WO2020004659A1 - Three-dimensional shaping apparatus and three-dimensional shaping method - Google Patents

Three-dimensional shaping apparatus and three-dimensional shaping method Download PDF

Info

Publication number
WO2020004659A1
WO2020004659A1 PCT/JP2019/025971 JP2019025971W WO2020004659A1 WO 2020004659 A1 WO2020004659 A1 WO 2020004659A1 JP 2019025971 W JP2019025971 W JP 2019025971W WO 2020004659 A1 WO2020004659 A1 WO 2020004659A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
modeling
support member
dimensional
modeling material
Prior art date
Application number
PCT/JP2019/025971
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 赤松
渉 上田
祥 村田
道子 馬場
大起 林
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019075705A external-priority patent/JP2020006681A/en
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2020004659A1 publication Critical patent/WO2020004659A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present disclosure relates to a three-dimensional forming apparatus and a three-dimensional forming method for forming a three-dimensional object.
  • a heated material is discharged from a head, and the material is deposited on a plate to form a three-dimensional object.
  • a device for modeling is known.
  • an object is formed by moving a head according to the shape of the object to be formed and accumulating the material.
  • the object 100 has the two protruding portions 101, 101 protruding upward at the center position, the tensile strength in the vertical direction D1 is low, and the tensile strength in the oblique vertical direction D2 is also low.
  • a three-dimensional modeling apparatus is a three-dimensional modeling apparatus that discharges a modeling material from a head, deposits the modeling material on a table provided below the head, and models a three-dimensional object.
  • this three-dimensional printing apparatus by providing the second mechanism that enables the table to rotate around the rotation axis directed in the direction parallel to the upper surface of the table, the rotation in the direction parallel to the upper surface of the table is provided.
  • the table can be tilted by rotating the table about the axis.
  • the head can be moved along the direction in which the object is to be strengthened, and the modeling material can be continuously attached in the direction in which the object is to be strengthened. Therefore, the object can be shaped by increasing the strength in a desired direction.
  • the first mechanism unit may move the head in each of three orthogonal directions with respect to the table.
  • a desired object can be formed by moving the head with respect to the table.
  • the second mechanism unit may be configured to be able to rotate the table about a rotation axis directed in a direction perpendicular to the upper surface of the table.
  • the direction of the object on the table can be easily changed by making the table rotatable about the rotation axis oriented in the vertical direction, and the object with the increased strength in the desired direction can be easily formed. Can be done.
  • the table has a support member formed according to the shape of the object and supporting the object, and adjusts the operation of the first mechanism and the second mechanism. Controlling the attitude of one or both of the head and the table so that the molding material is discharged perpendicular to the surface of the support member, and relatively moving the head and the table so that the head is along the surface of the support member, A control unit for depositing the modeling material on the support member may be provided.
  • the support member is formed according to the shape of the object, the object can be modeled by depositing a modeling material on the support member. At this time, by depositing the modeling material along the surface of the support member, the strength of the object can be increased in a desired direction on the surface of the object.
  • the support member has a plurality of surfaces having different normal directions
  • the control unit relatively moves the head and the table so that the head is along the plurality of surfaces.
  • the head and the table can be relatively moved so that the head is along a plurality of surfaces having different normal directions of the support member, and the modeling material can be deposited in a desired direction on the plurality of surfaces. . Therefore, the strength of the object can be increased in a desired direction on the surface of the object.
  • control unit relatively controls the head and the table such that the head follows the surface of the support member while maintaining a predetermined interval between the head and the support member. May be moved. In this case, while the head and the table are maintained at a predetermined distance, the head and the table are relatively moved so that the head follows the surface of the support member, whereby the modeling material is appropriately deposited on the support member. Can be done.
  • the control unit relatively moves the head and the table so that a discharge direction of a forming material discharged from the head is a normal direction of a surface of the support member. May be moved.
  • the head and the table are relatively moved such that the discharge direction of the molding material discharged from the head is the normal direction of the surface of the support member, so that the build material is accurately deposited on the surface of the support member. Can be done.
  • the modeling material may be a material including a fiber-reinforced plastic.
  • the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached. For this reason, modeling of an object can be performed by increasing the strength in a desired direction.
  • a three-dimensional modeling method is a three-dimensional modeling method that discharges a modeling material from a head, deposits a modeling material on a table provided below the head, and models a three-dimensional object.
  • the table can be tilted by rotating the table about a rotation axis oriented in a direction parallel to the upper surface of the table, and the posture of the object during modeling can be changed. Therefore, the head is moved along the direction in which the object is to be strengthened, and the modeling material is easily deposited. Therefore, the object can be shaped by increasing the strength in a desired direction.
  • the table includes a support member formed according to the shape of the object and supporting the object, and the rotating step is performed such that the modeling material is perpendicular to the surface of the support member.
  • the head and the table are relatively moved so that the head follows the surface of the support member, and the modeling material is deposited on the support member.
  • the support member is formed according to the shape of the object, the object can be modeled by depositing a modeling material on the support member. At this time, by depositing the modeling material along the surface of the support member, the strength of the object can be increased in a desired direction on the surface of the object.
  • the modeling step discharges the modeling material from the head toward the lower side in the vertical direction, and places the modeling material on the first attachment point on the first surface of the support member.
  • the modeling material may be deposited from the attachment point to a second attachment point on a second surface different from the first surface of the support member in a normal direction. In this case, the object can be smoothly modeled by continuously depositing the modeling material on the surfaces of the support member having different normal directions.
  • FIG. 1 is a schematic configuration diagram of a three-dimensional printing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram of a second mechanism in the three-dimensional printing apparatus of FIG.
  • FIG. 3 is a flowchart showing the operation of the three-dimensional printing apparatus of FIG. 1 and the three-dimensional printing method according to the first embodiment.
  • FIG. 4 is an explanatory diagram of modeling of an object in the three-dimensional modeling apparatus of FIG.
  • FIG. 5 is an explanatory diagram of an object that can be formed by the three-dimensional printing apparatus of FIG. 1 and the three-dimensional printing method according to the present embodiment.
  • FIG. 6 is a schematic configuration diagram of a three-dimensional printing apparatus according to the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a three-dimensional printing apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is an explanatory diagram of a second mechanism in the three-dimensional printing apparatus of FIG.
  • FIG. 3 is a flowchart showing the operation of
  • FIG. 7 is an explanatory diagram of a robot arm in the three-dimensional printing apparatus of FIG.
  • FIG. 8 is an explanatory diagram of a forming operation in the three-dimensional forming apparatus of FIG.
  • FIG. 9 is a flowchart showing the operation of the three-dimensional printing apparatus of FIG. 6 and the three-dimensional printing method according to the second embodiment.
  • FIG. 10 is an explanatory diagram of a forming operation in the three-dimensional forming apparatus of FIG.
  • FIG. 11 is a diagram illustrating an object formed by using the three-dimensional forming apparatus of FIG. 6 and the three-dimensional forming method according to the second embodiment.
  • FIG. 12 is a diagram illustrating an object of a comparative example.
  • FIG. 13 is an explanatory diagram of the background art.
  • FIG. 1 is a schematic configuration diagram of a three-dimensional printing apparatus according to the first embodiment of the present disclosure.
  • the three-dimensional printing apparatus 1 is an apparatus that discharges a forming material from a head 2 and deposits the forming material on a table 3 (stage) provided below the head 2 to form a three-dimensional object.
  • the three-dimensional printing apparatus 1 of the present embodiment is applied to an AM (Additive Manufacturing) apparatus of a so-called FDM (Fused Deposition Modeling) method. That is, in the three-dimensional modeling apparatus 1, the heated modeling material is extruded from the head 2, and the modeling material is deposited (laminated or adhered) on the table 3 to form an object.
  • AM Additive Manufacturing
  • FDM Field Deposition Modeling
  • the modeling material for example, a material containing fiber-reinforced plastics (FRP) is used.
  • the molding material is a material containing a fiber reinforced plastic and a resin.
  • the modeling material is arranged with the direction of the fiber oriented in the moving direction of the head 2.
  • the fiber-reinforced plastic include those using glass fiber, carbon fiber, and the like.
  • examples of the fiber-reinforced plastic include those using discontinuous fibers or continuous fibers.
  • a material other than the fiber reinforced plastic may be used as the modeling material.
  • a resin for example, nylon, ABS, PC, PEEK, PEI
  • PEI that can be formed by the FDM method may be used as the forming material.
  • the head 2 is a part for discharging the heated molding material and supplying it onto the table 3.
  • a discharge port 21 is formed on the lower surface of the head 2.
  • the discharge port 21 is an opening for discharging the molding material.
  • the discharge port 21 is formed, for example, at the tip of a nozzle provided on the lower surface of the head 2.
  • a heater (not shown) is provided in the head 2 and heats a modeling material supplied from the outside by the heater.
  • the head 2 is provided so as to be relatively movable with respect to the table 3.
  • the head 2 is provided such that the discharge port 21 faces directly below. That is, the head 2 is provided so that the modeling material is discharged in the direction of gravity (vertical direction).
  • the head 2 may be provided so that the modeling material is discharged substantially vertically.
  • the head 2 may be configured such that the ejection direction of the head 2 is a direction other than the vertical direction (for example, a horizontal direction) according to a molding situation or the like.
  • the table 3 is a base member for performing modeling, and for example, a plate-shaped member is used.
  • the table 3 supports the modeling material discharged from the head 2 and the object being modeled.
  • the table 3 may be a stage that supports the molding material and the object being molded, or may be a plate that is set on the stage.
  • the table 3 may be provided with a support member 31 (see FIG. 4).
  • the support member 31 is a support member that supports the object O to be formed, and is formed according to the shape of the object O.
  • the object O can be formed by depositing the forming material on the support member 31.
  • the modeling material along the surface of the support member 31, it is possible to perform modeling that increases the strength of the object O along the surface of the object O. That is, on the surface of the object O, modeling can be performed by arbitrarily increasing the strength in the direction in which the strength is desired to be increased.
  • the surface of the table 3 may be made to have a shape corresponding to the shape of the object O to function as the support member 31.
  • the three-dimensional printing apparatus 1 includes a first mechanism unit 4.
  • the first mechanism unit 4 is a mechanism that enables the head 2 to move relative to the table 3 in each of three orthogonal directions.
  • the first mechanism unit 4 is configured to be able to move the head 2 in each of three axes orthogonal to the table 3.
  • the first mechanism section 4 is attached to a frame 82 provided on the base member 81.
  • the base member 81 is a flat member.
  • the frame 82 is, for example, a frame forming a rectangular parallelepiped.
  • the frame 82 is formed by erecting four column members 82a on a base member 81, and bridging beam members 82b between upper ends of the column members 82a. I have.
  • the first mechanism section 4 includes the slider 41.
  • the slider 41 is a member that moves in the front-rear direction (X-axis direction) of the table 3.
  • a long member arranged horizontally is used as the slider 41.
  • the slider 41 is provided between two beam members 82b provided in parallel on the frame body 82, and is provided movably along the longitudinal direction of the beam members 82b.
  • a rail is formed along the longitudinal direction of the beam member 82b, and the slider 41 is movable along the rail.
  • the slider 41 is moved by driving an actuator (not shown).
  • the first mechanism unit 4 includes the pole 42.
  • the pole 42 is a member that moves in the left-right direction (Y-axis direction) of the table 3.
  • the pole 42 is attached to the slider 41 and provided so as to be movable in the longitudinal direction (Y-axis direction) of the slider 41.
  • a rail is formed along the longitudinal direction of the slider 41, and the pole 42 is movable along the rail.
  • the pole 42 is moved by driving an actuator (not shown).
  • the movable member 43 is attached to the pole 42.
  • the movable member 43 is a member that moves in the vertical direction (Z-axis direction) of the table 3.
  • the movable member 43 is attached to the pole 42 and provided so as to be movable in the longitudinal direction (Z-axis direction) of the pole 42.
  • a movable member 43 is slidably attached to the pole 42, and the movable member 43 is moved by driving an actuator (not shown).
  • the head 2 is attached to the movable member 43.
  • the head 2 moves integrally with the movable member 43.
  • the head 2 can be moved in each of three orthogonal directions with respect to the table 3 by the operation of the first mechanism 4.
  • the first mechanism unit 4 may be configured by a mechanism other than the above-described mechanism as long as the head 2 can relatively move in the three orthogonal directions with respect to the table 3.
  • the first mechanism unit 4 may be a mechanism for rotating the head 2 around the rotation axis in a different direction, in addition to moving the head 2 relatively to each of the three orthogonal axes with respect to the table 3.
  • the three-dimensional printing apparatus 1 includes the second mechanism 5.
  • FIG. 2 is a perspective view illustrating an outline of the second mechanism unit 5.
  • the second mechanism 5 is a mechanism for rotating the table 3.
  • the second mechanism unit 5 enables the table 3 to rotate around a rotation axis A1 oriented in a direction (for example, a horizontal direction) parallel to the upper surface of the table 3, and
  • the table 3 is configured to be rotatable around a rotation axis A2 directed in a direction perpendicular to the upper surface of the table 3.
  • the second mechanism section 5 includes a first actuator 51 and a second actuator 52.
  • the first actuator 51 rotates the table 3 around a rotation axis A1 directed in a direction parallel to the upper surface of the table 3.
  • the first actuator 51 includes a motor and a gear, and is provided so as to be able to rotate the second actuator 52 and the table 3 around the rotation axis A1.
  • the second actuator 52 is provided so as to be rotatable about a rotation axis A1 with respect to a support 53 attached to the base member 81 (see FIG. 1). Then, by the operation of the first actuator 51, a rotational force is applied to the second actuator 52, so that the second actuator 52 and the table 3 rotate around the rotation axis A1. In FIG. 2, the rotation axis A1 is oriented in the horizontal direction.
  • the table 3 is attached to the second actuator 52 so as to be rotatable about the rotation axis A2.
  • the second actuator 52 includes a motor, a gear, and the like, and is provided so as to be able to rotate the table 3 about the rotation axis A2.
  • the table 3 is rotatable around the rotation axis A1 and the rotation axis A2 by the operation of the first actuator 51 and the second actuator 52 of the second mechanism unit 5.
  • the table 3 By rotating the table 3 about the rotation axis A1, the table 3 can be tilted, and the posture of the object being formed can be changed. Further, the rotation of the table 3 about the rotation axis A2 causes the table 3 to rotate on its own axis, thereby making it possible to change the direction of the object being formed.
  • the second mechanism section 5 may be configured by a mechanism other than the above-described mechanism as long as the mechanism can rotate the table 3 around the rotation axis A1 and the rotation axis A2.
  • the second mechanism unit 5 may be a mechanism that rotates the table 3 about three rotation axes.
  • the three-dimensional printing apparatus 1 includes a control unit 6 and an HMI (Human Machine Interface) 7.
  • the control unit 6 is an electronic control unit that controls the operation of the three-dimensional printing apparatus 1, and includes, for example, a computer including a CPU, a ROM, and a RAM.
  • the control unit 6 is electrically connected to the first mechanism unit 4 and controls the operation of the first mechanism unit 4.
  • the control unit 6 outputs a control signal to the first mechanism unit 4 to operate the first mechanism unit 4, and moves the head 2 according to the modeling of the object.
  • the control unit 6 is electrically connected to the second mechanism unit 5 and controls the operation of the second mechanism unit 5.
  • control unit 6 outputs a control signal to the second mechanism unit 5 to operate the second mechanism unit 5, and rotates the table 3 according to the modeling of the object.
  • the control unit 6 is electrically connected to a material supply device (not shown), adjusts the supply of the molding material to the head 2, and controls the ejection of the molding material from the head 2.
  • the control unit 6 stores the modeling data of the object.
  • the control unit 6 stores three-dimensional CAD (Computer-Aided Design) data of an object to be formed. Then, the control unit 6 sets the position of the head 2, the rotation state of the table 3, the discharge amount of the molding material, and the like according to the shape of the object.
  • the position data of the head 2 at the time of modeling may be set as movement locus data of the head 2.
  • the HMI 7 is an input / output device for the three-dimensional printing apparatus 1, and corresponds to, for example, an input unit for performing operation input and data input such as operation buttons, a keyboard, a mouse, and an output unit such as a speaker and a monitor.
  • the HMI 7 may be configured integrally with the control unit 6.
  • FIG. 3 is a flowchart showing the operation of the three-dimensional printing apparatus 1 and the three-dimensional printing method.
  • the control process in FIG. 3 is executed by the control unit 6, for example.
  • step S1 of FIG. 3 (hereinafter simply referred to as S1; the same applies to the following steps), data setting processing is performed.
  • the setting process is a process of storing shape data of an object to be formed, setting position data of the head 2 (building material deposition trajectory data) and rotation data of the table 3 at the time of forming according to the shape of the object. It is.
  • This process is a process for instructing an operation related to modeling.
  • the control unit 6 reads necessary operation data when forming an object, and outputs control signals to the head 2, the first mechanism unit 4, the second mechanism unit 5, and the like.
  • the rotation process of the table 3 in S3 is a process of controlling the rotation of the table 3 in shaping the object, and rotates the table 3 about the rotation axis A1 and the rotation axis A2.
  • a control signal is output from the control unit 6 to the second mechanism unit 5, and the table 3 is rotated by the operation of the second mechanism unit 5.
  • the shaping process of the object in S4 is a process for controlling the movement of the head 2 with respect to the table 3 and controlling the ejection of the shaping material from the head 2.
  • a control signal is output from the control unit 6 to the first mechanism unit 4, and the head 2 moves by the operation of the first mechanism unit 4.
  • the heated molding material is discharged from the head 2 according to a control signal from the control unit 6.
  • FIG. 3 the rotation process of the table 3 and the shaping process of the object are shown as separate steps, but may be executed as the same step process.
  • FIG. 4 is a diagram showing a modeling state of the object O. That is, FIG. 4 shows a state in which the object O is formed on the table 3 by performing the rotation processing in S3 and the forming processing in S4.
  • a trapezoidal support member 31 is provided on the table 3, and a central portion of the object O is formed on the support member 31. That is, the control unit 6 adjusts the operation of the first mechanism unit 4 and the second mechanism unit 5, and one or both of the head 2 and the table 3 so that the modeling material is discharged perpendicular to the surface of the support member 31. Is controlled, the head 2 and the table 3 are relatively moved along the surface of the support member 31 to deposit a molding material on the support member 31 and form the object O.
  • the table 3 when forming a region parallel to the upper surface of the table 3 for the object O, the table 3 is rotated so that the parallel region faces horizontally.
  • the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below. That is, by discharging the heated modeling material from the discharge port 21 while moving the head 2 along the modeling region of the object O, the modeling material can be continuously deposited on the modeling region.
  • the table 3 when forming a region of the object O obliquely inclined with respect to the upper surface of the table 3, the table 3 is rotated so that the obliquely inclined region is horizontal. .
  • the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below.
  • the table 3 is rotated to adjust the direction and the attitude of the object O and to attach the molding material, so that the discharge port 21 is directed downward.
  • the head 2 is moved horizontally, and a modeling material is continuously attached to the object O in a desired direction to form the object O. For this reason, the object can be shaped by increasing the strength in a desired direction.
  • the ejection port 21 of the head 2 faces directly below, it is difficult to bring the ejection port 21 of the head 2 close to the area where the object O is formed if the region where the object O is formed is not parallel. .
  • the end of the lower surface 22 of the head 2 will contact the region where the modeling is to be performed. For this reason, the molding material must be discharged away from the region where the head 2 is to be molded, and it is difficult to deposit the molding material at a desired position. Therefore, the modeling accuracy is reduced.
  • the head 2 is inclined in accordance with the inclination of the forming region so that the opening of the discharge port 21 of the head 2 is parallel to the region where the object O is formed.
  • a robot arm or the like is used as a moving mechanism of the head 2.
  • the discharge port 21 does not face directly below, it is difficult to accurately deposit the modeling material discharged from the discharge port 21 at a desired position. Therefore, the modeling accuracy of the object is reduced.
  • the table 3 can be tilted by the operation of the second mechanism 5 to change the attitude of the object O.
  • the head 2 is moved horizontally with the discharge port 21 facing downward, and the modeling material is attached to the object O in a desired direction so that the modeling of the object O can be performed. Therefore, as shown in FIG. 5, the object O can be shaped by increasing the strength in a desired direction.
  • the solid line shown on the object O indicates the direction in which the modeling material is continuously attached. In particular, this is effective when a material containing fiber-reinforced plastic is used as the molding material. In this case, since the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached, the object O can be modeled by increasing the strength in a desired direction.
  • the process proceeds to S5 in FIG. 3, and it is determined whether or not the shaping of the object O has been completed. For example, it is determined whether or not the shaping of the object O has been completed based on whether or not the shaping operation of the object O has been completed according to the preset deposition trajectory data of the forming material.
  • S5 when it is determined that the shaping of the object O has not been completed, the process returns to S3 and S4, and the rotation processing of the table and the shaping processing are performed.
  • the series of control processes shown in FIG. 3 is terminated.
  • the table 3 can be rotated around the rotation axis A1 directed in a direction parallel to the upper surface of the table 3. Thereby, the table 3 can be rotated about the rotation axis A1 to tilt the table 3. For this reason, it is possible to change the attitude of the object O being formed. Therefore, the head 2 can be easily moved along the direction in which the object O is desired to be strengthened, and the strength of the object O can be increased in a desired direction to form the object O.
  • the table 3 is rotatable around the rotation axis A1 directed in a direction parallel to the upper surface of the table 3, whereby the rotation axis
  • the attitude of the object O can be adjusted by rotating the table 3 around A1.
  • the head 2 is horizontally moved with the discharge port 21 facing directly downward, and the modeling material is attached to the object O in a desired direction so that the modeling of the object O can be performed. Therefore, the object O can be shaped by increasing the strength in a desired direction.
  • the table 3 is rotatable around the rotation axis A2 directed in a direction perpendicular to the upper surface of the table 3, and thus the rotation axis is The direction of the object O can be easily changed by rotating the table 3 around A2. Therefore, it is possible to easily form the object O having the increased strength in a desired direction.
  • the table 3 is rotatable around the rotation axis A1 and the rotation axis A2 that are orthogonal to each other. I can do it. For example, if the table 3 is rotatable about the rotation axis A2 and the object on the table 3 is rotated about the rotation axis A1 to perform modeling, it is difficult to form an object having a complicated shape. is there. Specifically, in the object 100 as shown in FIG. 6, the posture of the object 100 is adjusted so that the inclined surface of the protruding portion 101 is oriented in the horizontal direction, and the upper surface of the inclined portion that extends left and right is horizontally oriented.
  • the table 3 is rotatable about the rotation axis A1 and the rotation axis A2 that are orthogonal to each other. Can be easily adjusted, and an object having a complicated shape can be formed.
  • the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached. it can. For this reason, the strength of a desired direction is increased and the object O can be easily formed.
  • FIG. 6 is a schematic configuration diagram of a three-dimensional printing apparatus according to the second embodiment.
  • the three-dimensional printing apparatus 1a according to the present embodiment is a hot-melt lamination type printing apparatus, like the three-dimensional printing apparatus 1 according to the first embodiment described above.
  • the three-dimensional modeling apparatus 1a is different from the three-dimensional modeling apparatus 1 according to the first embodiment in that the position of the head 2 is fixed, and the table 3 moves and changes the posture to form an object on the table 3. Is different.
  • the head 2 is attached to the frame 83.
  • the frame 83 is provided on the base member 81, and arranges the head 2 above the base member 81.
  • the frame 83 has a structure in which a beam member 83b is erected above two pillar members 83a.
  • the head 2 is fixed to the beam member 83b.
  • the three-dimensional printing apparatus 1 a includes the robot arm 9.
  • the robot arm 9 functions as a first mechanism for relatively moving the head 2 and the table 3 in each of three orthogonal axes.
  • the robot arm 9 enables the table 3 to rotate around a rotation axis oriented in a direction parallel to the upper surface of the table 3, and also moves the table around a rotation axis oriented perpendicular to the upper surface of the table 3. It functions as a rotatable second mechanism.
  • the robot arm 9 is attached to the base member 81, and is provided with the table 3 at the tip.
  • the robot arm 9 operates according to a control signal from the control unit 6.
  • FIG. 7 is a schematic diagram of the configuration of the robot arm 9.
  • the robot arm 9 is operated with, for example, six degrees of freedom, and is provided so as to be able to change the position and posture (direction) of the table 3 with respect to the head 2.
  • the robot arm 9 has a plurality of links 91 to 94 and a plurality of joints 95 to 97, and is configured to be able to change the position and orientation of the table 3.
  • the link portions 91 to 94 are rod-shaped members extending in the axial direction.
  • the link portion 91 is oriented vertically, and its base end is attached to the upper surface of the base member 81.
  • the link portion 91 is configured to be rotatable about the axis of the link portion 91.
  • a link portion 92 is attached to a distal end side of the link portion 91 via a joint portion 95.
  • the joint 95 is configured to be rotatable about a horizontal axis. Due to the rotation of the joint 95, the link 92 rotates around the rotation axis of the joint 95.
  • a link portion 93 is attached to the distal end side of the link portion 92 via a joint portion 96.
  • the joint 96 is configured to be rotatable about a horizontal axis.
  • the link 93 rotates around the rotation axis of the joint 96 by the rotation of the joint 96.
  • the link portion 93 is configured to be rotatable about the axis of the link portion 93.
  • a link portion 94 is attached to a distal end side of the link portion 93 via a joint portion 97.
  • the joint 97 is configured to be rotatable about a horizontal axis.
  • the rotation of the joint 97 causes the link 94 to rotate about the rotation axis of the joint 97.
  • the link portion 94 is configured to be rotatable about the axis of the link portion 94.
  • the table 3 is attached to the distal end side of the link part 94.
  • the table 3 is a part on which an object O is formed by depositing a forming material.
  • the upper surface of the table 3 has a shape corresponding to the shape of the object O, and functions as a support member. That is, the table 3 is configured by integrating the support member on the upper surface of the flat plate, and has a surface shape corresponding to the shape of the object O.
  • the upper surface of the table 3 is formed in a truncated quadrangular pyramid.
  • a flat table 3 may be used, and a support member according to the shape of the object O may be attached to the upper surface of the table 3.
  • the table 3 functioning as a support member has a plurality of surfaces having different normal directions.
  • the normal direction means a direction perpendicular to the plane portion and a direction perpendicular to the curved surface portion on the surface of the table 3.
  • the robot arm 9 operates in response to a control signal from the control unit 6, and moves the table 3 with respect to the head 2 so that the upper surface of the table 3 is perpendicular to the discharge direction of the molding material of the head 2. Adjust the posture of 3. That is, the robot arm 9 adjusts the attitude of the table 3 so that the direction of ejection of the modeling material ejected from the head 2 is the normal direction of the surface of the table 3. If there is already a modeling part (part in the middle of modeling) of the object O on the table 3, the attitude of the table 3 is adjusted so as to be in the normal direction of the surface of the modeling part. In this case, the posture of the table 3 is adjusted by regarding the surface of the modeling portion of the object O as the surface of the table 3 or the surface of the support member.
  • the robot arm 9 moves the table 3 with the plurality of surfaces of the table 3 sequentially along the head 2.
  • the ejection direction of the head 2 is a vertical direction.
  • the head 2 is fixed and its position and orientation are not changed, so that the ejection direction of the head 2 always faces downward.
  • the vertical direction includes a substantially vertical direction that does not hinder the discharge of the molding material.
  • the robot arm 9 moves the table 3 while maintaining a predetermined interval between the head 2 and the table 3.
  • the predetermined interval is an interval set in advance, and is, for example, a constant interval.
  • the table 3 is moved while maintaining a predetermined interval between the modeling portion and the head 2.
  • the table 3 is moved by regarding the modeling portion of the object O as the table 3 or the support member.
  • the modeling may be performed on a portion other than the modeling portion deposited last time.
  • the table 3 may be moved along the surface composed of a plurality of layers at the end of the modeling portion of the object O.
  • FIG. 9 is a flowchart showing the operation of the three-dimensional printing apparatus 1a and the three-dimensional printing method.
  • the control process in FIG. 9 is executed by the control unit 6, for example.
  • data setting processing is performed in S11 of FIG.
  • This setting process is a process of storing shape data of an object to be formed and performing setting of position data of the table 3 and rotation data (posture data or orientation data) of the table 3 at the time of forming according to the shape of the object. is there.
  • This process is a process for instructing an operation related to modeling.
  • the control unit 6 reads necessary operation data when forming an object, and outputs control signals to the head 2 and the robot arm 9.
  • This shaping process is a process for controlling the operation of the robot arm 9 and controlling the ejection of the shaping material from the head 2. 6, the control unit 6 outputs a control signal to the head 2 and the robot arm 9. Thereby, as shown in FIG. 10, the robot arm 9 operates to move the table 3 near the ejection position of the head 2. Then, a modeling material is deposited on the table 3, and the object O is modeled. At this time, the table 3 functioning as a support member has a plurality of surfaces having different normal directions. The build material is deposited continuously over a plurality of surfaces having different normal directions.
  • the control unit 6 causes the modeling material to be discharged from the head 2 downward in the vertical direction, and causes the modeling material to adhere to the first attachment point 311 a of the first surface 311 of the table 3.
  • the control unit 6 moves the table 3 relatively to the head 2 while discharging the modeling material from the head 2, and moves the modeling material to the second attachment point 312 a on the second surface 312 of the table 3.
  • the first surface 311 and the second surface 312 are surfaces having different normal directions.
  • the angle difference between the normal direction of the first surface 311 and the normal direction of the second surface 312 may be an acute angle, a right angle, or an obtuse angle.
  • the processing shifts to S14 in FIG. 9, and it is determined whether the shaping of the object O is completed. For example, it is determined whether or not the molding of the object O has been completed based on whether or not the molding operation of the object O has been completed in accordance with the preset molding data of the molding material.
  • S14 when it is determined that the shaping of the object O is not completed, the process returns to S12 and S13, and the shaping process and the like are performed.
  • a series of control processes shown in FIG. 9 is ended.
  • the table 3 functions as a support member and is formed according to the shape of the object.
  • the object O can be formed by depositing the forming material.
  • the strength of the object can be increased in a desired direction on the surface of the object.
  • the object O when the shape of the table 3 is a truncated quadrangular pyramid as shown in FIG. 11, the object O can be shaped as a frame of a truncated quadrangular pyramid.
  • a shaping material can be deposited along the longitudinal direction of the member constituting the object O to perform shaping. Therefore, the strength of the object O can be increased in the longitudinal direction of the members constituting the object O. That is, since the modeling material is provided continuously in the longitudinal direction of the members constituting the object O, the strength of the members constituting the object O can be increased.
  • the forming material can be deposited only in a direction parallel to the upper surface of the table. For this reason, it is difficult to deposit a modeling material on the member 201 extending in a direction intersecting the upper surface of the table along the longitudinal direction. Therefore, in the member 201 constituting the object O, the modeling material cannot be connected in the longitudinal direction, and the strength of the member 201 constituting the object O is low.
  • the three-dimensional modeling apparatus 1a and the three-dimensional modeling method according to the present embodiment by providing the table 3 with the support member that supports the object O, the modeling material is connected in the longitudinal direction of the member configuring the object O. Therefore, the strength of the members constituting the object O can be increased.
  • the head 2 and the table 3 are relatively moved so that the head 2 follows a plurality of surfaces of the table 3 having different normal directions.
  • the build material can be deposited in a desired direction over a plurality of surfaces. Therefore, the strength of the object O can be increased in a desired direction on the surface of the object O.
  • the head 2 is arranged along the surface of the table 3 while maintaining the space between the head 2 and the table 3 at a predetermined interval. And the table 3 are relatively moved. Therefore, the object O can be modeled by appropriately depositing the modeling material on the table 3.
  • the head 2 and the head 2 are set so that the discharging direction of the forming material discharged from the head 2 is the normal direction of the surface of the table 3.
  • the table 3 moves relatively. Therefore, the modeling material can be accurately deposited on the surface of the table 3 functioning as a support member.
  • the second mechanism unit 5 enables the table 3 to rotate around the rotation axis A1 and the rotation axis A2.
  • the table 3 may be rotatable around the center.
  • the table 3 may be rotatable around the rotation axis A1 by the first actuator 51, and the installation of the second actuator 52 may be omitted.
  • the same operation and effect as those of the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the above-described embodiment can be obtained.
  • the table 3 can be rotated around the rotation axis A1 to tilt the table 3. For this reason, it is possible to change the attitude of the object O being formed. Therefore, the head 2 can be easily moved along the direction in which the object O is desired to be strengthened, and the strength of the object O can be increased in a desired direction to form the object O.
  • the table 3 and the head 2 are set on the base member 81 .
  • the table 3 and the head 2 are installed in a sealed chamber to perform modeling. It may be performed.
  • the apparatus By accommodating the table 3 and the head 2 in the chamber, it is possible to adjust the temperature during molding.
  • the apparatus in the three-dimensional modeling apparatus 1 described above, the apparatus can be reduced in size and can be easily housed in the chamber.
  • thermal warpage a phenomenon in which the object warps after molding due to the temperature difference between the already molded part and the newly molded part
  • defects in crystallization cooling rate when using a crystalline resin
  • the head 2 is movable in three orthogonal axes and the table 3 is rotatable in two orthogonal axes.
  • the shaft may be provided on the table 3 side.
  • the head 2 may be movable in the XY axes
  • the table 3 may be movable in the Z axis
  • the table 2 may be rotatable in two orthogonal axes.
  • the case of the five-axis operation in which the head 2 is movable in the three orthogonal axes and the table 3 is rotatable in the two orthogonal axes has been described. It may be a case where a multi-axis operation can be performed.
  • the head 2 may be movable in three orthogonal axes and rotatable in two orthogonal axes
  • the table 3 may be rotatable in two orthogonal axes, and may be operated in seven axes.
  • the head 2 can be moved in three orthogonal axes and can be rotated in two orthogonal axes, the degree of freedom of the shape of the object to be formed can be increased.
  • the ejection direction of the head 2 may be different from the direction of gravity (vertical direction).
  • the discharge and deposition of the modeling material may be stabilized by controlling the rotation angle of the head 2 so that the discharge direction of the head 2 becomes substantially the direction of gravity.
  • the three-dimensional modeling apparatus and the three-dimensional modeling method of the present disclosure it is possible to perform modeling of an object by increasing strength in a desired direction.

Abstract

A three-dimensional shaping apparatus for shaping a three-dimensional object by discharging a shaping material from a head and depositing the shaping material on a table provided below the head, wherein the apparatus is provided with: a first mechanism unit that at least makes it possible for the head to move relative to the table in the direction of each of three orthogonal axes; and a second mechanism unit that at least makes it possible for the table to rotate about a rotational axis line running in a direction parallel to the upper surface of the table.

Description

三次元造形装置及び三次元造形方法Three-dimensional printing apparatus and three-dimensional printing method
 本開示は、三次元の物体を造形する三次元造形装置及び三次元造形方法に関する。 The present disclosure relates to a three-dimensional forming apparatus and a three-dimensional forming method for forming a three-dimensional object.
 従来、三次元造形装置及び三次元造形方法として、例えば、特表2016-518267号公報に記載されるように、加熱した材料をヘッドから吐出し、材料をプレート上に堆積させて三次元の物体を造形する装置が知られている。この装置では、造形する物体の形状に応じてヘッドを移動させて材料を堆積していくことにより、物体の造形が行われる。 Conventionally, as a three-dimensional printing apparatus and a three-dimensional printing method, for example, as described in JP-T-2016-518267, a heated material is discharged from a head, and the material is deposited on a plate to form a three-dimensional object. A device for modeling is known. In this apparatus, an object is formed by moving a head according to the shape of the object to be formed and accumulating the material.
特表2016-518267号公報JP-T-2016-518267
 しかしながら、このような装置にあっては、所望の強度を有する物体を造形することが困難な場合がある。例えば、この種の装置にあっては、一般的に、物体を造形するにあたり、ヘッドを水平方向に往復移動させて物体の断面を形成し、それを上方へ順次堆積させていくことによって物体を造形する。このとき、物体を強化したい方向が水平方向でない場合、物体を所望の強度で造形することが難しい。例えば、図13に示すように、ヘッドを水平方向へ往復移動させて、物体100の下方から順次材料を堆積させて造形する場合、水平方向へ材料が連なって造形が行われることとなる。この場合、物体100において、水平方向への強度が高くなるが、鉛直方向の強度が低くなる。すなわち、物体100は、中央位置で上方へ突き出す二つ突出部101、101を有しているが、鉛直方向D1への引張強度が低く、また斜め上下の方向D2への引張強度も低くなる。 However, in such an apparatus, it may be difficult to form an object having a desired strength. For example, in this type of apparatus, in general, when modeling an object, the head is reciprocated in the horizontal direction to form a cross section of the object, and the object is sequentially deposited upward to deposit the object. Shape it. At this time, if the direction in which the object is desired to be reinforced is not horizontal, it is difficult to form the object with a desired strength. For example, as shown in FIG. 13, when the head is reciprocated in the horizontal direction and the material is successively deposited from below the object 100 to form the material, the material is formed continuously in the horizontal direction. In this case, in the object 100, the strength in the horizontal direction increases, but the strength in the vertical direction decreases. That is, although the object 100 has the two protruding portions 101, 101 protruding upward at the center position, the tensile strength in the vertical direction D1 is low, and the tensile strength in the oblique vertical direction D2 is also low.
 そこで、所望の方向へ強度を高めて物体の造形が行える三次元造形装置及び三次元造形方法の開発が望まれている。 Therefore, there is a demand for the development of a three-dimensional modeling apparatus and a three-dimensional modeling method capable of increasing the strength in a desired direction and modeling an object.
 本開示の一態様に係る三次元造形装置は、ヘッドから造形材料を吐出し、ヘッドの下方に設けられるテーブルの上に造形材料を堆積させて、三次元の物体を造形する三次元造形装置において、ヘッドとテーブルを直交三軸の各方向へ相対的に移動可能とする第一機構部と、少なくともテーブルの上面と平行な方向に向けた回転軸線を中心にテーブルを回転可能とする第二機構部とを備えて構成されている。この三次元造形装置によれば、テーブルの上面と平行な方向に向けた回転軸線を中心にテーブルを回転可能とする第二機構部を備えることにより、テーブルの上面と平行な方向に向けた回転軸線を中心にテーブルを回転させてテーブルを傾けることができる。このため、造形中の物体の姿勢を変えることが可能となる。従って、物体の強化したい方向に沿ってヘッドを移動させて造形材料を強化したい方向に連ねて付着させることができる。従って、所望の方向へ強度を高めて物体を造形することができる。 A three-dimensional modeling apparatus according to an embodiment of the present disclosure is a three-dimensional modeling apparatus that discharges a modeling material from a head, deposits the modeling material on a table provided below the head, and models a three-dimensional object. A first mechanism for relatively moving the head and the table in each of the three orthogonal axes, and a second mechanism for rotating the table at least about a rotation axis oriented in a direction parallel to the upper surface of the table And a unit. According to this three-dimensional printing apparatus, by providing the second mechanism that enables the table to rotate around the rotation axis directed in the direction parallel to the upper surface of the table, the rotation in the direction parallel to the upper surface of the table is provided. The table can be tilted by rotating the table about the axis. For this reason, it is possible to change the posture of the object being formed. Therefore, the head can be moved along the direction in which the object is to be strengthened, and the modeling material can be continuously attached in the direction in which the object is to be strengthened. Therefore, the object can be shaped by increasing the strength in a desired direction.
 また、本開示の一態様に係る三次元造形装置において、第一機構部は、ヘッドをテーブルに対し直交三軸の各方向へ移動可能としてもよい。この場合、テーブルに対してヘッドを移動させて所望の物体を造形することができる。 In addition, in the three-dimensional printing apparatus according to an aspect of the present disclosure, the first mechanism unit may move the head in each of three orthogonal directions with respect to the table. In this case, a desired object can be formed by moving the head with respect to the table.
 また、本開示の一態様に係る三次元造形装置において、第二機構部は、テーブルの上面と垂直な方向に向けた回転軸線を中心にテーブルを回転可能としてもよい。この場合、垂直な方向に向けた回転軸線を中心にテーブルを回転可能とすることにより、テーブル上の物体の向きを容易に変えることができ、所望の方向へ強度を高めた物体の造形が容易に行える。 In addition, in the three-dimensional printing apparatus according to an aspect of the present disclosure, the second mechanism unit may be configured to be able to rotate the table about a rotation axis directed in a direction perpendicular to the upper surface of the table. In this case, the direction of the object on the table can be easily changed by making the table rotatable about the rotation axis oriented in the vertical direction, and the object with the increased strength in the desired direction can be easily formed. Can be done.
 また、本開示の一態様に係る三次元造形装置において、テーブルは、物体の形状に応じて形成され物体を支持する支持部材を有し、第一機構部及び第二機構部の作動を調整し、造形材料が支持部材の表面に対し垂直に吐出されるようにヘッド及びテーブルの一方又は双方の姿勢を制御し、ヘッドが支持部材の表面に沿うようにヘッドとテーブルを相対的に移動させ、支持部材の上に造形材料を堆積させる制御部を備えていてもよい。この場合、支持部材が物体の形状に応じて形成されているため、支持部材の上に造形材料を堆積することにより物体の造形が行える。このとき、支持部材の表面に沿って造形材料を堆積させていくことにより、物体の表面の所望の方向に向けて物体の強度を高めることができる。 Further, in the three-dimensional printing apparatus according to an aspect of the present disclosure, the table has a support member formed according to the shape of the object and supporting the object, and adjusts the operation of the first mechanism and the second mechanism. Controlling the attitude of one or both of the head and the table so that the molding material is discharged perpendicular to the surface of the support member, and relatively moving the head and the table so that the head is along the surface of the support member, A control unit for depositing the modeling material on the support member may be provided. In this case, since the support member is formed according to the shape of the object, the object can be modeled by depositing a modeling material on the support member. At this time, by depositing the modeling material along the surface of the support member, the strength of the object can be increased in a desired direction on the surface of the object.
 また、本開示の一態様に係る三次元造形装置において、支持部材は、法線方向の異なる複数の表面を有し、制御部は、ヘッドが複数の表面に沿うようにヘッドとテーブルを相対的に移動させ、複数の表面の上に造形材料を堆積させてもよい。この場合、支持部材の法線方向の異なる複数の表面にヘッドが沿うようにヘッドとテーブルを相対的に移動させて複数の表面の上の所望の方向に向けて造形材料を堆積させることができる。このため、物体の表面の所望の方向に向けて物体の強度を高めることができる。 In the three-dimensional printing apparatus according to an aspect of the present disclosure, the support member has a plurality of surfaces having different normal directions, and the control unit relatively moves the head and the table so that the head is along the plurality of surfaces. To deposit the build material on the plurality of surfaces. In this case, the head and the table can be relatively moved so that the head is along a plurality of surfaces having different normal directions of the support member, and the modeling material can be deposited in a desired direction on the plurality of surfaces. . Therefore, the strength of the object can be increased in a desired direction on the surface of the object.
 また、本開示の一態様に係る三次元造形装置において、制御部は、ヘッドと支持部材の間を所定の間隔に維持しつつ、ヘッドが支持部材の表面に沿うようにヘッドとテーブルを相対的に移動させてもよい。この場合、ヘッドとテーブルの間を所定の間隔に維持しつつ、ヘッドが支持部材の表面に沿うようにヘッドとテーブルを相対的に移動させることにより、造形材料を支持部材の上に適切に堆積させることができる。 Further, in the three-dimensional printing apparatus according to an aspect of the present disclosure, the control unit relatively controls the head and the table such that the head follows the surface of the support member while maintaining a predetermined interval between the head and the support member. May be moved. In this case, while the head and the table are maintained at a predetermined distance, the head and the table are relatively moved so that the head follows the surface of the support member, whereby the modeling material is appropriately deposited on the support member. Can be done.
 また、本開示の一態様に係る三次元造形装置において、制御部は、ヘッドから吐出される造形材料の吐出方向が支持部材の表面の法線方向となるようにして、ヘッドとテーブルを相対的に移動させてもよい。この場合、ヘッドから吐出される造形材料の吐出方向が支持部材の表面の法線方向となるようにしてヘッドとテーブルを相対的に移動させることにより、支持部材の表面に造形材料を的確に堆積させることができる。 Further, in the three-dimensional printing apparatus according to an aspect of the present disclosure, the control unit relatively moves the head and the table so that a discharge direction of a forming material discharged from the head is a normal direction of a surface of the support member. May be moved. In this case, the head and the table are relatively moved such that the discharge direction of the molding material discharged from the head is the normal direction of the surface of the support member, so that the build material is accurately deposited on the surface of the support member. Can be done.
 また、本開示の一態様に係る三次元造形装置において、造形材料は、繊維強化プラスチックを含む材料であってもよい。この場合、造形材料として繊維強化プラスチックを含む材料を用いることにより、造形材料を連ねて付着させる方向に繊維強化プラスチックを配向させることができる。このため、所望の方向の強度を高めて物体の造形が行える。 In the three-dimensional modeling apparatus according to an embodiment of the present disclosure, the modeling material may be a material including a fiber-reinforced plastic. In this case, by using a material containing fiber-reinforced plastic as the modeling material, the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached. For this reason, modeling of an object can be performed by increasing the strength in a desired direction.
 本開示の一態様に係る三次元造形方法は、ヘッドから造形材料を吐出し、ヘッドの下方に設けられるテーブルの上に造形材料を堆積させて、三次元の物体を造形する三次元造形方法において、テーブルの上面と平行な方向に向けた回転軸線を中心にテーブルを回転させる回転工程と、テーブルの上に造形材料を堆積させて物体を造形する造形工程とを含んで構成されている。この三次元造形方法によれば、テーブルの上面と平行な方向に向けた回転軸線を中心にテーブルを回転させることにより、テーブルを傾けることができ、造形中の物体の姿勢を変えることができる。従って、物体に対し強化したい方向に沿ってヘッドを移動させて造形材料を堆積させやすくなる。従って、所望の方向へ強度を高めて物体の造形が行える。 A three-dimensional modeling method according to an aspect of the present disclosure is a three-dimensional modeling method that discharges a modeling material from a head, deposits a modeling material on a table provided below the head, and models a three-dimensional object. A rotating step of rotating the table about a rotation axis directed in a direction parallel to the upper surface of the table, and a modeling step of depositing a modeling material on the table to form an object. According to this three-dimensional modeling method, the table can be tilted by rotating the table about a rotation axis oriented in a direction parallel to the upper surface of the table, and the posture of the object during modeling can be changed. Therefore, the head is moved along the direction in which the object is to be strengthened, and the modeling material is easily deposited. Therefore, the object can be shaped by increasing the strength in a desired direction.
 また、本開示の一態様に係る三次元造形方法において、テーブルは、物体の形状に応じて形成され物体を支持する支持部材を有し、回転工程は、造形材料が支持部材の表面に対し垂直に吐出されるようにテーブルを回転させ、造形工程は、ヘッドが支持部材の表面に沿うようにヘッドとテーブルを相対的に移動させて支持部材の上に造形材料を堆積させてもよい。この場合、支持部材が物体の形状に応じて形成されているため、支持部材の上に造形材料を堆積することにより物体の造形が行える。このとき、支持部材の表面に沿って造形材料を堆積させていくことにより、物体の表面の所望の方向に向けて物体の強度を高めることができる。 Further, in the three-dimensional modeling method according to an aspect of the present disclosure, the table includes a support member formed according to the shape of the object and supporting the object, and the rotating step is performed such that the modeling material is perpendicular to the surface of the support member. In the modeling step, the head and the table are relatively moved so that the head follows the surface of the support member, and the modeling material is deposited on the support member. In this case, since the support member is formed according to the shape of the object, the object can be modeled by depositing a modeling material on the support member. At this time, by depositing the modeling material along the surface of the support member, the strength of the object can be increased in a desired direction on the surface of the object.
 また、本開示の一態様に係る三次元造形方法において、造形工程は、ヘッドから鉛直方向の下側に向けて造形材料を吐出し、支持部材の第一表面の第一付着点に造形材料を付着させる付着工程と、ヘッドから造形材料を吐出させながら、ヘッドとテーブルを相対的に移動させて支持部材の上に連続的に造形材料を堆積させる堆積工程とを含み、堆積工程は、第一付着点から支持部材の第一表面と法線方向の異なる第二表面の第二付着点に至るまで、造形材料を堆積させてもよい。この場合、支持部材における法線方向の異なる表面に対し連続して造形材料を堆積させて、円滑に物体を造形することができる。 In the three-dimensional modeling method according to an aspect of the present disclosure, the modeling step discharges the modeling material from the head toward the lower side in the vertical direction, and places the modeling material on the first attachment point on the first surface of the support member. An adhesion step of attaching, and a deposition step of continuously moving the head and the table while depositing the molding material from the head to deposit the molding material continuously on the support member, wherein the deposition step includes a first step. The modeling material may be deposited from the attachment point to a second attachment point on a second surface different from the first surface of the support member in a normal direction. In this case, the object can be smoothly modeled by continuously depositing the modeling material on the surfaces of the support member having different normal directions.
 本開示によれば、所望の方向へ強度を高めて物体の造形を行うことができる。 According to the present disclosure, it is possible to shape an object by increasing the strength in a desired direction.
図1は、本開示の第一実施形態に係る三次元造形装置の構成概要図である。FIG. 1 is a schematic configuration diagram of a three-dimensional printing apparatus according to the first embodiment of the present disclosure. 図2は、図1の三次元造形装置における第二機構部の説明図である。FIG. 2 is an explanatory diagram of a second mechanism in the three-dimensional printing apparatus of FIG. 図3は、図1の三次元造形装置の動作及び第一実施形態に係る三次元造形方法を示すフローチャートである。FIG. 3 is a flowchart showing the operation of the three-dimensional printing apparatus of FIG. 1 and the three-dimensional printing method according to the first embodiment. 図4は、図1の三次元造形装置における物体の造形の説明図である。FIG. 4 is an explanatory diagram of modeling of an object in the three-dimensional modeling apparatus of FIG. 図5は、図1の三次元造形装置及び本実施形態に係る三次元造形方法により造形可能な物体の説明図である。FIG. 5 is an explanatory diagram of an object that can be formed by the three-dimensional printing apparatus of FIG. 1 and the three-dimensional printing method according to the present embodiment. 図6は、第二実施形態に係る三次元造形装置の構成概要図である。FIG. 6 is a schematic configuration diagram of a three-dimensional printing apparatus according to the second embodiment. 図7は、図6の三次元造形装置においるロボットアームの説明図である。FIG. 7 is an explanatory diagram of a robot arm in the three-dimensional printing apparatus of FIG. 図8は、図6の三次元造形装置における造形動作の説明図である。FIG. 8 is an explanatory diagram of a forming operation in the three-dimensional forming apparatus of FIG. 図9は、図6の三次元造形装置の動作及び第二実施形態に係る三次元造形方法を示すフローチャートである。FIG. 9 is a flowchart showing the operation of the three-dimensional printing apparatus of FIG. 6 and the three-dimensional printing method according to the second embodiment. 図10は、図6の三次元造形装置における造形動作の説明図である。FIG. 10 is an explanatory diagram of a forming operation in the three-dimensional forming apparatus of FIG. 図11は、図6の三次元造形装置及び第二実施形態に係る三次元造形方法を用いて造形された物体を示した図である。FIG. 11 is a diagram illustrating an object formed by using the three-dimensional forming apparatus of FIG. 6 and the three-dimensional forming method according to the second embodiment. 図12は、比較例の物体を示した図である。FIG. 12 is a diagram illustrating an object of a comparative example. 図13は、背景技術の説明図である。FIG. 13 is an explanatory diagram of the background art.
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
(第一実施形態)
 図1は、本開示の第一実施形態に係る三次元造形装置の構成概要図である。三次元造形装置1は、ヘッド2から造形材料を吐出し、ヘッド2の下方に設けられるテーブル3(ステージ)の上に造形材料を堆積させて、三次元の物体を造形する装置である。本実施形態の三次元造形装置1は、いわゆる熱溶解積層(FDM:Fused Deposition Modeling)方式のAM(Additive Manufacturing)装置に適用したものである。つまり、三次元造形装置1では、ヘッド2から加熱した造形材料が押し出され、テーブル3上に造形材料を堆積(積層又は付着)させて、物体が造形される。造形材料としては、例えば繊維強化プラスチック(FRP:Fiber-Reinforced Plastics)を含む材料が用いられる。具体的には、造形材料は、繊維強化プラスチックと樹脂を含む材料とされる。この場合、ヘッド2の移動方向に繊維の方向が向けられて造形材料が配置されることとなる。繊維強化プラスチックとしては、ガラス繊維やカーボン繊維などを用いたものが含まれる。また、繊維強化プラスチックとしては、不連続繊維や連続繊維を用いたものが含まれる。また、造形材料としては、繊維強化プラスチック以外の材料を用いてもよい。例えば、造形材料として、FDM方式で造形可能な樹脂(例えば、ナイロン、ABS、PC、PEEK、PEI)などを用いてもよい。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a three-dimensional printing apparatus according to the first embodiment of the present disclosure. The three-dimensional printing apparatus 1 is an apparatus that discharges a forming material from a head 2 and deposits the forming material on a table 3 (stage) provided below the head 2 to form a three-dimensional object. The three-dimensional printing apparatus 1 of the present embodiment is applied to an AM (Additive Manufacturing) apparatus of a so-called FDM (Fused Deposition Modeling) method. That is, in the three-dimensional modeling apparatus 1, the heated modeling material is extruded from the head 2, and the modeling material is deposited (laminated or adhered) on the table 3 to form an object. As the modeling material, for example, a material containing fiber-reinforced plastics (FRP) is used. Specifically, the molding material is a material containing a fiber reinforced plastic and a resin. In this case, the modeling material is arranged with the direction of the fiber oriented in the moving direction of the head 2. Examples of the fiber-reinforced plastic include those using glass fiber, carbon fiber, and the like. Further, examples of the fiber-reinforced plastic include those using discontinuous fibers or continuous fibers. Further, as the modeling material, a material other than the fiber reinforced plastic may be used. For example, a resin (for example, nylon, ABS, PC, PEEK, PEI) that can be formed by the FDM method may be used as the forming material.
 ヘッド2は、加熱した造形材料を吐出してテーブル3上へ供給する部位である。ヘッド2の下面には、吐出口21が形成されている。吐出口21は、造形材料を吐出する開口である。この吐出口21は、例えばヘッド2の下面に設けられるノズルの先端に形成される。ヘッド2内には、ヒータ(図示なし)が設けられており、外部から供給される造形材料をヒータにより加熱する。ヘッド2は、テーブル3に対し相対移動可能に設けられている。ヘッド2は、吐出口21が真下を向くように設けられている。つまり、造形材料が重力方向(鉛直方向)に向けて吐出されるようにヘッド2が設けられている。このため、造形材料の吐出及び堆積を安定して行うことができ、造形品質を均一にできる。従って、高品質な造形が可能となる。なお、造形材料がほぼ鉛直方向に向けて吐出されるようにヘッド2が設けられていてもよい。また、ヘッド2は、造形状況などに応じて、ヘッド2の吐出方向が鉛直方向以外の方向(例えば水平方向)となるように構成されていてもよい。テーブル3は、造形を行うための台部材であり、例えば平板状の部材が用いられる。テーブル3は、ヘッド2から吐出される造形材料及び造形中の物体を支持する。なお、テーブル3は、造形材料及び造形中の物体を支持するステージであってもよく、またステージ上に設置されるプレートであってもよい。 The head 2 is a part for discharging the heated molding material and supplying it onto the table 3. A discharge port 21 is formed on the lower surface of the head 2. The discharge port 21 is an opening for discharging the molding material. The discharge port 21 is formed, for example, at the tip of a nozzle provided on the lower surface of the head 2. A heater (not shown) is provided in the head 2 and heats a modeling material supplied from the outside by the heater. The head 2 is provided so as to be relatively movable with respect to the table 3. The head 2 is provided such that the discharge port 21 faces directly below. That is, the head 2 is provided so that the modeling material is discharged in the direction of gravity (vertical direction). For this reason, the discharge and deposition of the molding material can be performed stably, and the molding quality can be made uniform. Therefore, high quality modeling is possible. The head 2 may be provided so that the modeling material is discharged substantially vertically. In addition, the head 2 may be configured such that the ejection direction of the head 2 is a direction other than the vertical direction (for example, a horizontal direction) according to a molding situation or the like. The table 3 is a base member for performing modeling, and for example, a plate-shaped member is used. The table 3 supports the modeling material discharged from the head 2 and the object being modeled. In addition, the table 3 may be a stage that supports the molding material and the object being molded, or may be a plate that is set on the stage.
 また、テーブル3には、サポート部材31が設けられていてもよい(図4参照)。サポート部材31は、造形する物体Oを支持する支持部材であって、物体Oの形状に応じて形成される。サポート部材31の上に造形材料を堆積することにより物体Oの造形が行える。このとき、サポート部材31の表面に沿って造形材料を堆積させていくことにより、物体Oの表面に沿って物体Oの強度を高める造形を行うことができる。つまり、物体Oの表面において、強度を高めたい方向に対し任意に強度を高めて造形を行うことができる。また、テーブル3の表面を物体Oの形状に応じた形状としてサポート部材31として機能させてもよい。 The table 3 may be provided with a support member 31 (see FIG. 4). The support member 31 is a support member that supports the object O to be formed, and is formed according to the shape of the object O. The object O can be formed by depositing the forming material on the support member 31. At this time, by forming the modeling material along the surface of the support member 31, it is possible to perform modeling that increases the strength of the object O along the surface of the object O. That is, on the surface of the object O, modeling can be performed by arbitrarily increasing the strength in the direction in which the strength is desired to be increased. Further, the surface of the table 3 may be made to have a shape corresponding to the shape of the object O to function as the support member 31.
 図1において、三次元造形装置1は、第一機構部4を備えている。第一機構部4は、ヘッド2をテーブル3に対し直交三軸の各方向へ相対的に移動可能とする機構である。例えば、第一機構部4は、テーブル3に対しヘッド2を直交する三軸の各方向へ移動可能に構成される。第一機構部4は、ベース部材81上に設けられる枠体82に取り付けられている。ベース部材81は、平板状の部材である。枠体82は、例えば直方体を形成する枠体であって、ベース部材81上に四つの柱部材82aを立設し、柱部材82aの上端の間にそれぞれ梁部材82bを架設して構成されている。 に お い て In FIG. 1, the three-dimensional printing apparatus 1 includes a first mechanism unit 4. The first mechanism unit 4 is a mechanism that enables the head 2 to move relative to the table 3 in each of three orthogonal directions. For example, the first mechanism unit 4 is configured to be able to move the head 2 in each of three axes orthogonal to the table 3. The first mechanism section 4 is attached to a frame 82 provided on the base member 81. The base member 81 is a flat member. The frame 82 is, for example, a frame forming a rectangular parallelepiped. The frame 82 is formed by erecting four column members 82a on a base member 81, and bridging beam members 82b between upper ends of the column members 82a. I have.
 第一機構部4は、スライダ41を備えている。スライダ41は、テーブル3の前後方向(X軸方向)に移動する部材である。例えば、スライダ41として、横向きに配置された長尺状の部材が用いられる。このスライダ41は、枠体82において平行に設けられる二つの梁部材82bの間に架設され、それらの梁部材82bの長手方向に沿って移動可能に設けられている。梁部材82bの長手方向に沿ってレールを形成し、そのレールに沿ってスライダ41を移動可能とし、図示しないアクチュエータの駆動によりスライダ41が移動する。 The first mechanism section 4 includes the slider 41. The slider 41 is a member that moves in the front-rear direction (X-axis direction) of the table 3. For example, a long member arranged horizontally is used as the slider 41. The slider 41 is provided between two beam members 82b provided in parallel on the frame body 82, and is provided movably along the longitudinal direction of the beam members 82b. A rail is formed along the longitudinal direction of the beam member 82b, and the slider 41 is movable along the rail. The slider 41 is moved by driving an actuator (not shown).
 第一機構部4は、ポール42を備えている。ポール42は、テーブル3の左右方向(Y軸方向)に移動する部材である。例えば、ポール42は、スライダ41に取り付けられ、スライダ41の長手方向(Y軸方向)へ移動可能に設けられている。スライダ41の長手方向に沿ってレールを形成し、そのレールに沿ってポール42を移動可能とし、図示しないアクチュエータの駆動によりポール42が移動する。 The first mechanism unit 4 includes the pole 42. The pole 42 is a member that moves in the left-right direction (Y-axis direction) of the table 3. For example, the pole 42 is attached to the slider 41 and provided so as to be movable in the longitudinal direction (Y-axis direction) of the slider 41. A rail is formed along the longitudinal direction of the slider 41, and the pole 42 is movable along the rail. The pole 42 is moved by driving an actuator (not shown).
 ポール42には、可動部材43が取り付けられている。可動部材43は、テーブル3の上下方向(Z軸方向)に移動する部材である。例えば、可動部材43は、ポール42に取り付けられ、ポール42の長手方向(Z軸方向)へ移動可能に設けられている。ポール42に対し可動部材43が摺動可能に取り付けられ、図示しないアクチュエータの駆動により可動部材43が移動する。 The movable member 43 is attached to the pole 42. The movable member 43 is a member that moves in the vertical direction (Z-axis direction) of the table 3. For example, the movable member 43 is attached to the pole 42 and provided so as to be movable in the longitudinal direction (Z-axis direction) of the pole 42. A movable member 43 is slidably attached to the pole 42, and the movable member 43 is moved by driving an actuator (not shown).
 可動部材43には、ヘッド2が取り付けられている。ヘッド2は可動部材43と一体に移動する。このため、ヘッド2は、第一機構部4の作動により、テーブル3に対し直交三軸の各方向へ移動可能となっている。なお、第一機構部4としては、ヘッド2をテーブル3に対し直交三軸の各方向へ相対的に移動可能とする機構であれば、上述した機構以外の機構により構成されていてもよい。また、第一機構部4は、ヘッド2をテーブル3に対し直交三軸の各方向へ相対的に移動のほか、異なる向きの回転軸線を中心に回転させる機構であってもよい。 ヘ ッ ド The head 2 is attached to the movable member 43. The head 2 moves integrally with the movable member 43. For this reason, the head 2 can be moved in each of three orthogonal directions with respect to the table 3 by the operation of the first mechanism 4. Note that the first mechanism unit 4 may be configured by a mechanism other than the above-described mechanism as long as the head 2 can relatively move in the three orthogonal directions with respect to the table 3. Further, the first mechanism unit 4 may be a mechanism for rotating the head 2 around the rotation axis in a different direction, in addition to moving the head 2 relatively to each of the three orthogonal axes with respect to the table 3.
 三次元造形装置1は、第二機構部5を備えている。図2は、第二機構部5の概要を示す斜視図である。第二機構部5は、テーブル3を回転させる機構である。例えば、図2に示すように、第二機構部5は、テーブル3の上面と平行な方向(例えば、水平方向)に向けた回転軸線A1を中心にテーブル3を回転可能とし、かつ、テーブル3の上面と垂直な方向に向けた回転軸線A2を中心にテーブル3を回転可能に構成されている。第二機構部5は、第一アクチュエータ51及び第二アクチュエータ52を備えている。第一アクチュエータ51は、テーブル3の上面と平行な方向に向けた回転軸線A1を中心にテーブル3を回転させる。例えば、第一アクチュエータ51は、モータ及び歯車などにより構成され、回転軸線A1を中心に第二アクチュエータ52及びテーブル3を回転可能に設けられる。 The three-dimensional printing apparatus 1 includes the second mechanism 5. FIG. 2 is a perspective view illustrating an outline of the second mechanism unit 5. The second mechanism 5 is a mechanism for rotating the table 3. For example, as shown in FIG. 2, the second mechanism unit 5 enables the table 3 to rotate around a rotation axis A1 oriented in a direction (for example, a horizontal direction) parallel to the upper surface of the table 3, and The table 3 is configured to be rotatable around a rotation axis A2 directed in a direction perpendicular to the upper surface of the table 3. The second mechanism section 5 includes a first actuator 51 and a second actuator 52. The first actuator 51 rotates the table 3 around a rotation axis A1 directed in a direction parallel to the upper surface of the table 3. For example, the first actuator 51 includes a motor and a gear, and is provided so as to be able to rotate the second actuator 52 and the table 3 around the rotation axis A1.
 第二アクチュエータ52は、ベース部材81(図1参照)に取り付けられる支持体53に対し回転軸線A1を中心に回転可能に設けられている。そして、第一アクチュエータ51の作動により、第二アクチュエータ52に回転力が加えられることにより、第二アクチュエータ52及びテーブル3が回転軸線A1を中心に回転する。なお、図2においては、回転軸線A1は、水平方向に向けられている。 The second actuator 52 is provided so as to be rotatable about a rotation axis A1 with respect to a support 53 attached to the base member 81 (see FIG. 1). Then, by the operation of the first actuator 51, a rotational force is applied to the second actuator 52, so that the second actuator 52 and the table 3 rotate around the rotation axis A1. In FIG. 2, the rotation axis A1 is oriented in the horizontal direction.
 テーブル3は、第二アクチュエータ52に対し回転軸線A2を中心に回転可能に取り付けられている。例えば、第二アクチュエータ52は、モータ及び歯車などにより構成され、回転軸線A2を中心にテーブル3を回転可能に設けられる。 The table 3 is attached to the second actuator 52 so as to be rotatable about the rotation axis A2. For example, the second actuator 52 includes a motor, a gear, and the like, and is provided so as to be able to rotate the table 3 about the rotation axis A2.
 テーブル3は、第二機構部5の第一アクチュエータ51及び第二アクチュエータ52の作動により、回転軸線A1及び回転軸線A2を中心に回転可能とされる。回転軸線A1を中心とするテーブル3の回転により、テーブル3を傾けることができ、造形中の物体の姿勢を変えることが可能となる。また、回転軸線A2を中心とするテーブル3の回転により、テーブル3が自転し、造形中の物体の向きを変えることが可能となる。なお、第二機構部5としては、テーブル3を回転軸線A1及び回転軸線A2を中心に回転可能とする機構であれば、上述した機構以外の機構により構成されていてもよい。また、第二機構部5は、三つの回転軸線を中心にテーブル3を回転させる機構であってもよい。 The table 3 is rotatable around the rotation axis A1 and the rotation axis A2 by the operation of the first actuator 51 and the second actuator 52 of the second mechanism unit 5. By rotating the table 3 about the rotation axis A1, the table 3 can be tilted, and the posture of the object being formed can be changed. Further, the rotation of the table 3 about the rotation axis A2 causes the table 3 to rotate on its own axis, thereby making it possible to change the direction of the object being formed. The second mechanism section 5 may be configured by a mechanism other than the above-described mechanism as long as the mechanism can rotate the table 3 around the rotation axis A1 and the rotation axis A2. In addition, the second mechanism unit 5 may be a mechanism that rotates the table 3 about three rotation axes.
 図1において、三次元造形装置1には、制御部6及びHMI(Human Machine Interface)7を備えている。制御部6は、三次元造形装置1の作動制御を行う電子制御ユニットであり、例えばCPU、ROM、RAMを含むコンピュータを含んで構成される。制御部6は、第一機構部4と電気的に接続され、第一機構部4の作動を制御する。例えば、制御部6は、第一機構部4に対し制御信号を出力して第一機構部4を作動させ、物体の造形に応じてヘッド2を移動させる。また、制御部6は、第二機構部5と電気的に接続され、第二機構部5の作動を制御する。例えば、制御部6は、第二機構部5に対し制御信号を出力して第二機構部5を作動させ、物体の造形に応じてテーブル3を回転させる。また、制御部6は、図示しない材料供給器に電気的に接続され、ヘッド2に対し造形材料の供給調整を行い、ヘッド2の造形材料の吐出制御を行う。 In FIG. 1, the three-dimensional printing apparatus 1 includes a control unit 6 and an HMI (Human Machine Interface) 7. The control unit 6 is an electronic control unit that controls the operation of the three-dimensional printing apparatus 1, and includes, for example, a computer including a CPU, a ROM, and a RAM. The control unit 6 is electrically connected to the first mechanism unit 4 and controls the operation of the first mechanism unit 4. For example, the control unit 6 outputs a control signal to the first mechanism unit 4 to operate the first mechanism unit 4, and moves the head 2 according to the modeling of the object. The control unit 6 is electrically connected to the second mechanism unit 5 and controls the operation of the second mechanism unit 5. For example, the control unit 6 outputs a control signal to the second mechanism unit 5 to operate the second mechanism unit 5, and rotates the table 3 according to the modeling of the object. The control unit 6 is electrically connected to a material supply device (not shown), adjusts the supply of the molding material to the head 2, and controls the ejection of the molding material from the head 2.
 制御部6は、物体の造形データを記憶する。例えば、制御部6は、造形すべき物体の三次元CAD(Computer-Aided Design)データを記憶している。そして、制御部6は、物体の形状に応じてヘッド2の位置、テーブル3の回転状態及び造形材料の吐出量などが設定される。造形時におけるヘッド2の位置データは、ヘッド2の移動軌跡データとして設定されてもよい。 The control unit 6 stores the modeling data of the object. For example, the control unit 6 stores three-dimensional CAD (Computer-Aided Design) data of an object to be formed. Then, the control unit 6 sets the position of the head 2, the rotation state of the table 3, the discharge amount of the molding material, and the like according to the shape of the object. The position data of the head 2 at the time of modeling may be set as movement locus data of the head 2.
 HMI7は、三次元造形装置1に対する入出力機器であり、例えば操作ボタン、キーボード、マウスなど操作入力やデータ入力を行う入力部、スピーカやモニタなど出力部などが該当する。このHMI7は、制御部6と一体に構成されていてもよい。 The HMI 7 is an input / output device for the three-dimensional printing apparatus 1, and corresponds to, for example, an input unit for performing operation input and data input such as operation buttons, a keyboard, a mouse, and an output unit such as a speaker and a monitor. The HMI 7 may be configured integrally with the control unit 6.
 次に、本実施形態に係る三次元造形装置1の動作及び三次元造形方法について説明する。 Next, the operation of the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment will be described.
 図3は、三次元造形装置1の動作及び三次元造形方法を示すフローチャートである。図3における制御処理は、例えば制御部6により実行される。まず、図3のステップS1(以下、単にS1という。以降のステップも同様とする。)において、データの設定処理が行われる。この設定処理は、造形すべき物体の形状データを記憶し、物体の形状に応じて造形時におけるヘッド2の位置データ(造形材料の堆積軌跡データ)及びテーブル3の回転データの設定などを行う処理である。 FIG. 3 is a flowchart showing the operation of the three-dimensional printing apparatus 1 and the three-dimensional printing method. The control process in FIG. 3 is executed by the control unit 6, for example. First, in step S1 of FIG. 3 (hereinafter simply referred to as S1; the same applies to the following steps), data setting processing is performed. The setting process is a process of storing shape data of an object to be formed, setting position data of the head 2 (building material deposition trajectory data) and rotation data of the table 3 at the time of forming according to the shape of the object. It is.
 そして、S2に処理が移行し、動作指示の処理が行われる。この処理は、造形に関する動作を指示する処理である。例えば、制御部6は、物体を造形するにあたり、必要な動作のデータを読み込み、ヘッド2、第一機構部4及び第二機構部5などに制御信号を出力する。 (5) Then, the process proceeds to S2, and the process of the operation instruction is performed. This process is a process for instructing an operation related to modeling. For example, the control unit 6 reads necessary operation data when forming an object, and outputs control signals to the head 2, the first mechanism unit 4, the second mechanism unit 5, and the like.
 そして、S3及びS4に処理が移行し、テーブル3の回転処理及び物体の造形処理が行われる。S3におけるテーブル3の回転処理は、物体の造形におけるテーブル3の回転制御を行う処理であり、回転軸線A1及び回転軸線A2を中心とするテーブル3の回転を行う。例えば、制御部6から第二機構部5に制御信号が出力され、第二機構部5の作動によりテーブル3が回転する。 Then, the process proceeds to S3 and S4, where the rotation process of the table 3 and the shaping process of the object are performed. The rotation process of the table 3 in S3 is a process of controlling the rotation of the table 3 in shaping the object, and rotates the table 3 about the rotation axis A1 and the rotation axis A2. For example, a control signal is output from the control unit 6 to the second mechanism unit 5, and the table 3 is rotated by the operation of the second mechanism unit 5.
 S4における物体の造形処理は、テーブル3に対するヘッド2の移動制御及びヘッド2からの造形材料の吐出制御を行う処理である。例えば、制御部6から第一機構部4に制御信号が出力され、第一機構部4の作動によりヘッド2が移動する。また、制御部6からの制御信号に従ってヘッド2から加熱された造形材料が吐出される。なお、図3では、テーブル3の回転処理及び物体の造形処理が別のステップとして示されているが、同一のステップの処理として実行されてもよい。 The shaping process of the object in S4 is a process for controlling the movement of the head 2 with respect to the table 3 and controlling the ejection of the shaping material from the head 2. For example, a control signal is output from the control unit 6 to the first mechanism unit 4, and the head 2 moves by the operation of the first mechanism unit 4. Further, the heated molding material is discharged from the head 2 according to a control signal from the control unit 6. In FIG. 3, the rotation process of the table 3 and the shaping process of the object are shown as separate steps, but may be executed as the same step process.
 図4は、物体Oの造形状況を示した図である。つまり、図4は、S3の回転処理及びS4の造形処理の実行により、テーブル3上に物体Oが造形されていく様子を示したものである。図4において、テーブル3には台形状のサポート部材31が設けられ、物体Oの中央部分はサポート部材31の上に造形される。すなわち、制御部6は、第一機構部4及び第二機構部5の作動を調整し、造形材料がサポート部材31の表面に対し垂直に吐出されるようにヘッド2及びテーブル3の一方又は双方の位置及び姿勢を制御し、サポート部材31の表面に沿ってヘッド2とテーブル3を相対的に移動させてサポート部材31の上に造形材料を堆積させて物体Oを造形させる。 FIG. 4 is a diagram showing a modeling state of the object O. That is, FIG. 4 shows a state in which the object O is formed on the table 3 by performing the rotation processing in S3 and the forming processing in S4. In FIG. 4, a trapezoidal support member 31 is provided on the table 3, and a central portion of the object O is formed on the support member 31. That is, the control unit 6 adjusts the operation of the first mechanism unit 4 and the second mechanism unit 5, and one or both of the head 2 and the table 3 so that the modeling material is discharged perpendicular to the surface of the support member 31. Is controlled, the head 2 and the table 3 are relatively moved along the surface of the support member 31 to deposit a molding material on the support member 31 and form the object O.
 図4の(a)に示すように、物体Oについてテーブル3の上面と平行な領域を造形する場合には、その平行な領域が水平に向くようにテーブル3を回転させる。これにより、吐出口21を真下に向けた状態でヘッド2を水平に移動させて物体Oの造形が行える。すなわち、ヘッド2を物体Oの造形する領域に沿って移動させつつ、吐出口21から加熱した造形材料を吐出することにより、造形する領域に対し造形材料を連ねて堆積させることができる。 4) As shown in FIG. 4A, when forming a region parallel to the upper surface of the table 3 for the object O, the table 3 is rotated so that the parallel region faces horizontally. Thus, the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below. That is, by discharging the heated modeling material from the discharge port 21 while moving the head 2 along the modeling region of the object O, the modeling material can be continuously deposited on the modeling region.
 また、図4の(b)に示すように、物体Oについてテーブル3の上面に対し斜めに傾いた領域を造形する場合には、斜めに傾いた領域が水平になるようにテーブル3を回転させる。これにより、吐出口21を真下に向けた状態でヘッド2を水平に移動させて物体Oの造形が行える。 In addition, as shown in FIG. 4B, when forming a region of the object O obliquely inclined with respect to the upper surface of the table 3, the table 3 is rotated so that the obliquely inclined region is horizontal. . Thus, the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below.
 また、図4の(c)に示すように、物体Oについてテーブル3の上面に対し垂直となる領域を造形する場合には、その垂直となる領域が水平になるようにテーブル3を回転させる。これにより、吐出口21を真下に向けた状態でヘッド2を水平に移動させて物体Oの造形が行える。 {Circle around (4)} As shown in FIG. 4 (c), when forming a region of the object O perpendicular to the upper surface of the table 3, the table 3 is rotated so that the perpendicular region is horizontal. Thus, the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below.
 また、図4の(d)に示すように、物体Oについてテーブル3の上面と平行な領域を造形する場合には、その平行な領域が水平になるようにテーブル3を回転させる。これにより、吐出口21を真下に向けた状態でヘッド2を水平に移動させて物体Oの造形が行える。 {Circle around (4)} As shown in FIG. 4D, when forming a region of the object O parallel to the upper surface of the table 3, the table 3 is rotated so that the parallel region is horizontal. Thus, the object 2 can be formed by moving the head 2 horizontally with the discharge port 21 facing directly below.
 このように、図3のS3の回転処理及びS4の造形処理において、テーブル3を回転させて物体Oの向き及び姿勢を調整して造形材料の付設を行うことにより、吐出口21を真下に向けた状態でヘッド2を水平に移動させて、物体Oに対し所望の方向に造形材料を連ねて付着させて物体Oの造形が行える。このため、所望の方向へ強度を高めて物体の造形が行えるのである。 As described above, in the rotation processing of S3 and the molding processing of S4 in FIG. 3, the table 3 is rotated to adjust the direction and the attitude of the object O and to attach the molding material, so that the discharge port 21 is directed downward. In this state, the head 2 is moved horizontally, and a modeling material is continuously attached to the object O in a desired direction to form the object O. For this reason, the object can be shaped by increasing the strength in a desired direction.
 例えば、仮に、ヘッド2の吐出口21が真下を向いた状態であっても、物体Oの造形する領域が平行でない状態であると、ヘッド2の吐出口21を造形する領域に近づけることが難しい。すなわち、ヘッド2を造形する領域に近づけようとすると、ヘッド2の下面22の端部が造形する領域に接触してしまう。このため、ヘッド2を造形する領域から離して造形材料を吐出しなければならず、造形材料を所望の位置へ堆積させることが難しい。従って、造形精度が低くなる。 For example, even if the ejection port 21 of the head 2 faces directly below, it is difficult to bring the ejection port 21 of the head 2 close to the area where the object O is formed if the region where the object O is formed is not parallel. . In other words, if the head 2 is to be brought close to the region where the modeling is to be performed, the end of the lower surface 22 of the head 2 will contact the region where the modeling is to be performed. For this reason, the molding material must be discharged away from the region where the head 2 is to be molded, and it is difficult to deposit the molding material at a desired position. Therefore, the modeling accuracy is reduced.
 また、この場合に、ヘッド2の吐出口21の開口が物体Oの造形する領域に対し平行となるように、造形する領域の傾きに応じてヘッド2を傾けて造形することも考えられる。例えば、ヘッド2の移動機構としてロボットアームなどを用いる場合である。しかしながら、この場合、吐出口21が真下を向いていないため、吐出口21から吐出される造形材料を所望の位置へ正確に堆積させることが難しい。従って、物体の造形精度が低くなってしまう。 In this case, it is also conceivable that the head 2 is inclined in accordance with the inclination of the forming region so that the opening of the discharge port 21 of the head 2 is parallel to the region where the object O is formed. For example, there is a case where a robot arm or the like is used as a moving mechanism of the head 2. However, in this case, since the discharge port 21 does not face directly below, it is difficult to accurately deposit the modeling material discharged from the discharge port 21 at a desired position. Therefore, the modeling accuracy of the object is reduced.
 これに対し、本実施形態に係る三次元造形装置1及び三次元造形方法では、第二機構部5の作動によりテーブル3を傾かせ、物体Oの姿勢を変えることができる。このため、吐出口21を下方に向けた状態でヘッド2を水平に移動させて、物体Oに対し所望の方向に連ねて造形材料を付着させて物体Oの造形が行える。従って、図5に示すように、所望の方向へ強度を高めて物体Oの造形が行えるのである。図5において、物体Oに示される実線は、造形材料を連ねて付着させる方向を示している。特に、造形材料として、繊維強化プラスチックを含む材料を用いる場合に有効である。この場合、造形材料を連ねて付着させる方向に繊維強化プラスチックを配向させることができるため、所望の方向の強度を高めて物体Oの造形が行える。 On the other hand, in the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment, the table 3 can be tilted by the operation of the second mechanism 5 to change the attitude of the object O. For this reason, the head 2 is moved horizontally with the discharge port 21 facing downward, and the modeling material is attached to the object O in a desired direction so that the modeling of the object O can be performed. Therefore, as shown in FIG. 5, the object O can be shaped by increasing the strength in a desired direction. In FIG. 5, the solid line shown on the object O indicates the direction in which the modeling material is continuously attached. In particular, this is effective when a material containing fiber-reinforced plastic is used as the molding material. In this case, since the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached, the object O can be modeled by increasing the strength in a desired direction.
 そして、図3のS5に処理が移行し、物体Oの造形が終了したか否かが判定される。例えば、予め設定された造形材料の堆積軌跡データに従って物体Oの造形動作が完了したか否かによって物体Oの造形が終了したか否かが判定される。S5において、物体Oの造形が終了していないと判定された場合、S3及びS4に戻り、テーブルの回転処理及び造形処理が行われる。一方、S5において、物体Oの造形が終了したと判定された場合、図3に示される一連の制御処理を終了する。 Then, the process proceeds to S5 in FIG. 3, and it is determined whether or not the shaping of the object O has been completed. For example, it is determined whether or not the shaping of the object O has been completed based on whether or not the shaping operation of the object O has been completed according to the preset deposition trajectory data of the forming material. In S5, when it is determined that the shaping of the object O has not been completed, the process returns to S3 and S4, and the rotation processing of the table and the shaping processing are performed. On the other hand, if it is determined in S5 that the modeling of the object O has been completed, the series of control processes shown in FIG. 3 is terminated.
 以上説明したように、本実施形態に係る三次元造形装置1及び三次元造形方法によれば、テーブル3の上面と平行な方向に向けた回転軸線A1を中心にテーブル3を回転可能とすることにより、回転軸線A1を中心にテーブル3を回転させてテーブル3を傾けることができる。このため、造形中の物体Oの姿勢を変えることが可能となる。従って、物体Oに対し強化したい方向に沿ってヘッド2を移動させやすくなり、所望の方向へ強度を高めて物体Oを造形することができる。 As described above, according to the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment, the table 3 can be rotated around the rotation axis A1 directed in a direction parallel to the upper surface of the table 3. Thereby, the table 3 can be rotated about the rotation axis A1 to tilt the table 3. For this reason, it is possible to change the attitude of the object O being formed. Therefore, the head 2 can be easily moved along the direction in which the object O is desired to be strengthened, and the strength of the object O can be increased in a desired direction to form the object O.
 また、本実施形態に係る三次元造形装置1及び三次元造形方法によれば、テーブル3の上面と平行な方向に向けた回転軸線A1を中心にテーブル3を回転可能とすることにより、回転軸線A1を中心にテーブル3を回転させて物体Oの姿勢を調整することができる。このため、吐出口21を真下に向けた状態でヘッド2を水平に移動させて、物体Oに対し所望の方向に連ねて造形材料を付着させて物体Oの造形が行える。従って、所望の方向へ強度を高めて物体Oの造形が行える。 Further, according to the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment, the table 3 is rotatable around the rotation axis A1 directed in a direction parallel to the upper surface of the table 3, whereby the rotation axis The attitude of the object O can be adjusted by rotating the table 3 around A1. For this reason, the head 2 is horizontally moved with the discharge port 21 facing directly downward, and the modeling material is attached to the object O in a desired direction so that the modeling of the object O can be performed. Therefore, the object O can be shaped by increasing the strength in a desired direction.
 また、本実施形態に係る三次元造形装置1及び三次元造形方法によれば、テーブル3の上面と垂直な方向に向けた回転軸線A2を中心にテーブル3を回転可能とすることにより、回転軸線A2を中心にテーブル3を回転させて物体Oの向きを容易に変えることができる。このため、所望の方向へ強度を高めた物体Oの造形が容易に行える。 Further, according to the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment, the table 3 is rotatable around the rotation axis A2 directed in a direction perpendicular to the upper surface of the table 3, and thus the rotation axis is The direction of the object O can be easily changed by rotating the table 3 around A2. Therefore, it is possible to easily form the object O having the increased strength in a desired direction.
 また、本実施形態に係る三次元造形装置1及び三次元造形方法において、テーブル3が互いに直交する回転軸線A1及び回転軸線A2を中心に回転可能とすることにより、複雑な形状の物体の造形が行える。例えば、仮に、回転軸線A2を中心にテーブル3を回転可能とし、回転軸線A1を中心にテーブル3上の物体を自転させて造形を行おうとすると、複雑な形状の物体を造形することが困難である。具体的には、図6に示すような物体100において、突出部101の傾斜面を水平方向に向けるように物体100の姿勢を調整し、かつ、左右に延びて傾斜する部分の上面を水平方向に向けるように物体100の姿勢を調整することは困難である。このため、物体100のような複雑な形状の物に対し所望の方向へ強度を高めて造形することが困難である。これに対し、本実施形態に係る三次元造形装置1及び三次元造形方法では、テーブル3が互いに直交する回転軸線A1及び回転軸線A2を中心に回転可能とすることにより、物体Oの向き及び姿勢を容易に調整することができ、複雑な形状の物体の造形が行えるのである。 In the three-dimensional modeling apparatus 1 and the three-dimensional modeling method according to the present embodiment, the table 3 is rotatable around the rotation axis A1 and the rotation axis A2 that are orthogonal to each other. I can do it. For example, if the table 3 is rotatable about the rotation axis A2 and the object on the table 3 is rotated about the rotation axis A1 to perform modeling, it is difficult to form an object having a complicated shape. is there. Specifically, in the object 100 as shown in FIG. 6, the posture of the object 100 is adjusted so that the inclined surface of the protruding portion 101 is oriented in the horizontal direction, and the upper surface of the inclined portion that extends left and right is horizontally oriented. It is difficult to adjust the attitude of the object 100 so that the object 100 is directed toward. For this reason, it is difficult to increase the strength of an object having a complicated shape such as the object 100 in a desired direction and form the object. On the other hand, in the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the present embodiment, the table 3 is rotatable about the rotation axis A1 and the rotation axis A2 that are orthogonal to each other. Can be easily adjusted, and an object having a complicated shape can be formed.
 また、本実施形態に係る三次元造形装置1及び三次元造形方法において、造形材料として繊維強化プラスチックを含む材料を用いることにより、造形材料を連ねて付着させる方向に繊維強化プラスチックを配向させることができる。このため、所望の方向の強度を高めて物体Oの造形が行いやすくなる。 In addition, in the three-dimensional modeling apparatus 1 and the three-dimensional modeling method according to the present embodiment, by using a material including a fiber-reinforced plastic as a modeling material, the fiber-reinforced plastic can be oriented in a direction in which the modeling material is continuously attached. it can. For this reason, the strength of a desired direction is increased and the object O can be easily formed.
(第二実施形態)
 次に、第二実施形態に係る三次元造形装置1a及び三次元造形方法について説明する。
(Second embodiment)
Next, a three-dimensional printing apparatus 1a and a three-dimensional printing method according to a second embodiment will be described.
 図6は、第二実施形態に係る三次元造形装置の構成概要図である。本実施形態に係る三次元造形装置1aは、上述した第一実施形態に係る三次元造形装置1と同様に熱溶解積層方式の造形装置である。この三次元造形装置1aは、ヘッド2の位置が固定されており、テーブル3が移動し姿勢を変えてテーブル3上に物体を造形する点で、第一実施形態に係る三次元造形装置1と異なっている。 FIG. 6 is a schematic configuration diagram of a three-dimensional printing apparatus according to the second embodiment. The three-dimensional printing apparatus 1a according to the present embodiment is a hot-melt lamination type printing apparatus, like the three-dimensional printing apparatus 1 according to the first embodiment described above. The three-dimensional modeling apparatus 1a is different from the three-dimensional modeling apparatus 1 according to the first embodiment in that the position of the head 2 is fixed, and the table 3 moves and changes the posture to form an object on the table 3. Is different.
 ヘッド2は、枠体83に取り付けられている。枠体83は、ベース部材81上に設けられ、ヘッド2をベース部材81の上方に配置させている。例えば、枠体83は、二つの柱部材83aの上部に梁部材83bを架設して構成されている。ヘッド2は、梁部材83bに固定されている。 The head 2 is attached to the frame 83. The frame 83 is provided on the base member 81, and arranges the head 2 above the base member 81. For example, the frame 83 has a structure in which a beam member 83b is erected above two pillar members 83a. The head 2 is fixed to the beam member 83b.
 三次元造形装置1aは、ロボットアーム9を備えている。ロボットアーム9は、ヘッド2とテーブル3を直交三軸の各方向へ相対的に移動可能とする第一機構部として機能する。また、ロボットアーム9は、テーブル3の上面と平行な方向に向けた回転軸線を中心にテーブル3を回転可能とする共に、テーブル3の上面と垂直な方向に向けた回転軸線を中心にテーブルを回転可能とする第二機構部として機能する。ロボットアーム9は、ベース部材81に取り付けられ、先端にテーブル3を設けて構成されている。このロボットアーム9は、制御部6の制御信号に従って作動する。 The three-dimensional printing apparatus 1 a includes the robot arm 9. The robot arm 9 functions as a first mechanism for relatively moving the head 2 and the table 3 in each of three orthogonal axes. In addition, the robot arm 9 enables the table 3 to rotate around a rotation axis oriented in a direction parallel to the upper surface of the table 3, and also moves the table around a rotation axis oriented perpendicular to the upper surface of the table 3. It functions as a rotatable second mechanism. The robot arm 9 is attached to the base member 81, and is provided with the table 3 at the tip. The robot arm 9 operates according to a control signal from the control unit 6.
 図7は、ロボットアーム9の構成概要図である。ロボットアーム9は、例えば六自由度で動作するものが用いられ、ヘッド2に対しテーブル3の位置及び姿勢(向き)を変更可能に設けられている。具体的には、ロボットアーム9は、複数のリンク部91~94及び複数の関節部95~97を有し、テーブル3の位置及び姿勢を変更可能に構成されている。リンク部91~94は、軸方向に延びる棒状の部材である。リンク部91は鉛直方向に向けられ、その基端側がベース部材81の上面に取り付けられている。リンク部91は、このリンク部91の軸線を中心に回転可能に構成されている。リンク部91の先端側には、関節部95を介してリンク部92が取り付けられている。関節部95は、水平方向の軸線を中心に回転可能に構成されている。関節部95の回転動作により、リンク部92が関節部95の回転軸を中心に回転する。 FIG. 7 is a schematic diagram of the configuration of the robot arm 9. The robot arm 9 is operated with, for example, six degrees of freedom, and is provided so as to be able to change the position and posture (direction) of the table 3 with respect to the head 2. Specifically, the robot arm 9 has a plurality of links 91 to 94 and a plurality of joints 95 to 97, and is configured to be able to change the position and orientation of the table 3. The link portions 91 to 94 are rod-shaped members extending in the axial direction. The link portion 91 is oriented vertically, and its base end is attached to the upper surface of the base member 81. The link portion 91 is configured to be rotatable about the axis of the link portion 91. A link portion 92 is attached to a distal end side of the link portion 91 via a joint portion 95. The joint 95 is configured to be rotatable about a horizontal axis. Due to the rotation of the joint 95, the link 92 rotates around the rotation axis of the joint 95.
 リンク部92の先端側には、関節部96を介してリンク部93が取り付けられている。関節部96は、水平方向の軸線を中心に回転可能に構成されている。関節部96の回転動作により、リンク部93が関節部96の回転軸を中心に回転する。リンク部93は、このリンク部93の軸線を中心に回転可能に構成されている。リンク部93の先端側には、関節部97を介してリンク部94が取り付けられている。関節部97は、水平方向の軸線を中心に回転可能に構成されている。関節部97の回転動作により、リンク部94が関節部97の回転軸を中心に回転する。リンク部94は、このリンク部94の軸線を中心に回転可能に構成されている。 リ ン ク A link portion 93 is attached to the distal end side of the link portion 92 via a joint portion 96. The joint 96 is configured to be rotatable about a horizontal axis. The link 93 rotates around the rotation axis of the joint 96 by the rotation of the joint 96. The link portion 93 is configured to be rotatable about the axis of the link portion 93. A link portion 94 is attached to a distal end side of the link portion 93 via a joint portion 97. The joint 97 is configured to be rotatable about a horizontal axis. The rotation of the joint 97 causes the link 94 to rotate about the rotation axis of the joint 97. The link portion 94 is configured to be rotatable about the axis of the link portion 94.
 リンク部94の先端側には、テーブル3が取り付けられている。テーブル3は、造形材料を堆積させて物体Oを造形させる部位である。テーブル3の上面は、物体Oの形状に応じた形状とされ、サポート部材として機能する。つまり、テーブル3は、平板の上面にサポート部材を一体化させて構成され、物体Oの形状に応じた表面形状を有している。例えば、テーブル3の上面は、四角錐台に形成されている。なお、平板状のテーブル3を用い、このテーブル3の上面に物体Oの形状に応じたサポート部材を取り付けてもよい。また、サポート部材として機能するテーブル3は、法線方向の異なる複数の表面を有している。ここでいう法線方向は、テーブル3の表面における平面部分と垂直な方向及び曲面部分と垂直な方向を意味する。 テ ー ブ ル The table 3 is attached to the distal end side of the link part 94. The table 3 is a part on which an object O is formed by depositing a forming material. The upper surface of the table 3 has a shape corresponding to the shape of the object O, and functions as a support member. That is, the table 3 is configured by integrating the support member on the upper surface of the flat plate, and has a surface shape corresponding to the shape of the object O. For example, the upper surface of the table 3 is formed in a truncated quadrangular pyramid. Note that a flat table 3 may be used, and a support member according to the shape of the object O may be attached to the upper surface of the table 3. The table 3 functioning as a support member has a plurality of surfaces having different normal directions. Here, the normal direction means a direction perpendicular to the plane portion and a direction perpendicular to the curved surface portion on the surface of the table 3.
 ロボットアーム9は、制御部6からの制御信号に応じて作動し、テーブル3をヘッド2に対し移動させつつ、ヘッド2の造形材料の吐出方向に対しテーブル3の上面が垂直になるようにテーブル3の姿勢を調整する。すなわち、ロボットアーム9は、ヘッド2から吐出される造形材料の吐出方向がテーブル3の表面の法線方向となるようにテーブル3の姿勢を調整する。なお、テーブル3上に既に物体Oの造形部分(造形途中の部分)がある場合、その造形部分の表面の法線方向となるように、テーブル3の姿勢が調整される。この場合、物体Oの造形部分の表面をテーブル3の表面又はサポート部材の表面とみなして、テーブル3の姿勢が調整される。そして、ロボットアーム9は、ヘッド2に対しテーブル3の複数の表面を順次沿わせてテーブル3を移動させる。ヘッド2の吐出方向は鉛直方向である。本実施形態では、ヘッド2は固定されており、位置及び姿勢が変更されないため、ヘッド2の吐出方向は常に下方を向いている。なお、ここでいう鉛直方向は、造形材料の吐出に支障を生じさせない程度のほぼ鉛直方向を含む。ロボットアーム9は、ヘッド2に対しテーブル3を移動させるとき、ヘッド2とテーブル3の間を所定の間隔に維持しつつ、テーブル3を移動させる。ここで、所定の間隔とは、予め設定される間隔であって、例えば一定の間隔とされる。なお、テーブル3上に既に物体Oの造形部分がある場合、その造形部分とヘッド2の間を所定の間隔に維持しつつ、テーブル3が移動させられる。この場合、物体Oの造形部分をテーブル3又はサポート部材とみなして、テーブル3の移動が行われる。また、物体Oの造形部分の上に対し造形を行っていく場合、図8に示すように、前回堆積させた造形部分以外の部分の上に造形を行ってもよい。例えば、物体Oの造形部分の端部において、複数の積層からなる表面に沿ってテーブル3を移動させてもよい。 The robot arm 9 operates in response to a control signal from the control unit 6, and moves the table 3 with respect to the head 2 so that the upper surface of the table 3 is perpendicular to the discharge direction of the molding material of the head 2. Adjust the posture of 3. That is, the robot arm 9 adjusts the attitude of the table 3 so that the direction of ejection of the modeling material ejected from the head 2 is the normal direction of the surface of the table 3. If there is already a modeling part (part in the middle of modeling) of the object O on the table 3, the attitude of the table 3 is adjusted so as to be in the normal direction of the surface of the modeling part. In this case, the posture of the table 3 is adjusted by regarding the surface of the modeling portion of the object O as the surface of the table 3 or the surface of the support member. Then, the robot arm 9 moves the table 3 with the plurality of surfaces of the table 3 sequentially along the head 2. The ejection direction of the head 2 is a vertical direction. In the present embodiment, the head 2 is fixed and its position and orientation are not changed, so that the ejection direction of the head 2 always faces downward. Here, the vertical direction includes a substantially vertical direction that does not hinder the discharge of the molding material. When moving the table 3 with respect to the head 2, the robot arm 9 moves the table 3 while maintaining a predetermined interval between the head 2 and the table 3. Here, the predetermined interval is an interval set in advance, and is, for example, a constant interval. When there is already a modeling portion of the object O on the table 3, the table 3 is moved while maintaining a predetermined interval between the modeling portion and the head 2. In this case, the table 3 is moved by regarding the modeling portion of the object O as the table 3 or the support member. When the modeling is performed on the modeling portion of the object O, as illustrated in FIG. 8, the modeling may be performed on a portion other than the modeling portion deposited last time. For example, the table 3 may be moved along the surface composed of a plurality of layers at the end of the modeling portion of the object O.
 次に、本実施形態に係る三次元造形装置1aの動作及び三次元造形方法について説明する。 Next, the operation of the three-dimensional printing apparatus 1a and the three-dimensional printing method according to the present embodiment will be described.
 図9は、三次元造形装置1aの動作及び三次元造形方法を示すフローチャートである。図9における制御処理は、例えば制御部6により実行される。まず、図9のS11において、データの設定処理が行われる。この設定処理は、造形すべき物体の形状データを記憶し、物体の形状に応じて造形時におけるテーブル3の位置データ及びテーブル3の回転データ(姿勢データ又は向きデータ)の設定などを行う処理である。 FIG. 9 is a flowchart showing the operation of the three-dimensional printing apparatus 1a and the three-dimensional printing method. The control process in FIG. 9 is executed by the control unit 6, for example. First, data setting processing is performed in S11 of FIG. This setting process is a process of storing shape data of an object to be formed and performing setting of position data of the table 3 and rotation data (posture data or orientation data) of the table 3 at the time of forming according to the shape of the object. is there.
 そして、S12に処理が移行し、動作指示の処理が行われる。この処理は、造形に関する動作を指示する処理である。例えば、制御部6は、物体を造形するにあたり、必要な動作のデータを読み込み、ヘッド2及びロボットアーム9に制御信号を出力する。 (5) Then, the process proceeds to S12, and an operation instruction process is performed. This process is a process for instructing an operation related to modeling. For example, the control unit 6 reads necessary operation data when forming an object, and outputs control signals to the head 2 and the robot arm 9.
 そして、S13に処理が移行し、物体の造形処理が行われる。この造形処理は、ロボットアーム9の作動制御を行い、ヘッド2からの造形材料の吐出制御を行う処理である。図6において、制御部6は、ヘッド2及びロボットアーム9に制御信号を出力する。これにより、図10に示すように、ロボットアーム9が作動して、ヘッド2の吐出位置の近傍にテーブル3が移動する。そして、テーブル3の上に造形材料が堆積され、物体Oが造形されていく。このとき、サポート部材として機能するテーブル3は、法線方向の異なる複数の表面を有している。造形材料の堆積は、法線方向の異なる複数の表面に亘って連続して行われる。例えば、制御部6は、ヘッド2から鉛直方向の下側に向けて造形材料を吐出させ、テーブル3の第一表面311の第一付着点311aに造形材料を付着させる。そして、制御部6は、ヘッド2から造形材料を吐出させながら、ヘッド2に対しテーブル3を相対的に移動させてテーブル3の第二表面312の第二付着点312aに至るまで、造形材料を堆積させる。第一表面311と第二表面312は、法線方向の異なる表面である。第一表面311の法線方向と第二表面312の法線方向の角度差は、鋭角であってもよいし、直角であってもよいし、鈍角であってもよい。このように、サポート部材として機能するテーブル3に法線方向の異なる表面が形成されていても、法線方向の異なる表面に対し連続して造形材料を堆積させて、円滑に物体Oを造形することができる。 (5) Then, the process proceeds to S13, and the object forming process is performed. This shaping process is a process for controlling the operation of the robot arm 9 and controlling the ejection of the shaping material from the head 2. 6, the control unit 6 outputs a control signal to the head 2 and the robot arm 9. Thereby, as shown in FIG. 10, the robot arm 9 operates to move the table 3 near the ejection position of the head 2. Then, a modeling material is deposited on the table 3, and the object O is modeled. At this time, the table 3 functioning as a support member has a plurality of surfaces having different normal directions. The build material is deposited continuously over a plurality of surfaces having different normal directions. For example, the control unit 6 causes the modeling material to be discharged from the head 2 downward in the vertical direction, and causes the modeling material to adhere to the first attachment point 311 a of the first surface 311 of the table 3. The control unit 6 moves the table 3 relatively to the head 2 while discharging the modeling material from the head 2, and moves the modeling material to the second attachment point 312 a on the second surface 312 of the table 3. Deposit. The first surface 311 and the second surface 312 are surfaces having different normal directions. The angle difference between the normal direction of the first surface 311 and the normal direction of the second surface 312 may be an acute angle, a right angle, or an obtuse angle. As described above, even if the surface having different normal directions is formed on the table 3 functioning as the support member, the modeling material is continuously deposited on the surfaces having different normal directions, and the object O is smoothly formed. be able to.
 そして、図9のS14に処理が移行し、物体Oの造形が終了したか否かが判定される。例えば、予め設定された造形材料の造形データ等に従って物体Oの造形動作が完了したか否かによって物体Oの造形が終了したか否かが判定される。S14において、物体Oの造形が終了していないと判定された場合、S12及びS13に戻り、造形処理などが行われる。一方、S14において、物体Oの造形が終了したと判定された場合、図9に示される一連の制御処理を終了する。 Then, the processing shifts to S14 in FIG. 9, and it is determined whether the shaping of the object O is completed. For example, it is determined whether or not the molding of the object O has been completed based on whether or not the molding operation of the object O has been completed in accordance with the preset molding data of the molding material. In S14, when it is determined that the shaping of the object O is not completed, the process returns to S12 and S13, and the shaping process and the like are performed. On the other hand, if it is determined in S14 that the modeling of the object O has been completed, a series of control processes shown in FIG. 9 is ended.
 以上説明したように、本実施形態に係る三次元造形装置1a及び三次元造形方法によれば、テーブル3が支持部材として機能し物体の形状に応じて形成されているため、テーブル3の上に造形材料を堆積することにより物体Oの造形が行える。このとき、テーブル3の表面に沿って造形材料を堆積させていくことにより、物体の表面の所望の方向に向けて物体の強度を高めることができる。 As described above, according to the three-dimensional printing apparatus 1a and the three-dimensional printing method according to the present embodiment, the table 3 functions as a support member and is formed according to the shape of the object. The object O can be formed by depositing the forming material. At this time, by depositing the modeling material along the surface of the table 3, the strength of the object can be increased in a desired direction on the surface of the object.
 例えば、図11に示すようにテーブル3の形状を四角錐台とした場合、物体Oとして四角錐台の枠体の形状のものを造形することができる。この造形において、物体Oを構成する部材の長手方向に沿って造形材料を堆積させて造形していくことができる。このため、物体Oを構成する部材の長手方向に向けて物体Oの強度を高めることができる。つまり、物体Oを構成する部材において、その長手方向に向けて造形材料が連なって設けられているため、物体Oを構成する部材の強度を高めることができる。 For example, when the shape of the table 3 is a truncated quadrangular pyramid as shown in FIG. 11, the object O can be shaped as a frame of a truncated quadrangular pyramid. In this shaping, a shaping material can be deposited along the longitudinal direction of the member constituting the object O to perform shaping. Therefore, the strength of the object O can be increased in the longitudinal direction of the members constituting the object O. That is, since the modeling material is provided continuously in the longitudinal direction of the members constituting the object O, the strength of the members constituting the object O can be increased.
 一方、図12に示すように、支持部材(サポート部材)を有しない平板状のテーブルの上に物体200を造形する場合、テーブルの上面と平行な方向にしか造形材料を堆積させることができない。このため、テーブルの上面と交差する方向に延びる部材201に対し、その長手方向に沿って造形材料を堆積させることが難しい。従って、物体Oを構成する部材201において、その長手方向に向けて造形材料を連ねることができず、物体Oを構成する部材201の強度は低いものとなる。これに対し、本実施形態に係る三次元造形装置1a及び三次元造形方法では、テーブル3に物体Oを支持する支持部材を設けることにより、物体Oを構成する部材の長手方向に造形材料を連ねて堆積することができ、物体Oを構成する部材の強度を高めることができるのである。 On the other hand, as shown in FIG. 12, when the object 200 is formed on a flat table having no support member (support member), the forming material can be deposited only in a direction parallel to the upper surface of the table. For this reason, it is difficult to deposit a modeling material on the member 201 extending in a direction intersecting the upper surface of the table along the longitudinal direction. Therefore, in the member 201 constituting the object O, the modeling material cannot be connected in the longitudinal direction, and the strength of the member 201 constituting the object O is low. On the other hand, in the three-dimensional modeling apparatus 1a and the three-dimensional modeling method according to the present embodiment, by providing the table 3 with the support member that supports the object O, the modeling material is connected in the longitudinal direction of the member configuring the object O. Therefore, the strength of the members constituting the object O can be increased.
 また、本実施形態に係る三次元造形装置1a及び三次元造形方法によれば、テーブル3の法線方向の異なる複数の表面にヘッド2が沿うようにヘッド2とテーブル3を相対的に移動させて複数の表面の上の所望の方向に向けて造形材料を堆積させることができる。このため、物体Oの表面の所望の方向に向けて物体の強度を高めることができる。 Further, according to the three-dimensional printing apparatus 1a and the three-dimensional printing method according to the present embodiment, the head 2 and the table 3 are relatively moved so that the head 2 follows a plurality of surfaces of the table 3 having different normal directions. The build material can be deposited in a desired direction over a plurality of surfaces. Therefore, the strength of the object O can be increased in a desired direction on the surface of the object O.
 また、本実施形態に係る三次元造形装置1a及び三次元造形方法によれば、ヘッド2とテーブル3の間を所定の間隔に維持しつつ、ヘッド2がテーブル3の表面に沿うようにヘッド2とテーブル3を相対的に移動させる。このため、造形材料をテーブル3の上に適切に堆積させて物体Oを造形することができる。 Further, according to the three-dimensional printing apparatus 1 a and the three-dimensional printing method according to the present embodiment, the head 2 is arranged along the surface of the table 3 while maintaining the space between the head 2 and the table 3 at a predetermined interval. And the table 3 are relatively moved. Therefore, the object O can be modeled by appropriately depositing the modeling material on the table 3.
 また、本実施形態に係る三次元造形装置1a及び三次元造形方法によれば、ヘッド2から吐出される造形材料の吐出方向がテーブル3の表面の法線方向となるようにして、ヘッド2とテーブル3が相対的に移動する。このため、支持部材として機能するテーブル3の表面に造形材料を的確に堆積させることができる。 Further, according to the three-dimensional printing apparatus 1a and the three-dimensional printing method according to the present embodiment, the head 2 and the head 2 are set so that the discharging direction of the forming material discharged from the head 2 is the normal direction of the surface of the table 3. The table 3 moves relatively. Therefore, the modeling material can be accurately deposited on the surface of the table 3 functioning as a support member.
 なお、本開示は、上述した各実施形態に限定されるものではない。本開示は、特許請求の範囲の記載の要旨を逸脱しない範囲で様々な変形態様を取ることができる。 Note that the present disclosure is not limited to the above-described embodiments. The present disclosure can take various modifications without departing from the gist of the claims.
 例えば、上述した第一実施形態においては、第二機構部5が回転軸線A1及び回転軸線A2を中心にテーブル3を回転可能とする場合について説明したが、第二機構部5が回転軸線A1を中心にテーブル3を回転可能とするものであってもよい。具体的には、図2において、第一アクチュエータ51により回転軸線A1を中心にテーブル3を回転可能とし、第二アクチュエータ52の設置を省略してもよい。この場合であっても、上述の本実施形態に係る三次元造形装置1及び三次元造形方法と同様な作用効果が得られる。つまり、テーブル3の上面と平行な方向に向けた回転軸線A1を中心にテーブル3を回転可能とすることにより、回転軸線A1を中心にテーブル3を回転させてテーブル3を傾けることができる。このため、造形中の物体Oの姿勢を変えることが可能となる。従って、物体Oに対し強化したい方向に沿ってヘッド2を移動させやすくなり、所望の方向へ強度を高めて物体Oを造形することができる。 For example, in the first embodiment described above, a case has been described in which the second mechanism unit 5 enables the table 3 to rotate around the rotation axis A1 and the rotation axis A2. The table 3 may be rotatable around the center. Specifically, in FIG. 2, the table 3 may be rotatable around the rotation axis A1 by the first actuator 51, and the installation of the second actuator 52 may be omitted. Even in this case, the same operation and effect as those of the three-dimensional printing apparatus 1 and the three-dimensional printing method according to the above-described embodiment can be obtained. That is, by enabling the table 3 to rotate around the rotation axis A1 oriented in a direction parallel to the upper surface of the table 3, the table 3 can be rotated around the rotation axis A1 to tilt the table 3. For this reason, it is possible to change the attitude of the object O being formed. Therefore, the head 2 can be easily moved along the direction in which the object O is desired to be strengthened, and the strength of the object O can be increased in a desired direction to form the object O.
 また、例えば、上述した各実施形態においては、テーブル3及びヘッド2がベース部材81上に設定されている場合について説明したが、テーブル3及びヘッド2を密封されたチャンバ内に設置して造形を行うものであってもよい。チャンバ内にテーブル3及びヘッド2を収容することにより、造形時における温度調整が可能となる。また、上述した三次元造形装置1では、装置の小型化が可能であり、チャンバ内に収めやすい。造形時における温度調整することにより、熱反り(既に造形した部分と新たに造形した部分の温度差により、造形後に物体が反る現象)や結晶化の不具合(結晶性樹脂を用いる場合、冷却速度が速すぎると非結晶の部分の比率が高くなる)の抑制が可能となる。 Further, for example, in each of the above-described embodiments, the case where the table 3 and the head 2 are set on the base member 81 has been described. However, the table 3 and the head 2 are installed in a sealed chamber to perform modeling. It may be performed. By accommodating the table 3 and the head 2 in the chamber, it is possible to adjust the temperature during molding. Further, in the three-dimensional modeling apparatus 1 described above, the apparatus can be reduced in size and can be easily housed in the chamber. By adjusting the temperature during molding, thermal warpage (a phenomenon in which the object warps after molding due to the temperature difference between the already molded part and the newly molded part) and defects in crystallization (cooling rate when using a crystalline resin) Is too high, the ratio of the non-crystalline portion increases).
 また、上述した第一実施形態においては、ヘッド2を直交三軸で移動可能とし、テーブル3を直交二軸で回転可能とする場合について説明したが、ヘッド2の直交三軸のうち一軸又は複数軸をテーブル3側に設けてもよい。例えば、ヘッド2をXY軸で移動可能とし、テーブル3をZ軸で移動可能とし直交二軸で回転可能としてもよい。 Further, in the first embodiment described above, a case has been described in which the head 2 is movable in three orthogonal axes and the table 3 is rotatable in two orthogonal axes. The shaft may be provided on the table 3 side. For example, the head 2 may be movable in the XY axes, the table 3 may be movable in the Z axis, and the table 2 may be rotatable in two orthogonal axes.
 さらに、上述した第一実施形態においては、ヘッド2を直交三軸で移動可能とし、テーブル3を直交二軸で回転可能とする五軸動作の場合について説明したが、六軸又は六軸以上の多軸の動作を行える場合であってもよい。例えば、ヘッド2を直交三軸で移動可能とし直交二軸で回転可能とし、テーブル3を直交二軸で回転可能とし、七軸動作としてもよい。 Further, in the first embodiment described above, the case of the five-axis operation in which the head 2 is movable in the three orthogonal axes and the table 3 is rotatable in the two orthogonal axes has been described. It may be a case where a multi-axis operation can be performed. For example, the head 2 may be movable in three orthogonal axes and rotatable in two orthogonal axes, the table 3 may be rotatable in two orthogonal axes, and may be operated in seven axes.
 このように、ヘッド2を直交三軸で移動可能とし直交二軸で回転可能とすることにより、造形する物体の形状の自由度を高くすることができる。なお、ヘッド2を回転させることで、ヘッド2の吐出方向が重力方向(鉛直方向)と異なる場合もあり得る。この場合、ヘッド2の吐出方向がほぼ重力方向となるようにヘッド2の回転角度を制御することにより、造形材料の吐出及び堆積を安定させればよい。 As described above, since the head 2 can be moved in three orthogonal axes and can be rotated in two orthogonal axes, the degree of freedom of the shape of the object to be formed can be increased. By rotating the head 2, the ejection direction of the head 2 may be different from the direction of gravity (vertical direction). In this case, the discharge and deposition of the modeling material may be stabilized by controlling the rotation angle of the head 2 so that the discharge direction of the head 2 becomes substantially the direction of gravity.
 本開示の三次元造形装置及び三次元造形方法によれば、所望の方向へ強度を高めて物体の造形を行うことができる。 According to the three-dimensional modeling apparatus and the three-dimensional modeling method of the present disclosure, it is possible to perform modeling of an object by increasing strength in a desired direction.
1 三次元造形装置
2 ヘッド
3 テーブル
4 第一機構部
5 第二機構部
6 制御部
7 HMI
9 ロボットアーム(第一機構部、第二機構部)
21 吐出口
31 サポート部材(支持部材)
41 スライダ
42 ポール
43 可動部材
51 第一アクチュエータ
52 第二アクチュエータ
81 ベース部材
82 枠体
83 枠体
311 第一表面
311a 第一付着点
312 第二表面
312a 第二付着点
A1 回転軸線
A2 回転軸線
O 物体
DESCRIPTION OF SYMBOLS 1 3D modeling apparatus 2 Head 3 Table 4 1st mechanism part 5 2nd mechanism part 6 Control part 7 HMI
9 Robot arm (first mechanism, second mechanism)
21 Discharge port 31 Support member (support member)
41 Slider 42 Pole 43 Movable member 51 First actuator 52 Second actuator 81 Base member 82 Frame 83 Frame 311 First surface 311a First attachment point 312 Second surface 312a Second attachment point A1 Rotation axis A2 Rotation axis O Object

Claims (11)

  1.  ヘッドから造形材料を吐出し、前記ヘッドの下方に設けられるテーブルの上に前記造形材料を堆積させて、三次元の物体を造形する三次元造形装置において、
     前記ヘッドと前記テーブルを直交三軸の各方向へ相対的に移動可能とする第一機構部と、
     少なくとも前記テーブルの上面と平行な方向に向けた回転軸線を中心に前記テーブルを回転可能とする第二機構部と、
    を備える三次元造形装置。
    A three-dimensional modeling apparatus that discharges a modeling material from a head, deposits the modeling material on a table provided below the head, and models a three-dimensional object,
    A first mechanism unit that relatively moves the head and the table in each of three orthogonal axes,
    A second mechanism unit that enables the table to rotate around a rotation axis directed at least in a direction parallel to the upper surface of the table,
    A three-dimensional modeling device comprising:
  2.  前記第一機構部は、前記ヘッドを前記テーブルに対し直交三軸の各方向へ移動可能とする、
    請求項1に記載の三次元造形装置。
    The first mechanism section enables the head to move in each of three orthogonal axes with respect to the table.
    The three-dimensional printing apparatus according to claim 1.
  3.  前記第二機構部は、前記テーブルの上面と垂直な方向に向けた回転軸線を中心に前記テーブルを回転可能とする、
    請求項1又は2に記載の三次元造形装置。
    The second mechanism unit enables the table to rotate around a rotation axis oriented in a direction perpendicular to the upper surface of the table,
    The three-dimensional printing apparatus according to claim 1.
  4.  前記テーブルは、前記物体の形状に応じて形成され前記物体を支持する支持部材を有し、
     前記第一機構部及び前記第二機構部の作動を調整し、前記造形材料が前記支持部材の表面に対し垂直に吐出されるように前記ヘッド及び前記テーブルの一方又は双方の姿勢を制御し、前記ヘッドが前記支持部材の表面に沿うように前記ヘッドと前記テーブルを相対的に移動させ、前記支持部材の上に前記造形材料を堆積させる制御部を備える、
    請求項1~3のいずれか一項に記載の三次元造形装置。
    The table has a support member formed according to the shape of the object and supporting the object,
    Adjusting the operation of the first mechanism and the second mechanism, controlling the attitude of one or both of the head and the table so that the modeling material is discharged perpendicular to the surface of the support member, The head includes a controller that relatively moves the head and the table along the surface of the support member, and deposits the modeling material on the support member.
    The three-dimensional modeling apparatus according to any one of claims 1 to 3.
  5.  前記支持部材は、法線方向の異なる複数の表面を有し、
     前記制御部は、前記ヘッドが前記複数の表面に沿うように前記ヘッドと前記テーブルを相対的に移動させ、前記複数の表面の上に前記造形材料を堆積させる、
    請求項4に記載の三次元造形装置。
    The support member has a plurality of surfaces having different normal directions,
    The control unit relatively moves the head and the table so that the head is along the plurality of surfaces, and deposits the modeling material on the plurality of surfaces.
    The three-dimensional printing apparatus according to claim 4.
  6.  前記制御部は、前記ヘッドと前記支持部材の間を所定の間隔に維持しつつ、前記ヘッドが前記支持部材の表面に沿うように前記ヘッドと前記テーブルを相対的に移動させる、
    請求項4又は5に記載の三次元造形装置。
    The control unit relatively moves the head and the table so that the head follows the surface of the support member, while maintaining a predetermined interval between the head and the support member,
    The three-dimensional printing apparatus according to claim 4.
  7.  前記制御部は、前記ヘッドから吐出される前記造形材料の吐出方向が前記支持部材の表面の法線方向となるようにして、前記ヘッドと前記テーブルを相対的に移動させる、
    請求項4~6のいずれか一項に記載の三次元造形装置。
    The control unit is configured to relatively move the head and the table such that a discharge direction of the modeling material discharged from the head is a normal direction of a surface of the support member.
    The three-dimensional printing apparatus according to any one of claims 4 to 6.
  8.  前記造形材料は、繊維強化プラスチックを含む材料である、
    請求項1~7のいずれか一項に記載の三次元造形装置。
    The modeling material is a material including a fiber-reinforced plastic,
    The three-dimensional modeling apparatus according to any one of claims 1 to 7.
  9.  ヘッドから造形材料を吐出し、前記ヘッドの下方に設けられるテーブルの上に前記造形材料を堆積させて、三次元の物体を造形する三次元造形方法において、
     前記テーブルの上面と平行な方向に向けた回転軸線を中心に前記テーブルを回転させる回転工程と、
     前記テーブルの上に前記造形材料を堆積させて前記物体を造形する造形工程と、
    を含む三次元造形方法。
    A three-dimensional modeling method of discharging a modeling material from a head, depositing the modeling material on a table provided below the head, and modeling a three-dimensional object,
    A rotation step of rotating the table around a rotation axis directed in a direction parallel to the upper surface of the table,
    A forming step of forming the object by depositing the forming material on the table;
    And three-dimensional modeling methods.
  10.  前記テーブルは、前記物体の形状に応じて形成され前記物体を支持する支持部材を有し、
     前記回転工程は、前記造形材料が前記支持部材の表面に対し垂直に吐出されるように前記テーブルを回転させ、
     前記造形工程は、前記ヘッドが前記支持部材の表面に沿うように前記ヘッドと前記テーブルを相対的に移動させて前記支持部材の上に前記造形材料を堆積させる、
    請求項9に記載の三次元造形方法。
    The table has a support member formed according to the shape of the object and supporting the object,
    The rotating step rotates the table so that the modeling material is discharged perpendicular to the surface of the support member,
    The modeling step is to relatively move the head and the table so that the head is along the surface of the support member, to deposit the modeling material on the support member,
    The three-dimensional modeling method according to claim 9.
  11.  前記造形工程は、
     前記ヘッドから鉛直方向の下側に向けて前記造形材料を吐出し、前記支持部材の第一表面の第一付着点に前記造形材料を付着させる付着工程と、
     前記ヘッドから前記造形材料を吐出させながら、前記ヘッドと前記テーブルを相対的に移動させて前記支持部材の上に連続的に前記造形材料を堆積させる堆積工程と、を含み、
     前記堆積工程は、前記第一付着点から前記支持部材の前記第一表面と法線方向の異なる第二表面の第二付着点に至るまで、前記造形材料を堆積させる、
    請求項10に記載の三次元造形方法。
    The molding process includes:
    An adhering step of ejecting the molding material toward the lower side in the vertical direction from the head, and attaching the molding material to a first attachment point on the first surface of the support member,
    While discharging the modeling material from the head, a deposition step of relatively moving the head and the table to continuously deposit the modeling material on the support member,
    The depositing step deposits the modeling material from the first attachment point to a second attachment point of a second surface different from the first surface of the support member in a normal direction.
    The three-dimensional modeling method according to claim 10.
PCT/JP2019/025971 2018-06-29 2019-06-28 Three-dimensional shaping apparatus and three-dimensional shaping method WO2020004659A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-124565 2018-06-29
JP2018124565 2018-06-29
JP2019-075705 2019-04-11
JP2019075705A JP2020006681A (en) 2018-06-29 2019-04-11 Three-dimensional molding apparatus and three-dimensional molding method

Publications (1)

Publication Number Publication Date
WO2020004659A1 true WO2020004659A1 (en) 2020-01-02

Family

ID=68984636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025971 WO2020004659A1 (en) 2018-06-29 2019-06-28 Three-dimensional shaping apparatus and three-dimensional shaping method

Country Status (1)

Country Link
WO (1) WO2020004659A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149562A1 (en) * 2021-01-07 2022-07-14 株式会社ミタテ工房 Three-dimensional object manufacturing device and three-dimensional object manufacturing method
CN115042434A (en) * 2021-02-26 2022-09-13 精工爱普生株式会社 Method for manufacturing three-dimensional object and three-dimensional molding device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274839B1 (en) * 1998-12-04 2001-08-14 Rolls-Royce Plc Method and apparatus for building up a workpiece by deposit welding
JP2014516841A (en) * 2011-06-16 2014-07-17 アールブルク ゲーエムベーハー ウント コー.カーゲー Apparatus and method for manufacturing a three-dimensional object
US20170232679A1 (en) * 2014-08-05 2017-08-17 Laing O'rourke Australia Pty Limited Apparatus for Fabricating an Object
WO2018039260A1 (en) * 2016-08-22 2018-03-01 Stratasys, Inc. Multiple axis robotic additive manufacturing system and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274839B1 (en) * 1998-12-04 2001-08-14 Rolls-Royce Plc Method and apparatus for building up a workpiece by deposit welding
JP2014516841A (en) * 2011-06-16 2014-07-17 アールブルク ゲーエムベーハー ウント コー.カーゲー Apparatus and method for manufacturing a three-dimensional object
US20170232679A1 (en) * 2014-08-05 2017-08-17 Laing O'rourke Australia Pty Limited Apparatus for Fabricating an Object
WO2018039260A1 (en) * 2016-08-22 2018-03-01 Stratasys, Inc. Multiple axis robotic additive manufacturing system and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149562A1 (en) * 2021-01-07 2022-07-14 株式会社ミタテ工房 Three-dimensional object manufacturing device and three-dimensional object manufacturing method
JP2022106313A (en) * 2021-01-07 2022-07-20 株式会社 ミタテ工房 Three-dimensional object molding device and three-dimensional object molding method
JP7123356B2 (en) 2021-01-07 2022-08-23 株式会社 ミタテ工房 Three-dimensional object modeling apparatus and three-dimensional object modeling method
CN115042434A (en) * 2021-02-26 2022-09-13 精工爱普生株式会社 Method for manufacturing three-dimensional object and three-dimensional molding device

Similar Documents

Publication Publication Date Title
KR100771169B1 (en) Prototyping apparatus and method using a flexible multiple array nozzle set
CN109843551B (en) Method of printing 3D parts using local thermal cycling
JP6855460B2 (en) Adjustable Z-axis printhead module for additive manufacturing systems
US11247387B2 (en) Additive manufacturing system with platen having vacuum and air bearing
US6505089B1 (en) Method for manufacturing a three-dimensional model by variable deposition and apparatus used therein
WO2020004659A1 (en) Three-dimensional shaping apparatus and three-dimensional shaping method
US20100100222A1 (en) Adjustable platform assembly for digital manufacturing system
US11331847B2 (en) Additive manufacturing using polymer materials
Fry et al. Robotic additive manufacturing system for dynamic build orientations
US11254046B2 (en) Five degree of freedom additive manufacturing device
US11485079B2 (en) System for leveling heated platen in 3D printer
US10549477B2 (en) Methods and apparatus for controlling an applicator head during additive manufacturing
JP2020006681A (en) Three-dimensional molding apparatus and three-dimensional molding method
CN110366485A (en) Utilize the 3D printing of injection forming
Dine et al. On the development of a robot-operated 3D-printer
EP3359371B1 (en) Additive manufacturing using polymer materials
KR101760271B1 (en) 3D printer comprising reverse nozzle
US10889044B2 (en) Method of printing parts in a layerwise manner with one or more internal woven panels under tension
JPWO2020084716A1 (en) Additional manufacturing equipment and numerical control equipment
CN116323083A (en) Lamination shaping method, lamination shaping device and lamination shaping system
US20220168962A1 (en) Method and device for producing articles by additive manufacturing
JP2021143420A (en) Method and system for operating modular heater to improve layer bonding in metal drop ejecting three-dimensional (3d) object printer
WO2022254671A1 (en) Additive manufacturing apparatus and additive manufacturing method
KR101556730B1 (en) Space modeling device using fused deposition modeling
CN113580558B (en) Cross-scale 3D printing device and printing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826588

Country of ref document: EP

Kind code of ref document: A1