WO2020004994A1 - 발전소 고장 예측 및 진단시스템과 그 방법 - Google Patents
발전소 고장 예측 및 진단시스템과 그 방법 Download PDFInfo
- Publication number
- WO2020004994A1 WO2020004994A1 PCT/KR2019/007849 KR2019007849W WO2020004994A1 WO 2020004994 A1 WO2020004994 A1 WO 2020004994A1 KR 2019007849 W KR2019007849 W KR 2019007849W WO 2020004994 A1 WO2020004994 A1 WO 2020004994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- power plant
- failure
- prediction
- diagnosis
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0283—Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0267—Fault communication, e.g. human machine interface [HMI]
- G05B23/0272—Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user
Definitions
- the present invention relates to a failure prediction and diagnosis system of a power plant, and more particularly, to a failure prediction and diagnosis system of a power plant using an artificial intelligence-based learning model and a method thereof.
- the alarm data is notified by using sensor data collected from the power plant, and the cause of the actual alarm is not analyzed and the measures are not informed.
- the facilities there was a difficulty in finding a faulty one.
- An object of the present invention is to provide a plant failure prediction and diagnosis system and method for enabling the optimal operation of a power plant by predicting and diagnosing a fault occurrence of each power plant using an artificial intelligence-based learning model.
- a data generation module for generating a plurality of learning data by building a virtual power plant
- a data processing module for analyzing and converting the learning data and loading the converted data
- Predicting and diagnosing a failure by performing a learning for predicting and diagnosing a failure from data loaded in the data processing module, and determining a power generation state of the power plant from one or more real-time sensor data collected from the power plant based on the learning result.
- Fault prediction / diagnosis module And an information display module for displaying the prediction and diagnosis results of the failure prediction / diagnosis module together with additional information of the corresponding power generation equipment.
- Power plant failure prediction and diagnostic method the step of building a virtual power plant based on the information on each of the plurality of power generation facilities of the power plant, starting the virtual power plant to generate a plurality of learning data; Analyzing the validity of the learning data and converting and loading the learning data according to an analysis result; Learning the failure occurrence prediction and diagnosis of the plurality of power generation facilities using the loaded data, and predicting and diagnosing the occurrence of the failure of the plurality of power generation facilities from one or more real-time sensor data collected from the power plant based on the learning result. step; And displaying additional information of the power generation equipment corresponding to the prediction and diagnosis result of the occurrence of the failure together with the prediction and diagnosis result.
- the power plant failure prediction and diagnosis system of the present invention predicts and diagnoses the occurrence of a failure of a power generation facility in advance by using an AI-based learning model, and displays this together with additional information of the power generation facility, thereby causing a failure of the actual power generation facility. Failure of the power plant can be prevented before it becomes possible.
- the power plant failure prediction and diagnosis system of the present invention can build a virtual power plant to generate learning data for various failure situations, thereby increasing the learning ability of the learning model, thereby increasing the accuracy and reliability of power plant failure prediction and diagnosis.
- FIG. 1 is a view showing the configuration of a plant failure prediction and diagnosis system according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating a configuration of the data generation module of FIG. 1.
- FIG. 3 is a diagram illustrating a configuration of a data processing module of FIG. 1.
- FIG. 4 is a diagram illustrating a configuration of the information display module of FIG. 1.
- FIG. 5 is a view showing a plant failure prediction and diagnosis method according to an embodiment of the present invention.
- FIG. 1 is a view showing the configuration of a plant failure prediction and diagnosis system according to an embodiment of the present invention
- Figures 2 to 4 are diagrams showing each configuration of Figure 1 in detail.
- the power plant failure prediction and diagnosis system 100 of the present embodiment analyzes the state of the power generation facilities of the power plant 200 from a plurality of real-time sensor data (not shown) collected from the power plant 200. Accordingly, it is possible to predict and diagnose the occurrence of failure of the power plant.
- the failure prediction and diagnosis system 100 may predict the occurrence of the failure of the power generation equipment from the real-time sensor data using a pre-learned learning model. Subsequently, the failure prediction and diagnosis system 100 may provide predictions and diagnosis results to operators of the power plant 200 so that preventive maintenance of the power generation facility may be performed.
- the power plant failure prediction and diagnosis system 100 may include a data generation module 110, a data processing module 120, a failure prediction / diagnosis module 130, and an information display module 140.
- the data generation module 110 may generate learning data for pre-learning of the failure prediction / diagnosis module 130 to be described later. To this end, the data generation module 110 may generate and start learning data according to sensor data collected from the virtual power plant by starting the virtual power plant.
- the data generation module 110 may include a modeling unit 111, a simulation unit 113, and a data extraction unit 115.
- the modeling unit 111 may build a virtual power plant by modeling each of the plurality of power generation facilities of the power plant 200.
- the modeling unit 111 may build a virtual power plant based on power generation facility information provided from the outside. In this case, the modeling unit 111 may build a start control system that can control the start of the virtual power plant.
- the simulation unit 113 may virtually start a pre-built virtual power plant on the basis of a predetermined startup scenario.
- the startup scenario may include a normal startup scenario for normal startup of the virtual power plant and a failure startup scenario for failure of the virtual power plant.
- the data extraction unit 115 may extract a plurality of sensor data, for example, virtual sensor data from the virtual power plant started by the simulation unit 113.
- the virtual sensor data may be extracted from at least one sensing point set for each of the plurality of power generation facilities of the virtual power plant.
- the data extraction unit 115 may generate and output the extracted plurality of virtual sensor data as learning data.
- the virtual power plants have been described to be virtually started based on the normal startup scenario and the failure startup scenario, respectively. Accordingly, the data extraction unit 115 extracts the virtual sensor data according to the normal startup of the virtual power plant and the virtual sensor data according to the failure startup of the virtual power plant, respectively, and the corresponding learning data, that is, the normal startup training data and the failure startup training data. Each can be generated.
- the data processing module 120 may collect and process the learning data output from the data generation module 110, that is, a plurality of virtual sensor data, and then load the learning data.
- the data processing module 120 may collect and process real-time sensor data from the power plant 200 and then load it.
- real-time sensor data may be extracted and collected from at least one sensing point of each of the plurality of power generation facilities of the power plant 200.
- the data processing module 120 may include a data selection unit 121, a data analysis unit 122, a data integration unit 123, a first loading unit 124, and a second loading unit 125.
- the data selection unit 121 may select one of the learning data collected by the data generation module 110 and the real time sensor data collected by the power plant 200.
- the data analysis unit 122 may analyze and convert the data selected by the data selection unit 121.
- the data analysis unit 122 may analyze the validity of the data and normalize the data according to the analysis result.
- the data analysis unit 122 may convert the standardized data.
- the training data and real-time sensor data provided to the data analysis unit 122 may be time series data.
- the data analysis unit 122 may convert the provided time series data.
- the data analysis unit 122 may convert the learning data and the real-time sensor data into two-dimensional or three-dimensional image data.
- the data integration unit 123 may determine the mutual relationship of the converted data, and group and integrate the data accordingly.
- the learning data and the real-time sensor data are data according to the state information of the power generation equipment collected according to the startup of the power plant 200 or the virtual power plant. Therefore, the data integration unit 123 may integrate the converted data by grouping the types of power generation facilities. In addition, the data integration unit 123 may integrate the converted data grouped by the state of the power generation equipment.
- Integrated data may be loaded into each of the first loading unit 124 and the second loading unit 125.
- real time data may be loaded in the first loading unit 124, and data accumulated for a predetermined period may be loaded in the second loading unit 125.
- the first loading unit 124 and the second loading unit 125 may be converted into two-dimensional or three-dimensional image data to load the integrated data in a matrix form according to the mutual relationship.
- the data processing module 120 is loaded through analysis, conversion, and integration of collected data, that is, learning data and real-time sensor data, to be used for pre-learning and failure prediction of the failure prediction / diagnosis module 130 to be described later.
- collected data that is, learning data and real-time sensor data
- the failure prediction / diagnosis module 130 may perform preliminary learning on the failure occurrence prediction and diagnosis according to the state of the power generation equipment by using the data loaded in the data processing module 120, for example, the learning data. In addition, the failure prediction / diagnosis module 130 may predict and diagnose a failure of the power generation facility from data loaded in the data processing module 120, for example, real-time sensor data, based on learning.
- the failure prediction / diagnosis module 130 may be implemented as an AI-based learning model.
- the failure prediction / diagnosis module 130 may be composed of at least two prediction / diagnosis units (not shown).
- the first prediction / diagnosis unit and the first prediction / diagnosis unit may perform fast calculation in real time.
- a second prediction / diagnostic unit that computes the output in depth. This is because, since most of the power generation facilities of the conventional power plant 200 are in a steady state, it is required to detect an abnormality which is not a normal state through a quick calculation, and to perform an in-depth analysis thereof.
- the failure prediction / diagnosis module 130 may output a failure occurrence prediction and diagnosis result of the power generation facility.
- the result may include at least one of corresponding step information of a failure occurrence, remaining response time information, and failure cause information.
- the information display module 140 may display the power generation equipment failure prediction and diagnosis results of the failure prediction / diagnosis module 130 to the outside, that is, the power plant operators.
- the information display module 140 may include a database 141, a mapping unit 143, and a display unit 145.
- the database 141 may store various additional information about each of the plurality of power generation facilities of the power plant 200.
- the additional information may include at least one of on-site photograph and image information of the power generation facility, fault and maintenance history information of the power generation facility, drawing information on the layout of the power generation facility, and 3D modeling information of the power generation facility.
- the mapping unit 143 may map the additional information of the power generation facility and the database 141 on a one-to-one basis based on the prediction and diagnosis results provided by the failure prediction / diagnosis module 130. For example, when a failure of a duct (air intake) is predicted among a plurality of power generation facilities by the failure prediction / diagnosis module 130, the mapping unit 143 performs the prediction and diagnosis provided by the failure prediction / diagnosis module 130. Based on the result, additional information corresponding to the duct may be extracted and mapped from the plurality of additional information stored in the database 141. In this case, the extracted additional information may include field images and photographs of the duct, drawings and three-dimensional modeling, facility information of the duct, past failures and maintenance history, and the like.
- the display unit 145 may display the failure prediction and diagnosis result of the power generation facility provided by the failure prediction / diagnosis module 130 together with additional information of the power generation facility by the mapping unit 143.
- FIG. 5 is a view showing a plant failure prediction and diagnosis method according to an embodiment of the present invention.
- the data generation module 110 of the failure prediction and diagnosis system 100 may generate a plurality of learning data for learning of the failure prediction / diagnosis module 130 (S10).
- the modeling unit 111 of the data generation module 110 may build a virtual power plant based on power generation equipment information provided from the outside (S11). Subsequently, the simulation unit 113 may start the virtual power plant based on a predetermined scenario, for example, a normal startup scenario and a failure startup scenario (S13). Subsequently, the data extraction unit 115 may extract, as virtual sensor data, state information of the power generation facility according to the activation of the virtual power plant from at least one sensing point set for each of the plurality of power generation facilities of the virtual power plant. The data generation module 110 may generate and output a plurality of extracted virtual sensor data as learning data.
- a predetermined scenario for example, a normal startup scenario and a failure startup scenario (S13).
- the data extraction unit 115 may extract, as virtual sensor data, state information of the power generation facility according to the activation of the virtual power plant from at least one sensing point set for each of the plurality of power generation facilities of the virtual power plant.
- the data generation module 110 may generate and output
- the data processing module 120 of the failure prediction and diagnosis system 100 collects, analyzes and converts a plurality of learning data of the data generation module 110 or a plurality of real-time sensor data of the power plant 200, and integrates and loads them. Can be (S20).
- the data selection unit 121 of the data processing module 120 may select one of a plurality of learning data and real-time sensor data (S21). Subsequently, the data analysis unit 122 may analyze the validity of the selected data to perform standardization, and may convert the data into two-dimensional or three-dimensional image data (S23). Subsequently, the data integration unit 123 may group and integrate the converted data, and load the data (S25).
- the failure prediction / diagnosis module 130 may learn a failure occurrence prediction and diagnosis of a power generation facility by using a plurality of learning data loaded in the data processing module 120. Subsequently, the failure prediction / diagnosis module 130 may predict and diagnose an actual failure occurrence of the power generation facility from real-time sensor data collected from the power plant 200 based on the learning result (S30).
- the failure prediction / diagnosis module 130 may be implemented as an AI-based learning model. Therefore, the failure prediction / diagnosis module 130 needs various learning to increase the accuracy of prediction and diagnosis of failure occurrence. Accordingly, the failure prediction and diagnosis system 100 may generate training data for various failure situations of the power generation facility using the data generation module 110, and use the same to train the failure prediction / diagnosis module 130. .
- the actual data collected from the power plant 200 that is, the real-time sensor data is mostly data on the state of the power generation equipment according to the normal startup of the power plant 200. Therefore, it is difficult to learn the failure prediction / diagnosis module 130 according to various failure situations of the power generation equipment.
- the failure prediction and diagnosis system 100 of the present invention builds a virtual power plant through the data generation module 110, and starts the virtual power plant using various fault start scenarios, thereby detecting sensors of various fault conditions of the power plant.
- Data that is, virtual sensor data can be extracted.
- the failure prediction / diagnosis module 130 may learn about the state of the power generation equipment in various failure environments. .
- the failure prediction / diagnosis module 130 predicts and diagnoses the occurrence of actual failure of the power generation facility from real data, that is, real-time sensor data collected from the power plant 200, and predicts and predicts the diagnosis result according to the learning result. You can print
- the prediction and diagnosis results output from the failure prediction / diagnosis module 130 may include failure response step information, residual response time information, failure cause information, and the like for the power generation equipment that is expected to generate a failure.
- the information display module 140 may display the failure prediction and diagnosis results of the failure prediction / diagnosis module 130 to external power plant operators (S40).
- the information display module 140 may extract various additional information of the power generation facility from the database 141 based on the prediction and diagnosis results, map the same to the prediction and diagnosis results, and display the same.
- the additional information may include on-site photograph and image information of the power generation facility, fault history and maintenance history information of the power generation facility, drawing information on the layout of the power generation facility, and three-dimensional modeling information of the power generation facility.
- the plant failure prediction and diagnosis system 100 of the present invention predicts the occurrence of failure of the power generation facility of the power plant 200 through the failure prediction / diagnosis module 130 implemented as an artificial intelligence-based learning model. By diagnosing and displaying the additional information of the power generation equipment, the failure of the power generation equipment can be prevented before the failure of the actual power generation equipment occurs.
- the power plant failure prediction and diagnosis system 100 of the present invention by building a virtual power plant to generate the learning data for various failure conditions, thereby improving the learning ability of the failure prediction / diagnosis module 130, thereby failing
- the prediction / diagnosis module 130 may increase the accuracy of power plant failure prediction and diagnosis of the power plant 200.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
인공지능 기반의 학습모델을 이용하여 발전설비의 고장 발생을 미리 예측 및 진단할 수 있는 발전소 고장 예측 및 진단시스템이 제공된다. 발전소 고장 예측 및 진단시스템은, 가상발전소를 구축하여 다양한 고장 상황에 대한 학습데이터를 생성함으로써, 학습모델의 학습 능력을 높여 발전설비 고장 예측 및 진단의 정확성 및 신뢰도를 높일 수 있다.
Description
본 발명은 발전소의 고장예측 및 진단시스템에 관한 것으로, 보다 구체적으로 인공지능 기반의 학습모델을 이용한 발전소의 발전설비 고장 예측 및 진단시스템과 그 방법에 관한 것이다.
일반적으로 발전소에는 다수의 발전설비들이 복잡하게 밀집되어 있다. 이러한 다수의 발전설비들은 항시 실시간으로 감시할 수 있어야 하며, 설비의 고장 및 비정상 상태가 발생될 경우에 최대한 빠른 시간 내에 이를 정비할 수 있어야 한다.
종래의 발전소에서는 다수의 발전설비들 각각에 대한 정기적 예방 정비를 실시하고 있으며, 발전설비의 상태를 판단할 수 있는 센서 데이터를 수집하여 분석함으로써 발전설비의 고장 발생을 예측하고, 그에 따른 대응 조치를 수행하고 있다.
그러나, 종래의 발전소에서는 발전설비에서 수집되는 센서 데이터를 이용하여 경보 발생을 알려줄 뿐으로 실제 발생된 경보들의 원인을 분석하여 조치사항을 통보하지 못하며, 이로 인해 발전소의 운전원들이 단순히 경보 발생만으로 다수의 발전설비들 중에서 고장이 발생된 설비를 찾는 것에 어려움이 있었다.
또한, 종래의 발전소에서는 발전설비의 고장 발생 예측을 발전설비로부터 수집되는 센서 데이터에 의존하게 되므로, 센서 데이터가 다수 발생된 경우에 발전설비의 상태를 빠르게 판단하는데 어려움이 있었다. 특히, 숙련된 발전소 운전원이 아닌 경우에는 단순히 센서 데이터로부터 발전설비의 고장 발생을 예측하는 것이 더욱 어려웠다.
본 발명은 인공지능 기반의 학습모델을 이용하여 발전소의 발전설비 별 고장발생을 예측하여 진단함으로써 발전설비의 최적화 운영을 가능하게 하는 발전소 고장 예측 및 진단시스템과 그 방법을 제공하고자 하는 데 있다.
본 발명의 실시예에 따른 발전소 고장 예측 및 진단시스템은, 가상발전소를 구축하여 다수의 학습데이터를 생성하는 데이터생성모듈; 상기 학습데이터를 분석하여 변환하고, 변환된 데이터를 적재하는 데이터처리모듈; 상기 데이터처리모듈에 적재된 데이터로부터 고장 예측 및 진단을 위한 학습을 수행하고, 학습 결과에 기초하여 발전소로부터 수집된 하나 이상의 실시간 센서데이터로부터 상기 발전소의 발전설비 상태를 판단하여 고장 발생을 예측 및 진단하는 고장예측/진단모듈; 및 상기 고장예측/진단모듈의 예측 및 진단 결과 및 대응되는 발전설비의 부가정보를 함께 표시하는 정보표시모듈을 포함한다.
본 발명의 실시예에 따른 발전소 고장 예측 및 진단방법은, 발전소의 다수의 발전설비들 각각에 대한 정보에 기초하여 가상발전소를 구축하고, 상기 가상발전소를 기동하여 다수의 학습데이터를 생성하는 단계; 상기 학습데이터의 유효성을 분석하고, 분석 결과에 따라 상기 학습데이터를 변환하여 적재하는 단계; 적재된 데이터를 이용하여 상기 다수의 발전설비들의 고장 발생 예측 및 진단을 학습하고, 학습 결과에 기초하여 상기 발전소로부터 수집된 하나 이상의 실시간 센서데이터로부터 상기 다수의 발전설비들의 고장 발생을 예측 및 진단하는 단계; 및 고장 발생에 대한 예측 및 진단 결과에 대응되는 발전설비의 부가정보를 상기 예측 및 진단 결과와 함께 표시하는 단계를 포함한다.
본 발명의 발전소 고장 예측 및 진단시스템은, 인공지능 기반의 학습모델을 이용하여 발전설비의 고장 발생을 미리 예측 및 진단하고, 이를 발전설비의 부가정보와 함께 표시함으로써, 실제 발전설비의 고장이 발생되기 전에 해당 발전설비의 고장을 미연에 방지할 수 있다.
또한, 본 발명의 발전소 고장 예측 및 진단시스템은 가상발전소를 구축하여 다양한 고장 상황에 대한 학습데이터를 생성함으로써, 학습모델의 학습 능력을 높여 발전설비 고장 예측 및 진단의 정확성 및 신뢰도를 높일 수 있다.
도 1은 본 발명의 실시예에 따른 발전소 고장 예측 및 진단시스템의 구성을 나타내는 도면이다.
도 2는 도 1의 데이터생성모듈의 구성을 나타내는 도면이다.
도 3은 도 1의 데이터처리모듈의 구성을 나타내는 도면이다.
도 4는 도 1의 정보표시모듈의 구성을 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 발전소 고장 예측 및 진단방법을 나타내는 도면이다.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.
도면들 중 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호 및 부호들로 나타내고 있음에 유의해야 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자들은 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있으며 본 발명의 범위가 다음에 기술하는 실시예에 한정되는 것은 아니다.
도 1은 본 발명의 실시예에 따른 발전소 고장 예측 및 진단시스템의 구성을 나타내는 도면이고, 도 2 내지 도 4는 도 1의 각 구성을 세부적으로 나타내는 도면들이다.
도 1 내지 도 4를 참조하면, 본 실시예의 발전소 고장예측 및 진단시스템(100)은 발전소(200)로부터 수집되는 다수의 실시간 센서데이터(미도시)로부터 발전소(200)의 발전설비 상태를 분석하고, 이에 따라 발전설비의 고장 발생을 예측하여 진단할 수 있다. 이때, 고장예측 및 진단시스템(100)은 사전 학습된 학습모델을 이용하여 실시간 센서데이터로부터 발전설비의 고장 발생을 예측할 수 있다. 이어, 고장예측 및 진단시스템(100)은 예측 및 진단 결과를 발전소(200)의 운전원들에게 제공하여 발전설비의 예방 정비가 수행될 수 있도록 할 수 있다. 이러한 발전소 고장예측 및 진단시스템(100)은 데이터생성모듈(110), 데이터처리모듈(120), 고장예측/진단모듈(130) 및 정보표시모듈(140)을 포함할 수 있다.
데이터생성모듈(110)은 후술될 고장예측/진단모듈(130)의 사전 학습을 위한 학습데이터를 생성할 수 있다. 이를 위하여, 데이터생성모듈(110)은 가상발전소를 구축하여 기동함으로써, 가상발전소로부터 수집되는 센서데이터에 따른 학습데이터를 생성할 수 있다. 데이터생성모듈(110)은 모델링 유닛(111), 시뮬레이션 유닛(113) 및 데이터추출 유닛(115)을 포함할 수 있다.
모델링 유닛(111)은 발전소(200)의 다수의 발전설비들 각각을 모델링하여 가상발전소를 구축할 수 있다. 모델링 유닛(111)은 외부에서 제공된 발전설비정보에 기초하여 가상발전소를 구축할 수 있다. 이때, 모델링 유닛(111)은 가상발전소의 기동을 제어할 수 있는 기동제어시스템을 함께 구축할 수 있다.
시뮬레이션 유닛(113)은 소정의 기동 시나리오에 기초하여 기 구축된 가상발전소를 가상으로 기동할 수 있다. 기동 시나리오는 가상발전소의 정상기동을 위한 정상기동 시나리오 및 가상발전소의 고장발생을 위한 고장기동 시나리오를 포함할 수 있다.
데이터추출 유닛(115)은 시뮬레이션 유닛(113)에 의해 기동되는 가상발전소로부터 다수의 센서데이터, 예컨대 가상 센서데이터를 추출할 수 있다. 가상 센서데이터는 가상발전소의 다수의 발전설비 각각마다 설정된 적어도 하나의 센싱 포인트로부터 추출될 수 있다. 데이터추출 유닛(115)은 추출된 다수의 가상 센서데이터를 학습데이터로 생성하여 출력할 수 있다.
앞서, 가상발전소는 정상기동 시나리오 및 고장기동 시나리오에 기초하여 각각 가상으로 기동되는 것을 설명하였다. 이에, 데이터추출 유닛(115)은 가상발전소의 정상기동에 따른 가상 센서데이터 및 가상발전소의 고장기동에 따른 가상 센서데이터를 각각 추출하고, 그에 따른 학습데이터, 즉 정상기동 학습데이터 및 고장기동 학습데이터를 각각 생성할 수 있다.
데이터처리모듈(120)은 데이터생성모듈(110)로부터 출력된 학습데이터, 즉 다수의 가상 센서데이터를 수집하여 처리한 후, 이를 적재할 수 있다. 또한, 데이터처리모듈(120)은 발전소(200)로부터 실시간 센서데이터를 수집하여 처리한 후, 이를 적재할 수 있다. 이때, 실시간 센서데이터는 발전소(200)의 다수의 발전설비 각각의 적어도 하나의 센싱 포인트로부터 추출되어 수집될 수 있다. 데이터처리모듈(120)은 데이터선택 유닛(121), 데이터분석 유닛(122), 데이터통합 유닛(123), 제1적재 유닛(124) 및 제2적재 유닛(125)을 포함할 수 있다.
데이터선택 유닛(121)은 데이터생성모듈(110)에서 수집되는 학습 데이터 및 발전소(200)에서 수집되는 실시간 센서데이터 중 하나를 선택할 수 있다.
데이터분석 유닛(122)은 데이터선택 유닛(121)에 의해 선택된 데이터를 분석하여 변환할 수 있다. 데이터분석 유닛(122)은 데이터의 유효성을 분석하고, 분석 결과에 따라 데이터의 표준화를 수행할 수 있다. 데이터분석 유닛(122)은 표준화된 데이터를 변환할 수 있다. 여기서, 데이터분석 유닛(122)에 제공되는 학습 데이터 및 실시간 센서데이터는 시계열 데이터일 수 있다. 이에, 데이터분석 유닛(122)은 제공된 시계열 데이터를 변환할 수 있다. 이때, 데이터분석 유닛(122)은 학습 데이터 및 실시간 센서데이터를 2차원 또는 3차원 이미지 데이터로 변환할 수 있다.
데이터통합 유닛(123)은 변환된 데이터의 상호 관계를 판단하고, 그에 따라 데이터를 그룹화하여 통합할 수 있다. 학습 데이터 및 실시간 센서데이터는 발전소(200) 또는 가상발전소의 기동에 따라 수집되는 발전설비의 상태정보에 따른 데이터이다. 따라서, 데이터통합 유닛(123)은 변환된 데이터를 발전설비의 종류별로 그룹화하여 통합할 수 있다. 또한, 데이터통합 유닛(123)은 변환된 데이터를 발전설비의 상태별로 그룹화하여 통합할 수 있다.
제1적재 유닛(124) 및 제2적재 유닛(125) 각각에는 통합된 데이터가 적재될 수 있다. 이때, 제1적재 유닛(124)에는 실시간 데이터가 적재될 수 있고, 제2적재 유닛(125)에는 일정 기간 동안 누적된 데이터가 적재될 수 있다. 여기서, 제1적재 유닛(124) 및 제2적재 유닛(125)은 2차원 또는 3차원 이미지 데이터로 변환되어 상호 관계에 따라 통합된 데이터를 매트릭스 형태로 적재할 수 있다.
이와 같이, 데이터처리모듈(120)은 수집된 데이터, 즉 학습 데이터 및 실시간 센서데이터의 분석, 변환 및 통합을 통해 적재함으로써, 후술될 고장예측/진단모듈(130)의 사전 학습 및 고장 예측에 활용될 수 있는 대규모 데이터 플랫폼을 구축할 수 있다.
고장예측/진단모듈(130)은 데이터처리모듈(120)에 적재된 데이터, 예컨대 학습 데이터를 이용하여 발전설비의 상태에 따른 고장발생 예측 및 진단에 대한 사전 학습을 수행할 수 있다. 또한, 고장예측/진단모듈(130)은 학습에 기초하여 데이터처리모듈(120)에 적재된 데이터, 예컨대 실시간 센서데이터로부터 발전설비의 고장발생을 예측 및 진단할 수 있다.
고장예측/진단모듈(130)은 인공지능 기반의 학습모델로 구현될 수 있다. 이러한 고장예측/진단모듈(130)은 적어도 2개의 예측/진단 유닛(미도시)으로 구성될 수 있는데, 예컨대 실시간으로 빠른 연산을 수행하는 제1예측/진단 유닛과 상기 제1예측/진단 유닛의 출력을 심층적으로 연산하는 제2예측/진단 유닛을 포함할 수 있다. 이는, 통상의 발전소(200)의 발전설비는 대부분의 상태가 정상상태이므로, 빠른 연산을 통해 정상상태가 아닌 비정상을 검출하고, 이를 심층 분석하는 것이 요구되기 때문이다.
고장예측/진단모듈(130)은 발전설비의 고장 발생 예측 및 진단 결과를 출력할 수 있다. 상기 결과는 고장 발생의 대응 단계 정보, 잔여 대응시간 정보 및 고장 원인정보 중 적어도 하나를 포함할 수 있다.
정보표시모듈(140)은 고장예측/진단모듈(130)의 발전설비 고장 예측 및 진단 결과를 외부, 즉 발전소 운전원들에게 표시할 수 있다. 정보표시모듈(140)은 데이터베이스(141), 매핑 유닛(143) 및 표시 유닛(145)을 포함할 수 있다.
데이터베이스(141)에는 발전소(200)의 다수의 발전설비 각각에 대한 각종 부가정보가 저장될 수 있다. 부가정보는 발전설비의 현장 사진 및 영상정보, 발전설비의 고장이력 및 정비이력정보, 발전설비의 배치에 대한 도면정보 및 발전설비의 3차원 모델링 정보 중 적어도 하나를 포함할 수 있다.
매핑 유닛(143)은 고장예측/진단모듈(130)에서 제공된 예측 및 진단 결과에 기초하여 해당 발전설비와 데이터베이스(141)의 부가정보를 일대일로 매핑할 수 있다. 예컨대, 고장예측/진단모듈(130)에 의해 다수의 발전설비 중에서 덕트(air intake)의 고장 발생이 예측된 경우에, 매핑 유닛(143)은 고장예측/진단모듈(130)에서 제공된 예측 및 진단 결과에 기초하여 데이터베이스(141)에 저장된 다수의 부가정보 중에서 덕트에 해당되는 부가정보를 추출하여 매핑할 수 있다. 이때, 추출되는 부가정보는 덕트의 현장 영상 및 사진, 도면 및 3차원 모델링, 덕트의 설비정보 및 과거 고장 및 정비 이력 등을 포함할 수 있다.
표시 유닛(145)은 고장예측/진단모듈(130)에서 제공된 발전설비의 고장 예측 및 진단 결과와 매핑 유닛(143)에 의한 상기 발전설비의 부가정보를 함께 디스플레이할 수 있다.
도 5는 본 발명의 실시예에 따른 발전소 고장 예측 및 진단방법을 나타내는 도면이다.
도 5를 참조하면, 고장예측 및 진단시스템(100)의 데이터생성모듈(110)은 고장예측/진단모듈(130)의 학습을 위한 다수의 학습데이터를 생성할 수 있다(S10).
먼저, 데이터생성모듈(110)의 모델링 유닛(111)은 외부에서 제공된 발전설비정보에 기초하여 가상발전소를 구축할 수 있다(S11). 이어, 시뮬레이션 유닛(113)은 소정의 시나리오, 예컨대 정상기동 시나리오 및 고장기동 시나리오에 기초하여 가상발전소를 기동할 수 있다(S13). 계속해서, 데이터추출 유닛(115)은 가상발전소의 다수의 발전설비 각각마다 설정된 적어도 하나의 센싱 포인트로부터 가상발전소의 기동에 따른 발전설비의 상태정보를 가상 센서데이터로 추출할 수 있다(S15). 데이터생성모듈(110)은 추출된 다수의 가상 센서데이터를 학습데이터로 생성하여 출력할 수 있다.
고장예측 및 진단시스템(100)의 데이터처리모듈(120)은 데이터생성모듈(110)의 다수의 학습데이터 또는 발전소(200)의 다수의 실시간 센서데이터를 수집하여 분석 및 변환하고, 이를 통합하여 적재할 수 있다(S20).
데이터처리모듈(120)의 데이터선택 유닛(121)은 다수의 학습데이터 및 실시간 센서데이터 중 하나를 선택할 수 있다(S21). 이어, 데이터분석 유닛(122)은 선택된 데이터의 유효성을 분석하여 표준화를 수행하고, 이를 2차원 또는 3차원의 이미지 데이터로 변환할 수 있다(S23). 계속해서, 데이터통합 유닛(123)은 변환된 데이터를 그룹화하여 통합하고, 이를 적재할 수 있다(S25).
고장예측/진단모듈(130)은 데이터처리모듈(120)에 적재된 다수의 학습데이터를 이용하여 발전설비의 고장 발생 예측 및 진단을 학습할 수 있다. 이어, 고장예측/진단모듈(130)은 학습 결과에 기초하여 발전소(200)로부터 수집된 실시간 센서데이터로부터 발전설비의 실제 고장 발생을 예측 및 진단할 수 있다(S30).
고장예측/진단모듈(130)은 인공지능 기반의 학습모델로 구현될 수 있다. 따라서, 고장예측/진단모듈(130)은 고장 발생의 예측 및 진단 정확성을 높이기 위해 다양한 학습이 필요하다. 이에, 고장 예측 및 진단시스템(100)은 데이터생성모듈(110)을 이용하여 발전설비의 다양한 고장 상황에 대한 학습데이터를 생성하고, 이를 이용하여 고장예측/진단모듈(130)을 학습시킬 수 있다.
다시 말해, 발전소(200)에서 수집되는 실제 데이터, 즉 실시간 센서데이터는 대부분 발전소(200)의 정상기동에 따른 발전설비의 상태에 대한 데이터이다. 따라서, 발전설비의 다양한 고장 상황에 따라 고장예측/진단모듈(130)을 학습시키는 것이 어렵다.
이에, 본 발명의 고장 예측 및 진단시스템(100)은 데이터생성모듈(110)을 통해 가상발전소를 구축하고, 다양한 고장기동 시나리오를 이용하여 가상발전소를 기동함으로써, 발전설비에 대한 다양한 고장 상황의 센서데이터, 즉 가상 센서데이터를 추출할 수 있다. 그리고, 이러한 가상 센서데이터를 분석 및 변환하여 고장예측/진단모듈(130)에 학습데이터로 제공함으로써, 고장예측/진단모듈(130)은 다양한 고장 환경에서의 발전설비의 상태에 대해 학습할 수 있다. 그리고, 고장예측/진단모듈(130)은 학습 결과에 기초하여 실제 데이터, 즉 발전소(200)로부터 수집되는 실시간 센서데이터로부터 발전설비의 실제 고장 발생을 예측 및 진단하고, 그에 따른 예측 및 진단결과를 출력할 수 있다. 고장예측/진단모듈(130)에서 출력되는 예측 및 진단결과는 고장 발생이 예측되는 발전설비에 대한 고장 대응 단계 정보, 잔여 대응시간 정보 및 고장 원인정보 등을 포함할 수 있다.
다음으로, 정보표시모듈(140)은 고장예측/진단모듈(130)의 고장 예측 및 진단 결과를 외부의 발전소 운전원들에게 표시할 수 있다(S40). 정보표시모듈(140)은 예측 및 진단결과에 기초하여 데이터베이스(141)로부터 해당 발전설비의 다양한 부가정보를 추출하고, 이를 예측 및 진단 결과에 매핑하여 함께 표시할 수 있다. 여기서, 부가정보는 발전설비의 현장 사진 및 영상정보, 발전설비의 고장이력 및 정비이력정보, 발전설비의 배치에 대한 도면정보 및 발전설비의 3차원 모델링 정보 등을 포함할 수 있다.
상술한 바와 같이, 본 발명의 발전소 고장 예측 및 진단시스템(100)은 인공지능 기반의 학습모델로 구현된 고장예측/진단모듈(130)을 통해 발전소(200)의 발전설비의 고장 발생을 예측 및 진단하여 발전설비의 부가정보와 함께 표시함으로써, 실제 발전설비의 고장이 발생되기 전에 해당 발전설비의 고장을 미연에 방지할 수 있다.
또한, 본 발명의 발전소 고장 예측 및 진단시스템(100)은 가상발전소를 구축하여 다양한 고장 상황에 대한 학습데이터를 생성함으로써, 고장예측/진단모듈(130)의 학습 능력을 높일 수 있으며, 이로 인해 고장예측/진단모듈(130)을 통한 발전소(200)의 발전설비 고장 예측 및 진단의 정확성을 높일 수 있다.
Claims (12)
- 가상발전소를 구축하여 다수의 학습데이터를 생성하는 데이터생성모듈;상기 학습데이터를 분석하여 변환하고, 변환된 데이터를 적재하는 데이터처리모듈;상기 데이터처리모듈에 적재된 데이터로부터 고장 예측 및 진단을 위한 학습을 수행하고, 학습 결과에 기초하여 발전소로부터 수집된 하나 이상의 실시간 센서데이터로부터 상기 발전소의 발전설비 상태를 판단하여 고장 발생을 예측 및 진단하는 고장예측/진단모듈; 및상기 고장예측/진단모듈의 예측 및 진단 결과 및 대응되는 발전설비의 부가정보를 함께 표시하는 정보표시모듈을 포함하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 데이터생성모듈은,상기 발전소의 다수의 발전설비들 각각을 모델링하여 상기 가상발전소를 구축하는 모델링 유닛;정상기동 시나리오 및 고장기동 시나리오 중 하나에 기초하여 상기 가상발전소를 기동하는 시뮬레이션 유닛; 및상기 가상발전소로부터 가상 센서데이터를 추출하여 상기 학습데이터로 생성하는 데이터추출 유닛을 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 데이터처리모듈은,상기 데이터생성모듈의 상기 학습데이터와 상기 발전소의 상기 실시간 센서데이터 중 하나를 선택하는 데이터선택 유닛;선택된 데이터의 유효성을 분석하고, 분석결과에 기초하여 상기 선택된 데이터를 표준화하여 변환하는 데이터분석 유닛;변환된 데이터를 그룹화하여 통합하는 데이터통합 유닛; 및통합된 데이터를 적재하는 적재 유닛을 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 고장예측/진단모듈은 인공지능 기반의 학습모델로 구현되는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 정보표시모듈은,다수의 발전설비 각각에 대한 상기 부가정보가 저장된 데이터베이스;상기 다수의 발전설비 중 상기 예측 및 진단 결과에 대응되는 적어도 하나의 발전설비의 부가정보를 상기 예측 및 진단 결과에 매핑하는 매핑 유닛; 및상기 예측 및 진단 결과와 매핑된 부가정보를 함께 표시하는 표시 유닛을 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 예측 및 진단 결과는,상기 발전설비의 고장 발생에 따른 대응 단계 정보, 잔여 대응시간 정보 및 고장 원인정보 중 적어도 하나를 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 제1항에 있어서,상기 부가정보는,상기 발전설비의 현장 사진 및 영상정보, 상기 발전설비의 고장이력 및 정비이력정보, 상기 발전설비의 배치에 대한 도면정보 및 상기 발전설비의 3차원 모델링 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단시스템.
- 발전소의 다수의 발전설비들 각각에 대한 정보에 기초하여 가상발전소를 구축하고, 상기 가상발전소를 기동하여 다수의 학습데이터를 생성하는 단계;상기 학습데이터의 유효성을 분석하고, 분석 결과에 따라 상기 학습데이터를 변환하여 적재하는 단계;적재된 데이터를 이용하여 상기 다수의 발전설비들의 고장 발생 예측 및 진단을 학습하고, 학습 결과에 기초하여 상기 발전소로부터 수집된 하나 이상의 실시간 센서데이터로부터 상기 다수의 발전설비들의 고장 발생을 예측 및 진단하는 단계; 및고장 발생에 대한 예측 및 진단 결과에 대응되는 발전설비의 부가정보를 상기 예측 및 진단 결과와 함께 표시하는 단계를 포함하는 발전소 고장 예측 및 진단방법.
- 제1항에 있어서,상기 다수의 학습데이터를 생성하는 단계는,정상기동 시나리오 및 고장기동 시나리오 중 하나에 기초하여 상기 가상발전소를 기동하는 단계; 및상기 가상발전소에 설정된 적어도 하나의 센싱 포인트로부터 다수의 가상 센서데이터를 추출하고, 상기 다수의 가상 센서데이터에 기초하여 상기 다수의 학습데이터를 생성하는 단계를 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단방법.
- 제1항에 있어서,상기 학습데이터를 변환하여 적재하는 단계는,상기 학습데이터와 상기 실시간 센서데이터 중 하나를 선택하고, 선택된 데이터의 유효성을 분석하는 단계;분석 결과에 기초하여 상기 선택된 데이터를 변환하는 단계; 및변환된 데이터를 그룹화하여 통합하고, 통합된 데이터를 적재하는 단계를 포함하는 것을 특징으로 하는 발전소 고장 예측 및 진단방법.
- 제1항에 있어서,상기 다수의 발전설비들의 고장 발생을 예측 및 진단하는 단계는,고장 발생에 따른 대응 단계 정보, 잔여 대응시간 정보 및 고장 원인정보 중 적어도 하나를 포함하는 상기 예측 및 진단 결과를 출력하는 단계인 것을 특징으로 하는 발전소 고장 예측 및 진단방법.
- 제1항에 있어서,상기 부가정보를 상기 예측 및 진단 결과와 함께 표시하는 단계는,상기 예측 및 진단 결과에 대응되는 상기 발전설비의 현장 사진 및 영상정보, 상기 발전설비의 고장이력 및 정비이력정보, 상기 발전설비의 배치에 대한 도면정보 및 상기 발전설비의 3차원 모델링 정보 중 적어도 하나를 포함하는 상기 부가정보를 함께 표시하는 단계인 것을 특징으로 하는 발전소 고장 예측 및 진단 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2018-0075011 | 2018-06-28 | ||
KR1020180075011A KR102118966B1 (ko) | 2018-06-28 | 2018-06-28 | 발전소 고장 예측 및 진단시스템과 그 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020004994A1 true WO2020004994A1 (ko) | 2020-01-02 |
Family
ID=68987400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2019/007849 WO2020004994A1 (ko) | 2018-06-28 | 2019-06-28 | 발전소 고장 예측 및 진단시스템과 그 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102118966B1 (ko) |
WO (1) | WO2020004994A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115018332A (zh) * | 2022-06-15 | 2022-09-06 | 华能陇东能源有限责任公司 | 一种基于虚拟现实的火电厂可视化管理系统 |
CN117807155A (zh) * | 2024-03-01 | 2024-04-02 | 深圳润世华软件和信息技术服务有限公司 | 多维度预警提示信息的生成方法、设备及存储介质 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102202527B1 (ko) * | 2020-03-04 | 2021-01-13 | 주식회사 쓰리아이씨 | 발전소 내 전력장애 발생방향 결정시스템 |
CN111612233A (zh) * | 2020-05-13 | 2020-09-01 | 云南电网有限责任公司电力科学研究院 | 一种配电网线路重跳影响因素重要性得分获取方法及装置 |
KR102419795B1 (ko) | 2021-01-14 | 2022-07-12 | 인천대학교 산학협력단 | 가상센서를 이용한 진단과 제어가 가능한 난방 시스템 및 이를 이용한 진단 제어 방법 |
KR102594239B1 (ko) * | 2021-06-23 | 2023-10-25 | 한국수력원자력 주식회사 | 공통 원인 오류를 판단하는 방법 및 장치 |
KR102530632B1 (ko) * | 2021-11-09 | 2023-05-10 | (주)한울전력기술 | 플랜트 설계 검증용 인공지능 시뮬레이터를 이용한 설계 검증 방법 |
CN114266381A (zh) * | 2021-11-19 | 2022-04-01 | 华能(广东)能源开发有限公司海门电厂 | 一种基于元宇宙技术下的电厂智能管理虚拟助手 |
KR102694136B1 (ko) * | 2021-12-30 | 2024-08-13 | 앤츠이엔씨 주식회사 | 인공지능 기반의 오일가스 플랜트 설비 고장 예측 및 진단시스템 |
KR20240032413A (ko) | 2022-09-02 | 2024-03-12 | 한국전력공사 | 시뮬레이터를 이용한 인공지능 기반 플랜트 진단 시스템 및 그 동작 방법 |
KR20240045607A (ko) | 2022-09-30 | 2024-04-08 | 한국전력공사 | 전력설비의 펌웨어 업데이트 시스템 및 그 방법 |
KR102613712B1 (ko) * | 2023-03-08 | 2023-12-14 | (주)원텍시스템 | 원전 제어 계통의 가상 모사 장치, 방법 및 시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08129415A (ja) * | 1994-10-31 | 1996-05-21 | Hitachi Ltd | プラントの故障解析支援システム |
KR101065767B1 (ko) * | 2010-04-22 | 2011-09-19 | 주식회사 지오네트 | 성능저하 및 고장원인 조기 진단방법 |
KR101518720B1 (ko) * | 2015-02-15 | 2015-05-08 | (주)부품디비 | 해양자원 생산장비의 예지보전을 위한 고장유형관리 장치 및 방법 |
JP2015138525A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社東芝 | 仮想プラント監視制御装置 |
US20180114428A1 (en) * | 2015-04-08 | 2018-04-26 | General Electric Company | Method and system for managing plant alarm systems |
-
2018
- 2018-06-28 KR KR1020180075011A patent/KR102118966B1/ko active IP Right Grant
-
2019
- 2019-06-28 WO PCT/KR2019/007849 patent/WO2020004994A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08129415A (ja) * | 1994-10-31 | 1996-05-21 | Hitachi Ltd | プラントの故障解析支援システム |
KR101065767B1 (ko) * | 2010-04-22 | 2011-09-19 | 주식회사 지오네트 | 성능저하 및 고장원인 조기 진단방법 |
JP2015138525A (ja) * | 2014-01-24 | 2015-07-30 | 株式会社東芝 | 仮想プラント監視制御装置 |
KR101518720B1 (ko) * | 2015-02-15 | 2015-05-08 | (주)부품디비 | 해양자원 생산장비의 예지보전을 위한 고장유형관리 장치 및 방법 |
US20180114428A1 (en) * | 2015-04-08 | 2018-04-26 | General Electric Company | Method and system for managing plant alarm systems |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115018332A (zh) * | 2022-06-15 | 2022-09-06 | 华能陇东能源有限责任公司 | 一种基于虚拟现实的火电厂可视化管理系统 |
CN115018332B (zh) * | 2022-06-15 | 2024-06-04 | 华能陇东能源有限责任公司 | 一种基于虚拟现实的火电厂可视化管理系统 |
CN117807155A (zh) * | 2024-03-01 | 2024-04-02 | 深圳润世华软件和信息技术服务有限公司 | 多维度预警提示信息的生成方法、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR102118966B1 (ko) | 2020-06-04 |
KR20200001903A (ko) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020004994A1 (ko) | 발전소 고장 예측 및 진단시스템과 그 방법 | |
WO2019132112A1 (ko) | 관리 대상 설비 이상 상태 모니터링 시스템 | |
WO2020004996A1 (ko) | 발전소 고장 예측 및 진단시스템의 학습모델을 위한 학습데이터 생성장치 및 방법 | |
WO2017191872A1 (ko) | 플랜트 이상 감지 방법 및 시스템 | |
US10901834B2 (en) | Interactive troubleshooting assistant | |
WO2020076081A1 (ko) | 신경망 모델을 이용한 비정상 운전 상태 판단 장치 및 방법 | |
WO2014001799A1 (en) | Vehicle diagnostic system and method | |
US20180174694A1 (en) | Abnormality diagnosis system and abnormality diagnosis method | |
WO2021172723A1 (ko) | 원전의 지능형 상태감시 방법 및 시스템 | |
WO2022071756A1 (ko) | 화재 방호 방법 및 화재 방호 시스템 | |
CN108627794A (zh) | 一种基于深度学习的智能化仪表检测方法 | |
WO2022114654A1 (ko) | 공정 모니터링 시스템 및 방법 | |
US11755007B2 (en) | System and method for determining a health condition and an anomaly of an equipment using one or more sensors | |
US11562227B2 (en) | Interactive assistant | |
CN105183593A (zh) | 一种基于国产计算机自检测的系统及方法 | |
WO2022025386A1 (ko) | 건축물 에너지 공공 데이터를 이용한 규칙 기반 및 기계 학습 기반의 고장 진단 시스템 및 방법 | |
CN104777826B (zh) | 用于工厂监控系统的测试支持装置、测试支持方法和测试支持程序 | |
WO2020004998A1 (ko) | 발전소 고장 예측 및 진단시스템의 화면표시방법 | |
WO2015060676A2 (ko) | 설계 및 운영 단계 통합 건물 제어 시스템 | |
WO2022114634A1 (ko) | 신경망 모델을 이용한 비정상 상태 판단 근거 추적 장치 및 방법 | |
JP7524824B2 (ja) | 推論装置 | |
KR102195266B1 (ko) | 음향신호를 이용한 플랜트 설비의 결함 진단 방법 | |
CN114626400A (zh) | 设备故障诊断装置、设备故障诊断方法、智能工厂系统和应用代理 | |
WO2017074089A1 (ko) | 선택적 촉매 환원 시스템의 관리장치 및 이의 제어방법 | |
WO2023249277A1 (ko) | 전기차 진단 및 예지 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19824456 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19824456 Country of ref document: EP Kind code of ref document: A1 |