WO2020006654A1 - 一种气溶胶电迁移率粒径谱测量系统和方法 - Google Patents

一种气溶胶电迁移率粒径谱测量系统和方法 Download PDF

Info

Publication number
WO2020006654A1
WO2020006654A1 PCT/CN2018/093985 CN2018093985W WO2020006654A1 WO 2020006654 A1 WO2020006654 A1 WO 2020006654A1 CN 2018093985 W CN2018093985 W CN 2018093985W WO 2020006654 A1 WO2020006654 A1 WO 2020006654A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
electromobility
positive
analyzer
distribution
Prior art date
Application number
PCT/CN2018/093985
Other languages
English (en)
French (fr)
Inventor
蒋靖坤
陈小彤
张强
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2018/093985 priority Critical patent/WO2020006654A1/zh
Publication of WO2020006654A1 publication Critical patent/WO2020006654A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Definitions

  • the invention relates to the technical field of aerosol measurement, in particular to an aerosol electromobility particle size spectrum measurement system and method.
  • Aerosol electromobility particle size spectrometer is usually used to measure aerosol particle size distribution. This instrument is widely used in nanotechnology, semiconductor industry, environmental monitoring and other fields.
  • the aerosol electromobility particle size spectrometer is usually divided into three parts: a charge device, a differential electromobility analyzer, and a particle counter. Among them, the transmission efficiency equation of the differential electromobility analyzer and the counting efficiency of the particle counter can both be calculated or calibrated more accurately, while the charge distribution of the charge device is more difficult to accurately calculate and has many influencing factors.
  • Chargers generate ions by means of radioactive elements and corona discharge, and then the particles are charged to equilibrium by diffusive charging.
  • Bipolar charge devices that is, positive and negative ions coexist, and unipolar charge devices have only positive or negative ions.
  • Unipolar chargers usually achieve higher charging efficiency, but because bipolar chargers are more stable, they are more widely used in commercial aerosol particle size spectrometers.
  • the proportion of particles with the same particle size with different charges is called the charge distribution.
  • the aerosol particle size spectrometer usually needs a stable and known charge distribution when inverting the particle size distribution.
  • positive and negative ions coexist, so positive and negative charged particles also exist. Due to the differences in the electrical mobility and mass of positive and negative ions, the charge distribution of positive and negative charged particles is not exactly the same, and it is susceptible to ion sources. , Gas composition, environmental conditions, etc.
  • the object of the present invention is to provide an aerosol electromobility particle size spectrum measurement system and method.
  • the aerosol electromobility particle size spectrum measurement system alternately measures the particle size distribution of positively charged and negatively charged particles.
  • the measurement results of the particle size distribution of the positively and negatively charged particles are one set, and the initial particle size distribution is obtained through inversion.
  • the invention discloses an aerosol electromobility particle size spectrum measurement system.
  • the measurement system includes: a bipolar electric device (1), a differential electromobility analyzer (2), a sheath gas control system (3), a positive Negative high voltage module (5), particle counter (6), and data acquisition and processing module (7);
  • the bipolar charge device (1) is connected to the differential electric mobility analyzer (2) through a pipeline, and the sheath gas control system (3) It is connected to the differential electromobility analyzer (2) through two pipelines.
  • the sheath gas control system (3) provides a clean and stable circulating sheath gas for the differential electromobility analyzer (2), and the positive and negative high-voltage modules (5) Provide positive or negative high voltage to the differential electromobility analyzer (2) through a high-voltage wire.
  • the outlet pipe of the differential electromobility analyzer (2) is connected to a particle counter (6).
  • the negative high-voltage module (5) and the particle counter (6) are connected to the data acquisition and processing module (7) through data lines, respectively.
  • the bipolar charge device (1) is a bipolar charge device containing a radioactive element or a soft X-ray or a bipolar corona discharge or a plasma discharge.
  • the differential electromobility analyzer (2) is a nanoparticle differential electromobility analyzer or a submicron particle electromobility analyzer.
  • the voltage range provided by the positive-negative high-voltage module (5) for the differential electromobility analyzer (2) is -10kV to 10kV, which realizes the voltage from negative high voltage to positive high voltage or from positive high voltage to negative high voltage. Continuous scanning.
  • the differential electric mobility analyzer (2) realizes the measurement of positively charged and negatively charged particles through continuous scanning of negative high voltage and positive high voltage.
  • the data acquisition processing module (7) collects temperature, humidity and flow information of the sheath gas control system (3), voltage information of the positive and negative high voltage modules (5), and the number of particles of the particle counter (6) Concentration information and data processing to obtain the measurement results of particle size distribution; the data acquisition processing module (7) alternately applies positive high voltage and negative high voltage to the differential electromobility analyzer (2) to measure negative charge Particle size distribution of particles and positively charged particles.
  • the invention also discloses a method for measuring the aerosol electromobility particle size spectrum system.
  • the measurement method is based on the measurement results of the particle size distribution of adjacent positively and negatively charged particles, and is obtained by inversion through three methods.
  • the initial particle size distribution is obtained, which improves the accuracy of aerosol electromobility particle size inversion.
  • the three inversion methods include:
  • Method 1 According to the particle size distribution of the positively charged and negatively charged particles measured alternately, select a certain particle size interval that is larger than the peak particle size.
  • the particle size interval meets the multi-charge effect and the concentration contribution to the interval is smaller than its own charge ratio of 10%, can be approximated by using empirical formula (1) rough assessed by a particle size range which positively and negatively charged particles in a concentration ratio of R + / R - calculation electromigration of positive and negative, then the formula (2) Rate ratio
  • the charge distribution of the particles After obtaining the ion mobility ratio, calculate the charge distribution of the particles according to formula (3). According to the particle size distribution of the positively or negatively charged particles obtained by direct measurement, the positive or load electrical distribution and the differential electrical mobility analyzer are used. The transmission equation and the counting efficiency of the particle counter are inverted to obtain the initial particle size distribution.
  • f ( ⁇ q, d p ) represents the proportion of particles with particle diameter d p with + q or -q charge to the total concentration of particles with particle diameter;
  • e is the elementary charge amount;
  • ⁇ 0 is the vacuum dielectric constant;
  • k B is Boltzmann's constant;
  • T is temperature; It is the electric mobility of positive and negative ions, and the units used are all international units;
  • Method 2 Calculate the charge distribution with less than 3 charges according to the empirical approximation formula (1), use Formula (3) to calculate the charge distribution with 3 charges or more, and alternately measure the positively charged and negatively charged particles Add the diameter distributions to obtain the particle size distribution of the charged particles. Add the calculated positive load distribution accordingly to obtain the overall charge distribution. Then use the particle size distribution of the charged particles after the addition and the charge after the addition. Distribution, the transmission equation of the differential electromobility analyzer, and the counting efficiency of the particle counter can be inverted to obtain a more accurate initial particle size distribution;
  • Method 3 Calculate the charge distribution with less than 3 charges according to the empirical approximation formula (1), and use formula (3) to calculate the charge distribution with 3 charges or more.
  • Particle size distribution For the positively or negatively charged particles obtained by alternating measurement, Particle size distribution.
  • the particle size spectrum is inverted according to the calculated positive or load electrical distribution, the transmission equation of the differential electromobility analyzer, and the counting efficiency of the particle counter to obtain the initial particle size distribution.
  • the particle size distribution is averaged to obtain a more accurate initial particle size distribution.
  • the present invention realizes alternate measurement of positive and negative charged particles by changing the high-voltage module, which is simple and easy to implement;
  • the present invention comprehensively utilizes the measurement results of the particle size distribution of positive and negative charged particles and the positive load electrical distribution to perform particle size spectrum inversion, which can reduce experimental errors caused by experimental conditions, ion source, and carrier gas composition changes. Improve the accuracy of particle size spectrum measurement and inversion.
  • FIG. 1 is a schematic diagram of an experimental device for alternately measuring the particle size distribution of positive and negative particles.
  • FIG. 2 is a result of measuring the particle size distribution of atmospheric particulates by the aerosol electromobility particle size spectrum measurement method.
  • the atmosphere enters the soft X-ray bipolar charge device, and then enters the differential electromobility analyzer of submicron particles.
  • the sheath gas control system 3 provides 3L / to the differential electromobility analyzer 2 through two pipelines.
  • the positive and negative high-voltage modules 5 provide positive and negative high voltages to the differential electromobility analyzer 2 alternately through high-voltage wires 4 and scan for 5 minutes in the voltage range of -5kV to + 5kV to alternately measure the positive and negative voltages.
  • the corresponding particle size measurement range is 13 to 432 nm.
  • the particle counter 6 is connected to the outlet of the differential electromobility analyzer 2, and a 0.3 L / min flow rate is taken to measure the particle concentration.
  • the sheath gas control system 3, the positive-negative high-voltage module 5, and the particle counter 6 are all connected to the data acquisition and processing module 7 through a data line.
  • the particle size distribution of positively and negatively charged particles can be measured using the above system.
  • the data acquisition processing module 7 uses three inversion methods in the first aspect of the invention to measure the measured phase.
  • the particle size distribution of the positive and negative charged particles in the two adjacent groups was inverted to obtain the initial particle size distribution.
  • the results are shown in FIG. 2.
  • (a) is the inversion result of method 1, positive or negative indicates that the inversion result of the initial particle size distribution comes from positively or negatively charged particles
  • (b) and (c) are the results of method 2 and method 3, respectively Inversion results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种气溶胶电迁移率粒径谱测量系统和方法,测量系统包括:双极荷电器、差分电迁移率分析仪(2、鞘气控制系统(3)、正负高压模块(5)、粒子计数器(6)和数据采集处理模块(7);双极荷电器通过管路与差分电迁移率分析仪(2)相连,鞘气控制系统(3)通过两路管路与差分电迁移率分析仪(2)相连,并且正负高压模块(5)通过高压导线(4)为差分电迁移率分析仪(2)提供正高压或负高压,差分电迁移率分析仪(2)的出口管路与粒子计数器(6)相连,鞘气控制系统(3)、正负高压模块(5)和粒子计数器(6)分别通过数据线与数据采集处理模块(7)相连;一种基于交替测量正负带电颗粒物的新型气溶胶电迁移率粒径谱测量方法和系统,可显著提高电迁移粒径谱仪测量准确性。

Description

一种气溶胶电迁移率粒径谱测量系统和方法 技术领域
本发明涉及气溶胶测量技术领域,特别是涉及气溶胶电迁移率粒径谱测量系统和方法。
背景技术
气溶胶电迁移率粒径谱仪通常用于测量气溶胶粒径分布,该仪器广泛应用于纳米技术、半导体行业、环境监测等领域。气溶胶电迁移率粒径谱仪通常分为荷电器、差分电迁移率分析仪和粒子计数器三个部分。其中,差分电迁移率分析仪的传输效率方程和粒子计数器的计数效率均可较准确地计算或标定,而荷电器的荷电分布则较难准确计算且影响因素众多。荷电器通过放射性元素、电晕放电等方式产生离子,再通过扩散荷电使颗粒物达到荷电平衡。荷电器根据是否同时存在正负离子可以分为双极荷电器和单极荷电器,双极荷电器即正负离子同时存在,单极荷电器则只有正离子或负离子。单极荷电器通常能获得更高的荷电效率,但由于双极荷电器更加稳定,因此更广泛地应用在商业化的气溶胶粒径谱仪中。
同一粒径颗粒物带不同电荷的比例称为荷电分布,气溶胶粒径谱仪进行粒径分布反演时通常需要稳定并已知的荷电分布。对于双极荷电器,正负离子同时存在,因此正负带电颗粒物也同时存在,由于正负离子电迁移率及质量等性质的不同,正负带电颗粒物荷电分布并不完全相同,且易受离子源、气体组分、环境条件等的影响。
目前商业化的气溶胶粒径谱仪只在差分电迁移率分析仪上施加正或负高压,孤立地测量带负电或者带正电的颗粒物,再相应地用经验近似公式计算所得负荷电分布或者正荷电分布对粒径谱进行反演。已有研究表明,只用正或负带电颗粒的粒径谱测量方法会引入较大误差。
因此希望有一种气溶胶电迁移率粒径谱测量系统和方法,以解决现有技术中由荷电导致的粒径谱测量不准确的问题。
发明内容
本发明的目的在于提供一种气溶胶电迁移率粒径谱测量系统和方法,该气溶胶电迁移率粒径谱测量系统交替测量带正电和带负电的颗粒物粒径分布,以邻近的带正电和带负电颗粒物粒径分布测量结果为一组,经过反演得出初始的颗粒物粒径分布。
本发明公开了一种气溶胶电迁移率粒径谱测量系统,所述测量系统包括:双极荷电器(1)、差分电迁移率分析仪(2)、鞘气控制系统(3)、正负高压模块(5)、粒子计数器(6)和数据采集处理模块(7);双极荷电器(1)通过管路与差分电迁移率分析仪(2)相连,鞘气控制系统(3)通过两路管路与差分电迁移率分析仪(2)相连,鞘气控制系统(3)为差分电迁移率分析仪(2)提供干净稳定的循环鞘气,并且正负高压模块(5)通过高压导线为差分电迁移率分析仪(2)提供正高压或负高压,差分电迁移率分析仪(2)的出口管路与粒子计数器(6)相连,鞘气控制系统(3)、正负高压模块(5)和粒子计数器(6)分别通过数据线与数据采集处理模块(7)相连。
优选地,所述双极荷电器(1)为含放射性元素的双极荷电器或软X射线或双极电晕放电或等离子体放电的双极荷电器。
优选地,所述差分电迁移率分析仪(2)为纳米颗粒物差分电迁移率分析仪或亚微米颗粒物差分电迁移率分析仪。
优选地,所述正负高压模块(5)为所述差分电迁移率分析仪(2)提供的电压范围为-10kV~10kV,实现电压由负高压到正高压或由正高压到负高压的连续扫描。
优选地,所述差分电迁移率分析仪(2)通过负高压和正高压的连续扫描,实现带正电和带负电的颗粒物的测量。
优选地,所述数据采集处理模块(7)采集鞘气控制系统(3)的温湿度和流量信息、所述正负高压模块(5)的电压信息、所述粒子计数器(6)的颗粒物数浓度信息,并进行数据处理得到颗粒物粒径分布的测量结果;所述数据采集处理模块(7)交替地对所述差分电迁移率分析仪(2)施加正高压和负高压,分别测量带负电颗粒物和带正电颗粒物的粒径分布。
本发明还公开了一种气溶胶电迁移率粒径谱测量系统的方法,所述测量方法以邻近的带正电和带负电颗粒物粒径分布测量结果为一组,经过三种方法反演得出初始的颗粒物粒径分布,提高气溶胶电迁移率粒径谱反演准确性。
优选地,所述3种反演方法分别包括:
方法一:根据交替测量所得的带正电和带负电颗粒物粒径分布,选择比峰值粒径大的某粒径区间,该粒径区间满足多电荷效应对该区间的浓度贡献小于其本身带单电荷比例的10%,可利用经验近似公式(1)进行粗略评估,通过该粒径区间带正电和带负电颗粒物的浓度比值R +/R -,再用公式(2)计算正负离子电迁移率比值
Figure PCTCN2018093985-appb-000001
Figure PCTCN2018093985-appb-000002
式中,f(±q,d p)表示粒径为d p的颗粒物带±q个电荷的所占的比例,q=0,1,2;a i(±q)为近似系数,具体数值见表1。
表1近似系数a i(±q)
Figure PCTCN2018093985-appb-000003
Z + ion/Z - ion=exp[ln(R +/R -)/2]    (2)
得到离子电迁移率比值后,再根据公式(3)计算颗粒物荷电分布,根据直接测量所得的带正电或带负电颗粒物粒径分布,经由正或负荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行反演,得到初始粒径分布,
Figure PCTCN2018093985-appb-000004
其中
Figure PCTCN2018093985-appb-000005
其中,f(±q,d p)表示粒径为d p的颗粒物带+q或-q电荷所占该粒径颗粒物总浓度的比例;e是元电荷电量;ε 0是真空介电常数;k B为玻尔兹曼常数;T为温度;
Figure PCTCN2018093985-appb-000006
为正负离子电迁移率,所用单位均为国际单位;
方法二:根据经验近似公式(1)计算带小于3个电荷的荷电分布,用公式(3)计算3个电荷及以上的荷电分布,将交替测量所得的带正电和带负电颗粒物粒径分布相加,可得带电颗粒物粒径分布,相应地将计算所得的正负荷电分布相加,得整体荷电分布,再利用加和后的带电颗粒物粒径分布与加和后的荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行反演,可得更准确的初始粒径分布;
方法三:根据经验近似公式(1)计算带小于3个电荷的荷电分布,用公式(3)计算3个电荷及以上的荷电分布,对交替测量所得的带正电或带负电颗粒物的粒径分布,根据计算所得的正或负荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行粒径谱反演,得到初始粒径分布,再将两个反演所得的粒径分布进行平均,可得更加准确的初始粒径分布。
本发明公开的气溶胶电迁移率粒径谱测量系统和方法具有以下有益效果:
(1)本发明在原有气溶胶电迁移率粒径谱仪的基础上,通过改变高压模块,实现交替测量正负带电颗粒物,简单易行;
(2)本发明综合利用正负带电颗粒物粒径分布的测量结果以及正负荷电分布进行粒径谱反演,能减小实验条件、离子源、载气组分变化等带来的实验误差,提高粒径谱测量和反演的准确性。
附图说明
图1是交替测量正负颗粒物粒径分布的实验装置示意图。
图2是气溶胶电迁移率粒径谱测量方法测量大气颗粒物粒径分布的结果图。
具体实施方式
为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,大气进入软X射线双极荷电器,再进入亚微米颗粒物差分电迁移率分析仪中,鞘气控制系统3通过两路管路给差分电迁移率分析仪2提供3L/min的循环鞘气,正负高压模块5通过高压导线4交替地给差分电迁移率分析仪2提供正负高压,并在-5kV~+5kV电压范围内扫描5分钟,交替测量带正电和带负电的颗粒物,对应粒径测量范围为13~432nm。粒子计数器6与差分电迁移率分析仪2出口相连,抽取0.3L/min流量测量颗粒物浓度。其中鞘气控制系统3、正负高压模块5、粒子计数器6均通过数据线与数据采集处理模块7相连。
以一组大气颗粒物测量结果为例,用上述系统可以测量得出带正电和带负电的颗粒物粒径分布,数据采集处理模块7用发明内容一中的3种反演方法对测量所得的相邻两组正负带电颗粒物粒径分布进行反演,得到初始颗粒物粒径分布,结果如图2所示。(a)图为方法1的反演结果,正或负表明该初始粒径分布反演结果来自带正电或者带负电的颗粒物,(b)和(c)图分别为方法2和方法3的反演结果。
最后需要指出的是:以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对 其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种气溶胶电迁移率粒径谱测量系统,其特征在于,所述测量系统包括:双极荷电器(1)、差分电迁移率分析仪(2)、鞘气控制系统(3)、正负高压模块(5)、粒子计数器(6)和数据采集处理模块(7);双极荷电器(1)通过管路与差分电迁移率分析仪(2)相连,鞘气控制系统(3)通过两路管路与差分电迁移率分析仪(2)相连,鞘气控制系统(3)为差分电迁移率分析仪(2)提供干净稳定的循环鞘气,并且正负高压模块(5)通过高压导线为差分电迁移率分析仪(2)提供正高压或负高压,差分电迁移率分析仪(2)的出口管路与粒子计数器(6)相连,鞘气控制系统(3)、正负高压模块(5)和粒子计数器(6)分别通过数据线与数据采集处理模块(7)相连。
  2. 根据权利要求1所述的气溶胶电迁移率粒径谱测量系统,其特征在于:所述双极荷电器(1)为含放射性元素的双极荷电器或软X射线或双极电晕放电或等离子体放电的双极荷电器。
  3. 根据权利要求1所述的气溶胶电迁移率粒径谱测量系统,其特征在于:所述差分电迁移率分析仪(2)为纳米颗粒物差分电迁移率分析仪或亚微米颗粒物差分电迁移率分析仪。
  4. 根据权利要求1所述的气溶胶电迁移率粒径谱测量系统,其特征在于:所述正负高压模块(5)为所述差分电迁移率分析仪(2)提供的电压范围为-10kV~10kV,实现电压由负高压到正高压或由正高压到负高压的连续扫描。
  5. 根据权利要求4所述的气溶胶电迁移率粒径谱测量系统,其特征在于:所述差分电迁移率分析仪(2)通过负高压和正高压的连续扫描,实现带正电和带负电的颗粒物的测量。
  6. 根据权利要求5所述的气溶胶电迁移率粒径谱测量系统,其特征在 于:所述数据采集处理模块(7)采集鞘气控制系统(3)的温湿度和流量信息、所述正负高压模块(5)的电压信息、所述粒子计数器(6)的颗粒物数浓度信息,并进行数据处理得到颗粒物粒径分布的测量结果;所述数据采集处理模块(7)交替地对所述差分电迁移率分析仪(2)施加正高压和负高压,分别测量带负电颗粒物和带正电颗粒物的粒径分布。
  7. 一种应用如权利要求1-6之一的所述气溶胶电迁移率粒径谱测量系统的方法,其特征在于,所述测量方法以邻近的带正电和带负电颗粒物粒径分布测量结果为一组,经过三种方法反演得出初始的颗粒物粒径分布,提高气溶胶电迁移率粒径谱反演准确性。
  8. 根据权利要求7所述的气溶胶电迁移率粒径谱测量系统的方法,其特征在于,所述三种反演方法分别包括:
    方法一:根据交替测量所得的带正电和带负电颗粒物粒径分布,选择比峰值粒径大的某粒径区间,该粒径区间满足多电荷效应对该区间的浓度贡献小于其本身带单电荷比例的10%,可利用经验近似公式(1)进行粗略评估,通过该粒径区间带正电和带负电颗粒物的浓度比值R +/R -,再用公式(2)计算正负离子电迁移率比值
    Figure PCTCN2018093985-appb-100001
    Figure PCTCN2018093985-appb-100002
    式中,f(±q,d p)表示粒径为d p的颗粒物带±q个电荷的所占的比例,q=0,1,2;a i(±q)为近似系数;
    Z + ion/Z - ion=exp[ln(R +/R -)/2]  (2)
    得到离子电迁移率比值后,再根据公式(3)计算颗粒物荷电分布,根据直接测量所得的带正电或带负电颗粒物粒径分布,经由正或负荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行反演,得到初始粒径分布,
    Figure PCTCN2018093985-appb-100003
    其中
    Figure PCTCN2018093985-appb-100004
    其中,f(±q,d p)表示粒径为d p的颗粒物带+q或-q电荷所占该粒径颗粒物总浓度的比例,e是元电荷电量,ε 0是真空介电常数,k B为玻尔兹曼常数,T为温度,
    Figure PCTCN2018093985-appb-100005
    为正负离子电迁移率;
    方法二:根据经验近似公式(1)计算带小于3个电荷的荷电分布,用公式(3)计算3个电荷及以上的荷电分布,将交替测量所得的带正电和带负电颗粒物粒径分布相加,可得带电颗粒物粒径分布,相应地将计算所得的正负荷电分布相加,得整体荷电分布,再利用加和后的带电颗粒物粒径分布与加和后的荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行反演,得到精准初始粒径分布;
    方法三:根据经验近似公式(1)计算带小于3个电荷的荷电分布,用公式(3)计算3个电荷及以上的荷电分布,对交替测量所得的带正电或带负电颗粒物的粒径分布,根据计算所得的正或负荷电分布、差分电迁移率分析仪的传输方程和粒子计数器的计数效率进行粒径谱反演,得到初始粒径分布,再将两个反演所得的粒径分布进行平均,得到精准初始粒径分布。
PCT/CN2018/093985 2018-07-02 2018-07-02 一种气溶胶电迁移率粒径谱测量系统和方法 WO2020006654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093985 WO2020006654A1 (zh) 2018-07-02 2018-07-02 一种气溶胶电迁移率粒径谱测量系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093985 WO2020006654A1 (zh) 2018-07-02 2018-07-02 一种气溶胶电迁移率粒径谱测量系统和方法

Publications (1)

Publication Number Publication Date
WO2020006654A1 true WO2020006654A1 (zh) 2020-01-09

Family

ID=69059739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093985 WO2020006654A1 (zh) 2018-07-02 2018-07-02 一种气溶胶电迁移率粒径谱测量系统和方法

Country Status (1)

Country Link
WO (1) WO2020006654A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194882A (ja) * 2005-01-13 2006-07-27 Matter Engineering Ag エアゾール粒子の数濃度と平均直径を測定する方法と装置
CN102749273A (zh) * 2011-04-20 2012-10-24 北京汇丰隆经济技术开发有限公司 一种气溶胶颗粒粒径分类检测系统
CN103105350A (zh) * 2013-01-23 2013-05-15 清华大学 3nm-20μm气溶胶粒径分布测量仪
CN104678112A (zh) * 2015-02-05 2015-06-03 中国科学院合肥物质科学研究院 一种串联差分电迁移率分析仪控制系统及控制方法
CN105717004A (zh) * 2016-01-29 2016-06-29 清华大学 一种基于电迁移率的1-3纳米气溶胶筛分装置及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194882A (ja) * 2005-01-13 2006-07-27 Matter Engineering Ag エアゾール粒子の数濃度と平均直径を測定する方法と装置
CN102749273A (zh) * 2011-04-20 2012-10-24 北京汇丰隆经济技术开发有限公司 一种气溶胶颗粒粒径分类检测系统
CN103105350A (zh) * 2013-01-23 2013-05-15 清华大学 3nm-20μm气溶胶粒径分布测量仪
CN104678112A (zh) * 2015-02-05 2015-06-03 中国科学院合肥物质科学研究院 一种串联差分电迁移率分析仪控制系统及控制方法
CN105717004A (zh) * 2016-01-29 2016-06-29 清华大学 一种基于电迁移率的1-3纳米气溶胶筛分装置及应用

Similar Documents

Publication Publication Date Title
CN109187289B (zh) 一种气溶胶电迁移率粒径谱测量系统和方法
Bian et al. Influence of aged conductor surface conditions on AC corona discharge with a corona cage
Mirme et al. The mathematical principles and design of the NAIS–a spectrometer for the measurement of cluster ion and nanometer aerosol size distributions
Kaminski et al. Comparability of mobility particle sizers and diffusion chargers
Winter et al. Stationary resistive field distribution along epoxy resin insulators in air under DC voltage
US7549318B2 (en) Method and device for the measurement of the number concentration and of the average diameter of aerosol particles
Laakso et al. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements
CN106769707B (zh) 一种势阱电压可调的颗粒物粒径谱测量装置及其测量方法
Bau et al. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator
WO2015176551A1 (zh) 提高静电收集法测氡仪探测灵敏度的方法及装置
CN105717004B (zh) 一种基于电迁移率的1-3纳米气溶胶筛分装置及应用
CN114199729B (zh) 基于天然离子荷电测量大气气溶胶粒径分布的方法及系统
Sun et al. Contamination and AC pollution flashover characteristics of insulators under fog-haze environment
WO2020006654A1 (zh) 一种气溶胶电迁移率粒径谱测量系统和方法
CN208239256U (zh) 一种空气中颗粒物平均浓度的测量装置
da Silva et al. Analysis of electrical tracking by energy absorption during surface discharge in polymeric materials
Yi et al. Conductor surface conditions effects on audible noise spectrum characteristics of positive corona discharge
Qi et al. Unipolar charging based, hand-held mobility spectrometer for aerosol size distribution measurement
Yu et al. Design and evaluation of a unipolar aerosol particle charger with built-in electrostatic precipitator
Bau et al. Determining the effective density of airborne nanoparticles using multiple charging correction in a tandem DMA/ELPI setup
Saputra et al. Digital pulse analyzer for simultaneous measurement of pulse height, pulse width, and interval time on an optical particle counter
Intra et al. Brownian diffusion effect on nanometer aerosol classification in electrical mobility spectrometer
Chen et al. Performance of small plate and tube unipolar particle chargers at low corona current
Hillemann et al. An ultrafine particle monitor for size-resolved number concentration measurements in atmospheric aerosols
Zhu et al. Corona characteristics of HVDC conductors with different surface conditions obtained in a controllable accelerating contamination depositing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925395

Country of ref document: EP

Kind code of ref document: A1