WO2020005010A1 - 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 - Google Patents
무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 Download PDFInfo
- Publication number
- WO2020005010A1 WO2020005010A1 PCT/KR2019/007891 KR2019007891W WO2020005010A1 WO 2020005010 A1 WO2020005010 A1 WO 2020005010A1 KR 2019007891 W KR2019007891 W KR 2019007891W WO 2020005010 A1 WO2020005010 A1 WO 2020005010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- random access
- mac pdu
- data
- terminal
- layer device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 185
- 238000004891 communication Methods 0.000 title description 77
- 238000013468 resource allocation Methods 0.000 claims abstract description 41
- 230000004044 response Effects 0.000 claims abstract description 22
- 230000005540 biological transmission Effects 0.000 claims description 116
- 239000000872 buffer Substances 0.000 claims description 70
- 230000036963 noncompetitive effect Effects 0.000 claims description 17
- 235000019527 sweetened beverage Nutrition 0.000 claims 12
- 230000036967 uncompetitive effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 53
- 238000005516 engineering process Methods 0.000 description 51
- 238000003860 storage Methods 0.000 description 41
- 238000010586 diagram Methods 0.000 description 30
- 238000013507 mapping Methods 0.000 description 23
- 238000010295 mobile communication Methods 0.000 description 19
- 238000012546 transfer Methods 0.000 description 13
- 230000009977 dual effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000002776 aggregation Effects 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 11
- 230000015654 memory Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000012384 transportation and delivery Methods 0.000 description 8
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 7
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 230000001960 triggered effect Effects 0.000 description 6
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 4
- 101150096622 Smr2 gene Proteins 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 241000760358 Enodes Species 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 1
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 1
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 1
- 206010042135 Stomatitis necrotising Diseases 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 201000008585 noma Diseases 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012559 user support system Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/04—Scheduled access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0866—Non-scheduled access, e.g. ALOHA using a dedicated channel for access
- H04W74/0891—Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
Definitions
- the present disclosure relates to a method and apparatus for transmitting and receiving data in a wireless communication system.
- a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
- 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
- 5G communication system beamforming, massive array multiple input / output (Full-Dimensional MIMO), and full dimensional multiple input / output (FD-MIMO) are used in 5G communication systems to increase path loss mitigation and propagation distance of radio waves in the ultra-high frequency band.
- Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
- 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation The development of such technology is being done.
- Hybrid FSK and QAM Modulation FQAM
- SWSC sliding window superposition coding
- ACM Advanced Coding Modulation
- FBMC Fan Bank Multi Carrier
- NOMA non orthogonal multiple access
- SCMA sparse code multiple access
- IoT Internet of Things
- IoE Internet of Everything
- M2M machine to machine
- MTC Machine Type Communication
- IT intelligent Internet technology services can be provided that collect and analyze data generated from connected objects to create new value in human life.
- IoT is a field of smart home, smart building, smart city, smart car or connected car, smart grid, health care, smart home appliances, advanced medical services, etc. through convergence and complex of existing information technology (IT) technology and various industries. It can be applied to.
- the disclosed embodiments provide an apparatus and a method for effectively providing a service in a mobile communication system.
- the disclosed embodiment provides an apparatus and method for effectively providing a service in a mobile communication system.
- the disclosed embodiments can effectively provide services in a mobile communication system.
- 1A is a diagram illustrating a structure of an LTE system according to some embodiments of the present disclosure.
- 1B is a diagram illustrating a radio protocol architecture in an LTE system according to some embodiments of the present disclosure.
- 1C is a diagram illustrating a structure of a next generation mobile communication system according to some embodiments of the present disclosure.
- 1D illustrates a wireless protocol structure of a next generation mobile communication system according to some embodiments of the present disclosure. .
- 1E is a diagram illustrating a procedure of performing RRC connection establishment with a base station when a terminal establishes a connection with a network in a wireless communication system according to some embodiments of the present disclosure.
- 1F illustrates a procedure in which a packet redundancy transmission technique is established and activated and deactivated in a next generation mobile communication system, according to some embodiments of the present disclosure.
- FIG. 1G illustrates a terminal operation according to some embodiments of the present disclosure.
- 1H illustrates a structure of a terminal according to some embodiments of the present disclosure.
- 1I is a block diagram of a TRP (Tx / Rx Point) in a wireless communication system according to some embodiments of the present disclosure.
- FIG. 2A is a diagram illustrating a structure of an LTE system according to some embodiments of the present disclosure.
- 2B is a diagram illustrating a radio protocol structure in an LTE and NR system according to some embodiments of the present disclosure.
- 2C is a diagram illustrating downlink and uplink channel frame structures when performing communication based on a beam in a NR system according to some embodiments of the present disclosure.
- FIG. 2D is a diagram illustrating a competition and non-competition based random access procedure performed by a UE in a situation such as handover to a base station according to an embodiment of the present disclosure.
- FIG. 2E is a diagram illustrating a terminal operating procedure according to Embodiment 1 of a method of generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- FIG. 2F is a diagram illustrating an operation procedure of a terminal according to Embodiment 2 of a method for generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- FIG. 2G is a diagram illustrating a terminal operation procedure according to Embodiment 3 of a method of generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- FIG. 2H is a diagram illustrating a terminal operation procedure according to Embodiment 4 of a method of generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- FIG. 2I is a diagram illustrating an operation procedure of a terminal according to Embodiment 5 of a method of generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- FIG. 2J is an exemplary diagram of a terminal operation procedure according to Embodiment 6 of a method of generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- 2K illustrates a configuration of a terminal in a wireless communication system according to some embodiments of the present disclosure.
- the method includes: selecting a first SSB exceeding a threshold of signal strength among a plurality of synchronization signal blocks (SSBs) ; Transmitting a Contention-Based Random Access Preamble corresponding to the first SSB; Receiving a first random access response (RAR) corresponding to the contention-based random access preamble; Obtaining a first media access control (MAC) protocol data unit (PDU) corresponding to an uplink resource allocation size of the first RAR;
- MAC media access control protocol data unit
- the first MAC PDU may be obtained from a multiplexing and assembly entity.
- the first MAC PDU may include a Cell-Radio Network Temporary Identifier (C-RNTI) MAC Control Element (CCE).
- C-RNTI Cell-Radio Network Temporary Identifier
- CCE MAC Control Element
- the method may further include storing the first MAC PDU in an Msg3 buffer.
- the performing of the non-competitive random access procedure may include selecting a second SSB that exceeds a threshold of signal strength among a plurality of SSBs to which a non-competitive random access preamble is allocated; And transmitting a non-competitive random access preamble corresponding to the second SSB.
- Receiving a second RAR corresponding to the non-competitive random access preamble Obtaining the first MAC PDU; Obtaining a second MAC PDU based on the first MAC PDU; And transmitting the second MAC PDU.
- the acquiring of the first MAC PDU may include determining whether the first MAC PDU is stored in an Msg3 buffer; And acquiring the first MAC PDU from the Msg3 buffer based on a determination result.
- Acquiring a second MAC PDU based on the first MAC PDU may include comparing an uplink resource allocation size of the second RAR with a size of the first MAC PDU; And obtaining the second MAC PDU so that at least one MAC subprotocol data unit (MAP subPDU) in the first MAC PDU is included in a subsequent uplink transmission based on the comparison result.
- MAP subPDU MAC subprotocol data unit
- the second MAC PDU may be obtained from a multiplexing and assembly entity.
- the method may further include deleting data in the Msg3 buffer.
- the determining of whether the contention has been resolved may include determining whether a response to the Msg3 has been received until the expiration of the ra-ContentionResolution timer.
- a terminal for performing a random access procedure comprising: a transceiver; And selecting a first SSB exceeding a threshold of signal strength among a plurality of synchronization signal blocks (SSBs) and transmitting a contention-based random access preamble corresponding to the first SSB. And receiving a first random access response (RAR) corresponding to the contention-based random access preamble and a first media access control (MAC) protocol data unit (PDU) corresponding to an uplink resource allocation size of the first RAR.
- RAR random access response
- MAC media access control
- PDU protocol data unit
- Determine the contention transmit the Msg3 including the first MAC PDU, determine whether contention has been resolved by transmitting the Msg3, and if the contention is not resolved, perform a contention-free random access procedure, It may include at least one controller coupled to the transceiver.
- the controller selects a second SSB that exceeds a threshold of signal strength among a plurality of SSBs to which a non-competitive random access preamble is allocated, transmits a non-competitive random access preamble corresponding to the second SSB, and performs the non-competitive random access. It may be further configured to receive a second RAR corresponding to a preamble, obtain the first MAC PDU, obtain a second MAC PDU based on the first MAC PDU, and transmit the second MAC PDU.
- the controller may determine whether the first MAC PDU is stored in an Msg3 buffer, and obtain the first MAC PDU from the Msg3 buffer based on a determination result.
- the controller compares an uplink resource allocation size of the second RAR with a size of the first MAC PDU, and based on the comparison result, at least one MAC subPDU (subProtocol Data Unit) in the first MAC PDU is determined. Acquiring the second MAC PDU to be included in a subsequent uplink transmission.
- MAC subPDU subProtocol Data Unit
- the second MAC PDU may be obtained from a multiplexing and assembly entity.
- each block of the flowchart illustrations and combinations of flowchart illustrations may be performed by computer program instructions. Since these computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment, those instructions executed through the processor of the computer or other programmable data processing equipment may be described in flow chart block (s). It creates a means to perform the functions. These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory. It is also possible for the instructions stored in to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block (s).
- Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for performing the functions described in the flowchart block (s).
- each block may represent a portion of a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
- logical function e.g., a module, segment, or code that includes one or more executable instructions for executing a specified logical function (s).
- the functions noted in the blocks may occur out of order.
- the two blocks shown in succession may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending on the corresponding function.
- ' ⁇ part' used in the present embodiment refers to software or a hardware component such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and ' ⁇ part' performs certain roles. do.
- ' ⁇ ' is not meant to be limited to software or hardware.
- ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
- ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
- components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
- the components and ' ⁇ ' may be implemented to play one or more CPUs in the device or secure multimedia card.
- ' ⁇ unit' may include one or more processors.
- connection node used in the following description, terms referring to network entities (network entities), terms referring to messages, terms referring to interfaces between network objects, various identification information Terms and the like to refer to these are illustrated for convenience of description. Thus, the present disclosure is not limited to the terms described below, and other terms may be used to refer to objects having equivalent technical meanings.
- the present disclosure uses terms and names defined in the 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) standard.
- the present disclosure is not limited to the above terms and names, and may be equally applied to systems conforming to other standards.
- the eNB may be used interchangeably with gNB for convenience of description. That is, the base station described as an eNB may represent a gNB.
- the term terminal may also refer to other wireless communication devices as well as mobile phones, NB-IoT devices and sensors.
- the base station is a subject performing resource allocation of the terminal, and may be at least one of a gNode B, an eNode B, a Node B, a base station (BS), a wireless access unit, a base station controller, or a node on a network.
- the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
- UE user equipment
- MS mobile station
- cellular phone a smart phone
- computer or a multimedia system capable of performing a communication function.
- multimedia system capable of performing a communication function.
- the present disclosure is applicable to 3GPP NR (5th generation mobile communication standard).
- the present disclosure also provides intelligent services (eg, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety related services based on 5G communication technology and IoT related technology). Etc.).
- the eNB may be used interchangeably with gNB for convenience of description. That is, the base station described as an eNB may represent a gNB.
- the term terminal may also refer to other wireless communication devices as well as mobile phones, NB-IoT devices and sensors.
- the wireless communication system has moved away from providing the initial voice-oriented service, for example, 3GPP High Speed Packet Access (HSPA), Long Term Evolution (LTE) or Evolved Universal Terrestrial Radio Access (E-UTRA), LTE-Advanced.
- Broadband wireless that provides high-speed, high-quality packet data services such as LTE-A, LTE-Pro, 3GPP2's High Rate Packet Data (HRPD), UMB (Ultra Mobile Broadband), and IEEE 802.16e Evolving into a communication system.
- an LTE system employs an orthogonal frequency division multiplexing (OFDM) scheme in downlink (DL) and a single carrier frequency division multiple access (SC-FDMA) in uplink (UL).
- OFDM orthogonal frequency division multiplexing
- SC-FDMA single carrier frequency division multiple access
- Uplink refers to a radio link through which a user equipment (UE; User Equipment or MS; Mobile Station) transmits data or a control signal to a base station (eNode B or BS; base station), and downlink means data or control to a terminal by a base station.
- UE user equipment
- MS User Equipment
- BS base station
- downlink means data or control to a terminal by a base station.
- the data or control information of each user is distinguished by allocating and operating the time-frequency resources for carrying data or control information for each user so as not to overlap each other, that is, to establish orthogonality. .
- a 5G communication system should be able to freely reflect various requirements such as users and service providers, so that a service satisfying various requirements must be supported at the same time.
- Services considered for 5G communication systems include Enhanced Mobile BroadBand (eMBB), Massive Machine Type Communication (mMTC), Ultra Reliability Low Latency Communication (URLLC), etc. There is this.
- the eMBB may aim to provide a data rate higher than that of existing LTE, LTE-A, or LTE-Pro.
- an eMBB should be able to provide a maximum data rate of 20 Gbps in downlink and a maximum data rate of 10 Gbps in uplink from a single base station.
- the 5G communication system may provide a maximum transmission speed, and at the same time, provide an increased user perceived data rate of the terminal.
- 5G communication systems may require improvement of various transmission / reception technologies, including an improved multi-input multi-output (MIMO) transmission technology.
- MIMO multi-input multi-output
- 5G communication system uses a frequency bandwidth wider than 20MHz in the frequency band of 3 ⁇ 6GHz or 6GHz or more is required by 5G communication system It can satisfy the data transmission rate.
- mMTC is being considered to support application services such as the Internet of Thing (IoT) in 5G communication systems.
- IoT Internet of Thing
- the mMTC may require large terminal access in a cell, improved terminal coverage, improved battery time, and reduced terminal cost.
- the IoT is attached to various sensors and various devices to provide a communication function, it must be able to support a large number of terminals (eg, 1,000,000 terminals / km 2) in a cell.
- the terminal supporting the mMTC is likely to be located in a shadow area that the cell does not cover, such as the basement of the building, more coverage may be required than other services provided by the 5G communication system.
- the terminal supporting the mMTC should be configured as a low-cost terminal, and because it is difficult to replace the battery of the terminal frequently, a very long battery life time (10-15 years) may be required.
- URLLC Ultra low delay
- ultra high reliability ultra high reliability
- 5G systems must provide a smaller transmit time interval (TTI) than other services, and at the same time, design a wide resource allocation in the frequency band to ensure the reliability of the communication link. May be required.
- TTI transmit time interval
- Three services considered in the aforementioned 5G communication system that is, eMBB, URLLC, and mMTC may be multiplexed and transmitted in one system.
- different transmission / reception techniques and transmission / reception parameters may be used between services to satisfy different requirements of respective services.
- the above-described mMTC, URLLC, and eMBB are just examples of different service types, and the service types to which the present disclosure is applied are not limited to the above-described examples.
- the present invention is also applied to other communication systems having a similar technical background or channel form.
- An embodiment of may be applied.
- the embodiment of the present invention may be applied to other communication systems through some modifications within the scope of the present invention without departing from the scope of the present invention by the judgment of those skilled in the art.
- the present disclosure provides a method for efficiently supporting a Scell (Secondary Cell) RLF (Radio Link Failure) in a next generation mobile communication system, and a method for generating and transmitting a message 3 (Msg3) when a device in a connected state performs random access. I would like to.
- Scell Secondary Cell
- RLF Radio Link Failure
- packet duplication may be applied to the uplink and the downlink in order to support lower transmission delay and to guarantee higher reliability.
- the packet redundancy transmission technology transmits the same packet repeatedly through two RLC (Radio Link Control) layer devices, and the number of retransmissions of some data is exceeded in the RLC layer device connected to the Scell in the two RLC layer devices.
- Scell RLF Radio Link Failure
- the UE may report to the base station as an RRC (Radio Resource Control) message that the maximum number of retransmissions for certain data has been exceeded in the RLC layer apparatus connected with the Scell, which may be called an Scell RLF.
- RRC Radio Resource Control
- a method of preventing and unnecessarily triggering a Scell RLF multiple times in a procedure of triggering and transmitting a Scell RLF and providing a method of efficiently managing variables for calculating the maximum number of retransmissions.
- the base station in order for the base station to efficiently allocate the random access channel to the terminals in the cell (for example, the number of the random access channel, etc.), the base station is assigned to each terminal to the most successful random access. It provides a method for receiving detailed information about.
- 1A is a diagram illustrating a structure of an LTE system according to some embodiments of the present disclosure.
- a radio access network of an LTE system includes a next-generation base station (Evolved Node B, ENB, Node B, or base station) 1a-05, 1a-10, 1a-15, and 1a-20. It consists of MME (1a-25, Mobility Management Entity) and S-GW (1a-30, Serving-Gateway).
- UE or UE User equipment 1a-35 connects to an external network through ENBs 1a-05 to 1a-20 and S-GW 1a-30.
- the ENBs 1a-05 to 1a-20 may correspond to existing Node Bs of the UMTS system.
- the ENB may be connected to the UEs 1a-35 through a radio channel and may play a more complicated role than the existing Node B.
- all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It may be necessary to collect the device for scheduling, ENB (1a-05 to 1a-20) may be in charge.
- One ENB typically controls multiple cells.
- the LTE system may use orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology.
- the ENB may apply an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the UE.
- AMC adaptive modulation & coding
- the S-GW 1a-30 is a device that provides a data bearer, and may generate or remove a data bearer under the control of the MME 1a-25.
- the MME is a device that is in charge of various control functions as well as mobility management function for the terminal may be connected to a plurality of base stations.
- 1B is a diagram illustrating a radio protocol architecture in an LTE system according to some embodiments of the present disclosure.
- a wireless protocol of an LTE system includes PDCP (Packet Data Convergence Protocol 1b-05, 1b-40), RLC (Radio Link Control 1b-10, 1b-35), and MAC (Medium Access) at a terminal and an ENB, respectively. Control 1b-15, 1b-30) may be included.
- PDCP Packet Data Convergence Protocol
- 1b-05 and 1b-40 may be in charge of operations such as IP header compression / restore.
- the main functions of PDCP are summarized as follows. Of course, it is not limited to the following example.
- the radio link control (hereinafter referred to as RLC) 1b-10 and 1b-35 may reconfigure a PDCP PDU (Packet Data Unit) to an appropriate size to perform an ARQ operation.
- RLC Radio Link Control
- PDCP PDU Packet Data Unit
- the main functions of RLC can be summarized as follows. Of course, it is not limited to the following example.
- Protocol error detection (only for AM data transfer)
- the MACs 1b-15 and 1b-30 are connected to several RLC layer devices configured in one UE, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs. do.
- the main functions of the MAC can be summarized as follows. Of course, it is not limited to the following example.
- the physical layers 1b-20 and 1b-25 channel-code and modulate higher layer data, make OFDM symbols and transmit them over a wireless channel, or demodulate OFDM channels received over a wireless channel. Decode and deliver to the upper layer.
- it is not limited to the above example.
- 1C is a diagram illustrating a structure of a next generation mobile communication system that can be applied according to some embodiments of the present disclosure.
- a radio access network of a next generation mobile communication system includes a next generation base station (New Radio Node B, NR gNB or NR base station) 1c-10 and an NR CN (1c). -05, New Radio Core Network).
- a new radio user equipment (hereinafter referred to as NR UE or terminal) 1c-15 may access an external network through NR gNB 1c-10 and NR CN 1c-05.
- the NR gNB 1c-10 may correspond to an eNB (Evolved Node B) of the existing LTE system.
- the NR gNB is connected to the NR UE 1c-15 through a wireless channel and may provide superior service than the existing Node B.
- a device that collects and schedules state information such as buffer states, available transmit power states, and channel states of UEs may be needed.
- NB (1c-10) is in charge.
- One NR gNB can typically control multiple cells.
- the next generation mobile communication system may have more than the existing maximum bandwidth to implement ultra-fast data transmission compared to the current LTE, orthogonal frequency division multiplexing (hereinafter referred to as OFDM) as a radio access technology, additionally Beamforming techniques can be used.
- OFDM orthogonal frequency division multiplexing
- the NR gNB adopts an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the UE.
- AMC adaptive modulation & coding
- the NR CN 1c-05 may perform functions such as mobility support, bearer setup, and QoS setup.
- the NR CN 1c-05 is a device that is in charge of various control functions as well as a mobility management function for a terminal and may be connected to a plurality of base stations.
- the next generation mobile communication system may be interworked with the existing LTE system, and the NR CN 1c-05 may be connected to the MME 1c-25 through a network interface.
- MME is connected to the eNB (1c-30) which is an existing base station.
- 1D illustrates a wireless protocol structure of a next generation mobile communication system according to some embodiments of the present disclosure.
- a wireless protocol of a next generation mobile communication system includes NR SDAP (Service Data Adaptation Protocol) ((1d-01, 1d-45) and NR PDCP (Packet Data Convergent Protocol) 1d- at a terminal and an NR base station, respectively.
- NR SDAP Service Data Adaptation Protocol
- NR PDCP Packet Data Convergent Protocol 1d- at a terminal and an NR base station, respectively.
- 05, 1d-40 NR RLC (Radio Link Control) 1d-10, 1d-35, and NR MAC (1d-15, 1d-30).
- the main functions of the NR SDAPs 1d-01 and 1d-45 may include some of the following functions. Of course, it is not limited to the following example.
- mapping between a QoS flow and a data bearer for uplink and downlink mapping between a QoS flow and a DRB for both DL and UL
- the UE may receive whether to use the header of the SDAP layer device or the function of the SDAP layer device as an RRC message for each PDCP layer device, for each bearer, or for each logical channel.
- the SDAP layer device includes a non-access stratum (NAS) quality of service (QoS) reflection setting 1-bit indicator (NAS reflective QoS) and an AS QoS reflection setting 1-bit indicator (AS reflective QoS) of the SDAP header.
- the terminal may be instructed to update or reconfigure mapping information for uplink and downlink QoS flows and data bearers.
- the SDAP header may include QoS flow ID information indicating QoS.
- the QoS information may be used as data processing priority, scheduling information, etc. to support a smooth service.
- the main function of the NR PDCP (1d-05, 1d-40) may include some of the following functions. Of course, it is not limited to the following example.
- the order reordering function of the NR PDCP device reorders PDCP PDUs received from a lower layer based on a PDCP sequence number, and delivers data to the upper layer in the reordered order.
- the ability to do or take the order out without considering the order the ability to rearrange the order to record the missing PDCP PDUs, to report the status of missing PDCP PDUs to the sender, and to the missing PDCP PDUs. It may include at least one of the function for requesting a retransmission.
- the main functions of the NR RLCs 1d-10 and 1d-35 may include some of the following functions. Of course, it is not limited to the following example.
- an sequential delivery function of an NR RLC device is a function of sequentially delivering RLC SDUs received from a lower layer to an upper layer, and an original RLC SDU is divided into several RLC SDUs.
- the ability to send status reports for lost RLC PDUs to the sender, request retransmission for lost RLC PDUs, and if there are missing RLC SDUs, only the RLC SDUs before the lost RLC SDU The ability to forward to the upper layer as it is, or the ability to forward all received RLC SDUs to the higher layer in order before the timer starts, even if there is a missing RLC SDU and the timer expires. Even if there is an actual RLC SDU, if a predetermined timer expires, it may include at least one of the functions of delivering all the RLC SDUs received so far to the upper layer in order.
- the NR RLC device may process the RLC PDUs in the order of receipt (regardless of the sequence number and sequence number, in the order of arrival) and deliver them to the PDCP device in out-of-sequence delivery.
- the NR RLC layer may not include a concatenation function and may perform the function at the NR MAC layer or replace it with a multiplexing function of the NR MAC layer.
- Out-of-sequence delivery of the NR RLC device delivers the RLC SDUs received from the lower layer to the upper layer immediately in any order.
- the original RLC SDU is divided into several RLC SDUs. And, if received, the function of reassembling and delivering the same, and storing the lost RLC PDUs by storing and sorting the RLC SN or PDCP SN of the received RLC PDUs.
- the NR MACs 1d-15 and 1d-30 may be connected to several NR RLC layer devices configured in one terminal, and a main function of the NR MAC may include some of the following functions. . Of course, it is not limited to the following example.
- the NR PHY layers 1d-20 and 1d-25 channel-code and modulate higher layer data, make OFDM symbols and transmit them over a wireless channel, or demodulate OFDM symbols received over a wireless channel.
- Channel decoding may be performed to deliver the higher layer.
- it is not limited to the above example.
- 1E is a diagram illustrating a procedure of performing RRC connection establishment with a base station when a UE establishes a connection with a network in a next generation mobile communication system according to an exemplary embodiment of the present disclosure.
- the base station may transmit an RRCConnectionRelease message to the terminal to switch the terminal to the RRC idle mode if the terminal that transmits or receives data in the RRC connection mode for a predetermined reason or there is no data transmission for a predetermined time (1e- 1). 01).
- a terminal hereinafter idle mode UE
- the base station may perform an RRC connection establishment process with the base station when data to be transmitted is generated.
- the terminal establishes reverse transmission synchronization with the base station through a random access procedure and transmits an RRCConnectionRequest message to the base station (1e-05).
- the RRCConnectionRequest message may include an identifier of the terminal and a reason for establishing a connection (establishmentCause).
- the base station transmits an RRCConnectionSetup message so that the terminal establishes an RRC connection (1e-10).
- the RRCConnectionSetup message may include at least one of configuration information for each logical channel, configuration information for each bearer, configuration information for the PDCP layer device, configuration information for the RLC layer device, and configuration information for the MAC layer device.
- configuration information of a PDCP layer device and a bearer identifier, a logical channel identifier, mapping information between a logical channel and a cell (frequency), cell group configuration information, or a threshold value to be used for a dual access technology are set.
- Dual connectivity and carrier aggregation may be configured for the terminal.
- the RRCConnectionSetup message may configure two RLC layer devices in the PDCP device configuration information to configure uplink or downlink packet redundancy transmission technology to the UE, and the first RLC layer device (primary RLC). entity and a second RLC entity may be designated as a logical channel identifier or an indicator.
- the packet redundancy transmission technique may be used in carrier aggregation, and may be used in dual connectivity.
- the RRCConnectionSetup message may set an initial state of a bearer (for example, a signaling radio bearer (SRB) or a data radio bearer (DRB) or a DRB (DRB)) in which a packet redundancy transmission technique is set to an activated state or an inactive state.
- a mapping relationship between each RLC layer device and cells may be configured in an RRCConnectionSetup message.
- the RRCConnectionSetup message may be set to connect or map a first RLC layer device with a primary cell (Pcell), and to connect or map a second RLC layer device with a secondary cell 1 (Scell 1) or Scell 2. Can be set.
- the RLC layer device configured to map the cell may transmit data only to the mapped cell.
- mapping information between QoS flows and bearers may be set through the RAPConnectionSetup message through configuration information of the SDAP layer device or PDCP layer device configuration information, and the SDAP layer device uses mapping information to map data received from a higher layer device to a mapping. Data can be delivered to the PDCP layer device set by the device.
- the RRCConnectionSetup message may indicate the maximum number of retransmissions allowed by the RLC layer device operating in the AM mode (Acknowledged Mode).
- the RRCConnectionSetup message stores RRC connection configuration information.
- the RRC connection is also called a signaling radio bearer (SRB), and may be used for transmitting and receiving an RRC message, which is a control message between the terminal and the base station.
- SRB signaling radio bearer
- the terminal that has established the RRC connection transmits an RRCConnetionSetupComplete message to the base station (1e-15).
- the RRCConnetionSetupComplete message may include a control message called SERVICE REQUEST, which the UE requests from the AMF or MME for bearer setup for a given service.
- the base station transmits the SERVICE REQUEST message contained in the RRCConnetionSetupComplete message to the AMF or MME (1e-20).
- the AMF or MME may determine whether to provide a service requested by the terminal.
- the AMF or MME sends an INITIAL CONTEXT SETUP REQUEST message to the base station (1e-25).
- the INITIAL CONTEXT SETUP REQUEST message may include information such as quality of service (QoS) information to be applied when setting a data radio bearer (DRB), and security related information (for example, security key and security algorithm) to be applied to the DRB.
- QoS quality of service
- DRB data radio bearer
- security related information for example, security key and security algorithm
- the base station exchanges a SecurityModeCommand message 1e-30 and a SecurityModeComplete message 1e-35 with the terminal to set security.
- the base station transmits an RRCConnectionReconfiguration message to the terminal (1e-40).
- the RRCConnectionReconfiguration message may include at least one of configuration information for each logical channel, configuration information for each bearer, configuration information for the PDCP layer device, configuration information for the RLC layer device, and configuration information for the MAC layer device.
- the RRCConnectionReconfiguration message is set up with the configuration information of the PDCP layer device and the bearer identifier or logical channel identifier or mapping information between the logical channel and the cell (frequency), cell group configuration information, or a threshold value to be used for the duplex connection technology.
- dual connectivity and carrier aggregation technology (Carrier aggregation) may be configured to the terminal.
- two RLC layer devices may be configured in the PDCP device configuration information to configure uplink or downlink packet redundancy transmission technology to the UE, and the first RLC layer device (primary RLC entity) and the second A secondary RLC entity may be designated as a logical channel identifier or an indicator.
- the packet redundancy transmission technique may be used in carrier aggregation technology, and may be used in dual connectivity technology.
- the RRCConnectionReconfiguration message may set an initial state of a bearer (for example, a signaling radio bearer (SRB) or a data radio bearer (DRB)) in which a packet redundancy transmission technique is set to an activated state or an inactive state.
- a mapping relationship between each RLC layer device and cells may be set in the RRCConnectionReconfiguration message.
- a first RLC layer device may be configured to connect or map a first RLC layer device to a Pcell (primary cell), and the second RLC layer device may be Scell. It can be set to connect or map with 1 (Secondary cell 1) or Scell 2.
- the RLC layer device configured to map the cell may transmit data only to the mapped cell.
- mapping information between QoS flows and bearers may be configured in the RRCConnectionReconfiguration message through configuration information of the SDAP layer device or PDCP layer device configuration information, and the SDAP layer device maps the data received from the higher layer device using the mapping information. Data can be delivered to the PDCP layer device set by the.
- the RRCConnectionReconfiguration message may indicate the maximum number of retransmissions allowed by the RLC layer device operating in the AM mode.
- the RRCConnectionReconfiguration message may include configuration information of the DRB to which the user data is to be processed, and the terminal applies the information to configure the DRB and transmits an RRCConnectionReconfigurationComplete message to the base station (1e-45). After completing the UE and DRB setup, the BS may transmit an INITIAL CONTEXT SETUP COMPLETE message to the AMF or MME and complete the connection (1e-50).
- the terminal transmits and receives data through the base station and the core network (1e-55, 1e-60).
- the data transmission process is largely comprised of three stages: RRC connection establishment, security establishment, and DRB establishment.
- the base station may transmit an RRC Connection Reconfiguration message to the terminal for a predetermined reason to update, add, or change a configuration (1e-65).
- the RRC Connection Reconfiguration message may include at least one of configuration information for each logical channel, configuration information for each bearer, configuration information for the PDCP layer device, configuration information for the RLC layer device, and configuration information for the MAC layer device.
- the RRC Connection Reconfiguration message sets the configuration information of the PDCP layer device and bearer identifier or logical channel identifier or mapping information between the logical channel and the cell (frequency), cell group configuration information, or a threshold value to be used for the dual access technology. Dual connectivity and carrier aggregation may be configured for the terminal.
- two RLC layer devices may be configured in the PDCP device configuration information to configure uplink or downlink packet redundancy transmission technology to the UE, and the first RLC layer device (primary RLC entity) and the first A secondary RLC entity of 2 may be designated as a logical channel identifier or an indicator.
- the packet redundancy transmission technique may be used in carrier aggregation technology, and may be used in dual connectivity technology.
- the RRC Connection Reconfiguration message may set an initial state of a bearer (eg, a signaling radio bearer (SRB) or a data radio bearer (DRB)) in which a packet redundancy transmission technique is set to an activated state or an inactive state.
- a mapping relationship between each RLC layer device and cells may be set in an RRC Connection Reconfiguration message.
- a first RLC layer device may be configured to be connected or mapped to a primary cell (Pcell), and a second RLC layer device may be configured. May be set to be connected or mapped to Scell 1 (Secondary cell 1) or Scell 2.
- the RLC layer device configured to map the cell may transmit data only to the mapped cell.
- the RRC Connection Reconfiguration message may be configured to map mapping information between QoS flows and bearers through configuration information of the SDAP layer device or PDCP layer device configuration information, and the SDAP layer device uses the mapping information to receive data received from a higher layer device. Data can be delivered to the PDCP layer device set by the mapping.
- the RRC Connection Reconfiguration message may indicate the maximum number of retransmissions allowed by the RLC layer device operating in the AM mode.
- 1F is a diagram illustrating a procedure in which a packet redundancy transmission technique is set and performed in an activated and deactivated state in a next generation mobile communication system according to an embodiment of the present disclosure.
- the UE may configure the packet transmission technique. If the packet redundancy transmission technique set by the RRC message is set in a carrier aggregation technology (CA), the UE has two RLC layer devices, that is, a first RLC layer, for a bearer or PDCP layer device in which the packet redundancy transmission technology is set.
- CA carrier aggregation technology
- the primary RLC entity 1f-05 and the secondary RLC entity 1f-10 may be configured.
- the PDCP layer device delivers only the first RLC layer device and transmits the packet to the lower RLC layer, but does not transmit the packet to the second RLC layer device. If the packet redundancy transmission technique is enabled, in uplink transmission, the PDCP layer device transmits the same packet to the lower two RLC layer devices (the first RLC layer device and the second RLC layer device) in duplicate. Can be. That is, the PDCP layer device may deliver one packet to the first RLC layer device, and duplicate the packet to deliver the same packet to the second RLC layer device.
- the MAC layer device 1f-15 receives data from the second RLC layer device and data received from the first RLC layer device having different logical channel identifiers.
- the received data can be loaded on different carriers and transmitted.
- the above-described procedure relates to uplink data transmission, and when receiving downlink data, the terminal should always be able to receive downlink data to which packet duplication transmission technology is applied. That is, although the uplink packet overlapping transmission technology is inactivated, the terminal cannot transmit the uplink data to the second RLC layer device redundantly, but the second RLC layer device 1f-10 uses the MAC for downlink data. It must be able to receive from the layer device, process it, and deliver it to the PDCP layer device.
- the UE may duplicate the uplink data in the PDCP layer device and transmit the uplink data to the first RLC layer device and the second RLC layer device. If the packet overlapping transmission scheme is set and deactivated in the UE, the UE does not perform the duplication procedure in the PDCP layer apparatus, and may transmit data only to the first RLC layer apparatus.
- the setting of the activated and deactivated state of the packet overlapping transmission technology may be determined by MAC control information.
- the UE is configured for two RLC layer devices, that is, a first RLC layer for a bearer or PDCP layer device for which the packet duplication transmission technique is set.
- the primary RLC entity 1f-15 and the secondary RLC entity 1f-20 may be configured.
- the PDCP layer device forwards the packet to the first RLC layer device and the second RLC layer device when the packet is delivered to the lower RLC layer in the uplink transmission. As described above, different data may be delivered to the first RLC layer device and the second RLC layer device without duplicate data processing.
- the PDCP layer apparatus may transmit the same packet to the lower two RLC layer apparatuses (the first RLC layer apparatus and the second RLC layer apparatus) in duplicate.
- the PDCP layer device may deliver one packet to the first RLC layer device, and duplicate the packet to deliver the same packet to the second RLC layer device.
- each MAC layer apparatus 1f-25 and 1f-30 may load data received from each RLC layer apparatus to a different base station and transmit the data to a different base station. have.
- the above-described procedure relates to uplink data transmission, and for downlink data reception, the terminal should always be able to receive downlink data to which packet duplication transmission technology is applied.
- the UE may transmit the uplink data in the PDCP layer device by overlapping the first RLC layer device and the second RLC layer device. If the packet overlapping transmission scheme is set and deactivated in the UE, the UE does not perform the duplication procedure in the PDCP layer device, and transmits different data to the first RLC layer device and the second RLC layer device like a split bearer. I can deliver it.
- the setting of the activated and deactivated state of the packet overlapping transmission technology may be determined by MAC control information.
- the UE If the predetermined data exceeds the maximum number of retransmissions in an RLC layer device connected to a Pcell (Primary cell) among two RLC layer devices, the UE triggers a radio link failure (RRF) to indicate that the RLF has occurred. You can report it to The RLC layer device stops transmitting. All other PDCP layer devices, RLC layer devices, and MAC layer devices can also stop transmissions and reestablish RRC connections.
- RRF radio link failure
- the connected RLC layer device may report that the data has exceeded the maximum number of retransmissions in an RRC message.
- the RRC message may include a logical channel identifier, a bearer identifier, and an indicator indicating whether it is a master cell group (MCG) or a secondary cell group (SCG) to indicate the RLC layer device that triggered the Scell RLF.
- MCG master cell group
- SCG secondary cell group
- a 1-bit indicator may indicate MCG when the value is 0, and SCG when 1.
- the UE may continue to transmit data in the PDCP layer device, RLC layer device, MAC layer device different from the RLC layer device.
- the required procedure may be performed according to the base station's response to the Scell RLF report.
- mapping between the RLC layer device and a new cell may be set.
- the reason why the UE triggers the Scell RLF and continues to transmit data is because a large transmission delay may occur when the RRC connection is reset as in the case where the RLF is declared. Because it can.
- the RLC layer device that triggered the Scell RLF also need to be able to continue to transmit data does not affect the reception of downlink data. This is because downlink data may continue to be transmitted only if the RLC status report for the downlink is continuously transmitted.
- the Pcell may have a PUCCH transmission resource, perform a frequency measurement report, and may mean a cell capable of exchanging control messages with a base station, and the Scell mainly refers to a cell for transmitting data. Can mean. However, it is not limited to the above example.
- the embodiments proposed in the present disclosure may be equally applicable to a case in which a general RLC layer apparatus in which a packet redundancy transmission technique is not set, is not connected to a Pcell, and only an association or mapping is set on Scells. .
- the RLC layer device operating in the AM mode calculates whether the maximum number of retransmissions is exceeded for the data to be retransmitted, and if the maximum number of retransmissions is exceeded, reports it as a higher layer device (for example, an RRC layer device).
- a higher layer device for example, an RRC layer device.
- the maximum number of retransmissions may be set in at least one of the steps 1e-10, 1e-40, or 1e-65 message as described in FIG. 1E, and the maximum number of retransmissions may be indicated by the maxRetxThreshold value.
- RETX_COUNT may be defined and operated for each data (for example, for each RLC SDU or RLC PDU) in order to record and store the number of retransmissions for each data. Whenever retransmission of each data is performed, increase the RETX_COUNT variable by 1 to store and manage the value.
- the higher layer device eg, RRC layer device
- the transmitting side of the AM RLC entity shall:
- the higher layer device sends an RLF if the RLC layer device is connected to the Pcell.
- an RRC message may be configured and transmitted to a base station.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the higher layer device may stop data transmission. If the RLC layer device is not connected to the Pcell and is only connected to the Scells, the higher layer device may configure an RRC message and report the Scell RLF to the base station.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the higher layer device when the number of retransmissions reaches a maximum number of retransmissions for a given data, when the RLC layer device reports to the higher layer device, and the RLC layer device is connected to the Pcell, the higher layer device triggers the RLF and The transmission stop may be indicated to the layer devices. However, when the RLC layer device is not connected to the Pcell and is connected only to the Scells, the higher layer device may trigger the Scell RLF and continue to transmit data without performing a special instruction for each layer device.
- the Scell RLF when the Scell RLF is triggered, since data transmission and retransmission are continued for the RLC layer device, the number of retransmissions of other data except for the data having reached the maximum retransmission number may reach the maximum retransmission number. Therefore, it may be reported to the higher layer device (eg, RRC layer device) that the number of retransmissions has reached the maximum number of retransmissions by another data of the RLC layer device. Therefore, the Scell RLF may be reported several times.
- the higher layer device eg, RRC layer device
- the procedure for configuring an RRC message and reporting a Scell RLF to a base station is performed. Can only be done once. If a response is not received from the base station even after a predetermined time after reporting the Scell RLF, the RRC layer apparatus may send the Scell RLF again. That is, when the timer is driven and there is no response to the Scell RLF until the timer expires and the timer expires, the RRC message for the Scell RLF can be transmitted again to the base station and reported again.
- a higher layer device for example, an RRC layer device
- the upper layer device defines and drives the Scell-RLF report prohibit timer so that the Scell-RLF report prohibit timer is driven, even when the SLC-RLF report prohibit timer indicates that the number of retransmissions has reached the maximum number of retransmissions.
- the Scell RLF may be reported after the timer expires without reporting the RLF, or the Scell RLF may be reported when an indication that the number of retransmissions has reached the maximum number of retransmissions after the Scell-RLF report prohibit timer expires.
- the RLC layer device operating in the AM mode calculates whether the maximum number of retransmissions is exceeded for the data to be retransmitted, and if the maximum number of retransmissions is exceeded, reports it as a higher layer device (for example, an RRC layer device).
- a higher layer device for example, an RRC layer device.
- the maximum number of retransmissions may be set in at least one of the steps 1e-10, 1e-40, or 1e-65 message as described in FIG. 1E, and the maximum number of retransmissions may be indicated by the maxRetxThreshold value.
- RETX_COUNT in order to record and store the number of retransmissions for each data, a variable called RETX_COUNT may be defined and operated for each data (for example, for each RLC SDU or RLC PDU).
- the RETX_COUNT variable is increased by 1 to store and manage the value.
- the higher layer device eg, RRC layer device
- the transmitting side of the AM RLC entity shall:
- the higher layer device reports the RLF if the RLC layer device is connected to the Pcell.
- the higher layer device reports the RLF if the RLC layer device is connected to the Pcell.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the higher layer device may stop data transmission. If the RLC layer device is not connected to the Pcell and is only connected to the Scells, the higher layer device may configure an RRC message and report the Scell RLF to the base station.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the higher layer device when the number of retransmissions reaches a maximum number of retransmissions for a given data, when the RLC layer device reports to the higher layer device, and the RLC layer device is connected to the Pcell, the higher layer device triggers the RLF and The transmission stop may be indicated to the layer devices. However, when the RLC layer device is not connected to the Pcell and is connected only to the Scells, the higher layer device may trigger the Scell RLF and continue to transmit data without performing a special instruction for each layer device.
- a higher layer device for example, an RRC layer device
- an RRC layer device reports a Scell RLF and no response is received from the base station even after a predetermined time has elapsed
- the RRC layer device or the RLC layer device is a Scell RLF or An indication that the number of retransmissions has reached the maximum number of retransmissions can be sent again. That is, if the timer is driven and there is no response to the Scell RLF until the timer expires and the timer expires, the RRC layer device may report again by transmitting an RRC message for the Scell RLF back to the base station.
- the RLC layer device may report to the higher layer device an indication that the number of retransmissions has reached the maximum number of retransmissions, and may report the Scell RLF back to the base station.
- the RLC layer device operating in the AM mode calculates whether the maximum number of retransmissions is exceeded for the data to be retransmitted, and if the maximum number of retransmissions is exceeded, reports it as a higher layer device (for example, an RRC layer device).
- a higher layer device for example, an RRC layer device.
- the maximum number of retransmissions may be set in at least one of steps 1e-10, 1e-40, or 1e-65 message as described in FIG. 1E, and the maximum number of retransmissions may be indicated by the maxRetxThreshold value.
- RETX_COUNT in order to record and store the number of retransmissions for each data, a variable called RETX_COUNT may be defined and operated for each data (for example, for each RLC SDU or RLC PDU). Whenever retransmission of each data is performed, increase the RETX_COUNT variable by 1 to store and manage the value.
- the higher layer device eg, RRC layer device
- the transmitting side of the AM RLC entity shall:
- the higher layer device reports the RLF if the RLC layer device is connected to the Pcell.
- the higher layer device may stop data transmission for each layer device. If the RLC layer device is not connected to the Pcell and is only connected to the Scells, the higher layer device may configure an RRC message and report the Scell RLF to the base station.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device may continue to transmit data.
- the RLC layer device reports to the higher layer device.
- the higher layer device triggers the RLF and The transmission stop may be indicated to the layer devices.
- the higher layer device may trigger the Scell RLF and continue to transmit data without performing a special instruction for each layer device.
- the Scell RLF when the Scell RLF is triggered, since data transmission and retransmission continue with respect to the RLC layer device, the maximum number of retransmissions except for the data having reached the maximum number of retransmissions may reach the maximum number of retransmissions. Therefore, it may be reported to the higher layer device (eg, RRC layer device) that the number of retransmissions has reached the maximum number of retransmissions by another data of the RLC layer device. Therefore, the Scell RLF may be reported several times.
- the higher layer device eg, RRC layer device
- the procedure for configuring an RRC message and reporting a Scell RLF to a base station is performed. Can only be done once. If a response is not received from the base station even after a predetermined time after reporting the Scell RLF, the RRC layer apparatus may send the Scell RLF again. That is, when the timer is driven and there is no response to the Scell RLF until the timer expires and the timer expires, the RRC message for the Scell RLF can be transmitted again to the base station and reported again.
- a higher layer device for example, an RRC layer device
- the upper layer device defines and drives the Scell-RLF report prohibit timer so that the Scell-RLF report prohibit timer is driven, even when the SLC-RLF report prohibit timer indicates that the number of retransmissions has reached the maximum number of retransmissions.
- Scell RLF can be reported after the timer expires without reporting the RLF, or Scell RLF can be reported when the indication that the number of retransmissions has reached the maximum number of retransmissions after the Scell-RLF report prohibit timer expires.
- the RLC layer device defines and operates a maximum retransmission number prohibit indication timer, so that the number of retransmissions reaches the maximum retransmission number in the RLC layer device while the maximum retransmission number prohibit indication timer is driven. Even if you do not report an indication to a higher layer device, you can report an indication after the Inhibit Reach Instruction Timer expires, or report an indication if the number of retransmissions reaches the maximum number of retransmissions after the Inhibit Reach Instruction Timer expires. have.
- the RLC layer device operating in the AM mode calculates whether the maximum number of retransmissions is exceeded for the data to be retransmitted, and if the maximum number of retransmissions is exceeded, reports it as a higher layer device (for example, an RRC layer device).
- a higher layer device for example, an RRC layer device.
- the maximum number of retransmissions may be set in at least one of steps 1e-10, 1e-40, or 1e-65 message, and the maximum number of retransmissions may be indicated by a maxRetxThreshold value.
- RETX_COUNT may be defined and operated for each data (for example, for each RLC SDU or RLC PDU) in order to record and store the number of retransmissions for each data. Whenever retransmission of each data is performed, increase the RETX_COUNT variable by 1 to store and manage the value.
- the RLC layer device (the RLC layer device retransmitting the data) has not previously reported that the number of retransmissions has reached the maximum number of retransmissions, the higher layer indicates that the number of retransmissions has reached the maximum number of retransmissions. Report to the device (eg RRC layer device).
- the transmitting side of the AM RLC entity shall:
- the higher layer device reports the RLF if the RLC layer device is connected to the Pcell.
- the higher layer device reports the RLF if the RLC layer device is connected to the Pcell.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the higher layer device may stop data transmission. If the RLC layer device is not connected to the Pcell and is only connected to the Scells, the higher layer device may configure an RRC message and report the Scell RLF to the base station.
- Each layer device eg, PDCP layer device, RLC layer device, or MAC layer device
- the RLC layer device reports to the higher layer device.
- the higher layer device triggers the RLF and The transmission stop may be indicated to the layer devices.
- the higher layer device may trigger the Scell RLF and continue to transmit data without performing a special instruction for each layer device.
- the number of retransmissions of other data except for the data having reached the maximum retransmission number may reach the maximum retransmission number. Therefore, when the number of retransmissions reaches the maximum number of retransmissions by another data of the RLC layer device, the upper layer only if the RLC layer device has not previously reported to the upper layer that the number of retransmissions has reached the maximum number of retransmissions. Reporting to a device (eg RRC layer device) can be avoided by unnecessarily reporting multiple times.
- a device eg RRC layer device
- the higher layer device may report back the Scell RLF and if the response is not received from the base station after a predetermined time elapses, then the RRC layer device may send the Scell RLF again. have. That is, when the timer is driven and there is no response to the Scell RLF until the timer expires and the timer expires, the higher layer device may report the RRC message for the Scell RLF again to the base station.
- the upper layer device defines and drives the Scell-RLF report prohibit timer so that the Scell-RLF report prohibit timer is driven, even when the SLC-RLF report prohibit timer indicates that the number of retransmissions has reached the maximum number of retransmissions.
- Report Scell-RLF after the Scell-RLF report prohibit timer expires without reporting an RLF, or Scell-RLF when an indication that the number of retransmissions has reached the maximum number of retransmissions after the prohibit Scell-RLF report expires. Can be.
- the RLC layer device defines and operates a maximum retransmission number prohibit indication timer, so that the number of retransmissions reaches the maximum retransmission number in the RLC layer device while the maximum retransmission number prohibit indication timer is driven. Even if you do not report an indication to a higher layer device, you can report an indication after the Inhibit Reach Instruction Timer expires, or report an indication if the number of retransmissions reaches the maximum number of retransmissions after the Inhibit Reach Instruction Timer expires. have.
- FIG. 1G illustrates a terminal operation according to some embodiments of the present disclosure.
- 1G illustrates an operation based on the fourth embodiment of the above-described embodiments as an example, and the terminal of the present disclosure may operate according to at least one of the first to fourth embodiments.
- the operation may be performed by a combination of some or all of the embodiments.
- the terminal if the number of retransmissions for a certain data reaches the maximum number of retransmissions in the RLC layer device operating in the AM mode of the terminal 1g-01 (1g-05), the terminal has a maximum number of retransmissions of the RLC layer device. It is checked whether the upper layer device (eg, RRC layer device) has previously instructed that the number of retransmissions has been reached (1g-10). That is, the UE may notify or report to the higher layer device that the number of retransmissions of the RLC layer device has reached the maximum number of retransmissions.
- the upper layer device eg, RRC layer device
- the UE If the UE has previously instructed (or notified or reported) the UE no longer indicates to the RLC layer apparatus that the number of retransmissions has reached the maximum number of retransmissions (1g-15). If not previously indicated, the UE indicates to the RLC layer apparatus that the number of retransmissions has reached the maximum number of retransmissions (1g-20). In addition, the terminal does not perform retransmission anymore for data whose retransmission number reaches the maximum retransmission number (1g-25). The terminal may continue to perform new transmission and retransmission for other data (1g-30).
- the present disclosure provides a method for calculating whether to apply a packet redundancy transmission technique in a next generation mobile communication system or for exceeding a maximum number of retransmissions for which data in an RLC layer device configured to transmit data to an Scell.
- a method and an efficient method for reporting Scell RLF are proposed to prevent a malfunction of the terminal and not to report the Scell RLF unnecessarily multiple times.
- 1H illustrates a structure of a terminal according to some embodiments of the present disclosure.
- the terminal includes a radio frequency (RF) processor 1h-10, a baseband processor 1h-20, a storage unit 1h-30, and a controller 1h-40.
- RF radio frequency
- the terminal may include fewer or more than the configuration shown in Figure 1h.
- the RF processor 1h-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1h-10 up-converts the baseband signal provided from the baseband processor 1h-20 to an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Downconvert to signal.
- the RF processor 1h-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. have.
- FIG. 1H only one antenna is illustrated, but the terminal may include a plurality of antennas.
- the RF processor 1h-10 may include a plurality of RF chains.
- the RF processor 1h-10 may perform beamforming.
- the RF processor 1h-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
- the RF processor 1h-10 may perform MIMO (Multi Input Multi Output), and may receive multiple layers when performing the MIMO operation.
- the RF processor 1h-10 performs reception beam sweeping by appropriately setting a plurality of antennas or antenna elements under the control of the controller 1h-40, or the direction and the beam direction of the reception beam so that the reception beams are coordinated with the transmission beams. The width can be adjusted.
- the baseband processor 1h-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 1h-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1h-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1h-10. For example, in accordance with an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 1h-20 generates complex symbols by encoding and modulating a transmission bit stream, and maps the complex symbols to subcarriers.
- OFDM orthogonal frequency division multiplexing
- OFDM symbols are configured through an inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
- IFFT inverse fast Fourier transform
- CP cyclic prefix
- the baseband processor 1h-20 divides the baseband signal provided from the RF processor 1h-10 into OFDM symbol units and subcarriers through fast Fourier transform (FFT) operations. After restoring the mapped signals, the received bit stream may be restored through demodulation and decoding.
- FFT fast Fourier transform
- the baseband processor 1h-20 and the RF processor 1h-10 may transmit and receive signals as described above.
- the baseband processor 1h-20 and the RF processor 1h-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator.
- at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include a plurality of communication modules to support a plurality of different radio access technologies.
- at least one of the baseband processor 1h-20 and the RF processor 1h-10 may include different communication modules to process signals of different frequency bands.
- different radio access technologies may include an LTE network, an NR network, and the like.
- the different frequency bands may include a super high frequency (SHF) (eg 2.2 gHz, 2ghz) band and a millimeter wave (eg 60 GHz) band.
- SHF super high frequency
- the terminal may transmit and receive a signal to and from the base station using the baseband processor 1j-20 and the RF processor 1j-10, and the signal may include control information and data.
- the storage unit 1h-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
- the storage unit 1h-30 may provide the stored data at the request of the controller 1h-40.
- the storage unit 1h-30 may be configured with a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like.
- the storage unit 1h-30 may include a plurality of memories.
- the storage unit 1h-30 may store a program for performing a wireless communication method for reporting the aforementioned Scell RLF.
- the controller 1h-40 controls the overall operations of the terminal.
- the controller 1h-40 transmits and receives a signal through the baseband processor 1h-20 and the RF processor 1h-10.
- the control unit 1h-40 also records and reads data in the storage unit 1h-40.
- the controller 1h-40 may include at least one processor.
- the controller 1h-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
- CP communication processor
- AP application processor
- at least one configuration in the terminal may be implemented with one chip.
- 1I illustrates a block configuration of a transmission / reception point (TRP) in a wireless communication system according to some embodiments of the present disclosure.
- the base station includes an RF processor 1i-10, a baseband processor 1i-20, a backhaul communication unit 1i-30, a storage unit 1i-40, and a controller 1i-50. It is composed. Of course, it is not limited to the above examples and the TRP may include fewer or more than the configuration shown in FIG. 1I.
- the RF processor 1i-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 1i-10 up-converts the baseband signal provided from the baseband processor 1i-20 into an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Can be downconverted to a signal.
- the RF processor 1i-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In FIG. 1I, only one antenna is illustrated, but the RF processor 1i-10 may include a plurality of antennas.
- the RF processor 1i-10 may include a plurality of RF chains.
- the RF processor 1i-10 may perform beamforming. For beamforming, the RF processor 1i-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
- the RF processor 1i-10 may perform a downlink MIMO operation by transmitting one or more layers.
- the baseband processor 1i-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the first wireless access technology. For example, during data transmission, the baseband processor 1i-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 1i-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 1i-10. For example, according to the OFDM scheme, during data transmission, the baseband processor 1i-20 generates complex symbols by encoding and modulating a transmission bit stream, maps the complex symbols to subcarriers, and then executes an IFFT operation and Compose OFDM symbols through CP insertion.
- the baseband processor 1i-20 divides the baseband signal provided from the RF processor 1i-10 into OFDM symbol units and restores signals mapped to subcarriers through an FFT operation.
- the received bit stream may be restored by performing demodulation and decoding.
- the baseband processor 1i-20 and the RF processor 1i-10 may transmit and receive signals as described above. Accordingly, the baseband processor 1i-20 and the RF processor 1i-10 may be referred to as a transmitter, a receiver, a transceiver, a communication unit, or a wireless communication unit.
- the base station may transmit and receive signals to and from the terminal using the baseband processor 1i-20 and the RF processor 1i-10, and the signal may include control information and data.
- the communication unit 1i-30 may provide an interface for communicating with other nodes in the network. According to some embodiments, the communication unit 1i-30 may be a backhaul communication unit.
- the storage unit 1i-40 stores data such as a basic program, an application program, and setting information for the operation of the base station.
- the storage unit 1i-40 may store information on a bearer allocated to the connected terminal, a measurement result reported from the connected terminal, and the like.
- the storage unit 1i-40 may store information that is a criterion for determining whether to provide or terminate multiple connections to the terminal.
- the storage unit 1i-40 provides the stored data according to a request of the controller 1i-50.
- the storage unit 1i-40 may be configured with a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like.
- the storage 1s-40 may be configured of a plurality of memories. According to some embodiments, the storage unit 1i-40 may store a program for performing a wireless communication method for reporting the aforementioned Scell RLF.
- the controller 1i-50 controls the overall operations of the base station. For example, the controller 1i-50 transmits and receives signals through the baseband processor 1i-20 and the RF processor 1i-10 or through the communication unit 1i-30. In addition, the controller 1i-50 records and reads data in the storage 1i-40. To this end, the controller 1i-50 may include at least one processor. In addition, at least one configuration in the TRP may be implemented in one chip.
- FIG. 2A is a diagram illustrating a structure of an LTE system according to some embodiments of the present disclosure.
- a wireless communication system includes a plurality of base stations (ENBs) 2a-05, 2a-10, 2a-15, 2a-20, and a mobility management entity (MME) 2a-20. It is composed of S-GW (Serving-Gateway) 2a-30.
- the user equipment (UE or UE) 2a-35 is externally connected via the base stations 2a-05 (2a-10) (2a-15) (2a-20) and S-GW 2a-30. Connect to the network.
- the base stations 2a-05, 2a-10, 2a-15, and 2a-20 provide a wireless connection to terminals accessing the network as access nodes of the cellular network. That is, the base station (2a-05) (2a-10) (2a-15) (2a-20) collects the state information such as the buffer state, available transmission power state, channel state of the terminal to service the traffic of the user Supports the connection between the terminal and the core network (CN) by scheduling.
- the MME 2a-25 may be connected to a plurality of base stations as a device for various control functions as well as mobility management function for the terminal, and the S-GW 2a-30 may be a device for providing a data bearer. .
- the MME 2a-25 and the S-GW 2a-30 may further perform authentication, bearer management, and the like for the terminal accessing the network, and the base station 2a-05 (2a). It can process packets arriving from -10) (2a-15) (2a-20) or packets to be forwarded to base stations (2a-05) (2a-10) (2a-15) (2a-20).
- 2B is a diagram illustrating a radio protocol architecture in LTE and NR systems for reference of the present disclosure.
- the radio protocol of the LTE system is PDCP (Packet Data Convergence Protocol) (2b-05) (2b-40) and RLC (Radio Link Control) (2b-10) (2b-35) at the terminal and the ENB, respectively. ), MAC (Medium Access Control) (2b-15) (2b-30).
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- the MAC layer there is a MAC entity corresponding to the number of base stations configured at the same time in one terminal. For example, when communicating with one base station, there is only one MAC entity, and if the terminal uses dual connectivity technology that simultaneously communicates with two base stations, two MAC entities in the terminal for each base station. Is present.
- Packet Data Convergence Protocol (2b-05) (2b-40) is responsible for operations such as IP header compression / restore, and is referred to as Radio Link Control (hereinafter referred to as RLC) ( 2b-10) (2b-35) reconfigure the PDCP Packet Data Unit (PDU) to an appropriate size.
- RLC Radio Link Control
- MAC (2b-15) (2b-30) is connected to several RLC layer devices configured in one terminal, and may perform an operation of multiplexing the RLC PDUs to the MAC PDU and demultiplexing the RLC PDUs from the MAC PDU.
- the physical layer (2b-20) (2b-25) channel-codes and modulates higher layer data, converts the OFDM layer into OFDM symbols and transmits them to the wireless channel, or demodulates and channel decodes the OFDM symbols received through the wireless channel to the higher layer.
- the transfer operation can be performed.
- the physical layer may use HARQ (Hybrid ARQ) for additional error correction, and the receiving end may transmit whether or not to receive the packet transmitted by the transmitting end in 1 bit. This is called HARQ ACK / NACK information.
- Downlink HARQ ACK / NACK information for uplink data transmission is transmitted through PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel in case of LTE, and PDCCH, which is a channel for downlink / uplink resource allocation in case of NR.
- Physical Dedicated Control CHannel may determine whether retransmission is necessary or whether new transmission should be performed through scheduling information of the corresponding UE. This is because NR applies asynchronous HARQ.
- uplink HARQ ACK / NACK information for downlink data transmission may be transmitted through a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) physical channel.
- PUCCH is transmitted in the uplink of the PCell to be described later, but if the terminal supports, the base station may be further transmitted to the terminal to be described later SCell, this is called a PUCCH SCell.
- a radio resource control (RRC) layer is present above the PDCP layer of the terminal and the base station, respectively, and the RRC layer may transmit and receive a control message related to access and measurement for radio resource control.
- RRC radio resource control
- the physical (PHY) layer may be configured to correspond to one or a plurality of frequencies / carriers, and a technique of setting and using a plurality of frequencies simultaneously is called a carrier aggregation technique (hereinafter referred to as CA).
- CA technology means that only one carrier is used for communication between a terminal (or user equipment, UE) and a base station (E-UTRAN NodeB, eNB), and a subcarrier using an additional main carrier and one or more subcarriers. The amount of transmission can be dramatically increased by the number of.
- a cell in a base station using a primary carrier is called a main cell or a primary cell (PCell), and a cell in a base station using a subcarrier is called a subcell or a secondary cell (SCell).
- PCell primary cell
- SCell secondary cell
- 2C is a diagram illustrating downlink and uplink channel frame structures when performing communication based on a beam in a NR system according to some embodiments of the present disclosure.
- the base station 2c-01 may transmit a signal in the form of a beam to transmit wider coverage or a stronger signal (2c-11) (2c-13) (2c-15) (2c-17).
- the terminal 2c-03 in the cell must transmit and receive data using a specific beam transmitted by the base station (beam # 1 (2c-13) in FIG. 2c).
- the state of the terminal is divided into a dormant mode (RRC_IDLE) and a connected mode (RRC_CONNECTED) according to whether the terminal is connected to the base station. Therefore, the base station may not know the location of the terminal in the dormant mode.
- the terminal is a synchronization block (SSB) (2c-21) (2c-23) (2c-25) (2c-25) (2c-27) transmitted by the base station Receive them.
- the SSB is an SSB signal transmitted periodically according to a period set by the base station.
- Each SSB is a primary synchronization signal (PSS) 2c-41 and a secondary synchronization signal (SSS) 2c-. 43), and is divided into physical broadcast channels (PBCH).
- PSS primary synchronization signal
- SSS secondary synchronization signal
- FIG. 2C it is assumed that an SSB is transmitted for each beam.
- SSB # 0 (2c-21) transmits using beam # 0 (2c-11)
- SSB # 1 (2c-23) transmits using beam # 1 (2c-13).
- beam # 2 (2c-25) is transmitted
- SSB # 3 (2c-27) is transmitted.
- the terminal in the dormant mode is located in beam # 1. However, even when the terminal in the connected mode performs random access, the terminal selects the SSB received at the time of performing the random access.
- the terminal 2c-03 receives the SSB # 1 (2c-23) transmitted to the beam # 1 (2c-13).
- the UE Upon receiving SSB # 1 (2c-23), the UE acquires a Physical Cell Identifier (PCI) of the base station through PSS and SSS, and receives the PBCH identifier (ie, # 1) of the currently received SSB.
- PCI Physical Cell Identifier
- PBCH identifier ie, # 1
- SFN System Frame Number
- the PBCH includes a master information block (MIB), and the MIB includes information on where to receive a system information block type 1 (SIB1) for broadcasting more detailed cell configuration information.
- SIB1 system information block type 1
- the UE can know the total number of SSBs transmitted by the base station and can perform random access to transition to the connected mode state (preamble, which is a physical signal specifically designed to match uplink synchronization, more precisely).
- the location of the Physical Random Access CHannel (PRACH) occasion (which assumes a scenario allocated every 1ms in FIG. 2c, and (2c-30) to (2c-39)) can be determined with reference to FIG. 2c. .
- the UE can know which PRACH occasions among the PRACH occasions 2c-30 to 2c-39 are mapped to which SSB index based on the SIB1 information. For example, it is assumed in FIG. 2C that a scenario is allocated every 1 ms, and a scenario in which 1/2 SSBs are allocated per PRACH occcasion (that is, two PRACH occsions per SSB) is assumed. Accordingly, FIG. 2C illustrates a scenario in which two PRACH occasions are allocated to each SSB from the start of the PRACH occsion starting according to the SFN value.
- PRACH Occasion (2c-30) (2c-31) may be allocated for SSB # 0
- PRACH Occasion (2c-32) (2c-33) may be allocated for SSB # 1.
- PRACH Occasion may be allocated for the first SSB (2c-38) (2c-39).
- the UE recognizes the location of the PRACH occasion (2c-32) (2c-33) for SSB # 1 and is the fastest PRACH Occasion at the present time among the PRACH Occasion (2c-32) (2c-33) corresponding to SSB # 1. Transmits a random access preamble (eg, (2c-32)). Since the base station has received the preamble in the PRACH Occasion (2c-32), it can be seen that the terminal selected the SSB # 1 and transmitted the preamble, and transmits and receives data through the beam corresponding to the SSB # 1 when performing random access can do.
- a random access preamble eg, (2c-32)
- the terminal When the UE in the connected state moves from the current (source) base station to the target (target) base station due to handover or the like, the terminal performs random access at the target base station, and selects SSB and transmits random access as described above. To perform the operation.
- the source base station transmits a handover command to the terminal to move from the source base station to the target base station, and at this time, the terminal at the target base station assigned by the target base station in the handover command message transmitted by the source base station
- a dedicated UE dedicated random access preamble identifier may be included for each SSB of the target BS so as to be used when performing random access.
- the base station may not allocate a dedicated random access preamble identifier for all beams in consideration of the current location of the terminal. Accordingly, some SSBs may not be assigned a dedicated random access preamble (eg, For example, dedicated random access preamble allocation to Beam # 2 and # 3 only). If the dedicated random access preamble is not allocated to the SSB selected for the preamble transmission, the UE randomly selects a contention-based random access preamble and performs random access. For example, in FIG. 2C, the UE initially performs random access by being located in Beam # 1, but after failing, may transmit a dedicated preamble by being located in Beam # 3 when transmitting the random access preamble again.
- a dedicated random access preamble identifier for all beams in consideration of the current location of the terminal. Accordingly, some SSBs may not be assigned a dedicated random access preamble (eg, For example, dedicated random access preamble allocation to Beam # 2 and # 3 only). If the dedicated random access pre
- a contention-based random access procedure and a contention-free random access procedure are mixed according to whether a dedicated random access preamble is allocated to a selected SSB for each preamble transmission. Can be.
- FIG. 2D is a diagram illustrating a competition and non-competition based random access procedure performed by a UE in a situation such as handover to a base station according to an embodiment of the present disclosure.
- the random access procedure includes a contention-based random access procedure and a contention-free random access procedure.
- a procedure for allocating a dedicated random access resource to enable a base station to perform a contention-free random access to a terminal is random access.
- the dedicated random access resource may be a PRACH resource on a specific preamble index and / or a specific time / frequency.
- information for allocating dedicated random access resources may be allocated through a PDCCH or transmitted through a message of an RRC layer.
- a message such as RRCReconfiguration (for example, in case of handover) may be used.
- the terminal transmits a random access preamble through the corresponding random access resource.
- the terminal transmits a random access preamble through the corresponding random access resource.
- the non-competition based random access if there is a preamble transmitted by the UE in the RAR message to be described later, it is determined that the random access is successfully completed, and the random access procedure is terminated.
- the terminal 2d-01 first moves to the target base station 2d-03, and then determines which beam should transmit and receive data including random access through, and selects the SSB based on the determination (2d-). 63).
- the base station transmits a predetermined threshold as the configuration information in the SIB1 or the handover message, and the terminal selects one of the SSBs whose signal strength of the SSB received by the terminal exceeds the threshold. For example, in FIG. 2C, the terminal receives all of SSB # 0, SSB # 1, and SSB # 2, but only the signal strength of SSB # 1 exceeds the threshold, and the signal strength of SSB # 0 and SSB # 2 is set to the threshold.
- the terminal may select SSB # 1.
- the threshold may be set to a message of the RRC layer directly provided to the SIB1 or the UE, and may be indicated by a value of RSRP (Reference Signal Received Power) of the SSB or RSRP of the CSI-RS, such as rsrp-ThresholdSSB or rsrp-ThresholdCSI-RS. have.
- RSRP Reference Signal Received Power
- the PRACH Occasion mapped to the selected SSB can be known, and the UE transmits a random access preamble to the corresponding PRACH Occasion to the base station (2d-11).
- a dedicated preamble is not allocated to SSB # 1
- contention-based random access may be performed. That is, one of the contention-based preamble identifiers may be randomly selected and transmitted (assuming that #N is selected and transmitted).
- one or more UEs may simultaneously transmit a random access preamble with PRACH Occasion. That is, other UEs may also randomly select one and transmit it to the corresponding resource, and may select the preamble #N in the same manner.
- PRACH resources may span one subframe, or only some symbols within one subframe may be used.
- the information on the PRACH resource may be included in the system information broadcasted by the base station or configuration information included in the handover command. Accordingly, the UE may know which time frequency resource should be transmitted according to the information on the PRACH resource. .
- the random access preamble may have a plurality of preamble identifiers (index) according to a standard in a specific sequence specially designed to be received even if transmitted before being completely synchronized with the base station. If there are a plurality of preamble identifiers, the preamble transmitted by the terminal may be randomly selected by the terminal or may be a specific preamble designated by the base station.
- the terminal selects a PRACH occasion based on the specific signal to be measured instead of the SSB.
- the specific signal to be measured may be SSB or CSI-RS (Channel State Information Reference Signal).
- the terminal may select a PRACH occasion mapped to the SSB or CSI-RS of the target base station included in the handover command, and the terminal sets the received signal Is determined to determine which PRACH occasion to transmit the random access preamble.
- the base station When the base station receives a preamble transmitted by the terminal 2d-01 (or a preamble transmitted by another terminal), the base station transmits a random access response message (hereinafter referred to as RAR) to the terminal.
- RAR random access response message
- the RAR message may include uplink transmission timing correction information, uplink resource allocation information and temporary terminal identifier information to be used in a later step, including identifier information of the preamble used in step (2d-11).
- the identifier information of the preamble is, for example, when a plurality of terminals transmit different preambles and attempt random access in step (2d-11), the RAR message transmitted by the base station is for any preamble. It may be included to indicate whether it is a response message.
- the uplink resource allocation information is detailed information of a resource to be used by the terminal, the physical location and size of the resource, a modulation and coding scheme (MCS) used during transmission, and power adjustment information during transmission. Etc. may be included.
- MCS modulation and coding scheme
- the temporary terminal identifier information is transmitted for use for this purpose, since the terminal does not have an identifier assigned by the base station for communication with the base station when the terminal that transmits the preamble is initially connected. Is a value.
- the RAR message should be transmitted within a predetermined period starting after a predetermined time after the UE transmits a preamble, and the predetermined period is referred to as a 'RAR window' (2d-51) (2d-53).
- the RAR window starts the RAR window from a point in time after the first preamble is transmitted.
- the predetermined time may have a subframe unit (2 ms) or less.
- the length of the RAR window may be set in the system information message or the handover command message broadcast by the base station.
- the base station schedules the corresponding RAR message through the PDCCH, and scheduling information is scrambled using a random access-radio network temporary identifier (RA-RNTI).
- the RA-RNTI is mapped to the PRACH resource used to transmit the random access preamble message (2d-11), and the UE which transmits the preamble to the specific PRACH resource attempts to receive the PDCCH based on the corresponding RA-RNTI to correspond to the RAR message. Determine whether there is. If the RAR message is a response to the preamble transmitted by the UE in step (2d-11) as shown in FIG. 2D, the RA-RNTI used in the RAR message scheduling information indicates information on the step (2d-11) transmission. It may include.
- the RA-RNTI can be calculated by the following formula:
- RA-RNTI 1 + s_id + 14 ⁇ t_id + 14 ⁇ 80 ⁇ f_id + 14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id
- s_id is an index corresponding to the first OFDM symbol in which the preamble transmission started in step (2d-11) has a value of 0 ⁇ s_id ⁇ 14 (that is, the maximum number of OFDM in one slot).
- t_id is an index corresponding to the first slot in which the preamble transmission started in step (2d-11) has a value 0 ⁇ t_id ⁇ 80 (that is, the maximum number of slots in one system frame (20 ms)).
- f_id indicates the number of PRACH resources on which the preamble transmitted in step (2d-11) has been transmitted on frequency, which has a value of 0 ⁇ f_id ⁇ 8 (that is, the maximum number of PRACHs on frequency within the same time).
- NUL basic uplink
- SUL supplementary uplink
- the UE includes a response to the preamble #N transmitted by the UE in the corresponding message. Accordingly, the UE matches the Msg3 buffer (Msg1 preamble in the competition-based random access, Msg2 in the preamble Msg2, and then Msg3 in the uplink after the Msg3 buffer in accordance with the uplink resource size for Msg3 allocated to the RAR message, and then A message received in the downlink is called Msg4, and a buffer for storing data to be transmitted to Msg3 is called an Msg3 buffer.
- Msg3 buffer Msg1 preamble in the competition-based random access, Msg2 in the preamble Msg2
- C-RNTI intra-cell identifier
- An uplink resource received in the RAR including a C-RNTI MAC CE (control element (MAC CE) is a control message of the MAC layer) including C-RNTI information for indicating that the UE performing the random access is the present UE.
- C-RNTI intra-cell identifier
- An uplink resource received in the RAR including a C-RNTI MAC CE (control element (MAC CE) is a control message of the MAC layer) including C-RNTI information for indicating that the UE performing the random access is the present UE.
- data is generated along with the handover completion message and transmitted (2d-13).
- the terminal assumes a scenario in which the transmission of Msg3 fails (2d-13). That is, the terminal transmits Msg3 and starts the ra-ContentionResolutionTimer timer. If the response to the transmitted Msg3 does not arrive until the ra-ContentionResolutionTimer timer expires (2d-73), the terminal transmits Msg3 correctly. If not, the procedure of transmitting the random access preamble is started again.
- the terminal selects the SSB again at that time in order to retransmit the preamble (2d-65).
- the selected SSB is Beam # 3 in FIG. 2C. That is, it is assumed that when the terminal receives the handover command, as described above, the preamble identifier M for SSB # 3.
- the UE retransmits the dedicated preamble to the PRACH occasion corresponding to SSB # 3 (2d-15), waits for a response (2d-53), and receives the RAR message again (2d-23). Since the UE performs a non-competition based random access that performs random access using a dedicated preamble, it is assumed that the UE successfully completes random access when receiving only the RAR.
- the terminal can transmit the uplink to the corresponding resource even if the random access is already successful (2d-75).
- the UE has already filled data in the Msg3 buffer to transmit Msg3 in order to perform the previous contention-based random access. If data exists in the Msg3 buffer, the terminal should transmit it to the physical layer as it is. For example, if the uplink resource allocation received by the RAR (2d-21) received during contention based random access is 56 bytes, the data in the Msg3 buffer is made based on 56 bytes. If the contention-based random access does not succeed, and then performs the contention-free random access according to the selected SSB / CSI-RS, the base station may allocate a much larger size to Msg2 in Msg2 (for example, 200 bytes). ). In this case, the terminal cannot transmit the packet data unit (PDU) in the Msg3 buffer already generated, and needs to be solved.
- PDU packet data unit
- FIG. 2E is a diagram illustrating a terminal operating procedure according to Embodiment 1 of a method of generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- the UE first performs a contention-based random access procedure for handover in a state of being connected (2e-03). If the random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies a condition set by the base station (2e-07). If there is the corresponding SSB / CSI-RS, one of the corresponding SSB / CSI-RS is selected and non-competition based random access is performed with the preamble allocated to the SSB / CSI-RS (2e-09).
- the UE determines the following to transmit data to the uplink resource allocated in the RAR message:
- the UE determines that the RAR message is not the first RAR successfully received in the random access procedure, and that the size of the MAC PDU stored in the Msg3 buffer and the size of the uplink resource allocation received in the RAR message are different (or received in the RAR message). If it is determined that the size of the uplink resource allocation is larger) (2e-11), the UE regenerates the MAC PDU according to the size of the uplink resource allocation received in the RAR message and stores the MAC PDU again in the Msg3 buffer (2e-13). ). The UE may regenerate a portion of the MAC subPDUs (detail units constituting the MAC PDUs) stored in the existing Msg3 buffer and include a portion thereof.
- the terminal may regenerate the MAC PDU including the handover complete RRC message.
- the terminal may include the case of the Buffer Status Report (BSR) MAC CE for reporting the buffer status for transmitting the uplink data of the terminal in the regenerating MAC PDU, the MAC CE of the same as the above-mentioned C-RNTI MAC CE The case does not need to be included in Msg3 generated after non-competitive random access (since the base station already knows who has transmitted the preamble).
- BSR Buffer Status Report
- PHR Power Headroom Report
- the terminal determines whether the packet is stored in the Msg 3 buffer, and if the packet is stored, the terminal transmits the packet in the Msg3 buffer to the uplink resource received in the RAR message (2e-15).
- FIG. 2F is a diagram illustrating an operation procedure of a terminal according to Embodiment 2 of a method for generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- FIG. 2F as shown in the example of FIG. 2D, it is assumed that a contention-based random access procedure is first performed for handover in a state of being connected (2f-03). If the random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies the condition set by the base station (2f-07). If there is the corresponding SSB / CSI-RS, one of the SSB / CSI-RS is selected and non-competition based random access is performed with a preamble allocated to the SSB / CSI-RS (2f-09).
- the UE succeeds in the non-competition based random access, and determines whether the RAR message reception for the preamble is successful (2f-11).
- a packet is taken from the Msg3 buffer to transmit it (2f-13). If it is determined that the size of the obtained packet is different in the size of the uplink resource allocation received in the RAR message (or the size of the uplink resource allocation received in the RAR message is larger) (2f-15), the UE receives the RAR message The MAC PDU is regenerated according to the size of the uplink resource allocation received by the UE (2f-17).
- the UE regenerates the MAC PDU according to the size of the uplink resource allocation received in the RAR message (2f-17).
- the terminal may regenerate a portion of the MAC subPDU except for a portion of the MAC subPDU to be transmitted in the existing Msg3 buffer. For example, the terminal may regenerate the MAC PDU including the handover complete RRC message.
- the terminal may include the case of the Buffer Status Report (BSR) MAC CE for reporting the buffer status for transmitting the uplink data of the terminal in the regenerating MAC PDU, the MAC CE of the same as the above-mentioned C-RNTI MAC CE The case does not need to be included in Msg3 generated after non-competitive random access (since the base station already knows who has transmitted the preamble).
- BSR Buffer Status Report
- PHR Power Headroom Report
- the terminal regenerates or transmits the packet (MAC PDU) obtained in the Msg3 buffer to the uplink resource received in the RAR message according to the above procedure (2f-15).
- FIG. 2G is a diagram illustrating a terminal operation procedure according to Embodiment 3 of a method of generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- the UE first performs a contention-based random access procedure for handover in a state of being connected (2g-03). If the random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies the condition set by the base station (2g-07). If there is an SSB / CSI-RS, one of the SSB / CSI-RSs is selected and a non-competition based random access is performed with a preamble allocated to the SSB / CSI-RS (2g-09).
- the UE determines the following to transmit data to the uplink resource allocated in the RAR message:
- the size of the MAC PDU stored in the Msg3 buffer and the size of the uplink resource allocation received in the RAR message are different (or received in the RAR message). If it is determined that the size of one uplink resource allocation is larger (2g-11), the UE determines from the RAR message from a packet stored in the Msg3 buffer at the Multiplexing and Assembly entity (ie, an entity other than the Msg3 buffer) in the UE. The MAC PDU is regenerated according to the received uplink resource allocation size (2g-15), and the Msg3 buffer is deleted (2g-17).
- the UE may instruct to regenerate a portion including a portion of the MAC subPDU to be transmitted in the existing Msg3 buffer. For example, the UE may instruct to regenerate the MAC PDU including the handover complete RRC message.
- the terminal may include the case of the Buffer Status Report (BSR) MAC CE for reporting the buffer status for transmitting the uplink data of the terminal in the regenerating MAC PDU, the MAC CE of the same as the above-mentioned C-RNTI MAC CE The case does not need to be included in Msg3 generated after non-competitive random access (since the base station already knows who has transmitted the preamble).
- BSR Buffer Status Report
- PHR Power Headroom Report
- the terminal determines whether the packet is stored in the Msg 3 buffer. In the case of deleting the Msg 3 buffer according to step (2g-17) according to the above-described procedure, since the UE has already instructed packet generation to the Multiplexing and assembly entity, the UE acquires a MAC PDU from the entity and receives the MAC PDU from the RAR message. Transmit to uplink resource (2g-19). Otherwise, the packet stored in the Msg3 buffer is transmitted as it is to the uplink resource received in the RAR message (2g-21).
- FIG. 2H is a diagram illustrating a terminal operation procedure according to Embodiment 4 of a method of generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- FIG. 2H as shown in the example of FIG. 2D, it is assumed that a contention-based random access procedure is first performed for handover in a state of being connected (2h-03). If the corresponding random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies the condition set by the base station (2h-07). If there is the corresponding SSB / CSI-RS, one of the SSB / CSI-RS is selected and non-competition based random access is performed with a preamble allocated to the SSB / CSI-RS (2h-09).
- the UE succeeds in the non-competition based random access, and determines whether the RAR message reception for the preamble is successful (2h-11).
- the Msg3 buffer contains the data stored in the previous contention-based random access, so a packet is taken from the Msg3 buffer for transmission (2h-13). If it is determined that the size of the obtained packet is different in the size of the uplink resource allocation received in the RAR message (or the size of the uplink resource allocation received in the RAR message is larger) (2h-15), the terminal is located in the terminal. Instruct the Multiplexing and assembly entity (ie, an entity other than the Msg3 buffer) to regenerate the MAC PDU according to the size of the uplink resource allocation received in the RAR message from the packet stored in the Msg3 buffer (2h-17).
- the Multiplexing and assembly entity ie, an entity other than the Msg3 buffer
- the UE transmits to the Multiplexing and assembly entity in the UE (ie, to regenerate the MAC PDU according to the size of the uplink resource allocation received in the RAR message). , An entity other than the Msg3 buffer) (2h-17).
- the UE may instruct to regenerate a portion of the MAC subPDU except for a portion of the MAC subPDU to be transmitted in the existing Msg3 buffer.
- the UE may instruct to regenerate the MAC PDU by including a handover complete RRC message.
- the terminal may include the case of the Buffer Status Report (BSR) MAC CE for reporting the buffer status for transmitting the uplink data of the terminal in the regenerating MAC PDU, the MAC CE of the same as the above-mentioned C-RNTI MAC CE The case does not need to be included in Msg3 generated after non-competitive random access (since the base station already knows who has transmitted the preamble).
- BSR Buffer Status Report
- PHR Power Headroom Report
- the terminal acquires data from the multiplexing and assembly entity and transmits the data to the uplink resource received in the RAR message (2h-19). Otherwise, the packet stored in the Msg3 buffer is transmitted to the uplink resource received in the RAR message as it is (2h-21).
- FIG. 2I is a diagram illustrating an operation procedure of a terminal according to Embodiment 5 of a method of generating and transmitting a message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- the UE first performs a contention-based random access procedure for handover in a state of being connected (2i-03). If the random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies the condition set by the base station (2i-07). If there is an SSB / CSI-RS, one of the SSB / CSI-RSs is selected and a non-competition based random access is performed with a preamble allocated to the SSB / CSI-RS (2i-09).
- the UE determines the following to transmit data to the uplink resource allocated in the RAR message:
- the UE determines that the RAR message is not the first RAR successfully received in the random access procedure, the size of the MAC PDU stored in the Msg3 buffer and the size of the uplink resource allocation received in the RAR message are different (or received in the RAR message). If it is determined that the size of one uplink resource allocation is larger) (2i-11), the UE regenerates the MAC PDU by adding only padding to the packet in the existing Msg3 buffer to match the size of the uplink resource allocation received in the RAR message. (2i-15) and store it back in the Msg3 buffer (2i-17).
- the terminal determines whether the packet is stored in the Msg 3 buffer, and if the packet is stored, the terminal transmits the packet in the Msg3 buffer to the uplink resource received in the RAR message (2i-19).
- FIG. 2J is a diagram illustrating an operation procedure of a terminal according to Embodiment 6 of a method for generating and transmitting message 3 when performing random access among embodiments of the present disclosure.
- the terminal may be replaced with the aforementioned MAC entity.
- FIG. 2J as shown in the example of FIG. 2D, it is assumed that a contention-based random access procedure is first performed for handover in a state of being connected (2j-03). If the random access is not successful, the UE determines whether the SSB / CSI-RS to which the dedicated random access preamble is allocated satisfies the condition set by the base station (2j-07). If there is the corresponding SSB / CSI-RS, one of the SSB / CSI-RS is selected and the non-competition based random access is performed with the preamble allocated to the SSB / CSI-RS (2j-09).
- the UE succeeds in the non-competition based random access, and determines whether the RAR message reception for the corresponding preamble is successful (2j-11).
- a packet is taken from the Msg3 buffer to transmit it (2j-13). If it is determined that the size of the obtained packet is different in the size of the uplink resource allocation received in the RAR message (or the size of the uplink resource allocation received in the RAR message is larger) (2j-15), the UE determines the RAR message
- the MAC PDU is regenerated by adding only padding to the packet in the existing Msg3 buffer in order to match the size of the uplink resource allocation received from (2j-17).
- the UE adds padding to the size of the uplink resource allocation received in the RAR message to regenerate the MAC PDU (2j-17).
- the terminal regenerates according to the above-described procedure, or transmits the packet (MAC PDU) to the Msg3 buffer to the uplink resource received in the RAR message (2j-19).
- the terminal reports detailed information on the latest successful random access, and accordingly, the base station may properly allocate a random access channel to the terminals in the cell.
- the above-described embodiments may be configured alone or in combination.
- 2K illustrates a configuration of a terminal in a wireless communication system according to some embodiments of the present disclosure.
- the terminal includes a radio frequency (RF) processor 2k-10, a baseband processor 2k-20, a storage 2k-30, and a controller 2k-40.
- RF radio frequency
- the terminal may include fewer or more than the configuration shown in Figure 2k.
- the terminal in the wireless communication system of FIG. 2K may correspond to the configuration of the terminal of FIG. 1H.
- the RF processor 2k-10 of FIG. 2K may correspond to the RF processor 1h-10 of FIG. 1H
- the baseband processor 2k-20 of FIG. 2K may correspond to the baseband processor (FIG. 1h-20).
- the storage unit 2k-30 of FIG. 2K may correspond to the storage unit 1h-30 of FIG. 1H
- the control unit 2k-40 of FIG. 2K may correspond to the control unit 1h-40 of FIG. 1H. Can be.
- the RF processor 2k-10 may perform a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of the signal. That is, the RF processor 2k-10 up-converts the baseband signal provided from the baseband processor 2k-20 to an RF band signal and transmits the same through an antenna, and baseband the RF band signal received through the antenna. Downconvert to signal.
- the RF processor 2k-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. have.
- FIG. 2K only one antenna is illustrated, but the terminal may include a plurality of antennas.
- the RF processor 2k-10 may include a plurality of RF chains.
- the RF processor 2k-10 may perform beamforming.
- the RF processor 2k-10 may adjust phase and magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements.
- the RF processor 2k-10 may perform MIMO (Multi Input Multi Output), and may receive multiple layers when performing the MIMO operation.
- the RF processor 2k-10 performs reception beam sweeping by appropriately setting a plurality of antennas or antenna elements under the control of the controller 2k-40, or the direction and the beam direction of the reception beam so that the reception beams are coordinated with the transmission beams. The width can be adjusted.
- the baseband processor 2k-20 may perform a conversion function between the baseband signal and the bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processor 2k-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processor 2k-20 may restore the received bit string by demodulating and decoding the baseband signal provided from the RF processor 2k-10. For example, according to an orthogonal frequency division multiplexing (OFDM) scheme, during data transmission, the baseband processor 2k-20 generates complex symbols by encoding and modulating a transmission bit stream, and converts the complex symbols to subcarriers.
- OFDM orthogonal frequency division multiplexing
- OFDM symbols are configured through inverse fast Fourier transform (IFFT) operation and cyclic prefix (CP) insertion.
- IFFT inverse fast Fourier transform
- CP cyclic prefix
- the baseband processor 2k-20 divides the baseband signal provided from the RF processor 2k-10 in OFDM symbol units and subcarriers through fast Fourier transform (FFT) operations. After restoring the mapped signals, the received bit stream may be restored through demodulation and decoding.
- FFT fast Fourier transform
- the baseband processor 2k-20 and the RF processor 2k-10 transmit and receive signals as described above. Accordingly, the baseband processor 2k-20 and the RF processor 2k-10 may be referred to as a transmitter, a receiver, a transceiver, or a communicator. In addition, at least one of the baseband processor 2k-20 and the RF processor 2k-10 may include a plurality of communication modules to support a plurality of different radio access technologies. In addition, at least one of the baseband processor 2k-20 and the RF processor 2k-10 may include different communication modules to process signals of different frequency bands. For example, different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like.
- a wireless LAN eg, IEEE 802.11
- a cellular network eg, LTE
- different frequency bands may include a super high frequency (SHF) (eg 2.5 GHz, 5 Ghz) band and a millimeter wave (eg 60 GHz) band.
- SHF super high frequency
- the terminal may transmit and receive signals to and from the base station using the baseband processor 2k-20 and the RF processor 2k-10, and the signal may include control information and data.
- the storage unit 2k-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
- the storage unit 2k-30 may store information related to a WLAN node performing wireless communication using a WLAN access technology.
- the storage unit 2k-30 may provide the stored data at the request of the controller 2k-40.
- the storage unit 2k-30 may be configured with a storage medium or a combination of storage media such as a ROM, a RAM, a hard disk, a CD-ROM, a DVD, and the like.
- the storage unit 2k-30 may be configured of a plurality of memories.
- the storage unit 2k-30 may store a program for performing a wireless communication method for regenerating and transmitting data stored in the Msg3 buffer in the above-described random access procedure.
- the controller 2k-40 controls the overall operations of the terminal.
- the controller 2k-40 transmits and receives signals through the baseband processor 2k-20 and the RF processor 2k-10.
- the control unit 2k-40 records and reads data in the storage unit 2k-40.
- the controller 2k-40 may include at least one processor.
- the controller 2k-40 may include a communication processor (CP) for performing control for communication and an application processor (AP) for controlling a higher layer such as an application program.
- the controller 2k-40 may include a multiple connection processor 2k-42 that performs a process for operating in the multiple connection mode.
- the controller 2k-40 may control the terminal to perform the procedure illustrated in the operation of the illustrated terminal described in at least one of FIGS. 2E to 2J.
- the control unit 2k-40 determines whether the size of the packet in the Msg3 buffer is different from the uplink resource size received through the RAR during random access, according to the above-described embodiment. You can create Msg3 and send data to the resource. In addition, at least one configuration in the terminal may be implemented with one chip.
- a computer-readable storage medium for storing one or more programs (software modules) may be provided.
- One or more programs stored in a computer readable storage medium are configured for execution by one or more processors in an electronic device.
- One or more programs include instructions that cause an electronic device to execute methods in accordance with embodiments described in the claims or specifications of this disclosure.
- Such programs may include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
- EEPROM Electrically Erasable Programmable Read Only Memory
- magnetic disc storage device compact disc ROM (CD-ROM), digital versatile discs (DVDs) or other forms
- CD-ROM compact disc ROM
- DVDs digital versatile discs
- It can be stored in an optical storage device, a magnetic cassette. Or, it may be stored in a memory composed of some or all of these combinations.
- each configuration memory may be included in plural.
- the program may be configured through a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port. In addition, a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
- a communication network such as the Internet, an intranet, a local area network (LAN), a wide area network (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an attachable storage device that is accessible. Such a storage device may be connected to a device that performs an embodiment of the present disclosure through an external port.
- a separate storage device on a communication network may be connected to a device that performs an embodiment of the present disclosure.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 개시는 복수의 SSB(Synchronization Signal Block)들 중 신호 세기의 임계값을 초과하는 제1 SSB를 선택하는 단계; 상기 제1 SSB와 대응되는 경쟁 기반(Contention-Based) 랜덤 액세스 프리앰블(Random Access Preamble)을 송신하는 단계; 상기 경쟁 기반 랜덤 액세스 프리앰블과 대응하는 제1 RAR(Random Access Response)를 수신하는 단계; 상기 제1 RAR의 상향링크 자원할당 크기에 대응하는 제1 MAC(Media Access Control) PDU(Protocol Data Unit)를 획득하는 단계; 상기 제1 MAC PDU를 포함하는 Msg3를 송신하는 단계; 상기 Msg3를 전송함으로써 경쟁이 해소되었는지 판단하는 단계; 및 경쟁이 해소되지 않은 경우, 비경쟁(Contention-Free) 랜덤 액세스 절차를 수행하는 단계를 포함하는 랜덤 액세스 절차를 수행하는 방법을 제공한다.
Description
본 개시는 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
상술한 것과 무선통신 시스템의 발전에 따라 다양한 서비스를 제공할 수 있게 됨으로써, 이러한 서비스들을 원활하게 제공하기 위한 방안이 요구되고 있다.
개시된 실시예는 이동 통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공하고자 한다.
개시된 실시예는 이동통신 시스템에서 서비스를 효과적으로 제공할 수 있는 장치 및 방법을 제공한다.
개시된 실시예는 이동 통신 시스템에서의 효과적으로 서비스를 제공할 수 있다.
도 1a는 본 개시의 일부 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 1b는 본 개시의 일부 실시예에 따른 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 1c는 본 개시의 일부 실시예에 따른 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1d는 본 개시의 일부 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다. .
도 1e는 본 개시의 일부 실시예에 따른, 무선 통신 시스템에서 단말이 네트워크와 연결을 설정할 때 기지국과 RRC 연결 설정을 수행하는 절차를 나타낸 도면이다.
도 1f는 본 개시의 일부 실시예에 따른, 차세대 이동 통신 시스템에서 패킷 중복 전송 기술이 설정되고 활성화 및 비활성화 상태에서 수행되는 절차를 도시한다.
도 1g는 본 개시의 일부 실시예에 따른 단말 동작을 설명한 도면이다.
도 1h에 본 개시의 일부 실시 예에 따른 단말의 구조를 도시한다.
도 1i는 본 개시의 일부 실시 예에 따른 무선 통신 시스템에서 TRP(Tx/Rx Point)의 블록 구성을 도시한다.
도 2a은 본 개시의 일부 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 2b는 본 개시의 일부 실시예에 따른 LTE 및 NR 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2c는 본 개시의 일부 실시예에 따른 NR(New Radio) 시스템에서 빔 (beam) 기반으로 통신 수행 시 하향링크와 상향링크 채널 프레임 구조를 도시한 도면이다.
도 2d는 본 개시의 일부 실시예에 따른 단말이 기지국에 핸드오버 와 같은 상황에서 수행하는 경쟁 및 비경쟁기반의 랜덤 엑세스 절차를 나타내는 도면이다.
도 2e는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 1에 따른 단말 동작절차를 도시한 도면이다.
도 2f는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 2에 따른 단말 동작절차를 도시한 도면이다.
도 2g는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 3에 따른 단말 동작절차를 도시한 도면이다.
도 2h는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 4에 따른 단말 동작절차를 도시한 도면이다.
도 2i는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 5에 따른 단말 동작절차를 도시한 도면이다.
도 2j는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의실시예 6에 따른 단말 동작절차의 예시 도면이다.
도 2k는 본 개시의 일부 실시예에 따른 무선 통신 시스템에서 단말의 구성을 도시한다.
본 개시의 일 실시예에 따르면, 단말의 랜덤 액세스 절차를 수행하는 방법에 있어서, 상기 방법은, 복수의 SSB(Synchronization Signal Block)들 중 신호 세기의 임계값을 초과하는 제1 SSB를 선택하는 단계; 상기 제1 SSB와 대응되는 경쟁 기반(Contention-Based) 랜덤 액세스 프리앰블(Random Access Preamble)을 송신하는 단계; 상기 경쟁 기반 랜덤 액세스 프리앰블과 대응하는 제1 RAR(Random Access Response)를 수신하는 단계; 상기 제1 RAR의 상향링크 자원할당 크기에 대응하는 제1 MAC(Media Access Control) PDU(Protocol Data Unit)를 획득하는 단계;
상기 제1 MAC PDU를 포함하는 Msg3를 송신하는 단계; 상기 Msg3를 전송함으로써 경쟁이 해소되었는지 판단하는 단계; 및 경쟁이 해소되지 않은 경우, 비경쟁(Contention-Free) 랜덤 액세스 절차를 수행하는 단계를 포함할 수 있다.
상기 제1 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득될 수 있다.
상기 제1 MAC PDU는 C-RNTI(Cell-Radio Network Temporary Identifier) MAC CE(Control Element)를 포함할 수 있다.
상기 방법은, 상기 제1 MAC PDU를 Msg3 버퍼에 저장하는 단계를 더 포함할 수 있다.
상기 비경쟁 랜덤 액세스 절차를 수행하는 단계는, 비경쟁 랜덤 액세스 프리앰블이 할당된 복수의 SSB들 중 신호 세기의 임계값을 초과하는 제2 SSB를 선택하는 단계; 및 상기 제2 SSB와 대응되는 비경쟁 랜덤 액세스 프리앰블을 송신하는 단계; 상기 비경쟁 랜덤 액세스 프리앰블과 대응하는 제2 RAR을 수신하는 단계; 상기 제1 MAC PDU를 획득하는 단계; 상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하는 단계; 및 상기 제2 MAC PDU를 송신하는 단계를 포함할 수 있다.
상기 제1 MAC PDU를 획득하는 단계는, Msg3 버퍼 내에 상기 제1 MAC PDU가 저장되어 있는지 여부를 판단하는 단계; 및 판단 결과에 기초하여, 상기 Msg3 버퍼로부터 상기 제1 MAC PDU를 획득하는 단계를 포함할 수 있다.
상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하는 단계는, 상기 제2 RAR의 상향링크 자원할당 크기와 상기 제1 MAC PDU의 크기를 비교하는 단계; 및 상기 비교 결과에 기초하여, 상기 제1 MAC PDU 내의 적어도 하나의 MAC subPDU(subProtocol Data Unit)가 후속 상향링크 송신에 포함되도록 상기 제2 MAC PDU를 획득하는 단계를 포함할 수 있다.
상기 제2 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득될 수 있다.
상기 방법은, 상기 Msg3 버퍼 내의 데이터를 삭제하는 단계를 더 포함할 수 있다.
상기 경쟁이 해소되었는지 여부를 판단하는 단계는, ra-ContentionResolution 타이머의 만료까지 상기 Msg3에 대한 응답이 수신되었는지 여부를 판단하는 것일 수 있다.
본 개시의 일 실시예에 따르면, 랜덤 액세스 절차를 수행하는 단말에 있어서, 상기 단말은, 트랜시버; 및 복수의 SSB(Synchronization Signal Block)들 중 신호 세기의 임계값을 초과하는 제1 SSB를 선택하고, 상기 제1 SSB와 대응되는 경쟁 기반(Contention-Based) 랜덤 액세스 프리앰블(Random Access Preamble)을 송신하고, 상기 경쟁 기반 랜덤 액세스 프리앰블과 대응하는 제1 RAR(Random Access Response)를 수신하고, 상기 제1 RAR의 상향링크 자원할당 크기에 대응하는 제1 MAC(Media Access Control) PDU(Protocol Data Unit)를 획득하고, 상기 제1 MAC PDU를 포함하는 Msg3를 송신하고, 상기 Msg3를 전송함으로써 경쟁이 해소되었는지 판단하고, 경쟁이 해소되지 않은 경우, 비경쟁(Contention-Free) 랜덤 액세스 절차를 수행하도록 설정된, 상기 트랜시버와 결합된 적어도 하나의 컨트롤러를 포함할 수 있다.
상기 컨트롤러는, 비경쟁 랜덤 액세스 프리앰블이 할당된 복수의 SSB들 중 신호 세기의 임계값을 초과하는 제2 SSB를 선택하고, 상기 제2 SSB와 대응되는 비경쟁 랜덤 액세스 프리앰블을 송신하고, 상기 비경쟁 랜덤 액세스 프리앰블과 대응하는 제2 RAR을 수신하고, 상기 제1 MAC PDU를 획득하고, 상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하고, 상기 제2 MAC PDU를 송신하도록 더 설정될 수 있다.
상기 컨트롤러는, Msg3 버퍼 내에 상기 제1 MAC PDU가 저장되어 있는지 여부를 판단하고, 판단 결과에 기초하여, 상기 Msg3 버퍼로부터 상기 제1 MAC PDU를 획득하는 것일 수 있다.
상기 컨트롤러는, 상기 제2 RAR의 상향링크 자원할당 크기와 상기 제1 MAC PDU의 크기를 비교하고, 상기 비교 결과에 기초하여, 상기 제1 MAC PDU 내의 적어도 하나의 MAC subPDU(subProtocol Data Unit)가 후속 상향링크 송신에 포함되도록 상기 제2 MAC PDU를 획득하는 단계를 포함할 수 있다.
상기 제2 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득되는 것일 수 있다.
이하 첨부된 도면을 참조하여 본 개시의 동작 원리를 상세히 설명한다. 하기에서 본 개시를 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
마찬가지 이유로 첨부된 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성 요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예를 들면, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이때, 본 실시예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
하기에서 본 개시를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 이하 첨부된 도면을 참조하여 본 개시의 실시 예를 설명하기로 한다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity(네트워크 엔티티))들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 개시가 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 개시는 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 개시가 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 본 개시에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. 또한 단말이라는 용어는 핸드폰, NB-IoT 기기들, 센서들 뿐만 아니라 또 다른 무선 통신 기기들을 나타낼 수 있다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B, eNode B, Node B, BS (Base Station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (User Equipment), MS (Mobile Station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 물론 상기 예시에 제한되는 것은 아니다.
특히 본 개시는 3GPP NR (5세대 이동통신 표준)에 적용할 수 있다. 또한 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 또는 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 발명에서 eNB는 설명의 편의를 위하여 gNB와 혼용되어 사용될 수 있다. 즉 eNB로 설명한 기지국은 gNB를 나타낼 수 있다. 또한 단말이라는 용어는 핸드폰, NB-IoT 기기들, 센서들 뿐만 아니라 또 다른 무선 통신 기기들을 나타낼 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 또는 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced(LTE-A), LTE-Pro, 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다.
광대역 무선 통신 시스템의 대표적인 예로, LTE 시스템에서는 하향링크(DL; DownLink)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(UL; UpLink)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE; User Equipment 또는 MS; Mobile Station)이 기지국(eNode B 또는 BS; Base Station)으로 데이터 또는 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 또는 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 각 사용자 별로 데이터 또는 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 또는 제어정보를 구분한다.
LTE 이후의 향후 통신 시스템으로서, 즉, 5G 통신시스템은 사용자 및 서비스 제공자 등의 다양한 요구 사항을 자유롭게 반영할 수 있어야 하기 때문에 다양한 요구사항을 동시에 만족하는 서비스가 지원되어야 한다. 5G 통신시스템을 위해 고려되는 서비스로는 향상된 모바일 광대역 통신(eMBB; Enhanced Mobile BroadBand), 대규모 기계형 통신(mMTC; massive Machine Type Communication), 초신뢰 저지연 통신(URLLC; Ultra Reliability Low Latency Communication) 등이 있다.
일부 실시예에 따르면, eMBB는 기존의 LTE, LTE-A 또는 LTE-Pro가 지원하는 데이터 전송 속도보다 더욱 향상된 데이터 전송 속도를 제공하는 것을 목표로 할 수 있다. 예를 들어, 5G 통신시스템에서 eMBB는 하나의 기지국 관점에서 하향링크에서는 20Gbps의 최대 전송 속도(peak data rate), 상향링크에서는 10Gbps의 최대 전송 속도를 제공할 수 있어야 한다. 또한 5G 통신시스템은 최대 전송 속도를 제공하는 동시에, 증가된 단말의 실제 체감 전송 속도(User perceived data rate)를 제공해야 할 수 있다. 이와 같은 요구 사항을 만족시키기 위해, 5G 통신 시스템에서는 더욱 향상된 다중 안테나 (MIMO; Multi Input Multi Output) 전송 기술을 포함하여 다양한 송수신 기술의 향상을 요구될 수 있다. 또한 현재의 LTE가 사용하는 2GHz 대역에서 최대 20MHz 전송대역폭을 사용하여 신호를 전송하는 반면에 5G 통신시스템은 3~6GHz 또는 6GHz 이상의 주파수 대역에서 20MHz 보다 넓은 주파수 대역폭을 사용함으로써 5G 통신시스템에서 요구하는 데이터 전송 속도를 만족시킬 수 있다.
동시에, 5G 통신시스템에서 사물 인터넷(IoT; Internet of Thing)와 같은 응용 서비스를 지원하기 위해 mMTC가 고려되고 있다. mMTC는 효율적으로 사물 인터넷을 제공하기 위해 셀 내에서 대규모 단말의 접속 지원, 단말의 커버리지 향상, 향상된 배터리 시간, 단말의 비용 감소 등이 요구될 수 있다. 사물 인터넷은 여러 가지 센서 및 다양한 기기에 부착되어 통신 기능을 제공하므로 셀 내에서 많은 수의 단말(예를 들어, 1,000,000 단말/km2)을 지원할 수 있어야 한다. 또한 mMTC를 지원하는 단말은 서비스의 특성상 건물의 지하와 같이 셀이 커버하지 못하는 음영지역에 위치할 가능성이 높으므로 5G 통신시스템에서 제공하는 다른 서비스 대비 더욱 넓은 커버리지가 요구될 수 있다. mMTC를 지원하는 단말은 저가의 단말로 구성되어야 하며, 단말의 배터리를 자주 교환하기 힘들기 때문에 10~15년과 같이 매우 긴 배터리 생명시간(battery life time)이 요구될 수 있다.
마지막으로, URLLC의 경우, 특정한 목적(mission-critical)으로 사용되는 셀룰러 기반 무선 통신 서비스로서, 로봇(Robot) 또는 기계 장치(Machinery)에 대한 원격 제어(remote control), 산업 자동화(industrial automation), 무인 비행장치(Unmanned Aerial Vehicle), 원격 건강 제어(Remote health care), 비상 상황 알림(emergency alert) 등에 사용되는 서비스 등에 사용될 수 있다. 따라서 URLLC가 제공하는 통신은 매우 낮은 저지연(초저지연) 및 매우 높은 신뢰도(초신뢰도)를 제공해야 할 수 있다. 예를 들어, URLLC을 지원하는 서비스는 0.5 밀리초보다 작은 무선 접속 지연시간(Air interface latency)를 만족해야 하며, 동시에 10-5 이하의 패킷 오류율(Packet Error Rate)의 요구사항을 가질 수 있다. 따라서, URLLC을 지원하는 서비스를 위해 5G 시스템은 다른 서비스보다 작은 전송 시간 구간(TTI; Transmit Time Interval)를 제공해야 하며, 동시에 통신 링크의 신뢰성을 확보하기 위해 주파수 대역에서 넓은 리소스를 할당해야 하는 설계사항이 요구될 수 있다.
전술한 5G 통신 시스템에서 고려되는 세가지 서비스들, 즉 eMBB, URLLC, mMTC는 하나의 시스템에서 다중화되어 전송될 수 있다. 이 때, 각각의 서비스들이 갖는 상이한 요구사항을 만족시키기 위해 서비스 간에 서로 다른 송수신 기법 및 송수신 파라미터를 사용할 수 있다. 다만, 전술한 mMTC, URLLC, eMBB는 서로 다른 서비스 유형의 일 예일 뿐, 본 개시의 적용 대상이 되는 서비스 유형이 전술한 예에 한정되는 것은 아니다.
또한, 이하에서 LTE, LTE-A, LTE Pro 또는 5G(또는 NR, 차세대 이동 통신) 시스템을 일례로서 본 발명의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 발명의 실시예가 적용될 수 있다. 또한, 본 발명의 실시 예는 숙련된 기술적 지식을 가진 자의 판단으로써 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시에서는 차세대 이동통신 시스템에서 Scell(Secondary Cell) RLF(Radio Link Failure)를 효율적으로 지원하는 방법 및 장치 및 연결상태의 단말이 랜덤엑세스 수행 시 메시지3(Msg3)을 생성하여 전송하는 방법을 제공하고자 한다.
무선 통신 시스템에서는 더 낮은 전송 지연을 지원하고 더 높은 신뢰성을 보장하기 위해서 패킷 중복 전송 기술(packet duplication)을 상향 링크와 하향 링크에 적용하고 사용할 수 있다. 패킷 중복 전송 기술은 두 개의 RLC(Radio Link Control) 계층 장치를 통해서 동일한 패킷을 중복하여 전송하게 되며, 두 개의 RLC 계층 장치에서 Scell과 연결되어 있는 RLC 계층 장치에서 어떤 데이터에 대한 재전송 횟수를 초과하게 되면 Scell RLF(Radio Link Failure)를 선언하게 된다. 즉, 단말은 Scell과 연결되어 있는 RLC 계층 장치에서 어떤 데이터에 대한 최대 재전송 횟수를 초과하였다는 것을 RRC(Radio Resource Control) 메시지로 기지국에 보고할 수 있으며, 이를 Scell RLF라고 부를 수 있다. 본 개시의 일부 실시예에 따르면, Scell RLF를 트리거링하고 전송하는 절차에서 불필요하게 Scell RLF가 여러 번 트리거링되는 것을 막고, 최대 재전송 횟수를 계산하기 위한 변수들을 효율적으로 관리하는 방법을 제공한다.
또한 본 개시의 실시예에 따르면, 기지국이 랜덤엑세스 채널을 셀 내의 단말들에게 효율적으로 할당하기 위해(예를 들어, 랜덤엑세스 채널의 숫자 등) 각 단말들에게 단말이 가장 최근에 성공한 랜덤엑세스에 대한 상세정보를 수신받는 방법을 제공한다.
도 1a는 본 개시의 일부 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
도 1a을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(1a-05, 1a-10, 1a-15, 1a-20)과 MME (1a-25, Mobility Management Entity) 및 S-GW(1a-30, Serving-Gateway)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(1a-35)은 ENB(1a-05 ~ 1a-20) 및 S-GW(1a-30)를 통해 외부 네트워크에 접속한다.
도 1a에서 ENB(1a-05 내지 1a-20)는 UMTS 시스템의 기존 노드 B(Node B)에 대응될 수 있다. ENB는 UE(1a-35)와 무선 채널로 연결될 수 있고, 기존 노드 B 보다 복잡한 역할을 수행할 수 있다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요할 수 있으며, 이를 ENB(1a-05 내지 1a-20)가 담당할 수 있다. 하나의 ENB는 통상 다수의 셀들을 제어한다. 예를 들면, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 , 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용할 수 있다. 또한 ENB는 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용할 수 있다. S-GW(1a-30)는 데이터 베어러를 제공하는 장치이며, MME(1a-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거할 수 있다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다.
도 1b는 본 개시의 일부 실시예에 따른 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 1b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP (Packet Data Convergence Protocol 1b-05, 1b-40), RLC (Radio Link Control 1b-10, 1b-35), MAC (Medium Access Control 1b-15, 1b-30)을 포함할 수 있다. PDCP (Packet Data Convergence Protocol)(1b-05, 1b-40)는 IP 헤더 압축/복원 등의 동작을 담당할 수 있다. PDCP의 주요 기능은 하기와 같이 요약된다. 물론 하기 예시에 제한되는 것은 아니다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
일부 실시예에 따르면, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(1b-10, 1b-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약될 수 있다. 물론 하기 예시에 제한되는 것은 아니다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
일부 실시예에 따르면, MAC(1b-15, 1b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약될 수 있다. 물론 하기 예시에 제한되는 것은 아니다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
일부 실시예에 따르면, 물리 계층(1b-20, 1b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 물론 상기 예시에 제한되는 것은 아니다.
도 1c는 본 개시의 일부 실시예에 따른 적용될 수 있는 차세대 이동통신 시스템의 구조를 도시하는 도면이다.
도 1c을 참조하면, 도시한 바와 같이 차세대 이동통신 시스템(이하 NR 또는 2g)의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR gNB 또는 NR 기지국)(1c-10) 과 NR CN (1c-05, New Radio Core Network)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말)(1c-15)은 NR gNB(1c-10) 및 NR CN (1c-05)를 통해 외부 네트워크에 접속할 수 있다.
도 1c에서 NR gNB(1c-10)는 기존 LTE 시스템의 eNB (Evolved Node B)에 대응될 수 있다. NR gNB는 NR UE(1c-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요할 수 있으며, 이를 NR NB(1c-10)가 담당한다. 하나의 NR gNB는 통상 다수의 셀들을 제어할 수 있다. 차세대 이동 통신 시스템은 현재 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용할 수 있으며, 추가적으로 빔포밍 기술이 사용될 수 있다.
또한 일부 실시예에 다르면, NR gNB는 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. NR CN(1c-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행할 수 있다. NR CN(1c-05)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결될 수 있다. 또한 차세대 이동통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN(1c-05)이 MME (1c-25)와 네트워크 인터페이스를 통해 연결될 수 있다. MME는 기존 기지국인 eNB (1c-30)과 연결된다.
도 1d는 본 개시의 일부 실시예에 따른 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 1d를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(Service Data Adaptation Protocol)((1d-01, 1d-45), NR PDCP(Packet Data Convergent Protocol)(1d-05, 1d-40), NR RLC(Radio Link Control)(1d-10, 1d-35), NR MAC(1d-15, 1d-30)을 포함할 수 있다.
일부 실시예에 따르면, NR SDAP(1d-01, 1d-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 물론 하기 예시에 제한되는 것은 아니다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID를 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 또는 베어러 별로 또는 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 또는 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있다. 또한 SDAP 계층 장치는 SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS(Non Access Stratum) QoS(Quality of Service) 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 또는 재설정할 수 있도록 지시할 수 있다. 일부 실시예에 따르면, SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 또한 일부 실시예에 따르면, QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
일부 실시예에 따르면, NR PDCP (1d-05, 1d-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 물론 하기 예시에 제한되는 것은 아니다.
헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
일부 실시예에 따르면, NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능, 또는 순서를 고려하지 않고, 바로 전달하는 기능 , 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능 및 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능 중 적어도 하나의 기능을 포함할 수 있다.
일부 실시예에 따르면, NR RLC(1d-10, 1d-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 물론 하기 예시에 제한되는 것은 아니다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
일부 실시예에 따르면, NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능, 수신한 RLC PDU들을 RLC SN(sequence number) 또는 PDCP SN(sequence number)를 기준으로 재정렬하는 기능, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능, 또는 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능및 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능 중 적어도 하나의 기능을 포함할 수 있다. 또한 NR RLC 장치는 RLC PDU들을 수신하는 순서대로(일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, 수신한 RLC PDU가 segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 일부 실시예에 따르면, NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능, 및 수신한 RLC PDU들의 RLC SN 또는 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능 중 적어도 하나의 기능을 포함할 수 있다.
일부 실시예에 따르면, NR MAC(1d-15, 1d-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다. 물론 하기 예시에 제한되지 않는다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
일부 실시예에 따르면, NR PHY 계층(1d-20, 1d-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다. 물론 상기 예시에 제한되지 않는다.
도 1e는 본 개시의 일부 실시예에 따른 차세대 이동 통신 시스템에서 단말이 네트워크와 연결을 설정할 때 기지국과 RRC 연결 설정을 수행하는 절차를 나타낸 도면이다.
도 1e를 참조하면, 기지국은 RRC 연결 모드에서 데이터를 송수신하는 단말이 소정의 이유로 또는 일정 시간 동안 데이터의 송수신이 없으면 RRCConnectionRelease 메시지를 단말에게 보내어 단말을 RRC 유휴모드로 전환하도록 할 수 있다(1e-01). 추후에 현재 연결이 설정되어 있지 않은 단말 (이하 idle mode UE)은 전송할 데이터가 발생하면 기지국과 RRC connection establishment과정을 수행할 수 있다.
단말은 랜덤 액세스 과정을 통해서 기지국과 역방향 전송 동기를 수립하고 RRCConnectionRequest 메시지를 기지국으로 전송한다 (1e-05). RRCConnectionRequest 메시지에는 단말의 식별자와 연결을 설정하고자 하는 이유(establishmentCause) 등이 포함될 수 있다.
기지국은 단말이 RRC 연결을 설정하도록 RRCConnectionSetup 메시지를 전송한다(1e-10). RRCConnectionSetup 메시지에는 각 로지컬 채널 별 설정 정보, 베어러 별 설정 정보,PDCP 계층 장치의 설정 정보, RLC 계층 장치의 설정 정보, 및 MAC 계층 장치의 설정 정보 중 적어도 하나가 포함될 수 있다.
또한 RRCConnectionSetup 메시지내에는 PDCP 계층 장치의 설정 정보와 베어러 식별자, 로지컬 채널 식별자, 로지컬 채널과 셀(주파수) 간의 맵핑 정보,셀 그룹 설정 정보, 또는 이중 접속 기술에 사용할 임계값 등이 설정됨으로써, 기지국은 이중 접속 기술(dual connectivity)과 캐리어 집적 기술(Carrier aggregation) 등을 단말에게 설정해줄 수 있다.
또한 일부 실시예에 따르면, RRCConnectionSetup 메시지에는 단말에게 상향 링크 또는 하향 링크 패킷 중복 전송 기술을 설정해주기 위해 PDCP 장치 설정 정보에서 두 개의 RLC 계층 장치를 설정해줄 수 있으며, 제 1의 RLC 계층 장치(primary RLC entity)와 제 2의 RLC 계층 장치(secondary RLC entity)를 로지컬 채널 식별자 또는 지시자로 지정해줄 수 있다. 그리고 상기에서 패킷 중복 전송 기술은 캐리어 집적 기술(Carrier aggregation)에서 사용될 수 있으며, 이중 접속 기술(Dual connectivity)에서 사용될 수 있다.
또한 일부 실시예에 다르면, RRCConnectionSetup 메시지는 패킷 중복 전송 기술이 설정된 베어러(예를 들면 SRB(Signaling Radio Bearer) 또는 DRB(Data Radio Bearer))의 초기 상태를 활성화 상태 또는 비활성화 상태로 설정할 수 있다. 또한 RRCConnectionSetup 메시지에는 각 RLC 계층 장치와 셀들간의 맵핑 관계를 설정할 수 있다. 예를 들면, RRCConnectionSetup 메시지는 제 1의 RLC 계층 장치를 Pcell(primary cell)과 연결 또는 맵핑하도록 설정할 수 있으며, 제 2의 RLC 계층 장치를 Scell 1(Secondary cell 1) 또는 Scell 2와 연결 또는 맵핑하도록 설정할 수 있다.
일부 실시예에 따르면, 셀과 맵핑이 설정된 RLC 계층 장치는 데이터를 맵핑된 셀로만 전송할 수 있다. 또한 RRCConnectionSetup 메시지는 SDAP 계층 장치의 설정 정보 또는 PDCP 계층 장치 설정 정보를 통해서 QoS flow들과 베어러 간에 맵핑 정보가 설정될 수 있으며 SDAP 계층 장치는 맵핑 정보를 이용하여 상위 계층 장치로부터 수신한 데이터들을 맵핑에 의해 설정된 PDCP 계층 장치로 데이터를 전달할 수 있다. 또한 RRCConnectionSetup 메시지는 AM 모드(Acknowledged Mode)로 동작하는 RLC 계층 장치에서 최대로 허용하는 재전송 횟수를 지시해줄 수 있다. 또한 RRCConnectionSetup 메시지에는 RRC 연결 구성 정보 등이 수납된다. RRC 연결은 SRB(Signaling Radio Bearer)라고도 하며, 단말과 기지국 사이의 제어 메시지인 RRC 메시지 송수신에 사용될 수 있다.
RRC 연결을 설정한 단말은 RRCConnetionSetupComplete 메시지를 기지국으로 전송한다 (1e-15). RRCConnetionSetupComplete 메시지는 단말이 소정의 서비스를 위한 베어러 설정을 AMF 또는 MME에게 요청하는 SERVICE REQUEST라는 제어 메시지를 포함할 수 있다. 기지국은 RRCConnetionSetupComplete 메시지에 수납된 SERVICE REQUEST 메시지를 AMF 또는 MME로 전송한다(1e-20). AMF 또는 MME는 단말이 요청한 서비스를 제공할지 여부를 판단할 수 있다.
판단 결과 단말이 요청한 서비스를 제공하기로 결정하였다면 AMF 또는 MME는 기지국에게 INITIAL CONTEXT SETUP REQUEST라는 메시지를 전송한다(1e-25). INITIAL CONTEXT SETUP REQUEST 메시지에는 DRB(Data Radio Bearer) 설정 시 적용할 QoS(Quality of Service) 정보, 그리고 DRB에 적용할 보안 관련 정보(예를 들어 Security Key, Security Algorithm) 등의 정보가 포함될 수 있다.
기지국은 단말과 보안을 설정하기 위해서 SecurityModeCommand 메시지(1e-30)와 SecurityModeComplete 메시지(1e-35)를 교환한다. 보안 설정이 완료되면 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 전송한다(1e-40).
RRCConnectionReconfiguration 메시지에는 각 로지컬 채널 별 설정 정보, 베어러 별 설정 정보, PDCP 계층 장치의 설정 정보, RLC 계층 장치의 설정 정보, 및 MAC 계층 장치의 설정 정보 중 적어도 하나가 포함될 수 있다. 또한 RRCConnectionReconfiguration 메시지는 PDCP 계층 장치의 설정 정보와 베어러 식별자 또는 로지컬 채널 식별자 또는 로지컬 채널과 셀(주파수) 간의 맵핑 정보 또는 셀 그룹 설정 정보 또는 이중 접속 기술에 사용할 임계값 등이 설정됨으로써 기지국은 이중 접속 기술(dual connectivity)과 캐리어 집적 기술(Carrier aggregation) 등을 단말에게 설정해줄 수 있다.
또한 RRCConnectionReconfiguration 메시지에는 단말에게 상향 링크 또는 하향 링크 패킷 중복 전송 기술을 설정해주기 위해 PDCP 장치 설정 정보에서 두 개의 RLC 계층 장치를 설정해줄 수 있으며, 제 1의 RLC 계층 장치(primary RLC entity)와 제 2의 RLC 계층 장치(secondary RLC entity)를 로지컬 채널 식별자 또는 지시자로 지정해줄 수 있다.
일부 실시예에 따르면, 패킷 중복 전송 기술은 캐리어 집적 기술(Carrier aggregation)에서 사용될 수 있으며, 이중 접속 기술(Dual connectivity)에서 사용될 수 있다. 또한 RRCConnectionReconfiguration 메시지는 패킷 중복 전송 기술이 설정된 베어러(예를 들면 SRB(Signaling Radio Bearer) 또는 DRB(Data Radio Bearer))의 초기 상태를 활성화 상태 또는 비활성화 상태로 설정할 수 있다. 또한 RRCConnectionReconfiguration 메시지에는 각 RLC 계층 장치와 셀들간의 맵핑 관계를 설정할 수 있는데 예를 들면 제 1의 RLC 계층 장치를 Pcell(primary cell)과 연결 또는 맵핑하도록 설정할 수 있으며, 제 2의 RLC 계층 장치를 Scell 1(Secondary cell 1) 또는 Scell 2와 연결 또는 맵핑하도록 설정할 수 있다. 일부 실시예에 따르면, 셀과 맵핑이 설정된 RLC 계층 장치는 데이터를 맵핑된 셀로만 전송할 수 있다.
또한 RRCConnectionReconfiguration 메시지에는 SDAP 계층 장치의 설정 정보 또는 PDCP 계층 장치 설정 정보를 통해서 QoS flow들과 베어러 간에 맵핑 정보가 설정될 수 있으며 SDAP 계층 장치는 상기 맵핑 정보를 이용하여 상위 계층 장치로부터 수신한 데이터들을 맵핑에 의해 설정된 PDCP 계층 장치로 데이터를 전달할 수 있다. 또한 RRCConnectionReconfiguration 메시지에는 AM 모드로 동작하는 RLC 계층 장치에서 최대로 허용하는 재전송 횟수를 지시해줄 수 있다. 또한 RRCConnectionReconfiguration 메시지에는 사용자 데이터가 처리될 DRB의 설정 정보가 포함될 수 있으며, 단말은 상기 정보를 적용해서 DRB를 설정하고 기지국에게 RRCConnectionReconfigurationComplete 메시지를 전송한다(1e-45). 단말과 DRB 설정을 완료한 기지국은 AMF 또는 MME에게 INITIAL CONTEXT SETUP COMPLETE 메시지를 전송하고 연결을 완료할 수 있다(1e-50).
상기 과정이 모두 완료되면 단말은 기지국과 코어 네트워크를 통해 데이터를 송수신한다(1e-55, 1e-60). 일부 실시예에 따르면, 데이터 전송 과정은 크게 RRC 연결 설정, 보안 설정, DRB설정의 3단계로 구성된다. 또한 기지국은 소정의 이유로 단말에게 설정을 새로 해주거나 추가하거나 변경하기 위해서 RRC Connection Reconfiguration 메시지를 전송할 수 있다(1e-65). RRC Connection Reconfiguration 메시지에는 각 로지컬 채널 별 설정 정보, 베어러 별 설정 정보, PDCP 계층 장치의 설정 정보, RLC 계층 장치의 설정 정보, MAC 계층 장치의 설정 정보 중 적어도 하나가 포함될 수 있다. 또한 RRC Connection Reconfiguration 메시지는 PDCP 계층 장치의 설정 정보와 베어러 식별자 또는 로지컬 채널 식별자 또는 로지컬 채널과 셀(주파수) 간의 맵핑 정보 또는 셀 그룹 설정 정보 또는 이중 접속 기술에 사용할 임계값 등을 설정함으로써, 기지국은 이중 접속 기술(dual connectivity)과 캐리어 집적 기술(Carrier aggregation) 등을 단말에게 설정해줄 수 있다. 또한 RRC Connection Reconfiguration 메시지에는 단말에게 상향 링크 또는 하향 링크 패킷 중복 전송 기술을 설정해주기 위해 PDCP 장치 설정 정보에서 두 개의 RLC 계층 장치를 설정해줄 수 있으며, 제 1의 RLC 계층 장치(primary RLC entity)와 제 2의 RLC 계층 장치(secondary RLC entity)를 로지컬 채널 식별자 또는 지시자로 지정해줄 수 있다. 일부 실시예에 따르면, 패킷 중복 전송 기술은 캐리어 집적 기술(Carrier aggregation)에서 사용될 수 있으며, 이중 접속 기술(Dual connectivity)에서 사용될 수 있다.
또한 RRC Connection Reconfiguration 메시지는 패킷 중복 전송 기술이 설정된 베어러(예를 들면 SRB(Signaling Radio Bearer) 또는 DRB(Data Radio Bearer))의 초기 상태를 활성화 상태 또는 비활성화 상태로 설정할 수 있다. 또한 RRC Connection Reconfiguration 메시지에는 각 RLC 계층 장치와 셀들간의 맵핑 관계를 설정할 수 있는데 예를 들면 제 1의 RLC 계층 장치를 Pcell(primary cell)과 연결 또는 맵핑되도록 설정할 수 있으며, 제 2의 RLC 계층 장치를 Scell 1(Secondary cell 1) 또는 Scell 2와 연결 또는 맵핑되도록 설정할 수 있다. 일부 실시예에 따르면, 셀과 맵핑이 설정된 RLC 계층 장치는 데이터를 맵핑된 셀로만 전송할 수 있다. 물론 상기 예시에 제한되지 않는다. 또한 RRC Connection Reconfiguration 메시지는 SDAP 계층 장치의 설정 정보 또는 PDCP 계층 장치 설정 정보를 통해서 QoS flow들과 베어러 간에 맵핑 정보가 설정될 수 있으며 SDAP 계층 장치는 맵핑 정보를 이용하여 상위 계층 장치로부터 수신한 데이터들을 맵핑에 의해 설정된 PDCP 계층 장치로 데이터를 전달할 수 있다. 또한 RRC Connection Reconfiguration 메시지에는 AM 모드로 동작하는 RLC 계층 장치에서 최대로 허용하는 재전송 횟수를 지시해줄 수 있다.
도 1f는 본 개시의 일부 실시예에 따른 차세대 이동 통신 시스템에서 패킷 중복 전송 기술이 설정되고 활성화 및 비활성화 상태에서 수행되는 절차를 나타낸 도면이다.
일부 실시예에 따르면, 단말은 기지국으로부터 도 1e에서 설명한 바와 같이 RRC 메시지로 패킷 중복 전송 기술에 대한 설정을 수신하면 패킷 중복 전송 기술을 설정할 수 있다. RRC 메시지로 설정한 패킷 중복 전송 기술이 캐리어 집적 기술(Carrier Aggregation, CA)에서 설정된 경우, 단말은 패킷 중복 전송 기술이 설정된 베어러 또는 PDCP 계층 장치에 대해서 두 개의 RLC 계층 장치, 즉 제 1의 RLC 계층 장치(primary RLC entity, 1f-05)와 제 2의 RLC 계층 장치(Secondary RLC entity, 1f-10)를 설정할 수 있다. 만약 패킷 중복 전송 기술이 비활성화되어 있다면, 상향 링크 전송에서 PDCP 계층 장치는 패킷을 하위 RLC 계층에게 전달할 때 제 1의 RLC 계층 장치로만 전달하여 전송하고, 제 2의 RLC 계층 장치로는 전송하지 않는다. 만약 패킷 중복 전송 기술이 활성화되어 있다면, 상향 링크 전송에서 PDCP 계층 장치는 패킷을 하위 두 개의 RLC 계층 장치들(제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치)로 동일한 패킷을 중복하여 각각 전송할 수 있다. 즉, PDCP 계층 장치는 하나의 패킷을 제 1의 RLC 계층 장치로 전달하고, 패킷을 복제하여 동일한 패킷을 제 2의 RLC 계층 장치로 전달할 수 있다.
캐리어 집적 기술에 패킷 중복 전송 기술이 설정되고, 활성화 된 경우, MAC 계층 장치(1f-15)는 서로 다른 로지컬 채널 식별자를 갖는 제 1의 RLC 계층 장치로부터 전달 받은 데이터와 제 2의 RLC 계층 장치로부터 전달 받은 데이터를 서로 다른 캐리어에 실어서 전송할 수 있다. 전술한 절차는 상향 링크 데이터 전송에 관한 것이며, 하향 링크 데이터 수신시에는 단말은 패킷 중복 전송 기술이 적용된 하향 링크 데이터를 항상 수신할 수 있어야 한다. 즉, 단말은 상향 링크 패킷 중복 전송 기술이 비활성화되어 있어서 상향 링크 데이터를 제 2의 RLC 계층 장치로 데이터를 중복하여 전달하지는 못하더라도 제 2의 RLC 계층 장치(1f-10)는 하향 링크 데이터를 MAC 계층 장치로부터 수신하고 처리하여 PDCP 계층 장치로 전달할 수 있어야 한다.
즉, 캐리어 집적 기술에서 패킷 중복 전송 기술이 설정되고 활성화 된 경우, 단말은 상향 링크 데이터를 PDCP 계층 장치에서 중복하여 제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치로 전달할 수 있으며, 캐리어 집적 기술에서 패킷 중복 전송 기술이 설정되고 비활성화 된 경우, 단말은 상향 링크 데이터를 PDCP 계층 장치에서 중복 절차를 수행하지 않으며, 제 1의 RLC 계층 장치로만 데이터를 전달할 수 있다. 패킷 중복 전송 기술의 활성화 및 비활성화 상태의 설정은 MAC 제어 정보(MAC Control Element)로 결정될 수도 있다.
RRC 메시지로 설정한 패킷 중복 전송 기술이 이중 접속 기술(Dual Connectivity, DC)에서 설정된 경우, 단말은 패킷 중복 전송 기술이 설정된 베어러 또는 PDCP 계층 장치에 대해서 두 개의 RLC 계층 장치, 즉 제 1의 RLC 계층 장치(primary RLC entity, 1f-15)와 제 2의 RLC 계층 장치(Secondary RLC entity, 1f-20)를 설정할 수 있다. 그리고 만약 패킷 중복 전송 기술이 비활성화되어 있다면 상향 링크 전송에서 PDCP 계층 장치는 패킷을 하위 RLC 계층에게 전달할 때 제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치로 전달하지만 스플릿 베어러(split bearer)의 동작처럼 데이터를 중복 처리하지 않고, 서로 다른 데이터를 각각 제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치로 전달할 수 있다. 만약 패킷 중복 전송 기술이 활성화되어 있다면 상향 링크 전송에서 PDCP 계층 장치는 패킷을 하위 두 개의 RLC 계층 장치들(제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치)로 동일한 패킷을 중복하여 각각 전송할 수 있다. 즉, PDCP 계층 장치는 하나의 패킷을 제 1의 RLC 계층 장치로 전달하고, 상기 패킷을 복제하여 동일한 패킷을 제 2의 RLC 계층 장치로 전달할 수 있다.
이중 접속 기술에 패킷 중복 전송 기술이 설정되고, 활성화 된 경우, 각 MAC 계층 장치(1f-25, 1f-30)는 각 RLC 계층 장치로부터 전달 받은 데이터를 서로 다른 기지국으로 전송 자원에 실어서 전송할 수 있다. 전술한 절차는 상향 링크 데이터 전송에 관한 것이며, 하향 링크 데이터 수신에 대해서 단말은 패킷 중복 전송 기술이 적용된 하향 링크 데이터를 항상 수신할 수 있어야 한다.
즉, 이중 접속 기술에서 패킷 중복 전송 기술이 설정되고 활성화 된 경우, 단말은 상향 링크 데이터를 PDCP 계층 장치에서 중복하여 제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치로 전달할 수 있으며, 이중 접속 기술에서 패킷 중복 전송 기술이 설정되고 비활성화 된 경우, 단말은 상향 링크 데이터를 PDCP 계층 장치에서 중복 절차를 수행하지 않으며, 스플릿 베어러처럼 서로 다른 데이터를 제 1의 RLC 계층 장치와 제 2의 RLC 계층 장치로 전달할 수 있다. 패킷 중복 전송 기술의 활성화 및 비활성화 상태의 설정은 MAC 제어 정보(MAC Control Element)로 결정될 수도 있다.
이하에서는, 패킷 중복 전송 기술이 설정된 두 개의 RLC 계층 장치에서 소정의 데이터가 최대 재전송 횟수를 초과한 경우, 이를 효율적으로 관리하는 방법을 제안한다.
만약 두 개의 RLC 계층 장치 중에 Pcell(Primary cell)과 연결된 RLC 계층 장치에서 소정의 데이터가 최대 재전송 횟수를 초과한 경우, RLF(Radio Link Failure)를 트리거링하여 단말은 RLF가 발생하였음을 RRC 메시지로 기지국에게 보고할 수 있다. 그리고 RLC 계층 장치는 전송을 중지한다. 다른 모든 PDCP 계층 장치, RLC 계층 장치, MAC 계층 장치에서도 전송을 중지하고, RRC 연결을 재설정할 수 있다.
하지만 만약 두 개의 RLC 계층 장치 중에 Pcell과는 연결되지 않고, Scell(Secondary cell)들과만 연결된 RLC 계층 장치에서 소정의 데이터가 최대 재전송 횟수를 초과한 경우, Scell RLF를 트리거링하고 단말은 Scell들과 연결된 RLC 계층 장치에서 어떤 데이터가 최대 재전송횟수를 초과하였음을 RRC 메시지로 보고할 수 있다. RRC 메시지는 Scell RLF를 트리거링한 RLC 계층 장치를 지시하기 위해 로지컬 채널 식별자, 베어러 식별자, 및 MCG(Master cell group)인지 아니면 SCG(Secondary Cell Group)에 속하는 지를 지시하는 지시자를 포함할 수 있다. 예를 들면 1비트 지시자로 값이 0이면 MCG를 지시하고, 1이면 SCG를 지시할 수 있다. Scell RLF를 트리거링한 경우, 단말은 RLC 계층 장치와 다른 PDCP 계층 장치, RLC 계층 장치, MAC 계층 장치에서 계속하여 데이터를 전송할 수 있다. 그리고 Scell RLF 보고에 대한 기지국의 응답에 따라 필요한 절차를 수행할 수 있다.
예를 들면 RLC 계층 장치와 새로운 셀(Pcell 또는 Scell)과의 맵핑이 설정될 수 있다. 단말이 Scell RLF를 트리거링하고 계속하여 데이터를 전송하는 이유는 RLF를 선언한 것과 같이 RRC 연결을 재설정하면 큰 전송 지연이 발생할 수 있기 때문이며, 아직 Pcell과의 연결이 원활하기 때문에 데이터 전송을 유지하면서 해결할 수 있기 때문이다. 또한 Scell RLF를 트리거링한 RLC 계층 장치도 데이터를 계속 전송할 수 있어야 하향 링크 데이터의 수신에도 영향을 미치지 않는다. 왜냐하면 하향 링크에 대한 RLC 상태 보고(RLC Status report)를 계속해서 전송해야 하향 링크 데이터가 계속 전송될 수 있기 때문이다.
일부 실시예에 따르면, Pcell은 PUCCH 전송 자원을 가지고 있으며, 주파수 측정 보고를 수행할 수 있고, 기지국과 제어 메시지를 주고 받을 수 있는 셀을 의미할 수 있으며, Scell은 주로 데이터를 전송하기 위한 셀을 의미할 수 있다. 다만 상기 예시에 제한되지 않는다.
또한 본 개시에서 제안하는 실시예들은 패킷 중복 전송 기술이 설정되지 않은 일반적인 RLC 계층 장치가 Pcell과 연결되지 않고, Scell들과만 연결(association) 또는 맵핑(mapping)이 설정된 경우에도 동일하게 적용될 수 있다.
이하에서는 AM 모드로 동작하는 RLC 계층 장치에서 재전송을 수행하는 데이터에 대해서 최대 재전송 횟수를 초과하는지 여부를 계산하고, 최대 재전송 횟수를 초과하는 경우, 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고하는 제 1 실시 예를 제안한다.
최대 재전송 횟수는 도 1e에서 설명한 바와 같이 단계 1e-10, 1e-40 또는 1e-65 메시지 중 적어도 하나에서 설정될 수 있으며, maxRetxThreshold 값으로써 최대 재전송 횟수가 지시될 수 있다.
제 1 실시 예에서는 각 데이터에 대한 재전송 횟수를 기록하고 저장하기 위해서 각 데이터(예를 들면 RLC SDU 또는 RLC PDU 별로)마다 RETX_COUNT라는 변수를 정의하고 운영할 수 있다. 그리고 각 데이터에 대한 재전송이 수행될 때마다 RETX_COUNT 변수를 1씩 증가시키면 값을 저장하고 관리할 수 있다.
제 1 실시 예에서 제안하는 구체적인 절차는 다음과 같다.
AM 모드로 동작하는 RLC 계층 장치가 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 고려할 때 다음 절차를 수행한다.
1. 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 처음으로 수행한다면 또는 고려한다면
A. 상기 데이터에 대한 RETX_COUNT 값을 0으로 설정한다.
2. 그렇지 않은 경우, 즉, 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 처음으로 재전송을 수행하는 것이 아닌 경우, 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 이미 재전송이 대기 중이지 않고, 같은 RLC 상태 보고(RLC status PDU)의 또 다른 NACK에 의해서 데이터에 대한 RETX_COUNT 값을 증가시키지 않았다면
A. RETX_COUNT 값을 1만큼 증가시킨다.
3. 만약 상기 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수(maxRetxThreshold)와 같다면
A. 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치(예를 들면 RRC 계층 장치)에 보고한다.
상기 절차의 한 예는 다음과 같다.
(예 1)
When an RLC SDU or an RLC SDU segment is considered for retransmission, the transmitting side of the AM RLC entity shall:
- if the RLC SDU or RLC SDU segment is considered for retransmission for the first time:
- set the RETX_COUNT associated with the RLC SDU to zero.
- else, if it (the RLC SDU or the RLC SDU segment that is considered for retransmission) is not pending for retransmission already and the RETX_COUNT associated with the RLC SDU has not been incremented due to another negative acknowledgment in the same STATUS PDU:
- increment the RETX_COUNT.
- if RETX_COUNT =
maxRetxThreshold:
- indicate to upper layers that max retransmission has been reached
전술한 절차에서 AM 모드로 동작하는 RLC 계층 장치가 상위 계층 장치(예를 들면 RRC 계층 장치)에게 최대 재전송 횟수에 도달하였음을 보고한다면, 상위 계층 장치는 RLC 계층 장치가 Pcell과 연결이 되었다면 RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 중지할 수 있다. 만약 상기 RLC 계층 장치가 Pcell과 연결되지 않고, Scell들과만 연결이 되었다면 상위 계층 장치는 Scell RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 계속해서 수행할 수 있다.
전술한 절차에서 소정의 데이터에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하면 RLC 계층 장치가 상위 계층 장치에 보고를 하게 되어 있고, RLC 계층 장치가 Pcell에 연결된 경우, 상위 계층 장치는 RLF를 트리거링하고 각 계층 장치들에 대해서 전송 중지를 지시할 수 있다. 하지만 RLC 계층 장치가 Pcell에 연결되지 않고, Scell들에만 연결된 경우, 상위 계층 장치는 Scell RLF를 트리거링하고 각 계층 장치들에 대해 특별한 지시를 수행하지 않고 계속하여 데이터를 전송하도록 할 수 있다. 따라서 Scell RLF가 트리거링 된 경우에 RLC 계층 장치에 대해서 데이터 전송 및 재전송이 계속되기 때문에 최대 재전송 횟수에 재전송 횟수가 도달한 데이터를 제외한 또 다른 데이터의 재전송 횟수가 최대 재전송 횟수에 도달할 수 있다. 따라서 RLC 계층 장치의 또 다른 데이터에 의해서 재전송 횟수가 최대 재전송 횟수에 도달하였음이 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고될 수 있다. 따라서 여러 번 Scell RLF가 보고될 수 있다.
따라서 상위 계층 장치(예를 들면 RRC 계층 장치)는 하나의 RLC 계층 장치에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시를 여러 번 받더라도 기지국에게 RRC 메시지를 구성하고 Scell RLF를 보고하는 절차는 한 번만 수행할 수 있다. 만약 Scell RLF를 보고하고 나서 소정의 시간이 지나서도 이에 대한 응답이 기지국으로부터 수신되지 않으면 RRC 계층 장치는 Scell RLF를 다시 보낼 수 있다. 즉, 타이머를 구동하고, 타이머가 만료할 때까지 Scell RLF에 대한 응답이 없고 타이머가 만료하면 Scell RLF에 대한 RRC 메시지를 기지국에게 다시 전송하여 다시 보고할 수 있다.
또한 일부 실시예에 따르면, 상위 계층 장치는 Scell-RLF 보고 금지 타이머를 정의하고 구동하여 Scell-RLF 보고 금지 타이머가 구동되는 동안에는 RLC 계층 장치로부터 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 와도 Scell RLF를 보고하지 않고 타이머가 만료한 후에 Scell RLF를 보고하거나, Scell-RLF 보고 금지 타이머가 만료한 후에 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 오면 Scell RLF를 보고할 수 있다.
이하에서는 AM 모드로 동작하는 RLC 계층 장치에서 재전송을 수행하는 데이터에 대해서 최대 재전송 횟수를 초과하는지 여부를 계산하고, 최대 재전송 횟수를 초과하는 경우, 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고하는 제 2 실시 예를 제안한다.
최대 재전송 횟수는 도 1e에서 설명한 바와 같이 단계 1e-10, 1e-40 또는 1e-65 메시지 중 적어도 하나에서 설정될 수 있으며, maxRetxThreshold 값으로써 최대 재전송 횟수가 지시될 수 있다.
제 2 실시 예에서는 각 데이터에 대한 재전송 횟수를 기록하고 저장하기 위해서 각 데이터(예를 들면 RLC SDU 또는 RLC PDU 별로)마다 RETX_COUNT라는 변수를 정의하고 운영할 수 있다. 그리고 각 데이터에 대한 재전송이 수행될 때마다 상기 RETX_COUNT 변수를 1씩 증가시키면 값을 저장하고 관리할 수 있다.
제 2 실시 예에서 제안하는 구체적인 절차는 다음과 같다.
AM 모드로 동작하는 RLC 계층 장치가 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 고려할 때 다음 절차를 수행한다.
1. 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 처음으로 수행한다면 또는 고려한다면
A. 상기 데이터에 대한 RETX_COUNT 값을 0으로 설정한다.
2. 그렇지 않은 경우, 즉, 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 처음으로 재전송을 수행하는 것이 아닌 경우, 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 이미 재전송이 대기 중이지 않고, 같은 RLC 상태 보고(RLC status PDU)의 또 다른 NACK에 의해서 상기 데이터에 대한 RETX_COUNT 값을 증가시키지 않았다면
A. RETX_COUNT 값을 1만큼 증가시킨다.
3. 만약 상기 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수(maxRetxThreshold)와 같다면
A. 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치(예를 들면 RRC 계층 장치)에 보고한다.
B. 그리고 더 이상 어떤 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대한 재전송을 고려하지 않는다.
상기 절차의 한 예는 다음과 같다.
(예 1)
When an RLC SDU or an RLC SDU segment is considered for retransmission, the transmitting side of the AM RLC entity shall:
- if the RLC SDU or RLC SDU segment is considered for retransmission for the first time:
- set the RETX_COUNT associated with the RLC SDU to zero.
- else, if it (the RLC SDU or the RLC SDU segment that is considered for retransmission) is not pending for retransmission already and the RETX_COUNT associated with the RLC SDU has not been incremented due to another negative acknowledgment in the same STATUS PDU:
- increment the RETX_COUNT.
- if RETX_COUNT =
maxRetxThreshold:
- indicate to upper layers that max retransmission has been reached
- do not consider any RLC SDU or RLC SDU segment for retransmission.
전술한 절차에서 AM 모드로 동작하는 RLC 계층 장치가 상위 계층 장치(예를 들면 RRC 계층 장치)에게 최대 재전송 횟수에 도달하였음을 보고한다면 상위 계층 장치는 RLC 계층 장치가 Pcell과 연결이 되었다면 RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 중지할 수 있다. 만약 상기 RLC 계층 장치가 Pcell과 연결되지 않고, Scell들과만 연결이 되었다면 상위 계층 장치는 Scell RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 계속해서 수행할 수 있다.
전술한 절차에서 소정의 데이터에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하면 RLC 계층 장치가 상위 계층 장치에 보고를 하게 되어 있고, RLC 계층 장치가 Pcell에 연결된 경우, 상위 계층 장치는 RLF를 트리거링하고 각 계층 장치들에 대해서 전송 중지를 지시할 수 있다. 하지만 RLC 계층 장치가 Pcell에 연결되지 않고, Scell들에만 연결된 경우, 상위 계층 장치는 Scell RLF를 트리거링하고 각 계층 장치들에 대해 특별한 지시를 수행하지 않고 계속하여 데이터를 전송하도록 할 수 있다.
전술한 절차에서는 소정의 데이터에 대해서 재전송 회수가 최대 재전송 횟수에 도달하면 상위 계층 장치에 보고를 하게 되어 있고, 더 이상 어떤 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대한 재전송을 고려하지 않기 때문에 어떤 데이터에 대해서도 재전송 횟수가 증가하지 않는다. 따라서 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시를 상위 계층으로 여러 번 보고하는 경우가 발생하지 않는다.
또한 상위 계층 장치(예를 들면 RRC 계층 장치) 또는 RLC 계층 장치는 만약 Scell RLF를 보고하고 나서 소정의 시간이 지나서도 이에 대한 응답이 기지국으로부터 수신되지 않으면 RRC 계층 장치 또는 RLC 계층 장치는 Scell RLF 또는 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시를 다시 보낼 수 있다. 즉, 타이머를 구동하고, 타이머가 만료할 때까지 상기 Scell RLF에 대한 응답이 없고 타이머가 만료하면 RRC 계층 장치는 Scell RLF에 대한 RRC 메시지를 기지국에게 다시 전송하여 다시 보고할 수 있다. 또한 일부 실시예에 따르면, RLC 계층 장치는 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시를 다시 상위 계층 장치에 보고할 수 있고, Scell RLF를 기지국으로 다시 보고하도록 할 수 있다.
이하에서는 AM 모드로 동작하는 RLC 계층 장치에서 재전송을 수행하는 데이터에 대해서 최대 재전송 횟수를 초과하는지 여부를 계산하고, 최대 재전송 횟수를 초과하는 경우, 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고하는 제 3 실시 예를 제안한다.
최대 재전송 횟수는 도 1e에서 설명한 바와 같이 단계 1e-10, 1e-40, 또는 1e-65 메시지 중 적어도 하나에서 설정될 수 있으며, maxRetxThreshold 값으로써 최대 재전송 횟수가 지시될 수 있다.
제 3 실시 예에서는 각 데이터에 대한 재전송 횟수를 기록하고 저장하기 위해서 각 데이터(예를 들면 RLC SDU 또는 RLC PDU 별로)마다 RETX_COUNT라는 변수를 정의하고 운영할 수 있다. 그리고 각 데이터에 대한 재전송이 수행될 때마다 RETX_COUNT 변수를 1씩 증가시키면 값을 저장하고 관리할 수 있다.
제 3 실시 예에서 제안하는 구체적인 절차는 다음과 같다.
AM 모드로 동작하는 RLC 계층 장치가 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 고려할 때 다음 절차를 수행한다.
1. 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 처음으로 수행한다면 또는 고려한다면
A. 상기 데이터에 대한 RETX_COUNT 값을 0으로 설정한다.
2. 그렇지 않은 경우, 즉, 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 처음으로 재전송을 수행하는 것이 아닌 경우, 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 이미 재전송이 대기 중이지 않고, 같은 RLC 상태 보고(RLC status PDU)의 또 다른 NACK에 의해서 상기 데이터에 대한 RETX_COUNT 값을 증가시키지 않았다면
A. RETX_COUNT 값을 1만큼 증가시킨다.
3. 만약 상기 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수(maxRetxThreshold)와 같다면
A. 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치(예를 들면 RRC 계층 장치)에 보고한다.
B. 그리고 더 이상 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대한 재전송을 고려하지 않는다(따라서 상기 데이터 또는 분할된 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수보다 큰 값으로 계속해서 증가하는 것을 막을 수 있다).
상기 절차의 한 예는 다음과 같다.
(예 1)
When an RLC SDU or an RLC SDU segment is considered for retransmission, the transmitting side of the AM RLC entity shall:
- if the RLC SDU or RLC SDU segment is considered for retransmission for the first time:
- set the RETX_COUNT associated with the RLC SDU to zero.
- else, if it (the RLC SDU or the RLC SDU segment that is considered for retransmission) is not pending for retransmission already and the RETX_COUNT associated with the RLC SDU has not been incremented due to another negative acknowledgment in the same STATUS PDU:
- increment the RETX_COUNT.
- if RETX_COUNT =
maxRetxThreshold:
- indicate to upper layers that max retransmission has been reached
- do not consider the RLC SDU or RLC SDU segment for retransmission.
전술한 절차에서 AM 모드로 동작하는 RLC 계층 장치가 상위 계층 장치(예를 들면 RRC 계층 장치)에게 최대 재전송 횟수에 도달하였음을 보고한다면 상위 계층 장치는 RLC 계층 장치가 Pcell과 연결이 되었다면 RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 상위 계층 장치는 각 계층 장치에 대해서 데이터 전송을 중지할 수 있다. 만약 상기 RLC 계층 장치가 Pcell과 연결되지 않고, Scell들과만 연결이 되었다면 상위 계층 장치는 Scell RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 계속해서 수행할 수 있다.
전술한 절차에서 소정의 데이터에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하면 RLC 계층 장치는 상위 계층 장치에 보고를 하게 되어 있고, RLC 계층 장치가 Pcell에 연결된 경우, 상위 계층 장치는 RLF를 트리거링하고 각 계층 장치들에 대해서 전송 중지를 지시할 수 있다. 하지만 RLC 계층 장치가 Pcell에 연결되지 않고, Scell들에만 연결된 경우, 상위 계층 장치는 Scell RLF를 트리거링하고 각 계층 장치들에 대해 특별한 지시를 수행하지 않고 계속하여 데이터를 전송하도록 할 수 있다. 따라서 Scell RLF가 트리거링 된 경우에 상기 RLC 계층 장치에 대해서 데이터 전송 및 재전송이 계속되기 때문에 최대 재전송 횟수에 재전송 횟수가 도달한 데이터를 제외한 또 다른 데이터의 재전송 횟수가 최대 재전송 횟수에 도달할 수 있다. 따라서 RLC 계층 장치의 또 다른 데이터에 의해서 재전송 횟수가 최대 재전송 횟수에 도달하였음이 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고될 수 있다. 따라서 여러 번 Scell RLF가 보고될 수 있다.
따라서 상위 계층 장치(예를 들면 RRC 계층 장치)는 하나의 RLC 계층 장치에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시를 여러 번 받더라도 기지국에게 RRC 메시지를 구성하고 Scell RLF를 보고하는 절차는 한 번만 수행할 수 있다. 만약 Scell RLF를 보고하고 나서 소정의 시간이 지나서도 이에 대한 응답이 기지국으로부터 수신되지 않으면 RRC 계층 장치는 Scell RLF를 다시 보낼 수 있다. 즉, 타이머를 구동하고, 타이머가 만료할 때까지 Scell RLF에 대한 응답이 없고 타이머가 만료하면 Scell RLF에 대한 RRC 메시지를 기지국에게 다시 전송하여 다시 보고할 수 있다.
또한 일부 실시예에 따르면, 상위 계층 장치는 Scell-RLF 보고 금지 타이머를 정의하고 구동하여 Scell-RLF 보고 금지 타이머가 구동되는 동안에는 RLC 계층 장치로부터 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 와도 Scell RLF를 보고하지 않고 타이머가 만료한 후에 Scell RLF를 보고하거나 Scell-RLF 보고 금지 타이머가 만료한 후에 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 오면 Scell RLF를 보고 할 수 있다.
또한 일부 실시예에 따르면, RLC 계층 장치는 최대 재전송 횟수 도달 지시 금지 타이머를 정의하고 구동하여 최대 재전송 횟수 도달 지시 금지 타이머가 구동되는 동안에는 RLC 계층 장치에서 재전송 횟수가 최대 재전송 횟수에 도달하는 경우가 발생해도 상위 계층 장치에게 지시를 보고하지 않고 최대 재전송 횟수 도달 지시 금지 타이머가 만료한 후에 지시를 보고하거나 최대 재전송 횟수 도달 지시 금지 타이머가 만료한 후에 재전송 횟수가 최대 재전송 횟수에 도달하면 지시를 보고할 수 있다.
이하에서는 AM 모드로 동작하는 RLC 계층 장치에서 재전송을 수행하는 데이터에 대해서 최대 재전송 횟수를 초과하는지 여부를 계산하고, 최대 재전송 횟수를 초과하는 경우, 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고하는 제 4 실시 예를 제안한다.
상기에서 최대 재전송 횟수는 도 1e에서 설명한 바와 같이 단계 1e-10, 1e-40,또는 1e-65 메시지 중 적어도 하나에서 설정될 수 있으며, maxRetxThreshold 값으로써 최대 재전송 횟수가 지시될 수 있다.
제 4 실시 예에서는 각 데이터에 대한 재전송 횟수를 기록하고 저장하기 위해서 각 데이터(예를 들면 RLC SDU 또는 RLC PDU 별로)마다 RETX_COUNT라는 변수를 정의하고 운영할 수 있다. 그리고 각 데이터에 대한 재전송이 수행될 때마다 RETX_COUNT 변수를 1씩 증가시키면 값을 저장하고 관리할 수 있다.
제 4 실시 예에서 제안하는 구체적인 절차는 다음과 같다.
AM 모드로 동작하는 RLC 계층 장치가 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 고려할 때 다음 절차를 수행한다.
1. 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 재전송을 처음으로 수행한다면 또는 고려한다면
A. 상기 데이터에 대한 RETX_COUNT 값을 0으로 설정한다.
2. 그렇지 않은 경우, 즉, 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 처음으로 재전송을 수행하는 것이 아닌 경우, 만약 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대해서 이미 재전송이 대기 중이지 않고, 같은 RLC 상태 보고(RLC status PDU)의 또 다른 NACK에 의해서 상기 데이터에 대한 RETX_COUNT 값을 증가시키지 않았다면
A. RETX_COUNT 값을 1만큼 증가시킨다.
3. 만약 상기 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수(maxRetxThreshold)와 같다면
A. 상기 RLC 계층 장치(상기 데이터를 재전송한 RLC 계층 장치)에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하였음을 이전에 상위 계층으로 보고한 적이 없다면, 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치(예를 들면 RRC 계층 장치)에 보고한다.
B. 그리고 더 이상 상기 데이터(RLC SDU) 또는 분할된 데이터(RLC SDU segment)에 대한 재전송을 고려하지 않는다(따라서 상기 데이터 또는 분할된 데이터에 대한 RETX_COUNT 값이 최대 재전송 횟수보다 큰 값으로 계속해서 증가하는 것을 막을 수 있다).
상기 절차의 한 예는 다음과 같다.
(예 1)
When an RLC SDU or an RLC SDU segment is considered for retransmission, the transmitting side of the AM RLC entity shall:
- if the RLC SDU or RLC SDU segment is considered for retransmission for the first time:
- set the RETX_COUNT associated with the RLC SDU to zero.
- else, if it (the RLC SDU or the RLC SDU segment that is considered for retransmission) is not pending for retransmission already and the RETX_COUNT associated with the RLC SDU has not been incremented due to another negative acknowledgment in the same STATUS PDU:
- increment the RETX_COUNT.
- if RETX_COUNT =
maxRetxThreshold:
- indicate to upper layers that max retransmission has been reached if it has not been indicated before.
- do not consider the RLC SDU or RLC SDU segment for retransmission.
전술한 절차에서 AM 모드로 동작하는 RLC 계층 장치가 상위 계층 장치(예를 들면 RRC 계층 장치)에게 최대 재전송 횟수에 도달하였음을 보고한다면 상위 계층 장치는 RLC 계층 장치가 Pcell과 연결이 되었다면 RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 중지할 수 있다. 만약 상기 RLC 계층 장치가 Pcell과 연결되지 않고, Scell들과만 연결이 되었다면 상위 계층 장치는 Scell RLF를 보고하기 위해 RRC 메시지를 구성하여 기지국에게 전송할 수 있다. 그리고 각 계층 장치(예를 들면 PDCP 계층 장치, RLC 계층 장치 또는 MAC 계층 장치)는 데이터 전송을 계속해서 수행할 수 있다.
전술한 절차에서 소정의 데이터에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하면 RLC 계층 장치는 상위 계층 장치에 보고를 하게 되어 있고, RLC 계층 장치가 Pcell에 연결된 경우, 상위 계층 장치는 RLF를 트리거링하고 각 계층 장치들에 대해서 전송 중지를 지시할 수 있다. 하지만 RLC 계층 장치가 Pcell에 연결되지 않고, Scell들에만 연결된 경우, 상위 계층 장치는 Scell RLF를 트리거링하고 각 계층 장치들에 대해 특별한 지시를 수행하지 않고 계속하여 데이터를 전송하도록 할 수 있다. 따라서 Scell RLF가 트리거링 된 경우에 RLC 계층 장치에 대해서 데이터 전송 및 재전송이 계속되기 때문에 최대 재전송 횟수에 재전송 횟수가 도달한 데이터를 제외한 또 다른 데이터의 재전송 횟수가 최대 재전송 횟수에 도달할 수 있다. 따라서 RLC 계층 장치의 또 다른 데이터에 의해서 재전송 횟수가 최대 재전송 횟수에 도달한 경우, 만약 RLC 계층 장치에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층으로 이전에 보고한 적이 없는 경우에만 상위 계층 장치(예를 들면 RRC 계층 장치)로 보고하도록 하여 불필요하게 여러 번 보고하는 지시를 막을 수 있다.
일부 실시예에 따르면, 상위 계층 장치(예를 들면 RRC 계층 장치)는 만약 Scell RLF를 보고하고 나서 소정의 시간이 지나서도 이에 대한 응답이 기지국으로부터 수신되지 않으면 RRC 계층 장치는 Scell RLF를 다시 보낼 수 있다. 즉, 타이머를 구동하고, 타이머가 만료할 때까지 Scell RLF에 대한 응답이 없고 타이머가 만료하면 상위 계층 장치는 Scell RLF에 대한 RRC 메시지를 기지국에게 다시 전송하여 다시 보고할 수 있다.
또한 일부 실시예에 따르면, 상위 계층 장치는 Scell-RLF 보고 금지 타이머를 정의하고 구동하여 Scell-RLF 보고 금지 타이머가 구동되는 동안에는 RLC 계층 장치로부터 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 와도 Scell RLF를 보고하지 않고 Scell-RLF 보고 금지 타이머가 만료한 후에 Scell-RLF를 보고하거나 Scell-RLF 보고 금지 타이머가 만료한 후에 재전송 횟수가 최대 재전송 횟수에 도달하였다는 지시가 오면 Scell-RLF를 보고할 수 있다.
또한 일부 실시예에 따르면, RLC 계층 장치는 최대 재전송 횟수 도달 지시 금지 타이머를 정의하고 구동하여 최대 재전송 횟수 도달 지시 금지 타이머가 구동되는 동안에는 RLC 계층 장치에서 재전송 횟수가 최대 재전송 횟수에 도달하는 경우가 발생해도 상위 계층 장치에게 지시를 보고 하지 않고 최대 재전송 횟수 도달 지시 금지 타이머가 만료한 후에 지시를 보고하거나 최대 재전송 횟수 도달 지시 금지 타이머가 만료한 후에 재전송 횟수가 최대 재전송 횟수에 도달하면 지시를 보고할 수 있다.
도 1g는 본 개시의 일부 실시예에 따른 단말 동작을 설명한 도면이다.
도 1g의 단말의 동작은 상술한 실시예들 중 제4 실시예에 기초한 동작을 예시로 기재한 것으로, 본 개시의 단말은 제1 실시예 내지 제4 실시예 중 적어도 하나에 따라 동작할 수 있으며, 각 실시예의 일부 또는 전부의 조합에 의한 동작을 수행할 수도 있다.
일부 실시예에 따르면, 단말(1g-01)의 AM 모드로 동작하는 RLC 계층 장치에서 어떤 데이터에 대한 재전송 횟수가 최대 재전송 횟수에 도달한다면(1g-05) 단말은 RLC 계층 장치의 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치(예를 들면 RRC 계층 장치)에게 이전에 지시한 적이 있는 지 여부를 확인한다(1g-10). 즉, 단말은 RLC 계층 장치의 재전송 횟수가 최대 재전송 횟수에 도달하였음을 상위 계층 장치에게 알리거나, 보고한 적이 있는지 확인할 수 있다. 만약에 이전에 지시(또는 알리거나 보고)한 적이 있다면 단말은 RLC 계층 장치에 대해서 더 이상 재전송 횟수가 최대 재전송 횟수에 도달하였음을 지시하지 않는다(1g-15). 만약에 이전에 지시한 적이 없다면 단말은 RLC 계층 장치에 대해서 재전송 횟수가 최대 재전송 횟수에 도달하였음을 지시한다(1g-20). 그리고 단말은 재전송 횟수가 최대 재전송 횟수에 도달한 데이터에 대해서는 더 이상 재전송을 수행하지 않는다(1g-25). 그리고 단말은 새로운 전송 및 다른 데이터들에 대한 재전송을 계속하여 수행할 수 있다(1g-30).
상술한 바와 같이 본 개시는, 차세대 이동 통신 시스템에서 패킷 중복 전송 기술을 적용하는 경우, 또는 Scell로 데이터를 전송하도록 설정된 RLC 계층 장치에서 어떤 데이터에 대해 최대 재전송 횟수를 초과하는 지 여부를 계산하기 위한 방법과 Scell RLF를 보고하는 효율적인 방법을 제안하여 단말의 오동작을 방지하고 Scell RLF를 기지국에 불필요하게 여러 번 보고하지 않도록 한다.
도 1h에 본 개시의 일부 실시예에 따른 단말의 구조를 도시한다.
도 1h를 참조하면, 단말은 RF(Radio Frequency)처리부(1h-10), 기저대역(baseband)처리부(1h-20), 저장부(1h-30), 제어부(1h-40)를 포함한다. 물론 상기 예시에 제한되는 것은 아니며 단말은 도 1h에 도시된 구성보다 더 적은 구성을 포함하거나, 더 많은 구성을 포함할 수 있다.
RF처리부(1h-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1h-10)는 기저대역처리부(1h-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, RF처리부(1h-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 도 1h에서는, 하나의 안테나만이 도시되었으나, 단말은 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(1h-10)는 복수의 RF 체인들을 포함할 수 있다. 또한, RF처리부(1h-10)는 빔포밍(beamforming)을 수행할 수 있다. 빔포밍을 위해, RF처리부(1h-10)는 복수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부(1h-10)는 MIMO(Multi Input Multi Output)를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. RF처리부(1h-10)는 제어부(1h-40)의 제어에 따라 다수의 안테나 또는 안테나 요소들을 적절하게 설정하여 수신 빔 스위핑을 수행하거나, 수신 빔이 송신 빔과 공조되도록 수신 빔의 방향과 빔 너비를 조정할 수 있다.
기저대역처리부(1h-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1h-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 기저대역처리부(1h-20)은 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1h-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(1h-20)은 상기 RF처리부(1h-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.
기저대역처리부(1h-20) 및 RF처리부(1h-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 기저대역처리부(1h-20) 및 RF처리부(1h-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 또한, 기저대역처리부(1h-20) 및 RF처리부(1h-10) 중 적어도 하나는 서로 다른 복수의 무선 접속 기술들을 지원하기 위해 복수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(1h-20) 및 RF처리부(1h-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 LTE 망, NR 망 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.2gHz, 2ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다. 단말은 기저대역처리부(1j-20) 및 RF처리부(1j-10)을 이용하여 기지국과 신호를 송수신할 수 있으며, 신호는 제어 정보 및 데이터를 포함할 수 있다.
저장부(1h-30)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부(1h-30)는 제어부(1h-40)의 요청에 따라 저장된 데이터를 제공할 수 있다. 저장부(1h-30)는롬 (ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(1h-30)는 복수 개의 메모리로 구성될 수도 있다. 일부 실시예에 따르면, 저장부(1h-30)는 상술한 Scell RLF를 보고하기 위한 무선 통신 방법을 수행하기 위한 프로그램을 저장할 수 있다.
제어부(1h-40)는 단말의 전반적인 동작들을 제어한다. 예를 들어, 제어부(1h-40)는 상기 기저대역처리부(1h-20) 및 RF처리부(1h-10)을 통해 신호를 송수신한다. 또한, 제어부(1h-40)는 상기 저장부(1h-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(1h-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(1h-40)는 통신을 위한 제어를 수행하는 통신 프로세서(CP(communication processor)) 및 응용 프로그램 등 상위 계층을 제어하는 응용 프로세서(AP(application processor))를 포함할 수 있다. 또한 단말 내의 적어도 하나의 구성은 하나의 칩으로 구현될 수 있다. 도 1i는 본 개시의 일부 실시예에 따른 무선 통신 시스템에서 TRP(Transmission/ Reception Point)의 블록 구성을 도시한다.
도 1i를 참조하면, 기지국은 RF처리부(1i-10), 기저대역처리부(1i-20), 백홀통신부(1i-30), 저장부(1i-40), 제어부(1i-50)를 포함하여 구성된다. 물론 상기 예시에 제한되는 것은 아니며 TRP는 도 1i에 도시된 구성보다 더 적은 구성을 포함하거나, 더 많은 구성을 포함할 수 있다.
RF처리부(1i-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(1i-10)는 기저대역처리부(1i-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환할 수 있다. 예를 들어, RF처리부(1i-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 도 1i 에서는, 하나의 안테나만이 도시되었으나, RF 처리부(1i-10)는 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(1i-10)는 복수의 RF 체인들을 포함할 수 있다. 또한, RF처리부(1i-10)는 빔포밍을 수행할 수 있다. 빔포밍을 위해, RF처리부(1i-10)는 복수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. RF 처리부(1i-10)는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
기저대역처리부(1i-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 기저대역처리부(1i-20)은 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 기저대역처리부(1i-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 기저대역처리부(1i-20)은 RF처리부(1i-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 기저대역처리부(1i-20) 및 상기 RF처리부(1i-10)는 상술한 바와 같이 신호를 송신 및 수신할 수 있다. 따라서, 기저대역처리부(1i-20) 및 RF처리부(1i-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다. 기지국은 기저대역처리부(1i-20) 및 RF처리부(1i-10)을 이용하여 단말과 신호를 송수신할 수 있으며, 신호는 제어 정보 및 데이터를 포함할 수 있다.
통신부(1i-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다. 일부 실시예에 따르면, 통신부(1i-30)은 백홀 통신부일 수 있다.
저장부(1i-40)는 기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 저장부(1i-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(1i-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 저장부(1i-40)는 제어부(1i-50)의 요청에 따라 저장된 데이터를 제공한다. 저장부(1i-40)는 롬 (ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(1s-40)는 복수 개의 메모리로 구성될 수도 있다. 일부 실시예에 따르면, 저장부(1i-40)는 상술한 Scell RLF를 보고하기 위한 무선 통신 방법을 수행하기 위한 프로그램을 저장할 수 있다.
제어부(1i-50)는 기지국의 전반적인 동작들을 제어한다. 예를 들어, 제어부(1i-50)는 기저대역처리부(1i-20) 및 RF처리부(1i-10)을 통해 또는 통신부(1i-30)을 통해 신호를 송수신한다. 또한, 제어부(1i-50)는 저장부(1i-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(1i-50)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 TRP 내의 적어도 하나의 구성은 하나의 칩으로 구현될 수 있다.
도 2a은 본 개시의 일부 실시예에 따른 LTE 시스템의 구조를 도시하는 도면이다.
또한 일부 실시예에 따르면, NR 시스템도 도 2a와 대응되는구조를 가질 수 있다. 도 2a을 참고하면, 무선 통신 시스템은 여러 개의 기지국들(ENB)(2a-05)(2a-10)(2a-15)(2a-20)과 MME(Mobility Management Entity)(2a-20) 및 S-GW(Serving-Gateway)(2a-30)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(2a-35)은 기지국(2a-05)(2a-10)(2a-15)(2a-20) 및 S-GW(2a-30)을 통해 외부 네트워크에 접속한다.
기지국들(2a-05)(2a-10)(2a-15)(2a-20)은 셀룰러 망의 접속 노드로서 망에 접속하는 단말들에게 무선 접속을 제공한다. 즉, 기지국(2a-05)(2a-10)(2a-15)(2a-20)은 사용자들의 트래픽을 서비스하기 위해 단말들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케쥴링을 하여 단말들과 코어 망(CN, Core network)간의 연결을 지원한다. MME(2a-25)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 복수의 기지국들과 연결될 수 있으며, S-GW(2a-30)는 데이터 베어러를 제공하는 장치일 수 있다. 또한, MME(2a-25) 및 S-GW(2a-30)는 망에 접속하는 단말에 대한 인증(authentication), 베어러(bearer) 관리 등을 더 수행할 수 있으며 기지국(2a-05)(2a-10)(2a-15)(2a-20)으로부터 도착한 패킷 또는 기지국 (2a-05)(2a-10)(2a-15)(2a-20)으로 전달할 패킷을 처리할 수 있다.
도 2b는 본 개시의 설명을 위해 참고로 하는 LTE 및 NR 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2b를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP(Packet Data Convergence Protocol)(2b-05)(2b-40), RLC(Radio Link Control)(2b-10)(2b-35), MAC (Medium Access Control)(2b-15)(2b-30)으로 구성될 수 있다. 물론 상기 예시에 제한되는 것은 아니다.
MAC 계층에 대해, 한 단말에는 동시에 설정된 기지국의 개수만큼 MAC 엔티티 (entity)가 존재한다. 예를 들어, 한 기지국과 통신하는 경우에는 MAC 엔티티는 하나만 존재하며, 만약 단말이 두 기지국과 동시에 통신하는 이중연결(Dual Connectivity) 기술을 사용하는 경우, 각 기지국을 위해 단말 내에 총 두 개의 MAC 엔티티가 존재한다.
일부 실시예에 따르면, PDCP(Packet Data Convergence Protocol) (2b-05)(2b-40)는 IP 헤더 압축/복원 등의 동작을 담당하고, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다) (2b-10)(2b-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성한다. MAC(2b-15)(2b-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행할 수 있다.
물리 계층(2b-20)(2b-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다. 또한 물리 계층에서도 추가적인 오류 정정을 위해, HARQ(Hybrid ARQ) 를 사용할 수 있으며, 수신단에서는 송신단에서 전송한 패킷의 수신여부를 1 비트로 전송할 수 있다. 이를 HARQ ACK/NACK 정보라 한다. 업링크 데이터 전송에 대한 다운링크 HARQ ACK/NACK 정보는 LTE의 경우 PHICH(Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며, NR의 경우 하향링크/상향링크 자원할당 등이 전송되는 채널인 PDCCH(Physical Dedicated Control CHannel)에서 해당 단말의 스케쥴링 정보를 통해 재전송이 필요한지, 새로운 전송을 수행하면 되는지를 판단할 수 있다. 이는 NR에서는 비동기 HARQ를 적용하기 때문이다.
일부 실시예에 따르면, 다운링크 데이터 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH(Physical Uplink Control Channel)이나 PUSCH(Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다. PUCCH는 후술할 PCell의 상향링크에서 전송이 되지만, 단말이 지원하는 경우, 기지국은 해당 단말에게 후술할 SCell에서 추가로 전송할 수도 있으며, 이를 PUCCH SCell이라 칭한다.
본 도면에 도시하지 않았지만, 단말과 기지국의 PDCP 계층의 상위에는 각각 RRC (Radio Resource Control) 계층이 존재하며, RRC 계층은 무선 자원 제어를 위해 접속, 측정 관련 설정 제어 메시지를 주고 받을 수 있다.
한편 물리(PHY) 계층은 하나 또는 복수 개의 주파수/반송파와 대응되도록 구성될 수 있으며, 복수 개의 주파수를 동시에 설정하여 사용하는 기술을 반송파 집적 기술(Carrier Aggregation, 이하 CA라 칭함)이라 한다. CA 기술이란 단말(또는 User Equipment, UE)과 기지국(E-UTRAN NodeB, eNB) 사이의 통신을 위해 하나의 반송파만 사용하던 것을, 주반송파와 하나 또는 복수 개의 부차반송파를 추가로 사용하여 부차반송파의 갯수만큼 전송량을 획기적으로 늘릴 수 있다. 한편, LTE에서는 주반송파를 사용하는 기지국 내의 셀을 주셀 또는 PCell(Primary Cell)이라 하며, 부반송파를 사용하는 기지국 내의 셀을 부셀 또는 SCell(Secondary Cell)이라 칭한다.
도 2c는 본 개시의 일부 실시예에 따른 NR(New Radio) 시스템에서 빔 (beam) 기반으로 통신 수행 시 하향링크와 상향링크 채널 프레임 구조를 도시한 도면이다.
도 2c에서 기지국(2c-01)은 더 넓은 커버리지 또는 강한 신호를 전송하기 위해서 신호를 빔의 형태로 전송할 수 있다(2c-11)(2c-13)(2c-15)(2c-17). 셀 내의 단말(2c-03)은 기지국이 전송하는 특정 빔(도 2c에서는 빔 #1 (2c-13))을 사용하여 데이터를 송수신하여야 한다.
또한 일부 실시예에 따르면, 단말이 기지국에 연결되어 있는지 여부에 따라 단말의 상태를 휴면모드(RRC_IDLE)과 연결모드 (RRC_CONNECTED) 상태로 나뉜다. 따라서, 휴면 모드 상태에 있는 단말의 위치는 기지국이 알지 못할 수 있다.
만약 휴면모드 상태의 단말이 연결모드 상태로 천이하고자 하는 경우, 단말은 기지국이 전송하는 동기화 블록(Synchronization Signal Block, SSB)(2c-21)(2c-23)(2c-25)(2c-27)들을 수신한다. SSB는 기지국이 설정한 주기에 따라 주기적으로 전송되는 SSB 신호이며, 각각의 SSB는 주동기신호(Primary Synchronization Signal, PSS)(2c-41), 부동기신호(Secondary Synchronization Signal, SSS)(2c-43), 물리방송채널(Physical Broadcast CHannel, PBCH)로 나뉜다.
도 2c에서는 각 빔 별로 SSB가 전송되는 시나리오를 가정한다. 예를 들어, SSB#0(2c-21)의 경우 빔 #0(2c-11)을 사용하여 전송하고, SSB#1(2c-23)의 경우 빔 #1(2c-13)을 사용하여 전송하고, SSB#2(2c-25)의 경우 빔 #2(2c-15)을 사용하여 전송하고, SSB#3(2c-27)의 경우 빔 #3(2c-17)을 사용하여 전송하는 경우를 가정한다. 도 2c에서는 휴면모드의 단말이 빔 #1에 위치하는 상황을 가정하였으나, 연결모드의 단말이 랜덤엑세스를 수행하는 경우에도 단말은 랜덤엑세스를 수행하는 시점에 수신되는 SSB를 선택한다.
도 2c를 참조하면, 단말(2c-03)은 빔 #1(2c-13)으로 전송되는 SSB #1(2c-23)을 수신하게 된다. SSB #1(2c-23)을 수신하면, 단말은 PSS, SSS를 통해서 기지국의 물리식별자(Physical Cell Identifier, PCI)를 획득하고, PBCH를 수신함으로서 현재 수신한 SSB의 식별자(즉, #1) 및, 현재 SSB를 수신한 위치가 10 ms 프레임 내에서 어느 위치인지 뿐만 아니라, 10.24 초의 주기를 갖는 System Frame Number(SFN) 내에서 어떠한 SFN에 있는지를 파악할 수 있다. 또한, PBCH 내에는 MIB(Master Information Block) 이 포함되며, MIB 내에는 보다 상세한 셀의 설정정보를 방송해주는 SIB1(system information block type 1)을 어느 위치에서 수신할 수 있을 지에 대한 정보가 포함된다. SIB1을 수신하면, 단말은 기지국이 전송하는 총 SSB의 개수를 알 수 있고, 연결모드 상태로 천이하기 위해 랜덤엑세스를 수행할 수 있는(보다 정확히는 상향링크동기화를 맞추기 위해 특수하게 설계된 물리 신호인 프리앰블을 전송할 수 있는) PRACH(Physical Random Access CHannel) occasion 의 위치 (도 2c에서는 1ms 마다 할당되는 시나리오를 가정하며, 도 2c를 참조하면 (2c-30) 내지 (2c-39)까지)를 파악할 수 있다.
뿐만 아니라 단말은 SIB1 정보를 바탕으로 PRACH occasion들(2c-30 내지 2c-39) 중 어떠한 PRACH occasion이 어떠한 SSB index에 매핑되는 지를 알 수 있다. 예를 들어, 도 2c에서는 1ms 마다 할당되는 시나리오를 가정하였으며, PRACH Occasion 당 SSB가 1/2 개가 할당되는 (즉, SSB당 PRACH Occasion 2개) 시나리오를 가정하였다. 따라서, 도 2c에서는 SFN 값에 따라 시작되는 PRACH Occasion의 시작부터 SSB별로 각각 2개씩 PRACH occasion이 할당되는 시나리오를 도시되고 있다. 즉, PRACH Occasion(2c-30)(2c-31)은 SSB#0을 위해 할당, PRACH Occasion(2c-32)(2c-33)은 SSB#1을 위해 할당될 수 있다. 모든 SSB에 대해 PRACH Occasion 이 할당되면다시 처음의 SSB 를 위해 PRACH Occasion이 할당될 수 있다(2c-38)(2c-39).
단말은 SSB#1을 위한 PRACH occasion(2c-32)(2c-33)의 위치를 인지하고 SSB#1에 대응되는 PRACH Occasion(2c-32)(2c-33) 가운데 현재 시점에서 가장 빠른 PRACH Occasion에서 랜덤엑세스 프리앰블을 전송한다(예를 들어 (2c-32)). 기지국은 프리앰블을 PRACH Occasion(2c-32)에서 수신하였으므로, 단말이 SSB#1를 선택하여 프리앰블을 전송하였다는 사실을 알 수 있으며, 랜덤엑세스 수행 시 SSB#1과 대응되는 빔을 통해서 데이터를 송수신할 수 있다.
연결 상태의 단말이, 핸드오버 등의 이유로 현재(소스) 기지국에서 목적(타겟) 기지국으로 이동을 할 때도 단말은 타겟 기지국에서 랜덤엑세스를 수행하며, 전술한 바와 같이 SSB를 선택하여 랜덤엑세스를 전송하는 동작을 수행한다. 뿐만 아니라, 핸드오버 시에는 소스 기지국이 소스 기지국에서 타겟 기지국으로 이동하도록 핸드오버 명령을 단말에게 전송하며, 이 때 소스 기지국이 전송하는 핸드오버 명령 메시지에타겟 기지국이 할당한 타겟 기지국에서의 단말이 랜덤엑세스 수행 시 사용할 수 있도록 타겟 기지국의 SSB 별로 해당 단말 전용(dedicated) 랜덤엑세스 프리앰블 식별자가 포함될 수 있다.
일부 실시예에 따르면, 기지국은 단말의 현재 위치 등을 고려하여 모든 빔에 대해 전용 랜덤엑세스 프리앰블 식별자를 할당하지 않을 수 있다.따라서, 일부의 SSB에는 전용 랜덤엑세스 프리앰블이 할당되지 않을 수 있다(예를 들어, Beam #2, #3에만 전용 랜덤엑세스 프리앰블 할당). 만약 단말이 프리앰블 전송을 위해 선택한 SSB에 전용 랜덤엑세스 프리앰블이 할당 되어 있지 않은 경우에는 경쟁기반의 랜덤엑세스 프리앰블을 임의로 선택하여 랜덤엑세스를 수행한다. 예를 들어, 도 2c에서 단말이 처음 Beam #1에 위치하여 랜덤엑세스를 수행하였으나 실패한 후, 다시 랜덤엑세스 프리앰블 전송 시 Beam #3에 위치하여 전용 프리앰블을 전송할 수도 있다. 즉, 하나의 랜덤엑세스 절차 내에서도, 프리앰블 재전송이 발생하는 경우에는 각 프리앰블 전송 시마다 선택한 SSB에 전용 랜덤엑세스 프리앰블이 할당되어 있는지 여부에 따라, 경쟁기반의 랜덤엑세스 절차와 비경쟁기반의 랜덤엑세스 절차가 혼재될 수 있다.
도 2d는 본 개시의 일부 실시예에 따른 단말이 기지국에 핸드오버 와 같은 상황에서 수행하는 경쟁 및 비경쟁기반의 랜덤 엑세스 절차를 나타내는 도면이다.
랜덤엑세스 절차에는 경쟁 기반의 랜덤엑세스 절차와 비경쟁 랜덤엑세스 절차가 있으며, 비경쟁 기반의 랜덤엑세스 절차에서는 기지국이 단말에게 비경쟁기반의 랜덤엑세스를 수행시키게 하기 위해 전용 랜덤엑세스 자원을 할당하는 절차가 랜덤엑세스 이전에 존재한다. 전용 랜덤엑세스 자원은 특정 프리앰블 인덱스 그리고/또는 특정 시간/주파수상의 PRACH 자원일 수 있다. 또한, 전용 랜덤엑세스 자원을 할당하는 정보는 PDCCH를 통해 할당되거나 RRC 계층의 메시지를 통해 전송될 수 있다. RRC 계층의 메시지는 RRCReconfiguration(예를 들어, 핸드오버 경우)과 같은 메시지가 사용될 수 있다. 따라서, 만약 단말이 현재 수행하는 랜덤엑세스 절차에 대해 선택한 SSB/CSI-RS에 기지국으로부터 할당받은 전용 랜덤엑세스 자원이 있는 경우 단말은 해당 랜덤엑세스 자원을 통해 랜덤 엑세스 프리앰블을 전송한다. 또한, 비경쟁 기반 랜덤엑세스에서는 후술할 RAR 메시지에 단말이 전송한 프리앰블이 있는 경우 랜덤엑세스가 성공적으로 완료되었다고 판단하며 랜덤엑세스 절차를 종료한다.
도 2d 에서는 핸드오버상황을 가정하여 이전 소스 기지국으로부터 핸드오버 명령을 받을 때, SSB#3에 대해 프리앰블 식별자 M을 받은 경우를 가정한다.
이에 따라, 단말(2d-01)은 우선 타겟 기지국(2d-03)으로 이동 후, 어떠한 빔을 통해서 랜덤엑세스를 포함한 데이터 송수신을 수행하여야 하는지를 판단하고, 판단에 기초하여 SSB를 선택한다(2d-63). SSB를 선택하는 방법으로는, 기지국이 SIB1 또는 핸드오버 메시지 내의 설정정보로 소정의 threshold 를 전송하며, 단말은 단말이 수신한 SSB의 신호세기가 threshold를 넘는 SSB들 중 하나를 선택한다. 예를 들어, 도 2c에서 단말이 SSB #0, SSB #1, SSB #2를 모두 수신하였으나, SSB #1의 신호세기만이 threshold를 넘고, SSB #0과 SSB#2의 신호세기는 threshold를 넘지 않는 경우, 단말은 SSB #1을 선택할 수 있다. threshold는 SIB1 또는 단말에게 직접 제공된 RRC 계층의 메시지로 설정될 수 있으며, rsrp-ThresholdSSB 또는 rsrp-ThresholdCSI-RS와 같이 SSB의 RSRP(Reference Signal Received Power) 또는 CSI-RS의 RSRP 의 값으로 지시될 수 있다.
전술한 바와 같이 단말이 SSB를 선택하면, 선택한 SSB에 매핑되는 PRACH Occasion을 알 수 있고, 단말은 기지국으로 해당 PRACH Occasion에 랜덤 엑세스 프리앰블을 전송한다(2d-11). 이 때 SSB #1에는 전용 프리앰블이 할당되지 않았으므로, 경쟁 기반의 랜덤엑세스를 수행할 수 있다. 즉, 경쟁 기반의 프리앰블 식별자 가운데 랜덤하게 하나를 선택하여 전송할 수 있다(본 도면에서는 #N을 선택하여 전송한 것으로 가정한다.)
또한, PRACH Occasion으로 하나 이상의 단말이 동시에 랜덤 엑세스 프리앰블을 전송하는 경우도 발생할 수 있다. 즉, 다른 단말도 랜덤하게 하나를 골라 해당 자원에 전송할 수 있으며, 프리앰블 #N을 똑같이 선택할 수도 있다. PRACH 자원은 한 서브프레임에 걸쳐있을 수 있으며, 또는 한 서브프레임 내의 일부 심볼 만이 사용될 수도 있다. PRACH 자원에 대한 정보는 기지국이 브로드캐스트하는 시스템 정보 또는 핸드오버 명령에 포함되는 설정정보 내에 포함될 수 있으며, 따라서 단말은 PRACH 자원에 대한 정보에 따라 어떠한 시간 주파수 자원으로 프리앰블을 전송하여야 하는지 알 수 있다. 또한, 랜덤 엑세스 프리앰블은 기지국과 완전히 동기되기 전에 전송하여도 수신이 가능하도록 특별하게 설계된 특정의 시퀀스로 표준에 따라 복수 개의 프리앰블 식별자(index)가 있을 수 있다. 만약 복수 개의 프리앰블 식별자가 있는 경우, 단말이 전송하는 프리앰블은 단말이 랜덤하게 선택한 것이거나, 또는 기지국이 지정한 특정한 프리앰블일 수도 있다.
또한SSB를 선택하는 과정은, 이미 연결모드 상태에 있는 단말이 랜덤엑세스를 수행하는 경우에 기지국이 특정 측정할 신호를 설정해 둔 경우, 단말은 SSB 대신 해당 특정 측정할 신호를 기준으로 PRACH occasion을 선택할 수 있다. 특정 측정할 신호는 SSB나 또는 CSI-RS(Channel State Information Reference Signal) 일 수 있다. 예를 들어, 단말의 이동 등으로 다른 기지국으로 핸드오버를 수행하는 경우, 단말은 핸드오버 명령에 포함된 타겟 기지국의 SSB 또는 CSI-RS에 매핑되는 PRACH occasion을 선택할 수 있으며, 단말은 설정받은 신호를 측정하여 어떠한 PRACH occasion으로 랜덤엑세스 프리앰블을 전송할 지 결정한다.
단말(2d-01)이 전송한 프리앰블 (또는 다른 단말이 전송한 프리앰블)을 기지국이 수신한 경우, 기지국은 수신된 프리앰블에 대한 랜덤 엑세스 응답(Random Access Response, 이하 RAR이라 칭함) 메시지를 단말에게 전송할 수 있다(2d-21). RAR 메시지에는 (2d-11) 단계에 사용된 프리앰블의 식별자 정보를 포함해서, 상향링크 전송 타이밍 보정 정보, 이후 단계에서 사용할 상향링크 자원할당 정보 및 임시 단말 식별자 정보 등이 포함될 수 있다.
일부 실시예에 따르면, 프리앰블의 식별자 정보는, 예를 들어 (2d-11) 단계에서 복수 개의 단말이 서로 다른 프리앰블을 전송하여 랜덤 엑세스를 시도하는 경우, 기지국이 전송하는 RAR 메시지가 어떠한 프리앰블에 대한 응답 메시지인지를 알려주기 위해 포함될 수 있다.
일부 실시예에 따르면, 상향링크 자원할당 정보는 단말이 사용할 자원의 상세정보 이며, 자원의 물리적 위치 및 크기, 전송시 사용하는 복호화 및 코딩 방법(modulation and coding scheme, MCS), 전송시 전력 조정 정보 등이 포함될 수 있다.
일부 실시예에 따르면, 임시 단말 식별자 정보는 만약 프리앰블을 전송한 단말이 초기 접속을 하는 경우, 단말이 기지국과의 통신을 위해 기지국에서 할당해준 식별자를 보유하고 있지 않기 때문에, 이를 위해 사용하기 위해 전송되는 값이다.
RAR 메시지는 단말이 프리앰블을 보낸 후부터 소정의 시간 이후부터 시작하여 소정의 기간 내에 전송되어야 하며, 소정의 기간을 'RAR 윈도우'라 한다(2d-51)(2d-53). 상기 RAR 윈도우는 가장 첫번째 프리앰블을 전송한 이후부터 소정의 시간이 지난 시점부터 RAR 윈도우를 시작한다. 일부 실시예에 따르면, 소정의 시간은 서브프레임 단위 (2ms) 또는 그보다 작은 값을 가질 수 있다. 물론 상기 예시에 제한되지 않는다. 또한 RAR 윈도우의 길이는 기지국이 브로드캐스트 하는 시스템정보 메시지 또는 핸드오버명령 메시지 내에 설정될 수 있다.
한편 RAR 메시지가 전송될 때에 기지국은 PDCCH를 통해 해당 RAR 메시지를 스케쥴링하며, 스케쥴링 정보는 RA-RNTI(Random Access-Radio Network Temporary Identifier)를 사용해 스크램블링된다. RA-RNTI는 랜덤 엑세스 프리앰블 메시지를 전송(2d-11)하는데 사용한 PRACH 자원과 매핑되어, 특정 PRACH 자원에 프리앰블을 전송한 단말은, 해당 RA-RNTI를 바탕으로 PDCCH 수신을 시도하여 대응되는 RAR 메시지가 있는지 여부를 판단한다. 만약 RAR 메시지가, 도 2d와 같이 단말이 (2d-11) 단계에서 전송한 프리앰블에 대한 응답인 경우, 본 RAR 메시지 스케쥴링 정보에 사용된 RA-RNTI는 단계 (2d-11) 전송에 대한 정보를 포함할 수 있다. 이를 위해 RA-RNTI는 하기의 수식으로 계산될 수 있다:
RA-RNTI= 1 + s_id + 14 × t_id + 14 × 80 × f_id + 14 × 80 × 8 × ul_carrier_id
이때, s_id는 (2d-11) 단계에서 전송한 프리앰블 전송이 시작된 첫번째 OFDM 심볼에 대응되는 인덱스이며, 0≤ s_id < 14(즉, 한 슬롯 내에 최대 OFDM 개수) 값을 갖는다. 또한, t_id는 (2d-11) 단계에서 전송한 프리앰블 전송이 시작된 첫번째 슬롯에 대응되는 인덱스 이며 0 ≤ t_id < 80 (즉, 한 시스템프레임 (20 ms)내의 최대 슬롯 개수) 값을 갖는다. 또한, f_id는 (2d-11) 단계에서 전송한 프리앰블이 주파수 상으로 몇번째 PRACH 자원으로 전송되었는지를 나타내며, 이는 0 ≤ f_id < 8 (즉, 동일 시간 내에 주파수 상 최대 PRACH 개수)값을 갖는다. 그리고 ul_carrier_id 는 하나의 셀에 대해 상향링크로 두개의 반송파를 쓰는 경우, 기본상향링크(Normal Uplink, NUL)에서 프리앰블을 전송하였는지(이 경우 0), 부가상향링크 (Supplementary Uplink, SUL)에서 프리앰블을 전송하였는지(이 경우 1)을 구분하기 위한 인자일 수 있다.
도 2d 에서는 단말이 프리앰블 (2d-11) 전송에 대응되는 RA-RNTI로 RAR 메시지는 수신한 후, 해당 메시지 내에 단말이 전송한 프리앰블 #N에 대한 응답이 포함되는 시나리오를 가정하였다. 따라서, 단말은 RAR 메시지에 할당된 Msg3를 위한 상향링크 자원 크기에 맞추어, 단말 내의 Msg3 버퍼(경쟁기반 랜덤엑세스에서 프리앰블을 Msg1, RAR을 Msg2, 그 이후에 상향링크로 전송하는 메시지를 Msg3, 이후 하향링크로 수신하는 메시지를 Msg4라 칭하며, Msg3로 전송할 데이터를 저정하는 버퍼를 Msg3 버퍼라 칭한다.)에 전송할 메시지를 채워넣는다(2d-71).
도 2d에서의 시나리오는 단말이 이미 연결 모드에서 핸드오버를 하는 시나리오를 가정하였으므로, 타겟 기지국에서 사용할 셀 내 식별자(C-RNTI)를 이미 핸드오버 명령 메시지로부터 할당 받은 상태이므로, 단말은 Msg3에 지금 랜덤엑세스를 수행하는 단말이 본 단말임을 알릴 수 있는 C-RNTI 정보를 포함하는 C-RNTI MAC CE (MAC CE (Control Element)는 MAC 계층의 제어 메시지)를 포함시키고, RAR에서 수신한 상향링크 자원 할당의 크기에 따라 핸드오버 완료 메시지와 함께 데이터를 생성하고, 이를 전송한다(2d-13).
하지만, 본 도면에서는 단말이 Msg3의 전송이 실패(2d-13)하는 시나리오를 가정하였다. 즉, 단말은 Msg3를 전송하고 ra-ContentionResolutionTimer 타이머를 시작하며, 만약 ra-ContentionResolutionTimer 타이머가 만료(2d-73)될 때까지 송신한 Msg3에 대한 응답이 도착하지 않은 경우에는 단말은 Msg3가 제대로 전송이 되지 않았다고 판단하고, 랜덤엑세스 프리앰블을 다시 전송하는 절차를 시작한다.
즉, 단말은 ra-ContentionResolutionTimer가 만료되면 프리앰블을 재전송하기 위해서, 해당 시점에서 다시 SSB를 선택한다(2d-65). 이 때 선택한 SSB는 도 2c에서의 Beam #3인 경우를 가정한다. 즉, 전술한 바와 같이 단말이 핸드오버 명령을 수신하였을 때, SSB#3에 대해 프리앰블 식별자 M을 받은 경우를 가정한다. 이에 따라, 단말은 SSB #3에 대응되는 PRACH occasion으로 전용 프리앰블을 다시 전송하고 (2d-15), 이에 대한 응답을 기다리며(2d-53), RAR 메시지를 재수신한다(2d-23). 단말은 전용 프리앰블을 사용하여 랜덤엑세스를 수행하는 비경쟁 기반의 랜덤엑세스를 수행하였으므로, RAR만을 수신하면 단말은 랜덤엑세스를 성공적으로 완료하였다고 가정한다.
한편, 재 수신한 RAR 메시지 (2d-23)에는 여전히 상향링크 자원할당 정보가 있으므로, 단말은 이미 랜덤엑세스에 성공하였어도 해당 자원으로는 상향링크를 전송할 수 있다 (2d-75).
한편, 단말은 이전 경쟁기반의 랜덤엑세스를 수행하기 위해 Msg3를 전송하기 위해 Msg3 버퍼에 데이터를 이미 채워 놓은 상황이다. 만약 Msg3 버퍼에 데이터가 존재하는 경우, 단말은 이를 그대로 물리 계층에 전송하여야 한다. 예를 들어, 만약 경쟁 기반의 랜덤엑세스 시 수신한 RAR(2d-21)에서 수신한 상향링크 자원할당의 크기가 56바이트이며, 이에 따라 Msg3 버퍼에 데이터는 56바이트를 기준으로 만들어져 있는 상태에서 해당 경쟁기반의 랜덤엑세스가 성공하지 못하고, 이후 선택된 SSB/CSI-RS에 따라 비경쟁 기반의 랜덤엑세스를 수행하는 경우, 기지국은 단말에게 훨씬 큰 크기를 Msg2에서 할당할 수 있다 (예를 들어, 200 바이트). 이 경우, 단말은 이미 생성한 Msg3 버퍼내의 PDU(Packet Data Unit)를 그대로 전송할 수 없는 상태가 되며, 이를 해결할 필요가 있다.
도 2e는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 1에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC 엔티티(entity)로 치환 가능하다.
도 2e에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2e-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2e-07), 만약 해당 조건을 만족하는 해당 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다(2e-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공한 경우, RAR 메시지에서 할당된 상향링크 자원으로 데이터를 전송하기 위해 다음을 판단한다:
단말은 RAR 메시지가 랜덤엑세스 절차에서 성공적으로 수신한 첫번째 RAR이 아니고, Msg3 버퍼에 저장한 MAC PDU의 크기와 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우(또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2e-11), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성하여, 이를 다시 Msg3 버퍼에 저장한다(2e-13). 단말은 기존 Msg3 버퍼 내에 저장된 전송하고자한 MAC subPDU (MAC PDU를 구성하는 세부 단위) 가운데 일부분은 제외하고 일부분은 포함하여 재생성할 수 있다. 예를 들어, 단말은 핸드오버 완료 RRC 메시지는 포함하여 MAC PDU를 재생성할 수 있다. 또한, 단말은 재생성하는 MAC PDU 내에 단말의 상향링크 데이터 전송을 위해 버퍼상태를 보고하는 Buffer Status Report (BSR) MAC CE의 경우는 포함시킬 수 있으나, 전술한 C-RNTI MAC CE와 같은 MAC CE의 경우는 비경쟁기반의 랜덤엑세스 이후 발생하는 Msg3에는 포함시킬 필요가 없으므로 (프리앰블을 전송한 단말이 누구인지 이미 기지국이 알고 있는 상태이므로) 제외시킬 수 있다. 또한 단말은 상향링크 단말의 전송여분 파워를 알려주는 Power Headroom Report (PHR) MAC CE의 경우는 필요에 따라 재생성하는 MAC PDU 내에 포함시키거나 포함시키지 않을 수 있다.
이후, 단말은 Msg 3 버퍼에 패킷이 저장되어 있는지를 판단하여, 패킷이 저장되어 있는 경우 단말은 Msg3 버퍼에 있는 패킷을 RAR 메시지에서 수신한 상향링크 자원으로 전송한다(2e-15).
도 2f는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 2에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC 엔티티(entity)로 치환 가능하다.
도 2f에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2f-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2f-07), 만약 해당 조건을 만족하는 해당 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다(2f-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공하였는지 여부를 판단한다(2f-11).
만약 성공한 경우, Msg3 버퍼에 이전 경쟁기반의 랜덤엑세스에 저장한 데이터가 있으므로, 이를 전송하기 위해 Msg3 버퍼로부터 패킷을 가져온다(2f-13). 만약 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우 (또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2f-15), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성한다(2f-17). 또는, 프리앰블 전송이 경쟁기반의 랜덤엑세스 프리앰블 가운데서 선택한 것이 아니며(즉, 전용 랜덤엑세스 프리앰블 선택), 또한 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기와 다르다고 판단한 경우 (또는 상기 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2f-15), 단말은 상기 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성한다(2f-17). 단말은 기존 Msg3 버퍼 내에 전송하고자한 MAC subPDU 가운데 일부분은 제외하고 일부분은 포함하여 재생성할 수 있다. 예를 들어, 단말은 핸드오버 완료 RRC 메시지는 포함하여 MAC PDU를 재생성할 수 있다. 또한, 단말은 재생성하는 MAC PDU 내에 단말의 상향링크 데이터 전송을 위해 버퍼상태를 보고하는 Buffer Status Report (BSR) MAC CE의 경우는 포함시킬 수 있으나, 전술한 C-RNTI MAC CE와 같은 MAC CE의 경우는 비경쟁기반의 랜덤엑세스 이후 발생하는 Msg3에는 포함시킬 필요가 없으므로 (프리앰블을 전송한 단말이 누구인지 이미 기지국이 알고 있는 상태이므로) 제외시킬 수 있다. 또한 단말은 상향링크 단말의 전송여분 파워를 알려주는 Power Headroom Report (PHR) MAC CE의 경우는 필요에 따라 재생성하는 MAC PDU 내에 포함시키거나 포함시키지 않을 수 있다.
이후, 단말은 전술한 절차에 따라 재생성 되거나, 또는 Msg3 버퍼로 가져온 패킷 (MAC PDU)을 RAR 메시지에서 수신한 상향링크 자원으로 전송한다(2f-15).
도 2g는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 3에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC 엔티티(entity)로 치환 가능하다.
도 2g에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2g-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2g-07), 만약 해당 조건을 만족하는 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다 (2g-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공한 경우, RAR 메시지에서 할당된 상향링크 자원으로 데이터를 전송하기 위해 다음을 판단한다:
단말은 RAR 메시지가 랜덤엑세스 절차에서 성공적으로 수신한 첫번째 RAR이 아니고, Msg3 버퍼에 저장한 MAC PDU의 크기와 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우 (또는 상기 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2g-11), 단말은 단말 내의 Multiplexing and assembly 엔티티에(즉, Msg3 버퍼가 아닌 다른 엔티티)에 Msg3 버퍼에 저장되어 있던 패킷으로부터 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성하도록 지시하고(2g-15), Msg3 버퍼를 삭제한다(2g-17). 단말은 Msg3 버퍼에 저장되어 있던 패킷으로부터 MAC PDU의 재생성을 지시할 때, 기존 Msg3 버퍼 내의 전송하고자한 MAC subPDU 가운데 일부분은 제외하고 일부분은 포함하여 재생성하도록 지시할 수 있다. 예를 들어, 단말은 핸드오버 완료 RRC 메시지는 포함하여 MAC PDU를 재생성 하도록 지시할 수 있다. 또한, 단말은 재생성하는 MAC PDU 내에 단말의 상향링크 데이터 전송을 위해 버퍼상태를 보고하는 Buffer Status Report (BSR) MAC CE의 경우는 포함시킬 수 있으나, 전술한 C-RNTI MAC CE와 같은 MAC CE의 경우는 비경쟁기반의 랜덤엑세스 이후 발생하는 Msg3에는 포함시킬 필요가 없으므로 (프리앰블을 전송한 단말이 누구인지 이미 기지국이 알고 있는 상태이므로) 제외시킬 수 있다. 또한 단말은 상향링크 단말의 전송여분 파워를 알려주는 Power Headroom Report (PHR) MAC CE의 경우는 필요에 따라 재생성 MAC PDU 내에 포함시키거나 포함시키지 않을 수 있다.
이후, 단말은 Msg 3 버퍼에 패킷이 저장되어 있는지를 판단한다. 전술한 절차에 따라 (2g-17) 단계에 따라 Msg 3 버퍼를 삭제한 경우, 단말은 Multiplexing and assembly 엔티티에 이미 패킷 생성을 지시하였으므로, 해당 엔티티로부터 MAC PDU를 획득하여, 이를 RAR 메시지에서 수신한 상향링크 자원으로 전송한다 (2g-19). 그렇지 않은 경우에는 Msg3 버퍼에 저장된 패킷을 그대로 상기 RAR 메시지에서 수신한 상향링크 자원으로 전송한다(2g-21).
도 2h는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 4에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC entity로 치환 가능하다.
도 2h에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2h-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2h-07), 만약 해당 조건에 만족하는 해당 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다(2h-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공하였는지 여부를 판단한다(2h-11).
만약 성공한 경우, Msg3 버퍼에 이전 경쟁기반의 랜덤엑세스에 저장한 데이터가 있으므로, 이를 전송하기 위해 Msg3 버퍼로부터 패킷을 가져온다(2h-13). 만약 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우 (또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2h-15), 단말은 단말 내의 Multiplexing and assembly 엔티티에 (즉, Msg3 버퍼가 아닌 다른 엔티티)에 Msg3 버퍼에 저장되어 있던 패킷으로부터 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성하도록 지시한다(2h-17). 또는, 프리앰블 전송이 경쟁기반의 랜덤엑세스 프리앰블 가운데서 선택한 것이 아니며 (즉, 전용 랜덤엑세스 프리앰블 선택), 또한 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기와 다르다고 판단한 경우 (또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우) (2h-15), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 MAC PDU를 재생성하도록 단말 내의 Multiplexing and assembly 엔티티에 (즉, Msg3 버퍼가 아닌 다른 엔티티)에 지시할 수 있다(2h-17). 단말은 Msg3 버퍼에 저장되어 있던 패킷으로부터 MAC PDU의 재생성을 지시할 때, 기존 Msg3 버퍼 내에 전송하고자한 MAC subPDU 가운데 일부분은 제외하고 일부분은 포함하여 재생성하도록 지시할 수 있다. 예를 들어, 단말은 핸드오버 완료 RRC 메시지는 포함하여 MAC PDU를 재생성하도록 지시할 수 있다. 또한, 단말은 재생성하는 MAC PDU 내에 단말의 상향링크 데이터 전송을 위해 버퍼상태를 보고하는 Buffer Status Report (BSR) MAC CE의 경우는 포함시킬 수 있으나, 전술한 C-RNTI MAC CE와 같은 MAC CE의 경우는 비경쟁기반의 랜덤엑세스 이후 발생하는 Msg3에는 포함시킬 필요가 없으므로 (프리앰블을 전송한 단말이 누구인지 이미 기지국이 알고 있는 상태이므로) 제외시킬 수 있다. 또한 단말은 상향링크 단말의 전송여분 파워를 알려주는 Power Headroom Report (PHR) MAC CE의 경우는 필요에 따라 재생성 MAC PDU 내에 포함시키거나 포함시키지 않을 수 있다.
이후, 단말은 Msg 3 버퍼에 패킷이 저장되어 있음에도 불구하고 Multiplexing and assembly 엔티티로부터 데이터를 획득하여, RAR 메시지에서 수신한 상향링크 자원으로 전송한다 (2h-19). 그렇지 않은 경우에는 Msg3 버퍼에 저장된 패킷을 그대로 상기 RAR 메시지에서 수신한 상향링크 자원으로 전송한다 (2h-21).
도 2i는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 5에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC entity로 치환 가능하다.
도 2i에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2i-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2i-07), 만약 해당 조건을 만족하는 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다(2i-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공한 경우, RAR 메시지에서 할당된 상향링크 자원으로 데이터를 전송하기 위해 다음을 판단한다:
단말은 RAR 메시지가 랜덤엑세스 절차에서 성공적으로 수신한 첫번째 RAR이 아니고, Msg3 버퍼에 저장한 MAC PDU의 크기와 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우 (또는 상기 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2i-11), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추기 위해 기존 Msg3 버퍼에 있는 패킷에 패딩만을 추가하여 MAC PDU를 재생성하여(2i-15), 이를 다시 Msg3 버퍼에 저장한다 (2i-17).
이후, 단말은 Msg 3 버퍼에 패킷이 저장되어 있는지를 판단하여, 패킷이 저장되어 있는 경우 단말은 Msg3 버퍼에 있는 패킷을 상기 RAR 메시지에서 수신한 상향링크 자원으로 전송한다(2i-19).
도 2j는 본 개시의 실시예들 중 랜덤엑세스 수행 시 메시지3을 생성하여 전송하는 방법의 실시예 6에 따른 단말 동작절차를 도시한 도면이다. 하기에서 단말은 전술한 MAC entity로 치환 가능하다.
도 2j에서 단말은 도 2d에서의 예시와 같이, 이미 연결 상태에 있는 상태에서 핸드오버 등을 위해 우선 경쟁 기반의 랜덤엑세스 절차를 수행한 상황을 가정한다(2j-03). 만약 해당 랜덤엑세스가 성공하지 못한 경우, 단말은 전용 랜덤엑세스 프리앰블이 할당된 SSB/CSI-RS가 기지국이 설정한 조건에 만족하는지 여부에 대해 판단하고(2j-07), 만약 해당 조건을 만족하는 해당 SSB/CSI-RS가 있는 경우, 해당 SSB/CSI-RS 중 하나를 선택하고 해당 SSB/CSI-RS에 할당된 프리앰블로 비경쟁 기반의 랜덤엑세스를 수행한다(2j-09).
이후, 단말이 비경쟁 기반의 랜덤엑세스를 성공하여, 해당 프리앰블에 대한 RAR 메시지 수신에 성공하였는지 여부를 판단한다(2j-11).
만약 성공한 경우, Msg3 버퍼에 이전 경쟁기반의 랜덤엑세스에 저장한 데이터가 있으므로, 이를 전송하기 위해 Msg3 버퍼로부터 패킷을 가져온다(2j-13). 만약 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우(또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우)(2j-15), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추기 위해 기존 Msg3 버퍼에 있는 패킷에 패딩만을 추가하여 MAC PDU를 재생성한다 (2j-17). 또는, 프리앰블 전송이 경쟁기반의 랜덤엑세스 프리앰블 가운데서 선택한 것이 아니며(즉, 전용 랜덤엑세스 프리앰블 선택), 또한 가져온 패킷의 크기가 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 다르다고 판단한 경우(또는 RAR 메시지에서 수신한 상향링크 자원할당의 크기가 더 크다고 판단한 경우) (2j-15), 단말은 RAR 메시지에서 수신한 상향링크 자원할당의 크기에 맞추어 패딩을 추가하여 MAC PDU를 재생성한다 (2j-17).
이후, 단말은 전술한 절차에 따라 재생성 되거나, 또는 Msg3 버퍼로 가져온 패킷 (MAC PDU)을 RAR 메시지에서 수신한 상향링크 자원으로 전송한다(2j-19).
즉, 본 개시의 일부 실시예에 따른 단말은 가장 최근에 성공한 랜덤엑세스에 대한 상세정보를 보고하며, 이에 따라 기지국은 셀 내의 단말들에게 랜덤엑세스 채널을 적절히 할당할 수 있다. 또한 앞서 설명한 실시예들은 단독 또는 조합으로 구성될 수 있다.
도 2k는 본 개시의 일부 실시예에 따른 무선 통신 시스템에서 단말의 구성을 도시한다.
도 2k를 참조하면, 단말은 RF(Radio Frequency) 처리부(2k-10), 기저대역(baseband) 처리부(2k-20), 저장부(2k-30), 제어부(2k-40)를 포함한다. 물론 상기 예시에 제한되는 것은 아니며 단말은 도 2k에 도시된 구성보다 더 적은 구성을 포함하거나, 더 많은 구성을 포함할 수 있다.
또한 도 2k의 무선 통신 시스템에서의 단말은 앞선 도 1h의 단말의 구성과 대응될 수 있다. 예를 들면, 도 2k의 RF 처리부(2k-10)은 도 1h의 RF 처리부(1h-10)과 대응될 수 있고, 도 2k의 기저대역 처리부(2k-20)은 도 1h의 기저대역 처리부(1h-20)과 대응될 수 있다. 또한 도 2k의 저장부(2k-30)은 도 1h의 저장부(1h-30)과 대응될 수 있고, 도 2k의 제어부(2k-40)은 도 1h의 제어부(1h-40)과 대응될 수 있다.
RF처리부(2k-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행할 수 있다. 즉, RF처리부(2k-10)는 기저대역처리부(2k-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, RF처리부(2k-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 도 2k에서는, 하나의 안테나만이 도시되었으나, 단말은 복수의 안테나들을 구비할 수 있다. 또한, RF처리부(2k-10)는 복수의 RF 체인들을 포함할 수 있다. 또한, RF처리부(2k-10)는 빔포밍(beamforming)을 수행할 수 있다. 빔포밍을 위해, RF처리부(2k-10)는 복수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 RF 처리부(2k-10)는 MIMO(Multi Input Multi Output)를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. RF처리부(2k-10)는 제어부(2k-40)의 제어에 따라 다수의 안테나 또는 안테나 요소들을 적절하게 설정하여 수신 빔 스위핑을 수행하거나, 수신 빔이 송신 빔과 공조되도록 수신 빔의 방향과 빔 너비를 조정할 수 있다.
기저대역처리부(2k-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 기저대역처리부(2k-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 기저대역처리부(2k-20)은 RF처리부(2k-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(2k-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(2k-20)은 상기 RF처리부(2k-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.
기저대역처리부(2k-20) 및 RF처리부(2k-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 기저대역처리부(2k-20) 및 RF처리부(2k-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 또한, 기저대역처리부(2k-20) 및 RF처리부(2k-10) 중 적어도 하나는 서로 다른 복수의 무선 접속 기술들을 지원하기 위해 복수의 통신 모듈들을 포함할 수 있다. 또한, 기저대역처리부(2k-20) 및 RF처리부(2k-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.5GHz, 5Ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다. 단말은 기저대역처리부(2k-20) 및 RF처리부(2k-10)을 이용하여 기지국과 신호를 송수신할 수 있으며, 신호는 제어 정보 및 데이터를 포함할 수 있다.
저장부(2k-30)는 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 저장부(2k-30)는 무선랜 접속 기술을 이용하여 무선 통신을 수행하는 무선랜 노드에 관련된 정보를 저장할 수 있다. 그리고, 저장부(2k-30)는 제어부(2k-40)의 요청에 따라 저장된 데이터를 제공할 수 있다. 저장부(2k-30)는롬 (ROM), 램(RAM), 하드디스크, CD-ROM 및 DVD 등과 같은 저장 매체 또는 저장 매체들의 조합으로 구성될 수 있다. 또한, 저장부(2k-30)는 복수 개의 메모리로 구성될 수도 있다. 일부 실시예에 따르면, 저장부(2k-30)는 상술한 랜덤엑세스 절차에서 Msg3 버퍼 내에 저장된 데이터를 재생성하여 송신하기 위한 무선 통신 방법을 수행하기 위한 프로그램을 저장할 수 있다.
제어부(2k-40)는 단말의 전반적인 동작들을 제어한다. 예를 들어, 제어부(2k-40)는 기저대역처리부(2k-20) 및 RF처리부(2k-10)을 통해 신호를 송수신한다. 또한, 제어부(2k-40)는 저장부(2k-40)에 데이터를 기록하고, 읽는다. 이를 위해, 제어부(2k-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 제어부(2k-40)는 통신을 위한 제어를 수행하는 통신 프로세서(CP (communication processor)) 및 응용 프로그램 등 상위 계층을 제어하는 응용 프로세서(AP (application processor))를 포함할 수 있다. 또한 본 개시의 일부 실시예에 따르면, 제어부(2k-40)는 다중 연결 모드로 동작하기 위한 처리를 수행하는 다중연결처리부(2k-42)를 포함할 수 있다. 예를 들어, 제어부(2k-40)는 단말이 도 2e 내지 2j 중 적어도 하나에서 설명한 도시된 단말의 동작에 도시된 절차를 수행하도록 제어할 수 있다.
본 개시의 실시 예에 따른 제어부(2k-40)는 랜덤엑세스 시 Msg3 버퍼에 있는 패킷의 크기가 RAR을 통해 수신한 상향링크 자원크기와 다른지 여부를 판단하여 다른 경우, 상기 기술한 실시예에 따라 Msg3 를 생성하여 해당 자원으로 데이터를 전송할 수 있다. 또한 단말 내의 적어도 하나의 구성은 하나의 칩으로 구현될 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다.
또한, 상기 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편 본 개시의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 개시의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 개시의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
Claims (15)
- 단말의 랜덤 액세스 절차를 수행하는 방법에 있어서,복수의 SSB(Synchronization Signal Block)들 중 신호 세기의 임계값을 초과하는 제1 SSB를 선택하는 단계;상기 제1 SSB와 대응되는 경쟁 기반(Contention-Based) 랜덤 액세스 프리앰블(Random Access Preamble)을 송신하는 단계;상기 경쟁 기반 랜덤 액세스 프리앰블과 대응하는 제1 RAR(Random Access Response)를 수신하는 단계;상기 제1 RAR의 상향링크 자원할당 크기에 대응하는 제1 MAC(Media Access Control) PDU(Protocol Data Unit)를 획득하는 단계;상기 제1 MAC PDU를 포함하는 Msg3를 송신하는 단계;상기 Msg3를 전송함으로써 경쟁이 해소되었는지 판단하는 단계; 및경쟁이 해소되지 않은 경우, 비경쟁(Contention-Free) 랜덤 액세스 절차를 수행하는 단계를 포함하는 방법.
- 제1항에 있어서,상기 제1 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득되는 것인 방법.
- 제1항에 있어서,상기 제1 MAC PDU는 C-RNTI(Cell-Radio Network Temporary Identifier) MAC CE(Control Element)를 포함하는 것인 방법.
- 제1항에 있어서,상기 방법은,상기 제1 MAC PDU를 Msg3 버퍼에 저장하는 단계를 더 포함하는 방법.
- 제1항에 있어서,상기 비경쟁 랜덤 액세스 절차를 수행하는 단계는,비경쟁 랜덤 액세스 프리앰블이 할당된 복수의 SSB들 중 신호 세기의 임계값을 초과하는 제2 SSB를 선택하는 단계; 및상기 제2 SSB와 대응되는 비경쟁 랜덤 액세스 프리앰블을 송신하는 단계;상기 비경쟁 랜덤 액세스 프리앰블과 대응하는 제2 RAR을 수신하는 단계;상기 제1 MAC PDU를 획득하는 단계;상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하는 단계; 및상기 제2 MAC PDU를 송신하는 단계를 포함하는 것인 방법.
- 제5항에 있어서,상기 제1 MAC PDU를 획득하는 단계는,Msg3 버퍼 내에 상기 제1 MAC PDU가 저장되어 있는지 여부를 판단하는 단계; 및판단 결과에 기초하여, 상기 Msg3 버퍼로부터 상기 제1 MAC PDU를 획득하는 단계를 포함하는 것인 방법.
- 제5항에 있어서,상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하는 단계는,상기 제2 RAR의 상향링크 자원할당 크기와 상기 제1 MAC PDU의 크기를 비교하는 단계; 및상기 비교 결과에 기초하여, 상기 제1 MAC PDU 내의 적어도 하나의 MAC subPDU(subProtocol Data Unit)가 후속 상향링크 송신에 포함되도록 상기 제2 MAC PDU를 획득하는 단계를 포함하는 것인 방법.
- 제5항에 있어서,상기 제2 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득되는 것인 방법.
- 제6항에 있어서,상기 방법은,상기 Msg3 버퍼 내의 데이터를 삭제하는 단계를 더 포함하는 것인 방법.
- 제1항에 있어서,상기 경쟁이 해소되었는지 여부를 판단하는 단계는,ra-ContentionResolution 타이머의 만료까지 상기 Msg3에 대한 응답이 수신되었는지 여부를 판단하는 것인 방법.
- 랜덤 액세스 절차를 수행하는 단말에 있어서, 상기 단말은,트랜시버; 및복수의 SSB(Synchronization Signal Block)들 중 신호 세기의 임계값을 초과하는 제1 SSB를 선택하고, 상기 제1 SSB와 대응되는 경쟁 기반(Contention-Based) 랜덤 액세스 프리앰블(Random Access Preamble)을 송신하고, 상기 경쟁 기반 랜덤 액세스 프리앰블과 대응하는 제1 RAR(Random Access Response)를 수신하고, 상기 제1 RAR의 상향링크 자원할당 크기에 대응하는 제1 MAC(Media Access Control) PDU(Protocol Data Unit)를 획득하고, 상기 제1 MAC PDU를 포함하는 Msg3를 송신하고, 상기 Msg3를 전송함으로써 경쟁이 해소되었는지 판단하고, 경쟁이 해소되지 않은 경우, 비경쟁(Contention-Free) 랜덤 액세스 절차를 수행하도록 설정된, 상기 트랜시버와 결합된 적어도 하나의 컨트롤러를 포함하는 단말.
- 제11항에 있어서,상기 컨트롤러는,비경쟁 랜덤 액세스 프리앰블이 할당된 복수의 SSB들 중 신호 세기의 임계값을 초과하는 제2 SSB를 선택하고, 상기 제2 SSB와 대응되는 비경쟁 랜덤 액세스 프리앰블을 송신하고, 상기 비경쟁 랜덤 액세스 프리앰블과 대응하는 제2 RAR을 수신하고, 상기 제1 MAC PDU를 획득하고, 상기 제1 MAC PDU에 기초하여 제2 MAC PDU를 획득하고, 상기 제2 MAC PDU를 송신하도록 더 설정되는 것인 단말.
- 제12항에 있어서,상기 컨트롤러는,Msg3 버퍼 내에 상기 제1 MAC PDU가 저장되어 있는지 여부를 판단하고, 판단 결과에 기초하여, 상기 Msg3 버퍼로부터 상기 제1 MAC PDU를 획득하는 것인 단말.
- 제12항에 있어서,상기 컨트롤러는,상기 제2 RAR의 상향링크 자원할당 크기와 상기 제1 MAC PDU의 크기를 비교하고, 상기 비교 결과에 기초하여, 상기 제1 MAC PDU 내의 적어도 하나의 MAC subPDU(subProtocol Data Unit)가 후속 상향링크 송신에 포함되도록 상기 제2 MAC PDU를 획득하는 단계를 포함하는 것인 단말.
- 제12항에 있어서,상기 제2 MAC PDU는 멀티플렉싱 및 어셈블리 엔티티(Multiplexing and assembly entity)로부터 획득되는 것인 단말.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/250,279 US11470652B2 (en) | 2018-06-29 | 2019-06-28 | Method and apparatus for transmitting and receiving data in wireless communication system |
EP19825426.0A EP3813418A4 (en) | 2018-06-29 | 2019-06-28 | METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING DATA IN A WIRELESS COMMUNICATION SYSTEM |
CN201980056709.4A CN112640522B (zh) | 2018-06-29 | 2019-06-28 | 用于在无线通信系统中发送和接收数据的方法和装置 |
US18/045,083 US12096482B2 (en) | 2018-06-29 | 2022-10-07 | Method and apparatus for transmitting and receiving data in wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0075593 | 2018-06-29 | ||
KR1020180075593A KR102637660B1 (ko) | 2018-06-29 | 2018-06-29 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/250,279 A-371-Of-International US11470652B2 (en) | 2018-06-29 | 2019-06-28 | Method and apparatus for transmitting and receiving data in wireless communication system |
US18/045,083 Continuation US12096482B2 (en) | 2018-06-29 | 2022-10-07 | Method and apparatus for transmitting and receiving data in wireless communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020005010A1 true WO2020005010A1 (ko) | 2020-01-02 |
Family
ID=68987457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007891 WO2020005010A1 (ko) | 2018-06-29 | 2019-06-28 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11470652B2 (ko) |
EP (1) | EP3813418A4 (ko) |
KR (1) | KR102637660B1 (ko) |
CN (1) | CN112640522B (ko) |
WO (1) | WO2020005010A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102637660B1 (ko) * | 2018-06-29 | 2024-02-19 | 삼성전자주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
WO2020159179A1 (en) * | 2019-01-30 | 2020-08-06 | Lg Electronics Inc. | Deactivation of configured grant based on number of retransmissions |
WO2021016778A1 (zh) * | 2019-07-26 | 2021-02-04 | Oppo广东移动通信有限公司 | 一种传输资源选择方法、网络设备、用户设备 |
CN113472506B (zh) * | 2021-06-28 | 2022-07-19 | 中信科移动通信技术股份有限公司 | 下行波束管理方法、基站及终端 |
CN116266958A (zh) * | 2021-12-14 | 2023-06-20 | 大唐移动通信设备有限公司 | 随机接入方法、装置、终端及网络侧设备 |
CN117768911A (zh) * | 2022-09-16 | 2024-03-26 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的通信节点中的方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120320842A1 (en) * | 2010-01-12 | 2012-12-20 | Kyeong-In Jeong | Apparatus and method for accessing random access channel in a wireless communication system |
US20130188592A1 (en) * | 2010-10-01 | 2013-07-25 | Lg Electronics Inc. | Method and apparatus for transmitting control information |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1768442A3 (en) * | 2003-08-29 | 2007-08-08 | Samsung Electronics Co., Ltd. | Apparatus and method for controlling operational states of medium access control layer in a broadband wireless access communication system |
KR101451434B1 (ko) * | 2007-06-18 | 2014-10-21 | 엘지전자 주식회사 | 효과적인 호의 설정을 위한 호출 정보 전송 방법 |
US8270356B2 (en) * | 2008-01-22 | 2012-09-18 | Lg Electronics Inc. | Method for encoding data unit by using a plurality of CRC algorithms |
CN101674661B (zh) * | 2009-10-14 | 2011-12-07 | 普天信息技术研究院有限公司 | 长期演进系统中的随机接入方法 |
KR20110053730A (ko) * | 2009-11-16 | 2011-05-24 | 삼성전자주식회사 | 통신 시스템에서 데이터 재전송을 제어하는 장치 및 방법 |
US9369980B2 (en) * | 2011-07-19 | 2016-06-14 | Industrial Technology Research Institute | Method of handling random access response |
US20140241262A1 (en) * | 2013-02-28 | 2014-08-28 | Research In Motion Limited | Medium access control signalling for direct device to device communications |
CN104185293B (zh) * | 2013-05-24 | 2017-09-15 | 普天信息技术研究院有限公司 | 一种随机接入信令流程的资源分配方法 |
CN107135522A (zh) * | 2016-02-26 | 2017-09-05 | 中兴通讯股份有限公司 | 一种提高切换成功率的方法和用户设备 |
KR20180017909A (ko) | 2016-08-11 | 2018-02-21 | 삼성전자주식회사 | 차세대 이동통신 시스템에서 하향링크 빔의 특성에 따라 랜덤 엑세스 과정을 선택하는 방법 및 장치 |
CN107919897B (zh) * | 2016-10-09 | 2022-05-17 | 株式会社Ntt都科摩 | 上行随机接入时执行的波束确定方法、用户设备和基站 |
KR102637660B1 (ko) * | 2018-06-29 | 2024-02-19 | 삼성전자주식회사 | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 |
US11109417B2 (en) * | 2018-08-08 | 2021-08-31 | Lenovo (Singapore) Pte. Ltd. | TB size mismatch during a random-access procedure |
-
2018
- 2018-06-29 KR KR1020180075593A patent/KR102637660B1/ko active IP Right Grant
-
2019
- 2019-06-28 US US17/250,279 patent/US11470652B2/en active Active
- 2019-06-28 CN CN201980056709.4A patent/CN112640522B/zh active Active
- 2019-06-28 WO PCT/KR2019/007891 patent/WO2020005010A1/ko unknown
- 2019-06-28 EP EP19825426.0A patent/EP3813418A4/en active Pending
-
2022
- 2022-10-07 US US18/045,083 patent/US12096482B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120320842A1 (en) * | 2010-01-12 | 2012-12-20 | Kyeong-In Jeong | Apparatus and method for accessing random access channel in a wireless communication system |
US20130188592A1 (en) * | 2010-10-01 | 2013-07-25 | Lg Electronics Inc. | Method and apparatus for transmitting control information |
Non-Patent Citations (4)
Title |
---|
3GPP: "3GPP; TSGRAN; NR; Medium Access Control (MAC) protocol specification (Release 15)", 3GPP TS 38.321 V15.2.0, 20 June 2018 (2018-06-20), pages 1 - 73, XP055667980 * |
ASUSTEK: "Discussion on Random Access Preamble selection for Handover", R2-1806919, 3GPP TSG RAN WG1 MEETING #93, 10 May 2018 (2018-05-10), Busan, Korea, XP051463919 * |
See also references of EP3813418A4 * |
ZTE: "Remaining details of RACH procedure", R1-1805945, 3GPP TSG RAN WG1 MEETING #93, 11 May 2018 (2018-05-11), Busan, Korea, XP051461653 * |
Also Published As
Publication number | Publication date |
---|---|
EP3813418A4 (en) | 2021-09-08 |
US12096482B2 (en) | 2024-09-17 |
CN112640522B (zh) | 2024-10-11 |
KR20240024159A (ko) | 2024-02-23 |
EP3813418A1 (en) | 2021-04-28 |
KR20200002265A (ko) | 2020-01-08 |
US20210266980A1 (en) | 2021-08-26 |
US20230112196A1 (en) | 2023-04-13 |
KR102637660B1 (ko) | 2024-02-19 |
CN112640522A (zh) | 2021-04-09 |
US11470652B2 (en) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021066466A1 (en) | Method and apparatus for performing handover in wireless communication system | |
WO2019098750A1 (en) | Communication method and apparatus in wireless communication system | |
WO2020197214A1 (en) | Method and device for recovering connection failure to network in next generation mobile communication system | |
WO2018231022A1 (en) | Method for supporting multiple scheduling requests in next-generation mobile communication system | |
WO2019139384A1 (en) | Method and apparatus for performing contention-based and non- contention-based beam failure recovery in a wireless communication system | |
WO2019093835A1 (en) | Method and apparatus for wireless communication in wireless communication system | |
WO2019160342A1 (en) | Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system | |
WO2016186401A1 (ko) | 이동 통신 시스템에서 스케줄링 요청을 송수신하는 방법 및 장치 | |
WO2018131956A1 (en) | Method and apparatus for communication in wireless mobile communication system | |
WO2019225888A1 (ko) | 차세대 이동통신 시스템에서 sdap 제어 pdu를 구분해서 처리하는 방법 및 장치 | |
WO2019139382A1 (en) | Efficient system information request method and apparatus of terminal in next generation mobile communication system | |
WO2016159731A1 (ko) | 무선 통신 시스템에서 다른 무선 접속 기술을 이용한 다중 연결을 제공하기 위한 장치 및 방법 | |
WO2018131987A1 (en) | Method and apparatus for processing data in a wireless communication system | |
WO2020060075A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치 | |
WO2020005010A1 (ko) | 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치 | |
WO2018147582A1 (ko) | 무선 통신 시스템에서 개선된 통신 수행 방법 및 장치 | |
WO2019139376A1 (en) | Method and apparatus for wireless communication in wireless communication system | |
WO2021066532A1 (ko) | 무선 통신 시스템에서 핸드오버 절차를 수행하는 방법 및 장치 | |
WO2020032579A1 (en) | Method and apparatus for transmitting and receiving data in wireless communication system | |
WO2020231104A1 (en) | Method and apparatus for performing embedded radio resource control connection resume procedure in wireless communication system | |
WO2020122509A1 (ko) | 무선 통신 시스템에서 조건부 핸드오버의 실패 타이머 운용방법 | |
WO2020060178A1 (en) | Method and apparatus for reporting selected plmn of rrc-inactive mode ue in next-generation communication system | |
WO2021066404A1 (en) | Method and apparatus for performing handover in wireless communication system | |
WO2020005043A1 (ko) | 이동통신 시스템에서 무선 링크 실패 보고 방법 및 그 장치 | |
WO2020022849A1 (en) | Method and apparatus for wireless communication of wireless node in wireless communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19825426 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019825426 Country of ref document: EP Effective date: 20210120 |