WO2020004508A1 - Temperature-responsive cell culture substrate - Google Patents

Temperature-responsive cell culture substrate Download PDF

Info

Publication number
WO2020004508A1
WO2020004508A1 PCT/JP2019/025484 JP2019025484W WO2020004508A1 WO 2020004508 A1 WO2020004508 A1 WO 2020004508A1 JP 2019025484 W JP2019025484 W JP 2019025484W WO 2020004508 A1 WO2020004508 A1 WO 2020004508A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
responsive
polymer
cell culture
group
Prior art date
Application number
PCT/JP2019/025484
Other languages
French (fr)
Japanese (ja)
Inventor
美子 茂原
礼奈 森安
正道 森田
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020004508A1 publication Critical patent/WO2020004508A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus

Definitions

  • the present disclosure relates to a temperature-responsive cell culture substrate.
  • a substrate having a temperature-responsive surface is used as a cell culture substrate. These substrates are mainly used for the culture of adherent cells. Adherent cells proliferate by attaching to the surface of the carrier. By using a substrate having a surface that changes from hydrophobic to hydrophilic or vice versa depending on the temperature response, it becomes possible to control the adhesion of the adherent cells to the surface by changing the temperature. Such a cell culture substrate is referred to as a “temperature-responsive cell culture substrate”.
  • adherent cells cultured on a substrate are chemically converted into proteins between the substrate and the cells using a protease such as trypsin or a metal chelating agent such as ethylenediaminetetraacetic acid (EDTA).
  • a protease such as trypsin
  • a metal chelating agent such as ethylenediaminetetraacetic acid (EDTA).
  • EDTA ethylenediaminetetraacetic acid
  • Patent Document 1 Specifically, for example, it becomes possible to collect a sheet-like cell group (cell sheet).
  • Various materials have been developed as temperature-responsive cell culture substrates.
  • a culture substrate in which poly-N-isopropylacrylamide (PNIPAM) having a lower critical solution temperature [Lower Critical Solution Temperature (LCST)] of 32 ° C. is immobilized on the surface has been developed (Patent Document 1).
  • PIPAM poly-N-isopropylacrylamide
  • LCST Lower Critical Solution Temperature
  • Patent Document 1 By dehydrating the polymer chains on the surface of the substrate that has been exposed to water at a temperature of 32 ° C. or higher, the surface of the substrate has a relatively hydrophobic property as compared to the case of being exposed to water at a temperature of 32 ° C. or lower. Show. In this state, the adherent cells can be adhered to the substrate surface and cultured.
  • An object of the present disclosure is to provide a temperature-responsive cell culture substrate having excellent cell detachability.
  • the temperature-responsive layer (A) contains a temperature-responsive polymer,
  • the temperature-responsive cell culture substrate according to Item 1. Item 3.
  • Item 3. The temperature-responsive cell culture substrate according to Item 1 or 2, wherein the temperature-responsive polymer includes a block polymer in which a temperature-responsive block is bonded to a terminal of a dendritic polymer.
  • Item 4. Item 4. The temperature-responsive cell culture substrate according to Item 3, wherein the dendritic polymer is a dendritic polymer having a styrene skeleton or a siloxane skeleton.
  • Temperature-responsive polymer obtainable by polymerizing a monomer containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or polyvinyl alcohol Item 5.
  • the temperature-responsive cell culture substrate according to any one of Items 1 to 4, which comprises at least a part of partially acetylated product. Item 6.
  • the N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meth) acrylamide.
  • Item 6 The temperature-responsive cell culture substrate according to Item 5, which is at least one selected from the group consisting of acrylamide.
  • Item 7. Item 7.
  • Item 9 A composition comprising a temperature-responsive polymer, wherein, among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more, the temperature-responsive polymer having a logM of 5.5 or more. Is greater than or equal to 60%.
  • logM logarithm
  • the present inventors have found that there is a point in the conventional temperature-responsive cell culture substrate that should be improved in cell detachability during temperature response.
  • the present inventors have intensively studied and are a temperature-responsive cell culture substrate having a temperature-responsive layer containing a temperature-responsive polymer, and adjusting the molecular weight distribution of components contained in the temperature-responsive layer. Has found that the above problem can be solved.
  • the present disclosure includes the following embodiments.
  • Temperature-responsive cell culture substrate The temperature-responsive cell culture substrate of the present disclosure is: A temperature-responsive cell culture substrate having a temperature-responsive layer (A),
  • the temperature-responsive layer (A) contains a temperature-responsive polymer,
  • logM logarithm
  • the temperature-responsive layer (A) contains at least a temperature-responsive polymer, and its surface shows temperature-responsiveness.
  • the surface exhibiting this temperature response is used as a surface for performing cell culture.
  • temperature-responsive polymer includes a polymer whose entirety is a temperature-responsive region, and further includes a polymer having a temperature-responsive region and a region that does not exhibit a temperature-responsive property. included. The latter may be referred to as “partially temperature-responsive polymer” as necessary.
  • the “temperature responsive region” may be composed of only one kind of polymer, or may be composed of a block polymer having two or more kinds of polymer blocks.
  • the partially temperature-responsive polymer include the following.
  • NIPAM N-isopropylacrylamide B (M) A: butyl (meth) acrylate
  • -b- means a block polymer having polymer blocks at both ends of the symbol.
  • the temperature responsive layer (A) contains at least one temperature responsive polymer.
  • the temperature-responsive layer (A) comprises In the form of a thermally responsive polymer.
  • the sum of the responsive polymers is 60% or more.
  • the temperature-responsive cell culture substrate according to the present disclosure has excellent cell detachability at the time of temperature response because the temperature-responsive layer (A) has the above characteristics. These effects are obtained when the above ratio is in the range of 60 to 100%. It is preferably from 62 to 100%, more preferably from 65 to 100%, from the viewpoint of more excellent cell detachability.
  • the molecular weight M of the total of the temperature-responsive polymers having a common logarithm (logM) of the molecular weight M contained in the temperature-responsive layer (A) of 4.0 or more is 4.0 or more.
  • the total of the temperature-responsive polymers having a common logarithm (logM) of 6.0 or more is preferably 15% to 100%, and more preferably 17% to 100%.
  • the molecular weight distribution of the temperature-responsive polymer in the temperature-responsive cell culture substrate of the present disclosure is specifically determined as follows. That is, the temperature-responsive layer (A) is immersed in pure water cooled to 4 ° C., shaken for 24 hours, and the temperature-responsive polymer extracted into the pure water is added to the temperature-responsive layer (A). Calculated as temperature responsive polymer included. The molecular weight distribution of these polymers is measured by GPC measurement (column: Styragel HR-4E + HR-5E, eluent: 50 mM LiBr in DMF, standard: polystyrene).
  • the total of temperature-responsive polymers having logM of x or more is determined as follows.
  • a molecular weight distribution curve (FIG. 1) is prepared in which the logarithm of the molecular weight (LogM) is plotted on the horizontal axis and the differential distribution value (dW / dLogM) is plotted on the vertical axis.
  • the differential distribution value refers to a weight fraction per LogM. That is, the interpretation of the numerical value of the molecular weight distribution diagram can be performed in the range of M to M + ⁇ M on the horizontal axis and the area surrounded by the distribution curve.
  • the content (%) of the polymer having LogM> x is calculated by the equation (1).
  • the temperature-responsive layer (A) preferably does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 3.5 or less. It is more preferable that the temperature-responsive layer (A) does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 4.0 or less.
  • the temperature-responsive layer (A) preferably does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 8.0 or more.
  • the method for obtaining the temperature-responsive polymer having the above-mentioned molecular weight distribution is not particularly limited, and can be widely used.
  • a method of dissolving a temperature-responsive polymer in a good solvent such as acetone, toluene, and tetrahydrofuran (THF) and performing a reprecipitation operation of precipitating in a poor solvent such as hexane and water to perform fractionation may be mentioned.
  • a good solvent such as acetone, toluene, and tetrahydrofuran (THF)
  • THF tetrahydrofuran
  • the proportion of the total of the temperature-responsive polymer among the components contained in the temperature-responsive layer (A) is preferably 70% by mass or more. Preferably, it is 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more.
  • the temperature-responsive polymer has a surface area of 0.5 ⁇ g / cm 2 or more, preferably 1.0 ⁇ g / cm 2 or more, more preferably 1 ⁇ g / cm 2 or more in terms of a temperature-responsive region. It is preferably immobilized on the surface of the substrate at a concentration of 0.5 ⁇ g / cm 2 or more. In the temperature-responsive cell culture substrate of the present disclosure, when the amount of the temperature-responsive polymer immobilized is equal to or more than the above, the cultured cells on the polymer are not easily peeled even when the temperature is changed.
  • the total of the temperature-responsive polymers is 10 ⁇ g / cm 2 or less, preferably 5 ⁇ g / cm 2 or less, more preferably 4 ⁇ g / cm 2 or less, in terms of the temperature-responsive region.
  • the cells When immobilized on the surface of the substrate, the cells can easily adhere to the surface before the temperature response, and the cells can easily be sufficiently adhered.
  • the temperature-responsive cell culture substrate of the present disclosure is preferably such that the total of the temperature-responsive polymers is 0.5 to 10 ⁇ g / cm 2 , in terms of the temperature-responsive region, immobilized on the surface, It is more preferably immobilized on the surface at 1 to 5 ⁇ g / cm 2 , more preferably 1.5 to 4 ⁇ g / cm 2 .
  • the amount of the temperature-responsive polymer immobilized on the substrate surface can be calculated from the amount of the temperature-responsive polymer applied to the substrate surface.
  • the amount of the temperature-responsive polymer immobilized can be measured according to a conventional method. Examples of such a measuring method include a Fourier transform infrared spectroscopic total reflection attenuating method (FT-IR-ATR method), an elemental analysis method, an XPS method, and the like. Any measurement method may be selected as long as the measurement results do not vary, but in the case where the measurement results vary, a measurement result by the FT-IR-ATR method is employed in the present disclosure.
  • FT-IR-ATR method Fourier transform infrared spectroscopic total reflection attenuating method
  • Any measurement method may be selected as long as the measurement results do not vary, but in the case where the measurement results vary, a measurement result by the FT-IR-ATR method is employed in the present disclosure.
  • The measurement by the FT-IR-ATR method is specifically performed as follows. A case in which a polystyrene cell culture dish is used as the base material and PNIPAM is used as the temperature-responsive polymer will be described as an example, but the same applies to the case where another base material and / or polymer is used by applying the following example. Can be measured.
  • a temperature-responsive cell culture substrate is prepared in which a polystyrene cell culture dish is used as a substrate and PNIPAM is immobilized as a temperature-responsive polymer.
  • FT-IR-ATR measuring represented by the following formula (5), for the absorption intensity of the benzene ring stretching derived from polystyrene (1600 cm -1), amide stretch derived from PNIPAM (1650 cm -1 ) Can be obtained.
  • Absorption intensity ratio I 1650 / I 1600
  • a known amount of PNIPAM (1 to 10 ⁇ g / cm 2 ) is applied to a polystyrene substrate, and a calibration curve is prepared in advance from the absorption intensity ratio obtained by the formula (5).
  • the unknown PNIPAM amount can be determined. (Reference: Langmuir 2004, 20, 5506-5511).
  • the polymer constituting the temperature-responsive region is not particularly limited, and can be widely selected. Specific examples of the polymer constituting the temperature-responsive region include a polymer having a lower critical solution temperature (LCST) or a polymer having an upper critical solution temperature (Upper Critical Solution empture (UCST)). There may be.
  • the block polymer may include one type of temperature-responsive block, or may include a plurality of types of temperature-responsive blocks.
  • the polymer constituting the temperature responsive region for example, the polymer described in Japanese Patent Publication No. 06-104061 can be mentioned. Specifically, for example, a polymer having a structural unit based on at least one of the following monomers may be mentioned.
  • the monomer include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives and vinyl ether derivatives.
  • Examples of the polymer constituting the temperature-responsive region include polyvinyl alcohol partially acetylated products and nitrogen-containing cyclic polymers.
  • Examples of the polymer constituting the temperature-responsive region include an alkyl-substituted cellulose derivative, a polyalkylene oxide block copolymer, and a polyalkylene oxide block copolymer.
  • the detachment of the cultured cells is performed in a range of 5 ° C. to 50 ° C., and a polymer having an LCST or UCST within this range is preferable as a polymer constituting the temperature-responsive region.
  • a polymer obtained by polymerizing a poly (N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative having such a temperature response include poly-Nn-propylacrylamide (lower critical solution temperature: 21 ° C.), poly-Nn-propyl methacrylamide (27 ° C.), poly-N-isopropylacrylamide (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly-N-cyclopropylacrylamide (45 ° C), poly-N-ethoxyethylacrylamide (35 ° C), poly-N- Ethoxyethyl methacrylamide (about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (about 28 ° C), poly- -Tetrahydrofurfuryl
  • polymers having an LCST or UCST in the same range as described above include the following.
  • examples of the polyvinyl ether include polymethyl vinyl ether.
  • examples of the nitrogen-containing cyclic polymer include poly (N-acryloylpyrrolidine) and poly (N-acryloylpiperidine).
  • examples of the alkyl-substituted cellulose derivative include methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose.
  • polyalkylene oxide block copolymer include a block copolymer of polypropylene oxide and polyethylene oxide.
  • a copolymer of at least one of the above-mentioned monomers whose homopolymer exhibits temperature-responsiveness and at least one of the monomers other than the above-mentioned monomers can also be used.
  • other monomers for example, charged monomers and / or hydrophobic monomers can be used.
  • Examples of the charged monomer include a monomer having an amino group, a monomer having an ammonium salt, a monomer having a carboxyl group, and a monomer having a sulfonic acid group.
  • Examples of the monomer having an amino group include dialkylaminoalkyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylate, aminoalkyl (meth) acrylate, aminostyrene, aminoalkylstyrene, aminoalkyl (meth) acrylamide and the like. .
  • Examples of the monomer having an ammonium salt include [2- (2-methylacryloyloxy) ethyl] trimethylammonium salt, and 3-acrylamidopropyltrimethylammonium chloride which is a (meth) acrylamidoalkyltrimethylammonium salt.
  • Examples of the monomer having a carboxyl group include acrylic acid and methacrylic acid.
  • examples of the monomer having a sulfonic acid include (meth) acrylamidoalkylsulfonic acid and the like.
  • hydrophobic monomer examples include alkyl acrylate and alkyl methacrylate.
  • alkyl acrylate examples include n-butyl acrylate and t-butyl acrylate.
  • alkyl methacrylate examples include n-butyl methacrylate, t-butyl methacrylate, methyl methacrylate and the like.
  • hydrophobic monomer the following fluorinated monomers can also be used.
  • an acrylate ester having a fluoroalkyl group directly or via a divalent organic group to a carboxyl group and having an ester bond or an amide bond and having a substituent at the ⁇ -position hereinafter referred to as an acrylate ester
  • fluorinated monomer for example, an acrylate ester having a fluoroalkyl group directly or via a divalent organic group to a carboxyl group and having an ester bond or an amide bond and having a substituent at the ⁇ -position (hereinafter referred to as an acrylate ester) , "Fluoroalkyl group-containing acrylic acid ester”), or "fluoroalkyl group-containing acrylamide”.
  • X is a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (provided that X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, or A substituted or unsubstituted phenyl group; Y is -O- or -NH-; Z is an aliphatic group having 1 to 10 carbon atoms, an aromatic group or a cycloaliphatic group having 6 to 10 carbon atoms, —CH 2 CH 2 N (R 1 ) SO 2 — group
  • Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom.
  • acrylamide represented by the following formula:
  • the fluoroalkyl group represented by Rf is an alkyl group in which at least one hydrogen atom is substituted by a fluorine atom and which may have a hetero atom, and all hydrogen atoms are It also includes a perfluoroalkyl group which may have a hetero atom and is substituted by a fluorine atom.
  • Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly preferably a straight-chain or branched fluoroalkyl group having 1 to 3 carbon atoms. It is preferably a chain or branched perfluoroalkyl group.
  • EPA United States Environmental Protection Agency
  • Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms in the acrylate and acrylamide represented by the general formula (1), such environmental problems are pointed out. It is not.
  • examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , and —CF (CF 3 ).
  • the fluorinated monomer is preferably a non-telomer
  • fluoroalkyl group-containing acrylates and fluoroalkyl group-containing acrylamides can be used alone or in combination of two or more.
  • a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether is polymerized. Or a partially acetylated polyvinyl alcohol obtained by the reaction.
  • a block polymer having as a segment the polymer constituting the temperature-responsive region may be used.
  • a crosslinked polymer constituting the temperature-responsive region may be used.
  • the crosslinking monomer used at this time is not particularly limited, and can be widely selected. For example, N, N'-methylenebis (meth) acrylamide can be mentioned.
  • the temperature responsive layer (A) is a block polymer in which a polymer constituting the temperature responsive region is bonded to a terminal of the dendritic polymer (in the present specification, “dendritic block copolymer”). Block copolymer "). Thereby, it becomes easy to obtain a temperature-responsive cell culture substrate having more excellent cell detachability and / or suppressing elution of the temperature-responsive polymer during use.
  • the core dendritic polymer portion excluding the temperature-responsive region (in this specification, this portion is simply referred to as “dendritic polymer” in order to distinguish it from the entire dendritic block copolymer.
  • dendritic polymer having a styrene skeleton or a siloxane skeleton. According to the study of the present inventors, having such a skeleton makes it easier for the dendritic polymer portion to be regularly arranged on the substrate surface, thereby stably fixing it to the substrate surface. As a result, it is possible to obtain an effect that the cells are not easily released not only in cell culture but also in detachment of cells by temperature response.
  • a dendritic block copolymer in which a polymer constituting the temperature-responsive region is bonded to a terminal of a dendritic polymer having a styrene skeleton has a water-insoluble styrene skeleton dendritic polymer portion and a temperature-responsive This is the combination of the region and the region. Therefore, it is expected that a fine phase-separated structure is formed on the surface of the substrate by coating the surface of the substrate with the dendritic block copolymer and drying. When the cells adhere to the surface of the substrate, it is preferable that the surface of the substrate has a phase-separated structure because the denaturation of the cells can be suppressed.
  • the dendritic polymer As the dendritic polymer, a dendritic polymer having 15 or more terminals is preferable.
  • the number of terminals is 15 or more, the density per unit volume of the polymer constituting the temperature-responsive region bound to the terminals can be set in a preferable range, which is an improvement in cell detachability during temperature response. Contribute.
  • the number of terminals of the dendritic polymer having a styrene skeleton is preferably 15 or more, more preferably 20 or more, and even more preferably 30 or more.
  • the number of terminals of the dendritic polymer is preferably 100 or less, more preferably 50 or less, from the viewpoint that the time for the reaction for adding the polymer constituting the temperature-responsive region can be shortened.
  • the preferred range of the number of terminals of the dendritic polymer is 15 to 50, preferably 20 to 50, and more preferably 30 to 50.
  • the weight average molecular weight (Mw) of the dendritic polymer is not particularly limited, and can be selected from a wide range.
  • Mw of the dendritic polymer is 2,000 or more, the dendritic block copolymer is easily immobilized on the polystyrene substrate, and the possibility of elution into a medium or the like is reduced.
  • the Mw of the dendritic polymer is preferably 3,000 or more, more preferably 4,000 or more, and most preferably 5,000 or more.
  • Mw of the dendritic polymer is measured by GPC under the following conditions. Note that, instead of the following devices and reagents, equivalents may be used. Apparatus: Not particularly limited. Detector: Differential refractive index detector RI Column: Styragel HR-4E + HR-5E Solvent: DMF containing 50 mM LiBr Flow rate: 1.0 ml / min Column temperature: 28 ° C Injection volume: 100 ⁇ l Standard sample: polystyrene
  • the introduction rate of the polymer constituting the temperature-responsive region can be kept within a preferable range.
  • the Mw of the dendritic polymer is preferably 500,000 or less, more preferably 300,000 or less, and most preferably 100,000 or less.
  • a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be provided at the terminal of the dendritic block copolymer.
  • the addition of these groups can be performed by a conventional method.
  • a group having a positive or negative charge may remain.
  • a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be provided in or at the terminal constituting the temperature-responsive region.
  • the dendritic block copolymer at least one polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer, but at least one other polymer may be further bonded.
  • the dendritic block copolymer is a dendritic polymer having a terminal number of 15 or more and a polymer constituting a temperature-responsive region having an Mw of 3000 or more bound to the terminal of the dendritic polymer by 50 to 99.5% by mass based on the entire dendritic block copolymer. Is preferred.
  • the polymer constituting the temperature-responsive region is sufficiently bonded to the terminal of the dendritic polymer, so that even when the temperature is changed, the cultured cells on the polymer are not easily separated. .
  • the dendritic block copolymer of the present disclosure is preferably configured such that the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer by 70% by mass or more based on the entire dendritic block copolymer. % Is more preferable.
  • the dendritic block copolymer is preferably one in which the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer at 99.5% by mass or less based on the entire dendritic block copolymer.
  • the dendritic block copolymer is preferably such that the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer at 98% by mass or less based on the entire dendritic block copolymer, and 97% by mass or less. More preferably.
  • the dendritic block copolymer of the present disclosure preferably has a Mw (weight basis) of 550,000 to 10,000,000.
  • Mw weight basis
  • the polymer constituting the temperature-responsive region becomes easy to be introduced into the terminal of the dendritic polymer, and the blended ratio can be kept at an appropriate level, and the cell detachment property decreases. Can be avoided.
  • the method of bonding the polymer constituting the temperature-responsive region to the terminal of the dendritic polymer is not particularly limited, and can be widely selected.
  • Examples of the binding method include a method in which a RAFT agent is introduced into a terminal of a dendritic polymer, and various monomers are grown from the RAFT agent as a starting point.
  • the initiator for RAFT polymerization is not particularly limited, and can be widely selected.
  • 2,2′-azobis isobutyronitrile
  • 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile)
  • V-057 2,2′-azobis [(2- Carboxyethyl) -2- (methylpropionamidine)
  • the solvent used in the RAFT polymerization is not particularly limited and can be widely selected.
  • benzene, tetrahydrofuran, 1,4-dioxane, dimethylformaldehyde (DMF), and the like are preferable, and can be appropriately selected depending on the type of the monomer, the RAFT agent, and the polymerization initiator used in the polymerization reaction.
  • concentration of the initiator, the amount of the RAFT agent, the reaction temperature, the reaction time, and the like during the polymerization are not particularly limited, and can be appropriately set according to the purpose.
  • the reaction solution may be left standing or stirred.
  • the structure of the styrene skeleton dendritic polymer can be widely selected.
  • the structure of the styrene skeleton dendritic polymer can be represented, for example, by the following general formula (2).
  • R 2 is a group into which a polymer constituting a temperature-responsive region can be introduced by a covalent bond.
  • n represents the degree of polymerization.
  • R 2 is not particularly limited and can be selected widely.
  • a group capable of acting as a reversible addition-fragmentation chain transfer (RAFT) agent is preferable because a polymer constituting a temperature-responsive region can be introduced by RAFT polymerization.
  • RAFT agent is not particularly limited, and can be widely selected.
  • a thiocarbonylthio group and the like can be mentioned. Examples of the thiocarbonylthio group include a dithioester group, a dithiocarbamate group, a trithiocarbonate group, a xanthate group, and a dithiobenzoate group.
  • R 2 may have an optionally substituted hydrocarbon group having 3 to 12 carbon atoms at the terminal.
  • This hydrocarbon group is preferably a branched hydrocarbon group.
  • R 2 at this time include the following trithiocarbonate groups.
  • R 3 represents an optionally substituted hydrocarbon group having 3 to 12 carbon atoms.
  • R 3 is preferably a branched hydrocarbon group. Specifically, methyl group, ethyl group, propyl group, branched propyl group, butyl group, branched butyl group, hexyl group, branched hexyl group, pentyl group, branched pentyl group, heptyl group, branched heptyl group, octyl group, branched There are an octyl group, a 2-ethylhexyl group, a nonyl group, a branched nonyl group, a decyl group, a branched decyl group, a dodecyl group and a branched dodecyl group, and preferably an isopropyl group, an ethylhexyl group and a butyloctyl group.
  • the method for producing the styrene skeleton dendritic polymer is not particularly limited, and can be widely selected.
  • it can be obtained by an atom transfer radical polymerization (ATRP) method in the presence of copper chloride in chlorobenzene, which is conventionally performed.
  • ATRP atom transfer radical polymerization
  • AIBN azobisisobutyronitrile
  • styrene derivatives having a functional group as a monomer.
  • styrene derivatives include halogenated methyl styrene. Chloromethylstyrene, bromomethylstyrene and the like are used as halogenated methylstyrene.
  • the styrene derivatives may be used alone or as a mixture of two or more.
  • the ratio of the styrene derivative having a functional group to the total monomers used is preferably 5% or more.
  • the proportion of the styrene derivative having a functional group is 5% or more, the efficiency of introducing the polymer chain constituting the temperature-responsive region becomes good, and the introduction of the polymer constituting the temperature-responsive region targeted in the present disclosure is achieved. Rate is easier to achieve.
  • the ratio of the styrene derivative having a functional group is more preferably 10% or more, further preferably 15% or more, and most preferably 20% or more.
  • the ratio of the styrene derivative having a functional group is 90% or less, the obtained dendritic block copolymer becomes less soluble in water while maintaining the efficiency of introducing the polymer chain constituting the temperature-responsive region in a favorable range. In addition, the possibility that the dendritic block copolymer elutes into the medium or the like is reduced.
  • the ratio of the styrene derivative having a functional group is more preferably 80% or less, further preferably 70% or less, and most preferably 60% or less.
  • the proportion of the styrene derivative having a functional group is preferably 5% to 90%, more preferably 10% to 80%, still more preferably 15% to 70%, and most preferably 20% to 60%.
  • the siloxane skeleton dendritic polymer can be widely selected.
  • the siloxane skeleton dendritic polymer is, for example, at least one kind selected from the group consisting of bis (dimethylvinylsiloxane) methylsilane, tris (dimethylvinylsiloxane) silane, bis (dimethylallylsiloxane) methylsilane, and tris (dimethylallylsiloxane) silane. Examples include those that can be obtained by polymerizing monomers.
  • siloxane skeleton dendritic polymer can be obtained, for example, by a method described in WO2004 / 074177.
  • the temperature-responsive cell culture substrate of the present disclosure can be obtained by disposing the temperature-responsive layer (A) on at least one surface of the substrate layer (B). Specifically, for example, the temperature responsive layer (A) is fixed directly or indirectly to the surface of the base material layer (B) with the polymer constituting the temperature responsive region, so that the temperature responsive layer (A) is fixed to the base material layer (B). Can be placed on the surface of.
  • the temperature-responsive layer (A) may have two or more regions having different UCSTs or LCSTs, and the regions may be arranged so as to form a two-dimensional pattern.
  • the temperature responsive layer (A) is arranged on at least a part of at least one surface of the base material layer (B), and the region and the region not responding to temperature are arranged so as to form a two-dimensional pattern. You may.
  • the method of fixing the polymer constituting the temperature responsive region to the surface of the base material layer (B) is not particularly limited, and can be widely selected.
  • the polymer constituting the temperature-responsive region is indirectly converted. It can also be fixed.
  • examples of such a composite include the above-mentioned dendritic block copolymer of 1.3 and the like.
  • the solvent is not particularly limited as long as it dissolves or disperses the polymer constituting the temperature-responsive region or the complex containing the polymer, and can be widely selected.
  • examples include N, N-dimethylacrylamide; isopropyl alcohol; and a mixture of acetonitrile and N, N-dimethylformamide.
  • a mixture of plural kinds of solvents may be used.
  • the mixing ratio is not particularly limited and can be selected widely.
  • dioxane and normal propanol for example, dioxane: normal propanol can be 0.5 to 2: 4.
  • the solvent a solution containing a good solvent and a poor solvent of polystyrene is preferable.
  • a solvent particularly when the material of the base material layer (B) is polystyrene, the polystyrene on the surface of the base material layer (B) is swollen while the styrene skeleton dendritic block copolymer of 1.3 or The siloxane skeleton dendritic block copolymer can be immobilized, and as a result, the styrene skeleton dendritic block copolymer or the siloxane skeleton dendritic block copolymer is preferably embedded in the surface of the base material layer (B).
  • the good solvent and the poor solvent be tetrahydrofuran and methanol, respectively. More preferably, the content of tetrahydrofuran in the mixed solvent of tetrahydrofuran and methanol is 10 to 35% by volume.
  • a solution containing the polymer constituting the temperature-responsive region or the composite containing the same is used as a substrate. It is preferable to apply uniformly on the surface of the layer (B).
  • the method is not particularly limited, and can be selected widely. For example, a method using a dispenser, a method in which the base material layer (B) is allowed to stand on a horizontal table, and the like are exemplified.
  • the solvent is removed to obtain the temperature-responsive cell culture substrate of the present disclosure.
  • Can be The method for removing the solvent is not particularly limited, and can be widely selected. For example, a method of slowly evaporating at room temperature and in the air over time, a method of slowly evaporating at room temperature and in a solvent saturated environment over time, a method of evaporating under heating, and an evaporating under reduced pressure Method and the like.
  • a method of slowly evaporating at room temperature over time in a solvent-saturated environment is preferable. Specifically, it is preferable to place under the vapor of the solvent for 2 hours or more.
  • Base material layer (B) The material of the base material layer (B) is not particularly limited as long as it has no nitrogen atom. Usually, it is not particularly limited as long as it is used for cell culture. For example, glass, modified glass, various resins and the like can be mentioned. Further, in addition to these, a material that can be generally given a form may be used. Such a material is not particularly limited, and can be widely selected. For example, resins, ceramics, metals and the like can be mentioned.
  • the resin examples include polystyrene, polyethylene, polypropylene, polycycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
  • polystyrene, polymethyl methacrylate and the like are particularly preferably used.
  • the surface of the base material layer (B) on which the temperature responsive layer (A) is arranged may be subjected to a surface treatment as necessary.
  • a surface treatment include a UV ozone treatment, a plasma treatment, and a corona treatment.
  • the surface of the base material layer (B) on the side where the temperature responsive layer (A) is disposed may be smooth or may have a three-dimensional structure such as a hole, a protrusion, or a wall. You may.
  • the substrate layer (B) having such a three-dimensional structure on its surface include, for example, a commercially available three-dimensional structure cell culture substrate, NanoCulture Plate manufactured by SCIVAX, nano pillar plate manufactured by Hitachi High-Technologies, 3D manufactured by Biomatrix. Perfecta3D or Kuraray ELPLASIA can be used.
  • the temperature responsive layer (A) may be disposed on the surface of the base material layer (B) via at least one other layer.
  • other layers include polystyrene, polyethylene, polypropylene, polycycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
  • the temperature-responsive cell culture substrate of the present disclosure may have another layer in addition to the temperature-responsive layer (A) and the substrate layer (B), if necessary.
  • Other layers include, for example, a support layer used for the purpose of shape retention.
  • the shape of the temperature-responsive cell culture substrate of the present disclosure is not particularly limited. It may be a cell culture dish such as a Petri dish or a plate, fiber or particle. The particles may be porous. Further, another container shape generally used for cell culture or the like may be used. Examples of such a container shape include a flask and a bag.
  • the temperature-responsive cell culture substrate of the present disclosure can be used for cells in general.
  • cells such as animals, insects and plants, and bacteria can be mentioned.
  • Examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cows, marmosets, African green monkeys, and the like.
  • the temperature-responsive cell culture substrate of the present disclosure can be preferably used for adherent cells.
  • Adhesive cells can be widely selected and include, for example, endothelial cells, epidermal cells, epithelial cells, muscle cells, nerve cells, bone cells, fat cells, and the like, as well as dendritic cells, macrophages, and the like.
  • the endothelial cells include hepatocytes, Kupffer cells, vascular endothelial cells, and corneal endothelial cells.
  • the epidermal cells include fibroblasts, osteoblasts, osteoclasts, periodontal ligament-derived cells, and epidermal keratinocytes.
  • epithelial cells examples include tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, and corneal epithelial cells.
  • muscle cells include mammary gland cells, pericytes, smooth muscle cells, cardiomyocytes, and the like.
  • nerve cells examples include kidney cells, pancreatic islet cells of Langerhans, peripheral nerve cells, and optic nerve cells. Osteocytes include, for example, osteoclasts, chondrocytes and the like.
  • adherent stem cells can be used as the adherent cells.
  • adherent stem cells include embryonic stem cells (embryonic stem cells: ES cells), embryonic germ cells (embryonic stem cells), germline stem cells (germline stem cells: GS cells), and induced pluripotent stem cells.
  • IPS cells induced pluripotent stem cells
  • other pluripotent stem cells mesenchymal stem cells, hematopoietic stem cells, multipotent stem cells such as neural stem cells, etc.
  • myocardial progenitor cells vascular endothelial progenitor cells
  • neural progenitor cells fat progenitors Stem cells such as cells, skin fibroblasts, skeletal myoblasts, osteoblasts, and monopotent stem cells (progenitor cells) such as odontoblasts.
  • a medium usually used for culturing target cells can be used as it is.
  • the cultured cells are enzymatically treated by setting the temperature of the entire or a part of the culture substrate to not less than UCST or not more than LCST of the polymer constituting the temperature-responsive region. It can be peeled off without any problem.
  • the exfoliation due to this temperature change may be performed in a culture solution or in another isotonic solution.
  • the substrate can be dabbed or shaken for the purpose of detaching and collecting cells faster and more efficiently. If necessary, the medium may be stirred using a pipette or the like.
  • the temperature-responsive substrate for cell culture of the present disclosure is preferably such that the polymer constituting the temperature-responsive region is firmly fixed to the surface, and in this case, it can be used for reuse.
  • the temperature-responsive substrate for cell culture having the surface on which the dendritic block copolymer of 1.3 is immobilized has a polymer in which the temperature-responsive region is particularly firmly immobilized on the surface. It can be preferably used for applications.
  • a series of steps of adding a liquid medium, culturing the cells, detaching the cells by temperature response, and washing the substrate surface with an appropriate washing solution such as phosphate buffered saline is performed.
  • an appropriate washing solution such as phosphate buffered saline
  • the same temperature-responsive substrate for cell culture is used in two or more cycles, that is, used for two or more reuses.
  • the temperature-responsive substrate for cell culture of the present disclosure is preferably used for three or more reuses.
  • the composition of the present disclosure is a composition containing a temperature-responsive polymer, wherein the composition has a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the composition.
  • logM logarithm
  • Such a composition is preferably used for producing the above-mentioned temperature-responsive cell culture substrate.
  • composition of the present disclosure by having the above-mentioned properties, in the temperature-responsive cell culture substrate obtained using the same, excellent cell detachability during temperature response, and these effects, Obtained when the above ratio is in the range of 60 to 100%. It is preferably from 62 to 100%, more preferably from 65 to 100%, from the viewpoint of more excellent cell detachability.
  • the total temperature-responsive polymers having a logarithm of molecular weight M (log M) of 4.0 or more contained in the above composition a common logarithm of molecular weight M in that the composition has more excellent cell detachability during temperature response.
  • the total of the temperature-responsive polymers having (logM) of 6.0 or more is preferably 15% to 100%, and more preferably 17% to 100%.
  • composition of the present disclosure contains at least one temperature-responsive polymer.
  • the composition of the present disclosure is excellent in the effect that cell detachability during temperature response is excellent and / or elution of the temperature-responsive polymer during use is suppressed.
  • the temperature responsive polymer is included in the form of a partially temperature responsive polymer.
  • the temperature-responsive polymer is as described in 1.2 and 1.3 above.
  • composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of a molecular weight M of 3.5 or less. Further, it is more preferable that the composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 4.0 or less.
  • composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of a molecular weight M of 8.0 or more.
  • the effect is that cell detachability during temperature response is more excellent and / or elution of the temperature-responsive polymer during use is suppressed.
  • the proportion occupied by the temperature-responsive polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, it is still more preferably 95% by mass or more.
  • the ratio of the partially temperature-responsive polymer among the components contained in the composition of the present disclosure is preferably 70% by mass or more, and more preferably 80% by mass or more. Is more preferably 90% by mass or more, even more preferably 95% by mass or more.
  • the block polymer HBP-0 obtained in the preceding section was fractionated according to the difference in the elution time of GPC to obtain polymers HBP-1 to 5 having different molecular weight distributions.
  • the molecular weight distribution of these polymers was measured by GPC measurement (column: Styragel HR-4E + HR-5E, eluent: 50 mM LiBr in DMF, standard: polystyrene).
  • Table 1 shows the weight average molecular weight (Mw) and polydispersity (Mw / Mn) of the polymer HBP-0 before fractionation and the polymers HBP-1 to 5 having different molecular weight distributions after fractionation.
  • the coating solution (50 ⁇ l) obtained by the above method was applied to a polyculture cell culture dish (Falcon 3001, manufactured by Corning, culture area: 9.6 cm 2 ) and capped. The mixture was allowed to stand and dried for 2.5 hours to obtain a temperature-responsive cell culture substrate.
  • Temperature-responsive cell culture substrates were obtained in the same manner as in Example 1 except that the polymers used for preparing the coating solution were HBP-2 to HBP-5 (Table 2).
  • Example 1 A temperature-responsive cell culture substrate was obtained in the same manner as in Example 1, except that the polymer used for preparing the coating solution was HBP-0 before fractionation.
  • ⁇ Comparative Example 3> A commercially available ⁇ 3.5 cm temperature-responsive cell culture container (UpCell manufactured by Cell Seed, culture area: 9.6 cm 2 ) having a homopolymer of PNIPAM on the surface was prepared.
  • Comparative Example 1 using a substrate coated with HBP-0 before fractionation Comparative Example 2 using an untreated dish (Falcon 3001), and Comparative Example using a commercially available temperature-responsive cell culture vessel having a homopolymer of PNIPAM on the surface. It was set to 3. Into the dish prepared in the comparative example and the dish prepared in the example, 2 ml of the cell suspension was injected, and the cells were seeded. Thereafter, the cells were cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 4 days.
  • a CO 2 incubator 37 ° C., 5% CO 2
  • Table 2 shows the results of the evaluations of Examples 1 to 5 and Comparative Examples 1 to 3, respectively.
  • peeling was performed 20 minutes after removal from the incubator. In Comparative Example 1 using HBP-0, peeling was performed 21 minutes after removal from the incubator.
  • the cell culture dishes prepared in Examples 1 to 5 in which the content of the temperature-responsive polymer having a logM of 5.5 or more was 60% or more showed high detachability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A temperature-responsive cell culture substrate is provided which has better cell detachability and which suppresses elution of a temperature-responsive polymer during use. This temperature-responsive cell culture substrate has a temperature responsive layer (A), and the temperature-responsive layer (A) contains a temperature-responsive polymer. Of all the temperature-responsive polymers included in the temperature-responsive layer (A) that have a 4.0 or higher a common logarithm (log M) of the molecular weight (M), the total of temperature-responsive polymers that have a 5.5 or higher log M is greater than or equal to 60%.

Description

温度応答性細胞培養基材Temperature-responsive cell culture substrate
 本開示は、温度応答性細胞培養基材に関する。 The present disclosure relates to a temperature-responsive cell culture substrate.
 細胞培養基材として、温度応答性の表面を有する基材が用いられている。これらの基材は、主に、接着性細胞の培養のために用いられる。接着性細胞は、担体の表面に接着することにより増殖する。温度応答によって疎水性から親水性へ、あるいはその逆方向に変化する表面を有する基材を用いることにより、接着性細胞の表面への接着を温度変化により制御することが可能となる。このような細胞培養基材のことを、「温度応答性細胞培養基材」という。 基材 A substrate having a temperature-responsive surface is used as a cell culture substrate. These substrates are mainly used for the culture of adherent cells. Adherent cells proliferate by attaching to the surface of the carrier. By using a substrate having a surface that changes from hydrophobic to hydrophilic or vice versa depending on the temperature response, it becomes possible to control the adhesion of the adherent cells to the surface by changing the temperature. Such a cell culture substrate is referred to as a “temperature-responsive cell culture substrate”.
 従来は、基材上で培養した接着性細胞は、蛋白分解酵素(トリプシンなど)又は金属キレート剤であるエチレンジアミン四酢酸(EDTA)等を用いて、基材と細胞との間のタンパク質を化学的に破壊すること等により基材表面から剥離するしかなかった(特許文献1)。 Conventionally, adherent cells cultured on a substrate are chemically converted into proteins between the substrate and the cells using a protease such as trypsin or a metal chelating agent such as ethylenediaminetetraacetic acid (EDTA). However, there has been no choice but to peel off from the surface of the base material due to breakage (Patent Document 1).
 温度応答性細胞培養基材を用いれば、こうした操作が全て不要となり、温度を変えるだけで培養した細胞を剥離できる。また、温度応答性細胞培養基材から剥離した細胞及びそれに付着する細胞外マトリックスは、損傷度が低いという利点を有する(特許文献1)。
具体的には、例えば、シート状の細胞群(細胞シート)を回収することが可能となる。
If a temperature-responsive cell culture substrate is used, all of these operations become unnecessary, and the cultured cells can be separated by simply changing the temperature. In addition, the cells detached from the temperature-responsive cell culture substrate and the extracellular matrix adhering to the cells have an advantage that the degree of damage is low (Patent Document 1).
Specifically, for example, it becomes possible to collect a sheet-like cell group (cell sheet).
 温度応答性細胞培養基材として、種々のものが開発されている。例えば、下限臨界溶液温度[Lower Critical Solution Temperature(LCST)]が32℃であるポリ-N-イソプロピルアクリルアミド(PNIPAM)を表面に固定化した培養基材が開発されている(特許文献1)。32℃以上の温度の水に触れた基材表面のポリマー鎖は脱水和することにより、その基材表面は、32℃以下の温度の水に触れた場合と比較して相対的に疎水性を示す。この状態で基材表面に接着性細胞を接着させ、培養することができる。一方、基材表面が32℃以下の温度の水に接すると温度応答が起こり、表面のポリマー鎖は水分子と水和する。これにより、基材表面の性質としては、温度応答前に比べ親水性を示すことになり、接着していた細胞を剥離できる。 種 々 Various materials have been developed as temperature-responsive cell culture substrates. For example, a culture substrate in which poly-N-isopropylacrylamide (PNIPAM) having a lower critical solution temperature [Lower Critical Solution Temperature (LCST)] of 32 ° C. is immobilized on the surface has been developed (Patent Document 1). By dehydrating the polymer chains on the surface of the substrate that has been exposed to water at a temperature of 32 ° C. or higher, the surface of the substrate has a relatively hydrophobic property as compared to the case of being exposed to water at a temperature of 32 ° C. or lower. Show. In this state, the adherent cells can be adhered to the substrate surface and cultured. On the other hand, when the surface of the substrate comes into contact with water at a temperature of 32 ° C. or lower, a temperature response occurs, and the polymer chains on the surface hydrate with water molecules. As a result, the surface of the base material becomes more hydrophilic than before the temperature response, and the adhered cells can be separated.
 さらに、温度応答性ポリマーを一部に有するブロックポリマーを表面に固定化した温度応答性細胞培養基材も報告されている(特許文献2、3)。 Furthermore, temperature-responsive cell culture substrates in which a block polymer having a temperature-responsive polymer as a part thereof are immobilized on the surface have been reported (Patent Documents 2 and 3).
特開平2-211865号公報Japanese Patent Application Laid-Open No. H2-211865 国際公開第WO2014/133168号International Publication No. WO2014 / 133168 国際公開第WO2012/029882号International Publication No. WO2012 / 029882
 本開示は、優れた細胞剥離性を有する温度応答性細胞培養基材を提供することを課題とする。 An object of the present disclosure is to provide a temperature-responsive cell culture substrate having excellent cell detachability.
 項1.
 温度応答性層(A)を有する温度応答性細胞培養基材であって、
 前記温度応答性層(A)が温度応答性ポリマーを含み、
 前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが5.5以上である前記温度応答性ポリマーの合計が、60%以上である、
温度応答性細胞培養基材。
 項2.
 前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが6.0以上である前記温度応答性ポリマーの合計が、15%以上である、
項1記載の温度応答性細胞培養基材。
 項3.
 前記温度応答性ポリマーが、デンドリティックポリマーの末端に温度応答性のブロックが結合したブロックポリマーを含む、項1又は2に記載の温度応答性細胞培養基材。
 項4.
 前記デンドリティックポリマーが、スチレン骨格又はシロキサン骨格のデンドリティックポリマーである、項3に記載の温度応答性細胞培養基材。
 項5.
 前記温度応答性ポリマーの少なくとも一種が、
(メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を含むモノマーを重合することにより得られうる温度応答性ポリマー、又は
ポリビニルアルコール部分酢化物
を少なくとも一部に含む、項1~4のいずれか一項に記載の温度応答性細胞培養基材。
 項6.
 前記N-(若しくはN,N-ジ)置換(メタ)アクリルアミドが、ポリ-N-イソプロピル(メタ)アクリルアミド、ポリ-N、N-ジエチル(メタ)アクリルアミド、及びポリ-N、N-ジメチル(メタ)アクリルアミドからなる群より選択される少なくとも一種である、項5に記載の温度応答性細胞培養基材。
 項7.
 さらに基材層(B)を有し、前記温度応答性層(A)は、前記基材層(B)の少なくとも一方の面に配置されている、項1~6のいずれか一項に記載の温度応答性細胞培養基材。
 項8.
 前記基材層(B)がポリスチレンを含む、項7に記載の温度応答性細胞培養基材。
 項9.
 温度応答性ポリマーを含む組成物であって、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが5.5以上である前記温度応答性ポリマーの合計が、60%以上である、組成物。
 項10.
 項1~8のいずれか一項に記載の温度応答性細胞培養基材を製造するために用いられる、項9に記載の組成物。
Item 1.
A temperature-responsive cell culture substrate having a temperature-responsive layer (A),
The temperature-responsive layer (A) contains a temperature-responsive polymer,
The temperature-responsive polymer having a logM of 5.5 or more among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). Is 60% or more,
Temperature-responsive cell culture substrate.
Item 2.
The temperature-responsive polymer having a logM of 6.0 or more among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). Is greater than or equal to 15%,
Item 10. The temperature-responsive cell culture substrate according to Item 1.
Item 3.
Item 3. The temperature-responsive cell culture substrate according to Item 1 or 2, wherein the temperature-responsive polymer includes a block polymer in which a temperature-responsive block is bonded to a terminal of a dendritic polymer.
Item 4.
Item 4. The temperature-responsive cell culture substrate according to Item 3, wherein the dendritic polymer is a dendritic polymer having a styrene skeleton or a siloxane skeleton.
Item 5.
At least one of the temperature-responsive polymers,
Temperature-responsive polymer obtainable by polymerizing a monomer containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or polyvinyl alcohol Item 5. The temperature-responsive cell culture substrate according to any one of Items 1 to 4, which comprises at least a part of partially acetylated product.
Item 6.
The N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meth) acrylamide. Item 6. The temperature-responsive cell culture substrate according to Item 5, which is at least one selected from the group consisting of acrylamide.
Item 7.
Item 7. The method according to any one of Items 1 to 6, further comprising a base material layer (B), wherein the temperature-responsive layer (A) is arranged on at least one surface of the base material layer (B). Temperature-responsive cell culture substrate.
Item 8.
Item 8. The temperature-responsive cell culture substrate according to Item 7, wherein the substrate layer (B) contains polystyrene.
Item 9.
A composition comprising a temperature-responsive polymer, wherein, among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more, the temperature-responsive polymer having a logM of 5.5 or more. Is greater than or equal to 60%.
Item 10.
Item 10. The composition according to Item 9, which is used for producing the temperature-responsive cell culture substrate according to any one of Items 1 to 8.
 本開示によれば、温度応答時の細胞剥離性が優れた温度応答性細胞培養基材を提供できる。 According to the present disclosure, it is possible to provide a temperature-responsive cell culture substrate having excellent cell detachability during temperature response.
本開示の温度応答性細胞培養基材において、前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である成分のうち、logMが5.5以上である成分の割合[B/(A+B)*100(%)]の求め方を示した模式図である。In the temperature-responsive cell culture substrate of the present disclosure, among the components contained in the temperature-responsive layer (A) and having a common logarithm (logM) of molecular weight M of 4.0 or more, logM of 5.5 or more is used. It is the schematic diagram which showed how to calculate | require the ratio [B / (A + B) * 100 (%)] of a certain component.
 本発明者らは、従来の温度応答性細胞培養基材においては、温度応答時の細胞剥離性において改善すべき点があることを見出した。本発明者らは、鋭意検討を重ね、温度応答性ポリマーを含む温度応答性層を有する温度応答性細胞培養基材であって、前記温度応答性層に含まれる成分の分子量分布を調整することにより、上記課題を解決できることを見出した。本開示は、以下の実施形態を含む。 The present inventors have found that there is a point in the conventional temperature-responsive cell culture substrate that should be improved in cell detachability during temperature response. The present inventors have intensively studied and are a temperature-responsive cell culture substrate having a temperature-responsive layer containing a temperature-responsive polymer, and adjusting the molecular weight distribution of components contained in the temperature-responsive layer. Has found that the above problem can be solved. The present disclosure includes the following embodiments.
1.温度応答性細胞培養基材
 本開示の温度応答性細胞培養基材は、
 温度応答性層(A)を有する温度応答性細胞培養基材であって、
 前記温度応答性層(A)が温度応答性ポリマーを含み、
 前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが5.5以上である前記温度応答性ポリマーの合計が、60%以上である、
温度応答性細胞培養基材である。
 1.1 温度応答層(A)
1. Temperature-responsive cell culture substrate The temperature-responsive cell culture substrate of the present disclosure is:
A temperature-responsive cell culture substrate having a temperature-responsive layer (A),
The temperature-responsive layer (A) contains a temperature-responsive polymer,
The temperature-responsive polymer having a logM of 5.5 or more among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). Is 60% or more,
It is a temperature-responsive cell culture substrate.
1.1 Temperature-responsive layer (A)
 温度応答層(A)は、少なくとも温度応答性ポリマーを含み、表面が温度応答性を示す。本開示の温度応答性細胞培養基材においては、この温度応答性を示す表面が、細胞培養を行う面として使用される。 The temperature-responsive layer (A) contains at least a temperature-responsive polymer, and its surface shows temperature-responsiveness. In the temperature-responsive cell culture substrate of the present disclosure, the surface exhibiting this temperature response is used as a surface for performing cell culture.
 本開示において、用語「温度応答性ポリマー」には、全体が温度応答性領域となっているポリマーが含まれるほか、さらに、温度応答性領域と、温度応答性を示さない領域とを有するポリマーも含まれる。後者のことを必要に応じて「部分的温度応答性ポリマー」と称することがある。 In the present disclosure, the term “temperature-responsive polymer” includes a polymer whose entirety is a temperature-responsive region, and further includes a polymer having a temperature-responsive region and a region that does not exhibit a temperature-responsive property. included. The latter may be referred to as "partially temperature-responsive polymer" as necessary.
 上記において、「温度応答性領域」は、一種のポリマーのみで構成されていてもよいし、二種以上のポリマーのブロックをそれぞれ有するブロックポリマーで構成されていてもよい。 に お い て In the above description, the “temperature responsive region” may be composed of only one kind of polymer, or may be composed of a block polymer having two or more kinds of polymer blocks.
 部分的温度応答性ポリマーの具体例として、以下が挙げられる。
 P[NIPAM/B(M)A]-b-P(Styrene)
 P[NIPAM/F(M)A]-b-P(Styrene)
NIPAM:N-イソプロピルアクリルアミド
B(M)A:ブチル(メタ)アクリレート
F(M)A:フルオロアルキル(メタ)アクリレート
 なお、上記において、P[NIPAM/B(M)A]等とあるのは、NIPAMとB(M)Aとの共重合体を意味し、-b-は、その記号の両端のポリマーのブロックをそれぞれ有するブロックポリマーを意味する。上記において、P[NIPAM/B(M)A]とP[NIPAM/F(M)A]とがいずれも温度応答性領域に相当し、P(Styrene)(ポリスチレン)が非温度応答性領域に相当する。
Specific examples of the partially temperature-responsive polymer include the following.
P [NIPAM / B (M) A] -bp (Styrene)
P [NIPAM / F (M) A] -bp (Styrene)
NIPAM: N-isopropylacrylamide B (M) A: butyl (meth) acrylate F (M) A: fluoroalkyl (meth) acrylate In the above, P [NIPAM / B (M) A] etc. It means a copolymer of NIPAM and B (M) A, and -b- means a block polymer having polymer blocks at both ends of the symbol. In the above description, P [NIPAM / B (M) A] and P [NIPAM / F (M) A] both correspond to the temperature-responsive region, and P (Styrene) (polystyrene) corresponds to the non-temperature-responsive region. Equivalent to.
 温度応答層(A)は、温度応答性ポリマーを少なくとも一種含む。 The temperature responsive layer (A) contains at least one temperature responsive polymer.
 温度応答時の細胞剥離性が優れており、及び/又は温度応答性ポリマーの溶出が抑制される特徴を有する本開示の態様においては、温度応答層(A)は、温度応答性ポリマーを、部分的温度応答性ポリマーの形態で含んでいる。 In an embodiment of the present disclosure, which is characterized in that cell detachability during temperature response is excellent and / or elution of the temperature-responsive polymer is suppressed, the temperature-responsive layer (A) comprises In the form of a thermally responsive polymer.
 温度応答性層(A)に含まれる分子量Mの常用対数(logM)が4.0以上である温度応答性ポリマーの合計のうち、分子量Mの常用対数(logM)が5.5以上である温度応答性ポリマーの合計が、60%以上である。本開示の温度応答性細胞培養基材は、温度応答層(A)が上記の特性を有していることにより、温度応答時に優れた細胞剥離性を有する。これらの効果は、上記割合が、60~100%の範囲内にあるときに得られる。細胞剥離性がより優れる点で、62~100%が好ましく、65~100%が特に好ましい。 The temperature at which the common logarithm (logM) of the molecular weight M is 5.5 or more in the total of the temperature-responsive polymers having the common logarithm (logM) of the molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). The sum of the responsive polymers is 60% or more. The temperature-responsive cell culture substrate according to the present disclosure has excellent cell detachability at the time of temperature response because the temperature-responsive layer (A) has the above characteristics. These effects are obtained when the above ratio is in the range of 60 to 100%. It is preferably from 62 to 100%, more preferably from 65 to 100%, from the viewpoint of more excellent cell detachability.
 温度応答時にさらに優れた細胞剥離性を有する点で、温度応答性層(A)に含まれる分子量Mの常用対数(logM)が4.0以上である温度応答性ポリマーの合計のうち、分子量Mの常用対数(logM)が6.0以上である温度応答性ポリマーの合計が、15%~100%であることが好ましく、17~100%であることがより好ましい。 In view of having more excellent cell detachability at the time of temperature response, the molecular weight M of the total of the temperature-responsive polymers having a common logarithm (logM) of the molecular weight M contained in the temperature-responsive layer (A) of 4.0 or more is 4.0 or more. The total of the temperature-responsive polymers having a common logarithm (logM) of 6.0 or more is preferably 15% to 100%, and more preferably 17% to 100%.
 本開示の温度応答性細胞培養基材における、温度応答性ポリマーについての上記の分子量分布は、具体的には次のようにして求める。すなわち、温度応答性層(A)を4℃に冷却した純水中に浸漬した状態で24時間振とうし、純水中に抽出された温度応答性ポリマーを、温度応答性層(A)に含まれる、温度応答性ポリマーとして計算する。これらのポリマーは、GPC測定(カラム:Styragel HR-4E+HR-5E、溶離液:50mM LiBr in DMF、標準:ポリスチレン)により分子量分布測定を行う。 上 記 The molecular weight distribution of the temperature-responsive polymer in the temperature-responsive cell culture substrate of the present disclosure is specifically determined as follows. That is, the temperature-responsive layer (A) is immersed in pure water cooled to 4 ° C., shaken for 24 hours, and the temperature-responsive polymer extracted into the pure water is added to the temperature-responsive layer (A). Calculated as temperature responsive polymer included. The molecular weight distribution of these polymers is measured by GPC measurement (column: Styragel HR-4E + HR-5E, eluent: 50 mM LiBr in DMF, standard: polystyrene).
 logMが4.0以上である温度応答性ポリマーの合計のうち、logMがx以上である温度応答性ポリマーの合計は以下のようにして求める。横軸に分子量の対数(LogM)、縦軸に微分分布値(dW/dLogM)をプロットした分子量分布曲線(図1)を用意する。微分分布値とは、単位LogM当たりの重量分率のことを指す。すなわち、分子量分布図の数値の解釈は横軸の範囲M~M+ΔMと分布曲線で囲まれる面積で行なうことができる。温度応答性ポリマーの合計について、LogM=x未満の分子量分布の面積Aと、LogM=x以上の分子量分布曲線の面積Bとをそれぞれ算出する。それらの面積値を用いて、式(1)によりLogM>xの高分子の含有率(%)を算出する。
 B/(A+B)×100(%)   ・・・(1)
Of the total temperature-responsive polymers having logM of 4.0 or more, the total of temperature-responsive polymers having logM of x or more is determined as follows. A molecular weight distribution curve (FIG. 1) is prepared in which the logarithm of the molecular weight (LogM) is plotted on the horizontal axis and the differential distribution value (dW / dLogM) is plotted on the vertical axis. The differential distribution value refers to a weight fraction per LogM. That is, the interpretation of the numerical value of the molecular weight distribution diagram can be performed in the range of M to M + ΔM on the horizontal axis and the area surrounded by the distribution curve. For the total of the temperature-responsive polymers, the area A of the molecular weight distribution less than LogM = x and the area B of the molecular weight distribution curve more than LogM = x are calculated. Using these area values, the content (%) of the polymer having LogM> x is calculated by the equation (1).
B / (A + B) × 100 (%) (1)
 温度応答性層(A)は、分子量Mの常用対数(logM)が3.5以下である温度応答性ポリマーを含まないことが好ましい。また、温度応答性層(A)は、分子量Mの常用対数(logM)が4.0以下である温度応答性ポリマーを含まないことがより好ましい。 The temperature-responsive layer (A) preferably does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 3.5 or less. It is more preferable that the temperature-responsive layer (A) does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 4.0 or less.
 温度応答性層(A)は、分子量Mの常用対数(logM)が8.0以上である温度応答性ポリマーを含まないことが好ましい。 The temperature-responsive layer (A) preferably does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 8.0 or more.
 上記の分子量分布を有する温度応答性ポリマーを得る方法は特に限定されず、幅広く採用することができる。一例として、温度応答性ポリマーをアセトン、トルエン、テトラヒドロフラン(THF)などの良溶媒に溶解させ、ヘキサン、水などの貧溶媒中で析出させる再沈殿操作を行うことにより、分画する方法が挙げられる。水を使用する場合、40~60℃の水を使用することが好ましい。また、GPC(Gel permeation chromatography)によって分画する方法等も挙げられる。 方法 The method for obtaining the temperature-responsive polymer having the above-mentioned molecular weight distribution is not particularly limited, and can be widely used. As an example, a method of dissolving a temperature-responsive polymer in a good solvent such as acetone, toluene, and tetrahydrofuran (THF) and performing a reprecipitation operation of precipitating in a poor solvent such as hexane and water to perform fractionation may be mentioned. . When using water, it is preferable to use water at 40 to 60 ° C. Further, a method of fractionation by GPC (Gel Permeation Chromatography) and the like can also be mentioned.
 温度応答時の細胞剥離性を向上させるためには、温度応答性層(A)に含まれる成分のうち、温度応答性ポリマーの合計の占める割合が、総量で、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることがさらにより好ましい。 In order to improve the cell detachability at the time of temperature response, the proportion of the total of the temperature-responsive polymer among the components contained in the temperature-responsive layer (A) is preferably 70% by mass or more. Preferably, it is 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more.
 本開示の温度応答性細胞培養基材は、温度応答性ポリマーが、温度応答性領域換算で基材表面に0.5μg/cm以上、好ましくは1.0μg/cm以上、より好ましくは1.5μg/cm以上基材表面に固定化されていることが好ましい。本開示の温度応答性細胞培養基材は、温度応答性ポリマーの固定化量が上記以上であると、温度を変えても当該ポリマー上の培養細胞が剥離し難くなるということがない。 In the temperature-responsive cell culture substrate of the present disclosure, the temperature-responsive polymer has a surface area of 0.5 μg / cm 2 or more, preferably 1.0 μg / cm 2 or more, more preferably 1 μg / cm 2 or more in terms of a temperature-responsive region. It is preferably immobilized on the surface of the substrate at a concentration of 0.5 μg / cm 2 or more. In the temperature-responsive cell culture substrate of the present disclosure, when the amount of the temperature-responsive polymer immobilized is equal to or more than the above, the cultured cells on the polymer are not easily peeled even when the temperature is changed.
 本開示の温度応答性細胞培養基材は、温度応答性ポリマーの合計が、温度応答性領域換算で、10μg/cm以下、好ましくは5μg/cm以下、より好ましくは4μg/cm以下、基材表面に固定化されていれば、温度応答前の状態で細胞が表面に付着し易く、細胞を十分に付着させることが容易となる。 In the temperature-responsive cell culture substrate of the present disclosure, the total of the temperature-responsive polymers is 10 μg / cm 2 or less, preferably 5 μg / cm 2 or less, more preferably 4 μg / cm 2 or less, in terms of the temperature-responsive region. When immobilized on the surface of the substrate, the cells can easily adhere to the surface before the temperature response, and the cells can easily be sufficiently adhered.
 総合すると、本開示の温度応答性細胞培養基材は、温度応答性ポリマーの合計が、温度応答性領域換算で、0.5~10μg/cm、表面に固定化されていることが好ましく、1~5μg/cm、表面に固定化されていることがより好ましく、1.5~4μg/cm、表面に固定化されていることがさらに好ましい。 In summary, the temperature-responsive cell culture substrate of the present disclosure is preferably such that the total of the temperature-responsive polymers is 0.5 to 10 μg / cm 2 , in terms of the temperature-responsive region, immobilized on the surface, It is more preferably immobilized on the surface at 1 to 5 μg / cm 2 , more preferably 1.5 to 4 μg / cm 2 .
 本開示において、基材表面への温度応答性ポリマーの固定化量は、基材表面に適用した温度応答性ポリマーの量から計算できる。ただし、必要に応じて、温度応答性ポリマーの固定化量を常法に従って測定することもできる。そのような測定方法としては、例えばフーリエ変換赤外分光全反射減衰法(FT-IR-ATR法)、元素分析法及びXPS法等が挙げられる。測定結果にバラつきが生じない限り、いずれの測定法を選択してもよいが、バラつきが生じる場合は、本開示においてはFT-IR-ATR法による測定結果を採用する。 に お い て In the present disclosure, the amount of the temperature-responsive polymer immobilized on the substrate surface can be calculated from the amount of the temperature-responsive polymer applied to the substrate surface. However, if necessary, the amount of the temperature-responsive polymer immobilized can be measured according to a conventional method. Examples of such a measuring method include a Fourier transform infrared spectroscopic total reflection attenuating method (FT-IR-ATR method), an elemental analysis method, an XPS method, and the like. Any measurement method may be selected as long as the measurement results do not vary, but in the case where the measurement results vary, a measurement result by the FT-IR-ATR method is employed in the present disclosure.
 FT-IR-ATR法での測定は、具体的には以下のようにして行う。基材としてポリスチレン製セルカルチャーディッシュを、温度応答性ポリマーとしてPNIPAMをそれぞれ用いる場合を一例として説明するが、他の基材及び/又はポリマーを用いる場合も以下の例を応用することにより同様にして測定できる。 測定 The measurement by the FT-IR-ATR method is specifically performed as follows. A case in which a polystyrene cell culture dish is used as the base material and PNIPAM is used as the temperature-responsive polymer will be described as an example, but the same applies to the case where another base material and / or polymer is used by applying the following example. Can be measured.
 ポリスチレン製セルカルチャーディッシュを基材とし、温度応答性ポリマーとしてPNIPAMを固定化させた、温度応答性細胞培養基材を用意する。同基材をFT-IR-ATR測定すると、次式(5)にて表される、ポリスチレンに由来するベンゼン環伸縮(1600cm-1)の吸収強度に対する、PNIPAMに由来するアミド伸縮(1650cm-1)の吸収強度の比率を得ることができる。
(5) 吸収強度比率=I1650/I1600
A temperature-responsive cell culture substrate is prepared in which a polystyrene cell culture dish is used as a substrate and PNIPAM is immobilized as a temperature-responsive polymer. When the same substrate FT-IR-ATR measuring, represented by the following formula (5), for the absorption intensity of the benzene ring stretching derived from polystyrene (1600 cm -1), amide stretch derived from PNIPAM (1650 cm -1 ) Can be obtained.
(5) Absorption intensity ratio = I 1650 / I 1600
 既知量のPNIPAM(1~10μg/cm)をポリスチレン基材に塗布し、式(5)により得られる吸収強度比率から検量線を予め作成しておくことにより、ポリスチレン基材上に固定化された未知のPNIPAMの量を求めることができる。(参考文献:Langmuir 2004,20,5506-5511)。 A known amount of PNIPAM (1 to 10 μg / cm 2 ) is applied to a polystyrene substrate, and a calibration curve is prepared in advance from the absorption intensity ratio obtained by the formula (5). The unknown PNIPAM amount can be determined. (Reference: Langmuir 2004, 20, 5506-5511).
 1.2 温度応答性領域を構成するポリマー
 温度応答性領域を構成するポリマーは、特に限定されず、幅広く選択することができる。温度応答性領域を構成するポリマーは、具体的には、下限臨界溶解温度(LCST)を有するポリマー、又は上限臨界溶解温度[Upper Critical Solution emperature(UCST)]を有するポリマーが挙げられ、ブロックポリマーであってもよい。ブロックポリマーは、一種の温度応答性ブロックを含んでいてもよいし、複数種の温度応答性ブロックを含んでいてもよい。
1.2 Polymer Constituting Temperature-Responsive Region The polymer constituting the temperature-responsive region is not particularly limited, and can be widely selected. Specific examples of the polymer constituting the temperature-responsive region include a polymer having a lower critical solution temperature (LCST) or a polymer having an upper critical solution temperature (Upper Critical Solution empture (UCST)). There may be. The block polymer may include one type of temperature-responsive block, or may include a plurality of types of temperature-responsive blocks.
 温度応答性領域を構成するポリマーとしては、例えば、特公平06-104061号公報に記載されているポリマーが挙げられる。具体的には、例えば、以下のモノマーの少なくとも一種に基づく構成単位を有するポリマーが挙げられる。モノマーとしては、例えば、(メタ)アクリルアミド化合物、N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体及びビニルエーテル誘導体等が挙げられる。 ポ リ マ ー As the polymer constituting the temperature responsive region, for example, the polymer described in Japanese Patent Publication No. 06-104061 can be mentioned. Specifically, for example, a polymer having a structural unit based on at least one of the following monomers may be mentioned. Examples of the monomer include (meth) acrylamide compounds, N- (or N, N-di) alkyl-substituted (meth) acrylamide derivatives and vinyl ether derivatives.
 温度応答性領域を構成するポリマーとしては、ポリビニルアルコール部分酢化物及び含窒素環状ポリマー等も例示できる。 ポ リ マ ー Examples of the polymer constituting the temperature-responsive region include polyvinyl alcohol partially acetylated products and nitrogen-containing cyclic polymers.
 温度応答性領域を構成するポリマーとしては、アルキル置換セルロース誘導体、ポリアルキレンオキサイドブロック共重合体及びポリアルキレンオキサイドブロック共重合体等も例示できる。 Examples of the polymer constituting the temperature-responsive region include an alkyl-substituted cellulose derivative, a polyalkylene oxide block copolymer, and a polyalkylene oxide block copolymer.
 培養細胞の剥離は、通常、5℃~50℃の範囲で行うことが好ましいため、LCST又はUCSTがこの範囲内であるポリマーが、温度応答性領域を構成するポリマーとして好ましい。そのような温度応答性を有する、ポリ(N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド誘導体を重合して得られるポリマー(ポリ(N-(若しくはN,N-ジ)アルキル置換(メタ)アクリルアミド))の具体例としては、ポリ-N-n-プロピルアクリルアミド(下限臨界溶解温度21℃)、ポリ-N-n-プロピルメタクリルアミド(同27℃)、ポリ-N-イソプロピルアクリルアミド(同32℃)、ポリ-N-イソプロピルメタクリルアミド(同43℃)、ポリ-N-シクロプロピルアクリルアミド(同45℃)、ポリ-N-エトキシエチルアクリルアミド(同約35℃)、ポリ-N-エトキシエチルメタクリルアミド(同約45℃)、ポリ-N-テトラヒドロフルフリルアクリルアミド(同約28℃)、ポリ-N-テトラヒドロフルフリルメタクリルアミド(同約35℃)、ポリ-N,N-エチルメチルアクリルアミド(同56℃)、ポリ-N,N-ジエチルアクリルアミド(同32℃)、ポリ(N-エチルアクリルアミド)、ポリ(N-イソプロピルメタクリルアミド)、ポリ(N-シクロプロピルアクリルアミド)及びポリ(N-シクロプロピルメタクリルアミド)等が挙げられる。 (4) Usually, it is preferable that the detachment of the cultured cells is performed in a range of 5 ° C. to 50 ° C., and a polymer having an LCST or UCST within this range is preferable as a polymer constituting the temperature-responsive region. A polymer obtained by polymerizing a poly (N- (or N, N-di) alkyl-substituted (meth) acrylamide derivative having such a temperature response (poly (N- (or N, N-di) alkyl-substituted) Specific examples of (meth) acrylamide)) include poly-Nn-propylacrylamide (lower critical solution temperature: 21 ° C.), poly-Nn-propyl methacrylamide (27 ° C.), poly-N-isopropylacrylamide (32 ° C), poly-N-isopropylmethacrylamide (43 ° C), poly-N-cyclopropylacrylamide (45 ° C), poly-N-ethoxyethylacrylamide (35 ° C), poly-N- Ethoxyethyl methacrylamide (about 45 ° C), poly-N-tetrahydrofurfurylacrylamide (about 28 ° C), poly- -Tetrahydrofurfuryl methacrylamide (about 35 ° C), poly-N, N-ethylmethylacrylamide (56 ° C), poly-N, N-diethylacrylamide (32 ° C), poly (N-ethylacrylamide), Examples thereof include poly (N-isopropylmethacrylamide), poly (N-cyclopropylacrylamide), and poly (N-cyclopropylmethacrylamide).
 上記と同様の範囲のLCST又はUCSTを有する具体的なポリマーとしては、他にも、以下のものを例示できる。ポリビニルエーテルとして、例えば、ポリメチルビニルエーテル等が挙げられる。含窒素環状ポリマーとして、例えば、ポリ(N-アクリロイルピロリジン)及びポリ(N-アクリロイルピペリジン)等が挙げられる。アルキル置換セルロース誘導体として、例えば、メチルセルロース、エチルセルロース及びヒドロキシプロピルセルロース等が挙げられる。ポリアルキレンオキサイドブロック共重合体としては、例えば、ポリポリプロピレンオキサイドとポリエチレンオキサイドとのブロック共重合体等が挙げられる。 具体 Other specific polymers having an LCST or UCST in the same range as described above include the following. Examples of the polyvinyl ether include polymethyl vinyl ether. Examples of the nitrogen-containing cyclic polymer include poly (N-acryloylpyrrolidine) and poly (N-acryloylpiperidine). Examples of the alkyl-substituted cellulose derivative include methyl cellulose, ethyl cellulose, and hydroxypropyl cellulose. Examples of the polyalkylene oxide block copolymer include a block copolymer of polypropylene oxide and polyethylene oxide.
 温度応答性領域を構成するポリマーとしては、ホモポリマーが温度応答性を示す上記モノマーの少なくとも一種と、上記モノマー以外の少なくとも一種のモノマーとの共重合体を用いることもできる。そのような他のモノマーとして、例えば、荷電を有するモノマー及び/又は疎水性モノマーを使用できる。 ポ リ マ ー As the polymer constituting the temperature-responsive region, a copolymer of at least one of the above-mentioned monomers whose homopolymer exhibits temperature-responsiveness and at least one of the monomers other than the above-mentioned monomers can also be used. As such other monomers, for example, charged monomers and / or hydrophobic monomers can be used.
 荷電を有するモノマーとして、例えばアミノ基を有するモノマー、アンモニウム塩を有するモノマー、カルボキシル基を有するモノマー、及びスルホン酸基を有するモノマー等が挙げられる。 Examples of the charged monomer include a monomer having an amino group, a monomer having an ammonium salt, a monomer having a carboxyl group, and a monomer having a sulfonic acid group.
 アミノ基を有するモノマーとしては、例えば、ジアルキルアミノアルキル(メタ)アクリルアミド、ジアルキルアミノアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、アミノスチレン、アミノアルキルスチレン、アミノアルキル(メタ)アクリルアミド等が挙げられる。 Examples of the monomer having an amino group include dialkylaminoalkyl (meth) acrylamide, dialkylaminoalkyl (meth) acrylate, aminoalkyl (meth) acrylate, aminostyrene, aminoalkylstyrene, aminoalkyl (meth) acrylamide and the like. .
 アンモニウム塩を有するモノマーとしては、例えば、[2-(2-メチルアクリロイルオキシ)エチル]トリメチルアンモニウム塩、(メタ)アクリルアミドアルキルトリメチルアンモニウム塩である3-アクリルアミドプロピルトリメチルアンモニウムクロライド等が挙げられる。 Examples of the monomer having an ammonium salt include [2- (2-methylacryloyloxy) ethyl] trimethylammonium salt, and 3-acrylamidopropyltrimethylammonium chloride which is a (meth) acrylamidoalkyltrimethylammonium salt.
 カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸等が挙げられる。 Examples of the monomer having a carboxyl group include acrylic acid and methacrylic acid.
 また、スルホン酸を有するモノマーとしては、(メタ)アクリルアミドアルキルスルホン酸等が挙げられる。 モ ノ マ ー Further, examples of the monomer having a sulfonic acid include (meth) acrylamidoalkylsulfonic acid and the like.
 疎水性モノマーとしては、アルキルアクリレート、アルキルメタアクリレート等が挙げられる。アルキルアクリレートとしては、例えば、n-ブチルアクリレート、t-ブチルアクリレート等が挙げられる。アルキルメタアクリレートとしては、例えば、n-ブチルメタクリレート、t-ブチルメタクリレート、メチルメタクリレート等が挙げられる。疎水性モノマーとしては、以下に挙げる含フッ素モノマーも使用できる。 (4) Examples of the hydrophobic monomer include alkyl acrylate and alkyl methacrylate. Examples of the alkyl acrylate include n-butyl acrylate and t-butyl acrylate. Examples of the alkyl methacrylate include n-butyl methacrylate, t-butyl methacrylate, methyl methacrylate and the like. As the hydrophobic monomer, the following fluorinated monomers can also be used.
 含フッ素モノマーとして、例えば、カルボキシル基に対して直接又は2価の有機基を介してエステル結合又はアミド結合したフルオロアルキル基を有し、α位に置換基を有することのあるアクリル酸エステル(以下、「フルオロアルキル基含有アクリル酸エステル」と略記することがある。)、又は「フルオロアルキル基含有アクリルアミド」等が挙げられる。 As the fluorinated monomer, for example, an acrylate ester having a fluoroalkyl group directly or via a divalent organic group to a carboxyl group and having an ester bond or an amide bond and having a substituent at the α-position (hereinafter referred to as an acrylate ester) , "Fluoroalkyl group-containing acrylic acid ester"), or "fluoroalkyl group-containing acrylamide".
 フルオロアルキル基含有アクリル酸エステル又はフルオロアルキル基含有アクリルアミドの好ましい具体例としては、下記一般式(1):
CH=C(-X)-C(=O)-Y-Z-Rf    (1)
Preferred specific examples of the fluoroalkyl group-containing acrylate or fluoroalkyl group-containing acrylamide include the following general formula (1):
CH 2 CC (-X) -C (= O) -YZ-Rf (1)
[式中、Xは、水素原子、炭素数1~21の直鎖状又は分岐状のアルキル基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、CFX基(但し、X及びXは、水素原子、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。)、シアノ基、炭素数1~21の直鎖状若しくは分岐状のフルオロアルキル基、置換若しくは非置換のベンジル基又は置換若しくは非置換のフェニル基であり;
Yは、-O-又は-NH-であり;
Zは、炭素数1~10の脂肪族基、炭素数6~10の芳香族基若しくは環状脂肪族基、
-CHCHN(R)SO-基(但し、Rは炭素数1~4のアルキル基である。
)、-CHCH(OZ)CH-基(但し、Zは水素原子又はアセチル基である。)、-(CH-SO-(CH-基、-(CH-S-(CH-基(但し、mは1~10、nは0~10である。)又は-(CH-COO-基(mは1~10である。)であり;
Rfは、ヘテロ原子を有していてもよい、炭素数1~20の直鎖状又は分岐状のフルオロアルキル基である。]で表されるアクリル酸エステル及びアクリルアミドを例示できる。
[In the formula, X is a hydrogen atom, a linear or branched alkyl group having 1 to 21 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a CFX 1 X 2 group (provided that X 1 and X 2 is a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom or an iodine atom), a cyano group, a linear or branched fluoroalkyl group having 1 to 21 carbon atoms, a substituted or unsubstituted benzyl group, or A substituted or unsubstituted phenyl group;
Y is -O- or -NH-;
Z is an aliphatic group having 1 to 10 carbon atoms, an aromatic group or a cycloaliphatic group having 6 to 10 carbon atoms,
—CH 2 CH 2 N (R 1 ) SO 2 — group (where R 1 is an alkyl group having 1 to 4 carbon atoms).
), -CH 2 CH (OZ 1 ) CH 2 -group (where Z 1 is a hydrogen atom or an acetyl group),-(CH 2 ) m -SO 2- (CH 2 ) n -group,-( CH 2 ) m —S— (CH 2 ) n — group (where m is 1 to 10 and n is 0 to 10) or — (CH 2 ) m —COO— group (m is 1 to 10) There is));
Rf is a linear or branched fluoroalkyl group having 1 to 20 carbon atoms which may have a hetero atom. And acrylamide represented by the following formula:
 上記一般式(1)において、Rfで表されるフルオロアルキル基は、少なくとも一個の水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいアルキル基であり、全ての水素原子がフッ素原子で置換された、ヘテロ原子を有していてもよいパーフルオロアルキル基も包含するものである。 In the above general formula (1), the fluoroalkyl group represented by Rf is an alkyl group in which at least one hydrogen atom is substituted by a fluorine atom and which may have a hetero atom, and all hydrogen atoms are It also includes a perfluoroalkyl group which may have a hetero atom and is substituted by a fluorine atom.
 上記一般式(1)で表されるアクリル酸エステル及びアクリルアミドでは、Rfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基であることが好ましく、特に、炭素数1~3の直鎖状又は分岐状のパーフルオロアルキル基であることが好ましい。近年、EPA(米国環境保護庁)により、炭素数が8以上のフルオロアルキル基を有する化合物は、環境、生体中で分解して蓄積するおそれがある環境負荷が高い化合物であることが指摘されているが、一般式(1)で表されるアクリル酸エステル及びアクリルアミドにおいてRfが炭素数1~6の直鎖状又は分岐状のフルオロアルキル基である場合には、この様な環境問題が指摘されていないためである。 In the acrylate and acrylamide represented by the general formula (1), Rf is preferably a linear or branched fluoroalkyl group having 1 to 6 carbon atoms, and particularly preferably a straight-chain or branched fluoroalkyl group having 1 to 3 carbon atoms. It is preferably a chain or branched perfluoroalkyl group. In recent years, EPA (United States Environmental Protection Agency) has pointed out that a compound having a fluoroalkyl group having 8 or more carbon atoms is a compound having a high environmental load that may decompose and accumulate in the environment and living organisms. However, when Rf is a linear or branched fluoroalkyl group having 1 to 6 carbon atoms in the acrylate and acrylamide represented by the general formula (1), such environmental problems are pointed out. It is not.
 上記式(1)において、Rf基の例として、-CF、-CFCF、-CFCFH、-CFCFCF、-CFCFHCF、-CF(CF、-CFCFCFCF、-CFCF(CF、-C(CF、-(CFCF、-(CFCF(CF、-CFC(CF、-CF(CF)CFCFCF、-(CFCF、-(CFCF(CF等が挙げられる。 In the above formula (1), examples of the Rf group include —CF 3 , —CF 2 CF 3 , —CF 2 CF 2 H, —CF 2 CF 2 CF 3 , —CF 2 CFHCF 3 , and —CF (CF 3 ). 2, -CF 2 CF 2 CF 2 CF 3, -CF 2 CF (CF 3) 2, -C (CF 3) 3, - (CF 2) 4 CF 3, - (CF 2) 2 CF (CF 3) 2 , -CF 2 C (CF 3 ) 3 , -CF (CF 3 ) CF 2 CF 2 CF 3 ,-(CF 2 ) 5 CF 3 ,-(CF 2 ) 3 CF (CF 3 ) 2 and the like. .
 さらに、含フッ素モノマーは、非テロマーであることが好ましく、この点で、Rf基としては、炭素数1~2のフルオロアルキル基、又はヘテロ原子によって介在された二以上の炭素数1~3のフルオロアルキル基が好ましい。具体例としては、COCF(CF)CFOCF(CF)-、(CFNC2p-(p=1~6)等が挙げられる。 Further, the fluorinated monomer is preferably a non-telomer, and in this regard, the Rf group includes a fluoroalkyl group having 1 to 2 carbon atoms or a C1 to C2 having 2 or more carbon atoms interposed by a hetero atom. Fluoroalkyl groups are preferred. Specific examples include C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3 ) — and (CF 3 ) 2 NC p F 2p − (p = 1 to 6).
 上記した一般式(1)で表されるアクリル酸エステル及びアクリルアミドの具体例は、次の通りである。 具体 Specific examples of the acrylate and acrylamide represented by the general formula (1) are as follows.
  CH=C(-H)-C(=O)-O-(CH-Rf
  CH=C(-H)-C(=O)-O-C-Rf
  CH=C(-Cl)-C(=O)-O-(CH-Rf
  CH=C(-H)-C(=O)-O-(CHN(-CH)SO-Rf
  CH=C(-H)-C(=O)-O-(CHN(-C)SO-Rf  CH=C(-H)-C(=O)-O-CHCH(-OH)CH-Rf
  CH=C(-H)-C(=O)-O-CHCH(-OCOCH)CH-Rf  CH=C(-H)-C(=O)-O-(CH-S-Rf
  CH=C(-H)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-H)-C(=O)-O-(CH-SO-Rf
  CH=C(-H)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-H)-C(=O)-NH-(CH-Rf
  CH=C(-CH)-C(=O)-O-(CH-Rf
  CH=C(-CH)-C(=O)-O-C-Rf
  CH=C(-CH)-C(=O)-O-(CHN(-CH)SO-Rf
  CH=C(-CH)-C(=O)-O-(CHN(-C)SO-Rf
  CH=C(-CH)-C(=O)-O-CHCH(-OH)CH-Rf
  CH=C(-CH)-C(=O)-O-CHCH(-OCOCH)CH-Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 —Rf
CH 2 CC (—H) —C (= O) —OC 6 H 4 —Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 2 —Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 N (—CH 3 ) SO 2 —Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 N (—C 2 H 5 ) SO 2 —Rf CH 2 CC (—H) —C (= O) —O —CH 2 CH (—OH) CH 2 —Rf
CH 2 CC (—H) —C (= O) —O—CH 2 CH (—OCOCH 3 ) CH 2 —Rf CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 -S-Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—H) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf CH 2 CC (—H) —C (= O) —NH— (CH 2 ) 2 -Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —OC 6 H 4 —Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 N (—CH 3 ) SO 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 N (—C 2 H 5 ) SO 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —O—CH 2 CH (—OH) CH 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —O—CH 2 CH (—OCOCH 3 ) CH 2 —Rf
  CH=C(-CH)-C(=O)-O-(CH-S-Rf
  CH=C(-CH)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CH)-C(=O)-NH-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-S-Rf
  CH=C(-F)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-F)-C(=O)-NH-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-(CH-Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf CH 2 CC (—CH 3 ) —C (= O) —O — (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CH 3 ) —C (= O) —NH— (CH 2 ) 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf CH 2 CC (—F) —C (= O) —NH— (CH 2 ) 2 -Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
  CH=C(-Cl)-C(=O)-NH-(CH-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CF)-C(=O)-NH-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFH)-C(=O)-NH-(CH-Rf
CH 2 CC (—Cl) —C (= O) —NH— (CH 2 ) 2 —Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf CH 2 CC (—CF 3 ) —C (= O) —O — (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 3 ) —C (= O) —NH— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —NH— (CH 2 ) 2 —Rf
  CH=C(-CN)-C(=O)-O-(CH-S-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CN)-C(=O)-NH-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFCF)-C(=O)-NH-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-S-Rf
  CH=C(-F)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-Rf
  CH=C(-F)-C(=O)-O-(CH-SO-(CH-Rf  CH=C(-F)-C(=O)-NH-(CH-Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CN) —C (= O) —NH— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 2 —S—Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 2 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 2 —SO 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —NH— (CH 2 ) 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—F) —C (= O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf CH 2 CC (—F) —C (= O) —NH— (CH 2 ) 3 -Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-Rf
  CH=C(-Cl)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-Rf
  CH=C(-Cl)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-Rf
  CH=C(-CF)-C(=O)-O-(CH-S-(CH-Rf  CH=C(-CF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CF)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-Rf
  CH=C(-CFH)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFH)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-Rf
  CH=C(-CN)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-Rf
  CH=C(-CN)-C(=O)-O-(CH-SO-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-S-(CH-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-Rf
  CH=C(-CFCF)-C(=O)-O-(CH-SO-(CH-Rf
[上記式中、Rfは、炭素数1~6、好ましくは、1~3のフルオロアルキル基である。]   
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—Cl) —C (= O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf CH 2 CC (—CF 3 ) —C (= O) —O — (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—CF 3 ) —C (= O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—CF 2 H) —C (= O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—CN) —C (= O) —O— (CH 2 ) 3 —SO 2 — (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 3 —S—Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 3 —S— (CH 2 ) 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 3 —SO 2 —Rf
CH 2 CC (—CF 2 CF 3 ) —C (= O) —O— (CH 2 ) 2 —SO 2 — (CH 2 ) 2 —Rf
[In the above formula, Rf is a fluoroalkyl group having 1 to 6, preferably 1 to 3 carbon atoms. ]
  COCF(CF)CFO-CF(CF)CH-MAc
  COCF(CF)CFO-CF(CF)CH-Ac
  (CFCH-Ac
  CCH-MAc
  CCH-Ac
[上記式中において、Acはアクリレート、MAcはメタクリレートを、それぞれ表す。
C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3) CH 2 -MAc
C 3 F 7 OCF (CF 3 ) CF 2 OCF (CF 3) CH 2 -Ac
(CF 3 ) 2 CH-Ac
C 2 F 5 CH 2 -MAc
C 2 F 5 CH 2 -Ac
[In the above formula, Ac represents acrylate, and MAc represents methacrylate.
]
 上記したフルオロアルキル基含有アクリル酸エステル及びフルオロアルキル基含有アクリルアミドは、一種単独又は二種以上混合して用いることができる。 フ ル オ ロ The above fluoroalkyl group-containing acrylates and fluoroalkyl group-containing acrylamides can be used alone or in combination of two or more.
 温度応答性領域を構成するポリマーとしては、(メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を少なくとも含むモノマー組成物を重合することにより得られうるポリマー、又はポリビニルアルコール部分酢化物が好ましい。 As the polymer constituting the temperature-responsive region, a monomer composition containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether is polymerized. Or a partially acetylated polyvinyl alcohol obtained by the reaction.
 また、前記した温度応答性領域を構成するポリマーをセグメントとして有するブロックポリマーを用いてもよい。また、ポリマー本来の性質を損なわない範囲で、温度応答性領域を構成するポリマー同士を架橋したものを用いてもよい。その際利用される架橋性モノマーとしては特に限定されず、幅広く選択できる。例えば、N,N’-メチレンビス(メタ)アクリルアミドが挙げられる。 ブ ロ ッ ク Alternatively, a block polymer having as a segment the polymer constituting the temperature-responsive region may be used. In addition, as long as the intrinsic properties of the polymer are not impaired, a crosslinked polymer constituting the temperature-responsive region may be used. The crosslinking monomer used at this time is not particularly limited, and can be widely selected. For example, N, N'-methylenebis (meth) acrylamide can be mentioned.
 1.3 デンドリティックブロックコポリマー
 本開示においては、温度応答層(A)が、デンドリティックポリマーの末端に、前記温度応答性領域を構成するポリマーが結合したブロックポリマー(本明細書において、「デンドリティックブロックコポリマー」という)を含有することが好ましい。これにより、より優れた細胞剥離性を有し、及び/又は使用中の温度応答性ポリマーの溶出が抑制された温度応答性細胞培養基材が得られやすくなる。
1.3 Dendritic Block Copolymer In the present disclosure, the temperature responsive layer (A) is a block polymer in which a polymer constituting the temperature responsive region is bonded to a terminal of the dendritic polymer (in the present specification, “dendritic block copolymer”). Block copolymer "). Thereby, it becomes easy to obtain a temperature-responsive cell culture substrate having more excellent cell detachability and / or suppressing elution of the temperature-responsive polymer during use.
 特に、温度応答性領域を除いた、コアとなるデンドリティックポリマー部分(本明細書において、この部分のことを、デンドリティックブロックコポリマー全体と峻別するために、単に「デンドリティックポリマー」と呼ぶことがある)が、スチレン骨格又はシロキサン骨格のデンドリティックポリマーであることが好ましい。本開示者らの検討によれば、このような骨格を有していることにより、デンドリティックポリマー部分が、基材表面に規則的に配置されやすくなり、これにより安定的に基材表面に固定化される結果、細胞培養のときだけでなく、温度応答により細胞を剥離させるときにおいても遊離しにくいという効果が得られる。 In particular, the core dendritic polymer portion excluding the temperature-responsive region (in this specification, this portion is simply referred to as “dendritic polymer” in order to distinguish it from the entire dendritic block copolymer. Is a dendritic polymer having a styrene skeleton or a siloxane skeleton. According to the study of the present inventors, having such a skeleton makes it easier for the dendritic polymer portion to be regularly arranged on the substrate surface, thereby stably fixing it to the substrate surface. As a result, it is possible to obtain an effect that the cells are not easily released not only in cell culture but also in detachment of cells by temperature response.
 また、スチレン骨格のデンドリティックポリマーの末端に前記温度応答性領域を構成するポリマーが結合したデンドリティックブロックコポリマーは、水不溶性のスチレン骨格のデンドリティックポリマー部分と、水に親和性を有する温度応答性領域とが結合したものである。したがって、このデンドリティックブロックコポリマーで基材表面を被覆し、乾燥させることにより、基材表面に微細な相分離構造が形成されることが期待される。細胞が基材表面に付着する際に、基材表面に相分離構造があると細胞の変性を抑えることが可能となるため好ましい。 Further, a dendritic block copolymer in which a polymer constituting the temperature-responsive region is bonded to a terminal of a dendritic polymer having a styrene skeleton has a water-insoluble styrene skeleton dendritic polymer portion and a temperature-responsive This is the combination of the region and the region. Therefore, it is expected that a fine phase-separated structure is formed on the surface of the substrate by coating the surface of the substrate with the dendritic block copolymer and drying. When the cells adhere to the surface of the substrate, it is preferable that the surface of the substrate has a phase-separated structure because the denaturation of the cells can be suppressed.
 デンドリティックポリマーとしては、末端数15以上のデンドリティックポリマーが好ましい。末端数が15以上であることにより、末端に結合する温度応答性領域を構成するポリマーの単位体積当たり密度を好ましい範囲とすることができ、このことが、温度応答時の細胞剥離性の向上に寄与する。この点において、スチレン骨格のデンドリティックポリマーの末端数は、15以上であれば好ましく、20以上であればより好ましく、30以上であればさらに好ましい。 As the dendritic polymer, a dendritic polymer having 15 or more terminals is preferable. When the number of terminals is 15 or more, the density per unit volume of the polymer constituting the temperature-responsive region bound to the terminals can be set in a preferable range, which is an improvement in cell detachability during temperature response. Contribute. In this regard, the number of terminals of the dendritic polymer having a styrene skeleton is preferably 15 or more, more preferably 20 or more, and even more preferably 30 or more.
 また、このデンドリティックポリマーの末端数は、温度応答性領域を構成するポリマーを付加させる反応の時間を短縮できるという点において、100以下であることが好ましく、50以下であることがより好ましい。 The number of terminals of the dendritic polymer is preferably 100 or less, more preferably 50 or less, from the viewpoint that the time for the reaction for adding the polymer constituting the temperature-responsive region can be shortened.
 以上を総合すると、デンドリティックポリマーの末端数の好ましい範囲としては、15~50が挙げられ、その中においても20~50が好ましく、30~50がより好ましい。 In summary, the preferred range of the number of terminals of the dendritic polymer is 15 to 50, preferably 20 to 50, and more preferably 30 to 50.
 デンドリティックポリマーの重量平均分子量(Mw)は特に限定されず、幅広い範囲から選択することができる。特に、デンドリティックポリマーのMwが2,000以上であれば、ポリスチレン基材にデンドリティックブロックコポリマーが固定化されやすくなり、培地等に溶出する可能性が低減される。この点で、デンドリティックポリマーのMwは、3,000以上が好ましく、4,000以上がより好ましく、5,000以上が最も好ましい。 重量 The weight average molecular weight (Mw) of the dendritic polymer is not particularly limited, and can be selected from a wide range. In particular, when the Mw of the dendritic polymer is 2,000 or more, the dendritic block copolymer is easily immobilized on the polystyrene substrate, and the possibility of elution into a medium or the like is reduced. In this regard, the Mw of the dendritic polymer is preferably 3,000 or more, more preferably 4,000 or more, and most preferably 5,000 or more.
 本開示においてデンドリティックポリマーのMwは、GPCにより以下の条件で測定する。
なお、以下に挙げる装置及び試薬等に換えて、それらと同等のものを使用してもよい。
  装置 :特に限定されない。
  検出器 :示差屈折率検出器RI
  カラム:Styragel HR-4E+HR-5E
  溶媒 :50mMのLiBrを含むDMF
  流速 :1.0ml/min
  カラム温度 :28℃
  注入量 :100μl
  標準試料:ポリスチレン
In the present disclosure, Mw of the dendritic polymer is measured by GPC under the following conditions.
Note that, instead of the following devices and reagents, equivalents may be used.
Apparatus: Not particularly limited.
Detector: Differential refractive index detector RI
Column: Styragel HR-4E + HR-5E
Solvent: DMF containing 50 mM LiBr
Flow rate: 1.0 ml / min
Column temperature: 28 ° C
Injection volume: 100 μl
Standard sample: polystyrene
 また、デンドリティックポリマーのMwが1,000,000以下であれば、温度応答性領域を構成するポリマーの導入率を好ましい範囲内に保つことができる。この点で、デンドリティックポリマーのMwは、500,000以下が好ましく、300,000以下がより好ましく、100,000以下が最も好ましい。 で あ れ ば If the Mw of the dendritic polymer is 1,000,000 or less, the introduction rate of the polymer constituting the temperature-responsive region can be kept within a preferable range. In this regard, the Mw of the dendritic polymer is preferably 500,000 or less, more preferably 300,000 or less, and most preferably 100,000 or less.
 必要に応じて、デンドリティックブロックコポリマーの末端に水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基を付与してもよい。これらの基の付与は常法により行うことができる。 If necessary, a group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be provided at the terminal of the dendritic block copolymer. The addition of these groups can be performed by a conventional method.
 また、必要に応じて、温度応答性領域を構成するポリマーが結合した状態のデンドリティックブロックコポリマーにおいて、デンドリティックポリマー部分に水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基が残存していてもよい。温度応答性領域を構成するポリマー中または末端に、水酸基、カルボキシル基、アミノ基、カルボニル基、アルデヒド基、スルホン酸基等の正又は負の荷電を有する基を付与させてもよい。 Further, if necessary, in the dendritic block copolymer in a state in which the polymer constituting the temperature-responsive region is bonded, a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, a sulfonic acid group, etc. A group having a positive or negative charge may remain. A group having a positive or negative charge such as a hydroxyl group, a carboxyl group, an amino group, a carbonyl group, an aldehyde group, or a sulfonic acid group may be provided in or at the terminal constituting the temperature-responsive region.
 デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に温度応答性領域を構成するポリマーが少なくとも一種結合しているが、少なくとも一種のその他のポリマーがさらに結合していてもよい。 In the dendritic block copolymer, at least one polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer, but at least one other polymer may be further bonded.
 デンドリティックブロックコポリマーは、末端数15以上のデンドリティックポリマーの末端に、Mw3000以上の温度応答性領域を構成するポリマーがデンドリティックブロックコポリマー全体に対して50~99.5質量%結合しているものであれば好ましい。このデンドリティックブロックコポリマーは、温度応答性領域を構成するポリマーがデンドリティックポリマーの末端に十分量結合しているため、温度を変えても当該ポリマー上の培養細胞が剥離し難くなるということがない。この点において、本開示のデンドリティックブロックコポリマーは、温度応答性領域を構成するポリマーがデンドリティックポリマーの末端に、デンドリティックブロックコポリマー全体に対して70質量%以上結合していると好ましく、80質量%以上結合しているとより好ましい。 The dendritic block copolymer is a dendritic polymer having a terminal number of 15 or more and a polymer constituting a temperature-responsive region having an Mw of 3000 or more bound to the terminal of the dendritic polymer by 50 to 99.5% by mass based on the entire dendritic block copolymer. Is preferred. In the dendritic block copolymer, the polymer constituting the temperature-responsive region is sufficiently bonded to the terminal of the dendritic polymer, so that even when the temperature is changed, the cultured cells on the polymer are not easily separated. . In this regard, the dendritic block copolymer of the present disclosure is preferably configured such that the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer by 70% by mass or more based on the entire dendritic block copolymer. % Is more preferable.
 デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に、温度応答性領域を構成するポリマーがデンドリティックブロックコポリマー全体に対して99.5質量%以下結合しているものであれば好ましい。この点において、デンドリティックブロックコポリマーは、デンドリティックポリマーの末端に、温度応答性領域を構成するポリマーがデンドリティックブロックコポリマー全体に対して98質量%以下結合していると好ましく、97質量%以下結合しているとより好ましい。 The dendritic block copolymer is preferably one in which the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer at 99.5% by mass or less based on the entire dendritic block copolymer. In this regard, the dendritic block copolymer is preferably such that the polymer constituting the temperature-responsive region is bonded to the terminal of the dendritic polymer at 98% by mass or less based on the entire dendritic block copolymer, and 97% by mass or less. More preferably.
 本開示のデンドリティックブロックコポリマーのMw(重量基準)は、550,000~10,000,000であれば好ましい。測定されたMwが50,000以上の場合、温度応答性領域を構成するポリマーがデンドリティックポリマーの末端に導入されやすくなり、ブレンドされている割合を適度に保つことができ、細胞剥離性の低下を避けられる。 デ ン The dendritic block copolymer of the present disclosure preferably has a Mw (weight basis) of 550,000 to 10,000,000. When the measured Mw is 50,000 or more, the polymer constituting the temperature-responsive region becomes easy to be introduced into the terminal of the dendritic polymer, and the blended ratio can be kept at an appropriate level, and the cell detachment property decreases. Can be avoided.
 本開示のデンドリティックブロックコポリマーにおいて、デンドリティックポリマーの末端に温度応答性領域を構成するポリマーを結合させる方法は、特に限定されず、幅広く選択できる。 に お い て In the dendritic block copolymer of the present disclosure, the method of bonding the polymer constituting the temperature-responsive region to the terminal of the dendritic polymer is not particularly limited, and can be widely selected.
 結合方法としては、デンドリティックポリマーの末端にRAFT剤を導入し、それを起点に各種モノマーを成長させる等の方法が挙げられる。
 RAFT重合の開始剤は特に限定されず、幅広く選択できる。例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(4-メトキシ‐2,4-ジメチルバレロニトリル)(V-70)及び2,2’-アゾビス[(2-カルボキシエチル)-2-(メチルプロピオンアミジン)(V-057)等が挙げられる。
Examples of the binding method include a method in which a RAFT agent is introduced into a terminal of a dendritic polymer, and various monomers are grown from the RAFT agent as a starting point.
The initiator for RAFT polymerization is not particularly limited, and can be widely selected. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70) and 2,2′-azobis [(2- Carboxyethyl) -2- (methylpropionamidine) (V-057);
 RAFT重合時に使用する溶媒については特に限定されず幅広く選択できる。例えば、ベンゼン、テトラヒドロフラン、1,4-ジオキサン及びジメチルホルムアルデヒド(DMF)等が好ましく、重合反応に使用するモノマー、RAFT剤及び重合開始剤の種類によって、適宜選択できる。重合時の開始剤濃度、RAFT剤量、反応温度及び反応時間等は特に限定されず、目的に応じて適宜設定できる。重合時、反応液は静置させても攪拌してもよい。 溶媒 The solvent used in the RAFT polymerization is not particularly limited and can be widely selected. For example, benzene, tetrahydrofuran, 1,4-dioxane, dimethylformaldehyde (DMF), and the like are preferable, and can be appropriately selected depending on the type of the monomer, the RAFT agent, and the polymerization initiator used in the polymerization reaction. The concentration of the initiator, the amount of the RAFT agent, the reaction temperature, the reaction time, and the like during the polymerization are not particularly limited, and can be appropriately set according to the purpose. During the polymerization, the reaction solution may be left standing or stirred.
 スチレン骨格デンドリティックポリマーの構造は、幅広く選択することができる。スチレン骨格デンドリティックポリマーの構造は、例えば、以下の一般式(2)により表わすことができる。 The structure of the styrene skeleton dendritic polymer can be widely selected. The structure of the styrene skeleton dendritic polymer can be represented, for example, by the following general formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式中、Rは、共有結合により温度応答性領域を構成するポリマーが導入されうる基である。nは重合度を表わす。 In the above formula, R 2 is a group into which a polymer constituting a temperature-responsive region can be introduced by a covalent bond. n represents the degree of polymerization.
 Rとしては、特に限定されず、幅広く選択することができる。特に、可逆的付加-開裂連鎖移動(RAFT)剤として作用しうる基であれば、RAFT重合により温度応答性領域を構成するポリマーを導入できるため好ましい。このようなRAFT剤として作用しうる基としては、特に限定されず、幅広く選択できる。例えば、チオカルボニルチオ基等が挙げられる。
チオカルボニルチオ基としては、ジチオエステル基、ジチオカルバメート基、トリチオカーボネート基、キサンタート基及びジチオベンゾエート基等が挙げられる。
R 2 is not particularly limited and can be selected widely. In particular, a group capable of acting as a reversible addition-fragmentation chain transfer (RAFT) agent is preferable because a polymer constituting a temperature-responsive region can be introduced by RAFT polymerization. Such a group that can act as a RAFT agent is not particularly limited, and can be widely selected. For example, a thiocarbonylthio group and the like can be mentioned.
Examples of the thiocarbonylthio group include a dithioester group, a dithiocarbamate group, a trithiocarbonate group, a xanthate group, and a dithiobenzoate group.
 Rは、末端に、炭素数3~12の、置換されていてもよい炭化水素基を有していてもよい。この炭化水素基は、分岐状炭化水素基であれば好ましい。このことにより、デンドリティックブロックコポリマー中の温度応答性部位に適度な立体障害を持たせることができ、より効果的に基材表面を被覆することができるという効果が得られる。このときのRの具体例として、以下のようなトリチオカーボネート基が挙げられる。 R 2 may have an optionally substituted hydrocarbon group having 3 to 12 carbon atoms at the terminal. This hydrocarbon group is preferably a branched hydrocarbon group. As a result, an appropriate steric hindrance can be given to the temperature-responsive site in the dendritic block copolymer, and an effect that the substrate surface can be more effectively coated can be obtained. Specific examples of R 2 at this time include the following trithiocarbonate groups.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記式中、Rは、炭素数3~12の、置換されていてもよい炭化水素基を指す。Rは、分岐状炭化水素基であれば好ましい。具体的には、メチル基、エチル基、プロピル基、分岐プロピル基、ブチル基、分岐ブチル基、ヘキシル基、分岐ヘキシル基、ペンチル基、分岐ペンチル基、ヘプチル基、分岐ヘプチル基、オクチル基、分岐オクチル基、2-エチルヘキシル基、ノニル基、分岐ノニル基、デシル基、分岐デシル基、ドデシル基、分岐ドデシル基があり、好ましくはイソプロピル基、エチルヘキシル基及びブチルオクチル基等が挙げられる。 In the above formula, R 3 represents an optionally substituted hydrocarbon group having 3 to 12 carbon atoms. R 3 is preferably a branched hydrocarbon group. Specifically, methyl group, ethyl group, propyl group, branched propyl group, butyl group, branched butyl group, hexyl group, branched hexyl group, pentyl group, branched pentyl group, heptyl group, branched heptyl group, octyl group, branched There are an octyl group, a 2-ethylhexyl group, a nonyl group, a branched nonyl group, a decyl group, a branched decyl group, a dodecyl group and a branched dodecyl group, and preferably an isopropyl group, an ethylhexyl group and a butyloctyl group.
 スチレン骨格デンドリティックポリマーの製造方法は、特に限定されず、幅広く選択することができる。例えば、常法として行われているクロロベンゼン中、塩化銅存在下での原子移動ラジカル重合(ATRP)法によって得ることができる。あるいは、乾燥トルエン中、加熱下、アゾビスイソブチロニトリル(AIBN)存在下にてラジカル重合させることによっても得ることができる。 方法 The method for producing the styrene skeleton dendritic polymer is not particularly limited, and can be widely selected. For example, it can be obtained by an atom transfer radical polymerization (ATRP) method in the presence of copper chloride in chlorobenzene, which is conventionally performed. Alternatively, it can also be obtained by radical polymerization in dry toluene in the presence of azobisisobutyronitrile (AIBN) under heating.
 より詳細には、上記Rの導入の目的のために、官能基を有するスチレン誘導体を少なくともモノマーとして用いて重合することが好ましい。このようなスチレン誘導体としては、ハロゲン化メチルスチレン等が挙げられる。ハロゲン化メチルスチレンとしては、クロルメチルスチレン、ブロムメチルスチレン等が用いられる。スチレン誘導体は一種を単独で用いてもよいし、二種以上を混合して用いてもよい。 More specifically, for the purpose of introducing R 2 , it is preferable to polymerize using at least a styrene derivative having a functional group as a monomer. Examples of such styrene derivatives include halogenated methyl styrene. Chloromethylstyrene, bromomethylstyrene and the like are used as halogenated methylstyrene. The styrene derivatives may be used alone or as a mixture of two or more.
 上記の通り重合反応によりスチレン骨格デンドリティックポリマーを製造する際、使用する総モノマー全体に対する、官能基を有するスチレン誘導体の割合は、5%以上であることが好ましい。官能基を有するスチレン誘導体の上記割合が5%以上であると、温度応答性領域を構成するポリマー鎖を導入する効率が良好となり、本開示で目標とする温度応答性領域を構成するポリマーの導入率を達成しやすくなる。この点で、官能基を有するスチレン誘導体の上記割合は、10%以上であればより好ましく、15%以上であればさらに好ましく、20%以上であれば最も好ましい。 の 通 り When the styrene skeleton dendritic polymer is produced by the polymerization reaction as described above, the ratio of the styrene derivative having a functional group to the total monomers used is preferably 5% or more. When the proportion of the styrene derivative having a functional group is 5% or more, the efficiency of introducing the polymer chain constituting the temperature-responsive region becomes good, and the introduction of the polymer constituting the temperature-responsive region targeted in the present disclosure is achieved. Rate is easier to achieve. In this regard, the ratio of the styrene derivative having a functional group is more preferably 10% or more, further preferably 15% or more, and most preferably 20% or more.
 官能基を有するスチレン誘導体の上記割合が90%以下であると、温度応答性領域を構成するポリマー鎖を導入する効率を良好な範囲に保ちつつ、得られるデンドリティックブロックコポリマーが水に溶けにくくなり、デンドリティックブロックコポリマーが培地等に溶出する可能性が低減される。この点で、官能基を有するスチレン誘導体の上記割合は、80%以下であればより好ましく、70%以下であればさらに好ましく、60%以下であれば最も好ましい。 When the ratio of the styrene derivative having a functional group is 90% or less, the obtained dendritic block copolymer becomes less soluble in water while maintaining the efficiency of introducing the polymer chain constituting the temperature-responsive region in a favorable range. In addition, the possibility that the dendritic block copolymer elutes into the medium or the like is reduced. In this regard, the ratio of the styrene derivative having a functional group is more preferably 80% or less, further preferably 70% or less, and most preferably 60% or less.
 総合すると、官能基を有するスチレン誘導体の上記割合としては、5%~90%が好ましく、10%~80%がより好ましく、15%~70%がさらに好ましく、20%~60%が最も好ましい。 Overall, the proportion of the styrene derivative having a functional group is preferably 5% to 90%, more preferably 10% to 80%, still more preferably 15% to 70%, and most preferably 20% to 60%.
 シロキサン骨格デンドリティックポリマーは、幅広く選択することができる。シロキサン骨格デンドリティックポリマーは、例えば、ビス(ジメチルビニルシロキサン)メチルシラン、トリス(ジメチルビニルシロキサン)シラン、ビス(ジメチルアリルシロキサン)メチルシラン及びトリス(ジメチルアリルシロキサン)シランからなる群より選択される少なくとも一種のモノマーを重合することにより得られうるもの等が挙げられる。また、ビス(ジメチルシロキシ)メチルビニルシラン、トリス(ジメチルシロキシ)ビニルシラン、ビス(ジメチルシロキシ)メチルアリルシラン及びトリス(ジメチルシロキシ)アリルシランからなる群より選択される少なくとも一種のモノマーを重合することにより得られうるもの等も挙げられる。このようなシロキサン骨格デンドリティックポリマーは、例えばWO2004/074177号パンフレット等に記載の方法により得ることができる。 The siloxane skeleton dendritic polymer can be widely selected. The siloxane skeleton dendritic polymer is, for example, at least one kind selected from the group consisting of bis (dimethylvinylsiloxane) methylsilane, tris (dimethylvinylsiloxane) silane, bis (dimethylallylsiloxane) methylsilane, and tris (dimethylallylsiloxane) silane. Examples include those that can be obtained by polymerizing monomers. Further, it can be obtained by polymerizing at least one monomer selected from the group consisting of bis (dimethylsiloxy) methylvinylsilane, tris (dimethylsiloxy) vinylsilane, bis (dimethylsiloxy) methylallylsilane and tris (dimethylsiloxy) allylsilane. And the like. Such a siloxane skeleton dendritic polymer can be obtained, for example, by a method described in WO2004 / 074177.
 1.4. 基材層(B)表面への温度応答層(A)の配置方法 1.4. Method of disposing temperature-responsive layer (A) on surface of base material layer (B)
 本開示の温度応答性細胞培養基材は、基材層(B)の少なくとも一方の面に温度応答層(A)を配置することにより得られうる。具体的には、例えば、温度応答性領域を構成するポリマーを、基材層(B)の面に直接的又は間接的に固定することにより、温度応答層(A)を基材層(B)の面に配置できる。 温度 The temperature-responsive cell culture substrate of the present disclosure can be obtained by disposing the temperature-responsive layer (A) on at least one surface of the substrate layer (B). Specifically, for example, the temperature responsive layer (A) is fixed directly or indirectly to the surface of the base material layer (B) with the polymer constituting the temperature responsive region, so that the temperature responsive layer (A) is fixed to the base material layer (B). Can be placed on the surface of.
 温度応答層(A)は、互いに異なるUCST又はLCSTを有する二以上の領域を有し、それらの領域が二次元パターンを形成するように配列していてもよい。 The temperature-responsive layer (A) may have two or more regions having different UCSTs or LCSTs, and the regions may be arranged so as to form a two-dimensional pattern.
 温度応答層(A)は、基材層(B)の少なくとも一方の面の一部に配置されており、その領域と、温度応答しない領域とが、二次元パターンを形成するように配列していてもよい。 The temperature responsive layer (A) is arranged on at least a part of at least one surface of the base material layer (B), and the region and the region not responding to temperature are arranged so as to form a two-dimensional pattern. You may.
 温度応答性領域を構成するポリマーの基材層(B)の面への固定方法は、特に限定されず、幅広く選択できる。例えば、温度応答性領域を構成するポリマーを溶媒に溶解又は分散させてから、基材表面が均一に被覆されるように塗布することにより直接的に固定することができる。 方法 The method of fixing the polymer constituting the temperature responsive region to the surface of the base material layer (B) is not particularly limited, and can be widely selected. For example, it is possible to directly fix the polymer by dissolving or dispersing the polymer constituting the temperature-responsive region in a solvent and then applying the solution so that the surface of the substrate is uniformly coated.
 また、温度応答性領域を構成するポリマーを含む複合体を溶媒に溶解又は分散させてから、基材層(B)の面に塗布することにより、温度応答性領域を構成するポリマーを間接的に固定することもできる。そのような複合体としては、例えば上記1.3のデンドリティックブロックコポリマー等が挙げられる。 Further, by dissolving or dispersing the composite containing the polymer constituting the temperature-responsive region in a solvent, and then applying the solution to the surface of the base material layer (B), the polymer constituting the temperature-responsive region is indirectly converted. It can also be fixed. Examples of such a composite include the above-mentioned dendritic block copolymer of 1.3 and the like.
 この場合、溶媒としては、温度応答性領域を構成するポリマー又はそれを含む複合体を溶解又は分散させるものであれば特に限定されず、幅広く選択できる。例えば、N、N-ジメチルアクリルアミド;イソプロピルアルコール;並びにアセトニトリル及びN、N-ジメチルホルムアミドの混合液等が挙げられる。 In this case, the solvent is not particularly limited as long as it dissolves or disperses the polymer constituting the temperature-responsive region or the complex containing the polymer, and can be widely selected. Examples include N, N-dimethylacrylamide; isopropyl alcohol; and a mixture of acetonitrile and N, N-dimethylformamide.
 複数種の溶媒を混合して使用してもよい。この場合、混合比は特に限定されず、幅広く選択できる。テトラヒドロフランとメタノールとの混合溶媒の場合、例えば、テトラヒドロフラン:メタノール=0.5~2:4とすることができる。アセトンとエタノールとの混合溶媒の場合、例えば、アセトン:エタノール=0.5~1:4とすることができる。
ジオキサンとノルマルプロパノールとの混合溶媒の場合、例えば、ジオキサン:ノルマルプロパノール=0.5~2:4とすることができる。トルエンとノルマルブタノールとの混合溶媒の場合、例えば、トルエン:ノルマルブタノール=0.5~2:4とすることができる。アセトニトリルとN、N-ジメチルホルムアミドとの混合溶媒の場合、例えば、アセトニトリル:N、N-ジメチルホルムアミド=4:1~6:1とすることができる。
A mixture of plural kinds of solvents may be used. In this case, the mixing ratio is not particularly limited and can be selected widely. In the case of a mixed solvent of tetrahydrofuran and methanol, for example, tetrahydrofuran: methanol = 0.5 to 2: 4. In the case of a mixed solvent of acetone and ethanol, for example, acetone: ethanol = 0.5 to 1: 4 can be used.
In the case of a mixed solvent of dioxane and normal propanol, for example, dioxane: normal propanol can be 0.5 to 2: 4. In the case of a mixed solvent of toluene and normal butanol, for example, toluene: normal butanol = 0.5 to 2: 4. In the case of a mixed solvent of acetonitrile and N, N-dimethylformamide, for example, acetonitrile: N, N-dimethylformamide = 4: 1 to 6: 1.
 溶媒としては、ポリスチレンの良溶媒と貧溶媒とを含む溶液が好ましい。このような溶媒を使用すると、特に基材層(B)の材質がポリスチレンである場合、基材層(B)の面のポリスチレンを膨潤させつつ、上記1.3のスチレン骨格デンドリティックブロックコポリマー又はシロキサン骨格デンドリティックブロックコポリマーを固定化させることができ、結果的にスチレン骨格デンドリティックブロックコポリマー又はシロキサン骨格デンドリティックブロックコポリマーが基材層(B)の面に埋め込まれるような形となるため好ましい。この場合、前記良溶媒と前記貧溶媒とが、それぞれテトラヒドロフランとメタノールであれば好ましい。さらに、テトラヒドロフランとメタノールの混合溶媒中のテトラヒドロフラン含量が10~35体積%であればより好ましい。 As the solvent, a solution containing a good solvent and a poor solvent of polystyrene is preferable. When such a solvent is used, particularly when the material of the base material layer (B) is polystyrene, the polystyrene on the surface of the base material layer (B) is swollen while the styrene skeleton dendritic block copolymer of 1.3 or The siloxane skeleton dendritic block copolymer can be immobilized, and as a result, the styrene skeleton dendritic block copolymer or the siloxane skeleton dendritic block copolymer is preferably embedded in the surface of the base material layer (B). In this case, it is preferable that the good solvent and the poor solvent be tetrahydrofuran and methanol, respectively. More preferably, the content of tetrahydrofuran in the mixed solvent of tetrahydrofuran and methanol is 10 to 35% by volume.
 温度応答性領域を構成するポリマー又はそれを含む複合体の基材層(B)の面への固定化に際しては、温度応答性領域を構成するポリマー又はそれを含む複合体を含む溶液を基材層(B)の面へ均一に塗布することが好ましい。その方法は特に限定されず、幅広く選択できる。例えば、ディスペンサーを利用する方法、基材層(B)を水平な台の上に静置させる方法等が挙げられる。 When immobilizing the polymer constituting the temperature-responsive region or the composite containing the same on the surface of the base material layer (B), a solution containing the polymer constituting the temperature-responsive region or the composite containing the same is used as a substrate. It is preferable to apply uniformly on the surface of the layer (B). The method is not particularly limited, and can be selected widely. For example, a method using a dispenser, a method in which the base material layer (B) is allowed to stand on a horizontal table, and the like are exemplified.
 温度応答性領域を構成するポリマー又はそれを含む複合体を含む溶液を基材層(B)の面へ塗布した後、溶媒を除去することにより、本開示の温度応答性細胞培養基材が得られる。溶媒の除去方法は特に限定されず、幅広く選択できる。例えば、室温にて、かつ大気中で時間をかけてゆっくり蒸発させる方法、室温にて、かつ溶媒飽和環境下で時間をかけてゆっくり蒸発させる方法、加熱下で蒸発させる方法、減圧下で蒸発させる方法等が挙げられる。特に、均一な温度応答層(A)の面が得られるという点で、室温にて、かつ溶媒飽和環境下で時間をかけてゆっくり蒸発させる方法が好ましい。具体的には、2時間以上、前記溶媒の蒸気下に置くことが好ましい。 After applying the solution containing the polymer constituting the temperature-responsive region or the complex containing the same to the surface of the substrate layer (B), the solvent is removed to obtain the temperature-responsive cell culture substrate of the present disclosure. Can be The method for removing the solvent is not particularly limited, and can be widely selected. For example, a method of slowly evaporating at room temperature and in the air over time, a method of slowly evaporating at room temperature and in a solvent saturated environment over time, a method of evaporating under heating, and an evaporating under reduced pressure Method and the like. In particular, from the viewpoint that a uniform surface of the temperature responsive layer (A) can be obtained, a method of slowly evaporating at room temperature over time in a solvent-saturated environment is preferable. Specifically, it is preferable to place under the vapor of the solvent for 2 hours or more.
 均一な温度応答層(A)の面が得られるという点で、溶媒飽和環境下で時間をかけてゆっくり溶媒を蒸発させた後、いったん表面を水洗してから乾燥させることが好ましい。 (4) From the viewpoint that a uniform surface of the temperature-responsive layer (A) can be obtained, it is preferable to slowly evaporate the solvent over a long period of time in a solvent-saturated environment, and then wash the surface once and then dry it.
 2. 基材層(B)
 基材層(B)の材質は、窒素原子を有さないものであればよく、特に限定されない。通常、細胞培養に用いられるものであればよく特に制限されない。例えば、ガラス、改質ガラス、各種樹脂等が挙げられる。また、これらの他にもさらに、一般に形態付与が可能とされる材質からなるものであってもよい。そのような材質は、特に限定されず、幅広く選択できる。例えば、樹脂、セラミックス及び金属類等が挙げられる。
2. Base material layer (B)
The material of the base material layer (B) is not particularly limited as long as it has no nitrogen atom. Usually, it is not particularly limited as long as it is used for cell culture. For example, glass, modified glass, various resins and the like can be mentioned. Further, in addition to these, a material that can be generally given a form may be used. Such a material is not particularly limited, and can be widely selected. For example, resins, ceramics, metals and the like can be mentioned.
 樹脂としては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリシクロオレフィン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリサルフォン及びポリフェニレンスルファイド等が挙げられる。 Examples of the resin include polystyrene, polyethylene, polypropylene, polycycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
 これらの中でも、特に、ポリスチレン、ポリメチルメタクリレート等が好ましく用いられる。 の Among these, polystyrene, polymethyl methacrylate and the like are particularly preferably used.
 基材層(B)の、温度応答層(A)が配置される側の面は、必要に応じて表面処理がなされていてもよい。表面処理としては、例えば、UVオゾン処理、プラズマ処理及びコロナ処理等が挙げられる。 面 The surface of the base material layer (B) on which the temperature responsive layer (A) is arranged may be subjected to a surface treatment as necessary. Examples of the surface treatment include a UV ozone treatment, a plasma treatment, and a corona treatment.
 また、基材層(B)の、温度応答層(A)が配置される側の面は、平滑であってもよいし、穴状、突起状又は壁状等の三次元構造が形成されていてもよい。そのような三次元構造を表面に有する基材層(B)としては、例えば、市販されている三次元構造細胞培養基材である、SCIVAX製NanoCulture Plate、日立ハイテクノロジーズ製 ナノピラープレート、3D Biomatrix製Perfecta3D又はクラレ製ELPLASIA等を使用できる。 The surface of the base material layer (B) on the side where the temperature responsive layer (A) is disposed may be smooth or may have a three-dimensional structure such as a hole, a protrusion, or a wall. You may. Examples of the substrate layer (B) having such a three-dimensional structure on its surface include, for example, a commercially available three-dimensional structure cell culture substrate, NanoCulture Plate manufactured by SCIVAX, nano pillar plate manufactured by Hitachi High-Technologies, 3D manufactured by Biomatrix. Perfecta3D or Kuraray ELPLASIA can be used.
 温度応答層(A)は、基材層(B)の面に、少なくとも一種のその他の層を介して配置されていてもよい。その他の層としては、例えば、ポリスチレン、ポリエチレン、ポリプロピレン、ポリシクロオレフィン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリカーボネート、フッ素樹脂、ポリ塩化ビニル、ポリサルフォン及びポリフェニレンスルファイド等が挙げられる。 The temperature responsive layer (A) may be disposed on the surface of the base material layer (B) via at least one other layer. Examples of other layers include polystyrene, polyethylene, polypropylene, polycycloolefin, polyethylene terephthalate, polymethyl methacrylate, polycarbonate, fluororesin, polyvinyl chloride, polysulfone, and polyphenylene sulfide.
 3. 温度応答性細胞培養基材のその他の構成、特性及び用途等 3. Other configurations, characteristics, and uses of the temperature-responsive cell culture substrate
 本開示の温度応答性細胞培養基材は、必要に応じて、温度応答層(A)及び基材層(B)に加えてさらにその他の層を有していてもよい。その他の層としては、例えば、形状保持の目的で使用される支持層が挙げられる。 温度 The temperature-responsive cell culture substrate of the present disclosure may have another layer in addition to the temperature-responsive layer (A) and the substrate layer (B), if necessary. Other layers include, for example, a support layer used for the purpose of shape retention.
 本開示の温度応答性細胞培養基材の形状は、特に限定されない。ペトリ皿等の細胞培養皿であってもよいし、プレート、ファイバー又は粒子等であってもよい。粒子は多孔質であってもよい。また、一般に細胞培養等に用いられる別の容器形状であってもよい。そのような容器形状としては、例えば、フラスコ、バッグ等が挙げられる。 形状 The shape of the temperature-responsive cell culture substrate of the present disclosure is not particularly limited. It may be a cell culture dish such as a Petri dish or a plate, fiber or particle. The particles may be porous. Further, another container shape generally used for cell culture or the like may be used. Examples of such a container shape include a flask and a bag.
 本開示の温度応答性細胞培養基材は、細胞全般に対して使用できる。例えば、動物、昆虫、植物等の細胞、細菌類が挙げられる。動物細胞の由来の例として、ヒト、サル、イヌ、ネコ、ウサギ、ラット、ヌードマウス、マウス、モルモット、ブタ、ヒツジ、チャイニーズハムスター、ウシ、マーモセット及びアフリカミドリザル等が挙げられる。 温度 The temperature-responsive cell culture substrate of the present disclosure can be used for cells in general. For example, cells such as animals, insects and plants, and bacteria can be mentioned. Examples of the origin of animal cells include humans, monkeys, dogs, cats, rabbits, rats, nude mice, mice, guinea pigs, pigs, sheep, Chinese hamsters, cows, marmosets, African green monkeys, and the like.
 本開示の温度応答性細胞培養基材は、接着性細胞に対して好ましく使用できる。接着性細胞としては、幅広く選択することができ、例えば、内皮細胞、表皮細胞、上皮細胞、筋細胞、神経細胞、骨細胞及び脂肪細胞等のほか、樹状細胞及びマクロファージ等も挙げられる。内皮細胞としては、例えば、肝細胞、クッパー細胞、血管内皮細胞及び角膜内皮細胞等が挙げられる。表皮細胞としては、例えば、繊維芽細胞、骨芽細胞、砕骨細胞、歯根膜由来細胞及び表皮角化細胞等が挙げられる。上皮細胞としては、例えば、気管上皮細胞、消化管上皮細胞、子宮頸部上皮細胞及び角膜上皮細胞等が挙げられる。筋細胞としては、例えば、乳腺細胞、ペリサイト、平滑筋細胞及び心筋細胞等が挙げられる。神経細胞としては、例えば、腎細胞、膵ランゲルハンス島細胞、末梢神経細胞及び視神経細胞等が挙げられる。骨細胞としては、例えば、破骨細胞、軟骨細胞等が挙げられる。 温度 The temperature-responsive cell culture substrate of the present disclosure can be preferably used for adherent cells. Adhesive cells can be widely selected and include, for example, endothelial cells, epidermal cells, epithelial cells, muscle cells, nerve cells, bone cells, fat cells, and the like, as well as dendritic cells, macrophages, and the like. Examples of the endothelial cells include hepatocytes, Kupffer cells, vascular endothelial cells, and corneal endothelial cells. Examples of the epidermal cells include fibroblasts, osteoblasts, osteoclasts, periodontal ligament-derived cells, and epidermal keratinocytes. Examples of the epithelial cells include tracheal epithelial cells, gastrointestinal epithelial cells, cervical epithelial cells, and corneal epithelial cells. Examples of muscle cells include mammary gland cells, pericytes, smooth muscle cells, cardiomyocytes, and the like. Examples of nerve cells include kidney cells, pancreatic islet cells of Langerhans, peripheral nerve cells, and optic nerve cells. Osteocytes include, for example, osteoclasts, chondrocytes and the like.
 接着性細胞としては、各種幹細胞も使用できる。接着性の幹細胞としては、胚性幹細胞(embryonic stem cells:ES細胞)、胚性生殖細胞(embryonic germ cells:EG細胞)、生殖細胞系列幹細胞(germline stem cells:GS細胞)、誘導多能性幹細胞(iPS細胞;induced pluripotent stem cell)等の多能性幹細胞、間葉系幹細胞、造血系幹細胞、神経系幹細胞等の複能性幹細胞、心筋前駆細胞、血管内皮前駆細胞、神経前駆細胞、脂肪前駆細胞、皮膚線維芽細胞、骨格筋筋芽細胞、骨芽細胞、象牙芽細胞等の単能性幹細胞(前駆細胞)等の幹細胞が挙げられる。 各種 Various stem cells can be used as the adherent cells. Examples of adherent stem cells include embryonic stem cells (embryonic stem cells: ES cells), embryonic germ cells (embryonic stem cells), germline stem cells (germline stem cells: GS cells), and induced pluripotent stem cells. (IPS cells; induced pluripotent stem cells) and other pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, multipotent stem cells such as neural stem cells, etc., myocardial progenitor cells, vascular endothelial progenitor cells, neural progenitor cells, fat progenitors Stem cells such as cells, skin fibroblasts, skeletal myoblasts, osteoblasts, and monopotent stem cells (progenitor cells) such as odontoblasts.
 本開示の温度応答性細胞培養基材においては、対象となる細胞を培養するために通常用いられる培地をそのまま使用できる。 培 地 In the temperature-responsive cell culture substrate of the present disclosure, a medium usually used for culturing target cells can be used as it is.
 本開示の細胞培養用温度応答性基材においては、全面もしくは一部の培養基材の温度を温度応答性領域を構成するポリマーのUCST以上若しくはLCST以下にすることによって、培養細胞を酵素処理することなく剥離させることができる。この温度変化による剥離は、培養液中において行ってもよいし、その他の等張液中等において行ってもよい。また、細胞をより早く、より高効率に剥離及び回収する目的で、基材を軽くたたいたり、ゆらしたりすることができる。さらに必要に応じて、ピペット等を用いて培地を撹拌する等してもよい。基材の一部のみの温度を変化させることのメリットとしては、例えば、iPS細胞の分化誘導において、分化した細胞コロニーのみを選択的に剥離することが可能となること等が挙げられる。 In the temperature-responsive substrate for cell culture of the present disclosure, the cultured cells are enzymatically treated by setting the temperature of the entire or a part of the culture substrate to not less than UCST or not more than LCST of the polymer constituting the temperature-responsive region. It can be peeled off without any problem. The exfoliation due to this temperature change may be performed in a culture solution or in another isotonic solution. In addition, the substrate can be dabbed or shaken for the purpose of detaching and collecting cells faster and more efficiently. If necessary, the medium may be stirred using a pipette or the like. As an advantage of changing the temperature of only a part of the base material, for example, in the differentiation induction of iPS cells, only the differentiated cell colonies can be selectively detached.
 本開示の細胞培養用温度応答性基材は、温度応答性領域を構成するポリマーが表面に強固に固定されていることが好ましく、この場合、リユース用として用いることができる。
特に、上記1.3のデンドリティックブロックコポリマーが固定化されている表面を有する細胞培養用温度応答性基材は、特に温度応答性領域を構成するポリマーが表面に強固に固定されており、リユース用として好ましく用いることができる。
The temperature-responsive substrate for cell culture of the present disclosure is preferably such that the polymer constituting the temperature-responsive region is firmly fixed to the surface, and in this case, it can be used for reuse.
In particular, the temperature-responsive substrate for cell culture having the surface on which the dendritic block copolymer of 1.3 is immobilized has a polymer in which the temperature-responsive region is particularly firmly immobilized on the surface. It can be preferably used for applications.
 リユース用として用いる場合、液体培地を添加して細胞培養を行い、温度応答により細胞を剥離し、基材表面をリン酸緩衝生理食塩水等の適当な洗浄液で洗浄する、という一連の工程を一サイクルとして、同一の細胞培養用温度応答性基材を二以上のサイクルにおいて使用する、すなわち、2回以上のリユースのために用いられる。本開示の細胞培養用温度応答性基材は、好ましくは3回以上のリユースのために用いられる。 When used for reuse, a series of steps of adding a liquid medium, culturing the cells, detaching the cells by temperature response, and washing the substrate surface with an appropriate washing solution such as phosphate buffered saline is performed. As a cycle, the same temperature-responsive substrate for cell culture is used in two or more cycles, that is, used for two or more reuses. The temperature-responsive substrate for cell culture of the present disclosure is preferably used for three or more reuses.
 4. 温度応答性ポリマー含有組成物
 本開示の組成物は、温度応答性ポリマーを含む組成物であって、該組成物に含まれる、分子量Mの常用対数(logM)が4.0以上である温度応答性ポリマーの合計のうち、logMが5.5以上である温度応答性ポリマーの合計が、60%以上である、組成物である。かかる組成物は、上記の温度応答性細胞培養基材を製造するために好ましく用いられる。
4. Temperature-Responsive Polymer-Containing Composition The composition of the present disclosure is a composition containing a temperature-responsive polymer, wherein the composition has a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the composition. The composition wherein the total of the temperature-responsive polymers having a logM of 5.5 or more is 60% or more of the total of the reactive polymers. Such a composition is preferably used for producing the above-mentioned temperature-responsive cell culture substrate.
 本開示の組成物は、上記の特性を有していることにより、それを用いて得られる温度応答性細胞培養基材において温度応答時の細胞剥離性が優れたものとなり、これらの効果は、上記割合が、60~100%の範囲内にあるときに得られる。細胞剥離性がより優れる点で、62~100%が好ましく、65~100%が特に好ましい。 The composition of the present disclosure, by having the above-mentioned properties, in the temperature-responsive cell culture substrate obtained using the same, excellent cell detachability during temperature response, and these effects, Obtained when the above ratio is in the range of 60 to 100%. It is preferably from 62 to 100%, more preferably from 65 to 100%, from the viewpoint of more excellent cell detachability.
 温度応答時にさらに優れた細胞剥離性を有する点で、上記組成物に含まれる、分子量Mの常用対数(logM)が4.0以上である温度応答性ポリマーの合計のうち、分子量Mの常用対数(logM)が6.0以上である温度応答性ポリマーの合計が、15%~100%であることが好ましく、17~100%であることがより好ましい。 Of the total temperature-responsive polymers having a logarithm of molecular weight M (log M) of 4.0 or more contained in the above composition, a common logarithm of molecular weight M in that the composition has more excellent cell detachability during temperature response. The total of the temperature-responsive polymers having (logM) of 6.0 or more is preferably 15% to 100%, and more preferably 17% to 100%.
 本開示の組成物は、温度応答性ポリマーを少なくとも一種含む。 組成 The composition of the present disclosure contains at least one temperature-responsive polymer.
 温度応答時の細胞剥離性が優れており、及び/又は使用中の温度応答性ポリマーの溶出が抑制されている、という効果の点で好ましい本開示の態様においては、本開示の組成物は、温度応答性ポリマーを、部分的温度応答性ポリマーの形態で含んでいる。 In a preferred embodiment of the present disclosure, the composition of the present disclosure is excellent in the effect that cell detachability during temperature response is excellent and / or elution of the temperature-responsive polymer during use is suppressed. The temperature responsive polymer is included in the form of a partially temperature responsive polymer.
 温度応答性ポリマーについてはそれぞれ上記1.2及び1.3で説明した通りである。 The temperature-responsive polymer is as described in 1.2 and 1.3 above.
 本開示の組成物は、分子量Mの常用対数(logM)が3.5以下である温度応答性ポリマーを含まないことが好ましい。また、本開示の組成物は、分子量Mの常用対数(logM)が4.0以下である温度応答性ポリマーを含まないことがより好ましい。 組成 It is preferable that the composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of a molecular weight M of 3.5 or less. Further, it is more preferable that the composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of molecular weight M of 4.0 or less.
 本開示の組成物は、分子量Mの常用対数(logM)が8.0以上である温度応答性ポリマーを含まないことが好ましい。 組成 It is preferable that the composition of the present disclosure does not contain a temperature-responsive polymer having a common logarithm (logM) of a molecular weight M of 8.0 or more.
 温度応答性細胞培養基材を製造するために用いる場合、温度応答時の細胞剥離性がより優れており、及び/又は使用中の温度応答性ポリマーの溶出が抑制されている、という効果の点では、本開示の組成物に含まれる成分のうち、温度応答性ポリマーの占める割合が、総量で、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることがさらにより好ましい。 When used to produce a temperature-responsive cell culture substrate, the effect is that cell detachability during temperature response is more excellent and / or elution of the temperature-responsive polymer during use is suppressed. In the components contained in the composition of the present disclosure, the proportion occupied by the temperature-responsive polymer is preferably 70% by mass or more, more preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, it is still more preferably 95% by mass or more.
 温度応答性細胞培養基材を製造するために用いる場合、温度応答時の細胞剥離性が優れており、及び/又は使用中の温度応答性ポリマーの溶出が抑制されている、という効果の点で好ましい本開示の態様においては、本開示の組成物に含まれる成分のうち、部分的温度応答性ポリマーの占める割合が、総量で、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることがさらにより好ましい。 When used to produce a temperature-responsive cell culture substrate, cell exfoliation during temperature response is excellent, and / or elution of the temperature-responsive polymer during use is suppressed. In a preferred embodiment of the present disclosure, the ratio of the partially temperature-responsive polymer among the components contained in the composition of the present disclosure is preferably 70% by mass or more, and more preferably 80% by mass or more. Is more preferably 90% by mass or more, even more preferably 95% by mass or more.
 以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims.
 以下、本開示を具体的に説明するが、本開示は下記の例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described, but the present disclosure is not limited to the following examples.
<製造例1>
[S-(4-ビニル)ベンジル S’-アルキルトリチオカーボネートの合成]
 窒素置換下の100ml三ッ口フラスコ中へ、ナトリウムメトキシド(5.6ml, 0.028mol)、メタノール(MeOH,28ml)を入れ、2分間撹拌させた。そこへ、2-エチル-1-ヘキサンチオール(4.10g,0.028mol)をMeOH(22ml)に溶解させたものを添加し、室温にて2時間撹拌した。そこへCS(2.1ml, 0.035mol)を添加し、室温にて5時間撹拌した。さらに、4-ビニルベンジルクロリド(4.3ml, 0.028mol)を添加し、そのまま20時間室温にて撹拌した。反応後、水を添加し、ジクロロメタンにて抽出、有機層を飽和食塩水にて洗浄後、硫化マグネシウムで乾燥させ、溶媒を減圧留去した。精製は、ヘキサンを展開溶媒にカラムクロマトグラフィーにて行った。オレンジ色液体の目的物が、5.6gの収率にて得られた(参考文献:Macromolecules 2011,44,2034-2049)
<Production Example 1>
[Synthesis of S- (4-vinyl) benzyl S'-alkyltrithiocarbonate]
Sodium methoxide (5.6 ml, 0.028 mol) and methanol (MeOH, 28 ml) were put into a 100 ml three-necked flask under a nitrogen atmosphere, and the mixture was stirred for 2 minutes. Thereto was added a solution of 2-ethyl-1-hexanethiol (4.10 g, 0.028 mol) dissolved in MeOH (22 ml), and the mixture was stirred at room temperature for 2 hours. CS 2 (2.1 ml, 0.035 mol) was added thereto, and the mixture was stirred at room temperature for 5 hours. Further, 4-vinylbenzyl chloride (4.3 ml, 0.028 mol) was added, and the mixture was stirred as it was at room temperature for 20 hours. After the reaction, water was added, the mixture was extracted with dichloromethane, the organic layer was washed with saturated saline, dried over magnesium sulfide, and the solvent was distilled off under reduced pressure. Purification was performed by column chromatography using hexane as a developing solvent. The desired product as an orange liquid was obtained in a yield of 5.6 g (Reference: Macromolecules 2011, 44, 2034-2049).
[デンドリティックポリマー1の合成]
 窒素置換下の10ml枝管付フラスコ中へ、S-(4-ビニル)ベンジル S’-(2-エチル-1-ヘキシル)トリチオカーボネート(1.20g, 3.61×10-3mol)、脱水トルエン(1ml)を入れ、撹拌して溶解させた。さらに2,2’ -アゾジイソブチロニトリル(AIBN,0.0745g, 4.50×10-4mol)を添加し、80℃にて10時間撹拌した。反応後、トルエンを2ml追加し希釈した後、氷浴中で冷却したヘキサン中へ滴下・再沈させ、オレンジ色のオイル状のポリマーを0.58g回収した。
[Synthesis of Dendritic Polymer 1]
S- (4-vinyl) benzyl S '-(2-ethyl-1-hexyl) trithiocarbonate (1.20 g, 3.61 × 10 −3 mol) was placed in a 10-ml flask with a nitrogen purge. Dehydrated toluene (1 ml) was added and stirred to dissolve. Further, 2,2′-azodiisobutyronitrile (AIBN, 0.0745 g, 4.50 × 10 −4 mol) was added, and the mixture was stirred at 80 ° C. for 10 hours. After the reaction, 2 ml of toluene was added for dilution, and the mixture was dropped and reprecipitated in hexane cooled in an ice bath, to recover 0.58 g of an orange oily polymer.
[デンドリティックブロックコポリマーHBP-0の合成]
 窒素置換下の10ml枝管付フラスコ中へ、上述したデンドリティックポリマー1(0.028g)、N-イソプロピルアクリルアミド(NIPAM,1g, 8.85×10-3mol)、脱水テトラヒドロフラン(THF,3ml)を入れ、撹拌して溶解させた。
さらに、AIBN (4.0×10-3g, 4.6×10-6mol)を添加し、70℃にて10時間撹拌した。反応後、THFを3ml添加し希釈した後、ヘキサン中へ滴下・再沈させ、卵色固体を回収した。再度THF5mlに溶解させ、ヘキサン中へ再沈を行い、白色の粉末状固体HBP-0を0.706g得た。
[Synthesis of Dendritic Block Copolymer HBP-0]
Into a 10-ml flask equipped with a branch tube under a nitrogen atmosphere, the above-mentioned dendritic polymer 1 (0.028 g), N-isopropylacrylamide (NIPAM, 1 g, 8.85 × 10 −3 mol), dehydrated tetrahydrofuran (THF, 3 ml) And stirred to dissolve.
Further, AIBN (4.0 × 10 −3 g, 4.6 × 10 −6 mol) was added, and the mixture was stirred at 70 ° C. for 10 hours. After the reaction, 3 ml of THF was added for dilution, and the resulting mixture was dropped and reprecipitated in hexane to recover an egg-colored solid. It was again dissolved in 5 ml of THF and reprecipitated in hexane to obtain 0.706 g of a white powdery solid HBP-0.
[デンドリティックブロックコポリマーの分画]
 前項で得られたブロックポリマーHBP-0をGPCの溶出時間の差により分画し、異なる分子量分布を有するポリマーHBP-1~5を得た。これらのポリマーは、GPC測定(カラム:Styragel HR-4E+HR-5E、溶離液:50mM LiBr in DMF、標準:ポリスチレン)により分子量分布測定を行った。
[Fractionation of dendritic block copolymer]
The block polymer HBP-0 obtained in the preceding section was fractionated according to the difference in the elution time of GPC to obtain polymers HBP-1 to 5 having different molecular weight distributions. The molecular weight distribution of these polymers was measured by GPC measurement (column: Styragel HR-4E + HR-5E, eluent: 50 mM LiBr in DMF, standard: polystyrene).
 分画前のポリマーHBP-0および、分画後の異なる分子量分布を有するポリマーHBP-1~5の重量平均分子量(Mw)及び多分散度(Mw/Mn)を表1に示す。 Table 1 shows the weight average molecular weight (Mw) and polydispersity (Mw / Mn) of the polymer HBP-0 before fractionation and the polymers HBP-1 to 5 having different molecular weight distributions after fractionation.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、それぞれのポリマーの、横軸に分子量の対数(LogM)、縦軸に微分分布値(dW/dLogM)をプロットした分子量分布曲線において、LogM=5.5未満の分子量分布の面積Aと、LogM=5.5以上の分子量分布曲線の面積Bとをそれぞれ算出した。それらの面積値を用いて、式(1)によりLogM>5.5の高分子の含有率(%)を算出した。
 B/(A+B)×100(%)   ・・・(1)
In addition, in each molecular weight distribution curve in which the logarithm of the molecular weight (LogM) is plotted on the horizontal axis and the differential distribution value (dW / dLogM) is plotted on the vertical axis, the area A of the molecular weight distribution where LogM is less than 5.5, The area B of the molecular weight distribution curve of LogM = 5.5 or more was calculated. Using these area values, the content (%) of the polymer having a LogM> 5.5 was calculated by the equation (1).
B / (A + B) × 100 (%) (1)
 LogM>6の高分子含有率についても同様に求め、LogM>5.5の高分子含有率と併せて表2に示した。 高分子 The polymer content of LogM> 6 was similarly obtained, and is shown in Table 2 together with the polymer content of LogM> 5.5.
<実施例1>
[コーティング溶液の調製]
 製造例1にて合成、分画したポリマーHBP-1についてそれぞれ10mgを、THF/MeOH=1/4(v/v)の混合溶媒(4ml)へ溶解させた。これを、母液と称する。この母液を、培養面積9.6cmのセルカルチャーディッシュに50μl塗布した時の、PNIPAM塗布量が3.5μg/cmとなるよう、THF/MeOH=1/4(v/v)の混合溶媒でさらに希釈した。
<Example 1>
[Preparation of coating solution]
10 mg of each of the polymer HBP-1 synthesized and fractionated in Production Example 1 was dissolved in a mixed solvent (4 ml) of THF / MeOH = 1/4 (v / v). This is called mother liquor. A mixed solvent of THF / MeOH = 1/4 (v / v) such that 50 μl of the mother liquor is applied to a cell culture dish having a culture area of 9.6 cm 2 so that the amount of PNIPAM applied is 3.5 μg / cm 2. For further dilution.
[ポリスチレン製基材に対するポリマーの固定化]
 上記方法で得られたコーティング溶液(50μl)を、ポリスチレン製セルカルチャーディッシュ(コーニング製Falcon3001、培養面積9.6cm)に塗布し、蓋をした。そのまま2.5時間静置・乾燥させ、温度応答性細胞培養基材を得た。
[Immobilization of polymer on polystyrene substrate]
The coating solution (50 μl) obtained by the above method was applied to a polyculture cell culture dish (Falcon 3001, manufactured by Corning, culture area: 9.6 cm 2 ) and capped. The mixture was allowed to stand and dried for 2.5 hours to obtain a temperature-responsive cell culture substrate.
<実施例2~5>
 コーティング溶液の調製に使用するポリマーをHBP-2~5とした他は、実施例1と同様にして温度応答性細胞培養基材をそれぞれ得た(表2)。
<Examples 2 to 5>
Temperature-responsive cell culture substrates were obtained in the same manner as in Example 1 except that the polymers used for preparing the coating solution were HBP-2 to HBP-5 (Table 2).
<比較例1>
 コーティング溶液の調製に使用するポリマーを分画前のHBP-0とした他は、実施例1と同様にして温度応答性細胞培養基材を得た。
<Comparative Example 1>
A temperature-responsive cell culture substrate was obtained in the same manner as in Example 1, except that the polymer used for preparing the coating solution was HBP-0 before fractionation.
<比較例2>
 未処理のφ3.5cmのポリスチレン製の細胞培養ディッシュ(Falcon3001)を用意した。
<Comparative Example 2>
An untreated φ3.5 cm polystyrene cell culture dish (Falcon 3001) was prepared.
<比較例3>
 PNIPAMのホモポリマーを表面に有する、市販されているφ3.5cmの温度応答性細胞培養容器(セルシード製UpCell、培養面積9.6cm)を用意した。
<Comparative Example 3>
A commercially available φ3.5 cm temperature-responsive cell culture container (UpCell manufactured by Cell Seed, culture area: 9.6 cm 2 ) having a homopolymer of PNIPAM on the surface was prepared.
[細胞接着評価]
 (1)培養条件
 培地:10%FBS(fetal bovine serum)、および1%ペニシリン(Penicillin-Streptomycin)含有DMEM(Dulbecco’s modified Eagle’s medium)-high glucose (ナカライテスク) 2ml
[Evaluation of cell adhesion]
(1) Culture conditions Culture medium: 10% FBS (fetal bovine serum) and 1% penicillin (Penicillin-Streptomycin) -containing DMEM (Dulbecco's modified Eagle's medium) -high glase solution
 (2)評価用の細胞懸濁液の調製方法
 予め、細胞培養容器内で3T3マウス線維芽細胞を培養し、細胞を回収後に細胞数を数え、培地に対し5×10cells/mLになるように細胞懸濁液を用意した。
(2) Preparation method of cell suspension for evaluation In advance, 3T3 mouse fibroblasts are cultured in a cell culture vessel, and the number of cells is counted after collecting the cells. The cell count becomes 5 × 10 4 cells / mL with respect to the medium. Cell suspension was prepared as described above.
 分画前のHBP-0を塗布した基材を比較例1、未処理のディッシュ(Falcon3001)を比較例2、PNIPAMのホモポリマーを表面に有する市販されている温度応答性細胞培養容器を比較例3とした。比較例ディッシュと実施例で作製したディッシュ内に、それぞれ2mlの細胞懸濁液を注入し、細胞を播種した。その後、COインキュベーター(37℃、5%CO)中で4日間培養を行った。 Comparative Example 1 using a substrate coated with HBP-0 before fractionation, Comparative Example 2 using an untreated dish (Falcon 3001), and Comparative Example using a commercially available temperature-responsive cell culture vessel having a homopolymer of PNIPAM on the surface. It was set to 3. Into the dish prepared in the comparative example and the dish prepared in the example, 2 ml of the cell suspension was injected, and the cells were seeded. Thereafter, the cells were cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 4 days.
 (3)細胞剥離時間の測定
 培養終了後、培養細胞の付着状態、並びに培養細胞がシャーレ内で満杯(コンフルエント)になるまで増殖しているかどうかを、倒立顕微鏡を用いて観察した。その後、そのまま室温で静置し10分後よりゆっくりと振動を与えた。観察は、インキュベーターより取り出し後50分間行った。細胞シートが自発的に剥離するまでの時間を測定した。
(3) Measurement of Cell Detachment Time After the completion of the culture, the state of adherence of the cultured cells and whether the cultured cells were growing in the dish until they became full (confluent) were observed using an inverted microscope. Then, it was allowed to stand still at room temperature, and vibration was applied more slowly after 10 minutes. The observation was performed for 50 minutes after taking out from the incubator. The time until the cell sheet spontaneously peeled was measured.
 実施例1~5並びに比較例1~3についてそれぞれ評価した結果を表2に示す。各実施例においてそれぞれn=3での評価を行い、平均を求めた。比較例2の未処理のPS製細胞培養ディッシュは、温度応答性ポリマーを処理していないため、細胞は剥離しなかった。また、比較例3の市販されている温度応答性細胞培養容器を用いると、インキュベーターからの取り出し後20分で剥離した。HBP-0を用いた比較例1では、インキュベーターからの取り出し後21分で剥離した。一方、logMが5.5以上である温度応答性ポリマーの含有量が60%以上である実施例1~5で作製した細胞培養ディッシュは、高剥離性を示した。中でも、logMが6.0以上である温度応答性ポリマーの含有量が15%以上である実施例1~4は特に高剥離性を有していた。これにより、細胞の剥離性と温度応答性ポリマーの分子量分布に相関があることが明らかとなった。 Table 2 shows the results of the evaluations of Examples 1 to 5 and Comparative Examples 1 to 3, respectively. In each example, evaluation was performed at n = 3, and the average was determined. Since the untreated PS cell culture dish of Comparative Example 2 was not treated with the temperature-responsive polymer, the cells did not detach. In addition, when the commercially available temperature-responsive cell culture container of Comparative Example 3 was used, peeling was performed 20 minutes after removal from the incubator. In Comparative Example 1 using HBP-0, peeling was performed 21 minutes after removal from the incubator. On the other hand, the cell culture dishes prepared in Examples 1 to 5 in which the content of the temperature-responsive polymer having a logM of 5.5 or more was 60% or more showed high detachability. In particular, Examples 1 to 4 in which the content of the temperature-responsive polymer having a logM of 6.0 or more was 15% or more had particularly high releasability. This revealed that there was a correlation between the cell detachability and the molecular weight distribution of the temperature-responsive polymer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[ポリマー溶出試験]
 製造例1で分画したNo.HBP-1,-2について、実施例1と同様に塗布溶液を調整し、塗布したサンプルを作製した。塗布乾燥後、室温水中で1時間静置後に乾燥させた。比較例として、市販されている温度応答性細胞培養容器に対しても、同様に室温水中で1時間静置後に乾燥させた。これらのサンプルについて、ポリマー溶出試験前後のPNIPAM存在量を、IR-ATR法により測定し、HBPの溶出の有無を確認した。
[Polymer dissolution test]
No. 1 fractionated in Production Example 1 With respect to HBP-1 and -2, a coating solution was prepared in the same manner as in Example 1 to prepare a coated sample. After the coating and drying, the coating was left standing in water at room temperature for 1 hour and then dried. As a comparative example, a commercially available temperature-responsive cell culture vessel was similarly left standing in water at room temperature for 1 hour and then dried. For these samples, the PNIPAM abundance before and after the polymer elution test was measured by the IR-ATR method, and the presence or absence of HBP elution was confirmed.
 IR-ATR測定結果を表3に示す。溶出が見られた比較例に対し、実施例1、2共に、ポリマー溶出試験前後での脱離が観測されなかったため、溶出がほぼないことを確認できた。 IR-ATR measurement results are shown in Table 3. In contrast to Comparative Examples in which dissolution was observed, in both Examples 1 and 2, desorption was not observed before and after the polymer dissolution test, and it was confirmed that there was almost no dissolution.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 

Claims (10)

  1.  温度応答性層(A)を有する温度応答性細胞培養基材であって、
     前記温度応答性層(A)が温度応答性ポリマーを含み、
     前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが5.5以上である前記温度応答性ポリマーの合計が、60%以上である、
    温度応答性細胞培養基材。
    A temperature-responsive cell culture substrate having a temperature-responsive layer (A),
    The temperature-responsive layer (A) contains a temperature-responsive polymer,
    The temperature-responsive polymer having a logM of 5.5 or more among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). Is 60% or more,
    Temperature-responsive cell culture substrate.
  2.  前記温度応答性層(A)に含まれる、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが6.0以上である前記温度応答性ポリマーの合計が、15%以上である、
    請求項1記載の温度応答性細胞培養基材。
    The temperature-responsive polymer having a logM of 6.0 or more among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more contained in the temperature-responsive layer (A). Is greater than or equal to 15%,
    The temperature-responsive cell culture substrate according to claim 1.
  3.  前記温度応答性ポリマーが、デンドリティックポリマーの末端に温度応答性のブロックが結合したブロックポリマーを含む、請求項1又は2に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to claim 1 or 2, wherein the temperature-responsive polymer includes a block polymer in which a temperature-responsive block is bonded to a terminal of a dendritic polymer.
  4.  前記デンドリティックポリマーが、スチレン骨格又はシロキサン骨格のデンドリティックポリマーである、請求項3に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to claim 3, wherein the dendritic polymer is a dendritic polymer having a styrene skeleton or a siloxane skeleton.
  5.  前記温度応答性ポリマーの少なくとも一種が、
    (メタ)アクリルアミド、N-(若しくはN,N-ジ)置換(メタ)アクリルアミド及びビニルエーテルからなる群より選択される少なくとも一種を含むモノマーを重合することにより得られうる温度応答性ポリマー、又は
    ポリビニルアルコール部分酢化物
    を少なくとも一部に含む、請求項1~4のいずれか一項に記載の温度応答性細胞培養基材。
    At least one of the temperature-responsive polymers,
    Temperature-responsive polymer obtainable by polymerizing a monomer containing at least one selected from the group consisting of (meth) acrylamide, N- (or N, N-di) -substituted (meth) acrylamide and vinyl ether, or polyvinyl alcohol The temperature-responsive cell culture substrate according to any one of claims 1 to 4, wherein at least a part of the substrate is partially acetylated.
  6.  前記N-(若しくはN,N-ジ)置換(メタ)アクリルアミドが、ポリ-N-イソプロピル(メタ)アクリルアミド、ポリ-N、N-ジエチル(メタ)アクリルアミド、及びポリ-N、N-ジメチル(メタ)アクリルアミドからなる群より選択される少なくとも一種である、請求項5に記載の温度応答性細胞培養基材。 The N- (or N, N-di) -substituted (meth) acrylamide is poly-N-isopropyl (meth) acrylamide, poly-N, N-diethyl (meth) acrylamide, and poly-N, N-dimethyl (meth) acrylamide. The temperature-responsive cell culture substrate according to claim 5, which is at least one selected from the group consisting of) acrylamide.
  7.  さらに基材層(B)を有し、前記温度応答性層(A)は、前記基材層(B)の少なくとも一方の面に配置されている、請求項1~6のいずれか一項に記載の温度応答性細胞培養基材。 The device according to any one of claims 1 to 6, further comprising a substrate layer (B), wherein the temperature-responsive layer (A) is disposed on at least one surface of the substrate layer (B). The described temperature-responsive cell culture substrate.
  8.  前記基材層(B)がポリスチレンを含む、請求項7に記載の温度応答性細胞培養基材。 The temperature-responsive cell culture substrate according to claim 7, wherein the substrate layer (B) contains polystyrene.
  9.  温度応答性ポリマーを含む組成物であって、分子量Mの常用対数(logM)が4.0以上である前記温度応答性ポリマーの合計のうち、logMが5.5以上である前記温度応答性ポリマーの合計が、60%以上である、組成物。 A composition comprising a temperature-responsive polymer, wherein, among the total of the temperature-responsive polymers having a common logarithm (logM) of a molecular weight M of 4.0 or more, the temperature-responsive polymer having a logM of 5.5 or more. Is greater than or equal to 60%.
  10.  請求項1~8のいずれか一項に記載の温度応答性細胞培養基材を製造するために用いられる、請求項9に記載の組成物。
     
     
    The composition according to claim 9, which is used for producing the temperature-responsive cell culture substrate according to any one of claims 1 to 8.

PCT/JP2019/025484 2018-06-26 2019-06-26 Temperature-responsive cell culture substrate WO2020004508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121052A JP7002414B2 (en) 2018-06-26 2018-06-26 Temperature-responsive cell culture substrate
JP2018-121052 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020004508A1 true WO2020004508A1 (en) 2020-01-02

Family

ID=68986584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025484 WO2020004508A1 (en) 2018-06-26 2019-06-26 Temperature-responsive cell culture substrate

Country Status (2)

Country Link
JP (1) JP7002414B2 (en)
WO (1) WO2020004508A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (en) * 1995-07-11 1997-01-28 Kao Corp Production of supporting material for cell culture
WO2014133168A1 (en) * 2013-02-28 2014-09-04 Sakai Hideaki Novel graft polymer, temperature-responsive substrate for cell culture using same and production method therefor, and liquid chromatography carrier having immobilized novel graft polymer and liquid chromatography method using same
WO2018047634A1 (en) * 2016-09-09 2018-03-15 日立化成株式会社 Stimulus-responsive polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0923876A (en) * 1995-07-11 1997-01-28 Kao Corp Production of supporting material for cell culture
WO2014133168A1 (en) * 2013-02-28 2014-09-04 Sakai Hideaki Novel graft polymer, temperature-responsive substrate for cell culture using same and production method therefor, and liquid chromatography carrier having immobilized novel graft polymer and liquid chromatography method using same
WO2018047634A1 (en) * 2016-09-09 2018-03-15 日立化成株式会社 Stimulus-responsive polymer

Also Published As

Publication number Publication date
JP2020000049A (en) 2020-01-09
JP7002414B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
EP2612902B1 (en) Temperature-responsive substrate for cell culture and method for producing same
JP6759958B2 (en) Temperature-responsive substrate, its manufacturing method and its evaluation method
JP6638706B2 (en) Block copolymer and surface treatment agent using the same
KR102469649B1 (en) cell culture substrate
CN102140152A (en) Antibiofouling nonionic-zwitterionic copolymer
JP7127330B2 (en) Block copolymer and surface treatment agent using the same
CN111511895A (en) Scaffold material for stem cell culture and method for stem cell culture using same
JP6879365B2 (en) Temperature-responsive cell culture substrate and its manufacturing method
JP5349728B2 (en) Cell culture substrate and cell culture method
JP2021159049A (en) Method for growing adhesive cells and microcarrier used therefor
JP7480037B2 (en) Scaffold material for cell culture and cell culture vessel
WO2020004508A1 (en) Temperature-responsive cell culture substrate
JP2019083761A (en) Temperature responsive cell culture substrate and production method thereof
WO2019035436A1 (en) Culture substrate for pluripotent stem cell and method for producing pluripotent stem cell
JP2021106543A (en) Microcarrier for culturing temperature-responsive cell
JP2021159048A (en) Temperature responsive material and use thereof
JP7250248B2 (en) BLOCK COPOLYMER, SURFACE TREATMENT AGENT AND MEMBRANE CONTAINING THE SAME, AND CELL CULTURE EQUIPMENT AND CELL CULTURE METHOD USING THE SAME
JP7271870B2 (en) Substrate for culture of pluripotent stem cells and method for producing pluripotent stem cells
JP2021151210A (en) Microcarrier, and culture method of cell using the same
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP3428133B2 (en) Cell culture material, production and culture method
JP6314458B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP7151203B2 (en) Cell culture medium additive, cell culture medium, and method for producing cell aggregates
JP6954047B2 (en) Block copolymer coated beads and their manufacturing method
JP2023006594A (en) Cell separation substrate and cell separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826586

Country of ref document: EP

Kind code of ref document: A1