot state information, the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it will end the AUL transmission if it already uses the maximum permissible slot and give the transmission opportunity to other terminal devices. The terminal device could perform CCA again if it still has AUL transmission requirements.
In the NR system, a flexible subframe structure is supported and for SCS like 60Hz, the start position is the later the start position is, the higher the waste ratio is. However, the later the start position is, the higher the waste ratio is. In addition, it might also have some issues on DMRS since DMRS symbols only can be located at OS #0 and OS#2 according to the current specification, and it would be affected by the AUL transmission if too many symbols are occupied for CCA.
In a further aspect of the present disclosure, there is further provided an AUL transmission solution, and particularly an AUL transmission solution based on a maximum CCA occupation symbol indication is proposed. In this aspect, it is to limit the maximum for a continuous AUL transmission of a terminal device so that DMRS will not be affected by the CCA procedure. Hereinafter, reference will be made to Figs. 6 to 7 to describe the basic idea of the AUL transmission based on maximum CCA occupation symbol indication.
Fig. 6 schematically illustrates a flow chart of a further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The method 600 can be implemented at a terminal device like UE or any other terminal device.
As illustrated in Fig. 6, in step 610, the terminal device receives an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission. The AUL-specific offset set configuration may indicate a subset of PUSCH offset values, which can be expressed by (16+n*9) μs, wherein n is an integer. For case 1 in which AUL transmission is outside of the eNB obtained MCOT, n>=0, while for case 2 in which AUL transmission is inside of the eNB obtained MCOT, n>=2.
In step 620, the terminal device may receive a maximum CCA occupation symbol indication to the terminal device, wherein the maximum CCA occupation symbol indication indicates the maximum number of symbols which can be used for a CCA. The maximum CCA occupation symbol indication can be configured to the terminal device for a slot where AUL channel access is proceeding so as to indicate the maximum CCA occupation symbol.
Thus, even if the configured AUL-specific offset set contains offset values larger than the maximum CCA occupation symbol, these offset values cannot be used since offset values available for the terminal device are constrained by the maximum CCA occupation symbol indication.
The maximum CCA occupation symbol indication may indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 4 symbols for 60KHz. In such a way, it will have the same  time duration with 15KHz in the LTE system (1 OFDM symbol of 15KHz) . In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 2 symbols for 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may also indicate 7 symbols for 60KHz since it may be compatible to mini-slot transmission which may allow more position offset.
In step 630, the UE may select an offset value from available offset values for the terminal device. That is to say the selected offset value shall not be later than the position indicated by the maximum CCA occupation symbol indication. In an embodiment of the present disclosure, an available offset subset can be first determined based on the AUL-specific offset set indicated by the AUL-specific offset set configuration and the number of symbols indicated by the maximum CCA occupation symbol indication. Thus, only those offsets smaller than the maximum CCA occupation symbol indication can be contained within the available offset subset, and the UE may just randomly select an offset value from the available offset set for the terminal device. In another embodiment of the present disclosure, the terminal device could use select an offset value from the AUL-specific offset set with the maximum CCA occupation symbol as one of its selection criteria.
Thus, it could ensure the CCA procedure will terminate by the end the maximum CCA occupation symbol. In such a way, DMRS can be transmitted after symbols indicated by the end of the maximum CCA occupation symbol as illustrated in Figs. 7A and 7B, no matter when the CCA actually ends. Therefore, DMRS will not be affected by the CCA any longer. The actual start position based on CCA can be signaled to the network device in AUL downlink control information (DCI) .
For DMRS symbols and UCI multiplexing in an AUL starting slot, the PUSCH transmission OFDM symbols can start from the next symbol after the maximum CCA occupation symbol to the end symbol of the slot. For PUSCH data mapping in AUL starting slot by the end of the maximum CCA occupation symbol, puncture or repetition scheme could be used. In an embodiment of the present disclosure, a puncture solution is used, the data mapping assumes presence of OFDM symbol and thus it will not transmit any data based on the result of CCA. In another embodiment of the present disclosure, the data mapping assumes absence of OFDM  symbol and thus it will transmit data signal based on the result of CCA. For example, it may transmit data signal before the DMRS and UCI in a mirror manner. Taking Fig. 7A an example, the first symbol before the DMRS and UCI will be used to transmit same data as the first symbol after the DMRS and UCI, and the second symbol before the DMRS and UCI will be used to transmit same data as the second symbol after the DMRS and so on. Thus, it could obtain an improved transmission performance.
In the NR system, a flexible subframe structure is supported and for SCS like 60Hz, the start position is the later the start position is, the higher the waste ratio is. However, if the start symbols are constrained to start the PUSCH earlier, available PUSCH start positions will be limited too, which cannot avoid the collision effectively.
In a further aspect of the present disclosure, there is further provided an AUL transmission solution, particularly an AUL transmission based on a new transmission priority number. In this aspect, it is to newly introduce a transmission priority number, which can be randomly generated by the terminal device and the terminal device cannot transmit in the current transmission opportunity if the generated priority number is lower than a transmission threshold. Hereinafter, reference will be made to Figs. 8 to 10 to describe the basic idea of the AUL transmission based on the new transmission priority number.
Fig. 8 schematically illustrates a flow chart of a still further method for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The method 800 can be implemented at a terminal device like UE or any other terminal device.
As illustrated in Fig. 8, in step 810, the terminal device may generate, for a terminal device, a priority number of AUL transmission within a predetermined value range.
In the LTE system, a LBT with exponent random back off and AUL-specific offset value are used. For the NR system, for 60KHz, if the maximum CCA occupation symbol is 2, then only three offset candidates are available and the number is too low for a plenty of AUL accesses. Thus, in embodiments of the present disclosure, an inner priority number is further introduced. The inner priority number P has a range for example [0, Pmax] , and the terminal device can randomly generate a  priority number within [0, Pmax] before CCA. The priority number P is UE specific, and parameter Pmax denotes the maximum value of priority number P, which can be UE specific and maintained by the terminal device or configured by the network device.
Next, in step 820, the terminal device may determine whether the terminal device can perform an AUL transmission in the current transmission opportunity based on the generated priority number and the transmission threshold. The transmission threshold T is a threshold for performing CCA. If the generated priority number P is less than the transmission threshold T, the terminal device cannot perform CCA but wait till the next transmission opportunity to participate the next round of comparison with the transmission threshold T. If the generated priority number P is larger than or equal to the transmission threshold T, the terminal device can perform the CCA in the current transmission opportunity. Thus, by means of the priority number P and the transmission threshold T, at least a part of terminal devices cannot perform CCA, the number of terminal devices participating the AUL transmission is reduced and thus transmission collision can be decreased accordingly.
In another embodiment of the present disclosure, for the non-first AUL transmission attempt, a delta value may be added to the generated priority number for a non-first AUL transmission attempt as illustrated in step 830, so as to give a priority to the non-first AUL transmission attempt. Thus, the terminal device could have a larger chance to perform CCA if it is already waiting.
Fig. 9 schematically illustrates a flow chart of an example specific implementation of AUL transmission based on priority number according to an embodiment of the present disclosure. As illustrated in Fig. 9, in step 910, the terminal device generates AUL offset value k. In step 920, it determines whether P_first is 1, i.e., whether it is the first AUL transmission attempt. The parameter P_first indicates whether the AUL transmission attempt is performed at the first time. The parameter P_first may have a value “1” for a first AUL transmission and a value “0” for a non-first AUL transmission. If it is determined that the AUL transmission attempt is the first attempt, the terminal device generates a random number P within [0, P max] in step 930; if it is not the first attempt, the method may proceed to step 940 to determine a new priority number based on the previously generated priority number P and a delta value delta_P. In step 950, the terminal device may determine whether the priority number P  is larger or equal to the transmission threshold T. If no, the method proceeds to step 960 in which P_first is set as zero; if yes, it determines that the terminal device could perform AUL transmission after the offset K μs in step 970 and set the parameter P_first set as 1 in step 980.
In this way, for the non-first transmission attempt, the sum of previously generated priority number and the delta value will be used as new priority number and therefore the transmission chance can be improved.
In addition, the transmission threshold T can also be UE-specific. It could be adjusted by the terminal device or configured by the network device. In an embodiment of the present disclosure, the transmission threshold can be updated by the terminal device based on feedback for AUL transmissions from the network device. For example, if the HARQ feedback is ACK, the transmission threshold T can be decreased; if the HARQ feedback is NACK, the transmission threshold T can be increased.
Fig. 10 schematically illustrates a flow chart of an example specific implementation of transmission threshold adjustment according to embodiments of the present disclosure. The transmission threshold adjustment can be performed at the terminal device such as UE or any other terminal device.
As illustrated in Fig. 10, method 1000 starts from step 1010, in which he transmission threshold is set as an initial threshold T_init. In step 1020, the terminal device determines whether the HARQ feedback information is ACK or NACK. If the feedback is ACK, the transmission threshold T is decreased by delta_t in step 1030; if the feedback is NACK, the transmission threshold T is decreased by delta_t in step 1040.
The transmission threshold T can also be indicated by eNB in DCI. In some embodiments of the present disclosure, the network device could adjust the transmission threshold based on performance of AUL transmission from terminal devices. For example, when the AUL transmission is decoded correctly, the transmission threshold T will be reduced by a delta value; otherwise, the transmission threshold T will be increased by a delta value. As another example, if the number of terminal devices is increased, the transmission threshold T can be increased; if the number of terminal devices is decreased, the transmission threshold T can be decreased.  As a further example, if the channel condition is better, the transmission threshold T can be increased; if the channel condition is worse, the transmission threshold T can be decreased.
Hereinabove, different aspects of the present disclosure are described with reference to operations at the terminal device. In the following, they will be described with reference to operations at the network device.
Fig. 11 schematically illustrates a flow chart of a method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The method 1100 can be implemented at the network device such as gNB or any other network device.
As illustrated in step 1110, the network device transmits a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
In embodiments of the present disclosure, the new slot state indication information will be used to indicate at least the above four slot states. The non-AUL slot means that a slot is not used for AUL transmission; the AUL start slot means that a slot can be used for AUL transmission and the CCA procedure is always active in the slot; the AUL transmission slot means that a slot can be used for the AUL transmission but the CCA procedure is inactive; the AUL start or transmission slot means that the slot can be used for AUL continuous transmission or the CCA procedure for a new access attempt.
In an embodiment of the present disclosure, the slot state indication information is in a form of bitmap with at least two bits. For example, a two-bit bitmap can be used to indicate the above four slot states. The two-bit bitmap can be configured by the gNB and transmitted to the terminal device. The two-bit bitmap could provide four different values respectively the four slot states. For an example, “00” may be used to indicate the non-AUL slot, “01” may be used to indicate the AUL starting slot; “10” may be used to indicate AUL transmitting slot; “11” may be used to denote the AUL starting or transmitting slot.
Fig. 12 schematically illustrates a flow chart of another method for AUL transmission configuration in a wireless communication system according to an  embodiment of the present disclosure. The method 1200 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 12, in step 1210, the network device may transmit slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot. The non-AUL slot means that a slot is not used for AUL transmission; the AUL slot means that a slot can be used for AUL transmission.
In an embodiment of the present disclosure, the slot state indication information is in a form of bitmap with at least one bit. For example, a one-bit bitmap can be used to indicate the above two slot states. The one-bit bitmap can be configured by the gNB and transmitted to the terminal device. The one-bit bitmap could provide two different values respectively for the two slot states. As an example, “0” may be used to indicate the non-AUL slot, and “1” may be used to indicate the AUL slot.
In step 1220, the network device transmits an AUL slot length parameter to the terminal device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission. Thus, the AUL slot length parameter is further used to limit the number of slots which can be used for continuous AUL transmission for one terminal device. If the terminal device has already used the maximum permissible length of slot, it has to end the AUL transmission and give the transmission opportunity to other terminal devices.
By means of the slot state indication information and the AUL slot length parameter, the terminal device could learn slot state for respective slots and the maximum permissible slot length for continuous AUL transmission. Based on the slot state indicated in the slot state information, the terminal could perform the AUL transmission in those slots which can be used for AUL transmission. Meanwhile, it will end the AUL transmission and give the transmission opportunity to other terminal devices if it already uses the maximum permissible slot.
Fig. 13 schematically illustrates a flow chart of a further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The method 1300 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 13, in step 1310, the network device transmits an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission. The AUL-specific offset set configuration may indicate a subset of (16+n*9) μs, wherein n is an integer. For case 1 in which AUL transmission is outside of the eNB obtained MCOT, n>=0, while for case 2 in which AUL transmission is inside of the eNB obtained MCOT, n>=2.
In step 1320, the network device may transmit a maximum clear CCA occupation symbol indication to the terminal device, wherein the maximum CCA occupation symbol indication indicates the maximum number of symbols which can be used for a CCA. The maximum CCA occupation symbol indication can be configured to the terminal device for a slot where AUL channel access is proceeding, so as to indicate the maximum CCA occupation symbol. Thus, even if the configured AUL-specific offset set contains offset values larger than the maximum CCA occupation symbol, these offset values cannot be used since offset values available for the terminal device are constrained by the maximum CCA occupation symbol indication.
The maximum CCA occupation symbol indication may indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 4 symbols for 60KHz. In such a way, it will have the same time duration with 15KHz in the LTE system (1 OFDM symbol of 15KHz) . In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may indicate 2 symbols for 60KHz. In some embodiments of the present disclosure, the maximum CCA occupation symbol indication may also indicate 7 symbols for 60KHz since it may be compatible to mini-slot transmission which may allow more position offset.
Fig. 14 schematically illustrates a flow chart of a still further method for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The method 1400 can be implemented at the network device such as gNB or any other network device.
In embodiments of the present disclosure, the terminal device will use the priority number and the transmission threshold to determine whether to perform an  AUL transmission. The transmission threshold can be configured by the network device. As illustrated in Fig. 14, in step 1410, the network device may determine a transmission threshold based on performance of AUL transmission from terminal devices, wherein the transmission threshold indicates a threshold for priority number generated by a terminal device, lower than which an AUL transmission shall wait till the next transmission.
In step 1420, the network device may transmit the determined transmission threshold to the terminal device. Thus, the terminal device could use the updated transmission threshold to determine whether to perform AUL transmission in a more resource efficient way.
Hereinabove, various aspects of AUL transmission configuration solution on the network device are described in brief hereinbefore with reference to Figs. 11 to 14. However, it can be understood that operations at the network device are corresponding to those at the terminal device and thus for some details of operations, one may refer to description with reference to Figs. 3 to 10. In addition, the skilled in the art could be understood the above aspects or various operations therein could be combined in any suitable manner to benefit therefrom.
Fig. 15 schematically illustrates a block diagram of an apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The apparatus 1500 can be implemented at a terminal device or any other terminal device.
As illustrated in Fig. 15, the apparatus may include an indication receiving module 1510, and an AUL transmission module 1520. The indication receiving module 1510 is configured to receive a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot. The AUL transmission module 1520 is configured to perform the AUL transmission based on the slot state indication information. In some embodiments of the present disclosure, the slot state indication information is a bitmap with at least two bits.
Fig. 16 schematically illustrates a block diagram of another apparatus for AUL transmission in a wireless communication system according to an embodiment  of the present disclosure. The apparatus 1600 can be implemented at a terminal device or any other terminal device.
As illustrated in Fig. 16, the apparatus 1600 may include an indication receiving module 1610, a parameter receiving module 1620, and an AUL transmission module 1630. The indication receiving module 1610 may be configured to receive slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot. The a parameter receiving module 1620 may be configured to receive an AUL slot length parameter from the network device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission. The AUL transmission module 1630 may be configured to perform the AUL transmission based on the slot state indication information and AUL slot length parameter.
Fig. 17 schematically illustrates a block diagram of a further apparatus for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The apparatus 1700 can be implemented at a terminal device or any other terminal device.
As illustrated in Fig. 17, the apparatus 1700 may include a configuration receiving module 1710, an occupation indication receiving module 1720, and a value selection module 1730. The indication receiving module 1710 may be configured to receive an AUL-specific offset set configuration indicating an AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission. The parameter receiving module 1720 may be configured to receive a maximum clear channel assessment (CCA) occupation symbol indication to the terminal device, the maximum CCA occupation symbol indication indicating the number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication. The offset selection module 1730 can be configured to select an offset value from available offset values for the terminal device.
In an embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 2 symbols for a subcarrier spacing of 60KHZ. In another embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 4 symbols for a subcarrier spacing of 60KHZ. In a  further embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 7 symbols for a subcarrier spacing of 60KHz.
Fig. 18 schematically illustrates a block diagram of a still further for AUL transmission in a wireless communication system according to an embodiment of the present disclosure. The apparatus 1800 can be implemented at a terminal device or any other terminal device.
As illustrated in Fig 18, the apparatus may include a number generation module 1810, and a transmission determination module 1820. The number generation module 1810 may be configured to generate, for a terminal device, a priority number of AUL transmission within a predetermined value range. The transmission determination module 1820 may be configured to determine whether the terminal device can perform an AUL transmission in the current transmission opportunity based on the generated priority number and a transmission threshold.
In an embodiment of the present disclosure, the transmission determination module 1820 may be configured to determine the terminal device can perform the AUL transmission in the current transmi ssion opportunity if the priority number reaches the transmission thresho1d and determine the terminal device shall wait till the next transmission opportunity if the priority number is lower than the transmission threshold.
In some embodiments of the present disclosure, the apparatus 1800 may further comprise a delta adding module 1830, which can be configured to add a delta value to the generated priority number for a non-first AUL transmission attempt.
In some embodiments of the present disclosure, the apparatus 1800 may further comprise a threshold determination module 1840, configured to update the transmission threshold based on feedback for AUL transmissions from the network device.
In some embodiments of the present disclosure, the apparatus 1800 may further comprise a threshold update receiving module 1850 configured to receive an update of the transmission threshold from the network device.
Fig. 19 schematically illustrates a block diagram of an apparatus for AUL transmission configuration in a wireless communication system according to an  embodiment of the present disclosure. The apparatus 1900 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 19, the apparatus 1900 may include an indication transmission module 1910, which can be configured to transmit a slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
In some embodiments of the present disclosure, the slot state indication information may be in a form of bitmap with at least two bits.
Fig. 20 schematically illustrates a block diagram of another apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The apparatus 2000 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 20, the apparatus 2000 may include an indication transmission module 2010 and a parameter transmission module 2020. The indication transmission module 2010 may be configured to transmit slot state indication information for AUL transmission, wherein the slot state indication information indicates any one of a non-AUL transmission and an AUL slot. The parameter transmission module 2020 may be configured to transmit an AUL slot length parameter to the terminal device, wherein the AUL slot length parameter indicates the maximum length in which a terminal device could perform an AUL transmission.
Fig. 21 schematically illustrates a block diagram of a further apparatus for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The apparatus 2100 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 21, the apparatus 2100 may include a configuration transmission module 2110 and an occupation transmission module 2120. The configuration transmission module 2110 may transmit an AUL-specific offset set configuration indicating AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission. The occupation transmission module 2120 may be configured to transmit a maximum clear channel assessment (CCA) occupation symbol indication to the terminal device, the maximum CCA occupation symbol indication  indicating the number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication.
In an embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 2 symbols for a subcarrier spacing of 60KHZ. In another embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 4 symbols for a subcarrier spacing of 60KHZ. In a further embodiment of the present disclosure, the maximum CCA occupation symbol indication indicates 7 symbols for a subcarrier spacing of 60KHz.
Fig. 22 schematically illustrates a block diagram of a still further for AUL transmission configuration in a wireless communication system according to an embodiment of the present disclosure. The apparatus 2200 can be implemented at the network device such as gNB or any other network device.
As illustrated in Fig. 22, the apparatus 2200 may include a threshold update determination module 2310 and a threshold update transmission module 2320.
The threshold update determination module 2310 may be configured to determine a transmission threshold based on performance of AUL transmission from terminal devices, wherein the transmission threshold indicates a threshold for priority number generated by a terminal device, lower than which an AUL transmission shall wait till the next transmission. The threshold update transmission module 2320 may be configured to transmit the determined transmission threshold to the terminal device. Thus, the terminal device could use the updated transmission threshold to determine whether to perform AUL transmission in a more resource efficient way.
Hereinbefore, apparatuses 1500 to 2200 are described with reference to Figs. 15 and 22 in brief. It can be noted that the apparatuses 1500 and 2200 may be configured to implement functionalities as described with reference to Figs. 3 to 14. Therefore, for details about the operations of modules in these apparatuses, one may refer to those descriptions made with respect to the respective steps of the methods with reference to Figs. 3 to 14.
It is further noted that components of the apparatuses 1500 to 2200 may be embodied in hardware, software, firmware, and/or any combination thereof. For  example, the components of apparatuses 1500 to 2200 may be respectively implemented by a circuit, a processor or any other appropriate selection device.
Those skilled in the art will appreciate that the aforesaid examples are only for illustration not limitation and the present disclosure is not limited thereto; one can readily conceive many variations, additions, deletions and modifications from the teaching provided herein and all these variations, additions, deletions and modifications fall the protection scope of the present disclosure.
In addition, in some embodiment of the present disclosure, apparatuses 1500 to 2200 may include at least one processor. The at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future. Apparatuses 1500 to 2200 may further include at least one memory. The at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices. The at least one memory may be used to store program of computer executable instructions. The program can be written in any high-level and/or low-level compliable or interpretable programming languages. In accordance with embodiments, the computer executable instructions may be configured, with the at least one processor, to cause apparatuses 1500 to 2200 to at least perform operations according to the method as discussed with reference to Figs. 3 to 14 respectively.
FIG. 23 schematically illustrates a simplified block diagram of an apparatus 2310 that may be embodied as or comprised in a terminal device like UE, and an apparatus 2320 that may be embodied as or comprised in a network device like gNB as described herein.
The apparatus 2310 comprises at least one processor 2311, such as a data processor (DP) and at least one memory (MEM) 2312 coupled to the processor 2311. The apparatus 2310 may further include a transmitter TX and receiver RX 2313 coupled to the processor 2311, which may be operable to communicatively connect to the apparatus 2320. The MEM 2312 stores a program (PROG) 2314. The PROG 2314 may include instructions that, when executed on the associated processor 2311, enable the apparatus 2310 to operate in accordance with embodiments of the present disclosure, for  example method  300, 500, 600, or 800. A combination of the at least  one processor 2311 and the at least one MEM 2312 may form processing means 2315 adapted to implement various embodiments of the present disclosure.
The apparatus 2320 comprises at least one processor 2321, such as a DP, and at least one MEM 2322 coupled to the processor 2321. The apparatus 2320 may further include a suitable TX/RX 2323 coupled to the processor 2321, which may be operable for wireless communication with the apparatus 2310. The MEM 2322 stores a PROG 2324. The PROG 2324 may include instructions that, when executed on the associated processor 2321, enable the apparatus 2320 to operate in accordance with the embodiments of the present disclosure, for example to perform  method  1100, 1200, 1300, or 1400. A combination of the at least one processor 2321 and the at least one MEM 2322 may form processing means 2325 adapted to implement various embodiments of the present disclosure.
Various embodiments of the present disclosure may be implemented by computer program executable by one or more of the  processors  2311, 2321, software, firmware, hardware or in a combination thereof.
The  MEMs  2312 and 2322 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples.
The  processors  2311 and 2321 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors DSPs and processors based on multicore processor architecture, as non-limiting examples.
In addition, the present disclosure may also provide a carrier containing the computer program as mentioned above, wherein the carrier is one of an electronic signal, optical signal, radio signal, or computer readable storage medium. The computer readable storage medium can be, for example, an optical compact disk or an electronic memory device like a RAM (random access memory) , a ROM (read only memory) , Flash memory, magnetic tape, CD-ROM, DVD, Blue-ray disc and the like.
The techniques described herein may be implemented by various means so that an apparatus implementing one or more functions of a corresponding apparatus  described with an embodiment comprises not only prior art means, but also means for implementing the one or more functions of the corresponding apparatus described with the embodiment and it may comprise separate means for each separate function, or means that may be configured to perform two or more functions. For example, these techniques may be implemented in hardware (one or more apparatuses) , firmware (one or more apparatuses) , software (one or more modules) , or combinations thereof. For a firmware or software, implementation may be made through modules (e.g., procedures, functions, and so on) that perform the functions described herein.
Exemplary embodiments herein have been described above with reference to block diagrams and flowchart illustrations of methods and apparatuses. It will be understood that each block of the block diagrams and flowchart illustrations, and combinations of blocks in the block diagrams and flowchart illustrations, respectively, can be implemented by various means including computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functions specified in the flowchart block or blocks.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any implementation or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular implementations. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The above  described embodiments are given for describing rather than limiting the disclosure, and it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the disclosure as those skilled in the art readily understand. Such modifications and variations are considered to be within the scope of the disclosure and the appended claims. The protection scope of the disclosure is defined by the accompanying claims.

Claims (18)

  1. A method for autonomous uplink (AUL) transmission, comprising
    at a terminal device,
    receiving slot state indication information for AUL transmission, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot; and
    performing the AUL transmission based on the slot state indication information.
  2. The method of Claim 1, wherein the slot state indication information is a bitmap with at least two bits.
  3. The method of Claim 1 or 2, further comprising:
    receiving an AUL-specific offset set configuration indicating an AUL-specifie offset set including a plurality of AUL-specific offset values for AUL transmission,
    receiving a maximum clear channel assessment (CCA) occupation symbol indication, the maximum CCA occupation symbol indication indicating the maximum number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication; and
    selecting an offset value from available offset values for the terminal device.
  4. The method of Claim 1, wherein the maximum CCA occupation symbol indication indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz.
  5. The method of any of Claims 1 to 4, further comprising:
    generating, for the terminal device, a priority number of AUL transmission within a predetermined value range; and
    determining whether the terminal device can perform an AUL transmission in the current transmission opportunity based on the generated priority number and a transmission threshold.
  6. The method of Claim 5, wherein the determining whether the terminal device can perform an AUL transmission in the current transmission opportunity comprises:
    determining the terminal device can perform the AUL transmission in the current transmission opportunity if the priority number reaches the transmission threshold; and
    determining the terminal device shall wait till the next transmission opportunity if the priority number is lower than the transmission threshold.
  7. The method of Claim 6, further comprising:
    adding a delta value to the generated priority number for a non-first AUL transmission attempt.
  8. The method of any of Claims 5 to 7, further comprising:
    updating the transmission threshold based on feedback for AUL transmissions from the network device.
  9. The method of any of Claims 5 to 7, further comprising:
    receiving an update of the transmission threshold from the network device.
  10. A method for autonomous uplink (AUL) transmission configuration, comprising:
    at a network device,
    transmitting slot state indication information for AUL transmission to a terminal device, the slot state indication information indicating any one of a non-AUL slot, an AUL start slot, an AUL transmission slot, and an AUL start or transmission slot.
  11. The method of Claim 10, wherein the slot state indication information is a bitmap with at least two bits.
  12. The method of Claim 10 or 11, further comprising:
    transmitting an AUL-specific offset set configuration indicating AUL-specific offset set including a plurality of AUL-specific offset values for AUL transmission to the terminal device; and
    transmitting a maximum clear channel assessment (CCA) occupation symbol indication to the terminal device, the maximum CCA occupation symbol indication indicating the maximum number of symbols which can be used for a CCA, wherein available offset values for the terminal device within the AUL-specific offset set are constrained by the maximum CCA occupation symbol indication.
  13. The method of Claim 12, wherein the maximum CCA occupation symbol indication indicates any of 2 symbols, 4 symbols or 7 symbols for a subcarrier spacing of 60KHz.
  14. The method of any of Claims 10 to 14, further comprising:
    determining a transmission threshold based on performance of AUL transmission from terminal devices, wherein the transmission threshold indicates a threshold for priority number generated by a terminal device, lower than which an AUL transmission shall wait till the next transmission opportunity; and
    transmitting the determined transmission threshold to the terminal device.
  15. A terminal device, comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the terminal device at least to perform the method of any of claims 1-9.
  16. A network device, comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the network device at least to perform the method of any of claims 10-14.
  17. A computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method of any of claims 1-9.
  18. A computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method of any of claims 10-14.
PCT/CN2018/094858 2018-07-06 2018-07-06 Methods, devices and computer readable media for aul transmission and aul transmission configuration WO2020006758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094858 WO2020006758A1 (en) 2018-07-06 2018-07-06 Methods, devices and computer readable media for aul transmission and aul transmission configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094858 WO2020006758A1 (en) 2018-07-06 2018-07-06 Methods, devices and computer readable media for aul transmission and aul transmission configuration

Publications (1)

Publication Number Publication Date
WO2020006758A1 true WO2020006758A1 (en) 2020-01-09

Family

ID=69060012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094858 WO2020006758A1 (en) 2018-07-06 2018-07-06 Methods, devices and computer readable media for aul transmission and aul transmission configuration

Country Status (1)

Country Link
WO (1) WO2020006758A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069041A1 (en) * 2006-09-19 2008-03-20 Kabushiki Kaisha Toshiba Radio communication apparatus and program
EP2178328A2 (en) * 2008-10-14 2010-04-21 Siemens Aktiengesellschaft Method for transmission of data in a mesh network
US20130315131A1 (en) * 2012-05-24 2013-11-28 Trellisware Technologies, Inc. Method and System For Coordinating Access To A Barrage Relay Network
CN104144024A (en) * 2013-05-09 2014-11-12 电信科学技术研究院 Time slot state updating method and equipment
US20150317500A1 (en) * 2014-04-30 2015-11-05 Research & Business Foundation Sungkyunkwan University Method, apparatus and system for collecting tags using bit map in rfid system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069041A1 (en) * 2006-09-19 2008-03-20 Kabushiki Kaisha Toshiba Radio communication apparatus and program
EP2178328A2 (en) * 2008-10-14 2010-04-21 Siemens Aktiengesellschaft Method for transmission of data in a mesh network
US20130315131A1 (en) * 2012-05-24 2013-11-28 Trellisware Technologies, Inc. Method and System For Coordinating Access To A Barrage Relay Network
CN104144024A (en) * 2013-05-09 2014-11-12 电信科学技术研究院 Time slot state updating method and equipment
US20150317500A1 (en) * 2014-04-30 2015-11-05 Research & Business Foundation Sungkyunkwan University Method, apparatus and system for collecting tags using bit map in rfid system

Similar Documents

Publication Publication Date Title
US10785010B2 (en) Wireless communications method and apparatus
US20200106549A1 (en) Method and apparatus for determining a downlink slot of a csi resource
WO2019090775A1 (en) Methods and devices for beam report transmission and receiving
WO2020056648A1 (en) A method, device and computer readable media for slot format configuration
CN111465110B (en) Data transmission method and terminal equipment
US11057779B2 (en) Method and apparatus for transmitting and receiving data in a wireless communication system
EP3703295A1 (en) Monitoring method and relevant apparatus for downlink control channel
JP7006796B2 (en) Methods and Devices for Transmission and Reception of Uplink Signals in Wireless Communities
WO2020037688A1 (en) A method, device and computer readable media for sidelink configuration transmission and reception
EP3952554A1 (en) Signal reception or transmission method and device, and system
US20210298007A1 (en) Methods, devices and computer readable media for aul transmission and reception
EP4057728A1 (en) Wireless communication method, apparatus, and system
WO2019090773A1 (en) Methods and devices for data transmission on unlicensed band in a wireless communication system
US12010722B2 (en) Wideband communications based on availability assessment
CN109952802B (en) Method and apparatus for transmitting downlink control information
WO2019137011A1 (en) Communication method and uplink resource determination method
JP7501655B2 (en) Communication method, network device, and terminal device
US20220279497A1 (en) Communication methods, devices and computer readable media therefor
US20220408486A1 (en) Methods, devices and computer readable media for communication on unlicensed band
WO2020118717A1 (en) Methods, devices and computer readable media for ssb transmission and reception
WO2020006758A1 (en) Methods, devices and computer readable media for aul transmission and aul transmission configuration
WO2021062707A1 (en) Communication methods, devices and computer readable media therefor
US20220256578A1 (en) Method and Apparatus for Overhead Reduction for Configured Grant Based Uplink Transmission
WO2023284692A1 (en) Sidelink communication method, and terminal device
WO2022252109A1 (en) Short signaling transmission for sidelink communication in unlicensed spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925238

Country of ref document: EP

Kind code of ref document: A1