WO2020004461A1 - 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 - Google Patents

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 Download PDF

Info

Publication number
WO2020004461A1
WO2020004461A1 PCT/JP2019/025376 JP2019025376W WO2020004461A1 WO 2020004461 A1 WO2020004461 A1 WO 2020004461A1 JP 2019025376 W JP2019025376 W JP 2019025376W WO 2020004461 A1 WO2020004461 A1 WO 2020004461A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional data
information
node
encoding
dimensional
Prior art date
Application number
PCT/JP2019/025376
Other languages
English (en)
French (fr)
Inventor
敏康 杉尾
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201980040980.9A priority Critical patent/CN112313711A/zh
Priority to BR112020024802-9A priority patent/BR112020024802A2/pt
Priority to JP2020527576A priority patent/JP7322020B2/ja
Priority to KR1020207036463A priority patent/KR20210020924A/ko
Priority to MX2020013646A priority patent/MX2020013646A/es
Priority to CA3104630A priority patent/CA3104630A1/en
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to EP19825080.5A priority patent/EP3816940A4/en
Publication of WO2020004461A1 publication Critical patent/WO2020004461A1/ja
Priority to US17/126,848 priority patent/US11206426B2/en
Priority to US17/526,640 priority patent/US20220078487A1/en
Priority to JP2023121982A priority patent/JP7506231B2/ja
Priority to JP2024095640A priority patent/JP2024116339A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/1883Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit relating to sub-band structure, e.g. hierarchical level, directional tree, e.g. low-high [LH], high-low [HL], high-high [HH]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding

Definitions

  • the present disclosure relates to a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, and a three-dimensional data decoding device.
  • the three-dimensional data is obtained by various methods such as a distance sensor such as a range finder, a stereo camera, or a combination of a plurality of monocular cameras.
  • One of the three-dimensional data representation methods is a representation method called a point cloud that represents the shape of a three-dimensional structure by a point group in a three-dimensional space.
  • the position and color of the point cloud are stored.
  • Point clouds are expected to become mainstream as a method of expressing three-dimensional data, but point clouds have a very large data volume. Therefore, in the storage or transmission of three-dimensional data, it is necessary to compress the amount of data by encoding, as in the case of two-dimensional video (for example, MPEG-4 @ AVC or HEVC standardized by MPEG). Become.
  • ⁇ Point cloud compression ⁇ is partially supported by a public library (Point ⁇ Cloud ⁇ Library) that performs point cloud related processing.
  • Patent Document 1 a technology for searching for and displaying facilities located around a vehicle using three-dimensional map data is known (for example, see Patent Document 1).
  • An object of the present disclosure is to provide a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, or a three-dimensional data decoding device capable of improving encoding efficiency.
  • an N (N is an integer of 2 or more) binary tree of a plurality of three-dimensional points included in the three-dimensional data
  • a first occupation pattern indicating an occupancy state of a plurality of second adjacent nodes including a first adjacent node having a parent node different from the target node included in the structure is generated, and based on the first occupation pattern, a plurality of the target nodes are determined. It is determined whether or not first encoding for encoding a plurality of three-dimensional position information included in the target node can be used without dividing the child node into child nodes, and the first flag is different from the first value.
  • a second occupation pattern indicating an occupancy state of a plurality of third adjacent nodes not including the first adjacent node having a different parent node from the target node is generated, and based on the second occupation pattern. , Can use the first encoding It determines whether to generate a bitstream including the first flag.
  • the three-dimensional data decoding method obtains a first flag from a bit stream, and when the first flag indicates a first value, sets N of a plurality of three-dimensional points included in the three-dimensional data.
  • N is an integer of 2 or more
  • a first occupation pattern indicating an occupancy state of a plurality of second adjacent nodes including a first adjacent node having a different parent node from the target node included in the branch tree structure is generated, and the first occupation pattern is generated.
  • first decoding for decoding a plurality of three-dimensional position information included in the target node can be used without dividing the target node into a plurality of child nodes based on the pattern; If the second node has a second value different from the first value, a second occupation pattern indicating an occupation state of a plurality of third adjacent nodes not including the first adjacent node having a different parent node from the target node is generated. , The second occupied pattern Based on emissions determines whether it is possible to use the first decoding.
  • the present disclosure can provide a three-dimensional data encoding method, a three-dimensional data decoding method, a three-dimensional data encoding device, or a three-dimensional data decoding device capable of improving encoding efficiency.
  • FIG. 1 is a diagram showing a configuration of encoded three-dimensional data according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a prediction structure between SPCs belonging to the lowest layer of the GOS according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a prediction structure between layers according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a GOS encoding order according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a GOS encoding order according to the first embodiment.
  • FIG. 6 is a block diagram of the three-dimensional data encoding device according to Embodiment 1.
  • FIG. 7 is a flowchart of the encoding process according to Embodiment 1.
  • FIG. 1 is a diagram showing a configuration of encoded three-dimensional data according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a prediction structure between SPCs belonging to the lowest layer of the GOS according to the
  • FIG. 8 is a block diagram of the three-dimensional data decoding device according to Embodiment 1.
  • FIG. 9 is a flowchart of the decoding process according to Embodiment 1.
  • FIG. 10 is a diagram showing an example of meta information according to the first embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the SWLD according to the second embodiment.
  • FIG. 12 is a diagram illustrating an operation example of the server and the client according to the second embodiment.
  • FIG. 13 is a diagram illustrating an operation example of the server and the client according to the second embodiment.
  • FIG. 14 is a diagram illustrating an operation example of the server and the client according to the second embodiment.
  • FIG. 15 is a diagram illustrating an operation example of the server and the client according to the second embodiment.
  • FIG. 15 is a diagram illustrating an operation example of the server and the client according to the second embodiment.
  • FIG. 16 is a block diagram of a three-dimensional data encoding device according to Embodiment 2.
  • FIG. 17 is a flowchart of an encoding process according to Embodiment 2.
  • FIG. 18 is a block diagram of a three-dimensional data decoding device according to Embodiment 2.
  • FIG. 19 is a flowchart of a decoding process according to Embodiment 2.
  • FIG. 20 is a diagram illustrating a configuration example of a WLD according to the second embodiment.
  • FIG. 21 is a diagram illustrating an example of an octree structure of the WLD according to the second embodiment.
  • FIG. 22 is a diagram illustrating a configuration example of the SWLD according to the second embodiment.
  • FIG. 23 is a diagram illustrating an example of an octree structure of the SWLD according to the second embodiment.
  • FIG. 24 is a block diagram of the three-dimensional data creation device according to the third embodiment.
  • FIG. 25 is a block diagram of a three-dimensional data transmission device according to Embodiment 3.
  • FIG. 26 is a block diagram of a three-dimensional information processing apparatus according to Embodiment 4.
  • FIG. 27 is a block diagram of the three-dimensional data creation device according to the fifth embodiment.
  • FIG. 28 is a diagram illustrating a configuration of a system according to the sixth embodiment.
  • FIG. 29 is a block diagram of a client device according to Embodiment 6.
  • FIG. 30 is a block diagram of a server according to Embodiment 6.
  • FIG. 31 is a flowchart of a three-dimensional data creation process by the client device according to the sixth embodiment.
  • FIG. 32 is a flowchart of sensor information transmission processing by the client device according to the sixth embodiment.
  • FIG. 33 is a flowchart of three-dimensional data creation processing by the server according to Embodiment 6.
  • FIG. 34 is a flowchart of a three-dimensional map transmission process by the server according to Embodiment 6.
  • FIG. 35 is a diagram showing a configuration of a modification of the system according to Embodiment 6.
  • FIG. 36 is a diagram showing a configuration of a server and a client device according to Embodiment 6.
  • FIG. 37 is a block diagram of a three-dimensional data encoding device according to Embodiment 7.
  • FIG. 38 is a diagram illustrating an example of a prediction residual according to Embodiment 7.
  • FIG. 39 is a diagram illustrating an example of a volume according to the seventh embodiment.
  • FIG. 40 is a diagram illustrating an example of an octree representation of a volume according to the seventh embodiment.
  • FIG. 41 is a diagram illustrating an example of a bit string of a volume according to the seventh embodiment.
  • FIG. 42 is a diagram illustrating an example of an octree representation of a volume according to the seventh embodiment.
  • FIG. 43 is a diagram illustrating an example of a volume according to the seventh embodiment.
  • FIG. 44 is a diagram for describing intra prediction processing according to Embodiment 7.
  • FIG. 45 is a diagram for explaining rotation and translation processing according to the seventh embodiment.
  • FIG. 45 is a diagram for explaining rotation and translation processing according to the seventh embodiment.
  • FIG. 46 is a diagram illustrating a syntax example of an RT application flag and RT information according to the seventh embodiment.
  • FIG. 47 is a diagram for explaining the inter prediction processing according to the seventh embodiment.
  • FIG. 48 is a block diagram of a three-dimensional data decoding device according to Embodiment 7.
  • FIG. 49 is a flowchart of a three-dimensional data encoding process performed by the three-dimensional data encoding device according to Embodiment 7.
  • FIG. 50 is a flowchart of a three-dimensional data decoding process by the three-dimensional data decoding device according to the seventh embodiment.
  • FIG. 51 is a diagram illustrating a reference relationship in the octree structure according to the eighth embodiment.
  • FIG. 52 is a diagram showing a reference relationship in a spatial domain according to the eighth embodiment.
  • FIG. 53 is a diagram illustrating an example of an adjacent reference node according to the eighth embodiment.
  • FIG. 54 is a diagram illustrating a relationship between a parent node and a node according to the eighth embodiment.
  • FIG. 55 is a diagram illustrating an example of an occupancy code of a parent node according to Embodiment 8.
  • FIG. 56 is a block diagram of a three-dimensional data encoding device according to Embodiment 8.
  • FIG. 57 is a block diagram of a three-dimensional data decoding device according to Embodiment 8.
  • FIG. 58 is a flowchart of a three-dimensional data encoding process according to Embodiment 8.
  • FIG. 60 is a diagram illustrating an example of switching of the encoding tables according to Embodiment 8.
  • FIG. 61 is a diagram illustrating a reference relationship in a spatial region according to the first modification of the eighth embodiment.
  • FIG. 62 is a diagram illustrating a syntax example of header information according to Modification Example 1 of Embodiment 8.
  • FIG. 63 is a diagram illustrating a syntax example of header information according to Modification Example 1 of Embodiment 8.
  • FIG. 64 is a diagram illustrating an example of an adjacent reference node according to the second modification of the eighth embodiment.
  • FIG. 65 is a diagram illustrating an example of a target node and an adjacent node according to Modification 2 of Embodiment 8.
  • FIG. 66 is a diagram illustrating a reference relationship in the octree structure according to the third modification of the eighth embodiment.
  • FIG. 67 is a diagram illustrating a reference relationship in a spatial region according to the third modification of the eighth embodiment.
  • FIG. 68 is a diagram illustrating an example and processing of an adjacent node according to Embodiment 9.
  • FIG. 69 is a flowchart of a three-dimensional data encoding process according to Embodiment 9.
  • FIG. 70 is a flowchart of a three-dimensional data encoding process according to Embodiment 9.
  • FIG. 71 is a flowchart of a modification of the three-dimensional data encoding process according to Embodiment 9.
  • FIG. 72 is a flowchart of a three-dimensional data decoding process according to Embodiment 9.
  • FIG. 73 is a flowchart of a modification of the three-dimensional data decoding process according to Embodiment 9.
  • FIG. 74 is a diagram illustrating a syntax example of a header according to the ninth embodiment.
  • FIG. 75 is a diagram illustrating a syntax example of node information according to the ninth embodiment.
  • FIG. 76 is a block diagram of a three-dimensional data encoding device according to Embodiment 9.
  • FIG. 77 is a block diagram of a three-dimensional data decoding device according to Embodiment 9.
  • FIG. 78 is a flowchart of a modification of the three-dimensional data encoding process according to Embodiment 9.
  • FIG. 79 is a flowchart of a modification of the three-dimensional data encoding process according to Embodiment 9.
  • FIG. 80 is a flowchart of a modification of the three-dimensional data decoding process according to Embodiment 9.
  • FIG. 81 is a flowchart of a modification of the three-dimensional data decoding process according to Embodiment 9.
  • FIG. 82 is a flowchart of a three-dimensional data encoding process according to Embodiment 9.
  • FIG. 83 is a flowchart of a three-dimensional data decoding process according to Embodiment 9.
  • an N (N is an integer of 2 or more) binary tree of a plurality of three-dimensional points included in the three-dimensional data
  • a first occupation pattern indicating an occupancy state of a plurality of second adjacent nodes including a first adjacent node having a parent node different from the target node included in the structure is generated, and based on the first occupation pattern, a plurality of the target nodes are determined. It is determined whether or not first encoding for encoding a plurality of three-dimensional position information included in the target node can be used without dividing the child node into child nodes, and the first flag is different from the first value.
  • a second occupation pattern indicating an occupancy state of a plurality of third adjacent nodes not including the first adjacent node having a different parent node from the target node is generated, and based on the second occupation pattern. , Can use the first encoding It determines whether to generate a bitstream including the first flag.
  • the three-dimensional data encoding method can switch the occupation pattern of the adjacent node used to determine whether the first encoding is available or not in accordance with the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • the target node when it is determined that the first encoding can be used, it is determined whether to use the first encoding based on a predetermined condition, and when it is determined that the first encoding is used, If the target node is encoded using one encoding and it is determined not to use the first encoding, the target node is encoded using a second encoding that divides the target node into a plurality of child nodes.
  • the bit stream may further include a second flag indicating whether to use the first encoding.
  • the first encoding pattern or the second occupation pattern is included in the parent node. Whether or not the first encoding can be used may be determined based on the number of occupied nodes.
  • the first occupation pattern or the second occupation pattern and a grandfather node of the target node are determined. May be determined based on the number of occupied nodes included in the first encoding.
  • the first occupation pattern or the second occupation pattern in determining whether the first encoding can be used, the first occupation pattern or the second occupation pattern and the hierarchy to which the target node belongs Based on the above, it may be determined whether or not the first encoding can be used.
  • the three-dimensional data decoding method obtains a first flag from a bit stream, and when the first flag indicates a first value, sets N of a plurality of three-dimensional points included in the three-dimensional data.
  • N is an integer of 2 or more
  • a first occupation pattern indicating an occupancy state of a plurality of second adjacent nodes including a first adjacent node having a different parent node from the target node included in the branch tree structure is generated, and the first occupation pattern is generated.
  • first decoding for decoding a plurality of three-dimensional position information included in the target node can be used without dividing the target node into a plurality of child nodes based on the pattern; If the second node has a second value different from the first value, a second occupation pattern indicating an occupation state of a plurality of third adjacent nodes not including the first adjacent node having a different parent node from the target node is generated. , The second occupied pattern Based on emissions determines whether it is possible to use the first decoding.
  • the three-dimensional data decoding method can switch the occupation pattern of the adjacent node used to determine whether the first encoding can be used or not in accordance with the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • a second flag indicating whether to use the first decoding is obtained from the bit stream, and the first decoding is used based on the second flag. If so, a second decoding that divides the target node into a plurality of child nodes by decoding the target node using the first decoding and not using the first decoding by the second flag May be used to decode the target node.
  • the first occupation pattern or the second occupation pattern and the occupation included in the parent node are determined. Whether or not the first decoding can be used may be determined based on the number of nodes in the state.
  • the first occupation pattern or the second occupation pattern and the grandfather node of the target node Whether or not the first decoding can be used may be determined based on the number of occupied nodes included.
  • the first occupation pattern or the second occupation pattern in the determination as to whether the first decoding can be used, the first occupation pattern or the second occupation pattern and the hierarchy to which the target node belongs It may be determined whether or not the first decryption can be used based on.
  • a three-dimensional data encoding device is a three-dimensional data encoding device that encodes a plurality of three-dimensional points having attribute information
  • the processor including a processor, a memory, and the processor
  • the first flag indicates a first value using the memory
  • a target node included in an N (N is an integer of 2 or more) binary tree structure of a plurality of three-dimensional points included in the three-dimensional data is Generating a first occupation pattern indicating an occupation state of a plurality of second adjacent nodes including a first adjacent node having a different parent node, without dividing the target node into a plurality of child nodes based on the first occupation pattern; It is determined whether or not first encoding for encoding a plurality of three-dimensional position information included in the target node is available, and the first flag indicates a second value different from the first value The parent node differs from the target node.
  • the three-dimensional data encoding device can switch the occupation pattern of the adjacent node used to determine whether the first encoding is available or not in accordance with the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • a three-dimensional data decoding device is a three-dimensional data decoding device that decodes a plurality of three-dimensional points having attribute information, including a processor and a memory, wherein the processor is When the first flag indicates a first value using a memory, a target node and a parent node included in an N (N is an integer of 2 or more) binary tree structure of a plurality of three-dimensional points included in the three-dimensional data Generates a first occupation pattern indicating an occupation state of a plurality of second adjacent nodes including first adjacent nodes different from each other, and does not divide the target node into a plurality of child nodes based on the first occupation pattern.
  • first decoding for decoding a plurality of pieces of three-dimensional position information included in a node It is determined whether or not first decoding for decoding a plurality of pieces of three-dimensional position information included in a node can be used, and when the first flag indicates a second value different from the first value, the target node Before parent node is different Generating a second occupancy pattern showing a plurality of occupancy of the third adjacent node that does not include the first adjacent node, on the basis of the second occupation pattern, determines whether or not it is possible to use the first decoding.
  • the three-dimensional data decoding device can switch the occupation pattern of the adjacent node used to determine whether the first encoding can be used according to the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • a recording medium such as a system, a method, an integrated circuit, a computer program or a computer-readable CD-ROM, and the system, the method, the integrated circuit, and the computer program. And any combination of recording media.
  • FIG. 1 is a diagram showing a configuration of encoded three-dimensional data according to the present embodiment.
  • the three-dimensional space is divided into spaces (SPCs) corresponding to pictures in encoding moving images, and three-dimensional data is encoded in units of spaces.
  • the space is further divided into volumes (VLM) corresponding to macroblocks and the like in video coding, and prediction and conversion are performed in units of VLM.
  • the volume includes a plurality of voxels (VXL), which are the minimum units associated with the position coordinates.
  • the prediction refers to another processing unit, generates prediction three-dimensional data similar to the processing unit to be processed, and generates the prediction three-dimensional data and the processing target to be processed, similarly to the prediction performed on the two-dimensional image. This is to encode the difference from the processing unit.
  • This prediction includes not only spatial prediction referring to another prediction unit at the same time but also temporal prediction referring to a prediction unit at a different time.
  • a three-dimensional data encoding device when encoding a three-dimensional space represented by point cloud data such as a point cloud, sets a point cloud according to a voxel size. , Or a plurality of points included in the voxel are collectively encoded. If the voxels are subdivided, the three-dimensional shape of the point group can be expressed with high precision, and if the voxel size is increased, the three-dimensional shape of the point group can be roughly expressed.
  • the three-dimensional data is a point cloud
  • the three-dimensional data is not limited to the point cloud, and may be any form of three-dimensional data.
  • voxels having a hierarchical structure may be used.
  • whether or not the sample points exist in the (n-1) -th or lower layer (the lower layer of the n-th layer) may be indicated in order.
  • decoding can be performed assuming that the sample point exists at the center of the voxel in the n-th layer.
  • the encoding device acquires the point cloud data using a distance sensor, a stereo camera, a monocular camera, a gyro, an inertial sensor, or the like.
  • the space can be an intra space (I-SPC) that can be decoded independently, a predictive space (P-SPC) that can only be referenced in one direction, and a bidirectional reference, as in the case of video encoding. Classified into any of at least three prediction structures including a bidirectional space (B-SPC).
  • the space has two types of time information, that is, a decoding time and a display time.
  • GOS Group Of Space
  • WLD world
  • the space area occupied by the world is associated with the absolute position on the earth by GPS or latitude and longitude information. This position information is stored as meta information. Note that the meta information may be included in the encoded data, or may be transmitted separately from the encoded data.
  • all SPCs may be three-dimensionally adjacent to each other, or some SPCs may not be three-dimensionally adjacent to other SPCs.
  • processing such as encoding, decoding, or reference to three-dimensional data included in a processing unit such as GOS, SPC, or VLM is also simply referred to as encoding, decoding, or referencing a processing unit.
  • the three-dimensional data included in the processing unit includes, for example, at least one set of a spatial position such as three-dimensional coordinates and a characteristic value such as color information.
  • a plurality of SPCs in the same GOS or a plurality of VLMs in the same SPC occupy different spaces, but have the same time information (decoding time and display time).
  • the first SPC in the decoding order in the GOS is the I-SPC.
  • GOS there are two types of GOS, closed GOS and open GOS.
  • the closed GOS is a GOS that can decode all SPCs in the GOS when starting decoding from the first I-SPC.
  • the open GOS some SPCs whose display time is earlier than the head I-SPC in the GOS refer to different GOSs, and cannot be decrypted only by the GOS.
  • the WLD may be decoded in a direction opposite to the encoding order, and it is difficult to reproduce in the backward direction if there is a dependency between GOSs. Therefore, in such a case, the closed GOS is basically used.
  • GOS has a layer structure in the height direction, and encoding or decoding is performed sequentially from the SPC of the lower layer.
  • FIG. 2 is a diagram showing an example of a prediction structure between SPCs belonging to the lowest layer of the GOS.
  • FIG. 3 is a diagram illustrating an example of a prediction structure between layers.
  • I-SPCs exist in GOS.
  • Objects such as humans, animals, cars, bicycles, signals, and buildings serving as landmarks exist in the three-dimensional space, and it is effective to encode small-sized objects as I-SPC.
  • a three-dimensional data decoding device (hereinafter also referred to as a decoding device) decodes only the I-SPC in the GOS when decoding the GOS with a low processing amount or at a high speed.
  • the encoding device may switch the encoding interval or the appearance frequency of the I-SPC according to the density of the object in the WLD.
  • the encoding device or the decoding device sequentially encodes or decodes a plurality of layers from a lower layer (layer 1).
  • a lower layer layer 1
  • the priority of data near the ground which has more information for an autonomous vehicle, can be increased.
  • the coded data used in a drone or the like, may be coded or decoded in the GOS in order from the SPC of the upper layer in the height direction.
  • the encoding device or the decoding device may encode or decode a plurality of layers so that the decoding device can roughly understand the GOS and gradually increase the resolution.
  • the encoding device or the decoding device may perform encoding or decoding in the order of layers 3, 8, 1, 9,.
  • static objects or scenes such as buildings or roads
  • dynamic objects such as cars or people
  • Object detection is separately performed by extracting feature points from point cloud data, camera images from a stereo camera or the like, and the like.
  • an example of a dynamic object encoding method will be described.
  • the first method is a method of encoding a static object and a dynamic object without distinction.
  • the second method is a method for distinguishing between a static object and a dynamic object by identification information.
  • GOS is used as an identification unit.
  • the GOS including the SPC configuring the static object and the GOS including the SPC configuring the dynamic object are distinguished by the identification information stored in the encoded data or separately from the encoded data.
  • SPC may be used as the identification unit.
  • the SPC including the VLM forming the static object and the SPC including the VLM forming the dynamic object are distinguished by the identification information.
  • VLM or VXL may be used as the identification unit.
  • the VLM or VXL including the static object is distinguished from the VLM or VXL including the dynamic object by the identification information.
  • the encoding device may encode the dynamic object as one or more VLMs or SPCs, and encode the VLM or SPC including the static object and the SPC including the dynamic object as different GOSs.
  • the encoding device separately stores the size of the GOS as meta information.
  • the encoding device may encode the static object and the dynamic object independently of each other, and superimpose the dynamic object on a world composed of the static objects.
  • the dynamic object is constituted by one or more SPCs, and each SPC is associated with one or more SPCs constituting a static object on which the SPC is superimposed.
  • the dynamic object may be represented by one or more VLMs or VXLs instead of the SPC.
  • the encoding device may encode the static object and the dynamic object as different streams from each other.
  • the encoding device may generate a GOS including one or more SPCs constituting a dynamic object. Further, the encoding device may set the GOS (GOS_M) including the dynamic object and the GOS of the static object corresponding to the space area of the GOS_M to the same size (occupy the same space area). Thereby, the superimposition process can be performed in GOS units.
  • GOS including one or more SPCs constituting a dynamic object.
  • the encoding device may set the GOS (GOS_M) including the dynamic object and the GOS of the static object corresponding to the space area of the GOS_M to the same size (occupy the same space area).
  • the P-SPC or the B-SPC constituting the dynamic object may refer to an SPC included in a different encoded GOS.
  • reference across GOS is effective from the viewpoint of the compression ratio.
  • the first method and the second method may be switched according to the use of the encoded data. For example, when using encoded three-dimensional data as a map, it is desirable to be able to separate dynamic objects, so the encoding device uses the second method. On the other hand, when encoding three-dimensional data of an event such as a concert or a sport, the encoding device uses the first method unless it is necessary to separate dynamic objects.
  • the decoding time and display time of GOS or SPC can be stored in the encoded data or as meta information.
  • the time information of all static objects may be the same.
  • the actual decoding time and display time may be determined by the decoding device.
  • different values may be assigned to the GOS or SPC as the decoding time, and the same value may be assigned to all the display times.
  • the decoder has a buffer of a predetermined size, such as a decoder model in video coding such as HEVC (Hydrophetic Reference Decoder), and can decode without fail if a bit stream is read at a predetermined bit rate according to a decoding time. May be introduced.
  • the coordinates of the three-dimensional space in the world are represented by three coordinate axes (x-axis, y-axis, z-axis) orthogonal to each other.
  • encoding can be performed so that spatially adjacent GOSs are continuous in encoded data. For example, in the example shown in FIG. 4, GOS in the xz plane is continuously encoded. After the encoding of all GOS in a certain xz plane is completed, the value of the y-axis is updated. That is, as the encoding progresses, the world extends in the y-axis direction.
  • the GOS index numbers are set in the order of encoding.
  • the three-dimensional space of the world is associated one-to-one with GPS or geographical absolute coordinates such as latitude and longitude.
  • a three-dimensional space may be represented by a relative position from a preset reference position.
  • the directions of the x-axis, y-axis, and z-axis in the three-dimensional space are expressed as direction vectors determined based on latitude, longitude, and the like, and the direction vectors are stored as meta information together with the encoded data.
  • the size of the GOS is fixed, and the encoding device stores the size as meta information. Further, the size of the GOS may be switched according to, for example, whether or not it is in an urban area or indoors or outdoors. That is, the size of the GOS may be switched according to the amount or properties of an object having information value.
  • the encoding device may adaptively switch the size of the GOS or the interval between I-SPCs in the GOS according to the density of the objects and the like in the same world. For example, the encoding device reduces the size of the GOS and shortens the interval between I-SPCs in the GOS as the density of the objects increases.
  • the GOS is subdivided in order to realize random access with fine granularity.
  • the seventh to tenth GOSs are located behind the third to sixth GOSs, respectively.
  • FIG. 6 is a block diagram of three-dimensional data encoding device 100 according to the present embodiment.
  • FIG. 7 is a flowchart illustrating an operation example of the three-dimensional data encoding device 100.
  • the three-dimensional data encoding device 100 illustrated in FIG. 6 generates the encoded three-dimensional data 112 by encoding the three-dimensional data 111.
  • the three-dimensional data encoding device 100 includes an acquisition unit 101, an encoding area determination unit 102, a division unit 103, and an encoding unit 104.
  • the acquiring unit 101 acquires the three-dimensional data 111 that is point cloud data (S101).
  • the encoding area determination unit 102 determines an encoding target area from among the spatial areas corresponding to the acquired point cloud data (S102). For example, the coding area determination unit 102 determines a spatial area around the position as a coding target area according to the position of the user or the vehicle.
  • the dividing unit 103 divides the point cloud data included in the encoding target area into processing units.
  • the processing unit is the above-described GOS, SPC, or the like.
  • the region to be coded corresponds to, for example, the world described above.
  • the dividing unit 103 divides the point cloud data into processing units based on a predetermined GOS size or the presence or absence or size of a dynamic object (S103). Further, the dividing unit 103 determines the start position of the SPC which is the first in the coding order in each GOS.
  • the encoding unit 104 generates encoded three-dimensional data 112 by sequentially encoding a plurality of SPCs in each GOS (S104).
  • the processing procedure is not limited to the above.
  • a procedure may be used in which the configuration of one GOS is determined, then the GOS is encoded, and then the configuration of the next GOS is determined.
  • the three-dimensional data encoding device 100 generates the encoded three-dimensional data 112 by encoding the three-dimensional data 111. Specifically, the three-dimensional data encoding device 100 divides the three-dimensional data into random access units, each of which is associated with a three-dimensional coordinate, and is divided into first processing units (GOS). The processing unit (GOS) is divided into a plurality of second processing units (SPC), and the second processing unit (SPC) is divided into a plurality of third processing units (VLM). Further, the third processing unit (VLM) includes one or more voxels (VXL), which are minimum units to be associated with position information.
  • VXL voxels
  • the three-dimensional data encoding device 100 generates encoded three-dimensional data 112 by encoding each of the plurality of first processing units (GOS). Specifically, the three-dimensional data encoding device 100 encodes each of the plurality of second processing units (SPC) in each first processing unit (GOS). Further, the three-dimensional data encoding device 100 encodes each of the plurality of third processing units (VLMs) in each second processing unit (SPC).
  • GOS first processing unit
  • VLMs third processing units
  • the three-dimensional data encoding apparatus 100 may use the second processing unit to be processed included in the first processing unit (GOS) to be processed.
  • SPC is encoded with reference to another second processing unit (SPC) included in the first processing unit (GOS) to be processed. That is, the three-dimensional data encoding device 100 does not refer to the second processing unit (SPC) included in the first processing unit (GOS) different from the first processing unit (GOS) to be processed.
  • the second processing unit (SPC) to be processed included in the first processing unit (GOS) to be processed is replaced with the second processing unit (SPC) to be processed.
  • Another second processing unit (SPC) included in one processing unit (GOS) or a second processing unit (SPC) included in a first processing unit (GOS) different from the first processing unit (GOS) to be processed And perform encoding.
  • the three-dimensional data encoding apparatus 100 may use the first type (I-SPC) that does not refer to another second processing unit (SPC) as the type of the second processing unit (SPC) to be processed, One of a second type (P-SPC) referring to the second processing unit (SPC) and a third type referring to the other two second processing units (SPC) is selected, and processing is performed according to the selected type.
  • the target second processing unit (SPC) is encoded.
  • FIG. 8 is a block diagram of a block of three-dimensional data decoding device 200 according to the present embodiment.
  • FIG. 9 is a flowchart illustrating an operation example of the three-dimensional data decoding device 200.
  • the three-dimensional data decoding device 200 illustrated in FIG. 8 generates the decoded three-dimensional data 212 by decoding the encoded three-dimensional data 211.
  • the encoded three-dimensional data 211 is, for example, the encoded three-dimensional data 112 generated by the three-dimensional data encoding device 100.
  • the three-dimensional data decoding device 200 includes an acquisition unit 201, a decoding start GOS determining unit 202, a decoding SPC determining unit 203, and a decoding unit 204.
  • the acquiring unit 201 acquires the encoded three-dimensional data 211 (S201).
  • the decryption start GOS determination unit 202 determines the GOS to be decrypted (S202). Specifically, the decoding start GOS determining unit 202 refers to the meta information stored in the encoded three-dimensional data 211 or separately from the encoded three-dimensional data, and determines a spatial position, an object, or an object to start decoding. , The GOS including the SPC corresponding to the time is determined as the GOS to be decoded.
  • the decoding SPC determining unit 203 determines the type (I, P, B) of the SPC to be decoded in the GOS (S203). For example, the decoding SPC determining unit 203 determines whether to (1) decode only I-SPC, (2) decode I-SPC and P-SPC, or (3) decode all types. If the type of SPC to be decoded is determined in advance, such as decoding all SPCs, this step may not be performed.
  • the decoding unit 204 obtains an address position at which the first SPC in the decoding order (same as the encoding order) in the GOS starts in the encoded three-dimensional data 211, and obtains a code of the first SPC from the address position.
  • the encrypted data is acquired, and each SPC is sequentially decoded from the leading SPC (S204).
  • the address position is stored in meta information or the like.
  • the three-dimensional data decoding device 200 decodes the decoded three-dimensional data 212. Specifically, the three-dimensional data decoding device 200 decodes each of the encoded three-dimensional data 211 of the first processing unit (GOS), which is a random access unit and is associated with a three-dimensional coordinate. Thereby, the decoded three-dimensional data 212 of the first processing unit (GOS) is generated. More specifically, the three-dimensional data decoding device 200 decodes each of the plurality of second processing units (SPC) in each first processing unit (GOS). Further, the three-dimensional data decoding device 200 decodes each of the plurality of third processing units (VLM) in each second processing unit (SPC).
  • GOS first processing unit
  • VLM third processing units
  • This meta information is generated by the three-dimensional data encoding device 100 and is included in the encoded three-dimensional data 112 (211).
  • FIG. 10 is a diagram illustrating an example of a table included in the meta information. Note that not all the tables shown in FIG. 10 need to be used, and at least one table may be used.
  • the address may be an address in a logical format or a physical address of an HDD or a memory. Further, information for specifying the file segment may be used instead of the address.
  • a file segment is a unit obtained by segmenting one or more GOSs.
  • the object-GOS table may indicate a plurality of GOS to which the object belongs. If the plurality of GOSs are closed GOSs, the encoding device and the decoding device can perform encoding or decoding in parallel. On the other hand, if the plurality of GOSs are open GOSs, the plurality of GOSs can refer to each other to increase the compression efficiency.
  • the three-dimensional data encoding device 100 extracts characteristic points specific to an object from a three-dimensional point cloud or the like when encoding a world, detects an object based on the characteristic point, and assigns the detected object to a random access point. Can be set as
  • the three-dimensional data encoding device 100 includes the first information indicating the plurality of first processing units (GOS) and the three-dimensional coordinates associated with each of the plurality of first processing units (GOS).
  • the encoded three-dimensional data 112 (211) includes this first information.
  • the first information further indicates at least one of an object, a time, and a data storage destination associated with each of the plurality of first processing units (GOS).
  • the three-dimensional data decoding device 200 acquires the first information from the encoded three-dimensional data 211, and uses the first information to encode the three-dimensional data of the first processing unit corresponding to the specified three-dimensional coordinate, object, or time.
  • the original data 211 is specified, and the encoded three-dimensional data 211 is decoded.
  • the three-dimensional data encoding device 100 may generate and store the following meta information. Further, the three-dimensional data decoding device 200 may use this meta information at the time of decoding.
  • a profile is defined according to the application, and information indicating the profile may be included in the meta information.
  • a profile for an urban area or a suburb or a flying object is defined, and the maximum or minimum size of the world, SPC or VLM is defined in each of the profiles.
  • the minimum size of the VLM is set smaller for urban areas because more detailed information is required than for suburban areas.
  • the meta information may include a tag value indicating the type of the object.
  • This tag value is associated with the VLM, SPC, or GOS that makes up the object. For example, a tag value “0” indicates “person”, a tag value “1” indicates “car”, a tag value “2” indicates “traffic light”, and so on. Is also good.
  • a tag value indicating the size or a property such as a dynamic object or a static object may be used.
  • the meta information may include information indicating a range of a space area occupied by the world.
  • the meta information may store the size of the SPC or VXL as header information common to a plurality of SPCs such as an entire stream of encoded data or SPCs in the GOS.
  • the meta information may include identification information of a distance sensor or a camera used for generating the point cloud, or information indicating the positional accuracy of a point cloud in the point cloud.
  • the meta information may include information indicating whether the world is composed of only static objects or includes dynamic objects.
  • the encoding device or the decoding device may encode or decode two or more different SPCs or GOSs in parallel.
  • the GOS to be encoded or decoded in parallel can be determined based on meta information indicating the spatial position of the GOS.
  • the encoding device or the decoding device uses the GPS, the route information, the zoom magnification, or the like.
  • GOS or SPC included in the space specified based on the information may be encoded or decoded.
  • the decoding device may perform decoding sequentially from a space close to the self-position or the travel route.
  • the encoding device or the decoding device may encode or decode a space farther from the self-position or the travel route with a lower priority than a space close thereto.
  • lowering the priority means lowering the processing order, lowering the resolution (processing by thinning out), or lowering the image quality (improving the coding efficiency, for example, increasing the quantization step). .
  • the decoding device may decode only the lower layer.
  • the decoding device may preferentially decode from the lower hierarchy according to the zoom factor or the application of the map.
  • an encoding device or a decoding device reduces a resolution except for an area within a specific height from a road surface (an area for recognition). Or decryption may be performed.
  • the encoding device may individually encode the point clouds representing the spatial shapes of the indoor space and the outdoor space. For example, by separating GOS representing an indoor room (indoor GOS) and GOS representing an outdoor room (outdoor GOS), the decoding device selects a GOS to be decoded according to the viewpoint position when using encoded data. it can.
  • the encoding device may encode the indoor GOS and the outdoor GOS whose coordinates are close to each other so as to be adjacent in the encoded stream. For example, the encoding device associates both identifiers and stores information indicating the associated identifier in the encoded stream or separately stored meta information. Thereby, the decoding device can identify the indoor GOS and the outdoor GOS whose coordinates are close by referring to the information in the meta information.
  • the encoding device may switch the size of the GOS or the SPC between the indoor GOS and the outdoor GOS. For example, the encoding device sets the size of the GOS smaller indoors than when outdoors. In addition, the encoding device may change the accuracy at the time of extracting a feature point from a point cloud or the accuracy of object detection between the indoor GOS and the outdoor GOS.
  • the encoding device may add, to the encoded data, information for the decoding device to display the dynamic object separately from the static object.
  • the decoding device can display the dynamic object together with the red frame or the explanatory characters.
  • the decoding device may display only a red frame or an explanatory character instead of the dynamic object.
  • the decoding device may display a more detailed object type. For example, a red frame may be used for a car and a yellow frame may be used for a person.
  • the encoding device or the decoding device encodes the dynamic object and the static object as different SPCs or GOSs according to the appearance frequency of the dynamic object or the ratio between the static object and the dynamic object. Alternatively, it may be determined whether or not to decrypt. For example, when the appearance frequency or ratio of the dynamic object exceeds the threshold, SPC or GOS in which the dynamic object and the static object are mixed is allowed, and the appearance frequency or ratio of the dynamic object does not exceed the threshold. Does not allow SPC or GOS in which dynamic objects and static objects coexist.
  • the encoding device When detecting a dynamic object not from a point cloud but from two-dimensional image information of a camera, the encoding device separately obtains information (a frame or a character) for identifying a detection result and an object position, These pieces of information may be encoded as part of three-dimensional encoded data. In this case, the decoding device superimposes and displays auxiliary information (frame or character) indicating the dynamic object on the decoding result of the static object.
  • the encoding device may change the density of the VXL or VLM in the SPC according to the complexity of the shape of the static object. For example, the encoding device sets VXL or VLM densely as the shape of the static object becomes more complicated. Furthermore, the encoding device may determine a quantization step or the like when quantizing the spatial position or the color information according to the density of the VXL or VLM. For example, the encoding device sets a smaller quantization step as VXL or VLM becomes denser.
  • the encoding device or the decoding device encodes or decodes a space in units of space having coordinate information.
  • the encoding device and the decoding device perform encoding or decoding on a volume basis in the space.
  • the volume includes a voxel that is the minimum unit associated with the position information.
  • the encoding device and the decoding device associate arbitrary elements with a table in which each element of spatial information including coordinates, objects, time, and the like is associated with a GOP, or a table in which each element is associated. Encoding or decoding. Further, the decoding device determines coordinates using the value of the selected element, specifies a volume, a voxel or a space from the coordinates, and decodes a space including the volume or the voxel or the specified space.
  • the encoding device determines a volume, a voxel, or a space that can be selected by an element by extracting feature points or recognizing an object, and encodes the volume, the voxel, or the space that can be randomly accessed.
  • the space refers to an I-SPC that can be encoded or decoded by itself, a P-SPC encoded or decoded with reference to any one processed space, and any two processed spaces. And B-SPC to be coded or decoded.
  • One or more volumes correspond to static or dynamic objects.
  • the space including the static object and the space including the dynamic object are encoded or decoded as different GOSs. That is, the SPC including the static object and the SPC including the dynamic object are assigned to different GOSs.
  • Dynamic objects are encoded or decoded on an object-by-object basis and are associated with one or more spaces containing static objects. That is, the plurality of dynamic objects are individually encoded, and the encoded data of the obtained plurality of dynamic objects is associated with the SPC including the static object.
  • the encoding device and the decoding device perform encoding or decoding by increasing the priority of the I-SPC in the GOS. For example, the encoding device performs encoding so that deterioration of I-SPC is reduced (so that the original three-dimensional data is more faithfully reproduced after decoding).
  • the decoding device decodes, for example, only I-SPC.
  • the encoding device may perform encoding by changing the frequency of using I-SPC according to the density or the number (amount) of objects in the world. That is, the encoding device changes the frequency of selecting the I-SPC according to the number or coarseness of the objects included in the three-dimensional data. For example, the encoding device uses the I space more frequently as the objects in the world are denser.
  • the encoding device sets a random access point in GOS units and stores information indicating a spatial area corresponding to GOS in the header information.
  • the encoding device uses, for example, a default value as the space size of the GOS.
  • the encoding device may change the size of the GOS according to the number (amount) or coarseness of the objects or dynamic objects. For example, the encoding device reduces the space size of the GOS as the number of objects or dynamic objects increases or the number of dynamic objects increases.
  • the space or volume includes a feature point group derived using information obtained by a sensor such as a depth sensor, a gyro, or a camera.
  • the coordinates of the feature point are set at the center position of the voxel. Further, it is possible to realize high-accuracy position information by subdividing voxels.
  • the feature point group is derived using a plurality of pictures.
  • the plurality of pictures have at least two types of time information: actual time information and the same time information (for example, an encoded time used for rate control or the like) in the plurality of pictures associated with the space.
  • the encoding device and the decoding device predict the P space or the B space in the GOS to be processed with reference to the space in the processed GOS.
  • the encoding device and the decoding device predict the P space or the B space in the GOS to be processed using the processed space in the GOS to be processed without referring to different GOSs.
  • the encoding device and the decoding device transmit or receive an encoded stream in world units including one or more GOSs.
  • GOS has a layer structure in at least one direction in the world, and the encoding device and the decoding device perform encoding or decoding from the lower layer.
  • a randomly accessible GOS belongs to the lowest layer.
  • GOS belonging to the upper layer refers to GOS belonging to the same layer or lower. That is, the GOS is spatially divided in a predetermined direction and includes a plurality of layers each including one or more SPCs.
  • the encoding device and the decoding device encode or decode each SPC with reference to the SPC included in the same layer as the SPC or a layer lower than the SPC.
  • the encoding device and the decoding device continuously encode or decode GOS within a world unit including a plurality of GOS.
  • the encoding device and the decoding device write or read information indicating the order (direction) of encoding or decoding as metadata. That is, the encoded data includes information indicating the encoding order of a plurality of GOSs.
  • the encoding device and the decoding device encode or decode two or more different spaces or GOSs in parallel with each other.
  • the encoding device and the decoding device encode or decode space or spatial information (coordinates, size, etc.) of GOS.
  • the encoding device and the decoding device encode or decode a space or GOS included in a specific space specified based on external information regarding its own position or / and area size such as GPS, path information, or magnification. .
  • the encoding device or the decoding device encodes or decodes a space far from its own position with a lower priority than a close space.
  • the encoding device sets one direction of the world according to the magnification or the application, and encodes a GOS having a layer structure in the direction.
  • the decoding device decodes the GOS having a layer structure in one direction of the world set according to the magnification or the use from the lower layer preferentially.
  • the encoding device changes the feature points included in the space, the accuracy of object recognition, the size of the space area, and the like between the indoor and outdoor areas.
  • the encoding device and the decoding device encode or decode an indoor GOS and an outdoor GOS whose coordinates are close to each other in the world adjacent to each other, and encode or decode these identifiers in association with each other.
  • a three-dimensional data encoding method and a three-dimensional data encoding device for providing a function of transmitting and receiving only necessary information according to a use in encoded data of a three-dimensional point cloud, and A three-dimensional data decoding method and a three-dimensional data decoding device for decoding encoded data will be described.
  • FIG. 11 is a diagram illustrating a configuration example of a sparse world and a world.
  • SWLD includes FGOS, which is a GOS composed of FVXL, FSPC, which is an SPC composed of FVXL, and FVLM, which is a VLM composed of FVXL.
  • FGOS which is a GOS composed of FVXL
  • FSPC which is an SPC composed of FVXL
  • FVLM which is a VLM composed of FVXL.
  • the data structure and prediction structure of FGOS, FSPC and FVLM may be the same as those of GOS, SPC and VLM.
  • the feature amount is a feature amount that expresses three-dimensional position information of VXL or visible light information of the VXL position, and is a feature amount that is particularly detected at corners and edges of a three-dimensional object. Specifically, this feature amount is a three-dimensional feature amount or a visible light feature amount as described below, and any other feature amount representing the position, luminance, or color information of VXL can be used. It does not matter.
  • a SHOT feature Signature of Histograms of Orientations
  • a PFH feature Point Feature Historygrams
  • a PPF feature Point Pair ⁇ Feature
  • the SHOT feature amount is obtained by dividing the periphery of VXL, calculating the inner product of the reference point and the normal vector of the divided region, and forming a histogram.
  • This SHOT feature quantity has a feature that the number of dimensions is high and the feature expression power is high.
  • the PFH feature amount can be obtained by selecting a large number of two-point sets near VXL, calculating a normal vector from the two points, and forming a histogram. Since the PFH feature amount is a histogram feature, the PFH feature amount has a feature of being robust against some disturbance and having a high feature expression power.
  • the PPF feature amount is a feature amount calculated using a normal vector or the like for each of two VXLs. Since all VXLs are used for this PPF feature amount, it has robustness to occlusion.
  • SIFT Scale-Invariant Feature Transform
  • SURF Speeded Up Robust Features
  • HOG Histogram of Oriented
  • SWLD is generated by calculating the above-mentioned feature amount from each VXL of WLD and extracting FVXL.
  • the SWLD may be updated every time the WLD is updated, or the SWLD may be updated periodically after a predetermined time has elapsed, regardless of the update timing of the WLD.
  • SWLD may be generated for each feature value. For example, different SWLDs may be generated for each feature amount, such as SWLD1 based on the SHOT feature amount and SWLD2 based on the SIFT feature amount, and the SWLD may be used depending on the application. Further, the calculated feature value of each FVXL may be stored in each FVXL as feature value information.
  • SWLD Sparse World
  • FIGS. 12 and 13 are diagrams showing examples of using SWLD and WLD.
  • the client 1 which is an in-vehicle device, needs map information for use in self-position determination
  • the client 1 sends a request to acquire map data for self-position estimation to the server (S301).
  • the server transmits the SWLD to the client 1 according to the acquisition request (S302).
  • the client 1 performs a self-position determination using the received SWLD (S303).
  • the client 1 obtains VXL information around the client 1 by various methods such as a distance sensor such as a range finder, a stereo camera, or a combination of a plurality of monocular cameras, and obtains VXL information from the obtained VXL information and SWLD.
  • the self-position information includes three-dimensional position information and orientation of the client 1.
  • the client 2 which is an in-vehicle device, needs map information for use in drawing a map such as a three-dimensional map
  • the client 2 sends a request to acquire map data for drawing a map to the server (S311). ).
  • the server transmits the WLD to the client 2 according to the acquisition request (S312).
  • the client 2 draws a map using the received WLD (S313).
  • the client 2 creates a rendering image using the image captured by the visible light camera or the like and the WLD acquired from the server, and draws the created image on a screen such as a car navigation system.
  • the server transmits the SWLD to the client in a case where the feature amount of each VXL is mainly required, such as self-position estimation, and transmits the WLD when detailed VXL information is required, such as map drawing. Send to client. This makes it possible to transmit and receive map data efficiently.
  • the client may determine by itself whether SWLD or WLD is necessary, and may request the server to transmit SWLD or WLD. Further, the server may determine whether to transmit SWLD or WLD according to the situation of the client or the network.
  • SWLD sparse world
  • WLD world
  • FIG. 14 is a diagram showing an operation example in this case.
  • the client accesses the server via the low-speed network (S321), and sends the map from the server.
  • the SWLD is acquired as information (S322).
  • the client accesses the server via the high-speed network (S323) and acquires the WLD from the server. (S324).
  • the client can acquire appropriate map information according to the network bandwidth of the client.
  • the client receives the SWLD via LTE outdoors, and acquires the WLD via Wi-Fi (registered trademark) when entering the indoor such as a facility. This enables the client to acquire more detailed indoor map information.
  • Wi-Fi registered trademark
  • the client may request the server for WLD or SWLD according to the bandwidth of the network used by the client.
  • the client may transmit information indicating the bandwidth of the network used by the client to the server, and the server may transmit data (WLD or SWLD) suitable for the client according to the information.
  • the server may determine the network bandwidth of the client and transmit data (WLD or SWLD) suitable for the client.
  • FIG. 15 is a diagram showing an operation example in this case.
  • the client when the client is moving at high speed (S331), the client receives the SWLD from the server (S332).
  • the client receives the WLD from the server (S334).
  • S331 when the client is moving at high speed (S331), the client receives the SWLD from the server (S332).
  • S333 when the client is moving at low speed (S333), the client receives the WLD from the server (S334).
  • This allows the client to acquire map information matching the speed while suppressing the network bandwidth.
  • the client can update rough map information at an appropriate speed by receiving SWLD having a small data amount while traveling on the highway.
  • the client can acquire more detailed map information by receiving the WLD while traveling on a general road.
  • the client may request the server for WLD or SWLD according to its own moving speed.
  • the client may transmit information indicating its own moving speed to the server, and the server may transmit data (WLD or SWLD) suitable for the client according to the information.
  • the server may determine the moving speed of the client and transmit data (WLD or SWLD) suitable for the client.
  • the client may first obtain the SWLD from the server, and then obtain the WLD of the important area. For example, when acquiring map data, the client first obtains rough map information by SWLD, narrows down an area in which many features such as buildings, signs, or people appear, and WLD of the narrowed-down area. Retrieve later. As a result, the client can acquire detailed information of a necessary area while suppressing the amount of data received from the server.
  • the server may create a separate SWLD for each object from the WLD, and the client may receive each according to the application.
  • the network band can be suppressed.
  • the server recognizes a person or a car in advance from the WLD and creates a SWLD of the person and a SWLD of the car.
  • the client receives the SWLD of the person when he / she wants to obtain information on the surrounding people, and receives the SWLD of the car when he / she wants to obtain information on the car.
  • a type of SWLD may be distinguished by information (flag, type, or the like) added to a header or the like.
  • FIG. 16 is a block diagram of a three-dimensional data encoding device 400 according to the present embodiment.
  • FIG. 17 is a flowchart of a three-dimensional data encoding process performed by the three-dimensional data encoding device 400.
  • the three-dimensional data encoding device 400 illustrated in FIG. 16 encodes the input three-dimensional data 411 to generate encoded three-dimensional data 413 and 414 that are encoded streams.
  • the encoded three-dimensional data 413 is encoded three-dimensional data corresponding to WLD
  • the encoded three-dimensional data 414 is encoded three-dimensional data corresponding to SWLD.
  • the three-dimensional data encoding device 400 includes an acquisition unit 401, an encoding region determination unit 402, a SWLD extraction unit 403, a WLD encoding unit 404, and a SWLD encoding unit 405.
  • the obtaining unit 401 obtains input three-dimensional data 411 that is point cloud data in a three-dimensional space (S401).
  • the coding region determination unit 402 determines a coding target space region based on the space region where the point cloud data exists (S402).
  • the SWLD extraction unit 403 defines a spatial region to be encoded as a WLD, and calculates a feature amount from each VXL included in the WLD. Then, the SWLD extraction unit 403 generates extracted three-dimensional data 412 by extracting VXL having a feature amount equal to or greater than a predetermined threshold, defining the extracted VXL as FVXL, and adding the FVXL to SWLD. (S403). That is, extracted three-dimensional data 412 whose feature amount is equal to or larger than the threshold is extracted from the input three-dimensional data 411.
  • the WLD encoding unit 404 generates encoded three-dimensional data 413 corresponding to WLD by encoding the input three-dimensional data 411 corresponding to WLD (S404). At this time, the WLD encoding unit 404 adds information for distinguishing that the encoded three-dimensional data 413 is a stream including WLD to the header of the encoded three-dimensional data 413.
  • the SWLD encoding unit 405 generates encoded three-dimensional data 414 corresponding to SWLD by encoding the extracted three-dimensional data 412 corresponding to SWLD. At this time, the SWLD encoding unit 405 adds, to the header of the encoded three-dimensional data 414, information for distinguishing that the encoded three-dimensional data 414 is a stream including SWLD.
  • processing order of the process of generating the encoded three-dimensional data 413 and the process of generating the encoded three-dimensional data 414 may be reversed. Also, some or all of these processes may be performed in parallel.
  • the coding method used when the WLD coding unit 404 codes the WLD may be different from the coding method used when the SWLD coding unit 405 codes the SWLD.
  • inter prediction among intra prediction and inter prediction may be given priority over the encoding method used for WLD.
  • the coding method used for SWLD and the coding method used for WLD may have different three-dimensional position expression methods.
  • a three-dimensional position of FVXL may be represented by three-dimensional coordinates
  • WLD a three-dimensional position may be represented by an octree described later, or vice versa.
  • the SWLD encoding unit 405 performs encoding such that the data size of the SWLD encoded three-dimensional data 414 is smaller than the data size of the WLD encoded three-dimensional data 413.
  • SWLD may have lower correlation between data than WLD.
  • the encoding efficiency may decrease, and the data size of the encoded three-dimensional data 414 may be larger than the data size of the encoded three-dimensional data 413 of the WLD. Therefore, if the data size of the obtained encoded three-dimensional data 414 is larger than the data size of the encoded three-dimensional data 413 of the WLD, the SWLD encoding unit 405 performs re-encoding to obtain the data size. Is re-generated.
  • the SWLD extracting unit 403 regenerates the extracted three-dimensional data 412 in which the number of feature points to be extracted is reduced, and the SWLD encoding unit 405 encodes the extracted three-dimensional data 412.
  • the degree of quantization in SWLD encoding section 405 may be made coarser. For example, in an octree structure to be described later, the degree of quantization can be reduced by rounding the data in the lowermost layer.
  • the SWLD encoding unit 405 does not generate the SWLD encoded three-dimensional data 414. May be.
  • the encoded three-dimensional data 413 of the WLD may be copied to the encoded three-dimensional data 414 of the SWLD. That is, the encoded three-dimensional data 413 of WLD may be used as it is as the encoded three-dimensional data 414 of SWLD.
  • FIG. 18 is a block diagram of a three-dimensional data decoding device 500 according to the present embodiment.
  • FIG. 19 is a flowchart of the three-dimensional data decoding process performed by the three-dimensional data decoding device 500.
  • the three-dimensional data decoding device 500 illustrated in FIG. 18 generates the decoded three-dimensional data 512 or 513 by decoding the encoded three-dimensional data 511.
  • the encoded three-dimensional data 511 is, for example, the encoded three-dimensional data 413 or 414 generated by the three-dimensional data encoding device 400.
  • the three-dimensional data decoding device 500 includes an acquisition unit 501, a header analysis unit 502, a WLD decoding unit 503, and a SWLD decoding unit 504.
  • the acquiring unit 501 acquires the encoded three-dimensional data 511 (S501).
  • the header analysis unit 502 analyzes the header of the encoded three-dimensional data 511, and determines whether the encoded three-dimensional data 511 is a stream including WLD or a stream including SWLD (S502). For example, the parameter of the above-described world_type is referred to, and the determination is performed.
  • the WLD decoding unit 503 When the encoded three-dimensional data 511 is a stream including WLD (Yes in S503), the WLD decoding unit 503 generates the WLD decoded three-dimensional data 512 by decoding the encoded three-dimensional data 511 (S504). . On the other hand, when the encoded three-dimensional data 511 is a stream including SWLD (No in S503), the SWLD decoding unit 504 generates the SWLD decoded three-dimensional data 513 by decoding the encoded three-dimensional data 511 ( S505).
  • the decoding method used when the WLD decoding unit 503 decodes the WLD may be different from the decoding method used when the SWLD decoding unit 504 decodes the SWLD.
  • inter prediction among intra prediction and inter prediction may be given priority over the decoding method used for WLD.
  • the decoding method used for SWLD and the decoding method used for WLD may have different three-dimensional position expression methods.
  • a three-dimensional position of FVXL may be represented by three-dimensional coordinates
  • WLD a three-dimensional position may be represented by an octree described later, or vice versa.
  • FIG. 20 is a diagram illustrating an example of the VXL of the WLD.
  • FIG. 21 is a diagram showing the octree structure of the WLD shown in FIG. In the example shown in FIG. 20, there are three VXL1 to VXL3, which are VXLs including a point group (hereinafter, valid VXLs).
  • the octree structure includes nodes and leaves. Each node has up to eight nodes or leaves. Each leaf has VXL information.
  • leaves 1, 2, and 3 represent VXL1, VXL2, and VXL3 shown in FIG. 20, respectively.
  • each node and leaf corresponds to a three-dimensional position.
  • Node 1 corresponds to the entire block shown in FIG.
  • the block corresponding to the node 1 is divided into eight blocks. Of the eight blocks, the block containing the effective VXL is set as a node, and the other blocks are set as leaves.
  • the block corresponding to the node is further divided into eight nodes or leaves, and this processing is repeated for the tree structure hierarchy. Also, the blocks at the bottom are all set as leaves.
  • FIG. 22 is a diagram showing an example of a SWLD generated from the WLD shown in FIG. VXL1 and VXL2 shown in FIG. 20 are determined as FVXL1 and FVXL2 as a result of the feature amount extraction, and are added to SWLD.
  • VXL3 is not determined as FVXL and is not included in SWLD.
  • FIG. 23 is a diagram showing an octree structure of the SWLD shown in FIG. In the octree structure shown in FIG. 23, the leaf 3 corresponding to VXL3 shown in FIG. 21 is deleted. As a result, the node 3 shown in FIG. 21 has no valid VXL and has been changed to a leaf.
  • the number of leaves of SWLD is generally smaller than the number of leaves of WLD, and the encoded three-dimensional data of SWLD is also smaller than the encoded three-dimensional data of WLD.
  • a client such as an in-vehicle device receives a SWLD from the server when performing self-position estimation, performs self-position estimation using SWLD, and performs a distance sensor such as a range finder or a stereo when performing obstacle detection.
  • Obstacle detection may be performed based on surrounding three-dimensional information acquired by oneself using various methods such as a camera or a combination of a plurality of monocular cameras.
  • the server may hold a sub-sampled world (subWLD) obtained by sub-sampling the WLD for detecting a static obstacle, and transmit the SWLD and the subWLD to the client.
  • subWLD sub-sampled world
  • the server may generate a mesh from the WLD and hold the mesh as a mesh world (MWLD) in advance.
  • MWLD mesh world
  • the client receives MWLD when coarse three-dimensional rendering is required, and receives WLD when detailed three-dimensional rendering is required. Thereby, the network band can be suppressed.
  • the server may calculate the FVXL by a different method. For example, the server determines that VXL, VLM, SPC, or GOS forming a signal or an intersection is necessary for self-position estimation, driving assistance, automatic driving, or the like, and includes the SWLD as FVXL, FVLM, FSPC, or FGOS. It does not matter. Further, the above determination may be made manually. The FVXL or the like obtained by the above method may be added to the FVXL or the like set based on the feature amount. That is, the SWLD extraction unit 403 may further extract data corresponding to an object having a predetermined attribute from the input three-dimensional data 411 as the extracted three-dimensional data 412.
  • the server may separately hold FVXL necessary for self-position estimation such as a signal or an intersection, driving assistance, or automatic driving as an upper layer (for example, a lane world) of SWLD.
  • the server may add an attribute to the VXL in the WLD for each random access unit or for each predetermined unit.
  • the attribute includes, for example, information indicating whether it is necessary or unnecessary for the self-position estimation or information indicating whether it is important as traffic information such as a signal or an intersection. Further, the attribute may include a correspondence relationship with a feature (intersection, road, or the like) in lane information (GDF: Geographic Data Data Files, etc.).
  • the following method may be used as a method for updating WLD or SWLD.
  • Update information indicating changes in people, construction, or trees (for trucks) is uploaded to the server as point clouds or metadata.
  • the server updates the WLD based on the upload, and then updates the SWLD using the updated WLD.
  • the client may transmit the three-dimensional information generated by itself to the server together with the update notification. Good.
  • the server updates SWLD using WLD. If the SWLD is not updated, the server determines that the WLD itself is old.
  • information for distinguishing between WLD and SWLD is added as header information of the coded stream. For example, when there are many types of worlds such as a mesh world or a lane world, these are distinguished. Information may be added to the header information. Further, when there are many SWLDs having different feature amounts, information for distinguishing each SWLD may be added to the header information.
  • the SWLD may include VXL not determined as FVXL.
  • the SWLD may include an adjacent VXL used when calculating the feature amount of the FVXL.
  • the client can calculate the feature amount of the FVXL when receiving the SWLD.
  • the SWLD may include information for distinguishing whether each VXL is FVXL or VXL.
  • the three-dimensional data encoding device 400 extracts and extracts the extracted three-dimensional data 412 (second three-dimensional data) having the feature value equal to or larger than the threshold from the input three-dimensional data 411 (first three-dimensional data).
  • encoded three-dimensional data 414 (first encoded three-dimensional data) is generated.
  • the three-dimensional data encoding device 400 generates encoded three-dimensional data 414 obtained by encoding data whose feature amount is equal to or larger than the threshold value. As a result, the data amount can be reduced as compared with the case where the input three-dimensional data 411 is directly encoded. Therefore, the three-dimensional data encoding device 400 can reduce the amount of data to be transmitted.
  • the three-dimensional data encoding device 400 further generates encoded three-dimensional data 413 (second encoded three-dimensional data) by encoding the input three-dimensional data 411.
  • the three-dimensional data encoding device 400 can selectively transmit the encoded three-dimensional data 413 and the encoded three-dimensional data 414 according to, for example, a use purpose.
  • the extracted three-dimensional data 412 is encoded by the first encoding method, and the input three-dimensional data 411 is encoded by the second encoding method different from the first encoding method.
  • the three-dimensional data encoding device 400 can use an encoding method suitable for the input three-dimensional data 411 and the extracted three-dimensional data 412, respectively.
  • the inter prediction among the intra prediction and the inter prediction has priority over the second encoding method.
  • the three-dimensional data encoding device 400 can increase the priority of the inter prediction with respect to the extracted three-dimensional data 412 in which the correlation between adjacent data tends to be low.
  • the first encoding method and the second encoding method have different three-dimensional position expression methods.
  • a three-dimensional position is represented by an octree
  • a three-dimensional position is represented by three-dimensional coordinates.
  • the three-dimensional data encoding device 400 can use a more appropriate three-dimensional position expression method for three-dimensional data having different numbers of data (the number of VXL or FVXL).
  • At least one of the encoded three-dimensional data 413 and 414 is whether the encoded three-dimensional data is encoded three-dimensional data obtained by encoding the input three-dimensional data 411, or Includes an identifier indicating whether the data is encoded three-dimensional data obtained by encoding a part of the data. That is, the identifier indicates whether the encoded three-dimensional data is the encoded three-dimensional data 413 of WLD or the encoded three-dimensional data 414 of SWLD.
  • the decoding device can easily determine whether the acquired encoded three-dimensional data is the encoded three-dimensional data 413 or the encoded three-dimensional data 414.
  • the three-dimensional data encoding device 400 encodes the extracted three-dimensional data 412 such that the data amount of the encoded three-dimensional data 414 is smaller than the data amount of the encoded three-dimensional data 413.
  • the three-dimensional data encoding device 400 can make the data amount of the encoded three-dimensional data 414 smaller than the data amount of the encoded three-dimensional data 413.
  • the three-dimensional data encoding device 400 further extracts data corresponding to an object having a predetermined attribute from the input three-dimensional data 411 as extracted three-dimensional data 412.
  • an object having a predetermined attribute is an object necessary for self-position estimation, driving assistance, automatic driving, or the like, such as a signal or an intersection.
  • the three-dimensional data encoding device 400 can generate encoded three-dimensional data 414 including data required by the decoding device.
  • the three-dimensional data encoding device 400 (server) further transmits one of the encoded three-dimensional data 413 and 414 to the client according to the state of the client.
  • the three-dimensional data encoding device 400 can transmit appropriate data according to the state of the client.
  • the status of the client includes the communication status of the client (for example, network bandwidth) or the moving speed of the client.
  • the three-dimensional data encoding device 400 further transmits one of the encoded three-dimensional data 413 and 414 to the client in response to a request from the client.
  • the three-dimensional data encoding device 400 can transmit appropriate data according to a request from the client.
  • the three-dimensional data decoding device 500 decodes the encoded three-dimensional data 413 or 414 generated by the three-dimensional data encoding device 400.
  • the three-dimensional data decoding device 500 performs the first decoding on the encoded three-dimensional data 414 obtained by encoding the extracted three-dimensional data 412 having the feature amount extracted from the input three-dimensional data 411 that is equal to or larger than the threshold value. Decrypt by the method. In addition, the three-dimensional data decoding device 500 decodes the encoded three-dimensional data 413 obtained by encoding the input three-dimensional data 411, using a second decoding method different from the first decoding method.
  • the three-dimensional data decoding apparatus 500 selects the encoded three-dimensional data 414 and the encoded three-dimensional data 413 obtained by encoding the data whose feature amount is equal to or larger than the threshold value, for example, according to the intended use. Can be received. Thereby, the three-dimensional data decoding device 500 can reduce the amount of data to be transmitted. Further, the three-dimensional data decoding device 500 can use a decoding method suitable for the input three-dimensional data 411 and the extracted three-dimensional data 412, respectively.
  • inter prediction among intra prediction and inter prediction has priority over the second decoding method.
  • the three-dimensional data decoding device 500 can increase the priority of the inter prediction for the extracted three-dimensional data in which the correlation between adjacent data is likely to be low.
  • the first decoding method and the second decoding method are different in the method of expressing the three-dimensional position.
  • a three-dimensional position is represented by an octree
  • a three-dimensional position is represented by three-dimensional coordinates.
  • the three-dimensional data decoding device 500 can use a more suitable three-dimensional position expression method for three-dimensional data having different numbers of data (the number of VXL or FVXL).
  • At least one of the encoded three-dimensional data 413 and 414 is whether the encoded three-dimensional data is encoded three-dimensional data obtained by encoding the input three-dimensional data 411, or Includes an identifier indicating whether the data is encoded three-dimensional data obtained by encoding a part of the data.
  • the three-dimensional data decoding device 500 identifies the encoded three-dimensional data 413 and 414 with reference to the identifier.
  • the three-dimensional data decoding device 500 can easily determine whether the acquired encoded three-dimensional data is the encoded three-dimensional data 413 or the encoded three-dimensional data 414.
  • the three-dimensional data decoding device 500 further notifies the server of the status of the client (the three-dimensional data decoding device 500).
  • the three-dimensional data decoding device 500 receives one of the encoded three-dimensional data 413 and 414 transmitted from the server according to the state of the client.
  • the three-dimensional data decoding device 500 can receive appropriate data according to the state of the client.
  • the status of the client includes the communication status of the client (for example, network bandwidth) or the moving speed of the client.
  • the three-dimensional data decoding device 500 further requests one of the encoded three-dimensional data 413 and 414 from the server, and in response to the request, transmits one of the encoded three-dimensional data 413 and 414 transmitted from the server. Receive.
  • the three-dimensional data decoding device 500 can receive appropriate data according to the application.
  • FIG. 24 is a block diagram of a three-dimensional data creation device 620 according to the present embodiment.
  • the three-dimensional data creation device 620 is, for example, more dense by combining the received second three-dimensional data 635 with the first three-dimensional data 632 included in the own vehicle and created by the three-dimensional data creation device 620.
  • the third three-dimensional data 636 is created.
  • the three-dimensional data creation device 620 includes a three-dimensional data creation unit 621, a request range determination unit 622, a search unit 623, a reception unit 624, a decoding unit 625, and a synthesis unit 626.
  • the three-dimensional data creation unit 621 creates the first three-dimensional data 632 using the sensor information 631 detected by a sensor included in the own vehicle.
  • the required range determining unit 622 determines a required range that is a three-dimensional space range in which data is insufficient in the created first three-dimensional data 632.
  • the search unit 623 searches for a nearby vehicle that owns the three-dimensional data of the required range, and transmits required range information 633 indicating the required range to the peripheral vehicle specified by the search.
  • the receiving unit 624 receives coded three-dimensional data 634, which is a coded stream of the required range, from the surrounding vehicles (S624).
  • the search unit 623 may indiscriminately issue requests to all vehicles existing in the specific range and receive the encoded three-dimensional data 634 from the responding partner. Further, the search unit 623 may issue a request to an object such as a traffic light or a sign, not limited to the vehicle, and receive the encoded three-dimensional data 634 from the object.
  • the decoding unit 625 obtains the second three-dimensional data 635 by decoding the received encoded three-dimensional data 634.
  • the combining unit 626 combines the first three-dimensional data 632 and the second three-dimensional data 635 to create denser third three-dimensional data 636.
  • FIG. 25 is a block diagram of the three-dimensional data transmission device 640.
  • the three-dimensional data transmission device 640 converts the fifth three-dimensional data 652 included in the above-described surrounding vehicle and created by the surrounding vehicle into sixth three-dimensional data 654 required by the own vehicle, and outputs the sixth three-dimensional data By encoding 654, encoded three-dimensional data 634 is generated, and the encoded three-dimensional data 634 is transmitted to the host vehicle.
  • the three-dimensional data transmitting device 640 includes a three-dimensional data creating unit 641, a receiving unit 642, an extracting unit 643, an encoding unit 644, and a transmitting unit 645.
  • the three-dimensional data creation unit 641 creates the fifth three-dimensional data 652 using the sensor information 651 detected by a sensor included in the surrounding vehicle.
  • the receiving unit 642 receives the request range information 633 transmitted from the own vehicle.
  • the extracting unit 643 processes the fifth three-dimensional data 652 into the sixth three-dimensional data 654 by extracting the three-dimensional data of the required range indicated by the required range information 633 from the fifth three-dimensional data 652. I do.
  • the encoding unit 644 encodes the sixth three-dimensional data 654 to generate encoded three-dimensional data 634 that is an encoded stream.
  • the transmitting unit 645 transmits the encoded three-dimensional data 634 to the own vehicle.
  • each vehicle includes the three-dimensional data generation device 620 and the surrounding vehicles include the three-dimensional data transmission device 640.
  • each vehicle includes the three-dimensional data generation device 620 and the three-dimensional data transmission device. 640 may be provided.
  • the self-position estimation is performed by matching a three-dimensional map with three-dimensional information around the own vehicle acquired by a sensor such as a range finder (eg, LiDAR) mounted on the own vehicle or a stereo camera (hereinafter, three-dimensional data detected by the own vehicle). Then, it can be realized by estimating the position of the own vehicle in the three-dimensional map.
  • a sensor such as a range finder (eg, LiDAR) mounted on the own vehicle or a stereo camera (hereinafter, three-dimensional data detected by the own vehicle).
  • the three-dimensional map changes not only in a three-dimensional point cloud, but also in two-dimensional map data such as road and intersection shape information, such as the HD map proposed by HERE, or in real time such as traffic jams and accidents. Information may be included.
  • a three-dimensional map is composed of a plurality of layers such as three-dimensional data, two-dimensional data, and metadata that changes in real time, and the device can also acquire or refer to only necessary data.
  • the data of the point cloud may be the SWLD described above, or may include point cloud data that is not a feature point. Further, transmission and reception of data of the point cloud are performed on the basis of one or a plurality of random access units.
  • the following method can be used as a matching method between the three-dimensional map and the vehicle detection three-dimensional data.
  • the apparatus compares the shapes of point clouds in each other's point clouds, and determines that a portion having a high degree of similarity between feature points is at the same position.
  • the matching is performed by comparing the feature points composing the SWLD with the three-dimensional feature points extracted from the vehicle detection three-dimensional data.
  • the sensor of the own vehicle is out of order or the accuracy of generating the three-dimensional data for detecting the own vehicle is insufficient due to bad weather.
  • FIG. 26 is a block diagram illustrating a configuration example of a three-dimensional information processing device 700 according to the present embodiment.
  • the three-dimensional information processing device 700 is mounted on a moving object such as a car, for example. As illustrated in FIG. 26, the three-dimensional information processing device 700 includes a three-dimensional map acquisition unit 701, a vehicle detection data acquisition unit 702, an abnormal case determination unit 703, a coping operation determination unit 704, and an operation control unit 705. And
  • the three-dimensional information processing apparatus 700 is not illustrated for detecting a structure or a moving object around the own vehicle, such as a camera for acquiring a two-dimensional image or a sensor for one-dimensional data using ultrasonic waves or lasers.
  • a two-dimensional or one-dimensional sensor may be provided.
  • the three-dimensional information processing device 700 may include a communication unit (not shown) for acquiring a three-dimensional map by a mobile communication network such as 4G or 5G, or by vehicle-to-vehicle communication or road-to-vehicle communication. .
  • the three-dimensional map acquisition unit 701 acquires the three-dimensional map 711 near the traveling route.
  • the three-dimensional map acquisition unit 701 acquires the three-dimensional map 711 through a mobile communication network, or vehicle-to-vehicle communication or road-to-vehicle communication.
  • the own vehicle detection data acquisition unit 702 acquires the own vehicle detection three-dimensional data 712 based on the sensor information. For example, the own-vehicle detection data acquisition unit 702 generates the own-vehicle detection three-dimensional data 712 based on sensor information acquired by a sensor included in the own vehicle.
  • the abnormal case determination unit 703 detects an abnormal case by performing a predetermined check on at least one of the acquired three-dimensional map 711 and the own vehicle detection three-dimensional data 712. That is, the abnormal case determination unit 703 determines whether at least one of the acquired three-dimensional map 711 and the own vehicle detection three-dimensional data 712 is abnormal.
  • the coping operation determination unit 704 determines a coping operation for the abnormal case.
  • the operation control unit 705 controls the operation of each processing unit necessary for performing the coping operation, such as the three-dimensional map acquisition unit 701.
  • the three-dimensional information processing device 700 ends the processing.
  • the three-dimensional information processing device 700 uses the three-dimensional map 711 and the vehicle detection three-dimensional data 712 to estimate the position of the vehicle including the three-dimensional information processing device 700. Next, the three-dimensional information processing device 700 automatically drives the vehicle using the result of the self-position estimation.
  • the three-dimensional information processing apparatus 700 acquires map data (three-dimensional map 711) including the first three-dimensional position information via the communication path.
  • the first three-dimensional position information is encoded in units of a subspace having three-dimensional coordinate information, each of which is a set of one or more subspaces, and a plurality of random numbers each of which can be independently decoded. Includes access units.
  • the first three-dimensional position information is data (SWLD) in which a feature point whose three-dimensional feature amount is equal to or more than a predetermined threshold is encoded.
  • the three-dimensional information processing device 700 generates second three-dimensional position information (own vehicle detection three-dimensional data 712) from information detected by the sensor. Next, the three-dimensional information processing device 700 performs an abnormality determination process on the first three-dimensional position information or the second three-dimensional position information, thereby obtaining the first three-dimensional position information or the second three-dimensional position information. It is determined whether the three-dimensional position information is abnormal.
  • the three-dimensional information processing apparatus 700 determines an action to cope with the abnormality. Next, the three-dimensional information processing device 700 performs control necessary for performing the coping operation.
  • the three-dimensional information processing apparatus 700 can detect an abnormality in the first three-dimensional position information or the second three-dimensional position information and perform a coping operation.
  • FIG. 27 is a block diagram showing a configuration example of a three-dimensional data creation device 810 according to the present embodiment.
  • the three-dimensional data creation device 810 is mounted on, for example, a vehicle.
  • the three-dimensional data creation device 810 transmits and receives three-dimensional data to and from an external traffic monitoring cloud, a preceding vehicle or a following vehicle, and creates and accumulates three-dimensional data.
  • the three-dimensional data creation device 810 includes a data reception unit 811, a communication unit 812, a reception control unit 813, a format conversion unit 814, a plurality of sensors 815, a three-dimensional data creation unit 816, a three-dimensional data synthesis unit 817, a three-dimensional data storage unit 818, a communication unit 819, a transmission control unit 820, a format conversion unit 821, and a data transmission unit 822.
  • the data receiving unit 811 receives the three-dimensional data 831 from the traffic monitoring cloud or the preceding vehicle.
  • the three-dimensional data 831 includes, for example, information such as a point cloud, a visible light image, depth information, sensor position information, or speed information including an area that cannot be detected by the sensor 815 of the vehicle.
  • the communication unit 812 communicates with the traffic monitoring cloud or the preceding vehicle, and transmits a data transmission request or the like to the traffic monitoring cloud or the preceding vehicle.
  • the reception control unit 813 exchanges information such as a compatible format with the communication destination via the communication unit 812, and establishes communication with the communication destination.
  • the format conversion unit 814 generates three-dimensional data 832 by performing format conversion and the like on the three-dimensional data 831 received by the data receiving unit 811.
  • the format conversion unit 814 performs a decompression or decoding process.
  • the plurality of sensors 815 are a group of sensors such as a LiDAR, a visible light camera, and an infrared camera that acquire information outside the vehicle, and generate the sensor information 833.
  • the sensor 815 is a laser sensor such as LiDAR
  • the sensor information 833 is three-dimensional data such as a point cloud (point cloud data). Note that the number of sensors 815 need not be plural.
  • the three-dimensional data creating unit 816 creates three-dimensional data 834 from the sensor information 833.
  • the three-dimensional data 834 includes, for example, information such as a point cloud, a visible light image, depth information, sensor position information, or speed information.
  • the three-dimensional data synthesizing unit 817 synthesizes the three-dimensional data 834 generated based on the sensor information 833 of the own vehicle with the three-dimensional data 832 generated by the traffic monitoring cloud or the preceding vehicle, etc.
  • the three-dimensional data 835 including the space ahead of the preceding vehicle that cannot be detected by the sensor 815 is constructed.
  • the three-dimensional data storage unit 818 stores the generated three-dimensional data 835 and the like.
  • the communication unit 819 communicates with the traffic monitoring cloud or the following vehicle, and transmits a data transmission request or the like to the traffic monitoring cloud or the following vehicle.
  • the transmission control unit 820 exchanges information such as a compatible format with a communication destination via the communication unit 819, and establishes communication with the communication destination. Further, the transmission control unit 820 determines a space in the transmission target three-dimensional data based on the three-dimensional data construction information of the three-dimensional data 832 generated by the three-dimensional data synthesis unit 817 and the data transmission request from the communication destination. Determine a certain transmission area.
  • the transmission control unit 820 determines a transmission area including a space in front of the own vehicle that cannot be detected by the sensor of the following vehicle, in response to a data transmission request from the traffic monitoring cloud or the following vehicle. In addition, the transmission control unit 820 determines the transmission area by determining whether or not the transmittable space or the transmitted space is updated based on the three-dimensional data construction information. For example, the transmission control unit 820 determines the area specified by the data transmission request and in which the corresponding three-dimensional data 835 exists as the transmission area. Then, the transmission control unit 820 notifies the format conversion unit 821 of the format and the transmission area corresponding to the communication destination.
  • the format conversion unit 821 converts the three-dimensional data 837 of the transmission area out of the three-dimensional data 835 stored in the three-dimensional data storage unit 818 into a format supported by the receiving side, thereby converting the three-dimensional data 837. Generate. Note that the format conversion unit 821 may reduce the data amount by compressing or encoding the three-dimensional data 837.
  • the data transmission unit 822 transmits the three-dimensional data 837 to the traffic monitoring cloud or the following vehicle.
  • the three-dimensional data 837 includes, for example, information such as a point cloud in front of the own vehicle, a visible light image, depth information, or sensor position information, including a blind spot of the following vehicle.
  • format conversion and the like are performed in the format conversion units 814 and 821 , but format conversion may not be performed.
  • the three-dimensional data creation device 810 acquires the three-dimensional data 831 in an area that cannot be detected by the sensor 815 of the own vehicle from the outside, and outputs the three-dimensional data 831 and the sensor information 833 detected by the sensor 815 of the own vehicle.
  • the three-dimensional data 835 is generated by combining the three-dimensional data 834 with the three-dimensional data 834 based on. Accordingly, the three-dimensional data creation device 810 can generate three-dimensional data in a range that cannot be detected by the sensor 815 of the own vehicle.
  • the three-dimensional data creation device 810 in response to a data transmission request from the traffic monitoring cloud or the following vehicle, converts the three-dimensional data including the space in front of the own vehicle that cannot be detected by the sensor of the following vehicle into the traffic monitoring cloud or the following It can be transmitted to vehicles and the like.
  • a client device such as a vehicle transmits three-dimensional data to another vehicle or a server such as a traffic monitoring cloud.
  • a client device transmits sensor information obtained by a sensor to a server or another client device.
  • FIG. 28 is a diagram illustrating a configuration of a transmission / reception system of a three-dimensional map and sensor information according to the present embodiment.
  • This system includes a server 901 and client devices 902A and 902B. Note that the client devices 902A and 902B are also referred to as client devices 902 unless otherwise distinguished.
  • the client device 902 is, for example, an in-vehicle device mounted on a moving body such as a vehicle.
  • the server 901 is, for example, a traffic monitoring cloud or the like, and can communicate with a plurality of client devices 902.
  • the server 901 transmits the three-dimensional map composed of the point cloud to the client device 902.
  • the configuration of the three-dimensional map is not limited to the point cloud, and may represent other three-dimensional data such as a mesh structure.
  • the client device 902 transmits the sensor information acquired by the client device 902 to the server 901.
  • the sensor information includes, for example, at least one of LiDAR acquisition information, a visible light image, an infrared image, a depth image, sensor position information, and speed information.
  • Data transmitted and received between the server 901 and the client device 902 may be compressed for data reduction, or may be left uncompressed to maintain data accuracy.
  • a three-dimensional compression method based on an octree structure can be used for the point cloud.
  • a two-dimensional image compression method can be used for the visible light image, the infrared image, and the depth image.
  • the two-dimensional image compression method is, for example, MPEG-4 @ AVC or HEVC standardized by MPEG.
  • the server 901 transmits a three-dimensional map managed by the server 901 to the client device 902 in response to a transmission request of the three-dimensional map from the client device 902.
  • the server 901 may transmit the three-dimensional map without waiting for the transmission request of the three-dimensional map from the client device 902.
  • the server 901 may broadcast the three-dimensional map to one or more client devices 902 in a predetermined space.
  • the server 901 may transmit a three-dimensional map suitable for the position of the client device 902 at regular time intervals to the client device 902 that has received the transmission request once.
  • the server 901 may transmit the three-dimensional map to the client device 902 every time the three-dimensional map managed by the server 901 is updated.
  • the client device 902 issues a request for transmitting a three-dimensional map to the server 901. For example, when the client device 902 wants to perform self-position estimation during traveling, the client device 902 transmits a request for transmitting a three-dimensional map to the server 901.
  • the client device 902 may issue a request for transmitting a three-dimensional map to the server 901.
  • the client device 902 may issue a request for transmitting the three-dimensional map to the server 901.
  • the client device 902 may issue a request for transmitting the three-dimensional map to the server 901.
  • the client device 902 may issue a request for transmitting the three-dimensional map to the server 901 before a certain time before the client device 902 goes out of the space indicated by the three-dimensional map held by the client device 902. For example, when the client device 902 exists within a predetermined distance from the boundary of the space indicated by the three-dimensional map held by the client device 902, the client device 902 issues a transmission request of the three-dimensional map to the server 901. May be. When the moving route and the moving speed of the client device 902 are known, the time at which the client device 902 goes out is predicted from the space indicated by the three-dimensional map held by the client device 902 based on these. May be.
  • the client device 902 may issue a request for transmitting the three-dimensional map to the server 901 when the error at the time of alignment between the three-dimensional data created by the client device 902 from the sensor information and the three-dimensional map is equal to or more than a certain value.
  • the client device 902 transmits the sensor information to the server 901 in response to the transmission request of the sensor information transmitted from the server 901. Note that the client device 902 may transmit the sensor information to the server 901 without waiting for the request for transmitting the sensor information from the server 901. For example, when the client device 902 once receives a request for transmitting sensor information from the server 901, the client device 902 may periodically transmit the sensor information to the server 901 for a certain period.
  • the client device 902 when the error at the time of alignment between the three-dimensional data created by the client device 902 based on the sensor information and the three-dimensional map obtained from the server 901 is equal to or more than a certain value, the client device 902 It may be determined that a change has occurred in the three-dimensional map, and the fact and the sensor information may be transmitted to the server 901.
  • the server 901 issues a request for transmitting sensor information to the client device 902.
  • the server 901 receives position information of the client device 902 such as GPS from the client device 902. If the server 901 determines that the client device 902 is approaching a space with less information in the three-dimensional map managed by the server 901 based on the position information of the client device 902, the client 901 generates a new three-dimensional map in order to generate a new three-dimensional map.
  • a request for transmitting sensor information is issued to the device 902.
  • the server 901 issues a sensor information transmission request when updating the three-dimensional map, when checking the road conditions such as snowfall or disaster, when checking the traffic congestion status, or the accident / accident status. Is also good.
  • the client device 902 may set the data amount of the sensor information to be transmitted to the server 901 according to the communication state or the band at the time of receiving the transmission request of the sensor information received from the server 901.
  • Setting the data amount of the sensor information to be transmitted to the server 901 means, for example, increasing or decreasing the data itself or appropriately selecting a compression method.
  • FIG. 29 is a block diagram showing a configuration example of the client device 902.
  • the client device 902 receives a three-dimensional map composed of a point cloud or the like from the server 901 and estimates the self-position of the client device 902 from three-dimensional data created based on sensor information of the client device 902. Further, the client device 902 transmits the acquired sensor information to the server 901.
  • the client device 902 includes a data receiving unit 1011, a communication unit 1012, a reception control unit 1013, a format conversion unit 1014, a plurality of sensors 1015, a three-dimensional data creation unit 1016, a three-dimensional image processing unit 1017, It includes a three-dimensional data storage unit 1018, a format conversion unit 1019, a communication unit 1020, a transmission control unit 1021, and a data transmission unit 1022.
  • the data receiving unit 1011 receives the three-dimensional map 1031 from the server 901.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • the communication unit 1012 communicates with the server 901, and transmits a data transmission request (for example, a transmission request of a three-dimensional map) to the server 901.
  • a data transmission request for example, a transmission request of a three-dimensional map
  • the reception control unit 1013 exchanges information such as a compatible format with a communication destination via the communication unit 1012, and establishes communication with the communication destination.
  • the format conversion unit 1014 generates a three-dimensional map 1032 by performing format conversion or the like on the three-dimensional map 1031 received by the data reception unit 1011.
  • the format conversion unit 1014 performs decompression or decoding. If the three-dimensional map 1031 is uncompressed data, the format conversion unit 1014 does not perform the decompression or decoding processing.
  • the plurality of sensors 1015 are a group of sensors, such as a LiDAR, a visible light camera, an infrared camera, and a depth sensor, that acquire information outside the vehicle in which the client device 902 is mounted, and generate the sensor information 1033.
  • the sensor 1015 is a laser sensor such as LiDAR
  • the sensor information 1033 is three-dimensional data such as a point cloud (point cloud data).
  • the number of the sensors 1015 may not be plural.
  • the three-dimensional data creation unit 1016 creates three-dimensional data 1034 around the own vehicle based on the sensor information 1033. For example, the three-dimensional data creation unit 1016 creates point cloud data with color information around the own vehicle using information acquired by LiDAR and a visible light image obtained by a visible light camera.
  • the three-dimensional image processing unit 1017 performs a self-position estimation process of the own vehicle using the received three-dimensional map 1032 such as a point cloud and the three-dimensional data 1034 around the own vehicle generated from the sensor information 1033. .
  • the three-dimensional image processing unit 1017 creates the three-dimensional data 1035 around the own vehicle by combining the three-dimensional map 1032 and the three-dimensional data 1034, and estimates the self-position using the created three-dimensional data 1035. Processing may be performed.
  • the three-dimensional data storage unit 1018 stores the three-dimensional map 1032, the three-dimensional data 1034, the three-dimensional data 1035, and the like.
  • the format conversion unit 1019 generates the sensor information 1037 by converting the sensor information 1033 into a format supported by the receiving side. Note that the format conversion unit 1019 may reduce the data amount by compressing or encoding the sensor information 1037. Further, the format conversion unit 1019 may omit the processing when it is not necessary to perform the format conversion. Further, the format conversion unit 1019 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1020 communicates with the server 901 and receives a data transmission request (a request for transmitting sensor information) and the like from the server 901.
  • the transmission control unit 1021 exchanges information such as a compatible format with a communication destination via the communication unit 1020 to establish communication.
  • the data transmission unit 1022 transmits the sensor information 1037 to the server 901.
  • the sensor information 1037 includes a plurality of sensors such as information acquired by LiDAR, a luminance image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, and speed information. 1015 includes the information acquired.
  • FIG. 30 is a block diagram illustrating a configuration example of the server 901.
  • the server 901 receives the sensor information transmitted from the client device 902, and creates three-dimensional data based on the received sensor information.
  • the server 901 updates the three-dimensional map managed by the server 901 using the created three-dimensional data.
  • the server 901 transmits the updated three-dimensional map to the client device 902 in response to the transmission request of the three-dimensional map from the client device 902.
  • the server 901 includes a data reception unit 1111, a communication unit 1112, a reception control unit 1113, a format conversion unit 1114, a three-dimensional data creation unit 1116, a three-dimensional data synthesis unit 1117, and a three-dimensional data storage unit 1118. , A format conversion unit 1119, a communication unit 1120, a transmission control unit 1121, and a data transmission unit 1122.
  • the data receiving unit 1111 receives the sensor information 1037 from the client device 902.
  • the sensor information 1037 includes, for example, information acquired by LiDAR, a luminance image acquired by a visible light camera, an infrared image acquired by an infrared camera, a depth image acquired by a depth sensor, sensor position information, speed information, and the like.
  • the communication unit 1112 communicates with the client device 902, and transmits a data transmission request (for example, a request for transmitting sensor information) to the client device 902.
  • a data transmission request for example, a request for transmitting sensor information
  • the reception control unit 1113 exchanges information such as a compatible format with a communication destination via the communication unit 1112 to establish communication.
  • the format conversion unit 1114 When the received sensor information 1037 is compressed or encoded, the format conversion unit 1114 generates the sensor information 1132 by performing expansion or decoding. If the sensor information 1037 is non-compressed data, the format conversion unit 1114 does not perform the decompression or decoding processing.
  • the three-dimensional data creation unit 1116 creates three-dimensional data 1134 around the client device 902 based on the sensor information 1132. For example, the three-dimensional data creation unit 1116 creates point cloud data with color information around the client device 902 using information acquired by LiDAR and a visible light image obtained by a visible light camera.
  • the three-dimensional data combining unit 1117 updates the three-dimensional map 1135 by combining the three-dimensional data 1134 created based on the sensor information 1132 with the three-dimensional map 1135 managed by the server 901.
  • the three-dimensional data storage unit 1118 stores the three-dimensional map 1135 and the like.
  • the format conversion unit 1119 generates the three-dimensional map 1031 by converting the three-dimensional map 1135 into a format supported by the receiving side. Note that the format conversion unit 1119 may reduce the data amount by compressing or encoding the three-dimensional map 1135. Further, the format conversion section 1119 may omit the processing when the format conversion is not necessary. Further, the format conversion section 1119 may control the amount of data to be transmitted according to the designation of the transmission range.
  • the communication unit 1120 communicates with the client device 902 and receives a data transmission request (a request for transmitting a three-dimensional map) from the client device 902.
  • the transmission control unit 1121 exchanges information such as a compatible format with a communication destination via the communication unit 1120 to establish communication.
  • the data transmission unit 1122 transmits the three-dimensional map 1031 to the client device 902.
  • the three-dimensional map 1031 is data including a point cloud such as WLD or SWLD.
  • the three-dimensional map 1031 may include either compressed data or uncompressed data.
  • FIG. 31 is a flowchart illustrating an operation when the client device 902 acquires a three-dimensional map.
  • the client device 902 requests the server 901 to transmit a three-dimensional map (point cloud or the like) (S1001). At this time, the client device 902 may request the server 901 to transmit a three-dimensional map related to the position information by transmitting the position information of the client device 902 obtained by GPS or the like together.
  • a three-dimensional map point cloud or the like
  • the client device 902 receives the three-dimensional map from the server 901 (S1002). If the received three-dimensional map is compressed data, the client device 902 decodes the received three-dimensional map to generate an uncompressed three-dimensional map (S1003).
  • the client device 902 creates three-dimensional data 1034 around the client device 902 from the sensor information 1033 obtained by the plurality of sensors 1015 (S1004).
  • the client device 902 estimates the self-position of the client device 902 using the three-dimensional map 1032 received from the server 901 and the three-dimensional data 1034 created from the sensor information 1033 (S1005).
  • FIG. 32 is a flowchart showing the operation of the client device 902 when transmitting sensor information.
  • the client device 902 receives a request for transmitting sensor information from the server 901 (S1011).
  • the client device 902 that has received the transmission request transmits the sensor information 1037 to the server 901 (S1012).
  • the sensor information 1033 includes a plurality of pieces of information obtained by the plurality of sensors 1015
  • the client apparatus 902 generates the sensor information 1037 by compressing each piece of information by a compression method suitable for each piece of information. Good.
  • FIG. 33 is a flowchart illustrating the operation of the server 901 when acquiring sensor information.
  • the server 901 requests the client device 902 to transmit sensor information (S1021).
  • the server 901 receives the sensor information 1037 transmitted from the client device 902 in response to the request (S1022).
  • the server 901 creates three-dimensional data 1134 using the received sensor information 1037 (S1023).
  • the server 901 reflects the created three-dimensional data 1134 on the three-dimensional map 1135 (S1024).
  • FIG. 34 is a flowchart showing the operation of the server 901 when transmitting a three-dimensional map.
  • the server 901 receives a request for transmitting a three-dimensional map from the client device 902 (S1031).
  • the server 901 that has received the request for transmitting the three-dimensional map transmits the three-dimensional map 1031 to the client device 902 (S1032).
  • the server 901 may extract a nearby three-dimensional map in accordance with the position information of the client device 902 and transmit the extracted three-dimensional map.
  • the server 901 may compress the three-dimensional map configured by the point cloud using, for example, a compression method using an octree structure and transmit the compressed three-dimensional map.
  • the server 901 creates the three-dimensional data 1134 near the position of the client device 902 using the sensor information 1037 received from the client device 902. Next, the server 901 calculates a difference between the three-dimensional data 1134 and the three-dimensional map 1135 by matching the created three-dimensional data 1134 with a three-dimensional map 1135 in the same area managed by the server 901. . If the difference is equal to or larger than a predetermined threshold, the server 901 determines that some abnormality has occurred around the client device 902. For example, when land subsidence occurs due to a natural disaster such as an earthquake, a large difference occurs between the three-dimensional map 1135 managed by the server 901 and the three-dimensional data 1134 created based on the sensor information 1037. It is possible.
  • the sensor information 1037 may include information indicating at least one of a sensor type, a sensor performance, and a sensor model number. Further, a class ID or the like according to the performance of the sensor may be added to the sensor information 1037. For example, when the sensor information 1037 is information acquired by LiDAR, a sensor capable of acquiring information with an accuracy of several mm units is Class 1, a sensor capable of acquiring information with an accuracy of several cm units is Class 2, and a sensor capable of acquiring information with an accuracy of several m units. It is conceivable to assign an identifier to the performance of the sensor, such as class 3, for a sensor capable of acquiring information with accuracy. Further, the server 901 may estimate the performance information of the sensor or the like from the model number of the client device 902.
  • the server 901 may determine the sensor specification information from the vehicle type of the vehicle. In this case, the server 901 may have acquired the information of the type of the vehicle in advance, or the sensor information may include the information. The server 901 may use the acquired sensor information 1037 to switch the degree of correction for the three-dimensional data 1134 created using the sensor information 1037. For example, when the sensor performance is high accuracy (class 1), the server 901 does not perform correction on the three-dimensional data 1134. When the sensor performance is low accuracy (class 3), the server 901 applies a correction to the three-dimensional data 1134 according to the accuracy of the sensor. For example, the server 901 increases the degree of correction (intensity) as the accuracy of the sensor is lower.
  • the server 901 may simultaneously issue a request for transmitting sensor information to a plurality of client devices 902 in a certain space.
  • the server 901 receives a plurality of sensor information from a plurality of client devices 902, it is not necessary to use all the sensor information for creating the three-dimensional data 1134.
  • the server 901 uses the sensor information according to the performance of the sensor. Information may be selected.
  • the server 901 selects high-precision sensor information (class 1) from a plurality of pieces of received sensor information, and creates three-dimensional data 1134 using the selected sensor information. May be.
  • the server 901 is not limited to a server such as a traffic monitoring cloud, but may be another client device (vehicle).
  • FIG. 35 is a diagram showing a system configuration in this case.
  • the client device 902C issues a sensor information transmission request to the nearby client device 902A, and acquires the sensor information from the client device 902A. Then, the client device 902C creates three-dimensional data using the acquired sensor information of the client device 902A, and updates the three-dimensional map of the client device 902C. Accordingly, the client device 902C can generate a three-dimensional map of a space that can be acquired from the client device 902A by utilizing the performance of the client device 902C. For example, it is considered that such a case occurs when the performance of the client device 902C is high.
  • the client device 902A that has provided the sensor information is given a right to acquire a highly accurate three-dimensional map generated by the client device 902C.
  • the client device 902A receives a high-precision three-dimensional map from the client device 902C according to the right.
  • the client device 902C may issue a sensor information transmission request to a plurality of nearby client devices 902 (client device 902A and client device 902B).
  • client device 902A and client device 902B When the sensor of the client device 902A or 902B has high performance, the client device 902C can create three-dimensional data using the sensor information obtained by the high performance sensor.
  • FIG. 36 is a block diagram showing a functional configuration of the server 901 and the client device 902.
  • the server 901 includes, for example, a three-dimensional map compression / decoding processing unit 1201 that compresses and decodes a three-dimensional map, and a sensor information compression / decoding processing unit 1202 that compresses and decodes sensor information.
  • the client device 902 includes a three-dimensional map decoding processing unit 1211 and a sensor information compression processing unit 1212.
  • the three-dimensional map decoding unit 1211 receives the encoded data of the compressed three-dimensional map, and decodes the encoded data to obtain a three-dimensional map.
  • the sensor information compression processing unit 1212 compresses the sensor information itself instead of the three-dimensional data created from the acquired sensor information, and transmits the encoded data of the compressed sensor information to the server 901.
  • the client device 902 only needs to internally store a processing unit (device or LSI) that performs processing for decoding a three-dimensional map (point cloud or the like). There is no need to internally store a processing unit that performs a process of compressing the data. Thus, the cost and power consumption of the client device 902 can be reduced.
  • the client device 902 is mounted on the mobile object, and the sensor information 1033 indicating the surrounding state of the mobile object obtained by the sensor 1015 mounted on the mobile object.
  • the surrounding three-dimensional data 1034 is created.
  • the client device 902 estimates the self-position of the moving object using the created three-dimensional data 1034.
  • the client device 902 transmits the acquired sensor information 1033 to the server 901 or another moving object 902.
  • the client device 902 transmits the sensor information 1033 to the server 901 or the like.
  • the data amount of the transmission data can be reduced as compared with the case where the three-dimensional data is transmitted.
  • the processing amount of the client device 902 can be reduced. Therefore, the client device 902 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the client device 902 further transmits a request for transmitting a three-dimensional map to the server 901, and receives the three-dimensional map 1031 from the server 901. In estimating the self-position, the client device 902 estimates the self-position using the three-dimensional data 1034 and the three-dimensional map 1032.
  • the sensor information 1033 includes at least one of information obtained by the laser sensor, a luminance image, an infrared image, a depth image, sensor position information, and sensor speed information.
  • the sensor information 1033 includes information indicating the performance of the sensor.
  • the client device 902 encodes or compresses the sensor information 1033, and transmits the encoded or compressed sensor information 1037 to the server 901 or another mobile unit 902 in transmitting the sensor information. According to this, the client device 902 can reduce the amount of data to be transmitted.
  • the client device 902 includes a processor and a memory, and the processor performs the above processing using the memory.
  • server 901 can communicate with client device 902 mounted on the moving object, and sensor information 1037 indicating the surrounding state of the moving object obtained by sensor 1015 mounted on the moving object. Is received from the client device 902. The server 901 creates three-dimensional data 1134 around the moving object from the received sensor information 1037.
  • the server 901 creates the three-dimensional data 1134 using the sensor information 1037 transmitted from the client device 902. Thereby, there is a possibility that the data amount of the transmission data can be reduced as compared with the case where the client device 902 transmits the three-dimensional data. Further, since there is no need to perform processing such as compression or encoding of three-dimensional data in the client device 902, the processing amount of the client device 902 can be reduced. Therefore, the server 901 can reduce the amount of data to be transmitted or simplify the configuration of the device.
  • the server 901 transmits a request for transmitting sensor information to the client device 902.
  • the server 901 further updates the three-dimensional map 1135 using the created three-dimensional data 1134, and sends the three-dimensional map 1135 to the client device 902 in response to a transmission request of the three-dimensional map 1135 from the client device 902. Send.
  • the sensor information 1037 includes at least one of information obtained by the laser sensor, a luminance image, an infrared image, a depth image, sensor position information, and sensor speed information.
  • the sensor information 1037 includes information indicating the performance of the sensor.
  • the server 901 further corrects the three-dimensional data according to the performance of the sensor. According to this, the three-dimensional data creation method can improve the quality of three-dimensional data.
  • the server 901 when receiving the sensor information, receives the plurality of sensor information 1037 from the plurality of client devices 902, and based on the plurality of information indicating the sensor performance included in the plurality of sensor information 1037, the three-dimensional data 1134. Of sensor information 1037 to be used for the creation of. According to this, the server 901 can improve the quality of the three-dimensional data 1134.
  • the server 901 decodes or expands the received sensor information 1037, and creates three-dimensional data 1134 from the decoded or expanded sensor information 1132. According to this, the server 901 can reduce the amount of data to be transmitted.
  • the server 901 includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • FIG. 37 is a block diagram of a three-dimensional data encoding device 1300 according to the present embodiment.
  • the three-dimensional data encoding device 1300 generates an encoded bit stream (hereinafter, also simply referred to as a bit stream) as an encoded signal by encoding the three-dimensional data.
  • the three-dimensional data encoding device 1300 includes a dividing unit 1301, a subtracting unit 1302, a transforming unit 1303, a quantizing unit 1304, an inverse quantizing unit 1305, and an inverse transforming unit 1306.
  • An adder 1307, a reference volume memory 1308, an intra predictor 1309, a reference space memory 1310, an inter predictor 1311, a prediction controller 1312, and an entropy encoder 1313 are provided.
  • the division unit 1301 divides each space (SPC) included in the three-dimensional data into a plurality of volumes (VLM) which are coding units. Further, the dividing unit 1301 expresses voxels in each volume in an octree (octree). The dividing unit 1301 may make the space and the volume the same size, and express the space in an octree. In addition, the dividing unit 1301 may add information (depth information and the like) necessary for octanting to a bit stream header or the like.
  • the subtraction unit 1302 calculates a difference between the volume (encoding target volume) output from the division unit 1301 and a prediction volume generated by intra prediction or inter prediction described later, and uses the calculated difference as a prediction residual.
  • FIG. 38 is a diagram illustrating a calculation example of the prediction residual.
  • the bit strings of the encoding target volume and the prediction volume shown here are, for example, position information indicating the positions of three-dimensional points (for example, point clouds) included in the volume.
  • FIG. 39 is a diagram illustrating a configuration example of a volume including a plurality of voxels.
  • FIG. 40 is a diagram showing an example in which the volume shown in FIG. 39 is converted into an octree structure.
  • leaves 1, 2, and 3 represent the voxels VXL1, VXL2, and VXL3 shown in FIG. 39, respectively, and represent VXL including a point group (hereinafter, effective VXL).
  • the 8-ary tree is represented by, for example, a binary sequence of 0 and 1. For example, assuming that a node or a valid VXL has a value of 1 and other values have a value of 0, a binary sequence shown in FIG. 40 is assigned to each node and leaf.
  • the binary sequence is scanned according to the width-first or depth-first scanning order. For example, when scanning is performed with breadth first, a binary sequence shown in FIG. 41A is obtained. When scanning is performed with depth priority, a binary sequence shown in FIG. 41B is obtained.
  • the binary sequence obtained by this scan is encoded by entropy encoding to reduce the amount of information.
  • the depth in the octree representation is used to control to what granularity point cloud information contained in the volume is retained. If the depth is set to be large, the point cloud information can be reproduced to a finer level, but the amount of data for expressing nodes and leaves increases. Conversely, if the depth is set to a small value, the data amount will decrease, but the point cloud information having different positions and different colors will be regarded as the same position and the same color, and the information possessed by the original point cloud information will be lost. become.
  • FIG. 42 is a diagram illustrating an example in which the octree having a depth of 2 shown in FIG. 40 is represented by an octree having a depth of 1.
  • the octree shown in FIG. 42 has a smaller data amount than the octree shown in FIG. That is, the octree shown in FIG. 42 has a smaller number of bits after binarization than the octree shown in FIG.
  • leaf 1 and leaf 2 shown in FIG. 40 are represented by leaf 1 shown in FIG. That is, the information that the leaf 1 and the leaf 2 shown in FIG. 40 are at different positions is lost.
  • FIG. 43 is a diagram showing volumes corresponding to the octree shown in FIG. VXL1 and VXL2 shown in FIG. 39 correspond to VXL12 shown in FIG.
  • the three-dimensional data encoding device 1300 generates the color information of VXL12 shown in FIG. 43 from the color information of VXL1 and VXL2 shown in FIG.
  • the three-dimensional data encoding device 1300 calculates an average value, an intermediate value, or a weighted average value of the color information of VXL1 and VXL2 as the color information of VXL12.
  • the three-dimensional data encoding device 1300 may control the reduction of the data amount by changing the depth of the octree.
  • the three-dimensional data encoding device 1300 may set the depth information of the octree in any of a world unit, a space unit, and a volume unit. At that time, the three-dimensional data encoding device 1300 may add depth information to world header information, space header information, or volume header information. Also, the same value may be used as depth information for all worlds, spaces, and volumes at different times. In this case, the three-dimensional data encoding device 1300 may add depth information to header information that manages the world for the entire time.
  • the conversion unit 1303 applies frequency transformation such as orthogonal transformation to the prediction residual of the color information of the voxel in the volume. For example, the conversion unit 1303 creates a one-dimensional array by scanning the prediction residuals in a certain scan order. After that, the conversion unit 1303 converts the one-dimensional array into the frequency domain by applying a one-dimensional orthogonal transform to the created one-dimensional array. As a result, when the value of the prediction residual in the volume is close, the value of the low frequency component increases, and the value of the high frequency component decreases. Therefore, the quantization unit 1304 can more efficiently reduce the code amount.
  • frequency transformation such as orthogonal transformation
  • the transform unit 1303 may use two-dimensional or more orthogonal transform instead of one-dimensional.
  • the conversion unit 1303 maps the prediction residuals to a two-dimensional array in a certain scan order, and applies a two-dimensional orthogonal transform to the obtained two-dimensional array.
  • transform section 1303 may select an orthogonal transform scheme to be used from a plurality of orthogonal transform schemes.
  • the three-dimensional data encoding device 1300 adds information indicating which orthogonal transform method is used to the bit stream.
  • transform section 1303 may select an orthogonal transform scheme to be used from a plurality of orthogonal transform schemes having different dimensions. In this case, the three-dimensional data encoding device 1300 adds, to the bit stream, the dimension of the orthogonal transform method used.
  • the conversion unit 1303 matches the scan order of the prediction residual with the scan order (width-first or depth-first, etc.) in the octree in the volume. This eliminates the need to add information indicating the scan order of the prediction residual to the bit stream, thereby reducing overhead.
  • the conversion unit 1303 may apply a scan order different from the scan order of the octree.
  • the three-dimensional data encoding device 1300 adds information indicating the scan order of the prediction residual to the bit stream. Accordingly, the three-dimensional data encoding device 1300 can efficiently encode the prediction residual.
  • the three-dimensional data encoding apparatus 1300 adds information (such as a flag) indicating whether or not to apply the scan order of the octree to the bit stream, and performs a prediction when the scan order is not applied.
  • Information indicating the scanning order of the residuals may be added to the bit stream.
  • the conversion unit 1303 may convert not only the prediction residual of the color information but also other attribute information of the voxel.
  • the conversion unit 1303 may convert and encode information such as reflectivity obtained when the point cloud is acquired by LiDAR or the like.
  • the conversion unit 1303 may skip the process. Also, the three-dimensional data encoding device 1300 may add information (flag) indicating whether to skip the process of the conversion unit 1303 to the bitstream.
  • the quantization unit 1304 generates a quantization coefficient by performing quantization using the quantization control parameter on the frequency component of the prediction residual generated by the conversion unit 1303. This reduces the amount of information.
  • the generated quantized coefficient is output to entropy coding section 1313.
  • the quantization unit 1304 may control the quantization control parameter in world units, space units, or volume units.
  • the three-dimensional data encoding device 1300 adds a quantization control parameter to each header information or the like.
  • the quantization unit 1304 may perform quantization control by changing the weight for each frequency component of the prediction residual. For example, the quantization unit 1304 may quantize low-frequency components finely and quantize high-frequency components roughly. In this case, the three-dimensional data encoding device 1300 may add a parameter indicating the weight of each frequency component to the header.
  • the quantization unit 1304 may skip the process. Also, the three-dimensional data encoding device 1300 may add information (flag) indicating whether to skip the process of the quantization unit 1304 to the bitstream.
  • the inverse quantization unit 1305 performs inverse quantization on the quantization coefficient generated by the quantization unit 1304 using the quantization control parameter to generate an inverse quantization coefficient of the prediction residual, and generates the generated inverse quantum
  • the conversion coefficient is output to the inverse transform unit 1306.
  • the inverse transform unit 1306 generates a prediction residual after applying the inverse transform by applying an inverse transform to the inverse quantization coefficient generated by the inverse quantization unit 1305. Since the prediction residual after applying the inverse transform is a prediction residual generated after quantization, it does not need to completely match the prediction residual output by the transform unit 1303.
  • the addition unit 1307 includes a prediction residual after inverse transformation applied generated by the inverse transformation unit 1306 and a prediction volume generated by intra prediction or inter prediction, which is used for generation of the prediction residual before quantization, and which will be described later. Are added to generate a reconstructed volume. This reconstructed volume is stored in the reference volume memory 1308 or the reference space memory 1310.
  • the intra prediction unit 1309 generates a predicted volume of the encoding target volume using the attribute information of the adjacent volume stored in the reference volume memory 1308.
  • the attribute information includes voxel color information or reflectivity.
  • the intra prediction unit 1309 generates color information of the encoding target volume or a predicted value of the reflectance.
  • FIG. 44 is a diagram illustrating the operation of intra prediction section 1309.
  • the volume idx is identifier information added to the volume in the space, and a different value is assigned to each volume.
  • the allocation order of the volume idx may be the same order as the coding order, or may be a different order from the coding order.
  • a prediction residual is generated by subtracting the predicted value of the color information from the color information of each voxel included in the encoding target volume.
  • the processing after the conversion unit 1303 is performed on the prediction residual.
  • the three-dimensional data encoding device 1300 adds the adjacent volume information and the prediction mode information to the bit stream.
  • the adjacent volume information is information indicating an adjacent volume used for prediction, for example, a volume idx of the adjacent volume used for prediction.
  • the prediction mode information indicates a mode used for generating a prediction volume.
  • the mode is, for example, an average mode in which a predicted value is generated from an average value of voxels in an adjacent volume, an intermediate value mode in which a predicted value is generated from an intermediate value of voxels in an adjacent volume, or the like.
  • FIG. 45 is a diagram schematically showing the inter prediction process according to the present embodiment.
  • the inter prediction unit 1311 codes (inter predicts) a space (SPC) at a certain time T_Cur using a coded space at a different time T_LX.
  • the inter prediction unit 1311 performs the encoding process by applying rotation and translation processing to the encoded space at a different time T_LX.
  • the three-dimensional data encoding device 1300 adds RT information related to rotation and translation processing applied to a space at a different time T_LX to a bit stream.
  • the different time T_LX is, for example, a time T_L0 before the certain time T_Cur.
  • the three-dimensional data encoding device 1300 may add the RT information RT_L0 related to the rotation and translation processing applied to the space at the time T_L0 to the bit stream.
  • the different time T_LX is, for example, the time T_L1 after the certain time T_Cur.
  • the three-dimensional data encoding device 1300 may add the RT information RT_L1 related to the rotation and translation processing applied to the space at the time T_L1 to the bit stream.
  • the inter prediction unit 1311 performs encoding (bi-prediction) with reference to both spaces at different times T_L0 and T_L1.
  • the three-dimensional data encoding device 1300 may add both the RT information RT_L0 and RT_L1 related to rotation and translation applied to each space to the bit stream.
  • T_L0 is a time before T_Cur and T_L1 is a time after T_Cur, but the present invention is not limited to this.
  • T_L0 and T_L1 may both be times before T_Cur.
  • both T_L0 and T_L1 may be times after T_Cur.
  • the three-dimensional data encoding device 1300 may add RT information related to rotation and translation applied to each space to the bit stream.
  • the three-dimensional data encoding device 1300 manages a plurality of encoded spaces to be referred to in two reference lists (L0 list and L1 list).
  • the first reference space in the L0 list is L0R0
  • the second reference space in the L0 list is L0R1
  • the first reference space in the L1 list is L1R0
  • the second reference space in the L1 list is L1R1.
  • the three-dimensional data encoding device 1300 adds the RT information RT_L0R0 of L0R0, the RT information RT_L0R1 of L0R1, the RT information RT_L1R0 of L1R0, and the RT information RT_L1R1 of L1R1 to the bit stream.
  • the three-dimensional data encoding device 1300 adds the RT information to a bit stream header or the like.
  • the three-dimensional data encoding device 1300 determines whether to apply rotation and translation for each reference space. At that time, the three-dimensional data encoding device 1300 may add information (such as an RT application flag) indicating whether rotation and translation have been applied to each reference space to the header information of the bit stream. For example, the three-dimensional data encoding device 1300 calculates RT information and an ICP error value using an ICP (Interactive Closest Point) algorithm for each reference space referenced from the encoding target space.
  • ICP Interactive Closest Point
  • the three-dimensional data encoding device 1300 determines that there is no need to perform rotation and translation, and sets the RT application flag to off. On the other hand, when the ICP error value is larger than the fixed value, the three-dimensional data encoding device 1300 sets the RT application flag to ON and adds the RT information to the bit stream.
  • FIG. 46 is a diagram illustrating an example of a syntax for adding RT information and an RT application flag to a header.
  • the number of bits allocated to each syntax may be determined within a range that the syntax can take. For example, when the number of reference spaces included in the reference list L0 is 8, 3 bits may be allocated to MaxRefSpc_10.
  • the number of bits to be allocated may be variable according to the value that each syntax can take, or may be fixed regardless of the value that can take.
  • the three-dimensional data encoding device 1300 may add the fixed number of bits to another header information.
  • MaxRefSpc_10 shown in FIG. 46 indicates the number of reference spaces included in the reference list L0.
  • RT_flag_10 [i] is an RT application flag of the reference space i in the reference list L0. If RT_flag_10 [i] is 1, rotation and translation are applied to reference space i. If RT_flag_10 [i] is 0, no rotation and translation is applied to reference space i.
  • R_10 [i] and T_10 [i] are RT information of the reference space i in the reference list L0.
  • R_10 [i] is rotation information of the reference space i in the reference list L0.
  • the rotation information indicates the content of the applied rotation processing, and is, for example, a rotation matrix or a quaternion.
  • T_10 [i] is translation information of the reference space i in the reference list L0.
  • the translation information indicates the content of the applied translation processing, and is, for example, a translation vector.
  • MaxRefSpc — 11 indicates the number of reference spaces included in the reference list L1.
  • RT_flag_l1 [i] is an RT application flag of the reference space i in the reference list L1. If RT_flag_11 [i] is 1, rotation and translation are applied to reference space i. If RT_flag_11 [i] is 0, no rotation and translation is applied to reference space i.
  • R_11 [i] and T_11 [i] are RT information of the reference space i in the reference list L1.
  • R_11 [i] is rotation information of the reference space i in the reference list L1.
  • the rotation information indicates the content of the applied rotation processing, and is, for example, a rotation matrix or a quaternion.
  • T_11 [i] is translation information of the reference space i in the reference list L1.
  • the translation information indicates the content of the applied translation processing, and is, for example, a translation vector.
  • the inter prediction unit 1311 generates a prediction volume of the encoding target volume using the information of the encoded reference space stored in the reference space memory 1310. As described above, before generating the prediction volume of the encoding target volume, the inter prediction unit 1311 uses the encoding target space and the reference space in order to approximate the overall positional relationship between the encoding target space and the reference space. RT information is obtained using an ICP (Interactive ⁇ Closest ⁇ Point) algorithm. Then, the inter prediction unit 1311 obtains a reference space B by applying rotation and translation processing to the reference space using the obtained RT information. After that, the inter prediction unit 1311 generates a prediction volume of the encoding target volume in the encoding target space using the information in the reference space B. Here, the three-dimensional data encoding device 1300 adds the RT information used to obtain the reference space B to the header information or the like of the encoding target space.
  • ICP Interactive ⁇ Closest ⁇ Point
  • the inter prediction unit 1311 approximates the overall positional relationship between the encoding target space and the reference space by applying the rotation and translation processing to the reference space, and then uses the information on the reference space to predict the prediction volume.
  • the accuracy of the prediction volume can be improved by generating.
  • the prediction residual can be suppressed, the code amount can be reduced.
  • ICP is performed using the encoding target space and the reference space, but the present invention is not limited to this.
  • the inter prediction unit 1311 performs ICP using at least one of the encoding target space in which the number of voxels or point clouds is thinned and the reference space in which the number of voxels or point clouds is thinned.
  • RT information may be obtained.
  • the inter prediction unit 1311 it is determined that the translation process is not necessary, and the rotation and translation need not be performed. In this case, the three-dimensional data encoding device 1300 may suppress the overhead by not adding the RT information to the bit stream.
  • the inter prediction unit 1311 determines that the shape change between spaces is large, and applies intra prediction to all volumes in the encoding target space. May be.
  • a space to which intra prediction is applied is referred to as an intra space.
  • the second threshold is a value larger than the first threshold. The method is not limited to the ICP, and any method may be applied as long as it is a method of obtaining RT information from two voxel sets or two point cloud sets.
  • the inter prediction unit 1311 determines, as a prediction volume of the encoding target volume in the encoding target space, for example, the encoding target volume in the reference space. Is searched for a volume whose attribute information such as shape or color is closest.
  • This reference space is, for example, a reference space after the above-described rotation and translation processing has been performed.
  • the inter prediction unit 1311 generates a predicted volume from the volume (reference volume) obtained by the search.
  • FIG. 47 is a diagram for explaining the operation of generating a predicted volume.
  • the inter prediction unit 1311 sequentially scans the reference volume in the reference space and sets the encoding target volume and the reference volume. A volume with the smallest prediction residual that is a difference from the volume is searched for. The inter prediction unit 1311 selects a volume having the smallest prediction residual as a prediction volume.
  • the prediction residual between the encoding target volume and the prediction volume is encoded by the processing after the conversion unit 1303.
  • the prediction residual is a difference between the attribute information of the encoding target volume and the attribute information of the prediction volume.
  • the three-dimensional data encoding device 1300 adds the volume idx of the reference volume in the reference space referred to as the prediction volume to the bit stream header or the like.
  • the prediction control unit 1312 controls whether to encode the encoding target volume using intra prediction or inter prediction.
  • a mode including the intra prediction and the inter prediction is referred to as a prediction mode.
  • the prediction control unit 1312 calculates a prediction residual when the encoding target volume is predicted by the intra prediction and a prediction residual when the encoding target volume is predicted by the inter prediction, as an evaluation value.
  • Select a mode The prediction control unit 1312 calculates an actual code amount by applying orthogonal transformation, quantization, and entropy coding to the prediction residual of intra prediction and the prediction residual of inter prediction, respectively.
  • the prediction mode may be selected using the obtained code amount as an evaluation value.
  • overhead information (reference volume idx information or the like) other than the prediction residual may be added to the evaluation value.
  • the prediction control unit 1312 may always select intra prediction when it is determined in advance that the encoding target space is to be encoded in the intra space.
  • the entropy coding unit 1313 generates a coded signal (coded bit stream) by performing variable-length coding on the quantization coefficient input from the quantization unit 1304. Specifically, the entropy coding unit 1313 binarizes the quantization coefficient, for example, and arithmetically codes the obtained binary signal.
  • FIG. 48 is a block diagram of a three-dimensional data decoding device 1400 according to the present embodiment.
  • the three-dimensional data decoding device 1400 includes an entropy decoding unit 1401, an inverse quantization unit 1402, an inverse transformation unit 1403, an addition unit 1404, a reference volume memory 1405, an intra prediction unit 1406, and a reference space memory 1407. , An inter prediction unit 1408, and a prediction control unit 1409.
  • the entropy decoding unit 1401 performs variable length decoding on the coded signal (coded bit stream). For example, the entropy decoding unit 1401 arithmetically decodes the encoded signal to generate a binary signal, and generates a quantization coefficient from the generated binary signal.
  • the inverse quantization unit 1402 generates an inverse quantization coefficient by inversely quantizing the quantization coefficient input from the entropy decoding unit 1401 using a quantization parameter added to a bit stream or the like.
  • the inverse transform unit 1403 generates a prediction residual by inversely transforming the inverse quantization coefficient input from the inverse quantization unit 1402. For example, the inverse transform unit 1403 generates a prediction residual by performing inverse orthogonal transform on the inverse quantized coefficient based on information added to the bit stream.
  • the addition unit 1404 generates a reconstructed volume by adding the prediction residual generated by the inverse transform unit 1403 and the prediction volume generated by intra prediction or inter prediction. This reconstructed volume is output as decoded three-dimensional data and stored in the reference volume memory 1405 or the reference space memory 1407.
  • the intra prediction unit 1406 generates a prediction volume by intra prediction using the reference volume in the reference volume memory 1405 and information added to the bit stream. Specifically, the intra prediction unit 1406 acquires adjacent volume information (for example, volume idx) added to the bit stream and prediction mode information, and uses the adjacent volume indicated by the adjacent volume information to calculate the prediction mode information. A predicted volume is generated in the mode indicated by.
  • adjacent volume information for example, volume idx
  • the details of these processes are the same as those of the above-described process performed by the intra prediction unit 1309 except that information added to the bit stream is used.
  • the inter prediction unit 1408 generates a prediction volume by inter prediction using the reference space in the reference space memory 1407 and the information added to the bit stream. Specifically, the inter prediction unit 1408 applies rotation and translation processing to the reference space using the RT information for each reference space added to the bit stream, and calculates the prediction volume using the applied reference space. Generate. If the RT application flag for each reference space exists in the bitstream, the inter prediction unit 1408 applies rotation and translation processing to the reference space according to the RT application flag. The details of these processes are the same as the processes by the above-described inter prediction unit 1311 except that information added to the bit stream is used.
  • the prediction control unit 1409 controls whether to decode the decoding target volume using intra prediction or inter prediction. For example, the prediction control unit 1409 selects intra prediction or inter prediction according to information indicating the prediction mode to be used, which is added to the bit stream. Note that the prediction control unit 1409 may always select intra prediction when decoding of the decoding target space is performed using intra space.
  • the three-dimensional data encoding device 1300 may divide a space into subspaces and apply rotation and translation in units of subspaces. In this case, the three-dimensional data encoding device 1300 generates RT information for each subspace, and adds the generated RT information to a bit stream header or the like. Also, the three-dimensional data encoding device 1300 may apply rotation and translation on a volume basis, which is an encoding unit.
  • the three-dimensional data encoding device 1300 generates RT information for each encoded volume, and adds the generated RT information to a bit stream header or the like. Further, the above may be combined. That is, the three-dimensional data encoding device 1300 may apply rotation and translation in large units, and then apply rotation and translation in small units. For example, the three-dimensional data encoding device 1300 may apply rotation and translation in units of space, and apply different rotation and translation to each of a plurality of volumes included in the obtained space.
  • the three-dimensional data encoding device 1300 may change the size of the three-dimensional data by applying a scaling process, for example.
  • the three-dimensional data encoding device 1300 may apply one or two of rotation, translation, and scale.
  • the type of processing applied to each unit may be different. For example, rotation and translation may be applied in units of space, and translation may be applied in units of volume.
  • FIG. 48 is a flowchart of the inter prediction process performed by the three-dimensional data encoding device 1300.
  • the three-dimensional data encoding device 1300 uses the three-dimensional point position information included in the reference three-dimensional data (for example, the reference space) at a different time from the target three-dimensional data (for example, the encoding target space) for predictive position information.
  • a predicted volume is generated (S1301).
  • the three-dimensional data encoding device 1300 generates predicted position information by applying rotation and translation processing to position information of three-dimensional points included in the reference three-dimensional data.
  • the three-dimensional data encoding device 1300 performs rotation and translation processing in a first unit (for example, space), and generates predicted position information in a second unit (for example, volume) that is finer than the first unit. Is also good. For example, the three-dimensional data encoding device 1300 determines, from among a plurality of volumes included in the reference space after the rotation and translation processing, a volume in which the difference between the position information and the encoding target volume included in the encoding target space is the smallest. The searched volume is used as a predicted volume. Note that the three-dimensional data encoding device 1300 may perform the rotation and translation processing and the generation of the predicted position information in the same unit.
  • the three-dimensional data encoding device 1300 applies the first rotation and translation processing to the position information of the three-dimensional point included in the reference three-dimensional data in a first unit (for example, space), and performs the first rotation and translation processing.
  • Predicted position information may be generated by applying the second rotation and translation processing to the three-dimensional point position information obtained by the above in a second unit (for example, volume) finer than the first unit.
  • the position information and the predicted position information of the three-dimensional point are represented by an octree structure, for example, as shown in FIG.
  • the position information and the predicted position information of the three-dimensional point are expressed in the order of scanning with priority given to the width of the depth and the width in the octree structure.
  • the position information and the predicted position information of the three-dimensional point are represented in a scan order in which the depth is prioritized among the depth and the width in the octree structure.
  • the three-dimensional data encoding device 1300 encodes an RT application flag indicating whether to apply rotation and translation processing to the position information of the three-dimensional point included in the reference three-dimensional data. I do. That is, the three-dimensional data encoding device 1300 generates an encoded signal (encoded bit stream) including the RT application flag. Also, the three-dimensional data encoding device 1300 encodes RT information indicating the contents of the rotation and translation processing. That is, the three-dimensional data encoding device 1300 generates an encoded signal (encoded bit stream) including the RT information.
  • the three-dimensional data encoding device 1300 encodes the RT information when the RT application flag indicates that the rotation and translation processing is to be applied, and when the RT application flag indicates that the rotation and translation processing is not to be applied.
  • the RT information need not be coded.
  • the three-dimensional data includes, for example, position information of three-dimensional points and attribute information (color information and the like) of each three-dimensional point.
  • the three-dimensional data encoding device 1300 generates prediction attribute information using the attribute information of the three-dimensional point included in the reference three-dimensional data (S1302).
  • the three-dimensional data encoding device 1300 encodes the three-dimensional point position information included in the target three-dimensional data using the predicted position information. For example, as illustrated in FIG. 38, the three-dimensional data encoding device 1300 calculates difference position information that is a difference between the position information of the three-dimensional point included in the target three-dimensional data and the predicted position information (S1303).
  • the three-dimensional data encoding device 1300 encodes attribute information of a three-dimensional point included in the target three-dimensional data using predicted attribute information. For example, the three-dimensional data encoding device 1300 calculates difference attribute information that is a difference between the attribute information of the three-dimensional point included in the target three-dimensional data and the predicted attribute information (S1304). Next, the three-dimensional data encoding device 1300 performs conversion and quantization on the calculated difference attribute information (S1305).
  • the three-dimensional data encoding device 1300 encodes (eg, entropy-encodes) the difference position information and the quantized difference attribute information (S1306). That is, the three-dimensional data encoding device 1300 generates an encoded signal (encoded bit stream) including the difference position information and the difference attribute information.
  • the three-dimensional data encoding device 1300 may not perform steps S1302, S1304, and S1305. In addition, the three-dimensional data encoding device 1300 may perform only one of encoding of the position information of the three-dimensional point and encoding of the attribute information of the three-dimensional point.
  • the order of the processing shown in FIG. 49 is an example, and the present invention is not limited to this.
  • the processing for the position information (S1301, S1303) and the processing for the attribute information (S1302, S1304, S1305) are independent of each other, and may be performed in an arbitrary order, or may be partially performed in parallel. You may.
  • the three-dimensional data encoding device 1300 generates the predicted position information using the position information of the three-dimensional point included in the reference three-dimensional data at a different time from the target three-dimensional data,
  • the difference position information that is the difference between the position information of the three-dimensional point included in the original data and the predicted position information is encoded.
  • the data amount of the encoded signal can be reduced, so that the encoding efficiency can be improved.
  • the three-dimensional data encoding device 1300 generates prediction attribute information using the attribute information of the three-dimensional point included in the reference three-dimensional data, and generates the prediction attribute information of the three-dimensional point included in the target three-dimensional data.
  • the difference attribute information that is the difference between the attribute information and the predicted attribute information is encoded. As a result, the data amount of the encoded signal can be reduced, so that the encoding efficiency can be improved.
  • the three-dimensional data encoding device 1300 includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • FIG. 48 is a flowchart of an inter prediction process performed by the three-dimensional data decoding device 1400.
  • the three-dimensional data decoding device 1400 decodes difference position information and difference attribute information (for example, entropy decoding) from a coded signal (coded bit stream) (S1401).
  • difference position information and difference attribute information for example, entropy decoding
  • the three-dimensional data decoding device 1400 decodes, from the encoded signal, an RT application flag indicating whether to apply the rotation and translation processing to the position information of the three-dimensional point included in the reference three-dimensional data. Also, the three-dimensional data decoding device 1400 decodes RT information indicating the contents of the rotation and translation processing. Note that the three-dimensional data decoding apparatus 1400 decodes the RT information when the RT application flag indicates that the rotation and translation processing is to be applied, and when the RT application flag indicates that the rotation and translation processing is not to be applied. The RT information need not be decoded.
  • the three-dimensional data decoding device 1400 performs inverse quantization and inverse transform on the decoded difference attribute information (S1402).
  • the three-dimensional data decoding device 1400 uses the position information of the three-dimensional point included in the reference three-dimensional data (for example, the reference space) at a different time from the target three-dimensional data (for example, the decoding target space) to use the predicted position information ( For example, a predicted volume is generated (S1403). Specifically, the three-dimensional data decoding device 1400 generates predicted position information by applying rotation and translation processing to position information of three-dimensional points included in reference three-dimensional data.
  • the three-dimensional data decoding apparatus 1400 determines the position information of the three-dimensional point included in the reference three-dimensional data indicated by the RT information. Apply rotation and translation processing to.
  • the three-dimensional data decoding device 1400 does not apply the rotation and translation processing to the position information of the three-dimensional point included in the reference three-dimensional data. .
  • the three-dimensional data decoding apparatus 1400 may perform the rotation and translation processing in a first unit (for example, space) and generate the predicted position information in a second unit (for example, volume) that is finer than the first unit. Good. Note that the three-dimensional data decoding apparatus 1400 may perform the rotation and translation processing and the generation of the predicted position information in the same unit.
  • the three-dimensional data decoding device 1400 applies the first rotation and translation processing to the three-dimensional point position information included in the reference three-dimensional data in a first unit (for example, space), and performs the first rotation and translation processing.
  • Predicted position information may be generated by applying the second rotation and translation processing to the obtained three-dimensional point position information in a second unit (for example, a volume) smaller than the first unit.
  • the position information and the predicted position information of the three-dimensional point are represented by an octree structure, for example, as shown in FIG.
  • the position information and the predicted position information of the three-dimensional point are expressed in the order of scanning with priority given to the width of the depth and the width in the octree structure.
  • the position information and the predicted position information of the three-dimensional point are represented in a scan order in which the depth is prioritized among the depth and the width in the octree structure.
  • the three-dimensional data decoding device 1400 generates prediction attribute information using the attribute information of the three-dimensional point included in the reference three-dimensional data (S1404).
  • the three-dimensional data decoding device 1400 restores the three-dimensional point position information included in the target three-dimensional data by decoding the encoded position information included in the encoded signal using the predicted position information.
  • the encoded position information is, for example, difference position information
  • the three-dimensional data decoding device 1400 adds the difference position information and the predicted position information to obtain a three-dimensional point of the target three-dimensional data.
  • the position information is restored (S1405).
  • the three-dimensional data decoding device 1400 restores the attribute information of the three-dimensional point included in the target three-dimensional data by decoding the encoding attribute information included in the encoded signal using the prediction attribute information.
  • the encoding attribute information is, for example, difference attribute information
  • the three-dimensional data decoding device 1400 adds the difference attribute information and the prediction attribute information to obtain a three-dimensional point of the target three-dimensional data.
  • the attribute information is restored (S1406).
  • the three-dimensional data decoding device 1400 may not perform steps S1402, S1404, and S1406. Further, the three-dimensional data decoding device 1400 may perform only one of the decoding of the position information of the three-dimensional point and the decoding of the attribute information of the three-dimensional point.
  • the order of the processing shown in FIG. 50 is an example, and the present invention is not limited to this.
  • the processing for the position information (S1403, S1405) and the processing for the attribute information (S1402, S1404, S1406) are independent of each other, and may be performed in an arbitrary order, or may be partially performed in parallel. May be.
  • FIG. 51 and 52 are diagrams showing a reference relationship according to the present embodiment.
  • FIG. 51 is a diagram showing the reference relationship on an octree structure.
  • FIG. 52 is a diagram showing the reference relationship on a spatial domain.
  • FIG. 51 is a diagram showing the reference relationship on an octree structure.
  • FIG. 52 is a diagram showing the reference relationship on a spatial domain.
  • the three-dimensional data encoding device encodes the encoding information of a node to be encoded (hereinafter, referred to as a target node) when encoding the encoded information of the parent node (parent @ node) to which the target node belongs.
  • the encoding information of each node is referred to.
  • the encoding information of each node in another node in the same layer as the parent node hereinafter, parent adjacent node
  • the three-dimensional data encoding device sets the reference of the parent adjacent node to be disabled or disables the reference.
  • the three-dimensional data encoding device may permit reference to the encoding information in the parent node to which the parent node belongs (hereinafter, referred to as a grandparent node). That is, the three-dimensional data encoding device may encode the encoding information of the target node with reference to the encoding information of the parent node and the grandfather node to which the target node belongs.
  • the encoded information is, for example, an occupancy code.
  • the three-dimensional data encoding device refers to information (hereinafter, occupation information) indicating whether or not each node in the parent node to which the target node belongs includes a point cloud. I do.
  • the three-dimensional data encoding device refers to the occupancy code of the parent node when encoding the occupancy code of the target node.
  • the three-dimensional data encoding device does not refer to the occupation information of each node in the parent adjacent node. That is, the three-dimensional data encoding device does not refer to the occupancy code of the parent adjacent node.
  • the three-dimensional data encoding device may refer to the occupation information of each node in the grandfather node. That is, the three-dimensional data encoding device may refer to the occupation information of the parent node and the parent adjacent node.
  • the three-dimensional data encoding device when encoding the occupancy code of the target node, is used when entropy-encoding the occupancy code of the target node using the occupancy code of the parent node or grandfather node to which the target node belongs. Switch the encoding table. The details will be described later. At this time, the three-dimensional data encoding device need not refer to the occupancy code of the parent adjacent node. Thereby, when encoding the occupancy code of the target node, the three-dimensional data encoding device can appropriately switch the encoding table according to the information of the occupancy code of the parent node or the grandfather node. Efficiency can be improved.
  • the three-dimensional data encoding device can suppress the information processing of the parent adjacent node and the memory capacity for storing them by not referring to the parent adjacent node. Further, it becomes easy to scan and encode the occupancy code of each node of the octree in the order of depth priority.
  • FIG. 53 is a diagram illustrating an example of a target node and an adjacent reference node.
  • FIG. 54 is a diagram illustrating a relationship between a parent node and a node.
  • FIG. 55 is a diagram illustrating an example of the occupancy code of the parent node.
  • the adjacent reference node is a node that is referred to when encoding the target node among nodes spatially adjacent to the target node.
  • the adjacent node is a node belonging to the same layer as the target node.
  • a node X adjacent in the x direction, a node Y adjacent in the y direction, and a node Z adjacent in the z direction of the target block are used as reference adjacent nodes. That is, one adjacent block in each of the x, y, and z directions is set as a reference adjacent block.
  • node numbers shown in FIG. 54 are merely examples, and the relationship between the node numbers and the positions of the nodes is not limited to this.
  • node 0 is assigned to lower bits and node 7 is assigned to upper bits. However, assignment may be performed in the reverse order. Further, each node may be assigned to an arbitrary bit.
  • the three-dimensional data encoding device determines an encoding table for entropy encoding the occupancy code of the target node by, for example, the following equation.
  • CodingTable indicates an encoding table for the occupancy code of the target node, and indicates any one of values 0 to 7.
  • FlagX is occupancy information of the adjacent node X, and indicates 1 if the adjacent node X includes (occupies) a point cloud, and indicates 0 if not.
  • FlagY is occupancy information of the adjacent node Y, and indicates 1 if the adjacent node Y includes (occupies) a point group, and indicates 0 if not.
  • FlagZ is occupancy information of the adjacent node Z, and indicates 1 if the adjacent node Z includes (occupies) a point group, and indicates 0 if not.
  • the three-dimensional data encoding device encodes the information using the value indicated in the occupancy code of the parent node. May be selected.
  • the three-dimensional data encoding device can improve the encoding efficiency by switching the encoding table using information indicating whether or not a point cloud is included in a node adjacent to the target node.
  • the three-dimensional data encoding device may switch adjacent reference nodes according to the spatial position of the target node in the parent node, as shown in FIG. That is, the three-dimensional data encoding device may switch the adjacent node to be referred to among the plurality of adjacent nodes according to the spatial position in the parent node of the target node.
  • FIG. 56 is a block diagram of a three-dimensional data encoding device 2100 according to the present embodiment.
  • the three-dimensional data encoding device 2100 illustrated in FIG. 56 includes an octtree generation unit 2101, a geometric information calculation unit 2102, an encoding table selection unit 2103, and an entropy encoding unit 2104.
  • the -ary tree generating unit 2101 generates, for example, an octal tree from the input three-dimensional points (point cloud), and generates an occupancy code of each node included in the octal tree.
  • the geometric information calculation unit 2102 acquires occupation information indicating whether or not the reference node adjacent to the target node is occupied. For example, the geometric information calculation unit 2102 acquires the occupancy information of the adjacent reference node from the occupancy code of the parent node to which the target node belongs. Note that the geometric information calculation unit 2102 may switch the adjacent reference node according to the position in the parent node of the target node as shown in FIG. Also, the geometric information calculation unit 2102 does not refer to the occupation information of each node in the parent adjacent node.
  • the coding table selection unit 2103 selects a coding table used for entropy coding of the occupancy code of the target node using the occupation information of the adjacent reference node calculated by the geometric information calculation unit 2102.
  • the entropy coding unit 2104 generates a bit stream by performing entropy coding on the occupancy code using the selected coding table. Note that the entropy encoding unit 2104 may add information indicating the selected encoding table to the bitstream.
  • FIG. 57 is a block diagram of three-dimensional data decoding device 2110 according to the present embodiment.
  • the three-dimensional data decoding device 2110 illustrated in FIG. 57 includes an octree generation unit 2111, a geometric information calculation unit 2112, an encoding table selection unit 2113, and an entropy decoding unit 2114.
  • the # 8-ary tree generation unit 2111 generates an 8-ary tree of a certain space (node) using the header information of the bit stream and the like.
  • the octree generating unit 2111 generates a large space (root node) using the size of a certain space added to the header information in the x-axis, y-axis, and z-axis directions.
  • Eight subspaces A are generated by dividing into two in the y-axis and z-axis directions, respectively, to generate an octree. Nodes A0 to A7 are set in order as target nodes.
  • the geometric information calculation unit 2112 acquires occupation information indicating whether or not the reference node adjacent to the target node is occupied. For example, the geometric information calculation unit 2112 acquires the occupancy information of the adjacent reference node from the occupancy code of the parent node to which the target node belongs. Note that the geometric information calculation unit 2112 may switch the adjacent reference node according to the position of the target node in the parent node, as shown in FIG. Further, the geometric information calculation unit 2112 does not refer to the occupation information of each node in the parent adjacent node.
  • the encoding table selection unit 2113 selects an encoding table (decoding table) used for entropy decoding of the occupancy code of the target node using the occupation information of the adjacent reference node calculated by the geometric information calculation unit 2112.
  • the entropy decoding unit 2114 generates a three-dimensional point by entropy decoding the occupancy code using the selected encoding table. Note that the encoding table selection unit 2113 decodes and acquires the information of the selected encoding table added to the bit stream, and the entropy decoding unit 2114 uses the encoding table indicated by the acquired information. May be.
  • Each bit of the occupancy code (8 bits) included in the bit stream indicates whether or not the eight small spaces A (nodes A0 to A7) each include a point cloud. Further, the three-dimensional data decoding device divides the small space node A0 into eight small spaces B (nodes B0 to B7) to generate an octree, and each node of the small space B includes a point group. The occupancy code is decoded to obtain information indicating whether or not the occupancy code is to be obtained. As described above, the three-dimensional data decoding device decodes the occupancy code of each node while generating an octree from a large space to a small space.
  • FIG. 58 is a flowchart of a three-dimensional data encoding process in the three-dimensional data encoding device.
  • the three-dimensional data encoding device determines (defines) a space (target node) that includes a part or all of the input three-dimensional point group (S2101).
  • the three-dimensional data encoding device divides the target node into eight to generate eight small spaces (nodes) (S2102).
  • the three-dimensional data encoding device generates an occupancy code of the target node according to whether or not each node includes a point cloud (S2103).
  • the three-dimensional data encoding device calculates (acquires) the occupancy information of the reference node adjacent to the target node from the occupancy code of the parent node of the target node (S2104).
  • the three-dimensional data encoding device selects an encoding table used for entropy encoding based on the determined occupation information of the reference node adjacent to the target node (S2105).
  • the three-dimensional data encoding device entropy-encodes the occupancy code of the target node using the selected encoding table (S2106).
  • the three-dimensional data encoding apparatus repeats the process of dividing each node into eight and encoding the occupancy code of each node until the node cannot be divided (S2107). That is, the processing of steps S2102 to S2106 is recursively repeated.
  • FIG. 59 is a flowchart of a three-dimensional data decoding method in the three-dimensional data decoding device.
  • the three-dimensional data decoding device determines (defines) a space (target node) to be decoded using the header information of the bit stream (S2111).
  • the three-dimensional data decoding device divides the target node into eight to generate eight small spaces (nodes) (S2112).
  • the three-dimensional data decoding device calculates (acquires) the occupancy information of the reference node adjacent to the target node from the occupancy code of the parent node of the target node (S2113).
  • the three-dimensional data decoding apparatus selects an encoding table used for entropy decoding based on the occupation information of the adjacent reference node (S2114).
  • the three-dimensional data decoding device entropy-decodes the occupancy code of the target node using the selected encoding table (S2115).
  • the three-dimensional data decoding device repeats the process of dividing each node into eight and decoding the occupancy code of each node until the node cannot be divided (S2116). That is, the processing of steps S2112 to S2115 is recursively repeated.
  • FIG. 60 is a diagram illustrating an example of switching of the encoding tables.
  • the same context model may be applied to a plurality of occupancy codes as in an encoding table 0 shown in FIG.
  • different context models may be assigned to each occupancy code.
  • a context model can be assigned according to the appearance probability of the occupancy code, so that coding efficiency can be improved.
  • a context model that updates the probability table according to the appearance frequency of the occupancy code may be used.
  • a context model having a fixed probability table may be used.
  • FIG. 61 is a diagram showing a reference relationship in this modification.
  • the three-dimensional data encoding apparatus does not refer to the occupancy code of the parent adjacent node.However, whether to refer to the occupancy encoding of the parent adjacent node is switched according to a specific condition. Is also good.
  • the three-dimensional data encoding device when performing encoding while scanning an octree with breadth priority, encodes the occupancy code of the target node with reference to the occupancy information of the node in the parent adjacent node.
  • the three-dimensional data encoding device prohibits reference to the occupancy information of the node in the parent adjacent node when encoding the octree while scanning the octree with depth priority.
  • the three-dimensional data encoding device may add information such as whether the octree was encoded with breadth-first or depth-first encoding to the header of the bit stream.
  • FIG. 62 is a diagram illustrating a syntax example of the header information in this case.
  • Octree_scan_order shown in FIG. 62 is coding order information (coding order flag) indicating the coding order of the octree. For example, if octree_scan_order is 0, it indicates width priority, and if it is 1, it indicates depth priority. Accordingly, the three-dimensional data decoding device can know whether the bit stream has been encoded in the width priority or the depth priority by referring to the octree_scan_order, and thus can appropriately decode the bit stream.
  • the three-dimensional data encoding device may add information indicating whether to prohibit reference to the parent adjacent node to the header information of the bit stream.
  • FIG. 63 is a diagram illustrating a syntax example of the header information in this case.
  • the limit_refer_flag is prohibition switching information (prohibition switching flag) indicating whether or not reference to the parent adjacent node is prohibited. For example, if limit_refer_flag is 1, it indicates that reference to the parent adjacent node is prohibited, and if it is 0, it indicates that there is no reference restriction (reference to the parent adjacent node is permitted).
  • the three-dimensional data encoding device determines whether to prohibit reference to the parent adjacent node, and switches whether to prohibit or permit reference to the parent adjacent node based on the result of the above determination.
  • the three-dimensional data encoding device generates a bit stream that is a result of the above determination and includes prohibition switching information indicating whether to prohibit reference to the parent adjacent node.
  • the three-dimensional data decoding device acquires prohibition switching information indicating whether to prohibit reference to the parent adjacent node from the bit stream, and prohibits or permits reference to the parent adjacent node based on the prohibition switching information. Switch.
  • the three-dimensional data encoding device can generate a bit stream by controlling the reference of the parent adjacent node. Further, the three-dimensional data decoding device can acquire information indicating whether reference to the parent adjacent node is prohibited from the header of the bit stream.
  • the encoding process of the occupancy code has been described as an example of the encoding process of prohibiting the reference of the parent adjacent node, but is not necessarily limited to this.
  • the same method can be applied when encoding other information of the node of the octree.
  • the method according to the present embodiment may be applied when encoding other attribute information such as a color, a normal vector, or a reflectance added to a node.
  • a similar method can be applied when encoding a coding table or a predicted value.
  • FIG. 64 is a diagram illustrating an example of a target node and a reference adjacent node.
  • the three-dimensional data encoding device calculates an encoding table for entropy encoding the occupancy code of the target node shown in FIG.
  • CodingTable (FlagX0 ⁇ 3) + (FlagX1 ⁇ 2) + (FlagY ⁇ 1) + (FlagZ)
  • CodingTable indicates an encoding table for the occupancy code of the target node, and indicates any one of values 0 to 15.
  • FlagY is occupancy information of the adjacent node Y, and indicates 1 if the adjacent node Y includes (occupies) a point group, and indicates 0 if not.
  • FlagZ is occupancy information of the adjacent node Z, and indicates 1 if the adjacent node Z includes (occupies) a point group, and indicates 0 if not.
  • the three-dimensional data encoding device sets the substitute value to 1 (occupied) or 0 (unoccupied). Any other fixed value may be used.
  • FIG. 65 is a diagram illustrating an example of a target node and adjacent nodes.
  • the occupancy information of the adjacent node may be calculated by referring to the occupancy code of the grandfather node of the target node.
  • the three-dimensional data encoding apparatus calculates FlagX0 of the above equation using the occupation information of the adjacent node G0 instead of the adjacent node X0 shown in FIG. 65, and calculates the value of the encoding table using the calculated FlagX0. You may decide.
  • the adjacent node G0 shown in FIG. 65 is an adjacent node that can determine whether or not it is occupied by the occupancy code of the grandfather node.
  • the adjacent node X1 is an adjacent node that can determine whether or not it is occupied by the occupancy code of the parent node.
  • FIG. 66 and 67 are diagrams illustrating a reference relationship according to this modification.
  • FIG. 66 is a diagram illustrating the reference relationship on an octree structure
  • FIG. 67 is a diagram illustrating the reference relationship on a spatial domain.
  • the three-dimensional data encoding apparatus encodes the encoding information of the node to be encoded (hereinafter, referred to as the target node 2) when encoding the encoding information of the node in the parent node to which the target node 2 belongs.
  • the target node 2 refers to the encoding information. That is, the three-dimensional data encoding device permits reference to information (for example, occupation information) of a child node of the first node having the same parent node as the target node among the plurality of adjacent nodes. For example, when encoding the occupancy code of the target node 2 illustrated in FIG.
  • the three-dimensional data encoding device may use a node existing in the parent node to which the target node 2 belongs, for example, the occupancy of the target node illustrated in FIG. Reference sign.
  • the occupancy code of the target node shown in FIG. 66 indicates, for example, whether or not each node in the target node adjacent to the target node 2 is occupied, as shown in FIG. Therefore, the three-dimensional data encoding device can switch the encoding table of the occupancy code of the target node 2 according to the finer shape of the target node, so that the coding efficiency can be improved.
  • the three-dimensional data encoding device may calculate an encoding table for entropy encoding the occupancy code of the target node 2 by, for example, the following equation.
  • CodingTable (FlagX1 ⁇ 5) + (FlagX2 ⁇ 4) + (FlagX3 ⁇ 3) + (FlagX4 ⁇ 2) + (FlagY ⁇ 1) + (FlagZ)
  • CodingTable indicates an encoding table for the occupancy code of the target node 2 and indicates any one of values 0 to 63.
  • FlagY is occupancy information of the adjacent node Y, and indicates 1 if the adjacent node Y includes (occupies) a point group, and indicates 0 if not.
  • FlagZ is occupancy information of the adjacent node Y, and indicates 1 if the adjacent node Z includes (occupies) a point group, and indicates 0 if not.
  • the three-dimensional data encoding device may change the method of calculating the encoding table according to the position of the target node 2 in the parent node.
  • the three-dimensional data encoding device may refer to the encoding information of each node in the parent adjacent node when the reference to the parent adjacent node is not prohibited. For example, when reference to a parent adjacent node is not prohibited, reference to information (for example, occupation information) of a child node of a third node having a different parent node from the target node is permitted.
  • the three-dimensional data encoding device acquires the occupancy information of the child node of the adjacent node X0 by referring to the occupancy code of the adjacent node X0 different from the target node and the parent node.
  • the three-dimensional data encoding device switches the encoding table used for entropy encoding of the occupancy code of the target node based on the acquired occupation information of the child node of the adjacent node X0.
  • the three-dimensional data encoding device provides information on a target node included in an N (N is an integer of 2 or more) binary tree structure of a plurality of three-dimensional points included in three-dimensional data.
  • N is an integer of 2 or more
  • the three-dimensional data encoding apparatus includes, among the plurality of adjacent nodes spatially adjacent to the target node, the first node having the same parent node as the target node.
  • occupation information is permitted, and reference to information (for example, occupation information) of a second node having a different parent node from the target node is prohibited.
  • the three-dimensional data encoding device allows reference to information of the parent node (for example, occupancy code), and information of another node (parent adjacent node) in the same layer as the parent node (for example, occupancy code). Reference) is prohibited.
  • the three-dimensional data encoding device performs encoding by referring to information of a first node having the same parent node as the target node among a plurality of adjacent nodes spatially adjacent to the target node. Efficiency can be improved. Further, the three-dimensional data encoding device can reduce the processing amount by not referring to the information of the second node having a different parent node from the target node among the plurality of adjacent nodes. Thus, the three-dimensional data encoding device can improve the encoding efficiency and reduce the processing amount.
  • the three-dimensional data encoding device further determines whether to prohibit reference to the information of the second node, and in the encoding, prohibits reference to the information of the second node based on the result of the determination. Or allow.
  • the three-dimensional data encoding apparatus further converts the bit stream that is the result of the above determination and includes prohibition switching information (for example, limit_refer_flag illustrated in FIG. 63) indicating whether to prohibit reference to the information of the second node. Generate.
  • the three-dimensional data encoding device can switch whether to prohibit reference to the information of the second node. Further, the three-dimensional data decoding device can appropriately perform the decoding process using the prohibition switching information.
  • the information of the target node is information (for example, an occupancy code) indicating whether or not a three-dimensional point exists in each of the child nodes belonging to the target node
  • the information of the first node is a three-dimensional Information indicating whether or not a point exists (occupation information of the first node)
  • the information of the second node indicates whether or not a three-dimensional point exists at the second node (occupation of the second node). Information).
  • the three-dimensional data encoding device selects an encoding table based on whether or not a three-dimensional point exists in the first node, and uses the selected encoding table to execute (For example, occupancy code) is entropy-encoded.
  • the three-dimensional data encoding device permits reference to information (for example, occupation information) of a child node of the first node among a plurality of adjacent nodes, as illustrated in FIGS. .
  • the three-dimensional data encoding device can refer to more detailed information of the adjacent node, so that the encoding efficiency can be improved.
  • the three-dimensional data encoding device switches an adjacent node to be referred to among a plurality of adjacent nodes according to a spatial position in a parent node of the target node.
  • the three-dimensional data encoding device can refer to an appropriate adjacent node according to the spatial position in the parent node of the target node.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • the three-dimensional data decoding device provides information (for example, occupancy code) of a target node included in an N (N is an integer of 2 or more) binary tree structure of a plurality of three-dimensional points included in the three-dimensional data. ) Is decrypted.
  • N is an integer of 2 or more
  • the three-dimensional data decoding device obtains information on a first node having the same parent node as the target node among a plurality of adjacent nodes spatially adjacent to the target node. (For example, occupation information) is permitted, and reference to information (for example, occupation information) of a second node having a different parent node from the target node is prohibited.
  • the three-dimensional data decoding device allows reference to information of the parent node (for example, occupancy code) and information of another node (parent adjacent node) in the same layer as the parent node (for example, occupancy code). Prohibit reference to.
  • the three-dimensional data decoding device refers to the information of the first node having the same parent node as the target node among a plurality of adjacent nodes spatially adjacent to the target node, thereby improving the coding efficiency. Can be improved. Further, the three-dimensional data decoding device can reduce the processing amount by not referring to the information of the second node having a different parent node from the target node among the plurality of adjacent nodes. As described above, the three-dimensional data decoding device can improve the encoding efficiency and reduce the processing amount.
  • the three-dimensional data decoding apparatus further obtains, from the bit stream, prohibition switching information (for example, limit_refer_flag shown in FIG. 63) indicating whether to prohibit reference to the information of the second node. Based on the switching information, switching between prohibiting and permitting reference to the information of the second node is performed.
  • prohibition switching information for example, limit_refer_flag shown in FIG. 63
  • the three-dimensional data decoding device can appropriately perform the decoding process using the prohibition switching information.
  • the information of the target node is information (for example, an occupancy code) indicating whether or not a three-dimensional point exists in each of the child nodes belonging to the target node
  • the information of the first node is a three-dimensional Information indicating whether or not a point exists (occupation information of the first node)
  • the information of the second node indicates whether or not a three-dimensional point exists at the second node (occupation of the second node). Information).
  • the three-dimensional data decoding device selects an encoding table based on whether or not a three-dimensional point exists in the first node, and uses the selected encoding table to generate information on the target node.
  • an occupancy code is subjected to entropy decoding.
  • the three-dimensional data decoding device permits reference to information (for example, occupation information) of a child node of the first node among a plurality of adjacent nodes, as shown in FIGS.
  • the three-dimensional data decoding device can refer to more detailed information of the adjacent node, so that the coding efficiency can be improved.
  • the three-dimensional data decoding device switches an adjacent node to be referred to among a plurality of adjacent nodes according to a spatial position in a parent node of the target node.
  • the three-dimensional data decoding device can refer to an appropriate adjacent node according to the spatial position in the parent node of the target node.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • the three-dimensional data encoding device can improve the encoding efficiency by using the adjacent node information of the target node when encoding the encoding information of the encoding target node (hereinafter, referred to as the target node). For example, the three-dimensional data encoding device switches an encoding table (probability table or the like) for entropy encoding an occupancy code of the target node using the adjacent node information.
  • the adjacent node information is, for example, whether or not a plurality of nodes (adjacent nodes) spatially adjacent to the target node are occupied nodes (occupied nodes) (whether or not the adjacent nodes include point groups ) And the like.
  • the three-dimensional data encoding device may switch the encoding table using information indicating the number of occupied nodes (adjacent occupied nodes) among a plurality of adjacent nodes. For example, the number of occupied nodes among six adjacent nodes (left, right, upper, lower, front, and back) adjacent to the target node is calculated, and the occupancy code of the target node is entropy-coded according to the calculated number. May be switched over.
  • FIG. 68 is a diagram illustrating an example of an adjacent node and a process according to the present embodiment.
  • adjacent nodes X0, Y0, and Z0 are occupied nodes
  • adjacent nodes X1, Y1, and Z1 are non-occupied nodes that are not occupied nodes.
  • a flag is used to calculate the adjacent occupancy pattern using the adjacent node information of the target node, switch the encoding table according to the value thereof, and switch whether to arithmetically encode the occupancy code of the target node.
  • a NeighborPatternCodingFlag (adjacent pattern encoding flag) is provided. The three-dimensional data encoding device adds this NeighborPatternCodingFlag to the header of the bit stream or the like.
  • NeighborPatternCodingFlag 1
  • the three-dimensional data encoding device calculates an adjacent occupancy pattern using the adjacent node information of the target node, and switches the encoding table according to the value to arithmetically encode the occupancy code of the target node. I do.
  • NeighborPatternCodingFlag 0
  • the three-dimensional data encoding device arithmetically encodes the occupancy code of the target node without using the adjacent node information of the target node.
  • the three-dimensional data encoding device calculates an adjacent occupation pattern using six nodes adjacent to the target node as shown in FIG. In this case, the value of the adjacent occupation pattern can take a value from 0 to 63. Therefore, the three-dimensional data encoding device switches the total of 64 encoding tables and arithmetically encodes the occupancy code of the target node.
  • the value of the adjacent occupation pattern is 21, and the three-dimensional data encoding device entropy-encodes the occupancy code of the target node using the 21st encoding table.
  • the three-dimensional data encoding device may use an index-th encoding table calculated from the value 21.
  • the three-dimensional data encoding device calculates the adjacent occupation pattern according to the value of the NeighborPatternCodingFlag, and switches whether to perform encoding by switching the encoding table according to the calculated adjacent occupation pattern. This makes it possible to balance the coding efficiency with the reduction in processing amount.
  • a mode for encoding the target node for example, a normal node (normal @ node) (or normal mode) in which the node is further divided into eight subnodes and encoded in an octant tree structure
  • ⁇ Circle around (3) For example, when the number of point groups in the target node is equal to or less than a threshold value A, the three-dimensional data encoding device sets the target node as an early terminal node and stops octtree partitioning. Alternatively, when the number of point groups in the parent node (parent @ node) is equal to or less than a certain threshold B, the three-dimensional data encoding device sets the target node as an early terminal node and stops the octree splitting. Alternatively, when the number of point groups included in an adjacent node is equal to or smaller than a threshold value C, the three-dimensional data encoding device sets the target node as an early terminal node and stops octree partitioning.
  • the three-dimensional data encoding device determines whether the target node is an early terminal node using the number of point groups included in the target node, the parent node, or the adjacent node. It is also possible to stop the splitting of the tree and, if false, continue the splitting of the octant to perform encoding. Accordingly, the three-dimensional data encoding device can reduce the processing time by stopping the octree splitting when the number of point groups included in the target node, the parent node, or the adjacent node decreases. Note that the three-dimensional data encoding device may encode the three-dimensional position information of each of the point groups included in the node using the entropy encoding or the like for the early termination node.
  • FIG. 69 is a flowchart of a three-dimensional data encoding process according to the present embodiment.
  • the three-dimensional data encoding device determines whether the target node satisfies the condition I to be an early terminal node (S4401). In other words, this determination is a determination as to whether or not the target node is likely to be encoded as an early termination node, that is, whether or not the early termination node can be used.
  • the three-dimensional data encoding device determines whether the target node satisfies the determination condition J of whether or not the target node is an early termination node (S4402). In other words, this determination is whether or not the target node is actually encoded as an early termination node, that is, whether or not the early termination node is used.
  • the three-dimensional data encoding apparatus sets early_terminated_node_flag (early termination node flag) to 1 and encodes the early_terminated_node_flag (S4403).
  • the three-dimensional data encoding device directly encodes the position information of the three-dimensional point included in the target node (S4404). That is, the three-dimensional data encoding device applies the early termination node to the target node.
  • the three-dimensional data encoding device sets early_terminated_node_flag to 0, and encodes the early_terminated_node_flag (S4405).
  • the three-dimensional data encoding device sets the target node to a normal node, and continues encoding by octree division (S4406).
  • the three-dimensional data encoding device sets the target node to a normal node without encoding early_terminated_node_flag, and continues encoding by octtree division (S4406). ).
  • the condition J includes a condition that the number of three-dimensional points in the target node is equal to or less than a threshold value (for example, value 2).
  • a threshold value for example, value 2.
  • the three-dimensional data encoding device determines that the target node is an early terminal node if the number of three-dimensional points in the target node is equal to or less than a threshold, and determines that the target node is not an early terminal node otherwise.
  • the condition I includes, for example, a condition that the hierarchy to which the target node belongs is equal to or higher than a predetermined hierarchy of the octree.
  • the condition I may include a condition that the target node is a layer larger than a node having a leaf (lowest layer) (whether the target node includes a space of a certain size or more).
  • the condition I may include a node (sibling node) included in the parent node of the target node or a condition of occupation information of the sibling node of the parent node. That is, the three-dimensional data encoding device may determine whether or not the target node may be an early termination node based on occupation information of the sibling node or the sibling node of the parent node. For example, the three-dimensional data encoding device counts the number of occupied nodes among sibling nodes in the same parent node as the target node.
  • Condition I includes a condition as to whether the counted value is equal to or less than a predetermined value. Alternatively, the three-dimensional data encoding device counts the number of occupied nodes among sibling nodes of the parent node of the target node.
  • Condition I includes a condition as to whether the counted value is equal to or less than a predetermined value.
  • the three-dimensional data encoding apparatus terminates the target node early using the hierarchy of the target node in the octree structure, the occupation information of the sibling node of the target node, or the occupation information of the sibling node of the parent node. First determine whether there is a possibility of becoming a node. If there is a possibility, the three-dimensional data encoding apparatus encodes the early_terminated_node_flag, and otherwise, does not encode the early_terminated_node_flag. Accordingly, the three-dimensional data encoding device can perform encoding while appropriately selecting an early termination node while suppressing overhead.
  • the three-dimensional data encoding device may provide an EarlyTerminatingCodingFlag which is a flag indicating whether or not to perform encoding using the early termination node (direct encoding mode), and may add the flag to a header or the like.
  • FIG. 70 is a flowchart of three-dimensional data encoding processing (early termination node determination processing) by the three-dimensional data encoding device according to the present embodiment.
  • the three-dimensional data encoding device uses the NeighborPatternCodingFlag and the EarlyTerminatedCodingFlag.
  • the three-dimensional data encoding device determines whether the NeighborPatternCodingFlag is 1 (S4411).
  • This NeighborPatternCodingFlag is generated in, for example, a three-dimensional data encoding device.
  • the three-dimensional data encoding device determines the value of NeighbourPatternCodingFlag based on an encoding mode specified from the outside or an input three-dimensional point.
  • the three-dimensional data encoding device calculates the adjacent occupation pattern of the target node (S4412). For example, the three-dimensional data encoding device uses the calculated adjacent occupation pattern for selecting an encoding table for arithmetically encoding an occupancy code.
  • the three-dimensional data encoding apparatus sets the value of the adjacent occupation pattern to 0 without calculating the adjacent occupation pattern (S4413).
  • the three-dimensional data encoding device can also use the adjacent occupation pattern calculated and set for encoding table switching in the early termination node determination (condition I). As a result, the amount of processing for recalculating the adjacent occupation pattern can be reduced.
  • the condition I may include, for example, a condition that the hierarchy to which the target node belongs is equal to or higher than a predetermined hierarchy of the octree.
  • the condition I may include a condition that the target node is a layer larger than a node having a leaf (lowest layer) (whether the target node includes a space of a certain size or more).
  • the condition I may include a node (sibling node) included in the parent node of the target node or a condition of occupation information of the sibling node of the parent node. That is, the three-dimensional data encoding device may determine whether or not the target node may be an early termination node based on the occupation information of the sibling node or the sibling node of the parent node. For example, the three-dimensional data encoding device counts the number of occupied nodes among sibling nodes in the same parent node as the target node.
  • the condition I may include a condition whether the counted value is equal to or less than a predetermined value. Alternatively, the three-dimensional data encoding device counts the number of occupied nodes among sibling nodes of the parent node of the target node.
  • the condition I may include a condition whether the counted value is equal to or less than a predetermined value.
  • Condition I may include any of the above-described conditions, or may include a plurality of conditions. If a plurality of conditions are included as the condition I, for example, if all the conditions are satisfied, it is determined that the condition I is satisfied (true), and otherwise, the condition I is not satisfied (false). ) May be determined. Alternatively, it may be determined that the condition I is satisfied (true) when at least one of the plurality of conditions is satisfied.
  • steps S4415 to S4419 is the same as the processing in steps S4402 to S4406 shown in FIG. 69, and redundant description will be omitted.
  • FIG. 71 is a flowchart of a modification of the three-dimensional data encoding process (early termination node determination process) by the three-dimensional data encoding device according to the present embodiment.
  • the processing shown in FIG. 71 is different from the processing shown in FIG. 70 in that step S4411 is changed to step S4411A.
  • the NeighborPatternCodingFlag and the EarlyTerminatedCodingFlag are generated in, for example, a three-dimensional data encoding device.
  • the three-dimensional data encoding device determines the values of NeighborPatternCodingFlag and EarlyTerminatedCodingFlag based on an externally specified encoding mode or an input three-dimensional point.
  • the three-dimensional data encoding device calculates the adjacent occupancy pattern of the target node and sets the value (S4412).
  • the three-dimensional data encoding device does not calculate the adjacent occupation pattern and sets the value of the adjacent occupation pattern to 0 (S4413).
  • the subsequent processing is the same as in FIG.
  • the three-dimensional data encoding device determines whether the target node may become an early termination node using the value of the set adjacent occupation pattern. That is, the condition I may include a condition as to whether the set adjacent occupation pattern is 0.
  • the three-dimensional data encoding device calculates the adjacent occupation pattern of the target node, and the target node is the early termination node using the calculated value of the adjacent occupation pattern. Possibility can be determined. Therefore, the three-dimensional data encoding device can appropriately select an early termination node, thereby improving encoding efficiency.
  • FIG. 72 is a flowchart of a three-dimensional data decoding process (early termination node determination process) by the three-dimensional data decoding device according to the present embodiment.
  • the three-dimensional data decoding device decodes the NeighborPatternCodingFlag from the bitstream header (S4421).
  • the three-dimensional data decoding device decodes the EarlyTerminatingCodingFlag from the bitstream header (S4422).
  • the three-dimensional data decoding device determines whether or not the decoded NeighborPatternCodingFlag is 1 (S4423).
  • the three-dimensional data decoding device calculates the adjacent occupation pattern of the target node (S4424). Note that the three-dimensional data decoding device may use the calculated adjacent occupancy pattern to select an encoding table for arithmetically decoding the occupancy code.
  • the three-dimensional data decoding device determines whether the condition I is true (S4426).
  • the details of this processing are the same as the processing in step S4414 in the three-dimensional data encoding device.
  • the three-dimensional data decoding device decodes the early_terminated_node_flag from the bit stream (S4427). Next, the three-dimensional data decoding device determines whether or not early_terminated_node_flag is 1 (S4428).
  • the three-dimensional data decoding device decodes the position information of the three-dimensional point in the target node (S4429). That is, the three-dimensional data decoding device applies the early termination node to the target node.
  • early_terminated_node_flag is 0 (No in S4428)
  • the three-dimensional data decoding device sets the target node as a normal node, and continues decoding by octree division (S4430).
  • the three-dimensional data decoding apparatus does not decode the early_terminated_node_flag from the bit stream, sets the target node to the normal node, and continues decoding by octree division (S4430). ).
  • FIG. 73 is a flowchart of a modification of the three-dimensional data decoding process (early termination node determination process) by the three-dimensional data decoding device according to the present embodiment.
  • the processing shown in FIG. 73 is different from the processing shown in FIG. 72 in that step S4423 is changed to step S4423A.
  • the three-dimensional data decoding device calculates the adjacent occupation pattern of the target node (S4424).
  • the three-dimensional data decoding apparatus does not calculate the adjacent occupation pattern and sets the value of the adjacent occupation pattern to 0 (S4425).
  • FIG. 74 is a diagram illustrating an example of the syntax of pc_header included in the bit stream.
  • This pc_header () is, for example, header information of a plurality of input three-dimensional points. That is, the information included in pc_header () is commonly used for a plurality of three-dimensional points (nodes).
  • $ Pc_header includes NeighborPatternCodingFlag (adjacent pattern coding flag) and EarlyTerminatedCodingFlag (early termination coding flag).
  • FIG. 75 is a diagram illustrating a syntax example of node information (node (depth, index)).
  • This node information is information of one node included in the octree, and is provided for each node.
  • the node information includes occupancy_code (occupancy code), early_terminated_node_flag (early end node flag), and coordinate_of_3Dpoint (three-dimensional coordinates).
  • $ Occupancy_code is information indicating whether or not a child node of the node is in an occupied state.
  • the three-dimensional data encoding device may arithmetically encode the occupancy_code by switching the encoding table according to the value of the NeighborPatternCodingFlag.
  • the three-dimensional data decoding device may estimate the value of the early_terminated_node_flag of the target node to be 0.
  • Coordinate_of_3Dpoint is position information of a point cloud included in a node when the node is an early termination node. If a node includes a plurality of point groups, coordinate_of_3Dpoint may include position information of each point group.
  • the three-dimensional data encoding device may specify the NeighborPatternCodingFlag or the EarlyTerminatingFlag in the standard or the profile or level of the standard without adding the NeighborPatternCodingFlag or the EarlyTerminatedCodingFlag to the header. Accordingly, the three-dimensional data decoding device can correctly restore the bit stream by determining the value of NeighborPatternCodingFlag or EarlyTerminatedCodingFlag with reference to the standard information included in the bitstream.
  • the three-dimensional data encoding device may entropy encode at least one of the above-mentioned NeighborPatternCodingFlag, EarlyTerminatedCodingFlag, early_terminated_node_flag, and coordinate_of_3Dpoint. For example, a three-dimensional data encoding device binarizes each value and then arithmetically encodes the value.
  • an octree structure is shown as an example, but the present invention is not limited thereto, and an N-tree structure (N is an integer of 2 or more) such as a quadtree or a 16-tree, or other
  • N is an integer of 2 or more
  • quadtree quadtree
  • 16-tree 16-tree
  • FIG. 76 is a block diagram of a three-dimensional data encoding device 4400 according to the present embodiment.
  • the three-dimensional data encoding device 4400 includes an octree generating unit 4401, a geometric information calculating unit 4402, an encoding table selecting unit 4403, and an entropy encoding unit 4404.
  • the octree generating unit 4401 generates, for example, an octree from the input three-dimensional point (point cloud), and generates an occupancy code of each node of the octree.
  • the octree tree generating unit 4401 determines whether or not the target node is an early terminal node by using the determinations of the conditions I and J. Alternatively, if false, encoding may be performed by continuing the octree splitting.
  • the octree generating unit 4401 may add a flag (early_terminated_node_flag) indicating whether each node is an early termination node to the bit stream. Accordingly, the three-dimensional data decoding device can correctly determine whether the node is an early termination node.
  • the geometric information calculation unit 4402 acquires information indicating whether or not an adjacent node of the target node is in an occupied state, and calculates an adjacent occupation pattern based on the acquired information. For example, the geometric information calculation unit 4402 calculates the adjacent occupation pattern by the method described with reference to FIG. Also, the geometric information calculation unit 4402 may calculate the adjacent occupation pattern from the occupancy code of the parent node to which the target node belongs. Alternatively, the geometric information calculation unit 4402 may store the encoded nodes in a list, and search for an adjacent node from the list. Note that the geometric information calculation unit 4402 may switch the adjacent node according to the position of the target node in the parent node. In addition, the geometric information calculation unit 4402 may switch whether to calculate the adjacent occupation pattern according to the values of the NeighborPatternCodingFlag and the EarlyTerminatedCodingFlag.
  • the encoding table selection unit 4403 selects an encoding table used for entropy encoding of the target node using the occupation information (adjacent occupation pattern) of the adjacent node calculated by the geometric information calculation unit 4402. For example, the coding table selection unit 4403 selects the coding table of the index number calculated from the value of the adjacent occupation pattern.
  • the entropy coding unit 4404 generates a bit stream by performing entropy coding on the occupancy code of the target node using the selected index-th coding table.
  • the entropy coding unit 4404 may add information of the selected coding table to the bitstream.
  • FIG. 77 is a block diagram of a three-dimensional data decoding device 4410 according to the present embodiment.
  • the three-dimensional data decoding device 4410 includes an octree generating unit 4411, a geometric information calculating unit 4412, a coding table selecting unit 4413, and an entropy decoding unit 4414.
  • the # 8-ary tree generation unit 4411 generates an 8-ary tree of a certain space (node) using the header information of the bit stream and the like. For example, the octree generating unit 4411 generates a large space (root node) using the size of a certain space added to the header information in the x-axis, y-axis, and z-axis directions. Eight small spaces A (nodes A0 to A7) are generated by dividing into two in the y-axis and z-axis directions, respectively, to generate an octree. Nodes A0 to A7 are set in order as target nodes.
  • the octree tree generating unit 4411 determines whether or not the target node is an early termination node by using the determination of the condition I and the condition J. If it is true, the octree division may be stopped, and if it is false, the octree division may be continued and decoded. Also, the octree generating unit 4411 may decode a flag indicating whether each node is an early termination node.
  • the geometric information calculation unit 4412 acquires information indicating whether or not an adjacent node of the target node is in an occupied state, and calculates an adjacent occupation pattern based on the acquired information. For example, the geometric information calculation unit 4412 may calculate the adjacent occupation pattern by the method described with reference to FIG. Further, the geometric information calculation unit 4412 may calculate the occupancy information of the adjacent node from the occupancy code of the parent node to which the target node belongs. The geometric information calculation unit 4412 may store the decoded nodes in a list, and search for an adjacent node from the list. Note that the geometric information calculation unit 4412 may switch the adjacent node according to the position of the target node in the parent node. Further, the geometric information calculation unit 4412 may switch whether to calculate the adjacent occupation pattern according to the values of the NeighborPatternCodingFlag and the EarlyTerminatedCodingFlag obtained by decoding the header.
  • the encoding table selection unit 4413 selects an encoding table to be used for target node entropy decoding using the occupation information (adjacent occupation pattern) of the adjacent node calculated by the geometric information calculation unit 4412. For example, the three-dimensional data decoding device selects the index-th coding table calculated from the value of the adjacent occupation pattern.
  • the entropy decoding unit 4414 generates a three-dimensional point (point cloud) by performing entropy decoding on the occupancy code of the target node using the selected encoding table.
  • the entropy decoding unit 4414 may decode and obtain information indicating the selected encoding table from the bit stream, and may use the encoding table indicated by the information to perform entropy decoding on the occupancy code of the target node.
  • each bit of the occupancy code (8 bits) included in the bit stream indicates whether or not each of the eight small spaces A (nodes A0 to A7) includes a point cloud. Further, the three-dimensional data decoding device divides the small space node A0 into eight small spaces B (nodes B0 to B7) to generate an octree, and each node of the small space B includes a point group.
  • the occupancy code is calculated by decoding information indicating whether or not the occupancy code is used. As described above, the three-dimensional data decoding device decodes the occupancy code of each node while generating an octree from a large space to a small space. If the target node is an early termination node, the three-dimensional data decoding device may directly decode the three-dimensional information encoded in the bit stream and stop the octree splitting at that node.
  • the method of calculating the adjacent occupancy pattern of the target node is not limited to the method using the occupancy information of the six adjacent nodes shown in FIG. 68 and the like, and may be another method.
  • the three-dimensional data encoding device may calculate the adjacent occupation pattern with reference to an adjacent node (a sibling node of the target node) existing in the parent node of the target node.
  • the three-dimensional data encoding device may calculate an adjacent occupation pattern including the target node and position in the parent node and occupation information of three adjacent nodes in the parent node. When six adjacent nodes are used, information on an adjacent node whose parent node is different from the target node is used.
  • the three-dimensional data encoding apparatus uses a method using the above-described six adjacent nodes (a method in which the target node and the parent node refer to different adjacent nodes) and a method using the three adjacent nodes (the target node and the parent node). (A method in which a node does not refer to a different adjacent node).
  • the three-dimensional data encoding device calculates the adjacent occupation pattern A using a method using six adjacent nodes for switching determination of an encoding table for arithmetically encoding an occupancy code.
  • the three-dimensional data encoding device calculates the adjacent occupation pattern B using the method using three adjacent nodes for the possibility of the early termination node (condition I).
  • the three-dimensional data encoding device uses a method using three adjacent nodes for switching determination of the encoding table, and uses six adjacent nodes for determining the possibility of the early termination node (condition I). May be used. As described above, the three-dimensional data encoding device can control the balance between the encoding efficiency and the processing amount by appropriately switching the calculation method of the adjacent occupation pattern.
  • FIG. 78 is a flowchart of the three-dimensional data encoding process. First, the three-dimensional data encoding device determines whether the NeighborPatternCodingFlag is 1 (S4441).
  • the three-dimensional data encoding device calculates the adjacent occupation pattern A of the target node (S4442).
  • the three-dimensional data encoding device may use the calculated adjacent occupation pattern A for selecting an encoding table for arithmetically encoding the occupancy code.
  • the three-dimensional data encoding apparatus does not calculate the adjacent occupation pattern A, but sets the value of the adjacent occupation pattern A to 0 (S4443).
  • the three-dimensional data encoding device determines whether the EarlyTerminatingCodingFlag is 1 (S4444).
  • the three-dimensional data encoding device calculates the adjacent occupation pattern B of the target node (S4445).
  • the adjacent occupation pattern B is used, for example, for determining the condition I.
  • the three-dimensional data encoding device sets the value of the adjacent occupation pattern B to 0 without calculating the adjacent occupation pattern B (S4446).
  • the three-dimensional data encoding device uses different methods for calculating the adjacent occupation pattern A and the adjacent occupation pattern B. For example, the three-dimensional data encoding device calculates the adjacent occupation pattern A using a method using six adjacent nodes, and calculates the adjacent occupation pattern B using a method using three adjacent nodes. Similarly, in the three-dimensional data decoding device, a different calculation method may be used for the adjacent occupation pattern A and the adjacent occupation pattern B.
  • the three-dimensional data encoding device determines whether or not the condition I is satisfied (S4447).
  • the details of this processing are the same as, for example, S4414 shown in FIG.
  • steps S4448 to S4452 is the same as the processing of steps S4415 to S4419 shown in FIG. 70, and redundant description will be omitted.
  • FIG. 79 is a flowchart of a modification of the three-dimensional data encoding process (early termination node determination process) by the three-dimensional data encoding device according to the present embodiment.
  • the processing shown in FIG. 79 is different from the processing shown in FIG. 78 in that steps S4453 and S4454 are added.
  • the three-dimensional data encoding apparatus sets the value of the adjacent occupation pattern A to the value of the adjacent occupation pattern B (S4454).
  • the three-dimensional data encoding device calculates the adjacent occupation pattern B (S4445).
  • the three-dimensional data encoding apparatus uses the adjacent occupation pattern A as the adjacent occupation pattern B. That is, the adjacent occupation pattern A is used for the determination of the condition I. Thereby, when the adjacent occupation pattern A is calculated, the three-dimensional data encoding apparatus does not calculate the adjacent occupation pattern B, so that the processing amount can be reduced.
  • FIG. 80 is a flowchart of a modification of the three-dimensional data decoding process (early termination node determination process) by the three-dimensional data decoding device according to the present embodiment.
  • the three-dimensional data decoding device decodes the NeighborPatternCodingFlag from the header of the bit stream (S4461).
  • the three-dimensional data decoding device decodes the EarlyTerminatingCodingFlag from the bitstream header (S4462).
  • the three-dimensional data decoding device determines whether or not the decoded NeighborPatternCodingFlag is 1 (S4463).
  • the three-dimensional data decoding device calculates the adjacent occupation pattern A of the target node (S4464). Note that the three-dimensional data decoding device may use the calculated adjacent occupancy pattern to select an encoding table for arithmetically decoding the occupancy code.
  • the three-dimensional data decoding device sets the adjacent occupation pattern A to 0 (S4465).
  • the three-dimensional data decoding device determines whether the EarlyTerminatingCodingFlag is 1 (S4466).
  • the three-dimensional data decoding device calculates the adjacent occupation pattern B of the target node (S4467).
  • the adjacent occupation pattern B is used, for example, for determining the condition I.
  • the three-dimensional data decoding apparatus sets the value of the adjacent occupation pattern B to 0 without calculating the adjacent occupation pattern B (S4468).
  • the three-dimensional data decoding device uses different methods for calculating the adjacent occupation pattern A and the adjacent occupation pattern B. For example, the three-dimensional data decoding device calculates the adjacent occupation pattern A using a method using six adjacent nodes, and calculates the adjacent occupation pattern B using a method using three adjacent nodes.
  • the three-dimensional data encoding device determines whether or not the condition I is satisfied (S4469).
  • the details of this process are the same as, for example, S4426 shown in FIG.
  • steps S4470 to S4473 is the same as the processing of steps S4427 to S4430 shown in FIG. 72, and redundant description will be omitted.
  • FIG. 81 is a flowchart of a modification of the three-dimensional data decoding process (early termination node determination process) by the three-dimensional data decoding device according to the present embodiment.
  • the processing shown in FIG. 81 is different from the processing shown in FIG. 80 in that steps S4474 and S4475 are added.
  • the three-dimensional data decoding apparatus determines whether NeighborPatternCodingFlag is 1 (S4474).
  • the three-dimensional data decoding apparatus sets the value of the adjacent occupation pattern A to the value of the adjacent occupation pattern B (S4475).
  • the three-dimensional data encoding device calculates the adjacent occupation pattern B (S4467).
  • the three-dimensional data decoding apparatus uses the adjacent occupation pattern A as the adjacent occupation pattern B. That is, the adjacent occupation pattern A is used for the determination of the condition I. Accordingly, when calculating the adjacent occupation pattern A, the three-dimensional data decoding apparatus does not calculate the adjacent occupation pattern B, so that the processing amount can be reduced.
  • the three-dimensional data encoding device performs the processing shown in FIG.
  • the three-dimensional data encoding device determines whether the first flag (for example, NeighborPatternCodingFlag) indicates a first value (for example, 1) (S4481).
  • the three-dimensional data encoding apparatus forms an N (N is an integer of 2 or more) binary tree structure of a plurality of three-dimensional points included in the three-dimensional data.
  • a first occupation pattern (for example, adjacent occupation pattern A) indicating the occupation state of a plurality of second adjacent nodes including a first adjacent node having a different parent node from the included target node is generated (S4482) (for example, S4442 in FIG. 79). And S4454).
  • the three-dimensional data encoding device does not divide the target node into a plurality of child nodes, and encodes a plurality of three-dimensional position information included in the target node. It is determined whether or not (for example, an early termination node) can be used (S4483) (for example, S4447 in FIG. 79).
  • the three-dimensional data encoding apparatus does not include the first adjacent node different from the target node and the parent node.
  • a second occupation pattern for example, adjacent occupation pattern B
  • the occupation state of the third adjacent node is generated (S4484) (for example, S4445 in FIG. 79).
  • the three-dimensional data encoding device determines whether the first encoding can be used based on the second occupation pattern (S4485) (for example, S4447 in FIG. 79).
  • the three-dimensional data encoding device generates a bit stream including the first flag (S4486).
  • the three-dimensional data encoding device can switch the occupation pattern of the adjacent node used to determine whether or not the first encoding can be used according to the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • the three-dimensional data encoding device determines whether to use the first encoding based on a predetermined condition (for example, condition J) (for example, FIG. 79, S4448), if it is determined to use the first encoding, the target node is encoded using the first encoding (for example, S4450 in FIG. 79), and if it is determined that the first encoding is not used, The target node is encoded using the second encoding that divides the node into a plurality of child nodes (for example, S4452 in FIG. 79).
  • the bit stream further includes a second flag (for example, early_terminated_node_flag) indicating whether to use the first encoding.
  • the three-dimensional data encoding device determines whether the first encoding can be used based on the first occupation pattern or the second occupation pattern, and determines whether the first occupation pattern or the second occupation pattern and the parent node It is determined whether the first encoding can be used based on the number of occupied nodes included. For example, when the number of occupied nodes included in the parent node is smaller than a predetermined number, the three-dimensional data encoding device determines that the first encoding is available, and determines whether the occupied state included in the parent node is available. If the number of nodes is larger than a predetermined number, it is determined that the first encoding cannot be used.
  • the three-dimensional data encoding apparatus determines whether the first encoding can be used based on the first occupation pattern or the second occupation pattern, and determines whether the first occupation pattern or the second occupation pattern is Based on the number of occupied nodes included in the grandfather node, it is determined whether the first encoding can be used. For example, when the number of occupied nodes included in the grandfather node is smaller than a predetermined number, the three-dimensional data encoding device determines that the first encoding is usable, and determines that the occupied state included in the grandfather node is included. If the number of nodes is larger than a predetermined number, it is determined that the first encoding cannot be used.
  • the three-dimensional data encoding device determines whether or not the first encoding can be used based on the first occupation pattern or the second occupation pattern. It is determined whether the first encoding can be used based on the layer to which it belongs. For example, the three-dimensional data encoding device determines that the first encoding can be used when the layer to which the target node belongs is lower than a predetermined layer, and determines that the layer to which the target node belongs is higher than the predetermined layer. , It is determined that the first encoding cannot be used.
  • the three-dimensional data encoding device includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • the three-dimensional data decoding device performs the processing shown in FIG. First, the three-dimensional data decoding device obtains a first flag (for example, NeighborPatternCodingFlag) from the bit stream (S4491). The three-dimensional data decoding device determines whether the first flag indicates a first value (for example, 1) (S4492).
  • a first flag for example, NeighborPatternCodingFlag
  • the three-dimensional data decoding apparatus includes the plurality of three-dimensional points included in the three-dimensional data in an N (N is an integer of 2 or more) binary tree structure.
  • a first occupation pattern (for example, adjacent occupation pattern A) indicating the occupation state of a plurality of second adjacent nodes including a first adjacent node having a different parent node from the target node to be executed is generated (S4493) (for example, S4464 and FIG. 81). S4475).
  • the three-dimensional data decoding apparatus does not divide the target node into a plurality of child nodes and decodes a plurality of three-dimensional position information included in the target node (for example, early decoding). It is determined whether or not the end node can be used (S4494) (for example, S4469 in FIG. 81).
  • the three-dimensional data decoding apparatus determines that the target node and the parent node do not include the first adjacent node different from the target node.
  • a second occupation pattern (for example, adjacent occupation pattern B) indicating the occupation state of the third adjacent node is generated (S4495) (for example, S4467 in FIG. 81).
  • the three-dimensional data decoding device determines whether the first decoding can be used based on the second occupation pattern (S4496) (for example, S4469 in FIG. 81).
  • the three-dimensional data decoding device can switch the occupation pattern of the adjacent node used to determine whether the first encoding can be used according to the first flag. This makes it possible to appropriately determine whether the first encoding can be used, thereby improving the encoding efficiency.
  • the three-dimensional data decoding device acquires a second flag indicating whether to use the first decoding from the bit stream (for example, S4470 in FIG. 81), and If the second flag indicates that the first decoding is to be used, the target node is decoded using the first decoding (for example, S4472 in FIG. 81), and if the second flag indicates that the first decoding is not used, The target node is decoded using the second decoding that divides the target node into a plurality of child nodes (for example, S4473 in FIG. 81).
  • the three-dimensional data decoding device determines whether the first decoding can be used based on the first occupation pattern or the second occupation pattern and includes the first occupation pattern or the second occupation pattern and the parent node. Based on the number of occupied nodes, it is determined whether the first decoding can be used. For example, when the number of occupied nodes included in the parent node is smaller than a predetermined number, the three-dimensional data decoding prosecution determines that the first encoding is available, and determines the occupied node included in the parent node. Is larger than a predetermined number, it is determined that the first encoding cannot be used.
  • the three-dimensional data decoding apparatus determines whether the first decoding can be used based on the first occupation pattern or the second occupation pattern. Is determined based on the number of nodes in the occupied state included in (1). For example, when the number of occupied nodes included in the grandfather node is smaller than a predetermined number, the three-dimensional data decoding prosecution determines that the first encoding is usable, and determines the occupied node included in the grandfather node. Is larger than a predetermined number, it is determined that the first encoding cannot be used.
  • the three-dimensional data decoding apparatus determines whether the first decoding can be used based on the first occupation pattern or the second occupation pattern, and determines the first occupation pattern or the second occupation pattern and the hierarchy to which the target node belongs. It is determined whether or not the first decryption can be used based on the above. For example, the three-dimensional data decoding device determines that the first encoding can be used when the layer to which the target node belongs is lower than a predetermined layer, and determines that the layer to which the target node belongs is higher than the predetermined layer. It is determined that the first encoding cannot be used.
  • the three-dimensional data decoding device includes a processor and a memory, and the processor performs the above-described processing using the memory.
  • the present disclosure is not limited to this embodiment.
  • Each processing unit included in the three-dimensional data encoding device, the three-dimensional data decoding device, and the like according to the above-described embodiment is typically realized as an LSI that is an integrated circuit. These may be individually integrated into one chip, or may be integrated into one chip so as to include some or all of them.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the present disclosure may be realized as a three-dimensional data encoding method, a three-dimensional data decoding method, or the like executed by the three-dimensional data encoding device, the three-dimensional data decoding device, or the like.
  • the division of functional blocks in the block diagram is merely an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be transferred to other functional blocks. You may.
  • the functions of a plurality of functional blocks having similar functions may be processed by a single piece of hardware or software in parallel or time division.
  • the three-dimensional data encoding device, the three-dimensional data decoding device, and the like have been described based on the embodiments.
  • the present disclosure is not limited to the embodiments. .
  • various modifications conceivable to those skilled in the art may be applied to the present embodiment, and a configuration constructed by combining components in different embodiments may be in the range of one or more aspects. May be included within.
  • the present disclosure is applicable to a three-dimensional data encoding device and a three-dimensional data decoding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Image Processing (AREA)
  • Processing Or Creating Images (AREA)

Abstract

三次元データ符号化方法は、第1フラグが第1の値を示す場合(S4481でYes)、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し(S4482)、第1占有パターンに基づき、対象ノードを複数の子ノードに分割せず、対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し(S4483)、第1フラグが第1の値と異なる第2の値を示す場合(S4481でNo)、対象ノードと親ノードが異なる第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し(S4484)、第2占有パターンに基づき、第1符号化を使用可能か否かを判定し(S4485)、第1フラグを含むビットストリームを生成する(S4486)。

Description

三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
 本開示は、三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置に関する。
 自動車或いはロボットが自律的に動作するためのコンピュータビジョン、マップ情報、監視、インフラ点検、又は、映像配信など、幅広い分野において、今後、三次元データを活用した装置又はサービスの普及が見込まれる。三次元データは、レンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組み合わせなど様々な方法で取得される。
 三次元データの表現方法の1つとして、三次元空間内の点群によって三次元構造の形状を表すポイントクラウドと呼ばれる表現方法がある。ポイントクラウドでは、点群の位置と色とが格納される。ポイントクラウドは三次元データの表現方法として主流になると予想されるが、点群はデータ量が非常に大きい。よって、三次元データの蓄積又は伝送においては二次元の動画像(一例として、MPEGで規格化されたMPEG-4 AVC又はHEVCなどがある)と同様に、符号化によるデータ量の圧縮が必須となる。
 また、ポイントクラウドの圧縮については、ポイントクラウド関連の処理を行う公開のライブラリ(Point Cloud Library)などによって一部サポートされている。
 また、三次元の地図データを用いて、車両周辺に位置する施設を検索し、表示する技術が知られている(例えば、特許文献1参照)。
国際公開第2014/020663号
 三次元データの符号化及び復号において符号化効率を向上できることが望まれている。
 本開示は、符号化効率を向上できる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置又は三次元データ復号装置を提供することを目的とする。
 本開示の一態様に係る三次元データ符号化方法は、第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1符号化を使用可能か否かを判定し、前記第1フラグを含むビットストリームを生成する。
 本開示の一態様に係る三次元データ復号方法は、ビットストリームから第1フラグを取得し、前記第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を復号する第1復号を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1復号を使用可能か否かを判定する。
 本開示は、符号化効率を向上できる三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置又は三次元データ復号装置を提供できる。
図1は、実施の形態1に係る符号化三次元データの構成を示す図である。 図2は、実施の形態1に係るGOSの最下層レイヤに属するSPC間の予測構造の一例を示す図である。 図3は、実施の形態1に係るレイヤ間の予測構造の一例を示す図である。 図4は、実施の形態1に係るGOSの符号化順の一例を示す図である。 図5は、実施の形態1に係るGOSの符号化順の一例を示す図である。 図6は、実施の形態1に係る三次元データ符号化装置のブロック図である。 図7は、実施の形態1に係る符号化処理のフローチャートである。 図8は、実施の形態1に係る三次元データ復号装置のブロック図である。 図9は、実施の形態1に係る復号処理のフローチャートである。 図10は、実施の形態1に係るメタ情報の一例を示す図である。 図11は、実施の形態2に係るSWLDの構成例を示す図である。 図12は、実施の形態2に係るサーバ及びクライアントの動作例を示す図である。 図13は、実施の形態2に係るサーバ及びクライアントの動作例を示す図である。 図14は、実施の形態2に係るサーバ及びクライアントの動作例を示す図である。 図15は、実施の形態2に係るサーバ及びクライアントの動作例を示す図である。 図16は、実施の形態2に係る三次元データ符号化装置のブロック図である。 図17は、実施の形態2に係る符号化処理のフローチャートである。 図18は、実施の形態2に係る三次元データ復号装置のブロック図である。 図19は、実施の形態2に係る復号処理のフローチャートである。 図20は、実施の形態2に係るWLDの構成例を示す図である。 図21は、実施の形態2に係るWLDの8分木構造の例を示す図である。 図22は、実施の形態2に係るSWLDの構成例を示す図である。 図23は、実施の形態2に係るSWLDの8分木構造の例を示す図である。 図24は、実施の形態3に係る三次元データ作成装置のブロック図である。 図25は、実施の形態3に係る三次元データ送信装置のブロック図である。 図26は、実施の形態4に係る三次元情報処理装置のブロック図である。 図27は、実施の形態5に係る三次元データ作成装置のブロック図である。 図28は、実施の形態6に係るシステムの構成を示す図である。 図29は、実施の形態6に係るクライアント装置のブロック図である。 図30は、実施の形態6に係るサーバのブロック図である。 図31は、実施の形態6に係るクライアント装置による三次元データ作成処理のフローチャートである。 図32は、実施の形態6に係るクライアント装置によるセンサ情報送信処理のフローチャートである。 図33は、実施の形態6に係るサーバによる三次元データ作成処理のフローチャートである。 図34は、実施の形態6に係るサーバによる三次元マップ送信処理のフローチャートである。 図35は、実施の形態6に係るシステムの変形例の構成を示す図である。 図36は、実施の形態6に係るサーバ及びクライアント装置の構成を示す図である。 図37は、実施の形態7に係る三次元データ符号化装置のブロック図である。 図38は、実施の形態7に係る予測残差の例を示す図である。 図39は、実施の形態7に係るボリュームの例を示す図である。 図40は、実施の形態7に係るボリュームの8分木表現の例を示す図である。 図41は、実施の形態7に係るボリュームのビット列の例を示す図である。 図42は、実施の形態7に係るボリュームの8分木表現の例を示す図である。 図43は、実施の形態7に係るボリュームの例を示す図である。 図44は、実施の形態7に係るイントラ予測処理を説明するための図である。 図45は、実施の形態7に係る回転及び並進処理を説明するための図である。 図46は、実施の形態7に係るRT適用フラグ及びRT情報のシンタックス例を示す図である。 図47は、実施の形態7に係るインター予測処理を説明するための図である。 図48は、実施の形態7に係る三次元データ復号装置のブロック図である。 図49は、実施の形態7に係る三次元データ符号化装置による三次元データ符号化処理のフローチャートである。 図50は、実施の形態7に係る三次元データ復号装置による三次元データ復号処理のフローチャートである。 図51は、実施の形態8に係る8分木構造における参照関係を示す図である。 図52は、実施の形態8に係る空間領域における参照関係を示す図である。 図53は、実施の形態8に係る隣接参照ノードの例を示す図である。 図54は、実施の形態8に係る親ノードとノードとの関係を示す図である。 図55は、実施の形態8に係る親ノードのオキュパンシー符号の例を示す図である。 図56は、実施の形態8に係る三次元データ符号化装置のブロック図である。 図57は、実施の形態8に係る三次元データ復号装置のブロック図である。 図58は、実施の形態8に係る三次元データ符号化処理のフローチャートである。 図59は、実施の形態8に係る三次元データ復号処理のフローチャートである。 図60は、実施の形態8に係る符号化テーブルの切替え例を示す図である。 図61は、実施の形態8の変形例1に係る空間領域における参照関係を示す図である。 図62は、実施の形態8の変形例1に係るヘッダ情報のシンタックス例を示す図である。 図63は、実施の形態8の変形例1に係るヘッダ情報のシンタックス例を示す図である。 図64は、実施の形態8の変形例2に係る隣接参照ノードの例を示す図である。 図65は、実施の形態8の変形例2に係る対象ノード及び隣接ノードの例を示す図である。 図66は、実施の形態8の変形例3に係る8分木構造における参照関係を示す図である。 図67は、実施の形態8の変形例3に係る空間領域における参照関係を示す図である。 図68は、実施の形態9に係る隣接ノードの例及び処理を示す図である。 図69は、実施の形態9に係る三次元データ符号化処理のフローチャートである。 図70は、実施の形態9に係る三次元データ符号化処理のフローチャートである。 図71は、実施の形態9に係る三次元データ符号化処理の変形例のフローチャートである。 図72は、実施の形態9に係る三次元データ復号処理のフローチャートである。 図73は、実施の形態9に係る三次元データ復号処理の変形例のフローチャートである。 図74は、実施の形態9に係るヘッダのシンタックス例を示す図である。 図75は、実施の形態9に係るノード情報のシンタックス例を示す図である。 図76は、実施の形態9に係る三次元データ符号化装置のブロック図である。 図77は、実施の形態9に係る三次元データ復号装置のブロック図である。 図78は、実施の形態9に係る三次元データ符号化処理の変形例のフローチャートである。 図79は、実施の形態9に係る三次元データ符号化処理の変形例のフローチャートである。 図80は、実施の形態9に係る三次元データ復号処理の変形例のフローチャートである。 図81は、実施の形態9に係る三次元データ復号処理の変形例のフローチャートである。 図82は、実施の形態9に係る三次元データ符号化処理のフローチャートである。 図83は、実施の形態9に係る三次元データ復号処理のフローチャートである。
 本開示の一態様に係る三次元データ符号化方法は、第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1符号化を使用可能か否かを判定し、前記第1フラグを含むビットストリームを生成する。
 これによれば、当該三次元データ符号化方法は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 例えば、前記第1符号化を使用可能と判定された場合、所定の条件に基づき、前記第1符号化を用いるか否かを判定し、前記第1符号化を用いると判定した場合、前記第1符号化を用いて前記対象ノードを符号化し、前記第1符号化を用いないと判定した場合、前記対象ノードを複数の子ノードに分割する第2符号化を用いて前記対象ノードを符号化し、前記ビットストリームは、さらに、前記第1符号化を用いるか否かを示す第2フラグを含んでもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記親ノードに含まれる占有状態のノードの数とに基づき、前記第1符号化を使用可能か否かを判定してもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、前記第1符号化を使用可能か否かを判定してもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードが属する階層とに基づき、前記第1符号化を使用可能か否かを判定してもよい。
 本開示の一態様に係る三次元データ復号方法は、ビットストリームから第1フラグを取得し、前記第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を復号する第1復号を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1復号を使用可能か否かを判定する。
 これによれば、当該三次元データ復号方法は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 例えば、前記第1復号を使用可能と判定された場合、前記ビットストリームから前記第1復号を用いるか否かを示す第2フラグを取得し、前記第2フラグにより前記第1復号を用いることが示される場合、前記第1復号を用いて前記対象ノードを復号し、前記第2フラグにより前記第1復号を用いないことが示される場合、前記対象ノードを複数の子ノードに分割する第2復号を用いて前記対象ノードを復号してもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記親ノードに含まれる占有状態のノードの数とに基づき、前記第1復号を使用可能か否かを判定してもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、前記第1復号を使用可能か否かを判定してもよい。
 例えば、前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードが属する階層とに基づき、前記第1復号を使用可能か否かを判定してもよい。
 また、本開示の一態様に係る三次元データ符号化装置は、属性情報を有する複数の三次元点を符号化する三次元データ符号化装置であって、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1符号化を使用可能か否かを判定し、前記第1フラグを含むビットストリームを生成する。
 これによれば、当該三次元データ符号化装置は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 また、本開示の一態様に係る三次元データ復号装置は、属性情報を有する複数の三次元点を復号する三次元データ復号装置であって、プロセッサと、メモリとを備え、前記プロセッサは、前記メモリを用いて、前記第1フラグが第1の値を示す場合、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を復号する第1復号を使用可能か否かを判定し、前記第1フラグが前記第1の値と異なる第2の値を示す場合、前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、前記第2占有パターンに基づき、前記第1復号を使用可能か否かを判定する。
 これによれば、当該三次元データ復号装置は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 まず、本実施の形態に係る符号化三次元データ(以下、符号化データとも記す)のデータ構造について説明する。図1は、本実施の形態に係る符号化三次元データの構成を示す図である。
 本実施の形態では、三次元空間は、動画像の符号化におけるピクチャに相当するスペース(SPC)に分割され、スペースを単位として三次元データが符号化される。スペースは、さらに、動画像符号化におけるマクロブロックなどに相当するボリューム(VLM)に分割され、VLMを単位として予測及び変換が行われる。ボリュームは、位置座標が対応付けられる最小単位である複数のボクセル(VXL)を含む。なお、予測とは、二次元画像で行われる予測と同様に、他の処理単位を参照し、処理対象の処理単位と類似する予測三次元データを生成し、当該予測三次元データと処理対象の処理単位との差分を符号化することである。また、この予測は、同一時刻の他の予測単位を参照する空間予測のみならず、異なる時刻の予測単位を参照する時間予測を含む。
 例えば、三次元データ符号化装置(以下、符号化装置とも記す)は、ポイントクラウドなどの点群データにより表現される三次元空間を符号化する際には、ボクセルのサイズに応じて、点群の各点、又は、ボクセル内に含まれる複数点をまとめて符号化する。ボクセルを細分化すれば点群の三次元形状を高精度に表現でき、ボクセルのサイズを大きくすれば点群の三次元形状をおおまかに表現できる。
 なお、以下では、三次元データがポイントクラウドである場合を例に説明を行うが、三次元データはポイントクラウドに限定されず、任意の形式の三次元データでよい。
 また、階層構造のボクセルを用いてもよい。この場合、n次の階層では、n-1次以下の階層(n次の階層の下層)にサンプル点が存在するかどうかを順に示してもよい。例えば、n次の階層のみを復号する際において、n-1次以下の階層にサンプル点が存在する場合は、n次階層のボクセルの中心にサンプル点が存在するとみなして復号できる。
 また、符号化装置は、点群データを、距離センサ、ステレオカメラ、単眼カメラ、ジャイロ、又は慣性センサなどを用いて取得する。
 スペースは、動画像の符号化と同様に、単独で復号可能なイントラ・スペース(I-SPC)、単方向の参照のみ可能なプレディクティブ・スペース(P-SPC)、及び、双方向の参照が可能なバイディレクショナル・スペース(B-SPC)を含む少なくとも3つの予測構造のいずれかに分類される。また、スペースは復号時刻と表示時刻との2種類の時刻情報を有する。
 また、図1に示すように、複数のスペースを含む処理単位として、ランダムアクセス単位であるGOS(Group Of Space)が存在する。さらに、複数のGOSを含む処理単位としてワールド(WLD)が存在する。
 ワールドが占める空間領域は、GPS又は緯度及び経度情報などにより、地球上の絶対位置と対応付けられる。この位置情報はメタ情報として格納される。なお、メタ情報は、符号化データに含まれてもよいし、符号化データとは別に伝送されてもよい。
 また、GOS内では、全てのSPCが三次元的に隣接してもよいし、他のSPCと三次元的に隣接しないSPCが存在してもよい。
 なお、以下では、GOS、SPC又はVLM等の処理単位に含まれる三次元データに対する、符号化、復号又は参照等の処理を、単に、処理単位を符号化、復号又は参照する等とも記す。また、処理単位に含まれる三次元データは、例えば、三次元座標等の空間位置と、色情報等の特性値との少なくとも一つの組を含む。
 次に、GOSにおけるSPCの予測構造について説明する。同一GOS内の複数のSPC、又は、同一SPC内の複数のVLMは、互いに異なる空間を占めるが、同じ時刻情報(復号時刻及び表示時刻)を持つ。
 また、GOS内で復号順で先頭となるSPCはI-SPCである。また、GOSにはクローズドGOSとオープンGOSとの2種類が存在する。クローズドGOSは、先頭I-SPCから復号開始する際に、GOS内の全てのSPCを復号できるGOSである。オープンGOSでは、GOS内で先頭I-SPCよりも表示時刻が前となる一部のSPCは異なるGOSを参照しており、当該GOSのみで復号を行うことができない。
 なお、地図情報などの符号化データでは、WLDを符号化順とは逆方向から復号することがあり、GOS間に依存性があると逆方向再生が困難である。よって、このような場合には、基本的にはクローズドGOSが用いられる。
 また、GOSは、高さ方向にレイヤ構造を有し、下のレイヤのSPCから順に符号化又は復号が行われる。
 図2はGOSの最下層レイヤに属するSPC間の予測構造の一例を示す図である。図3はレイヤ間の予測構造の一例を示す図である。
 GOS内には1つ以上のI-SPCが存在する。三次元空間内には、ヒト、動物、車、自転車、信号、又はランドマークとなる建物などのオブジェクトが存在するが、特にサイズが小さいオブジェクトはI-SPCとして符号化すると有効である。例えば、三次元データ復号装置(以下、復号装置とも記す)は、GOSを低処理量又は高速に復号する際には、GOS内のI-SPCのみを復号する。
 また、符号化装置は、WLD内のオブジェクトの粗密さに応じてI-SPCの符号化間隔又は出現頻度を切替えてもよい。
 また、図3に示す構成において、符号化装置又は復号装置は、複数のレイヤを下層(レイヤ1)から順に符号化又は復号する。これにより、例えば自動走行車などにとってより情報量の多い地面付近のデータの優先度を上げることができる。
 なお、ドローンなどで用いられる符号化データでは、GOS内において高さ方向で上のレイヤのSPCから順に符号化又は復号してもよい。
 また、符号化装置又は復号装置は、復号装置が荒くGOSを把握でき、徐々に解像度を上げるようにできるように、複数のレイヤを符号化又は復号してもよい。例えば、符号化装置又は復号装置は、レイヤ3、8、1、9…の順に符号化又は復号してもよい。
 次に、静的オブジェクト及び動的オブジェクトの扱い方について説明する。
 三次元空間には、建物又は道路など静的なオブジェクト又はシーン(以降、まとめて静的オブジェクトと呼ぶ)と、車又はヒトなどの動的なオブジェクト(以降、動的オブジェクトと呼ぶ)とが存在する。オブジェクトの検出は、ポイントクラウドのデータ、又は、ステレオカメラなどのカメラ映像などから特徴点を抽出するなどして、別途行われる。ここでは、動的オブジェクトの符号化方法の例について説明する。
 第1方法は、静的オブジェクトと動的オブジェクトとを区別せずに符号化する方法である。第2方法は、静的オブジェクトと動的オブジェクトとを識別情報により区別する方法である。
 例えば、GOSが識別単位として用いられる。この場合、静的オブジェクトを構成するSPCを含むGOSと、動的オブジェクトを構成するSPCを含むGOSとが、符号化データ内、又は符号化データとは別途格納される識別情報により区別される。
 または、SPCが識別単位として用いられてもよい。この場合、静的オブジェクトを構成するVLMを含むSPCと、動的オブジェクトを構成するVLMを含むSPCとが、上記識別情報により区別される。
 または、VLM或いはVXLが識別単位として用いられてもよい。この場合、静的オブジェクトを含むVLM又はVXLと、動的オブジェクトを含むVLM又はVXLとが上記識別情報により区別される。
 また、符号化装置は、動的オブジェクトを1以上のVLM又はSPCとして符号化し、静的オブジェクトを含むVLM又はSPCと、動的オブジェクトを含むSPCとを、互いに異なるGOSとして符号化してもよい。また、符号化装置は、動的オブジェクトのサイズに応じてGOSのサイズが可変となる場合には、GOSのサイズをメタ情報として別途格納する。
 また、符号化装置は、静的オブジェクトと動的オブジェクトとを互いに独立に符号化し、静的オブジェクトから構成されるワールドに対して、動的オブジェクトを重畳してもよい。このとき、動的オブジェクトは1以上のSPCから構成され、各SPCは、当該SPCが重畳される静的オブジェクトを構成する1以上のSPCに対応付けられる。なお、動的オブジェクトをSPCではなく、1以上のVLM又はVXLにより表現してもよい。
 また、符号化装置は、静的オブジェクトと動的オブジェクトとを互いに異なるストリームとして符号化してもよい。
 また、符号化装置は、動的オブジェクトを構成する1以上のSPCを含むGOSを生成してもよい。さらに、符号化装置は、動的オブジェクトを含むGOS(GOS_M)と、GOS_Mの空間領域に対応する静的オブジェクトのGOSとを同一サイズ(同一の空間領域を占める)に設定してもよい。これにより、GOS単位で重畳処理を行うことができる。
 動的オブジェクトを構成するP-SPC又はB-SPCは、符号化済みの異なるGOSに含まれるSPCを参照してもよい。動的オブジェクトの位置が時間的に変化し、同一の動的オブジェクトが異なる時刻のGOSとして符号化されるケースでは、GOSを跨いだ参照が圧縮率の観点から有効となる。
 また、符号化データの用途に応じて、上記の第1方法と第2方法とを切替えてもよい。例えば、符号化三次元データを地図として用いる場合は、動的オブジェクトを分離できることが望ましいため、符号化装置は、第2方法を用いる。一方、符号化装置は、コンサート又はスポーツなどのイベントの三次元データを符号化する場合に、動的オブジェクトを分離する必要がなければ、第1方法を用いる。
 また、GOS又はSPCの復号時刻と表示時刻とは符号化データ内、又はメタ情報として格納できる。また、静的オブジェクトの時刻情報は全て同一としてもよい。このとき、実際の復号時刻と表示時刻は、復号装置が決定するものとしてもよい。あるいは、復号時刻として、GOS、あるいは、SPC毎に異なる値が付与され、表示時刻として全て同一の値が付与されてもよい。さらに、HEVCのHRD(Hypothetical Reference Decoder)など動画像符号化におけるデコーダモデルのように、デコーダが所定のサイズのバッファを有し、復号時刻に従って所定のビットレートでビットストリームを読み込めば破綻なく復号できることを保証するモデルを導入してもよい。
 次に、ワールド内におけるGOSの配置について説明する。ワールドにおける三次元空間の座標は、互いに直交する3本の座標軸(x軸、y軸、z軸)により表現される。GOSの符号化順に所定のルールを設けることで、空間的に隣接するGOSが符号化データ内で連続するように符号化を行える。例えば、図4に示す例では、xz平面内のGOSを連続的に符号化する。あるxz平面内の全てのGOSの符号化終了後にy軸の値を更新する。すなわち、符号化が進むにつれて、ワールドはy軸方向に伸びていく。また、GOSのインデックス番号は符号化順に設定される。
 ここで、ワールドの三次元空間は、GPS、或いは緯度及び経度などの地理的な絶対座標と1対1に対応付けておく。或いは、予め設定した基準位置からの相対位置により三次元空間が表現されてもよい。三次元空間のx軸、y軸、z軸の方向は、緯度及び経度などに基づいて決定される方向ベクトルとして表現され、当該方向ベクトルはメタ情報として符号化データと共に格納される。
 また、GOSのサイズは固定とし、符号化装置は、当該サイズをメタ情報として格納する。また、GOSのサイズは、例えば、都市部か否か、又は、室内か外かなどに応じて切替えられてもよい。つまり、GOSのサイズは、情報としての価値があるオブジェクトの量又は性質に応じて切替えられてもよい。あるいは、符号化装置は、同一ワールド内において、オブジェクトの密度などに応じて、GOSのサイズ、又は、GOS内のI-SPCの間隔を適応的に切替えてもよい。例えば、符号化装置は、オブジェクトの密度が高いほど、GOSのサイズを小さくし、GOS内のI-SPCの間隔を短くする。
 図5の例では、3番目から10番目のGOSの領域では、オブジェクトの密度が高いため、細かい粒度でのランダムアクセスを実現するために、GOSが細分化されている。なお、7番目から10番目のGOSは、それぞれ、3番目から6番目のGOSの裏側に存在する。
 次に、本実施の形態に係る三次元データ符号化装置の構成及び動作の流れを説明する。図6は、本実施の形態に係る三次元データ符号化装置100のブロック図である。図7は、三次元データ符号化装置100の動作例を示すフローチャートである。
 図6に示す三次元データ符号化装置100は、三次元データ111を符号化することで符号化三次元データ112を生成する。この三次元データ符号化装置100は、取得部101と、符号化領域決定部102と、分割部103と、符号化部104とを備える。
 図7に示すように、まず、取得部101は、点群データである三次元データ111を取得する(S101)。
 次に、符号化領域決定部102は、取得した点群データに対応する空間領域のうち、符号化対象の領域を決定する(S102)。例えば、符号化領域決定部102は、ユーザ又は車両の位置に応じて、当該位置の周辺の空間領域を符号化対象の領域に決定する。
 次に、分割部103は、符号化対象の領域に含まれる点群データを、各処理単位に分割する。ここで処理単位とは、上述したGOS及びSPC等である。また、この符号化対象の領域は、例えば、上述したワールドに対応する。具体的には、分割部103は、予め設定したGOSのサイズ、又は、動的オブジェクトの有無或いはサイズに基づいて、点群データを処理単位に分割する(S103)。また、分割部103は、各GOSにおいて符号化順で先頭となるSPCの開始位置を決定する。
 次に、符号化部104は、各GOS内の複数のSPCを順次符号化することで符号化三次元データ112を生成する(S104)。
 なお、ここでは、符号化対象の領域をGOS及びSPCに分割した後に、各GOSを符号化する例を示したが、処理の手順は上記に限らない。例えば、一つのGOSの構成を決定した後にそのGOSを符号化し、その後、次のGOSの構成を決定する等の手順を用いてもよい。
 このように、三次元データ符号化装置100は、三次元データ111を符号化することで符号化三次元データ112を生成する。具体的には、三次元データ符号化装置100は、三次元データを、ランダムアクセス単位であって、各々が三次元座標に対応付けられている第1処理単位(GOS)に分割し、第1処理単位(GOS)を複数の第2処理単位(SPC)に分割し、第2処理単位(SPC)を複数の第3処理単位(VLM)に分割する。また、第3処理単位(VLM)は、位置情報が対応付けられる最小単位である1以上のボクセル(VXL)を含む。
 次に、三次元データ符号化装置100は、複数の第1処理単位(GOS)の各々を符号化することで符号化三次元データ112を生成する。具体的には、三次元データ符号化装置100は、各第1処理単位(GOS)において、複数の第2処理単位(SPC)の各々を符号化する。また、三次元データ符号化装置100は、各第2処理単位(SPC)において、複数の第3処理単位(VLM)の各々を符号化する。
 例えば、三次元データ符号化装置100は、処理対象の第1処理単位(GOS)がクローズドGOSである場合には、処理対象の第1処理単位(GOS)に含まれる処理対象の第2処理単位(SPC)を、処理対象の第1処理単位(GOS)に含まれる他の第2処理単位(SPC)を参照して符号化する。つまり、三次元データ符号化装置100は、処理対象の第1処理単位(GOS)とは異なる第1処理単位(GOS)に含まれる第2処理単位(SPC)を参照しない。
 一方、処理対象の第1処理単位(GOS)がオープンGOSである場合には、処理対象の第1処理単位(GOS)に含まれる処理対象の第2処理単位(SPC)を、処理対象の第1処理単位(GOS)に含まれる他の第2処理単位(SPC)、又は、処理対象の第1処理単位(GOS)とは異なる第1処理単位(GOS)に含まれる第2処理単位(SPC)を参照して符号化する。
 また、三次元データ符号化装置100は、処理対象の第2処理単位(SPC)のタイプとして、他の第2処理単位(SPC)を参照しない第1タイプ(I-SPC)、他の一つの第2処理単位(SPC)を参照する第2タイプ(P-SPC)、及び他の二つの第2処理単位(SPC)を参照する第3タイプのうちいずれかを選択し、選択したタイプに従い処理対象の第2処理単位(SPC)を符号化する。
 次に、本実施の形態に係る三次元データ復号装置の構成及び動作の流れを説明する。図8は、本実施の形態に係る三次元データ復号装置200のブロックのブロック図である。図9は、三次元データ復号装置200の動作例を示すフローチャートである。
 図8に示す三次元データ復号装置200は、符号化三次元データ211を復号することで復号三次元データ212を生成する。ここで、符号化三次元データ211は、例えば、三次元データ符号化装置100で生成された符号化三次元データ112である。この三次元データ復号装置200は、取得部201と、復号開始GOS決定部202と、復号SPC決定部203と、復号部204とを備える。
 まず、取得部201は、符号化三次元データ211を取得する(S201)。次に、復号開始GOS決定部202は、復号対象のGOSに決定する(S202)。具体的には、復号開始GOS決定部202は、符号化三次元データ211内、又は符号化三次元データとは別に格納されたメタ情報を参照して、復号を開始する空間位置、オブジェクト、又は、時刻に対応するSPCを含むGOSを復号対象のGOSに決定する。
 次に、復号SPC決定部203は、GOS内で復号するSPCのタイプ(I、P、B)を決定する(S203)。例えば、復号SPC決定部203は、(1)I-SPCのみを復号するか、(2)I-SPC及びP-SPCを復号するか、(3)全てのタイプを復号するかを決定する。なお、全てのSPCを復号するなど、予め復号するSPCのタイプが決定している場合は、本ステップは行われなくてもよい。
 次に、復号部204は、GOS内で復号順(符号化順と同一)で先頭となるSPCが符号化三次元データ211内で開始するアドレス位置を取得し、当該アドレス位置から先頭SPCの符号化データを取得し、当該先頭SPCから順に各SPCを順次復号する(S204)。なお、上記アドレス位置は、メタ情報等に格納されている。
 このように、三次元データ復号装置200は、復号三次元データ212を復号する。具体的には、三次元データ復号装置200は、ランダムアクセス単位であって、各々が三次元座標に対応付けられている第1処理単位(GOS)の符号化三次元データ211の各々を復号することで第1処理単位(GOS)の復号三次元データ212を生成する。より具体的には、三次元データ復号装置200は、各第1処理単位(GOS)において、複数の第2処理単位(SPC)の各々を復号する。また、三次元データ復号装置200は、各第2処理単位(SPC)において、複数の第3処理単位(VLM)の各々を復号する。
 以下、ランダムアクセス用のメタ情報について説明する。このメタ情報は、三次元データ符号化装置100で生成され、符号化三次元データ112(211)に含まれる。
 従来の二次元の動画像におけるランダムアクセスでは、指定した時刻の近傍となるランダムアクセス単位の先頭フレームから復号を開始していた。一方、ワールドにおいては、時刻に加えて、空間(座標又はオブジェクトなど)に対するランダムアクセスが想定される。
 そこで、少なくとも座標、オブジェクト、及び時刻の3つの要素へのランダムアクセスを実現するために、各要素とGOSのインデックス番号とを対応付けるテーブルを用意する。さらに、GOSのインデックス番号とGOSの先頭となるI-SPCのアドレスを対応付ける。図10は、メタ情報に含まれるテーブルの一例を示す図である。なお、図10に示す全てのテーブルが用いられる必要はなく、少なくとも一つのテーブルが用いられればよい。
 以下、一例として、座標を起点とするランダムアクセスについて説明する。座標(x2、y2、z2)にアクセスする際には、まず、座標-GOSテーブルを参照して、座標が(x2、y2、z2)である地点は2番目のGOSに含まれることが分かる。次に、GOSアドレステーブルを参照し、2番目のGOSにおける先頭のI-SPCのアドレスがaddr(2)であることが分かるため、復号部204は、このアドレスからデータを取得して復号を開始する。
 なお、アドレスは、論理フォーマットにおけるアドレスであっても、HDD又はメモリの物理アドレスであってもよい。また、アドレスの代わりにファイルセグメントを特定する情報が用いられてもよい。例えば、ファイルセグメントは、1つ以上のGOSなどをセグメント化した単位である。
 また、オブジェクトが複数のGOSに跨る場合には、オブジェクト-GOSテーブルにおいて、オブジェクトが属するGOSを複数示してもよい。当該複数のGOSがクローズドGOSであれば、符号化装置及び復号装置は、並列に符号化又は復号を行うことができる。一方、当該複数のGOSがオープンGOSであれば、複数のGOSが互いに参照しあうことでより圧縮効率を高めることができる。
 オブジェクトの例としては、ヒト、動物、車、自転車、信号、又はランドマークとなる建物などがある。例えば、三次元データ符号化装置100は、ワールドの符号化時に三次元のポイントクラウドなどからオブジェクトに特有の特徴点を抽出し、当該特徴点に基づきオブジェクトを検出し、検出したオブジェクトをランダムアクセスポイントとして設定できる。
 このように、三次元データ符号化装置100は、複数の第1処理単位(GOS)と、複数の第1処理単位(GOS)の各々に対応付けられている三次元座標とを示す第1情報を生成する。また、符号化三次元データ112(211)は、この第1情報を含む。また、第1情報は、さらに、複数の第1処理単位(GOS)の各々に対応付けられている、オブジェクト、時刻及びデータ格納先のうち少なくとも一つを示す。
 三次元データ復号装置200は、符号化三次元データ211から第1情報を取得し、第1情報を用いて、指定された三次元座標、オブジェクト又は時刻に対応する第1処理単位の符号化三次元データ211を特定し、当該符号化三次元データ211を復号する。
 以下、その他のメタ情報の例について説明する。ランダムアクセス用のメタ情報の他に、三次元データ符号化装置100は、以下のようなメタ情報を生成及び格納してもよい。また、三次元データ復号装置200は、このメタ情報を復号時に利用してもよい。
 三次元データを地図情報として用いる場合などには、用途に応じてプロファイルが規定され、当該プロファイルを示す情報がメタ情報に含まれてもよい。例えば、市街地或いは郊外向け、又は、飛行物体向けのプロファイルが規定され、それぞれにおいてワールド、SPC又はVLMの最大又は最小サイズなどが定義される。例えば、市街地向けでは、郊外向けよりも詳細な情報が必要なため、VLMの最小サイズが小さく設定される。
 メタ情報は、オブジェクトの種類を示すタグ値を含んでもよい。このタグ値はオブジェクトを構成するVLM、SPC、又はGOSと対応付けられる。例えば、タグ値「0」は「人」を示し、タグ値「1」は「車」を示し、タグ値「2」は「信号機」を示す、などオブジェクトの種類ごとにタグ値が設定されてもよい。または、オブジェクトの種類が判定しにくい又は判定する必要がない場合はサイズ、又は、動的オブジェクトか静的オブジェクトかなどの性質を示すタグ値が用いられてもよい。
 また、メタ情報は、ワールドが占める空間領域の範囲を示す情報を含んでもよい。
 また、メタ情報は、符号化データのストリーム全体、又は、GOS内のSPCなど、複数のSPCに共通のヘッダ情報として、SPC又はVXLのサイズを格納してもよい。
 また、メタ情報は、ポイントクラウドの生成に用いた距離センサ或いはカメラなどの識別情報、又は、ポイントクラウド内の点群の位置精度を示す情報を含んでもよい。
 また、メタ情報は、ワールドが静的オブジェクトのみから構成されるか、動的オブジェクトを含むかを示す情報を含んでもよい。
 以下、本実施の形態の変形例について説明する。
 符号化装置又は復号装置は、互いに異なる2以上のSPC又はGOSを並列で符号化又は復号してもよい。並列で符号化又は復号するGOSは、GOSの空間位置を示すメタ情報などに基づいて決定できる。
 三次元データを車又は飛行物体などが移動する際の空間地図として用いる、又はこのような空間地図を生成するケースなどでは、符号化装置又は復号装置は、GPS、経路情報、又はズーム倍率などに基づいて特定される空間に含まれるGOS又はSPCを符号化又は復号してもよい。
 また、復号装置は、自己位置又は走行経路に近い空間から順に復号を行ってもよい。符号化装置又は復号装置は、自己位置又は走行経路から遠い空間を、近い空間に比べて優先度を落として符号化又は復号してもよい。ここで、優先度を落とすとは、処理順を下げる、解像度を下げる(間引いて処理する)、又は、画質を下げる(符号化効率を上げる。例えば、量子化ステップを大きくする。)等である。
 また、復号装置は、空間内で階層的に符号化されている符号化データを復号する際は、低階層のみを復号してもよい。
 また、復号装置は、地図のズーム倍率又は用途に応じて、低階層から優先的に復号してもよい。
 また、車又はロボットの自律走行時に行う自己位置推定又は物体認識などの用途では、符号化装置又は復号装置は、路面から特定高さ以内の領域(認識を行う領域)以外は解像度を落として符号化又は復号を行ってもよい。
 また、符号化装置は、室内と室外との空間形状を表現するポイントクラウドをそれぞれ個別に符号化してもよい。例えば、室内を表現するGOS(室内GOS)と室外を表現するGOS(室外GOS)とを分けることで、復号装置は、符号化データを利用する際に、視点位置に応じて復号するGOSを選択できる。
 また、符号化装置は、座標が近い室内GOSと室外GOSとを、符号化ストリーム内で隣接するように符号化してもよい。例えば、符号化装置は、両者の識別子を対応付け、符号化ストリーム内、又は別途格納されるメタ情報内に対応付けた識別子を示す情報を格納する。これにより、復号装置は、メタ情報内の情報を参照して、座標が近い室内GOSと室外GOSとを識別できる。
 また、符号化装置は、室内GOSと室外GOSとで、GOS又はSPCのサイズを切替えてもよい。例えば、符号化装置は、室内では室外に比べてGOSのサイズを小さく設定する。また、符号化装置は、室内GOSと室外GOSとで、ポイントクラウドから特徴点を抽出する際の精度、又はオブジェクト検出の精度などを変更してもよい。
 また、符号化装置は、復号装置が動的オブジェクトを静的オブジェクトと区別して表示するための情報を符号化データに付加してもよい。これにより、復号装置は、動的オブジェクトと赤枠又は説明用の文字などとを合わせて表示できる。なお、復号装置は、動的オブジェクトの代わりに赤枠又は説明用の文字のみを表示してもよい。また、復号装置は、より細かいオブジェクト種別を表示してもよい。例えば、車には赤枠が用いられ、ヒトには黄色枠が用いられてもよい。
 また、符号化装置又は復号装置は、動的オブジェクトの出現頻度、又は、静的オブジェクトと動的オブジェクトとの割合などに応じて、動的オブジェクトと静的オブジェクトとを異なるSPC又はGOSとして符号化又は復号するかどうかを決定してもよい。例えば、動的オブジェクトの出現頻度又は割合が閾値を超える場合には、動的オブジェクトと静的オブジェクトとが混在するSPC又はGOSが許容され、動的オブジェクトの出現頻度又は割合が閾値を超えない場合には、動的オブジェクトと静的オブジェクトとが混在するSPC又はGOSが許容されない。
 動的オブジェクトをポイントクラウドではなく、カメラの二次元画像情報から検出する際には、符号化装置は、検出結果を識別するための情報(枠又は文字など)とオブジェクト位置とを別途取得し、これらの情報を三次元の符号化データの一部として符号化してもよい。この場合、復号装置は、静的オブジェクトの復号結果に対して、動的オブジェクトを示す補助情報(枠又は文字)を重畳して表示する。
 また、符号化装置は、静的オブジェクトの形状の複雑さなどに応じて、SPCにおけるVXL又はVLMの粗密さを変更してもよい。例えば、符号化装置は、静的オブジェクトの形状が複雑なほど、VXL又はVLMを密に設定する。さらに、符号化装置は、空間位置又は色情報を量子化する際の量子化ステップなどをVXL又はVLMの粗密さに応じて決定してもよい。例えば、符号化装置は、VXL又はVLMが密なほど量子化ステップを小さく設定する。
 以上のように、本実施の形態に係る符号化装置又は復号装置は、座標情報を有するスペース単位で空間の符号化又は復号を行う。
 また、符号化装置及び復号装置は、スペース内において、ボリューム単位で符号化又は復号を行う。ボリュームは、位置情報が対応付けられる最小単位であるボクセルを含む。
 また、符号化装置及び復号装置は、座標、オブジェクト、及び時間等を含む空間情報の各要素とGOPとを対応付けたテーブル、又は各要素間を対応付けたテーブルにより任意の要素間を対応付けて符号化又は復号を行う。また、復号装置は、選択された要素の値を用いて座標を判定し、座標からボリューム、ボクセル又はスペースを特定し、当該ボリューム又はボクセルを含むスペース、又は特定されたスペースを復号する。
 また、符号化装置は、特徴点抽出又はオブジェクト認識により、要素により選択可能なボリューム、ボクセル又はスペースを判定し、ランダムアクセス可能なボリューム、ボクセル又はスペースとして符号化する。
 スペースは、当該スペース単体で符号化又は復号可能なI-SPCと、任意の1つの処理済みスペースを参照して符号化又は復号されるP-SPCと、任意の二つの処理済みスペースを参照して符号化又は復号されるB-SPCとの3種類のタイプに分類される。
 1以上のボリュームが、静的オブジェクト又は動的なオブジェクトに対応する。静的オブジェクトを含むスペースと動的オブジェクトを含むスペースとは互いに異なるGOSとして符号化又は復号される。つまり、静的オブジェクトを含むSPCと、動的オブジェクトを含むSPCとが異なるGOSに割り当てられる。
 動的オブジェクトはオブジェクトごとに符号化又は復号され、静的オブジェクトを含む1以上のスペースに対応付けられる。つまり、複数の動的オブジェクトは個別に符号化され、得られた複数の動的オブジェクトの符号化データは、静的オブジェクトを含むSPCに対応付けられる。
 符号化装置及び復号装置は、GOS内のI-SPCの優先度を上げて、符号化又は復号を行う。例えば、符号化装置は、I-SPCの劣化が少なくなるように(復号後に元の三次元データがより忠実に再現されるように)符号化を行う。また、復号装置は、例えば、I-SPCのみを復号する。
 符号化装置は、ワールド内のオブジェクトの疎密さ又は数(量)に応じてI-SPCを用いる頻度を変えて符号化を行ってもよい。つまり、符号化装置は、三次元データに含まれるオブジェクトの数又は粗密さに応じて、I-SPCを選択する頻度を変更する。例えば、符号化装置は、ワールド内のオブジェクトが密であるほどIスペースを用いる頻度を上げる。
 また、符号化装置は、ランダムアクセスポイントをGOS単位で設定し、GOSに対応する空間領域を示す情報をヘッダ情報に格納する。
 符号化装置は、GOSの空間サイズとして、例えば、デフォルト値を使用する。なお、符号化装置は、オブジェクト又は動的オブジェクトの数(量)又は粗密さに応じてGOSのサイズを変更してもよい。例えば、符号化装置は、オブジェクト或いは動的オブジェクトが密なほど、又は数が多いほど、GOSの空間サイズを小さくする。
 また、スペース又はボリュームは、デプスセンサ、ジャイロ、又はカメラ等のセンサで得られた情報を用いて導出された特徴点群を含む。特徴点の座標はボクセルの中心位置に設定される。また、ボクセルの細分化により位置情報の高精度化を実現できる。
 特徴点群は、複数のピクチャを用いて導出される。複数のピクチャは、実際の時刻情報と、スペースに対応付けられた複数のピクチャで同一の時刻情報(例えば、レート制御等に用いられる符号化時刻)との少なくとも2種類の時刻情報を有する。
 また、1以上のスペースを含むGOS単位で符号化又は復号が行われる。
 符号化装置及び復号装置は、処理済みのGOS内のスペースを参照して、処理対象のGOS内のPスペース又はBスペースの予測を行う。
 または、符号化装置及び復号装置は、異なるGOSを参照せず、処理対象のGOS内の処理済スペースを用いて処理対象のGOS内のPスペース又はBスペースの予測を行う。
 また、符号化装置及び復号装置は、1以上のGOSを含むワールド単位で符号化ストリームを送信又は受信する。
 また、GOSは少なくともワールド内で1方向にレイヤ構造を持ち、符号化装置及び復号装置は、下位レイヤから符号化又は復号を行う。例えば、ランダムアクセス可能なGOSは最下位レイヤに属する。上位レイヤに属するGOSは同一レイヤ以下に属するGOSを参照する。つまり、GOSは、予め定められた方向に空間分割され、各々が1以上のSPCを含む複数のレイヤを含む。符号化装置及び復号装置は、各SPCを、当該SPCと同一レイヤ又は当該SPCより下層のレイヤに含まれるSPCを参照して符号化又は復号する。
 また、符号化装置及び復号装置は、複数のGOSを含むワールド単位内で、連続してGOSを符号化又は復号する。符号化装置及び復号装置は、符号化又は復号の順序(方向)を示す情報をメタデータとして書き込む又は読み出す。つまり、符号化データは、複数のGOSの符号化順を示す情報を含む。
 また、符号化装置及び復号装置は、互いに異なる2以上のスペース又はGOSを並列で符号化又は復号する。
 また、符号化装置及び復号装置は、スペース又はGOSの空間情報(座標、サイズ等)を符号化又は復号する。
 また、符号化装置及び復号装置は、GPS、経路情報、又は倍率など、自己の位置又は/及び領域サイズに関する外部情報に基づいて特定される特定空間に含まれるスペース又はGOSを符号化又は復号する。
 符号化装置又は復号装置は、自己の位置から遠い空間は、近い空間に比べて優先度を落として符号化又は復号する。
 符号化装置は、倍率又は用途に応じて、ワールドのある1方向を設定し、当該方向にレイヤ構造を持つGOSを符号化する。また、復号装置は、倍率又は用途に応じて設定されたワールドのある1方向にレイヤ構造を持つGOSを、下位レイヤから優先的に復号する。
 符号化装置は、室内と室外とでスペースに含まれる特徴点抽出、オブジェクト認識の精度、又は空間領域サイズなどを変化させる。ただし、符号化装置及び復号装置は、座標が近い室内GOSと室外GOSとをワールド内で隣接して符号化又は復号し、これらの識別子も対応付けて符号化又は復号する。
 (実施の形態2)
 ポイントクラウドの符号化データを実際の装置又はサービスにおいて使用する際には、ネットワーク帯域を抑制するために用途に応じて必要な情報を送受信することが望ましい。しかしながら、これまで、三次元データの符号化構造にはそのような機能が存在せず、そのための符号化方法も存在しなかった。
 本実施の形態では、三次元のポイントクラウドの符号化データにおいて用途に応じて必要な情報のみを送受信する機能を提供するための三次元データ符号化方法及び三次元データ符号化装置、並びに、当該符号化データを復号する三次元データ復号方法及び三次元データ復号装置について説明する。
 特徴量を一定以上持つボクセル(VXL)を特徴ボクセル(FVXL)と定義し、FVXLで構成されるワールド(WLD)をスパースワールド(SWLD)と定義する。図11は、スパースワールド及びワールドの構成例を示す図である。SWLDには、FVXLで構成されるGOSであるFGOSと、FVXLで構成されるSPCであるFSPCと、FVXLで構成されるVLMであるFVLMと含まれる。FGOS、FSPC及びFVLMのデータ構造及び予測構造はGOS、SPC及びVLMと同様であっても構わない。
 特徴量とは、VXLの三次元位置情報、又はVXL位置の可視光情報を表現する特徴量であり、特に立体物のコーナー及びエッジ等で多く検出される特徴量である。具体的には、この特徴量は、下記のような三次元特徴量又は可視光の特徴量であるが、その他、VXLの位置、輝度、又は色情報などを表す特徴量であれば、どのようなものでも構わない。
 三次元特徴量として、SHOT特徴量(Signature of Histograms of OrienTations)、PFH特徴量(Point Feature Histograms)、又はPPF特徴量(Point Pair Feature)が用いられる。
 SHOT特徴量は、VXL周辺を分割し、基準点と分割された領域の法線ベクトルとの内積を計算してヒストグラム化することで得られる。このSHOT特徴量は、次元数が高く、特徴表現力が高いという特徴を有する。
 PFH特徴量は、VXL近傍の多数の2点組を選択し、その2点から法線ベクトル等を算出してヒストグラム化することで得られる。このPFH特徴量は、ヒストグラム特徴なので、多少の外乱に対してロバスト性を有し、特徴表現力も高いという特徴を有する。
 PPF特徴量は、2点のVXL毎に法線ベクトル等を用いて算出される特徴量である。このPPF特徴量には、全VXLが使われるため、オクルージョンに対してロバスト性を有する。
 また、可視光の特徴量として、画像の輝度勾配情報等の情報を用いたSIFT(Scale-Invariant Feature Transform)、SURF(Speeded Up Robust Features)、又はHOG(Histogram of Oriented Gradients)等を用いることができる。
 SWLDは、WLDの各VXLから上記特徴量を算出し、FVXLを抽出することで生成される。ここで、SWLDはWLDが更新される度に更新しても構わないし、WLDの更新タイミングに関わらず、一定時間経過後に定期的に更新するようにしても構わない。
 SWLDは特徴量毎に生成しても構わない。例えば、SHOT特徴量に基づくSWLD1とSIFT特徴量に基づくSWLD2とのように、特徴量毎に別々のSWLDが生成され、用途に応じてSWLDを使い分けるようにしても構わない。また、算出した各FVXLの特徴量を特徴量情報として各FVXLに保持するようにしても構わない。
 次に、スパースワールド(SWLD)の利用方法について説明する。SWLDは特徴ボクセル(FVXL)のみを含むため、全てのVXLを含むWLDと比べて一般的にデータサイズが小さい。
 特徴量を利用して何らかの目的を果たすアプリケーションにおいては、WLDの代わりにSWLDの情報を利用することで、ハードディスクからの読み出し時間、並びにネットワーク転送時の帯域及び転送時間を抑制することができる。例えば、地図情報として、WLDとSWLDとをサーバに保持しておき、クライアントからの要望に応じて、送信する地図情報をWLD又はSWLDに切り替えることにより、ネットワーク帯域及び転送時間を抑制することができる。以下、具体的な例を示す。
 図12及び図13は、SWLD及びWLDの利用例を示す図である。図12に示すように、車載装置であるクライアント1が自己位置判定用途として地図情報を必要な場合は、クライアント1はサーバに自己位置推定用の地図データの取得要望を送る(S301)。サーバは、当該取得要望に応じてSWLDをクライアント1に送信する(S302)。クライアント1は、受信したSWLDを用いて自己位置判定を行う(S303)。この際、クライアント1はレンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組合せ等の様々な方法でクライアント1の周辺のVXL情報を取得し、得られたVXL情報とSWLDとから自己位置情報を推定する。ここで自己位置情報は、クライアント1の三次元位置情報及び向き等を含む。
 図13に示すように、車載装置であるクライアント2が三次元地図等の地図描画の用途として地図情報が必要な場合は、クライアント2はサーバに地図描画用の地図データの取得要望を送る(S311)。サーバは、当該取得要望に応じてWLDをクライアント2に送信する(S312)。クライアント2は、受信したWLDを用いて地図描画を行う(S313)。この際、クライアント2は、例えば、自己が可視光カメラ等で撮影した画像と、サーバから取得したWLDとを用いてレンダリング画像を作成し、作成した画像をカーナビ等の画面に描画する。
 上記のように、サーバは、自己位置推定のような各VXLの特徴量を主に必要とする用途ではSWLDをクライアントに送信し、地図描画のように詳細なVXL情報が必要な場合はWLDをクライアントに送信する。これにより、地図データを効率よく送受信することが可能となる。
 なお、クライアントは、自分でSWLDとWLDのどちらが必要かを判断し、サーバへSWLD又はWLDの送信を要求しても構わない。また、サーバは、クライアント又はネットワークの状況に合わせて、SWLDかWLDのどちらを送信すべきかを判断しても構わない。
 次に、スパースワールド(SWLD)とワールド(WLD)との送受信を切り替える方法を説明する。
 ネットワーク帯域に応じてWLD又はSWLDを受信するかを切替えるようにしてもよい。図14は、この場合の動作例を示す図である。例えば、LTE(Long Term Evolution)環境下等の使用できるネットワーク帯域が限られている低速ネットワークが用いられている場合には、クライアントは、低速ネットワーク経由でサーバにアクセスし(S321)、サーバから地図情報としてSWLDを取得する(S322)。一方、Wi‐Fi(登録商標)環境下等のネットワーク帯域に余裕がある高速ネットワークが用いられている場合には、クライアントは、高速ネットワーク経由でサーバにアクセスし(S323)、サーバからWLDを取得する(S324)。これにより、クライアントは、当該クライアントのネットワーク帯域に応じて適切な地図情報を取得することができる。
 具体的には、クライアントは、屋外ではLTE経由でSWLDを受信し、施設等の屋内に入った場合はWi‐Fi(登録商標)経由でWLDを取得する。これにより、クライアントは、屋内のより詳細な地図情報を取得することが可能となる。
 このように、クライアントは、自身が用いるネットワークの帯域に応じてサーバにWLD又はSWLDを要求してもよい。または、クライアントは、自身が用いるネットワークの帯域を示す情報をサーバに送信し、サーバは当該情報に応じて当該クライアントに適したデータ(WLD又はSWLD)を送信してもよい。または、サーバは、クライアントのネットワーク帯域を判別し、当該クライアントに適したデータ(WLD又はSWLD)を送信してもよい。
 また、移動速度に応じてWLD又はSWLDを受信するかを切替えるようにしてもよい。図15は、この場合の動作例を示す図である。例えば、クライアントが高速移動をしている場合は(S331)、クライアントはSWLDをサーバから受信する(S332)。一方、クライアントが低速移動をしている場合は(S333)、クライアントはWLDをサーバから受信する(S334)。これにより、クライアントは、ネットワーク帯域を抑制しながら、速度に合った地図情報を取得することができる。具体的には、クライアントは、高速道路を走行中にはデータ量の少ないSWLDを受信することにより、大まかな地図情報を適切な速度で更新することができる。一方、クライアントは、一般道路を走行中にはWLDを受信することにより、より詳細な地図情報を取得することが可能となる。
 このように、クライアントは、自身の移動速度に応じてサーバにWLD又はSWLDを要求してもよい。または、クライアントは、自身の移動速度を示す情報をサーバに送信し、サーバは当該情報に応じて当該クライアントに適したデータ(WLD又はSWLD)を送信してもよい。または、サーバは、クライアントの移動速度を判別し、当該クライアントに適したデータ(WLD又はSWLD)を送信してもよい。
 また、クライアントは、最初にSWLDをサーバより取得し、その中で重要な領域のWLDを取得しても構わない。例えば、クライアントは、地図データを取得する際に、最初に大まかな地図情報をSWLDで取得し、そこから建物、標識、又は人物等の特徴が多く出現する領域を絞り込み、絞り込んだ領域のWLDを後から取得する。これにより、クライアントは、サーバからの受信データ量を抑制しつつ、必要な領域の詳細な情報を取得することが可能となる。
 また、サーバは、WLDから物体毎に別々のSWLDを作成し、クライアントは、用途に合わせて、それぞれを受信してもよい。これにより、ネットワーク帯域を抑制できる。例えば、サーバは、WLDから予め人又は車を認識し、人のSWLDと車のSWLDを作成する。クライアントは、周囲の人の情報を取得したい場合には人のSWLDを、車の情報を取得したい場合には車のSWLDを受信する。また、このようなSWLDの種類はヘッダ等に付加された情報(フラグ又はタイプ等)によって区別するようにしても構わない。
 次に、本実施の形態に係る三次元データ符号化装置(例えばサーバ)の構成及び動作の流れを説明する。図16は、本実施の形態に係る三次元データ符号化装置400のブロック図である。図17は、三次元データ符号化装置400による三次元データ符号化処理のフローチャートである。
 図16に示す三次元データ符号化装置400は、入力三次元データ411を符号化することで符号化ストリームである符号化三次元データ413及び414を生成する。ここで、符号化三次元データ413はWLDに対応する符号化三次元データであり、符号化三次元データ414はSWLDに対応する符号化三次元データである。この三次元データ符号化装置400は、取得部401と、符号化領域決定部402と、SWLD抽出部403と、WLD符号化部404と、SWLD符号化部405とを備える。
 図17に示すように、まず、取得部401は、三次元空間内の点群データである入力三次元データ411を取得する(S401)。
 次に、符号化領域決定部402は、点群データが存在する空間領域に基づいて、符号化対象の空間領域を決定する(S402)。
 次に、SWLD抽出部403は、符号化対象の空間領域をWLDと定義し、WLDに含まれる各VXLから特徴量を算出する。そして、SWLD抽出部403は、特徴量が予め定められた閾値以上のVXLを抽出し、抽出したVXLをFVXLと定義し、当該FVXLをSWLDへ追加することで、抽出三次元データ412を生成する(S403)。つまり、入力三次元データ411から特徴量が閾値以上の抽出三次元データ412が抽出される。
 次に、WLD符号化部404は、WLDに対応する入力三次元データ411を符号化することでWLDに対応する符号化三次元データ413を生成する(S404)。このとき、WLD符号化部404は、符号化三次元データ413のヘッダに、当該符号化三次元データ413がWLDを含むストリームであることを区別するための情報を付加する。
 また、SWLD符号化部405は、SWLDに対応する抽出三次元データ412を符号化することでSWLDに対応する符号化三次元データ414を生成する(S405)。このとき、SWLD符号化部405は、符号化三次元データ414のヘッダに、当該符号化三次元データ414がSWLDを含むストリームであることを区別するための情報を付加する。
 なお、符号化三次元データ413を生成する処理と、符号化三次元データ414を生成する処理との処理順は上記と逆でもよい。また、これらの処理の一部又は全てが並列に行われてもよい。
 符号化三次元データ413及び414のヘッダに付与される情報として、例えば、「world_type」というパラメータが定義される。world_type=0の場合はストリームがWLDを含むことを表し、world_type=1の場合はストリームがSWLDを含むことを表す。更にその他の多数の種別を定義する場合には、world_type=2のように割り当てる数値を増やすようにしても構わない。また、符号化三次元データ413及び414の一方に特定のフラグが含まれてもよい。例えば、符号化三次元データ414に、当該ストリームがSWLDを含むことを含むフラグが付与されてもよい。この場合、復号装置は、フラグの有無によりWLDを含むストリームか、SWLDを含むストリームかを判別できる。
 また、WLD符号化部404がWLDを符号化する際に使用する符号化方法と、SWLD符号化部405がSWLDを符号化する際に使用する符号化方法とは異なってもよい。
 例えば、SWLDではデータが間引かされているため、WLDに比べ、周辺のデータとの相関が低くなる可能性がある。よって、SWLDに用いられる符号化方法では、WLDに用いられる符号化方法よりもイントラ予測及びインター予測のうちインター予測が優先されてもよい。
 また、SWLDに用いられる符号化方法とWLDに用いられる符号化方法とでは、三次元位置の表現手法が異なってもよい。例えば、SWLDでは、三次元座標によりFVXLの三次元位置を表現し、WLDでは、後述する8分木により三次元位置が表現されてもよいし、その逆でもよい。
 また、SWLD符号化部405は、SWLDの符号化三次元データ414のデータサイズがWLDの符号化三次元データ413のデータサイズより小さくなるように符号化を行う。例えば、上述したようにSWLDは、WLDに比べ、データ間の相関が低くなる可能性がある。これにより、符号化効率が下がり、符号化三次元データ414のデータサイズがWLDの符号化三次元データ413のデータサイズより大きくなる可能性がある。よって、SWLD符号化部405は、得られた符号化三次元データ414のデータサイズが、WLDの符号化三次元データ413のデータサイズより大きい場合には、再符号化を行うことで、データサイズを低減した符号化三次元データ414を再生成する。
 例えば、SWLD抽出部403は、抽出する特徴点の数を減らした抽出三次元データ412を再生成し、SWLD符号化部405は、当該抽出三次元データ412を符号化する。または、SWLD符号化部405における量子化の程度をより粗くしてもよい。例えば、後述する8分木構造において、最下層のデータを丸め込むことで、量子化の程度を粗くすることができる。
 また、SWLD符号化部405は、SWLDの符号化三次元データ414のデータサイズをWLDの符号化三次元データ413のデータサイズより小さくできない場合は、SWLDの符号化三次元データ414を生成しなくてもよい。または、WLDの符号化三次元データ413がSWLDの符号化三次元データ414にコピーされてもよい。つまり、SWLDの符号化三次元データ414としてWLDの符号化三次元データ413がそのまま用いられてもよい。
 次に、本実施の形態に係る三次元データ復号装置(例えばクライアント)の構成及び動作の流れを説明する。図18は、本実施の形態に係る三次元データ復号装置500のブロック図である。図19は、三次元データ復号装置500による三次元データ復号処理のフローチャートである。
 図18に示す三次元データ復号装置500は、符号化三次元データ511を復号することで復号三次元データ512又は513を生成する。ここで、符号化三次元データ511は、例えば、三次元データ符号化装置400で生成された符号化三次元データ413又は414である。
 この三次元データ復号装置500は、取得部501と、ヘッダ解析部502と、WLD復号部503と、SWLD復号部504とを備える。
 図19に示すように、まず、取得部501は、符号化三次元データ511を取得する(S501)。次に、ヘッダ解析部502は、符号化三次元データ511のヘッダを解析し、符号化三次元データ511がWLDを含むストリームか、SWLDを含むストリームかを判別する(S502)。例えば、上述したworld_typeのパラメータが参照され、判別が行われる。
 符号化三次元データ511がWLDを含むストリームである場合(S503でYes)、WLD復号部503は、符号化三次元データ511を復号することでWLDの復号三次元データ512を生成する(S504)。一方、符号化三次元データ511がSWLDを含むストリームである場合(S503でNo)、SWLD復号部504は、符号化三次元データ511を復号することでSWLDの復号三次元データ513を生成する(S505)。
 また、符号化装置と同様に、WLD復号部503がWLDを復号する際に使用する復号方法と、SWLD復号部504がSWLDを復号する際に使用する復号方法とは異なってもよい。例えば、SWLDに用いられる復号方法では、WLDに用いられる復号方法よりもイントラ予測及びインター予測のうちインター予測が優先されてもよい。
 また、SWLDに用いられる復号方法とWLDに用いられる復号方法とでは、三次元位置の表現手法が異なってもよい。例えば、SWLDでは、三次元座標によりFVXLの三次元位置を表現し、WLDでは、後述する8分木により三次元位置が表現されてもよいし、その逆でもよい。
 次に、三次元位置の表現手法である8分木表現について説明する。三次元データに含まれるVXLデータは8分木構造に変換された後、符号化される。図20は、WLDのVXLの一例を示す図である。図21は、図20に示すWLDの8分木構造を示す図である。図20に示す例では、点群を含むVXL(以下、有効VXL)である3つVXL1~3が存在する。図21に示すように、8分木構造はノードとリーフで構成される。各ノードは最大で8つのノードまたはリーフを持つ。各リーフはVXL情報を持つ。ここで、図21に示すリーフのうち、リーフ1、2、3はそれぞれ図20に示すVXL1、VXL2、VXL3を表す。
 具体的には、各ノード及びリーフは三次元位置に対応する。ノード1は、図20に示す全体のブロックに対応する。ノード1に対応するブロックは8つのブロックに分割され、8つのブロックのうち、有効VXLを含むブロックがノードに設定され、それ以外のブロックはリーフに設定される。ノードに対応するブロックは、さらに8つのノードまたはリーフに分割され、この処理が木構造の階層分繰り返される。また、最下層のブロックは、全てリーフに設定される。
 また、図22は、図20に示すWLDから生成したSWLDの例を示す図である。図20に示すVXL1及びVXL2は特徴量抽出の結果、FVXL1及びFVXL2と判定され、SWLDに加えられている。一方で、VXL3はFVXLと判定されず、SWLDに含まれていない。図23は、図22に示すSWLDの8分木構造を示す図である。図23に示す8分木構造では、図21に示す、VXL3に相当するリーフ3が削除されている。これにより、図21に示すノード3が有効VXLを持たなくなり、リーフに変更されている。このように一般的にSWLDのリーフ数はWLDのリーフ数より少なくなり、SWLDの符号化三次元データもWLDの符号化三次元データより小さくなる。
 以下、本実施の形態の変形例について説明する。
 例えば、車載装置等のクライアントは、自己位置推定を行う場合に、SWLDをサーバから受信し、SWLDを用いて自己位置推定を行い、障害物検知を行う場合は、レンジファインダなどの距離センサ、ステレオカメラ、又は複数の単眼カメラの組合せ等の様々な方法を用いて自分で取得した周辺の三次元情報に基づいて障害物検知を実施してもよい。
 また、一般的にSWLDには平坦領域のVXLデータが含まれにくい。そのため、サーバは、静的な障害物の検知用に、WLDをサブサンプルしたサブサンプルワールド(subWLD)を保持し、SWLDとsubWLDをクライアントに送信してもよい。これにより、ネットワーク帯域を抑制しつつ、クライアント側で自己位置推定及び障害物検知を行うことができる。
 また、クライアントが三次元地図データを高速に描画する際には、地図情報がメッシュ構造である方が便利な場合がある。そこで、サーバは、WLDからメッシュを生成し、メッシュワールド(MWLD)として予め保持してもよい。例えばクライアントは、粗い三次元描画を必要としている場合にはMWLDを受信し、詳細な三次元描画を必要としている場合にはWLDを受信する。これにより、ネットワーク帯域を抑制することができる。
 また、サーバは、各VXLのうち、特徴量が閾値以上であるVXLをFVXLに設定したが、異なる方法にてFVXLを算出しても構わない。例えば、サーバは、信号又は交差点などを構成するVXL、VLM、SPC、又はGOSを、自己位置推定、運転アシスト、又は自動運転等に必要と判断し、FVXL、FVLM、FSPC、FGOSとしてSWLDに含めるようにしても構わない。また、上記判断は手動で行われてもよい。なお、特徴量に基づき設定されたFVXL等に、上記方法で得られたFVXL等を加えてもよい。つまり、SWLD抽出部403は、さらに、入力三次元データ411から予め定められた属性を有する物体に対応するデータを抽出三次元データ412として抽出してもよい。
 また、それらの用途に必要な旨を特徴量とは別にラベリングするようにしても構わない。また、サーバは、SWLDの上位レイヤ(例えばレーンワールド)として、信号又は交差点などの自己位置推定、運転アシスト、又は自動運転等に必要なFVXLを別途保持してもよい。
 また、サーバは、WLD内のVXLにもランダムアクセス単位又は所定の単位毎に属性を付加してもよい。属性は、例えば、自己位置推定に必要或いは不要かを示す情報、又は、信号或いは交差点などの交通情報として重要かどうかなどを示す情報を含む。また、属性は、レーン情報(GDF:Geographic Data Filesなど)におけるFeature(交差点又は道路など)との対応関係を含んでもよい。
 また、WLD又はSWLDの更新方法として下記のような方法を用いても構わない。
 人、工事、又は並木(トラック向け)の変化などを示す更新情報が点群又はメタデータとしてサーバにアップロードされる。サーバは、当該アップロードに基づき、WLDを更新し、その後、更新したWLDを用いてSWLDを更新する。
 また、クライアントは、自己位置推定時に自身で生成した三次元情報とサーバから受信した三次元情報との不整合を検知した場合、自身で生成した三次元情報を更新通知とともにサーバに送信してもよい。この場合、サーバは、WLDを用いてSWLDを更新する。SWLDが更新されない場合、サーバは、WLD自体が古いと判断する。
 また、符号化ストリームのヘッダ情報として、WLDかSWLDかを区別する情報が付加されるとしたが、例えば、メッシュワールド又はレーンワールド等、多種類のワールドが存在する場合には、それらを区別する情報がヘッダ情報に付加されても構わない。また、特徴量が異なるSWLDが多数存在する場合には、それぞれを区別する情報がヘッダ情報に付加されても構わない。
 また、SWLDは、FVXLで構成されるとしたが、FVXLと判定されなかったVXLを含んでもよい。例えば、SWLDは、FVXLの特徴量を算出する際に使用する隣接VXLを含んでもよい。これにより、SWLDの各FVXLに特徴量情報が付加されない場合でも、クライアントは、SWLDを受信した際にFVXLの特徴量を算出することができる。なお、その際には、SWLDは各VXLがFVXLかVXLかを区別するための情報を含んでもよい。
 以上のように、三次元データ符号化装置400は、入力三次元データ411(第1三次元データ)から特徴量が閾値以上の抽出三次元データ412(第2三次元データ)を抽出し、抽出三次元データ412を符号化することで符号化三次元データ414(第1符号化三次元データ)を生成する。
 これによれば、三次元データ符号化装置400は、特徴量が閾値以上のデータを符号化した符号化三次元データ414を生成する。これにより、入力三次元データ411をそのまま符号化する場合に比べてデータ量を削減できる。よって、三次元データ符号化装置400は、伝送するデータ量を削減できる。
 また、三次元データ符号化装置400は、さらに、入力三次元データ411を符号化することで符号化三次元データ413(第2符号化三次元データ)を生成する。
 これによれば、三次元データ符号化装置400は、例えば、使用用途等に応じて、符号化三次元データ413と符号化三次元データ414とを選択的に伝送できる。
 また、抽出三次元データ412は、第1符号化方法により符号化され、入力三次元データ411は、第1符号化方法とは異なる第2符号化方法により符号化される。
 これによれば、三次元データ符号化装置400は、入力三次元データ411と抽出三次元データ412とにそれぞれ適した符号化方法を用いることができる。
 また、第1符号化方法では、第2符号化方法よりもイントラ予測及びインター予測のうちインター予測が優先される。
 これによれば、三次元データ符号化装置400は、隣接するデータ間の相関が低くなりやすい抽出三次元データ412に対して、インター予測の優先度を上げることができる。
 また、第1符号化方法と第2符号化方法とでは、三次元位置の表現手法が異なる。例えば、例えば、第2符号化方法では、8分木により三次元位置が表現され、第1符号化方法では、三次元座標により三次元位置を表現される。
 これによれば、三次元データ符号化装置400は、データ数(VXL又はFVXLの数)が異なる三次元データに対して、より適した三次元位置の表現手法を用いることができる。
 また、符号化三次元データ413及び414の少なくとも一方は、当該符号化三次元データが入力三次元データ411を符号化することで得られた符号化三次元データであるか、入力三次元データ411のうちの一部を符号化することで得られた符号化三次元データであるかを示す識別子を含む。つまり、当該識別子は、符号化三次元データがWLDの符号化三次元データ413であるかSWLDの符号化三次元データ414であるかを示す。
 これによれば、復号装置は、取得した符号化三次元データが符号化三次元データ413であるか符号化三次元データ414であるかを容易に判定できる。
 また、三次元データ符号化装置400は、符号化三次元データ414のデータ量が符号化三次元データ413のデータ量より小さくなるように抽出三次元データ412を符号化する。
 これによれば、三次元データ符号化装置400は、符号化三次元データ414のデータ量を符号化三次元データ413のデータ量より小さくできる。
 また、三次元データ符号化装置400は、さらに、入力三次元データ411から予め定められた属性を有する物体に対応するデータを抽出三次元データ412として抽出する。例えば、予め定められた属性を有する物体とは、自己位置推定、運転アシスト、又は自動運転等に必要な物体であり、信号又は交差点などである。
 これによれば、三次元データ符号化装置400は、復号装置で必要となるデータを含む符号化三次元データ414を生成できる。
 また、三次元データ符号化装置400(サーバ)は、さらに、クライアントの状態に応じて、符号化三次元データ413及び414の一方をクライアントに送信する。
 これによれば、三次元データ符号化装置400は、クライアントの状態に応じて適切なデータを送信できる。
 また、クライアントの状態は、クライアントの通信状況(例えばネットワーク帯域)、又はクライアントの移動速度を含む。
 また、三次元データ符号化装置400は、さらに、クライアントの要求に応じて、符号化三次元データ413及び414の一方をクライアントに送信する。
 これによれば、三次元データ符号化装置400は、クライアントの要求に応じて適切なデータを送信できる。
 また、本実施の形態に係る三次元データ復号装置500は、上記三次元データ符号化装置400により生成された符号化三次元データ413又は414を復号する。
 つまり、三次元データ復号装置500は、入力三次元データ411から抽出された特徴量が閾値以上の抽出三次元データ412が符号化されることで得られた符号化三次元データ414を第1復号方法により復号する。また、三次元データ復号装置500は、入力三次元データ411が符号化されることで得られた符号化三次元データ413を、第1復号方法とは異なる第2復号方法により復号する。
 これによれば、三次元データ復号装置500は、特徴量が閾値以上のデータを符号化した符号化三次元データ414と、符号化三次元データ413とを、例えば、使用用途等に応じて選択的に受信できる。これにより、三次元データ復号装置500は、伝送するデータ量を削減できる。さらに、三次元データ復号装置500は、入力三次元データ411と抽出三次元データ412とにそれぞれ適した復号方法を用いることができる。
 また、第1復号方法では、第2復号方法よりもイントラ予測及びインター予測のうちインター予測が優先される。
 これによれば、三次元データ復号装置500は、隣接するデータ間の相関が低くなりやすい抽出三次元データに対して、インター予測の優先度を上げることができる。
 また、第1復号方法と第2復号方法とでは、三次元位置の表現手法が異なる。例えば、例えば、第2復号方法では、8分木により三次元位置が表現され、第1復号方法では、三次元座標により三次元位置を表現される。
 これによれば、三次元データ復号装置500は、データ数(VXL又はFVXLの数)が異なる三次元データに対して、より適した三次元位置の表現手法を用いることができる。
 また、符号化三次元データ413及び414の少なくとも一方は、当該符号化三次元データが入力三次元データ411を符号化することで得られた符号化三次元データであるか、入力三次元データ411のうちの一部を符号化することで得られた符号化三次元データであるかを示す識別子を含む。三次元データ復号装置500は、当該識別子を参照して、符号化三次元データ413及び414を識別する。
 これによれば、三次元データ復号装置500は、取得した符号化三次元データが符号化三次元データ413であるか符号化三次元データ414であるかを容易に判定できる。
 また、三次元データ復号装置500は、さらに、クライアント(三次元データ復号装置500)の状態をサーバに通知する。三次元データ復号装置500は、クライアントの状態に応じて、サーバから送信された符号化三次元データ413及び414の一方を受信する。
 これによれば、三次元データ復号装置500は、クライアントの状態に応じて適切なデータを受信できる。
 また、クライアントの状態は、クライアントの通信状況(例えばネットワーク帯域)、又はクライアントの移動速度を含む。
 また、三次元データ復号装置500は、さらに、符号化三次元データ413及び414の一方をサーバに要求し、当該要求に応じて、サーバから送信された符号化三次元データ413及び414の一方を受信する。
 これによれば、三次元データ復号装置500は、用途に応じた適切なデータを受信できる。
 (実施の形態3)
 本実施の形態では、車両間での三次元データを送受信する方法について説明する。例えば、自車両と周辺車両との間での三次元データの送受信が行われる。
 図24は、本実施の形態に係る三次元データ作成装置620のブロック図である。この三次元データ作成装置620は、例えば、自車両に含まれ、三次元データ作成装置620が作成した第1三次元データ632に、受信した第2三次元データ635を合成することで、より密な第3三次元データ636を作成する。
 この三次元データ作成装置620は、三次元データ作成部621と、要求範囲決定部622と、探索部623と、受信部624と、復号部625と、合成部626とを備える。
 まず、三次元データ作成部621は、自車両が備えるセンサで検知したセンサ情報631を用いて第1三次元データ632を作成する。次に、要求範囲決定部622は、作成した第1三次元データ632の中でデータが不足している三次元空間範囲である要求範囲を決定する。
 次に、探索部623は、要求範囲の三次元データを所有する周辺車両を探索し、探索により特定した周辺車両に要求範囲を示す要求範囲情報633を送信する。次に、受信部624は、周辺車両から、要求範囲の符号化ストリームである符号化三次元データ634を受信する(S624)。なお、探索部623は、特定範囲に存在する全ての車両に対し、無差別にリクエストを出し、応答があった相手から符号化三次元データ634を受信してもよい。また、探索部623は、車両に限らず、信号機又は標識などの物体にリクエストを出し、当該物体から符号化三次元データ634を受信してもよい。
 次に、復号部625は、受信した符号化三次元データ634を復号することで第2三次元データ635を取得する。次に、合成部626は、第1三次元データ632と第2三次元データ635とを合成することで、より密な第3三次元データ636を作成する。
 次に、本実施の形態に係る三次元データ送信装置640の構成及び動作を説明する。図25は、三次元データ送信装置640のブロック図である。
 三次元データ送信装置640は、例えば、上述した周辺車両に含まれ、周辺車両が作成した第5三次元データ652を自車両が要求する第6三次元データ654に加工し、第6三次元データ654を符号化することで符号化三次元データ634を生成し、符号化三次元データ634を自車両に送信する。
 三次元データ送信装置640は、三次元データ作成部641と、受信部642と、抽出部643と、符号化部644と、送信部645とを備える。
 まず、三次元データ作成部641は、周辺車両が備えるセンサで検知したセンサ情報651を用いて第5三次元データ652を作成する。次に、受信部642は、自車両から送信された要求範囲情報633を受信する。
 次に、抽出部643は、第5三次元データ652から、要求範囲情報633で示される要求範囲の三次元データを抽出することで、第5三次元データ652を第6三次元データ654に加工する。次に、符号化部644は、第6三次元データ654を符号化することで、符号化ストリームである符号化三次元データ634を生成する。そして、送信部645は、自車両へ符号化三次元データ634を送信する。
 なお、ここでは、自車両が三次元データ作成装置620を備え、周辺車両が三次元データ送信装置640を備える例を説明するが、各車両が、三次元データ作成装置620と三次元データ送信装置640との機能を有してもよい。
 (実施の形態4)
 本実施の形態では、三次元マップに基づく自己位置推定における異常系の動作について説明する。
 車の自動運転、又は、ロボット、或いはドローンなどの飛行体などの移動体を自律的に移動させるなどの用途が今後拡大すると予想される。このような自律的な移動を実現する手段の一例として、移動体が、三次元マップ内における自らの位置を推定(自己位置推定)しながら、マップに従って走行する方法がある。
 自己位置推定は、三次元マップと、自車に搭載したレンジファインダー(LiDARなど)又はステレオカメラなどのセンサにより取得した自車周辺の三次元情報(以降、自車検知三次元データ)とをマッチングして、三次元マップ内の自車位置を推定することで実現できる。
 三次元マップは、HERE社が提唱するHDマップなどのように、三次元のポイントクラウドだけでなく、道路及び交差点の形状情報など二次元の地図データ、又は、渋滞及び事故などの実時間で変化する情報を含んでもよい。三次元データ、二次元データ、実時間で変化するメタデータなど複数のレイヤから三次元マップが構成され、装置は、必要なデータのみを取得、又は、参照することも可能である。
 ポイントクラウドのデータは、上述したSWLDであってもよいし、特徴点ではない点群データを含んでもよい。また、ポイントクラウドのデータの送受信は、1つ、または、複数のランダムアクセス単位を基本として行われる。
 三次元マップと自車検知三次元データとのマッチング方法として以下の方法を用いることができる。例えば、装置は、互いのポイントクラウドにおける点群の形状を比較し、特徴点間の類似度が高い部位が同一位置であると決定する。また、装置は、三次元マップがSWLDから構成される場合、SWLDを構成する特徴点と、自車検知三次元データから抽出した三次元特徴点とを比較してマッチングを行う。
 ここで、高精度に自己位置推定を行うためには、(A)三次元マップと自車検知三次元データが取得できており、かつ、(B)それらの精度が予め定められた基準を満たすことが必要となる。しかしながら、以下のような異常ケースでは、(A)又は(B)が満たせない。
 (1)三次元マップを通信経由で取得できない。
 (2)三次元マップが存在しない、又は、三次元マップを取得したが破損している。
 (3)自車のセンサが故障している、又は、悪天候のために、自車検知三次元データの生成精度が十分でない。
 これらの異常ケースに対処するための動作を、以下で説明する。以下では、車を例に動作を説明するが、以下の手法は、ロボット又はドローンなど、自律的に移動する動物体全般に対して適用できる。
 以下、三次元マップ又は自車検知三次元データにおける異常ケースに対応するための、本実施の形態に係る三次元情報処理装置の構成及び動作を説明する。図26は、本実施の形態に係る三次元情報処理装置700の構成例を示すブロック図である。
 三次元情報処理装置700は、例えば、自動車等の動物体に搭載される。図26に示すように、三次元情報処理装置700は、三次元マップ取得部701と、自車検知データ取得部702と、異常ケース判定部703と、対処動作決定部704と、動作制御部705とを備える。
 なお、三次元情報処理装置700は、二次元画像を取得するカメラ、又は、超音波或いはレーザーを用いた一次元データのセンサなど、自車周辺の構造物又は動物体を検知するための図示しない二次元又は一次元のセンサを備えてもよい。また、三次元情報処理装置700は、三次元マップを4G或いは5Gなどの移動体通信網、又は、車車間通信或いは路車間通信により取得するための通信部(図示せず)を備えてもよい。
 三次元マップ取得部701は、走行経路近傍の三次元マップ711を取得する。例えば、三次元マップ取得部701は、移動体通信網、又は、車車間通信或いは路車間通信により三次元マップ711を取得する。
 次に、自車検知データ取得部702は、センサ情報に基づいて自車検知三次元データ712を取得する。例えば、自車検知データ取得部702は、自車が備えるセンサにより取得されたセンサ情報に基づき、自車検知三次元データ712を生成する。
 次に、異常ケース判定部703は、取得した三次元マップ711及び自車検知三次元データ712の少なくとも一方に対して予め定められたチェックを実施することで異常ケースを検出する。つまり、異常ケース判定部703は、取得した三次元マップ711及び自車検知三次元データ712の少なくとも一方が異常であるかを判定する。
 異常ケースが検出された場合、対処動作決定部704は、異常ケースに対する対処動作を決定する。次に、動作制御部705は、三次元マップ取得部701など、対処動作の実施に必要となる各処理部の動作を制御する。
 一方、異常ケースが検出されない場合、三次元情報処理装置700は、処理を終了する。
 また、三次元情報処理装置700は、三次元マップ711と自車検知三次元データ712とを用いて、三次元情報処理装置700を有する車両の自己位置推定を行う。次に、三次元情報処理装置700は、自己位置推定の結果を用いて、当該車両を自動運転する。
 このように、三次元情報処理装置700は、第1の三次元位置情報を含むマップデータ(三次元マップ711)を通信路を介して取得する。例えば、第1の三次元位置情報は、三次元の座標情報を有する部分空間を単位として符号化され、各々が1以上の部分空間の集合体であり、各々を独立に復号可能な複数のランダムアクセス単位を含む。例えば、第1の三次元位置情報は、三次元の特徴量が所定の閾値以上となる特徴点が符号化されたデータ(SWLD)である。
 また、三次元情報処理装置700は、センサで検知した情報から第2の三次元位置情報(自車検知三次元データ712)を生成する。次に、三次元情報処理装置700は、第1の三次元位置情報又は第2の三次元位置情報に対して異常判定処理を実施することで、第1の三次元位置情報又は前記第2の三次元位置情報が異常であるかどうかを判定する。
 三次元情報処理装置700は、第1の三次元位置情報又は第2の三次元位置情報が異常であると判定された場合、当該異常に対する対処動作を決定する。次に、三次元情報処理装置700は、対処動作の実施に必要となる制御を実施する。
 これにより、三次元情報処理装置700は、第1の三次元位置情報又は第2の三次元位置情報の異常を検知し、対処動作を行うことができる。
 (実施の形態5)
 本実施の形態では、後続車両への三次元データ送信方法等について説明する。
 図27は、本実施の形態に係る三次元データ作成装置810の構成例を示すブロック図である。この三次元データ作成装置810は、例えば、車両に搭載される。三次元データ作成装置810は、外部の交通監視クラウド、前走車両又は後続車両と三次元データの送受信を行うとともに、三次元データを作成及び蓄積する。
 三次元データ作成装置810は、データ受信部811と、通信部812と、受信制御部813と、フォーマット変換部814と、複数のセンサ815と、三次元データ作成部816と、三次元データ合成部817と、三次元データ蓄積部818と、通信部819と、送信制御部820と、フォーマット変換部821と、データ送信部822とを備える。
 データ受信部811は、交通監視クラウド又は前走車両から三次元データ831を受信する。三次元データ831は、例えば、自車両のセンサ815で検知不能な領域を含む、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 通信部812は、交通監視クラウド又は前走車両と通信し、データ送信要求などを交通監視クラウド又は前走車両に送信する。
 受信制御部813は、通信部812を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部814は、データ受信部811が受信した三次元データ831にフォーマット変換等を行うことで三次元データ832を生成する。また、フォーマット変換部814は、三次元データ831が圧縮又は符号化されている場合には、伸張又は復号処理を行う。
 複数のセンサ815は、LiDAR、可視光カメラ又は赤外線カメラなどの、車両の外部の情報を取得するセンサ群であり、センサ情報833を生成する。例えば、センサ情報833は、センサ815がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ815は複数でなくてもよい。
 三次元データ作成部816は、センサ情報833から三次元データ834を生成する。三次元データ834は、例えば、ポイントクラウド、可視光映像、奥行き情報、センサ位置情報、又は速度情報などの情報を含む。
 三次元データ合成部817は、自車両のセンサ情報833に基づいて作成された三次元データ834に、交通監視クラウド又は前走車両等が作成した三次元データ832を合成することで、自車両のセンサ815では検知できない前走車両の前方の空間も含む三次元データ835を構築する。
 三次元データ蓄積部818は、生成された三次元データ835等を蓄積する。
 通信部819は、交通監視クラウド又は後続車両と通信し、データ送信要求などを交通監視クラウド又は後続車両に送信する。
 送信制御部820は、通信部819を介して、対応フォーマット等の情報を通信先と交換し、通信先と通信を確立する。また、送信制御部820は、三次元データ合成部817で生成された三次元データ832の三次元データ構築情報と、通信先からのデータ送信要求とに基づき、送信対象の三次元データの空間である送信領域を決定する。
 具体的には、送信制御部820は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む送信領域を決定する。また、送信制御部820は、三次元データ構築情報に基づいて送信可能な空間又は送信済み空間の更新有無等を判断することで送信領域を決定する。例えば、送信制御部820は、データ送信要求で指定された領域であり、かつ、対応する三次元データ835が存在する領域を送信領域に決定する。そして、送信制御部820は、通信先が対応するフォーマット、及び送信領域をフォーマット変換部821に通知する。
 フォーマット変換部821は、三次元データ蓄積部818に蓄積されている三次元データ835のうち、送信領域の三次元データ836を、受信側が対応しているフォーマットへ変換することで三次元データ837を生成する。なお、フォーマット変換部821は、三次元データ837を圧縮又は符号化することでデータ量を削減してもよい。
 データ送信部822は、三次元データ837を交通監視クラウド又は後続車両に送信する。この三次元データ837は、例えば、後続車両の死角になる領域を含む、自車両の前方のポイントクラウド、可視光映像、奥行き情報、又はセンサ位置情報などの情報を含む。
 なお、ここでは、フォーマット変換部814及び821にてフォーマット変換等が行われる例を述べたが、フォーマット変換は行われなくてもよい。
 このような構成により、三次元データ作成装置810は、自車両のセンサ815では検知できない領域の三次元データ831を外部から取得し、三次元データ831と自車両のセンサ815で検知したセンサ情報833に基づく三次元データ834とを合成することで三次元データ835を生成する。これにより、三次元データ作成装置810は、自車両のセンサ815で検知できない範囲の三次元データを生成できる。
 また、三次元データ作成装置810は、交通監視クラウド又は後続車両からのデータ送信要求に応じて、後続車両のセンサでは検知できない自車両の前方の空間を含む三次元データを、交通監視クラウド又は後続車両等へ送信できる。
 (実施の形態6)
 実施の形態5において、車両等のクライアント装置が、他の車両又は交通監視クラウド等のサーバに三次元データを送信する例を説明した。本実施の形態では、クライアント装置は、サーバ又は他のクライアント装置にセンサで得られたセンサ情報を送信する。
 まず、本実施の形態に係るシステムの構成を説明する。図28は、本実施の形態に係る三次元マップ及びセンサ情報の送受信システムの構成を示す図である。このシステムは、サーバ901と、クライアント装置902A及び902Bを含む。なお、クライアント装置902A及び902Bを特に区別しない場合には、クライアント装置902とも記す。
 クライアント装置902は、例えば、車両等の移動体に搭載される車載機器である。サーバ901は、例えば、交通監視クラウド等であり、複数のクライアント装置902と通信可能である。
 サーバ901は、クライアント装置902に、ポイントクラウドから構成される三次元マップを送信する。なお、三次元マップの構成はポイントクラウドに限定されず、メッシュ構造等、他の三次元データを表すものであってもよい。
 クライアント装置902は、サーバ901に、クライアント装置902が取得したセンサ情報を送信する。センサ情報は、例えば、LiDAR取得情報、可視光画像、赤外画像、デプス画像、センサ位置情報及び速度情報のうち少なくとも一つを含む。
 サーバ901とクライアント装置902との間で送受信されるデータは、データ削減のために圧縮されてもよいし、データの精度を維持するために非圧縮のままでも構わない。データを圧縮する場合、ポイントクラウドには例えば8分木構造に基づく三次元圧縮方式を用いることができる。また、可視光画像、赤外画像、及びデプス画像には二次元の画像圧縮方式を用いることできる。二次元の画像圧縮方式とは、例えば、MPEGで規格化されたMPEG-4 AVC又はHEVC等である。
 また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じてサーバ901で管理する三次元マップをクライアント装置902に送信する。なお、サーバ901はクライアント装置902からの三次元マップの送信要求を待たずに三次元マップを送信してもよい。例えば、サーバ901は、予め定められた空間にいる1つ以上のクライアント装置902に三次元マップをブロードキャストしても構わない。また、サーバ901は、一度送信要求を受けたクライアント装置902に、一定時間毎にクライアント装置902の位置に適した三次元マップを送信してもよい。また、サーバ901は、サーバ901が管理する三次元マップが更新される度にクライアント装置902に三次元マップを送信してもよい。
 クライアント装置902は、サーバ901に三次元マップの送信要求を出す。例えば、クライアント装置902が、走行時に自己位置推定を行いたい場合に、クライアント装置902は、三次元マップの送信要求をサーバ901に送信する。
 なお、次のような場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。クライアント装置902の保持する三次元マップが古い場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が三次元マップを取得してから一定期間が経過した場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る一定時刻前に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。例えば、クライアント装置902が、クライアント装置902が保持する三次元マップで示される空間の境界から予め定められた距離以内に存在する場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。また、クライアント装置902の移動経路及び移動速度が把握できている場合には、これらに基づき、クライアント装置902が保持する三次元マップで示される空間から、クライアント装置902が外に出る時刻を予測してもよい。
 クライアント装置902がセンサ情報から作成した三次元データと三次元マップとの位置合せ時の誤差が一定以上の場合に、クライアント装置902はサーバ901に三次元マップの送信要求を出してもよい。
 クライアント装置902は、サーバ901から送信されたセンサ情報の送信要求に応じて、サーバ901にセンサ情報を送信する。なお、クライアント装置902はサーバ901からのセンサ情報の送信要求を待たずにセンサ情報をサーバ901に送ってもよい。例えば、クライアント装置902は、一度サーバ901からセンサ情報の送信要求を得た場合、一定期間の間、定期的にセンサ情報をサーバ901に送信してもよい。また、クライアント装置902は、クライアント装置902がセンサ情報を元に作成した三次元データと、サーバ901から得た三次元マップとの位置合せ時の誤差が一定以上の場合、クライアント装置902の周辺の三次元マップに変化が生じた可能性があると判断し、その旨とセンサ情報とをサーバ901に送信してもよい。
 サーバ901は、クライアント装置902にセンサ情報の送信要求を出す。例えば、サーバ901は、クライアント装置902から、GPS等のクライアント装置902の位置情報を受信する。サーバ901は、クライアント装置902の位置情報に基づき、サーバ901が管理する三次元マップにおいて情報が少ない空間にクライアント装置902が近づいていると判断した場合、新たな三次元マップを生成するためにクライアント装置902にセンサ情報の送信要求を出す。また、サーバ901は、三次元マップを更新したい場合、積雪時或いは災害時などの道路状況を確認したい場合、渋滞状況、或いは事件事故状況等を確認したい場合に、センサ情報の送信要求を出してもよい。
 また、クライアント装置902は、サーバ901から受け取るセンサ情報の送信要求の受信時における通信状態又は帯域に応じて、サーバ901に送信するセンサ情報のデータ量を設定してもよい。サーバ901に送信するセンサ情報のデータ量を設定するというのは、例えば、当該データそのものを増減させること、又は圧縮方式を適宜選択することである。
 図29は、クライアント装置902の構成例を示すブロック図である。クライアント装置902は、サーバ901からポイントクラウド等で構成される三次元マップを受信し、クライアント装置902のセンサ情報に基づいて作成した三次元データからクライアント装置902の自己位置を推定する。また、クライアント装置902は、取得したセンサ情報をサーバ901に送信する。
 クライアント装置902は、データ受信部1011と、通信部1012と、受信制御部1013と、フォーマット変換部1014と、複数のセンサ1015と、三次元データ作成部1016と、三次元画像処理部1017と、三次元データ蓄積部1018と、フォーマット変換部1019と、通信部1020と、送信制御部1021と、データ送信部1022とを備える。
 データ受信部1011は、サーバ901から三次元マップ1031を受信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 通信部1012は、サーバ901と通信し、データ送信要求(例えば、三次元マップの送信要求)などをサーバ901に送信する。
 受信制御部1013は、通信部1012を介して、対応フォーマット等の情報を通信先と交換し、通信先との通信を確立する。
 フォーマット変換部1014は、データ受信部1011が受信した三次元マップ1031にフォーマット変換等を行うことで三次元マップ1032を生成する。また、フォーマット変換部1014は、三次元マップ1031が圧縮又は符号化されている場合には、伸張又は復号処理を行う。なお、フォーマット変換部1014は、三次元マップ1031が非圧縮データであれば、伸張又は復号処理を行わない。
 複数のセンサ1015は、LiDAR、可視光カメラ、赤外線カメラ、又はデプスセンサなど、クライアント装置902が搭載されている車両の外部の情報を取得するセンサ群であり、センサ情報1033を生成する。例えば、センサ情報1033は、センサ1015がLiDARなどのレーザセンサである場合、ポイントクラウド(点群データ)等の三次元データである。なお、センサ1015は複数でなくてもよい。
 三次元データ作成部1016は、センサ情報1033に基づいて自車両の周辺の三次元データ1034を作成する。例えば、三次元データ作成部1016は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いて自車両の周辺の色情報付きのポイントクラウドデータを作成する。
 三次元画像処理部1017は、受信したポイントクラウド等の三次元マップ1032と、センサ情報1033から生成した自車両の周辺の三次元データ1034とを用いて、自車両の自己位置推定処理等を行う。なお、三次元画像処理部1017は、三次元マップ1032と三次元データ1034とを合成することで自車両の周辺の三次元データ1035を作成し、作成した三次元データ1035を用いて自己位置推定処理を行ってもよい。
 三次元データ蓄積部1018は、三次元マップ1032、三次元データ1034及び三次元データ1035等を蓄積する。
 フォーマット変換部1019は、センサ情報1033を、受信側が対応しているフォーマットへ変換することでセンサ情報1037を生成する。なお、フォーマット変換部1019は、センサ情報1037を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1019は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1019は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1020は、サーバ901と通信し、データ送信要求(センサ情報の送信要求)などをサーバ901から受信する。
 送信制御部1021は、通信部1020を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1022は、センサ情報1037をサーバ901に送信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報など、複数のセンサ1015によって取得した情報を含む。
 次に、サーバ901の構成を説明する。図30は、サーバ901の構成例を示すブロック図である。サーバ901は、クライアント装置902から送信されたセンサ情報を受信し、受信したセンサ情報に基づいて三次元データを作成する。サーバ901は、作成した三次元データを用いて、サーバ901が管理する三次元マップを更新する。また、サーバ901は、クライアント装置902からの三次元マップの送信要求に応じて、更新した三次元マップをクライアント装置902に送信する。
 サーバ901は、データ受信部1111と、通信部1112と、受信制御部1113と、フォーマット変換部1114と、三次元データ作成部1116と、三次元データ合成部1117と、三次元データ蓄積部1118と、フォーマット変換部1119と、通信部1120と、送信制御部1121と、データ送信部1122とを備える。
 データ受信部1111は、クライアント装置902からセンサ情報1037を受信する。センサ情報1037は、例えば、LiDARで取得した情報、可視光カメラで取得した輝度画像、赤外線カメラで取得した赤外画像、デプスセンサで取得したデプス画像、センサ位置情報、及び速度情報などを含む。
 通信部1112は、クライアント装置902と通信し、データ送信要求(例えば、センサ情報の送信要求)などをクライアント装置902に送信する。
 受信制御部1113は、通信部1112を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 フォーマット変換部1114は、受信したセンサ情報1037が圧縮又は符号化されている場合には、伸張又は復号処理を行うことでセンサ情報1132を生成する。なお、フォーマット変換部1114は、センサ情報1037が非圧縮データであれば、伸張又は復号処理を行わない。
 三次元データ作成部1116は、センサ情報1132に基づいてクライアント装置902の周辺の三次元データ1134を作成する。例えば、三次元データ作成部1116は、LiDARで取得した情報と、可視光カメラで得られた可視光映像とを用いてクライアント装置902の周辺の色情報付ポイントクラウドデータを作成する。
 三次元データ合成部1117は、センサ情報1132を元に作成した三次元データ1134を、サーバ901が管理する三次元マップ1135に合成することで三次元マップ1135を更新する。
 三次元データ蓄積部1118は、三次元マップ1135等を蓄積する。
 フォーマット変換部1119は、三次元マップ1135を、受信側が対応しているフォーマットへ変換することで三次元マップ1031を生成する。なお、フォーマット変換部1119は、三次元マップ1135を圧縮又は符号化することでデータ量を削減してもよい。また、フォーマット変換部1119は、フォーマット変換をする必要がない場合は処理を省略してもよい。また、フォーマット変換部1119は、送信範囲の指定に応じて送信するデータ量を制御してもよい。
 通信部1120は、クライアント装置902と通信し、データ送信要求(三次元マップの送信要求)などをクライアント装置902から受信する。
 送信制御部1121は、通信部1120を介して、対応フォーマット等の情報を通信先と交換し、通信を確立する。
 データ送信部1122は、三次元マップ1031をクライアント装置902に送信する。三次元マップ1031は、WLD又はSWLD等のポイントクラウドを含むデータである。三次元マップ1031には、圧縮データ、及び非圧縮データのどちらが含まれていてもよい。
 次に、クライアント装置902の動作フローについて説明する。図31は、クライアント装置902による三次元マップ取得時の動作を示すフローチャートである。
 まず、クライアント装置902は、サーバ901へ三次元マップ(ポイントクラウド等)の送信を要求する(S1001)。このとき、クライアント装置902は、GPS等で得られたクライアント装置902の位置情報を合わせて送信することで、その位置情報に関連する三次元マップの送信をサーバ901に要求してもよい。
 次に、クライアント装置902は、サーバ901から三次元マップを受信する(S1002)。受信した三次元マップが圧縮データであれば、クライアント装置902は、受信した三次元マップを復号して非圧縮の三次元マップを生成する(S1003)。
 次に、クライアント装置902は、複数のセンサ1015で得られたセンサ情報1033からクライアント装置902の周辺の三次元データ1034を作成する(S1004)。次に、クライアント装置902は、サーバ901から受信した三次元マップ1032と、センサ情報1033から作成した三次元データ1034とを用いてクライアント装置902の自己位置を推定する(S1005)。
 図32は、クライアント装置902によるセンサ情報の送信時の動作を示すフローチャートである。まず、クライアント装置902は、サーバ901からセンサ情報の送信要求を受信する(S1011)。送信要求を受信したクライアント装置902は、センサ情報1037をサーバ901に送信する(S1012)。なお、クライアント装置902は、センサ情報1033が複数のセンサ1015で得られた複数の情報を含む場合、各情報を、各情報に適した圧縮方式で圧縮することでセンサ情報1037を生成してもよい。
 次に、サーバ901の動作フローについて説明する。図33は、サーバ901によるセンサ情報の取得時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902へセンサ情報の送信を要求する(S1021)。次に、サーバ901は、当該要求に応じてクライアント装置902から送信されたセンサ情報1037を受信する(S1022)。次に、サーバ901は、受信したセンサ情報1037を用いて三次元データ1134を作成する(S1023)。次に、サーバ901は、作成した三次元データ1134を三次元マップ1135に反映する(S1024)。
 図34は、サーバ901による三次元マップの送信時の動作を示すフローチャートである。まず、サーバ901は、クライアント装置902から三次元マップの送信要求を受信する(S1031)。三次元マップの送信要求を受信したサーバ901は、クライアント装置902へ三次元マップ1031を送信する(S1032)。このとき、サーバ901は、クライアント装置902の位置情報に合わせてその付近の三次元マップを抽出し、抽出した三次元マップを送信してもよい。また、サーバ901は、ポイントクラウドで構成される三次元マップを、例えば8分木構造による圧縮方式等を用いて圧縮し、圧縮後の三次元マップを送信してもよい。
 以下、本実施の形態の変形例について説明する。
 サーバ901は、クライアント装置902から受信したセンサ情報1037を用いてクライアント装置902の位置付近の三次元データ1134を作成する。次に、サーバ901は、作成した三次元データ1134と、サーバ901が管理する同エリアの三次元マップ1135とのマッチングを行うことによって、三次元データ1134と三次元マップ1135との差分を算出する。サーバ901は、差分が予め定められた閾値以上の場合は、クライアント装置902の周辺で何らかの異常が発生したと判断する。例えば、地震等の自然災害によって地盤沈下等が発生した際などに、サーバ901が管理する三次元マップ1135と、センサ情報1037を基に作成した三次元データ1134との間に大きな差が発生することが考えられる。
 センサ情報1037は、センサの種類、センサの性能、及びセンサの型番のうち少なくとも一つを示す情報を含んでもよい。また、センサ情報1037に、センサの性能に応じたクラスID等が付加されてもよい。例えば、センサ情報1037がLiDARで取得された情報である場合、数mm単位の精度で情報を取得できるセンサをクラス1、数cm単位の精度で情報を取得できるセンサをクラス2、数m単位の精度で情報を取得できるセンサをクラス3のように、センサの性能に識別子を割り当てることが考えられる。また、サーバ901は、センサの性能情報等を、クライアント装置902の型番から推定してもよい。例えば、クライアント装置902が車両に搭載されている場合、サーバ901は、当該車両の車種からセンサのスペック情報を判断してもよい。この場合、サーバ901は、車両の車種の情報を事前に取得していてもよいし、センサ情報に、当該情報が含まれてもよい。また、サーバ901は取得したセンサ情報1037を用いて、センサ情報1037を用いて作成した三次元データ1134に対する補正の度合いを切り替えてもよい。例えば、センサ性能が高精度(クラス1)である場合、サーバ901は、三次元データ1134に対する補正を行わない。センサ性能が低精度(クラス3)である場合、サーバ901は、三次元データ1134に、センサの精度に応じた補正を適用する。例えば、サーバ901は、センサの精度が低いほど補正の度合い(強度)を強くする。
 サーバ901は、ある空間にいる複数のクライアント装置902に同時にセンサ情報の送信要求を出してもよい。サーバ901は、複数のクライアント装置902から複数のセンサ情報を受信した場合に、全てのセンサ情報を三次元データ1134の作成に利用する必要はなく、例えば、センサの性能に応じて、利用するセンサ情報を選択してもよい。例えば、サーバ901は、三次元マップ1135を更新する場合、受信した複数のセンサ情報の中から高精度なセンサ情報(クラス1)を選別し、選別したセンサ情報を用いて三次元データ1134を作成してもよい。
 サーバ901は、交通監視クラウド等のサーバのみに限定されず、他のクライアント装置(車載)であってもよい。図35は、この場合のシステム構成を示す図である。
 例えば、クライアント装置902Cが近くにいるクライアント装置902Aにセンサ情報の送信要求を出し、クライアント装置902Aからセンサ情報を取得する。そして、クライアント装置902Cは、取得したクライアント装置902Aのセンサ情報を用いて三次元データを作成し、クライアント装置902Cの三次元マップを更新する。これにより、クライアント装置902Cは、クライアント装置902Aから取得可能な空間の三次元マップを、クライアント装置902Cの性能を活かして生成できる。例えば、クライアント装置902Cの性能が高い場合に、このようなケースが発生すると考えられる。
 また、この場合、センサ情報を提供したクライアント装置902Aは、クライアント装置902Cが生成した高精度な三次元マップを取得する権利が与えられる。クライアント装置902Aは、その権利に従ってクライアント装置902Cから高精度な三次元マップを受信する。
 また、クライアント装置902Cは近くにいる複数のクライアント装置902(クライアント装置902A及びクライアント装置902B)にセンサ情報の送信要求を出してもよい。クライアント装置902A又はクライアント装置902Bのセンサが高性能である場合には、クライアント装置902Cは、この高性能なセンサで得られたセンサ情報を用いて三次元データを作成できる。
 図36は、サーバ901及びクライアント装置902の機能構成を示すブロック図である。サーバ901は、例えば、三次元マップを圧縮及び復号する三次元マップ圧縮/復号処理部1201と、センサ情報を圧縮及び復号するセンサ情報圧縮/復号処理部1202とを備える。
 クライアント装置902は、三次元マップ復号処理部1211と、センサ情報圧縮処理部1212とを備える。三次元マップ復号処理部1211は、圧縮された三次元マップの符号化データを受信し、符号化データを復号して三次元マップを取得する。センサ情報圧縮処理部1212は、取得したセンサ情報から作成した三次元データの代わりに、センサ情報そのものを圧縮し、圧縮したセンサ情報の符号化データをサーバ901へ送信する。この構成により、クライアント装置902は、三次元マップ(ポイントクラウド等)を復号する処理を行う処理部(装置又はLSI)を内部に保持すればよく、三次元マップ(ポイントクラウド等)の三次元データを圧縮する処理を行う処理部を内部に保持する必要がない。これにより、クライアント装置902のコスト及び消費電力等を抑えることができる。
 以上のように、本実施の形態に係るクライアント装置902は、移動体に搭載され、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1033から、移動体の周辺の三次元データ1034を作成する。クライアント装置902は、作成された三次元データ1034を用いて移動体の自己位置を推定する。クライアント装置902は、取得したセンサ情報1033をサーバ901又は他の移動体902に送信する。
 これによれば、クライアント装置902は、センサ情報1033をサーバ901等に送信する。これにより、三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、クライアント装置902は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、クライアント装置902は、さらに、サーバ901に三次元マップの送信要求を送信し、サーバ901から三次元マップ1031を受信する。クライアント装置902は、自己位置の推定では、三次元データ1034と三次元マップ1032とを用いて、自己位置を推定する。
 また、センサ情報1033は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1033は、センサの性能を示す情報を含む。
 また、クライアント装置902は、センサ情報1033を符号化又は圧縮し、センサ情報の送信では、符号化又は圧縮後のセンサ情報1037を、サーバ901又は他の移動体902に送信する。これによれば、クライアント装置902は、伝送されるデータ量を削減できる。
 例えば、クライアント装置902は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係るサーバ901は、移動体に搭載されるクライアント装置902と通信可能であり、移動体に搭載されたセンサ1015により得られた、移動体の周辺状況を示すセンサ情報1037をクライアント装置902から受信する。サーバ901は、受信したセンサ情報1037から、移動体の周辺の三次元データ1134を作成する。
 これによれば、サーバ901は、クライアント装置902から送信されたセンサ情報1037を用いて三次元データ1134を作成する。これにより、クライアント装置902が三次元データを送信する場合に比べて、送信データのデータ量を削減できる可能性がある。また、三次元データの圧縮又は符号化等の処理をクライアント装置902で行う必要がないので、クライアント装置902の処理量を削減できる。よって、サーバ901は、伝送されるデータ量の削減、又は、装置の構成の簡略化を実現できる。
 また、サーバ901は、さらに、クライアント装置902にセンサ情報の送信要求を送信する。
 また、サーバ901は、さらに、作成された三次元データ1134を用いて三次元マップ1135を更新し、クライアント装置902からの三次元マップ1135の送信要求に応じて三次元マップ1135をクライアント装置902に送信する。
 また、センサ情報1037は、レーザセンサで得られた情報、輝度画像、赤外画像、デプス画像、センサの位置情報、及びセンサの速度情報のうち少なくとも一つを含む。
 また、センサ情報1037は、センサの性能を示す情報を含む。
 また、サーバ901は、さらに、センサの性能に応じて、三次元データを補正する。これによれば、当該三次元データ作成方法は、三次元データの品質を向上できる。
 また、サーバ901は、センサ情報の受信では、複数のクライアント装置902から複数のセンサ情報1037を受信し、複数のセンサ情報1037に含まれるセンサの性能を示す複数の情報に基づき、三次元データ1134の作成に用いるセンサ情報1037を選択する。これによれば、サーバ901は、三次元データ1134の品質を向上できる。
 また、サーバ901は、受信したセンサ情報1037を復号又は伸張し、復号又は伸張後のセンサ情報1132から、三次元データ1134を作成する。これによれば、サーバ901は、伝送されるデータ量を削減できる。
 例えば、サーバ901は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態7)
 本実施の形態では、インター予測処理を用いた三次元データの符号化方法及び復号方法について説明する。
 図37は、本実施の形態に係る三次元データ符号化装置1300のブロック図である。この三次元データ符号装置1300は、三次元データを符号化することで符号化信号である符号化ビットストリーム(以下、単にビットストリームとも記す)を生成する。図37に示すように、三次元データ符号化装置1300は、分割部1301と、減算部1302と、変換部1303と、量子化部1304と、逆量子化部1305と、逆変換部1306と、加算部1307と、参照ボリュームメモリ1308と、イントラ予測部1309と、参照スペースメモリ1310と、インター予測部1311と、予測制御部1312と、エントロピー符号化部1313とを備える。
 分割部1301は、三次元データに含まれる各スペース(SPC)を符号化単位である複数のボリューム(VLM)に分割する。また、分割部1301は、各ボリューム内のボクセルを8分木表現化(Octree化)する。なお、分割部1301は、スペースとボリュームを同一サイズとし、スペースを8分木表現化してもよい。また、分割部1301は、8分木化に必要な情報(深度情報など)をビットストリームのヘッダ等に付加してもよい。
 減算部1302は、分割部1301から出力されたボリューム(符号化対象ボリューム)と、後述するイントラ予測又はインター予測によって生成される予測ボリュームとの差分を算出し、算出された差分を予測残差として変換部1303に出力する。図38は、予測残差の算出例を示す図である。なお、ここで示す符号化対象ボリューム及び予測ボリュームのビット列は、例えば、ボリュームに含まれる三次元点(例えばポイントクラウド)の位置を示す位置情報である。
 以下、8分木表現とボクセルのスキャン順について説明する。ボリュームは8分木構造に変換(8分木化)された後、符号化される。8分木構造はノードとリーフとで構成される。各ノードは8つのノード又はリーフを持ち、各リーフはボクセル(VXL)情報を持つ。図39は、複数のボクセルを含むボリュームの構造例を示す図である。図40は、図39に示すボリュームを8分木構造に変換した例を示す図である。ここで、図40に示すリーフのうち、リーフ1、2、3はそれぞれ図39に示すボクセルVXL1、VXL2、VXL3を表し、点群を含むVXL(以下、有効VXL)を表現している。
 8分木は、例えば0、1の二値列で表現される。例えば、ノード又は有効VXLを値1、それ以外を値0とすると、各ノード及びリーフには図40に示す二値列が割当てられる。そして、幅優先又は深さ優先のスキャン順に応じて、この二値列がスキャンされる。例えば幅優先でスキャンされた場合、図41のAに示す二値列が得られる。深さ優先でスキャンした場合は図41のBに示す二値列が得られる。このスキャンにより得られた二値列はエントロピー符号化によって符号化され情報量が削減される。
 次に、8分木表現における深度情報について説明する。8分木表現における深度は、ボリューム内に含まれるポイントクラウド情報を、どの粒度まで保持するかをコントロールするために使用される。深度を大きく設定すると、より細かいレベルまでポイントクラウド情報を再現することができるが、ノード及びリーフを表現するためのデータ量が増える。逆に深度を小さく設定すると、データ量が減少するが、複数の異なる位置及び色の異なるポイントクラウド情報が同一位置かつ同一色であるとみなされるため、本来のポイントクラウド情報が持つ情報を失うことになる。
 例えば、図42は、図40に示す深度=2の8分木を、深度=1の8分木で表現した例を示す図である。図42に示す8分木は図40に示す8分木よりデータ量が少なくなる。つまり、図42に示す8分木は図42に示す8分木より二値列化後のビット数が少ない。ここで、図40に示すリーフ1とリーフ2が図41に示すリーフ1で表現されることになる。つまり、図40に示すリーフ1とリーフ2とが異なる位置であったという情報が失われる。
 図43は、図42に示す8分木に対応するボリュームを示す図である。図39に示すVXL1とVXL2が図43に示すVXL12に対応する。この場合、三次元データ符号化装置1300は、図43に示すVXL12の色情報を、図39に示すVXL1とVXL2との色情報から生成する。例えば、三次元データ符号化装置1300は、VXL1とVXL2との色情報の平均値、中間値、又は重み平均値などをVXL12の色情報として算出する。このように、三次元データ符号化装置1300は、8分木の深度を変えることで、データ量の削減を制御してもよい。
 三次元データ符号化装置1300は、8分木の深度情報を、ワールド単位、スペース単位、及びボリューム単位のいずれの単位で設定しても構わない。またその際、三次元データ符号化装置1300は、ワールドのヘッダ情報、スペースのヘッダ情報、又はボリュームのヘッダ情報に深度情報を付加してもよい。また、時間の異なる全てのワールド、スペース、及びボリュームで深度情報して同一の値を使用してもよい。この場合、三次元データ符号化装置1300は、全時間のワールドを管理するヘッダ情報に深度情報を付加してもよい。
 ボクセルに色情報が含まれる場合には、変換部1303は、ボリューム内のボクセルの色情報の予測残差に対し、直交変換等の周波数変換を適用する。例えば、変換部1303は、あるスキャン順で予測残差をスキャンすることで一次元配列を作成する。その後、変換部1303は、作成した一次元配列に一次元の直交変換を適用することで一次元配列を周波数領域に変換する。これにより、ボリューム内の予測残差の値が近い場合には低域の周波数成分の値が大きくなり、高域の周波数成分の値が小さくなる。よって、量子化部1304においてより効率的に符号量を削減することができる。
 また、変換部1303は、一次元ではなく、二次元以上の直交変換を用いてもよい。例えば、変換部1303は、あるスキャン順で予測残差を二次元配列にマッピングし、得られた二次元配列に二次元直交変換を適用する。また、変換部1303は、複数の直交変換方式から使用する直交変換方式を選択してもよい。この場合、三次元データ符号化装置1300は、どの直交変換方式を用いたかを示す情報をビットストリームに付加する。また、変換部1303は、次元の異なる複数の直交変換方式から使用する直交変換方式を選択してもよい。この場合、三次元データ符号化装置1300は、どの次元の直交変換方式を用いたかをビットストリームに付加する。
 例えば、変換部1303は、予測残差のスキャン順を、ボリューム内の8分木におけるスキャン順(幅優先又は深さ優先など)に合わせる。これにより、予測残差のスキャン順を示す情報をビットストリームに付加する必要がないので、オーバーヘッドを削減できる。また、変換部1303は、8分木のスキャン順とは異なるスキャン順を適用してもよい。この場合、三次元データ符号化装置1300は、予測残差のスキャン順を示す情報をビットストリームに付加する。これにより、三次元データ符号化装置1300は、予測残差を効率よく符号化することができる。また、三次元データ符号化装置1300は、8分木のスキャン順を適用するか否かを示す情報(フラグ等)をビットストリームに付加し、8分木のスキャン順を適用しない場合に、予測残差のスキャン順を示す情報をビットストリームに付加してもよい。
 変換部1303は、色情報の予測残差だけでなく、ボクセルが持つその他の属性情報を変換してもよい。例えば、変換部1303は、ポイントクラウドをLiDAR等で取得した際に得られる反射度等の情報を変換し、符号化してもよい。
 変換部1303は、スペースが色情報等の属性情報を持たない場合は、処理をスキップしてもよい。また、三次元データ符号化装置1300は、変換部1303の処理をスキップするか否かを示す情報(フラグ)をビットストリームに付加してもよい。
 量子化部1304は、変換部1303で生成された予測残差の周波数成分に対し、量子化制御パラメータを用いて量子化を行うことで量子化係数を生成する。これにより情報量が削減される。生成された量子化係数はエントロピー符号化部1313に出力される。量子化部1304は、量子化制御パラメータを、ワールド単位、スペース単位、又はボリューム単位で制御してもよい。その際には、三次元データ符号化装置1300は、量子化制御パラメータをそれぞれのヘッダ情報等に付加する。また、量子化部1304は、予測残差の周波数成分毎に、重みを変えて量子化制御を行ってもよい。例えば、量子化部1304は、低周波数成分は細かく量子化し、高周波成分は粗く量子化してもよい。この場合、三次元データ符号化装置1300は、各周波数成分の重みを表すパラメータをヘッダに付加してもよい。
 量子化部1304は、スペースが色情報等の属性情報を持たない場合は、処理をスキップしてもよい。また、三次元データ符号化装置1300は、量子化部1304の処理をスキップするか否かを示す情報(フラグ)をビットストリームに付加してもよい。
 逆量子化部1305は、量子化制御パラメータを用いて、量子化部1304で生成された量子化係数に逆量子化を行うことで予測残差の逆量子化係数を生成し、生成した逆量子化係数を逆変換部1306に出力する。
 逆変換部1306は、逆量子化部1305で生成された逆量子化係数に対し逆変換を適用することで逆変換適用後予測残差を生成する。この逆変換適用後予測残差は、量子化後に生成された予測残差であるため、変換部1303が出力した予測残差とは完全には一致しなくてもよい。
 加算部1307は、逆変換部1306で生成された逆変換適用後予測残差と、量子化前の予測残差の生成に用いられた、後述するイントラ予測又はインター予測により生成された予測ボリュームとを加算して再構成ボリュームを生成する。この再構成ボリュームは、参照ボリュームメモリ1308、又は、参照スペースメモリ1310に格納される。
 イントラ予測部1309は、参照ボリュームメモリ1308に格納された隣接ボリュームの属性情報を用いて、符号化対象ボリュームの予測ボリュームを生成する。属性情報とは、ボクセルの色情報又は反射度を含む。イントラ予測部1309は、符号化対象ボリュームの色情報又は反射度の予測値を生成する。
 図44は、イントラ予測部1309の動作を説明するための図である。例えば、イントラ予測部1309は、図44に示す、符号化対象ボリューム(ボリュームidx=3)の予測ボリュームを、隣接ボリューム(ボリュームidx=0)から生成する。ここで、ボリュームidxとはスペース内のボリュームに対し付加される識別子情報であり、各ボリュームに異なる値が割当てられる。ボリュームidxの割当ての順番は符号化順と同じ順番であってもよいし、符号化順とは異なる順番であってもよい。例えば、イントラ予測部1309は、図44に示す符号化対象ボリュームの色情報の予測値として、隣接ボリュームであるボリュームidx=0内に含まれるボクセルの色情報の平均値を用いる。この場合、符号化対象ボリューム内に含まれる各ボクセルの色情報から、色情報の予測値が差し引かれることで予測残差が生成される。この予測残差に対して変換部1303以降の処理が行われる。また、この場合、三次元データ符号化装置1300は、隣接ボリューム情報と、予測モード情報とをビットストリームに付加する。ここで隣接ボリューム情報とは、予測に用いた隣接ボリュームを示す情報であり、例えば、予測に用いた隣接ボリュームのボリュームidxを示す。また、予測モード情報とは、予測ボリュームの生成に使用したモードを示す。モードとは、例えば、隣接ボリューム内のボクセルの平均値から予測値を生成する平均値モード、又は隣接ボリューム内のボクセルの中間値から予測値を生成する中間値モード等である。
 イントラ予測部1309は、予測ボリュームを、複数の隣接ボリュームから生成してもよい。例えば、図44に示す構成において、イントラ予測部1309は、ボリュームidx=0のボリュームから予測ボリューム0を生成し、ボリュームidx=1のボリュームから予測ボリューム1を生成する。そして、イントラ予測部1309は、予測ボリューム0と予測ボリューム1の平均を最終的な予測ボリュームとして生成する。この場合、三次元データ符号化装置1300は、予測ボリュームの生成に使用した複数のボリュームの複数のボリュームidxをビットストリームに付加してもよい。
 図45は、本実施の形態に係るインター予測処理を模式的に示す図である。インター予測部1311は、ある時刻T_Curのスペース(SPC)を、異なる時刻T_LXの符号化済みスペースを用いて符号化(インター予測)する。この場合、インター予測部1311は、異なる時刻T_LXの符号化済みスペースに回転及び並進処理を適用して符号化処理を行う。
 また、三次元データ符号化装置1300は、異なる時刻T_LXのスペースに適用した回転及び並進処理に関わるRT情報をビットストリームに付加する。異なる時刻T_LXとは、例えば、前記ある時刻T_Curより前の時刻T_L0である。このとき、三次元データ符号化装置1300は、時刻T_L0のスペースに適用した回転及び並進処理に関わるRT情報RT_L0をビットストリームに付加してもよい。
 または、異なる時刻T_LXとは、例えば、前記ある時刻T_Curより後の時刻T_L1である。このとき、三次元データ符号化装置1300は、時刻T_L1のスペースに適用した回転及び並進処理に関わるRT情報RT_L1をビットストリームに付加してもよい。
 または、インター予測部1311は、異なる時刻T_L0及び時刻T_L1の両方のスペースを参照して符号化(双予測)を行う。この場合には、三次元データ符号化装置1300は、それぞれのスペースに適用した回転及び並進に関わるRT情報RT_L0及びRT_L1の両方をビットストリームに付加してもよい。
 なお、上記ではT_L0をT_Curより前の時刻、T_L1をT_Curより後の時刻としたが、必ずしもこれに限らない。例えば、T_L0とT_L1は共にT_Curより前の時刻でもよい。または、T_L0とT_L1は共にT_Curより後の時刻でもよい。
 また、三次元データ符号化装置1300は、複数の異なる時刻のスペースを参照して符号化を行う場合には、それぞれのスペースに適用した回転及び並進に関わるRT情報をビットストリームに付加してもよい。例えば、三次元データ符号化装置1300は、参照する複数の符号化済みスペースを2つの参照リスト(L0リスト及びL1リスト)で管理する。L0リスト内の第1の参照スペースをL0R0とし、L0リスト内の第2の参照スペースをL0R1とし、L1リスト内の第1の参照スペースをL1R0とし、L1リスト内の第2の参照スペースをL1R1とした場合、三次元データ符号化装置1300は、L0R0のRT情報RT_L0R0と、L0R1のRT情報RT_L0R1と、L1R0のRT情報RT_L1R0と、L1R1のRT情報RT_L1R1とをビットストリームに付加する。例えば、三次元データ符号化装置1300は、これらのRT情報をビットストリームのヘッダ等に付加する。
 また、三次元データ符号化装置1300は、複数の異なる時刻の参照スペースを参照して符号化を行う場合、参照スペース毎に回転及び並進を適用するか否かを判定する。その際、三次元データ符号化装置1300は、参照スペース毎に回転及び並進を適用したか否かを示す情報(RT適用フラグ等)をビットストリームのヘッダ情報等に付加してもよい。例えば、三次元データ符号化装置1300は、符号化対象スペースから参照する参照スペース毎にICP(Interactive Closest Point)アルゴリズムを用いてRT情報、及びICPエラー値を算出する。三次元データ符号化装置1300は、ICPエラー値が、予め定められた一定値以下の場合は、回転及び並進を行う必要がないと判定してRT適用フラグをオフに設定する。一方、三次元データ符号化装置1300は、ICPエラー値が上記一定値より大きい場合は、RT適用フラグをオンに設定し、RT情報をビットストリームに付加する。
 図46は、RT情報及びRT適用フラグをヘッダに付加するシンタックス例を示す図である。なお、各シンタックスに割当てるビット数は、そのシンタックスが取りうる範囲で決定してもよい。例えば、参照リストL0内に含まれる参照スペース数が8つの場合、MaxRefSpc_l0には3bitが割当てられてもよい。割当てるビット数を、各シンタックスが取りうる値に応じて可変にしてもよいし、取りうる値に関わらず固定にしてもよい。割り当てるビット数を固定にする場合は、三次元データ符号化装置1300は、その固定ビット数を別のヘッダ情報に付加してもよい。
 ここで、図46に示す、MaxRefSpc_l0は、参照リストL0内に含まれる参照スペース数を示す。RT_flag_l0[i]は、参照リストL0内の参照スペースiのRT適用フラグである。RT_flag_l0[i]が1の場合、参照スペースiに回転及び並進が適用される。RT_flag_l0[i]が0の場合、参照スペースiに回転及び並進が適用されない。
 R_l0[i]及びT_l0[i]は、参照リストL0内の参照スペースiのRT情報である。R_l0[i]は、参照リストL0内の参照スペースiの回転情報である。回転情報は、適用された回転処理の内容を示し、例えば、回転行列、又はクォータニオン等である。T_l0[i]は、参照リストL0内の参照スペースiの並進情報である。並進情報は、適用された並進処理の内容を示し、例えば、並進ベクトル等である。
 MaxRefSpc_l1は、参照リストL1内に含まれる参照スペース数を示す。RT_flag_l1[i]は、参照リストL1内の参照スペースiのRT適用フラグである。RT_flag_l1[i]が1の場合、参照スペースiに回転及び並進が適用される。RT_flag_l1[i]が0の場合、参照スペースiに回転及び並進が適用されない。
 R_l1[i]及びT_l1[i]は、参照リストL1内の参照スペースiのRT情報である。R_l1[i]は、参照リストL1内の参照スペースiの回転情報である。回転情報は、適用された回転処理の内容を示し、例えば、回転行列、又はクォータニオン等である。T_l1[i]は、参照リストL1内の参照スペースiの並進情報である。並進情報は、適用された並進処理の内容を示し、例えば、並進ベクトル等である。
 インター予測部1311は、参照スペースメモリ1310に格納された符号化済みの参照スペースの情報を用いて符号化対象ボリュームの予測ボリュームを生成する。上述したように、インター予測部1311は、符号化対象ボリュームの予測ボリュームを生成する前に、符号化対象スペースと参照スペースの全体的な位置関係を近づけるために、符号化対象スペースと参照スペースでICP(Interactive Closest Point)アルゴリズムを用いてRT情報を求める。そして、インター予測部1311は、求めたRT情報を用いて参照スペースに回転及び並進処理を適用することで参照スペースBを得る。その後、インター予測部1311は、符号化対象スペース内の符号化対象ボリュームの予測ボリュームを参照スペースB内の情報を用いて生成する。ここで、三次元データ符号化装置1300は、参照スペースBを得るために用いられたRT情報を符号化対象スペースのヘッダ情報等に付加する。
 このように、インター予測部1311は、参照スペースに回転及び並進処理を適用することにより符号化対象スペースと参照スペースとの全体的な位置関係を近づけてから、参照スペースの情報を用いて予測ボリュームを生成することで予測ボリュームの精度を向上できる。また、予測残差を抑制できるので符号量を削減できる。なお、ここでは、符号化対象スペースと参照スペースとを用いてICPを行う例を示したが、必ずしもこれに限らない。例えば、インター予測部1311は、処理量を削減するために、ボクセル又はポイントクラウド数を間引いた符号化対象スペース、及び、ボクセル又はポイントクラウド数を間引いた参照スペースの少なくとも一方を用いてICPを行うことで、RT情報を求めてもよい。
 また、インター予測部1311は、ICPの結果得られるICPエラー値が、予め定められた第1閾値より小さい場合、つまり、例えば符号化対象スペースと参照スペースの位置関係が近い場合には、回転及び並進処理は必要ないと判断し、回転及び並進を行わなくてもよい。この場合、三次元データ符号化装置1300は、RT情報をビットストリームに付加しないことによりオーバーヘッドを抑制してもよい。
 また、インター予測部1311は、ICPエラー値が、予め定められた第2閾値より大きい場合には、スペース間の形状変化が大きいと判断し、符号化対象スペースの全てのボリュームにイントラ予測を適用してもよい。以下、イントラ予測を適用するスペースをイントラスペースと呼ぶ。また、第2閾値は上記第1閾値より大きい値である。また、ICPに限定せず、2つのボクセル集合、又は、2つのポイントクラウド集合からRT情報を求める方法であれば、どのような手法を適用してもよい。
 また、三次元データに形状又は色等の属性情報が含まれる場合には、インター予測部1311は、符号化対象スペース内の符号化対象ボリュームの予測ボリュームとして、例えば参照スペース内で符号化対象ボリュームと最も形状又は色等の属性情報が近いボリュームを探索する。また、この参照スペースは、例えば、上述した回転及び並進処理が行われた後の参照スペースである。インター予測部1311は、探索により得られたボリューム(参照ボリューム)から予測ボリュームを生成する。図47は、予測ボリュームの生成動作を説明するための図である。インター予測部1311は、図47に示す符号化対象ボリューム(ボリュームidx=0)を、インター予測を用いて符号化する場合、参照スペース内の参照ボリュームを順にスキャンしながら、符号化対象ボリュームと参照ボリュームとの差分である予測残差が一番小さいボリュームを探索する。インター予測部1311は、予測残差が一番小さいボリュームを予測ボリュームとして選択する。符号化対象ボリュームと予測ボリュームとの予測残差が変換部1303以降の処理により符号化される。ここで、予測残差とは、符号化対象ボリュームの属性情報と予測ボリュームの属性情報との差分である。また、三次元データ符号化装置1300は、予測ボリュームとして参照した参照スペース内の参照ボリュームのボリュームidxをビットストリームのヘッダ等に付加する。
 図47に示す例では、参照スペースL0R0のボリュームidx=4の参照ボリュームが符号化対象ボリュームの予測ボリュームとして選択される。そして、符号化対象ボリュームと参照ボリュームとの予測残差と、参照ボリュームidx=4とが符号化されてビットストリームに付加される。
 なお、ここでは属性情報の予測ボリュームを生成する例を説明したが、位置情報の予測ボリュームについても同様の処理が行われてもよい。
 予測制御部1312は、符号化対象ボリュームをイントラ予測、及びインター予測のいずれを用いて符号化するかを制御する。ここで、イントラ予測、及びインター予測を含むモードを予測モードと呼ぶ。例えば、予測制御部1312は、符号化対象ボリュームをイントラ予測で予測した場合の予測残差と、インター予測で予測した場合の予測残差とを評価値として算出し、評価値が小さい方の予測モードを選択する。なお、予測制御部1312は、イントラ予測の予測残差とインター予測の予測残差とに、それぞれ直交変換、量子化、及び、エントロピー符号化を適用することで実際の符号量を算出し、算出した符号量を評価値として予測モードを選択してもよい。また、評価値に予測残差以外のオーバーヘッド情報(参照ボリュームidx情報など)を加えるようにしてもよい。また、予測制御部1312は、符号化対象スペースをイントラスペースで符号化すると予め決定されている場合には、常にイントラ予測を選択してもよい。
 エントロピー符号化部1313は、量子化部1304からの入力である量子化係数を可変長符号化することにより符号化信号(符号化ビットストリーム)を生成する。具体的には、エントロピー符号化部1313は、例えば、量子化係数を二値化し、得られた二値信号を算術符号化する。
 次に、三次元データ符号化装置1300により生成された符号化信号を復号する三次元データ復号装置について説明する。図48は、本実施の形態に係る三次元データ復号装置1400のブロック図である。この三次元データ復号装置1400は、エントロピー復号部1401と、逆量子化部1402と、逆変換部1403と、加算部1404と、参照ボリュームメモリ1405と、イントラ予測部1406と、参照スペースメモリ1407と、インター予測部1408と、予測制御部1409とを備える。
 エントロピー復号部1401は、符号化信号(符号化ビットストリーム)を可変長復号する。例えば、エントロピー復号部1401は、符号化信号を算術復号して二値信号を生成し、生成した二値信号から量子化係数を生成する。
 逆量子化部1402は、エントロピー復号部1401から入力された量子化係数を、ビットストリーム等に付加された量子化パラメータを用いて逆量子化することで逆量子化係数を生成する。
 逆変換部1403は、逆量子化部1402から入力された逆量子化係数を逆変換することで予測残差を生成する。例えば、逆変換部1403は、逆量子化係数を、ビットストリームに付加された情報に基づいて逆直交変換することで予測残差を生成する。
 加算部1404は、逆変換部1403で生成された予測残差と、イントラ予測又はインター予測により生成された予測ボリュームとを加算して再構成ボリュームを生成する。この再構成ボリュームは、復号三次元データとして出力されるとともに、参照ボリュームメモリ1405、又は、参照スペースメモリ1407に格納される。
 イントラ予測部1406は、参照ボリュームメモリ1405内の参照ボリュームとビットストリームに付加された情報とを用いてイントラ予測により予測ボリュームを生成する。具体的には、イントラ予測部1406は、ビットストリームに付加された隣接ボリューム情報(例えばボリュームidx)と、予測モード情報とを取得し、隣接ボリューム情報で示さる隣接ボリュームを用いて、予測モード情報で示されるモードにより予測ボリュームを生成する。なお、これらの処理の詳細は、ビットストリームに付与された情報が用いられる点を除き、上述したイントラ予測部1309による処理と同様である。
 インター予測部1408は、参照スペースメモリ1407内の参照スペースとビットストリームに付加された情報とを用いてインター予測により予測ボリュームを生成する。具体的には、インター予測部1408は、ビットストリームに付加された参照スペース毎のRT情報を用いて参照スペースに対して回転及び並進処理を適用し、適用後の参照スペースを用いて予測ボリュームを生成する。なお、参照スペース毎のRT適用フラグがビットストリーム内に存在する場合には、インター予測部1408は、RT適用フラグに応じて参照スペースに回転及び並進処理を適用する。なお、これらの処理の詳細は、ビットストリームに付与された情報が用いられる点を除き、上述したインター予測部1311による処理と同様である。
 予測制御部1409は、復号対象ボリュームをイントラ予測で復号するか、インター予測で復号するかを制御する。例えば、予測制御部1409は、ビットストリームに付加された、使用する予測モードを示す情報に応じてイントラ予測又はインター予測を選択する。なお、予測制御部1409は、復号対象スペースをイントラスペースで復号すると予め決定されている場合は、常にイントラ予測を選択してもよい。
 以下、本実施の形態の変形例について説明する。本実施の形態ではスペース単位で回転及び並進が適用される例を説明したが、より細かい単位で回転及び並進が適用されてもよい。例えば、三次元データ符号化装置1300は、スペースをサブスペースに分割し、サブスペース単位で回転及び並進を適用してもよい。この場合、三次元データ符号化装置1300は、サブスペース毎にRT情報を生成し、生成したRT情報をビットストリームのヘッダ等に付加する。また、三次元データ符号化装置1300は、符号化単位であるボリューム単位で回転及び並進を適用してもよい。この場合、三次元データ符号化装置1300は、符号化ボリューム単位でRT情報を生成し、生成したRT情報をビットストリームのヘッダ等に付加する。さらに、上記を組み合わせてもよい。つまり、三次元データ符号化装置1300は、大きい単位で回転及び並進を適用し、その後、細かい単位で回転及び並進を適用してもよい。例えば、三次元データ符号化装置1300は、スペース単位で回転及び並進を適用し、得られたスペースに含まれる複数のボリュームの各々に対して、互いに異なる回転及び並進を適用してもよい。
 また、本実施の形態では参照スペースに回転及び並進を適用する例を説明したが、必ずしもこれに限らない。例えば、三次元データ符号化装置1300は、例えば、スケール処理を適用して三次元データの大きさを変化させてもよい。また、三次元データ符号化装置1300は、回転、並進及びスケールのうち、いずれか1つ又は2つを適用してもよい。また、上記のように多段階で異なる単位で処理を適用する場合には、各単位に適用される処理の種類が異なってもよい。例えば、スペース単位では回転及び並進が適用され、ボリューム単位では並進が適用されてもよい。
 なお、これらの変形例については、三次元データ復号装置1400に対しても同様に適用できる。
 以上のように、本実施の形態に係る三次元データ符号化装置1300は、以下の処理を行う。図48は、三次元データ符号化装置1300によるインター予測処理のフローチャートである。
 まず、三次元データ符号化装置1300は、対象三次元データ(例えば符号化対象スペース)と異なる時刻の参照三次元データ(例えば参照スペース)に含まれる三次元点の位置情報を用いて予測位置情報(例えば予測ボリューム)を生成する(S1301)。具体的には、三次元データ符号化装置1300は、参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用することで予測位置情報を生成する。
 なお、三次元データ符号化装置1300は、回転及び並進処理を第1の単位(例えばスペース)で行い、予測位置情報の生成を第1の単位より細かい第2の単位(例えばボリューム)で行ってもよい。例えば、三次元データ符号化装置1300は、回転及び並進処理後の参照スペースに含まれる複数のボリュームのうち、符号化対象スペースに含まれる符号化対象ボリュームと位置情報の差が最小となるボリュームを探索し、得られたボリュームを予測ボリュームとして用いる。なお、三次元データ符号化装置1300は、回転及び並進処理と、予測位置情報の生成とを同一の単位で行ってもよい。
 また、三次元データ符号化装置1300は、参照三次元データに含まれる三次元点の位置情報に第1の単位(例えばスペース)で第1回転及び並進処理を適用し、第1回転及び並進処理により得られた三次元点の位置情報に、第1の単位より細かい第2の単位(例えばボリューム)で第2回転及び並進処理を適用することで予測位置情報を生成してもよい。
 ここで、三次元点の位置情報及び予測位置情報は、例えば図41に示すように、8分木構造で表現される。例えば、三次元点の位置情報及び予測位置情報は、8分木構造における深度と幅とのうち、幅を優先したスキャン順で表される。または、三次元点の位置情報及び予測位置情報は、8分木構造における深度と幅とのうち、深度を優先したスキャン順で表される。
 また、図46に示すように、三次元データ符号化装置1300は、参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用するか否かを示すRT適用フラグを符号化する。つまり、三次元データ符号化装置1300は、RT適用フラグを含む符号化信号(符号化ビットストリーム)を生成する。また、三次元データ符号化装置1300は、回転及び並進処理の内容を示すRT情報を符号化する。つまり、三次元データ符号化装置1300は、RT情報を含む符号化信号(符号化ビットストリーム)を生成する。なお、三次元データ符号化装置1300は、RT適用フラグにより回転及び並進処理を適用することが示される場合にRT情報を符号化し、RT適用フラグにより回転及び並進処理を適用しないことが示される場合にRT情報を符号化しなくてもよい。
 また、三次元データは、例えば、三次元点の位置情報と、各三次元点の属性情報(色情報等)とを含む。三次元データ符号化装置1300は、参照三次元データに含まれる三次元点の属性情報を用いて予測属性情報を生成する(S1302)。
 次に、三次元データ符号化装置1300は、対象三次元データに含まれる三次元点の位置情報を、予測位置情報を用いて符号化する。例えば、三次元データ符号化装置1300は、図38に示すように対象三次元データに含まれる三次元点の位置情報と予測位置情報との差分である差分位置情報を算出する(S1303)。
 また、三次元データ符号化装置1300は、対象三次元データに含まれる三次元点の属性情報を、予測属性情報を用いて符号化する。例えば、三次元データ符号化装置1300は、対象三次元データに含まれる三次元点の属性情報と予測属性情報との差分である差分属性情報を算出する(S1304)。次に、三次元データ符号化装置1300は、算出された差分属性情報に変換及び量子化を行う(S1305)。
 最後に、三次元データ符号化装置1300は、差分位置情報と、量子化後の差分属性情報とを符号化(例えばエントロピー符号化)する(S1306)。つまり、三次元データ符号化装置1300は、差分位置情報と差分属性情報とを含む符号化信号(符号化ビットストリーム)を生成する。
 なお、三次元データに属性情報が含まれない場合には、三次元データ符号化装置1300は、ステップS1302、S1304及びS1305を行わなくてもよい。また、三次元データ符号化装置1300は、三次元点の位置情報の符号化と、三次元点の属性情報の符号化とのうち、一方のみを行ってもよい。
 また、図49に示す処理の順序は一例であり、これに限定されない。例えば、位置情報に対する処理(S1301、S1303)と、属性情報に対する処理(S1302、S1304、S1305)とは互いに独立しているため、任意の順序で行われてもよいし、一部が並列処理されてもよい。
 以上により、本実施の形態に三次元データ符号化装置1300は、対象三次元データと異なる時刻の参照三次元データに含まれる三次元点の位置情報を用いて予測位置情報を生成し、対象三次元データに含まれる三次元点の位置情報と予測位置情報との差分である差分位置情報を符号化する。これにより、符号化信号のデータ量を削減できるので符号化効率を向上できる。
 また、本実施の形態に三次元データ符号化装置1300は、参照三次元データに含まれる三次元点の属性情報を用いて予測属性情報を生成し、対象三次元データに含まれる三次元点の属性情報と予測属性情報との差分である差分属性情報を符号化する。これにより、符号化信号のデータ量を削減できるので符号化効率を向上できる。
 例えば、三次元データ符号化装置1300は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 図48は、三次元データ復号装置1400によるインター予測処理のフローチャートである。
 まず、三次元データ復号装置1400は、符号化信号(符号化ビットストリーム)から、差分位置情報と差分属性情報とを復号(例えばエントロピー復号)する(S1401)。
 また、三次元データ復号装置1400は、符号化信号から、参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用するか否かを示すRT適用フラグを復号する。また、三次元データ復号装置1400は、回転及び並進処理の内容を示すRT情報を復号する。なお、三次元データ復号装置1400は、RT適用フラグにより回転及び並進処理を適用することが示される場合にRT情報を復号し、RT適用フラグにより回転及び並進処理を適用しないことが示される場合にRT情報を復号しなくてもよい。
 次に、三次元データ復号装置1400は、復号された差分属性情報に逆量子化及び逆変換を行う(S1402)。
 次に、三次元データ復号装置1400は、対象三次元データ(例えば復号対象スペース)と異なる時刻の参照三次元データ(例えば参照スペース)に含まれる三次元点の位置情報を用いて予測位置情報(例えば予測ボリューム)を生成する(S1403)。具体的には、三次元データ復号装置1400は、参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用することで予測位置情報を生成する。
 より具体的には、三次元データ復号装置1400は、RT適用フラグにより回転及び並進処理を適用することが示される場合に、RT情報で示される参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用する。一方、RT適用フラグにより回転及び並進処理を適用しないことが示される場合には、三次元データ復号装置1400は、参照三次元データに含まれる三次元点の位置情報に回転及び並進処理を適用しない。
 なお、三次元データ復号装置1400は、回転及び並進処理を第1の単位(例えばスペース)で行い、予測位置情報の生成を第1の単位より細かい第2の単位(例えばボリューム)で行ってもよい。なお、三次元データ復号装置1400は、回転及び並進処理と、予測位置情報の生成とを同一の単位で行ってもよい。
 また、三次元データ復号装置1400は、参照三次元データに含まれる三次元点の位置情報に第1の単位(例えばスペース)で第1回転及び並進処理を適用し、第1回転及び並進処理により得られた三次元点の位置情報に、第1の単位より細かい第2の単位(例えばボリューム)で第2回転及び並進処理を適用することで予測位置情報を生成してもよい。
 ここで、三次元点の位置情報及び予測位置情報は、例えば図41に示すように、8分木構造で表現される。例えば、三次元点の位置情報及び予測位置情報は、8分木構造における深度と幅とのうち、幅を優先したスキャン順で表される。または、三次元点の位置情報及び予測位置情報は、8分木構造における深度と幅とのうち、深度を優先したスキャン順で表される。
 三次元データ復号装置1400は、参照三次元データに含まれる三次元点の属性情報を用いて予測属性情報を生成する(S1404)。
 次に、三次元データ復号装置1400は、符号化信号に含まれる符号化位置情報を予測位置情報を用いて復号することで対象三次元データに含まれる三次元点の位置情報を復元する。ここで、符号化位置情報とは、例えば、差分位置情報であり、三次元データ復号装置1400は、差分位置情報と予測位置情報とを加算することで対象三次元データに含まれる三次元点の位置情報を復元する(S1405)。
 また、三次元データ復号装置1400は、符号化信号に含まれる符号化属性情報を予測属性情報を用いて復号することで対象三次元データに含まれる三次元点の属性情報を復元する。ここで、符号化属性情報とは、例えば、差分属性情報であり、三次元データ復号装置1400は、差分属性情報と予測属性情報とを加算することで対象三次元データに含まれる三次元点の属性情報を復元する(S1406)。
 なお、三次元データに属性情報が含まれない場合には、三次元データ復号装置1400は、ステップS1402、S1404及びS1406を行わなくてもよい。また、三次元データ復号装置1400は、三次元点の位置情報の復号と、三次元点の属性情報の復号とのうち、一方のみを行ってもよい。
 また、図50に示す処理の順序は一例であり、これに限定されない。例えば、位置情報に対する処理(S1403、S1405)と、属性情報に対する処理(S1402、S1404、S1406)とは互いに独立しているため、任意の順序で行われてもよいし、一部が並列処理されてもよい。
 (実施の形態8)
 本実施の形態では、オキュパンシー符号の符号化時における参照の制御方法について説明する。なお、以下では、主に三次元データ符号化装置の動作を説明するが、三次元データ復号装置においても同様の処理が行われてもよい。
 図51及び図52は、本実施の形態に係る参照関係を示す図である、図51は、参照関係を8分木構造上で示す図であり、図52は、参照関係を空間領域上で示す図である。
 本実施の形態では、三次元データ符号化装置は、符号化対象のノード(以下、対象ノードと呼ぶ)の符号化情報を符号化する際に、対象ノードが属する親ノード(parent node)内の各ノードの符号化情報を参照する。ただし、親ノードと同一層の他のノード(以下、親隣接ノード)内の各ノードの符号化情報は参照しない。つまり、三次元データ符号化装置は、親隣接ノードの参照を不可に設定する、又は参照を禁止にする。
 なお、三次元データ符号化装置は、親ノードが属する親ノード(以下、祖父ノード(grandparent node)と呼ぶ)内の符号化情報の参照を許可してもよい。つまり、三次元データ符号化装置は、対象ノードが属する親ノード及び祖父ノードの符号化情報を参照して対象ノードの符号化情報を符号化してもよい。
 ここで符号化情報とは、例えばオキュパンシー符号である。三次元データ符号化装置は、対象ノードのオキュパンシー符号を符号化する際に、対象ノードが属する親ノード内の各ノードに点群が含まれるか否かを示す情報(以下、占有情報)を参照する。言い換えると、三次元データ符号化装置は、対象ノードのオキュパンシー符号を符号化する際に、親ノードのオキュパンシー符号を参照する。一方で、三次元データ符号化装置は、親隣接ノード内の各ノードの占有情報は参照しない。つまり、三次元データ符号化装置は、親隣接ノードのオキュパンシー符号を参照しない。また、三次元データ符号化装置は、祖父ノード内の各ノードの占有情報を参照してもよい。つまり、三次元データ符号化装置は、親ノード及び親隣接ノードの占有情報を参照してもよい。
 例えば、三次元データ符号化装置は、対象ノードのオキュパンシー符号を符号化する際に、対象ノードが属する親ノード又は祖父ノードのオキュパンシー符号を用いて対象ノードのオキュパンシー符号をエントロピー符号化する際に用いる符号化テーブルを切替える。なお、この詳細は後述する。この際、三次元データ符号化装置は、親隣接ノードのオキュパンシー符号を参照しなくてもよい。これにより、三次元データ符号化装置は、対象ノードのオキュパンシー符号を符号化する際に、親ノード又は祖父ノードのオキュパンシー符号の情報に応じて適切に符号化テーブルを切替えることができるので、符号化効率を向上できる。また、三次元データ符号化装置は、親隣接ノードを参照しないことで、親隣接ノードの情報の確認処理、及びそれらを記憶するためのメモリ容量を抑制することができる。また、8分木の各ノードのオキュパンシー符号を深さ優先順にスキャンして符号化することが容易となる。
 以下、親ノードのオキュパンシー符号を用いた符号化テーブル切替例について説明する。図53は、対象ノードと隣接参照ノードの例を示す図である。図54は、親ノードとノードとの関係を示す図である。図55は、親ノードのオキュパンシー符号の例を示す図である。ここで、隣接参照ノードとは、対象ノードに空間的に隣接するノードのうち、対象ノードの符号化の際に参照されるノードである。図53に示す例では、隣接ノードは、対象ノードと同一層に属するノードである。また、参照隣接ノードとして対象ブロックのx方向に隣接するノードXと、y方向に隣接するノードYと、z方向に隣接するノードZとが用いられる。つまり、x、y、zの各方向においてそれぞれ1つの隣接ブロックが参照隣接ブロックに設定される。
 なお、図54に示すノード番号は一例であり、ノード番号とノードの位置との関係はこれに限らない。また、図55では、下位ビットにノード0が割り当てられ、上位ビットにノード7が割り当てられているが、逆の順序で割り当てが行われてもよい。また、各ノードは任意のビットに割り当てられてもよい。
 三次元データ符号化装置は、対象ノードのオキュパンシー符号をエントロピー符号化する際の符号化テーブルを、例えば下記式により決定する。
 CodingTable=(FlagX<<2)+(FlagY<<1)+(FlagZ)
 ここで、CodingTableは、対象ノードのオキュパンシー符号用の符号化テーブルを示し、値0~7のいずれかを示す。FlagXは、隣接ノードXの占有情報であり、隣接ノードXが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagYは、隣接ノードYの占有情報であり、隣接ノードYが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagZは、隣接ノードZの占有情報であり、隣接ノードZが点群を含む(占有)なら1を示し、そうでないなら0を示す。
 なお、隣接ノードが占有であるか否かを示す情報は、親ノードのオキュパンシー符号にに含まれているため、三次元データ符号化装置は、親ノードのオキュパンシー符号に示される値を用いて符号化テーブルを選択してもよい。
 以上により、三次元データ符号化装置は、対象ノードの隣接ノードに点群が含まれるか否かを示す情報を用いて符号化テーブルを切替えることで符号化効率を向上できる。
 また、三次元データ符号化装置は、図53に示すように、親ノード内の対象ノードの空間位置に応じて隣接参照ノードを切替えてもよい。つまり、三次元データ符号化装置は、対象ノードの親ノード内の空間位置に応じて、複数の隣接ノードのうち、参照する隣接ノードを切り替えてもよい。
 次に、三次元データ符号化装置及び三次元データ復号装置の構成例を説明する。図56は、本実施の形態に係る三次元データ符号化装置2100のブロック図である。図56に示す三次元データ符号化装置2100は、8分木生成部2101と、幾何情報算出部2102と、符号化テーブル選択部2103と、エントロピー符号化部2104とを備える。
 8分木生成部2101は、入力された三次元点(ポイントクラウド)から、例えば8分木を生成し、8分木に含まれる各ノードのオキュパンシー符号を生成する。幾何情報算出部2102は、対象ノードの隣接参照ノードが占有であるか否かを示す占有情報を取得する。例えば、幾何情報算出部2102は、対象ノードが所属する親ノードのオキュパンシー符号から隣接参照ノードの占有情報を取得する。なお、幾何情報算出部2102は、図53に示すように、対象ノードの親ノード内の位置に応じて隣接参照ノードを切替えてもよい。また、幾何情報算出部2102は、親隣接ノード内の各ノードの占有情報は参照しない。
 符号化テーブル選択部2103は、幾何情報算出部2102で算出された隣接参照ノードの占有情報を用いて対象ノードのオキュパンシー符号のエントロピー符号化に用いる符号化テーブルを選択する。エントロピー符号化部2104は、選択された符号化テーブルを用いてオキュパンシー符号をエントロピー符号化することでビットストリームを生成する。なお、エントロピー符号化部2104は、選択された符号化テーブルを示す情報をビットストリームに付加してもよい。
 図57は、本実施の形態に係る三次元データ復号装置2110のブロック図である。図57に示す三次元データ復号装置2110は、8分木生成部2111と、幾何情報算出部2112と、符号化テーブル選択部2113と、エントロピー復号部2114とを備える。
 8分木生成部2111は、ビットストリームのヘッダ情報等を用いて、ある空間(ノード)の8分木を生成する。8分木生成部2111は、例えば、ヘッダ情報に付加されたある空間のx軸、y軸、z軸方向の大きさを用いて大空間(ルートノード)を生成し、その空間をx軸、y軸、z軸方向にそれぞれ2分割することで8個の小空間A(ノードA0~A7)を生成して8分木を生成する。また、対象ノードとしてノードA0~A7が順に設定される。
 幾何情報算出部2112は、対象ノードの隣接参照ノードが占有であるか否かを示す占有情報を取得する。例えば、幾何情報算出部2112は、対象ノードが所属する親ノードのオキュパンシー符号から隣接参照ノードの占有情報を取得する。なお、幾何情報算出部2112は、図53に示すように、対象ノードの親ノード内の位置に応じて隣接参照ノードを切替えてもよい。また、幾何情報算出部2112は、親隣接ノード内の各ノードの占有情報は参照しない。
 符号化テーブル選択部2113は、幾何情報算出部2112で算出された隣接参照ノードの占有情報を用いて対象ノードのオキュパンシー符号のエントロピー復号に用いる符号化テーブル(復号テーブル)を選択する。エントロピー復号部2114は、選択された符号化テーブルを用いてオキュパンシー符号をエントロピー復号することで、三次元点を生成する。なお、符号化テーブル選択部2113は、ビットストリームに付加された、選択された符号化テーブルの情報を復号して取得し、エントロピー復号部2114は、取得された情報で示される符号化テーブルを用いてもよい。
 ビットストリームに含まれるオキュパンシー符号(8ビット)の各ビットは、8個の小空間A(ノードA0~ノードA7)にそれぞれ点群が含まれるか否かを示す。また更に、三次元データ復号装置は、小空間ノードA0を8個の小空間B(ノードB0~ノードB7)に分割して8分木を生成し、小空間Bの各ノードに点群が含まれるか否かを示す情報をオキュパンシー符号を復号して取得する。このように、三次元データ復号装置は、大空間から小空間へと8分木を生成しながら各ノードのオキュパンシー符号を復号する。
 以下、三次元データ符号化装置及び三次元データ復号装置による処理の流れを説明する。図58は、三次元データ符号化装置における三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、入力された三次元点群の一部又は全てが含まれる空間(対象ノード)を決定(定義)する(S2101)。次に、三次元データ符号化装置は、対象ノードを8分割して8個の小空間(ノード)を生成する(S2102)。次に、三次元データ符号化装置は、各ノードに点群が含まれるか否かに応じて対象ノードのオキュパンシー符号を生成する(S2103)。
 次に、三次元データ符号化装置は、対象ノードの隣接参照ノードの占有情報を、対象ノードの親ノードのオキュパンシー符号から算出(取得)する(S2104)。次に、三次元データ符号化装置は、決定した対象ノードの隣接参照ノードの占有情報に基づき、エントロピー符号化に用いる符号化テーブルを選択する(S2105)。次に、三次元データ符号化装置は、選択した符号化テーブルを用いて対象ノードのオキュパンシー符号をエントロピー符号化する(S2106)。
 さらに、三次元データ符号化装置は、各ノードをそれぞれ8分割し、各ノードのオキュパンシー符号を符号化するという処理を、ノードが分割できなくなるまで繰り返す(S2107)。つまり、ステップS2102~S2106までの処理が再帰的に繰り返される。
 図59は、三次元データ復号装置における三次元データ復号方法のフローチャートである。まず、三次元データ復号装置は、ビットストリームのヘッダ情報を用いて復号する空間(対象ノード)を決定(定義)する(S2111)。次に、三次元データ復号装置は、対象ノードを8分割して8個の小空間(ノード)を生成する(S2112)。次に、三次元データ復号装置は、対象ノードの隣接参照ノードの占有情報を、対象ノードの親ノードのオキュパンシー符号から算出(取得)する(S2113)。
 次に、三次元データ復号装置は、隣接参照ノードの占有情報に基づきエントロピー復号に用いる符号化テーブルを選択する(S2114)。次に、三次元データ復号装置は、選択した符号化テーブルを用いて対象ノードのオキュパンシー符号をエントロピー復号する(S2115)。
 さらに、三次元データ復号装置は、各ノードをそれぞれ8分割し、各ノードのオキュパンシー符号を復号するという処理を、ノードが分割できなくなるまで繰り返す(S2116)。つまり、ステップS2112~S2115までの処理が再帰的に繰り返される。
 次に、符号化テーブルの切替えの例を説明する。図60は、符号化テーブルの切替え例を示す図である。例えば、図60に示す符号化テーブル0のように、複数のオキュパンシー符号に同一のコンテキストモデルが適用されてもよい。また、各オキュパンシー符号に別々のコンテキストモデルが割り当てられてもよい。これにより、オキュパンシー符号の出現確率に応じてコンテキストモデルを割り当てることができるので、符号化効率を向上できる。また、オキュパンシー符号の出現頻度に応じて確率テーブルを更新するコンテキストモデルが用いられてもよい。または、確率テーブルを固定したコンテキストモデルが用いられてもよい。
 以下、本実施の形態の変形例1について説明する。図61は、本変形例における参照関係を示す図である。上記実施の形態では、三次元データ符号化装置は、親隣接ノードのオキュパンシー符号を参照しないとしたが、親隣接ノードのオキュパンシー符号化を参照するか否かを、特定の条件に応じて切り替えてもよい。
 例えば、三次元データ符号化装置は、8分木を幅優先でスキャンしながら符号化を行うときは、親隣接ノード内のノードの占有情報を参照して、対象ノードのオキュパンシー符号を符号化する。一方、三次元データ符号化装置は、8分木を深さ優先でスキャンしながら符号化するときは、親隣接ノード内のノードの占有情報の参照を禁止する。このように8分木のノードのスキャン順(符号化順)に応じて、適切に参照可能なノードを切替えることにより、符号化効率の向上と処理負荷の抑制を実現できる。
 なお、三次元データ符号化装置は、8分木を幅優先で符号化したか、深さ優先で符号化したか等の情報をビットストリームのヘッダに付加してもよい。図62は、この場合のヘッダ情報のシンタックス例を示す図である。図62に示すoctree_scan_orderは、8分木の符号化順を示す符号化順情報(符号化順フラグ)である。例えば、octree_scan_orderが0の場合、幅優先を示し、1の場合は深さ優先を示す。これにより、三次元データ復号装置は、octree_scan_orderを参照することで、ビットストリームが幅優先及び深さ優先のどちらで符号化されたかを知ることができるので、ビットストリームを適切に復号できる。
 また、三次元データ符号化装置は、親隣接ノードの参照を禁止するか否かを示す情報をビットストリームのヘッダ情報に付加してもよい。図63は、この場合のヘッダ情報のシンタックス例を示す図である。limit_refer_flagは、親隣接ノードの参照を禁止するか否かを示す禁止切替情報(禁止切替フラグ)である。例えば、limit_refer_flagが1の場合は親隣接ノードの参照を禁止することを示し、0の場合は参照制限なし(親隣接ノードの参照を許可する)を示す。
 つまり、三次元データ符号化装置は、親隣接ノードの参照を禁止するか否かを決定し、上記決定の結果に基づき、親隣接ノードの参照を禁止するか、許可するかを切り替える。また、三次元データ符号化装置は、上記決定の結果であって、親隣接ノードの参照を禁止するか否かを示す禁止切替情報を含むビットストリームを生成する。
 また、三次元データ復号装置は、親隣接ノードの参照を禁止するか否かを示す禁止切替情報をビットストリームから取得し、禁止切替情報に基づき、親隣接ノードの参照を禁止するか、許可するかを切り替える。
 これにより三次元データ符号化装置は、親隣接ノードの参照を制御してビットストリームを生成できる。また、三次元データ復号装置は、親隣接ノードの参照が禁止されているか否かを示す情報をビットストリームのヘッダから取得できる。
 また、本実施の形態では、親隣接ノードの参照を禁止する符号化処理の例としてオキュパンシー符号の符号化処理を例として記載したが、必ずしもこれに限らない。例えば、8分木のノードの他の情報を符号化する際にも同様の手法を適用可能である。例えば、ノードに付加された色、法線ベクトル、又は反射率等のその他の属性情報を符号化する際に、本実施の形態の手法を適用してもよい。また、符号化テーブル又は予測値を符号化する際にも同様の手法を適用できる。
 次に、本実施の形態の変形例2について説明する。上記説明では、図53に示すように、3つの参照隣接ノードが用いられる例を示したが4つ以上の参照隣接ノードが用いられてもよい。図64は、対象ノード及び参照隣接ノードの例を示す図である。
 例えば、三次元データ符号化装置は、図64に示す対象ノードのオキュパンシー符号をエントロピー符号化する際の符号化テーブルを、例えば下記式により算出する。
 CodingTable=(FlagX0<<3)+(FlagX1<<2)+(FlagY<<1)+(FlagZ)
 ここで、CodingTableは、対象ノードのオキュパンシー符号用の符号化テーブルを示し、値0~15のいずれかを示す。FlagXNは、隣接ノードXN(N=0..1)の占有情報であり、隣接ノードXNが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagYは、隣接ノードYの占有情報であり、隣接ノードYが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagZは、隣接ノードZの占有情報であり、隣接ノードZが点群を含む(占有)なら1を示し、そうでないなら0を示す。
 この際、もし隣接ノード、例えば図64の隣接ノードX0が参照不可(参照禁止)の場合は、三次元データ符号化装置は、代替値として1(占有)、又は、0(非占有)のような固定値を用いてもよい。
 図65は、対象ノード及び隣接ノードの例を示す図である。図65に示すように、隣接ノードが参照不可(参照禁止)の場合は、対象ノードの祖父ノードのオキュパンシー符号を参照して、隣接ノードの占有情報を算出してもよい。例えば、三次元データ符号化装置は、図65に示す隣接ノードX0の代わりに、隣接ノードG0の占有情報を用いて上式のFlagX0を算出し、算出したFlagX0を用いて符号化テーブルの値を決定してもよい。なお、図65に示す隣接ノードG0は、祖父ノードのオキュパンシー符号で占有か否かが判別できる隣接ノードである。隣接ノードX1は、親ノードのオキュパンシー符号で占有か否かが判別できる隣接ノードである。
 以下、本実施の形態の変形例3について説明する。図66及び図67は、本変形例に係る参照関係を示す図である、図66は、参照関係を8分木構造上で示す図であり、図67は、参照関係を空間領域上で示す図である。
 本変形例では、三次元データ符号化装置は、符号化対象のノード(以下、対象ノード2と呼ぶ)の符号化情報を符号化する際に、対象ノード2が属する親ノード内の各ノードの符号化情報を参照する。つまり、三次元データ符号化装置は、複数の隣接ノードのうち、対象ノードと親ノードが同一である第1ノードの子ノードの情報(例えば占有情報)の参照を許可する。例えば、三次元データ符号化装置は、図66に示す対象ノード2のオキュパンシー符号を符号化する際に、対象ノード2が属する親ノード内に存在するノード、例えば、図66に示す対象ノードのオキュパンシー符号を参照する。図66に示す対象ノードのオキュパンシー符号は、図67に示すように、例えば、対象ノード2に隣接する対象ノード内の各ノードが占有であるか否かを表している。よって、三次元データ符号化装置は、対象ノードのより細かい形状に応じて対象ノード2のオキュパンシー符号の符号化テーブルを切替えることができるので符号化効率を向上できる。
 三次元データ符号化装置は、対象ノード2のオキュパンシー符号をエントロピー符号化する際の符号化テーブルを、例えば下記式により算出してもよい。
 CodingTable=(FlagX1<<5)+(FlagX2<<4)+(FlagX3<<3)+(FlagX4<<2)+(FlagY<<1)+(FlagZ)
 ここで、CodingTableは、対象ノード2のオキュパンシー符号用の符号化テーブルを示し、値0~63のいずれかを示す。FlagXNは、隣接ノードXN(N=1..4)の占有情報であり、隣接ノードXNが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagYは、隣接ノードYの占有情報であり、隣接ノードYが点群を含む(占有)なら1を示し、そうでないなら0を示す。FlagZは、隣接ノードYの占有情報であり、隣接ノードZが点群を含む(占有)なら1を示し、そうでないなら0を示す。
 なお、三次元データ符号化装置は、符号化テーブルの算出方法を親ノード内における対象ノード2のノード位置に応じて変更してもよい。
 また、三次元データ符号化装置は、親隣接ノードの参照が禁止されていない場合、親隣接ノード内の各ノードの符号化情報を参照してよい。例えば、親隣接ノードの参照が禁止されていない場合、対象ノードと親ノードが異なる第3ノードの子ノードの情報(例えば占有情報)の参照が許可される。例えば、図65に示す例では、三次元データ符号化装置は、対象ノードと親ノードが異なる隣接ノードX0のオキュパンシー符号を参照して、隣接ノードX0の子ノードの占有情報を取得する。三次元データ符号化装置は、取得した隣接ノードX0の子ノードの占有情報に基づき、対象ノードのオキュパンシー符号のエントロピー符号化に用いる符号化テーブルを切替える。
 以上のように、本実施の形態に係る三次元データ符号化装置は、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードの情報(例えばオキュパンシー符号)を符号化する。図51及び図52に示すように、三次元データ符号化装置は、上記符号化では、対象ノードと空間的に隣接する複数の隣接ノードのうち、対象ノードと親ノードが同一である第1ノードの情報(例えば占有情報)の参照を許可し、対象ノードと親ノードが異なる第2ノードの情報(例えば占有情報)の参照を禁止する。言い換えると、三次元データ符号化装置は、上記符号化では、親ノードの情報(例えばオキュパンシー符号)の参照を許可し、親ノードと同一層の他のノード(親隣接ノード)の情報(例えばオキュパンシー符号)の参照を禁止する。
 これによれば、当該三次元データ符号化装置は、対象ノードと空間的に隣接する複数の隣接ノードのうち、対象ノードと親ノードが同一である第1ノードの情報の参照することで符号化効率を向上できる。また、当該三次元データ符号化装置は、複数の隣接ノードのうち、対象ノードと親ノードが異なる第2ノードの情報の参照をしないことにより、処理量を低減できる。このように、当該三次元データ符号化装置は、符号化効率を向上できるとともに、処理量を低減できる。
 例えば、三次元データ符号化装置は、さらに、第2ノードの情報の参照を禁止するか否かを決定し、上記符号化では、上記決定の結果に基づき、第2ノードの情報の参照を禁止するか、許可するかを切り替える。三次元データ符号化装置は、さらに、上記決定の結果であって、第2ノードの情報の参照を禁止するか否かを示す禁止切替情報(例えば、図63に示すlimit_refer_flag)を含むビットストリームを生成する。
 これによれば、当該三次元データ符号化装置は、第2ノードの情報の参照を禁止するか否かを切り替えることができる。また、三次元データ復号装置は、禁止切替情報を用いて適切に復号処理を行うことができる。
 例えば、対象ノードの情報は、対象ノードに属する子ノードの各々に三次元点が存在するか否かを示す情報(例えオキュパンシー符号)であり、第1ノードの情報は、第1ノードに三次元点が存在するか否かを示す情報(第1ノードの占有情報)であり、第2ノードの情報は、第2ノードに三次元点が存在するか否かを示す情報(第2ノードの占有情報)である。
 例えば、三次元データ符号化装置は、上記符号化では、第1ノードに三次元点が存在するか否かに基づき、符号化テーブルを選択し、選択された符号化テーブルを用いて、対象ノードの情報(例えばオキュパンシー符号)をエントロピー符号化する。
 例えば、三次元データ符号化装置は、上記符号化では、図66及び図67に示すように、複数の隣接ノードのうち、第1ノードの子ノードの情報(例えば占有情報)の参照を許可する。
 これによれば、当該三次元データ符号化装置は、隣接ノードのより詳細な情報を参照することができるので符号化効率を向上できる。
 例えば、三次元データ符号化装置は、図53に示すように、上記符号化では、対象ノードの親ノード内の空間位置に応じて、複数の隣接ノードのうち、参照する隣接ノードを切り替える。
 これによれば、当該三次元データ符号化装置は、対象ノードの親ノード内の空間位置に応じて、適切な隣接ノードを参照できる。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードの情報(例えばオキュパンシー符号)を復号する。図51及び図52に示すように、三次元データ復号装置は、上記復号では、対象ノードと空間的に隣接する複数の隣接ノードのうち、対象ノードと親ノードが同一である第1ノードの情報(例えば占有情報)の参照を許可し、対象ノードと親ノードが異なる第2ノードの情報(例えば占有情報)の参照を禁止する。言い換えると、三次元データ復号装置は、上記復号では、親ノードの情報(例えばオキュパンシー符号)の参照を許可し、親ノードと同一層の他のノード(親隣接ノード)の情報(例えばオキュパンシー符号)の参照を禁止する。
 これによれば、当該三次元データ復号装置は、対象ノードと空間的に隣接する複数の隣接ノードのうち、対象ノードと親ノードが同一である第1ノードの情報の参照することで符号化効率を向上できる。また、当該三次元データ復号装置は、複数の隣接ノードのうち、対象ノードと親ノードが異なる第2ノードの情報の参照をしないことにより、処理量を低減できる。このように、当該三次元データ復号装置は、符号化効率を向上できるとともに、処理量を低減できる。
 例えば、三次元データ復号装置は、さらに、第2ノードの情報の参照を禁止するか否かを示す禁止切替情報(例えば、図63に示すlimit_refer_flag)をビットストリームから取得し、上記復号では、禁止切替情報に基づき、第2ノードの情報の参照を禁止するか、許可するかを切り替える。
 これによれば、当該三次元データ復号装置は、禁止切替情報を用いて適切に復号処理を行うことができる。
 例えば、対象ノードの情報は、対象ノードに属する子ノードの各々に三次元点が存在するか否かを示す情報(例えオキュパンシー符号)であり、第1ノードの情報は、第1ノードに三次元点が存在するか否かを示す情報(第1ノードの占有情報)であり、第2ノードの情報は、第2ノードに三次元点が存在するか否かを示す情報(第2ノードの占有情報)である。
 例えば、三次元データ復号装置は、上記復号では、第1ノードに三次元点が存在するか否かに基づき、符号化テーブルを選択し、選択された符号化テーブルを用いて、対象ノードの情報(例えばオキュパンシー符号)をエントロピー復号する。
 例えば、三次元データ復号装置は、上記復号では、図66及び図67に示すように、複数の隣接ノードのうち、第1ノードの子ノードの情報(例えば占有情報)の参照を許可する。
 これによれば、当該三次元データ復号装置は、隣接ノードのより詳細な情報を参照することができるので符号化効率を向上できる。
 例えば、三次元データ復号装置は、図53に示すように、上記復号では、対象ノードの親ノード内の空間位置に応じて、複数の隣接ノードのうち、参照する隣接ノードを切り替える。
 これによれば、当該三次元データ復号装置は、対象ノードの親ノード内の空間位置に応じて、適切な隣接ノードを参照できる。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 (実施の形態9)
 三次元データ符号化装置は、符号化対象のノード(以下、対象ノードと呼ぶ)の符号化情報を符号化する際に、対象ノードの隣接ノード情報を用いることで符号化効率を向できる。例えば、三次元データ符号化装置は、対象ノードのオキュパンシー符号(occupancy code)をエントロピー符号化するための符号化テーブル(確率テーブル等)を隣接ノード情報を用いて切替える。ここで隣接ノード情報とは、例えば、対象ノードと空間的に隣接する複数のノード(隣接ノード)が占有状態のノード(占有ノード)であるか否か(隣接ノードが点群を含むか否か)等を示す情報である。
 例えば、三次元データ符号化装置は、複数の隣接ノードのうちの占有ノード(隣接占有ノード)の個数を示す情報を用いて符号化テーブルを切替えてもよい。例えば対象ノードに隣接する6個の隣接ノード(左、右、上、下、手前、奥)のうちの占有ノードの個数を算出し、その個数に応じて対象ノードのオキュパンシー符号をエントロピー符号化するための符号化テーブルを切替えてもよい。
 なお、三次元データ符号化装置は、隣接占有ノードの個数ではなく、そのパターン(以下、隣接占有パターン(NeighbourPattern))を用いてもよい。図68は、隣接ノードの例及び本実施の形態に係る処理を示す図である。例えば、図68に示す例では、隣接ノードX0、Y0、Z0が占有ノードであり、隣接ノードX1、Y1、Z1が占有ノードでない非占有ノードである。この場合、三次元データ符号化装置は、ビット列(Z1 Z0 Y1 Y0 X1 X0)=(010101)を10進数に変換することで隣接占有パターンの値21を算出し、21番目の符号化テーブルを用いて対象ノードのオキュパンシー符号を符号化する。なお、三次元データ符号化装置は、21という値を用いて算出した別の値を符号化テーブルの値として用いてもよい。
 ここで、対象ノードの隣接ノード情報を用いて隣接占有パターンを算出し、その値に応じて符号化テーブルを切替えて対象ノードのオキュパンシー符号を算術符号化するか否かを切替えるためのフラグであるNeighbourPatternCodingFlag(隣接パターン符号化フラグ)を設ける。三次元データ符号化装置は、このNeighbourPatternCodingFlagをビットストリームのヘッダ等に付加する。
 三次元データ符号化装置は、NeighbourPatternCodingFlag=1の場合、対象ノードの隣接ノード情報を用いて隣接占有パターンを算出し、その値に応じて符号化テーブルを切替えて対象ノードのオキュパンシー符号を算術符号化する。三次元データ符号化装置は、NeighbourPatternCodingFlag=0の場合、対象ノードの隣接ノード情報を用いずに対象ノードのオキュパンシー符号を算術符号化する。
 例えば、NeighbourPatternCodingFlag=1の場合、三次元データ符号化装置は、図68に示すように対象ノードに隣接する6個のノードを用いて隣接占有パターンを算出する。この場合、隣接占有パターンの値は0から63までの値を取り得る。よって、三次元データ符号化装置は、計64個の符号化テーブルを切替えて対象ノードのオキュパンシー符号を算術符号化する。
 例えば、図68に示す例では、隣接占有パターンの値は21であり、三次元データ符号化装置は、21番目の符号化テーブルを用いて対象ノードのオキュパンシー符号をエントロピー符号化する。なお、三次元データ符号化装置は、値21から算出されるインデックス番目の符号化テーブルを用いてもよい。
 また、例えば、NeighbourPatternCodingFlag=0の場合、三次元データ符号化装置は、隣接ノード情報の値を用いずに符号化テーブルを決定する。例えば、三次元データ符号化装置は、隣接占有パターンの値を0として、隣接ノード情報の値を用いずに符号化テーブルを決定して対象ノードのオキュパンシー符号を算術符号化する。つまり、三次元データ符号化装置は、隣接占有パターン=0と設定し、0番目の符号化テーブルを用いる。言い換えると、三次元データ符号化装置は、予め定められた符号化テーブルを用いる。
 このように、三次元データ符号化装置は、NeighbourPatternCodingFlagの値に応じて、隣接占有パターンを算出し、算出した隣接占有パターンに応じて符号化テーブルを切替えて符号化するか否かを切替える。これにより、符号化効率と低処理量化のバランスをとることが可能となる。
 ここで対象ノードを符号化するモードとして、例えばノードを更に8個のサブノードに分割して8分木構造で符号化する通常ノード(normal node)(または通常モード)と、8分割による8分木構造での符号化を止めてノード内の三次元点の位置情報を直接符号化する早期終端ノード(early terminated node)(またはダイレクト符号化モード(direct coding mode))とが存在してもよい。
 三次元データ符号化装置は、例えば対象ノード内の点群数がある閾値A以下の場合に、対象ノードを早期終端ノードに設定して8分木分割を止める。または、三次元データ符号化装置は、親ノード(parent node)内の点群数がある閾値B以下の場合に、対象ノードを早期終端ノードに設定して8分木分割を止める。または、三次元データ符号化装置は、隣接ノードに含まれる点群数がある閾値C以下の場合に、対象ノードを早期終端ノードに設定して8分木分割を止める。
 このように、三次元データ符号化装置は、対象ノード、親ノード、又は隣接ノード内に含まれる点群数を用いて対象ノードが早期終端ノードであるか否かを判定し、真ならば8分木分割を止め、偽なら8分木分割を継続して符号化を行ってもよい。これにより、三次元データ符号化装置は、対象ノード、親ノード又は隣接ノードに含まれる点群数が少なくなった場合に8分木分割を止めることで処理時間を削減できる。なお、三次元データ符号化装置は、早期終端ノードに対しては、ノード内に含まれる点群のそれぞれの三次元位置情報をエントロピー符号化等を用いて符号化してもよい。
 図69は、本実施の形態に係る三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、対象ノードが早期終端ノードになる条件Iを満たすか否かを判定する(S4401)。言い換えると、この判定は、対象ノードが早期終端ノードとして符号化される可能性があるか否かの判定、つまり、早期終端ノードを使用可能であるか否かの判定である。
 条件Iが真の場合(S4401でYes)、次に三次元データ符号化装置は、対象ノードが、早期終端ノードか否かの判定条件Jを満たすか否かを判定する(S4402)。言い換えると、この判定は、対象ノードを実際に早期終端ノードとして符号化するか否か、つまり、早期終端ノードを用いるか否かの判定である。
 条件Jが真の場合(S4402でYes)、三次元データ符号化装置は、early_terminated_node_flag(早期終端ノードフラグ)を1に設定し、当該early_terminated_node_flagを符号化する(S4403)。次に、三次元データ符号化装置は、対象ノード内に含まれる三次元点の位置情報を直接符号化する(S4404)。つまり、三次元データ符号化装置は、対象ノードに早期終端ノードを適用する。
 一方、条件Jが偽の場合(S4402でNo)、三次元データ符号化装置は、early_terminated_node_flagを0に設定し、当該early_terminated_node_flagを符号化する(S4405)。次に、三次元データ符号化装置は、対象ノードを通常ノードに設定し、8分木分割による符号化を継続する(S4406)。
 また、条件Iが偽の場合(S4401でNo)、三次元データ符号化装置は、early_terminated_node_flagを符号化せず、対象ノードを通常ノードに設定し、8分木分割による符号化を継続する(S4406)。
 例えば、条件Jは、対象ノード内の三次元点の数が閾値(例えば値2)以下であるかという条件を含む。例えば、三次元データ符号化装置は、対象ノード内の三次元点の数が閾値以下であれば、対象ノードを早期終端ノードと判定し、そうでなければ対象ノードを早期終端ノードでないと判定する。
 また、条件Iは、例えば、対象ノードの属する階層が8分木の予め定められた階層以上であるかという条件を含む。例えば、条件Iは、対象ノードがリーフ(最下層)を持つノードより大きい階層であるか(ある一定以上の大きさの空間を含むか、など)という条件を含んでもよい。
 また、条件Iは、対象ノードの親ノード内に含まれるノード(兄弟ノード(sibling node))、又は、親ノードの兄弟ノードの占有情報の条件を含んでもよい。つまり、三次元データ符号化装置は、兄弟ノード、又は親ノードの兄弟ノードの占有情報等に基づいて、対象ノードが早期終端ノードとなる可能性があるか否かを判定してもよい。例えば、三次元データ符号化装置は、対象ノードと同一の親ノード内の兄弟ノードのうち、占有状態であるノードの数をカウントする。条件Iは、このカウントされた値が予め定められた値以下であるかという条件を含む。または、三次元データ符号化装置は、対象ノードの親ノードの兄弟ノードのうち、占有状態であるノードの数をカウントする。条件Iは、このカウントされた値が予め定められた値以下であるかという条件を含む。
 このように、三次元データ符号化装置は、対象ノードの8分木構造における階層、対象ノードの兄弟ノードの占有情報、又は、親ノードの兄弟ノードの占有情報等を用いて対象ノードが早期終端ノードになる可能性があるかを先に判定する。その可能性がある場合に、三次元データ符号化装置は、early_terminated_node_flagを符号化し、そうでない場合は、early_terminated_node_flagを符号化しない。これにより、三次元データ符号化装置は、オーバーヘッドを抑えつつ、早期終端ノードを適用的に選択しながら符号化できる。
 また、三次元データ符号化装置は、早期終端ノード(ダイレクト符号化モード)を用いて符号化を行うか否かを示すフラグであるEarlyTerminatdCodingFlagを設け、当該フラグをヘッダ等に付加してもよい。
 また、条件Iは、EarlyTerminatdCodingFlag=1を満たすかの判定を含んでもよい。このようにEarlyTerminatdCodingFlagの値に応じて早期終端ノード(ダイレクト符号化モード)を用いるか否かを切替える仕組みを設けることで、符号化効率と低処理量化のバランスをとることが可能となる。
 また、三次元データ符号化装置は、対象ノードの隣接占有パターンを算出し、条件Iは、隣接占有パターン=0を満たすかの条件を含んでもよい。これにより、隣接ノードが非占有状態の場合、つまり三次元点が疎な場合に早期終端ノードが選択される可能性が高くなる。よって、三次元データ符号化装置は、早期終端ノードを効率的に選択することで符号化効率を向上できる。
 図70は、本実施の形態に係る三次元データ符号化装置による三次元データ符号化処理(早期終端ノード判定処理)のフローチャートである。三次元データ符号化装置は、NeighbourPatternCodingFlagとEarlyTerminatdCodingFlagとを用いる。
 まず、三次元データ符号化装置は、NeighbourPatternCodingFlagが1であるか否かを判定する(S4411)。このNeighbourPatternCodingFlagは、例えば、三次元データ符号装置において生成される。例えば例えば、三次元データ符号化装置は、外部から指定された符号化モード、又は、入力された三次元点に基づき、NeighbourPatternCodingFlagの値を決定する。
 NeighbourPatternCodingFlag=1の場合(S4411でYes)、三次元データ符号化装置は、対象ノードの隣接占有パターンを算出する(S4412)。例えば、三次元データ符号化装置は、算出した隣接占有パターンを、オキュパンシー符号を算術符号化するための符号化テーブルの選択に用いる。
 一方、NeighbourPatternCodingFlag=0の場合(S4411でNo)、三次元データ符号化装置は、隣接占有パターンを算出せずに、隣接占有パターンの値を0に設定する(S4413)。
 なお、三次元データ符号化装置は、隣接占有パターンを値0で初期化しておき、NeighbourPatternCodingFlag=1であれば、隣接占有パターンの値を更新してもよい。
 次に、三次元データ符号化装置は、条件Iが満たされるか否かを判定する(S4414)。例えば、三次元データ符号化装置は、EarlyTerminatdCodingFlag=1の場合は、設定した隣接占有パターンの値を用いて対象ノードが早期終端ノードになる可能性があるかを判定してもよい。つまり、条件Iは、設定した隣接占有パターンが0であるかの条件を含んでもよい。
 つまり、条件Iは、EarlyTerminatdCodingFlag=1を満たすかの条件を含んでもよい。また、条件Iは、隣接占有パターン=0を満たすかの条件を含んでもよい。例えば、EarlyTerminatedCodingFlag=1、かつ、隣接占有パターン=0の場合に条件Iは真であり、それ以外の場合に条件Iは偽であってもよい。
 これにより、三次元データ符号化装置は、NeighbourPatternCodingFlag=1の場合は、符号化テーブル切替え用に算出して設定した隣接占有パターンを早期終端ノードの判定(条件I)でも利用できる。これにより、隣接占有パターンを再計算する処理量を削減できる。また、三次元データ符号化装置は、NeighbourPatternCodingFlag=0の場合は、隣接占有パターン=0と設定することで、条件Iの少なくとも1つの条件が満たされると判定できる。よって、三次元データ符号化装置は、別途隣接占有パターンを算出する必要がないため処理量を削減できる。
 また、条件Iは、例えば、対象ノードの属する階層が8分木の予め定められた階層以上であるかという条件を含んでもよい。例えば、条件Iは、対象ノードがリーフ(最下層)を持つノードより大きい階層であるか(ある一定以上の大きさの空間を含むか、など)という条件を含んでもよい。
 また、条件Iは、対象ノードの親ノード内に含まれるノード(兄弟ノード)、又は、親ノードの兄弟ノードの占有情報の条件を含んでもよい。つまり、三次元データ符号化装置は、兄弟ノード、又は親ノードの兄弟ノードの占有情報等に基づいて、対象ノードが早期終端ノードとなる可能性があるか否かを判定してもよい。例えば、三次元データ符号化装置は、対象ノードと同一の親ノード内の兄弟ノードのうち、占有状態であるノードの数をカウントする。条件Iは、このカウントされた値が予め定められた値以下であるかという条件を含んでもよい。または、三次元データ符号化装置は、対象ノードの親ノードの兄弟ノードのうち、占有状態であるノードの数をカウントする。条件Iは、このカウントされた値が予め定められた値以下であるかという条件を含んでもよい。
 また、条件Iは、上述した複数の条件のいずれかを含んでもよいし、複数の条件を含んでもよい。条件Iとして複数の条件が含まれる場合には、例えば、全ての条件が満たされる場合には、条件Iが満たされる(真)と判定され、それが以外の場合の条件Iが満たされない(偽)と判定されてもよい。または、複数の条件のうち少なくとも一つが満たされる場合に条件Iが満たされる(真)と判定されてもよい。
 なお、ステップS4415~S4419の処理は、図69に示すステップS4402~S4406の処理と同様であり、重複する説明は省略する。
 図71は、本実施の形態に係る三次元データ符号化装置による三次元データ符号化処理(早期終端ノード判定処理)の変形例のフローチャートである。図71に示す処理は、図70に示す処理に対して、ステップS4411がステップS4411Aに変更されている点が異なる。
 三次元データ符号化装置は、NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1の少なくとも一方が満たされるか否かを判定する(S4411A)。このNeighbourPatternCodingFlag及びEarlyTerminatdCodingFlagは、例えば、三次元データ符号装置において生成される。例えば、三次元データ符号化装置は、外部から指定された符号化モード、又は、入力された三次元点に基づき、NeighbourPatternCodingFlag及びEarlyTerminatdCodingFlagの値を決定する。
 NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1の少なくとも一方が満たされる場合(S4411AでYes)、三次元データ符号化装置は、対象ノードの隣接占有パターンを算出して値を設定する(S4412)。NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1が共に満たされない場合(S4411AでNo)、三次元データ符号化装置は、隣接占有パターンを算出せず、隣接占有パターンの値を0に設定する(S4413)。
 なお、三次元データ符号化装置は、隣接占有パターンを値0で初期化しておき、NeighbourPatternCodingFlag=1又はEarlyTerminatdCodingFlag=1であれば、隣接占有パターンの値を更新してもよい。なお、以降の処理は、図70と同様である。
 つまり、三次元データ符号化装置は、EarlyTerminatdCodingFlag=1の場合は、その設定した隣接占有パターンの値を用いて対象ノードが早期終端ノードになる可能性があるかを判定する。つまり条件Iは、設定した隣接占有パターンが0であるかの条件を含んでもよい。
 これにより、NeighbourPatternCodingFlag=1またはEarlyTerminatdCodingFlag=1の場合に、三次元データ符号化装置は、対象ノードの隣接占有パターンを算出し、算出した隣接占有パターンの値を用いて対象ノードが早期終端ノードである可能性を判定できる。よって、三次元データ符号化装置は、適切に早期終端ノードを選択できるので符号化効率を向上できる。
 次に、本実施の形態に係る三次元データ復号装置による処理を説明する。図72は、本実施の形態に係る三次元データ復号装置による三次元データ復号処理(早期終端ノード判定処理)のフローチャートである。
 まず、三次元データ復号装置は、ビットストリームのヘッダからNeighbourPatternCodingFlagを復号する(S4421)。次に、三次元データ復号装置は、ビットストリームのヘッダからEarlyTerminatdCodingFlagを復号を復号する(S4422)。
 次に、三次元データ復号装置は、復号したNeighbourPatternCodingFlagが1であるか否かを判定する(S4423)。
 NeighbourPatternCodingFlagが1である場合(S4423でYes)、三次元データ復号装置は、対象ノードの隣接占有パターンを算出する(S4424)。なお、三次元データ復号装置は、算出した隣接占有パターンを、オキュパンシー符号を算術復号するための符号化テーブルの選択に用いてもよい。
 NeighbourPatternCodingFlagが0である場合(S4423でNo)、三次元データ復号装置は、隣接占有パターンを0に設定する(S4425)。なお、三次元データ復号装置は、隣接占有パターンを値0で初期化しておき、NeighbourPatternCodingFlag=1であれば、隣接占有パターンの値を更新してもよい。
 次に、三次元データ復号装置は、条件Iが真であるか否かを判定する(S4426)。なお、この処理の詳細は、三次元データ符号化装置におけるステップS4414の処理と同様である。
 条件Iが真である場合(S4426でYes)、三次元データ復号装置は、ビットストリームからearly_terminated_node_flagを復号する(S4427)。次に、三次元データ復号装置は、early_terminated_node_flagが1であるか否かを判定する(S4428)。
 early_terminated_node_flagが1である場合(S4428でYes)、三次元データ復号装置は、対象ノード内の三次元点の位置情報を復号する(S4429)。つまり、三次元データ復号装置は、対象ノードに早期終端ノードを適用する。early_terminated_node_flagが0である場合(S4428でNo)、三次元データ復号装置は、対象ノードの通常ノードに設定し、8分木分割による復号を継続する(S4430)。
 また、条件Iが偽の場合(S4426でNo)、三次元データ復号装置は、ビットストリームからearly_terminated_node_flagを復号せず、対象ノードを通常ノードに設定し、8分木分割による復号を継続する(S4430)。
 図73は、本実施の形態に係る三次元データ復号装置による三次元データ復号処理(早期終端ノード判定処理)の変形例のフローチャートである。図73に示す処理は、図72に示す処理に対して、ステップS4423がステップS4423Aに変更されている点が異なる。
 ステップS4423Aでは、三次元データ復号装置は、NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1の少なくとも一方が満たされるか否かを判定する(S4423A)。
 NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1の少なくとも一方が満たされる場合(S4423AでYes)、三次元データ復号装置は、対象ノードの隣接占有パターンを算出する(S4424)。NeighbourPatternCodingFlag=1及びEarlyTerminatdCodingFlag=1が共に満たされない場合(S4423AでNo)、三次元データ復号装置は、隣接占有パターンを算出せず、隣接占有パターンの値を0に設定する(S4425)。
 なお、三次元データ復号装置は、隣接占有パターンを値0で初期化しておき、NeighbourPatternCodingFlag=1又はEarlyTerminatdCodingFlag=1であれば、隣接占有パターンの値を更新してもよい。なお、以降の処理は、図72と同様である。
 次に、本実施の形態に係る三次元データ符号化装置により生成されるビットストリームのシンタックス例について説明する。図74は、ビットストリームに含まれるpc_headerのシンタックス例を示す図である。このpc_header()は、例えば、入力された複数の三次元点のヘッダ情報である。つまり、pc_header()に含まれる情報は、複数の三次元点(ノード)に対して共通に用いられる。
 pc_headerは、NeighbourPatternCodingFlag(隣接パターン符号化フラグ)と、EarlyTerminatdCodingFlag(早期終端符号化フラグ)とを含む。
 NeighbourPatternCodingFlagは、オキュパンシー符号を算術符号化するための符号化テーブルを、隣接ノード情報(隣接占有パターン)を用いて切替えるか否かを示す情報である。例えば、NeighbourPatternCodingFlag=1は、隣接ノード情報を用いて符号化テーブルを切替えることを示し、NeighbourPatternCodingFlag=0は、隣接ノード情報を用いて符号化テーブルを切替えないことを示す。
 EarlyTerminatdCodingFlagは、早期終端ノード(ダイレクト符号化モード)を使用するか否か(使用可能か否か)を示す情報である。例えば、EarlyTerminatdCodingFlag=1は早期終端ノードを使用することを示し、EarlyTerminatdCodingFlag=0は早期終端ノードを使用しないことを示す。
 図75は、ノード情報(node(depth、index))のシンタックス例を示す図である。このノード情報は、8分木に含まれる一つのノードの情報であり、ノード毎に設けられる。ノード情報は、occupancy_code(オキュパンシー符号)と、early_terminated_node_flag(早期終端ノードフラグ)とcoordinate_of_3Dpoint(三次元座標)とを含む。
 occupancy_codeは、ノードの子ノードが占有状態であるか否かを示す情報である。三次元データ符号化装置は、NeighbourPatternCodingFlagの値に応じて符号化テーブルを切替えてoccupancy_codeを算術符号化してもよい。
 early_terminated_node_flagは、ノードが早期終端ノードであるか否かを示す情報である。例えば、early_terminated_node_flag=1はノードが早期終端ノードであることを示し、early_terminated_node_flag=0はノードが早期終端ノードでないことを示す。なお、対象ノードのearly_terminated_node_flagがビットストリームに符号化されていない場合は、三次元データ復号装置は、対象ノードのearly_terminated_node_flagの値を0と推定してもよい。
 coordinate_of_3Dpointは、ノードが早期終端ノードである場合のノードに含まれる点群の位置情報である。なお、ノードに複数の点群が含まれる場合は、coordinate_of_3Dpointは、各点群の位置情報を含んでもよい。
 なお、三次元データ符号化装置は、NeighbourPatternCodingFlag又はEarlyTerminatdCodingFlagをヘッダに付加せずに、規格、又は規格のプロファイル或いはレベル等でNeighbourPatternCodingFlag又はEarlyTerminatdCodingFlagの値が規定されてもよい。これにより、三次元データ復号装置は、ビットストリームに含まれる規格情報を参照してNeighbourPatternCodingFlag又はEarlyTerminatdCodingFlagの値を判定することで、ビットストリームを正しく復元できる。
 また、三次元データ符号化装置は、上記のNeighbourPatternCodingFlag、EarlyTerminatdCodingFlag、early_terminated_node_flag及びcoordinate_of_3Dpointの少なくとも一つをエントロピー符号化してもよい。例えば、三次元データ符号化装置は、各値を二値化したうえで算術符号化する。
 また、本実施の形態では、8分木構造を例に示したが、必ずしもこれに限らず、4分木、16分木等のN分木構造(Nは2以上の整数)、又は、その他の木構造に対して上記手法を適用してもよい。
 次に、本実施の形態に係る三次元データ符号化装置の構成例を説明する。図76は、本実施の形態に係る三次元データ符号化装置4400のブロック図である。三次元データ符号化装置4400は、8分木生成部4401と、幾何情報算出部4402と、符号化テーブル選択部4403と、エントロピー符号化部4404とを備える。
 8分木生成部4401は、入力された三次元点(ポイントクラウド)から、例えば8分木を生成し、8分木の各ノードのオキュパンシー符号を生成する。なお、8分木生成部4401は、EarlyTerminatdCodingFlag=1の場合に、条件I及び条件Jの判定を用いて対象ノードが早期終端ノードであるか否かを判定し、真ならば8分木分割を止め、偽なら8分木分割を継続して符号化を行ってもよい。また、8分木生成部4401は、各ノードが早期終端ノードであるか否かを示すフラグ(early_terminated_node_flag)をビットストリームに付加してもよい。これにより、三次元データ復号装置は、正しくノードが早期終端ノードであるか否かを判定できる。
 幾何情報算出部4402は、対象ノードの隣接ノードが占有状態か否かを示す情報を取得し、取得した情報に基づき隣接占有パターンを算出する。例えば、幾何情報算出部4402は、図68等を用いて説明した方法で隣接占有パターンを算出する。また、幾何情報算出部4402は、対象ノードが所属する親ノードのオキュパンシー符号から隣接占有パターンを算出してもよい。また、幾何情報算出部4402は、符号化済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部4402は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。また、幾何情報算出部4402は、NeighbourPatternCodingFlag及びEarlyTerminatdCodingFlagの値に応じて隣接占有パターンを算出するか否かを切替えてもよい。
 符号化テーブル選択部4403は、幾何情報算出部4402で算出された隣接ノードの占有情報(隣接占有パターン)を用いて対象ノードのエントロピー符号化に用いる符号化テーブルを選択する。例えば、符号化テーブル選択部4403は、隣接占有パターンの値から算出したインデックス番目の符号化テーブルを選択する。
 エントロピー符号化部4404は、選択されたインデックス番目の符号化テーブルを用いて対象ノードのオキュパンシー符号にエントロピー符号化を行うことでビットストリームを生成する。エントロピー符号化部4404は、選択された符号化テーブルの情報をビットストリームに付加してもよい。
 次に、本実施の形態に係る三次元データ復号装置の構成例を説明する。図77は、本実施の形態に係る三次元データ復号装置4410のブロック図である。三次元データ復号装置4410は、8分木生成部4411と、幾何情報算出部4412と、符号化テーブル選択部4413と、エントロピー復号部4414とを備える。
 8分木生成部4411は、ビットストリームのヘッダ情報等を用いて、ある空間(ノード)の8分木を生成する。例えば、8分木生成部4411は、ヘッダ情報に付加されたある空間のx軸,y軸,z軸方向の大きさを用いて大空間(ルートノード)を生成し、その空間をx軸,y軸,z軸方向にそれぞれ2分割することで8個の小空間A(ノードA0~A7)を生成して8分木を生成する。また、対象ノードとしてノードA0~A7が順に設定される。
 なお、8分木生成部4411は、ヘッダを復号して得たEarlyTerminatdCodingFlagの値が1の場合に、条件I及び条件Jの判定を用いて対象ノードが早期終端ノードであるか否かを判定し、真ならば8分木分割を止め、偽なら8分木分割を継続して復号してもよい。また、8分木生成部4411は、各ノードが早期終端ノードであるか否かを示すフラグを復号してもよい。
 幾何情報算出部4412は、対象ノードの隣接ノードが占有状態か否かを示す情報を取得し、取得した情報に基づき隣接占有パターンを算出する。例えば、幾何情報算出部4412は、図68等を用いて説明した方法で隣接占有パターンを算出してもよい。また、幾何情報算出部4412は、対象ノードが所属する親ノードのオキュパンシー符号から隣接ノードの占有情報を算出してもよい。また、幾何情報算出部4412は、復号済みのノードをリストに保存しておき、そのリスト内から隣接ノードを探索してもよい。なお、幾何情報算出部4412は、対象ノードの親ノード内の位置に応じて隣接ノードを切替えてもよい。また、幾何情報算出部4412は、ヘッダを復号して得たNeighbourPatternCodingFlag及びEarlyTerminatdCodingFlagの値に応じて隣接占有パターンを算出するか否かを切替えてもよい。
 符号化テーブル選択部4413は、幾何情報算出部4412で算出された隣接ノードの占有情報(隣接占有パターン)を用いて対象ノードエントロピー復号に用いる符号化テーブルを選択する。例えば、三次元データ復号装置は、隣接占有パターンの値から算出したインデックス番目の符号化テーブルを選択する。
 エントロピー復号部4414は、選択された符号化テーブルを用いて対象ノードのオキュパンシー符号にエントロピー復号を行うことで三次元点(ポイントクラウド)を生成する。エントロピー復号部4414は、選択された符号化テーブルを示す情報をビットストリームから復号して取得し、当該情報で示される符号化テーブルを用いて、対象ノードのオキュパンシー符号をエントロピー復号してもよい。
 また、ビットストリームに含まれるオキュパンシー符号(8ビット)の各ビットは、8個の小空間A(ノードA0~ノードA7)にそれぞれ点群が含まれるか否かを示す。また更に、三次元データ復号装置は、小空間ノードA0を8個の小空間B(ノードB0~ノードB7)に分割して8分木を生成し、小空間Bの各ノードに点群が含まれるか否かを示す情報をオキュパンシー符号を復号して算出する。このように、三次元データ復号装置は、大空間から小空間へと8分木を生成しながら各ノードのオキュパンシー符号を復号する。なお、対象ノードが早期終端ノードである場合は、三次元データ復号装置は、ビットストリーム内に符号化された三次元情報を直接復号し、8分木分割をそのノードで止めてもよい。
 以下、三次元データ符号化処理及び三次元データ復号処理(早期終端ノード判定処理)の変形例を説明する。
 対象ノードの隣接占有パターンの算出方法は、図68等に示す6個の隣接ノードの占有情報を用いる方法に限らず、別の方法でもよい。例えば、三次元データ符号化装置は、対象ノードの親ノード内に存在する隣接ノード(対象ノードの兄弟ノード)を参照して隣接占有パターンを算出してもよい。例えば、三次元データ符号化装置は、親ノード内の対象ノードと位置と、親ノードの内の3つの隣接ノードの占有情報とからなる隣接占有パターンを算出してもよい。6個の隣接ノードを用いる場合には、対象ノードと親ノードが異なる隣接ノードの情報が用いられる。3個の隣接ノードを用いる場合には、対象ノードと親ノードが異なる隣接ノードの情報は用いられない。これにより、三次元データ符号化装置は、親ノードのオキュパンシー符号を参照して隣接占有パターンを算出できるので、処理量を削減できる。
 また、三次元データ符号化装置は、上記の6個の隣接ノードを用いる方法(対象ノードと親ノードが異なる隣接ノードを参照する方法)と、3個の隣接ノードを用いる方法(対象ノードと親ノードが異なる隣接ノードを参照しない方法)とを適用的に切替えてもよい。例えば、三次元データ符号化装置は、オキュパンシー符号を算術符号化するための符号化テーブルの切替え判定用には6個の隣接ノードを用いる方法を用いて隣接占有パターンAを算出する。また、三次元データ符号化装置は、早期終端ノードの可能性判定(条件I)には、3個の隣接ノードを用いる方法を用いて隣接占有パターンBを算出する。なお、三次元データ符号化装置は、符号化テーブルの切替え判定用に3個の隣接ノードを用いる方法を用い、早期終端ノードの可能性判定(条件I)に、6個の隣接ノードを用いる方法を用いてもよい。このように、三次元データ符号化装置は、隣接占有パターンの算出方法を適用的に切替えることで符号化効率と処理量とのバランスを制御できる。
 図78は、上記三次元データ符号化処理のフローチャートである。まず、三次元データ符号化装置は、NeighbourPatternCodingFlagが1であるか否かを判定する(S4441)。
 NeighbourPatternCodingFlag=1の場合(S4441でYes)、三次元データ符号化装置は、対象ノードの隣接占有パターンAを算出する(S4442)。三次元データ符号化装置は、算出した隣接占有パターンAを、オキュパンシー符号を算術符号化するための符号化テーブルの選択に用いてもよい。
 一方、NeighbourPatternCodingFlag=0の場合(S4441でNo)、三次元データ符号化装置は、隣接占有パターンAを算出せずに、隣接占有パターンAの値を0に設定する(S4443)。
 次に、三次元データ符号化装置は、EarlyTerminatdCodingFlagが1であるか否かを判定する(S4444)。
 EarlyTerminatdCodingFlag=1の場合(S4444でYes)、三次元データ符号化装置は、対象ノードの隣接占有パターンBを算出する(S4445)。この隣接占有パターンBは、例えば、条件Iの判定に用いられる。
 一方、EarlyTerminatdCodingFlag=0の場合(S4444でNo)、三次元データ符号化装置は、隣接占有パターンBを算出せずに、隣接占有パターンBの値を0に設定する(S4446)。
 例えば、三次元データ符号化装置は、隣接占有パターンAの算出と隣接占有パターンBの算出とに異なる方法を用いる。例えば、三次元データ符号化装置は、隣接占有パターンAを6個の隣接ノードを用いる方法を用いて算出し、隣接占有パターンBを3個の隣接ノードを用いる方法を用いて算出する。また、三次元データ復号装置においても、同様に、隣接占有パターンAと隣接占有パターンBとに異なる算出方法が用いられてもよい。
 なお、三次元データ符号化装置は、隣接占有パターンAを値0で初期化しておき、NeighbourPatternCodingFlag=1であれば、隣接占有パターンAの値を更新してもよい。また、三次元データ符号化装置は、隣接占有パターンBを値0で初期化しておき、EarlyTerminatedCodingFlag=1であれば、隣接占有パターンBの値を更新してもよい。
 次に、三次元データ符号化装置は、条件Iが満たされるか否かを判定する(S4447)。この処理の詳細は、例えば図70に示すS4414と同様である。ただし、ステップS4414における隣接占有パターンとして、隣接占有パターンBが用いられる点が異なる。つまり、条件Iは、EarlyTerminatdCodingFlag=1を満たすかの条件を含んでもよい。また、条件Iは、隣接占有パターンB=0を満たすかの条件を含んでもよい。例えば、EarlyTerminatedCodingFlag=1、かつ、隣接占有パターンB=0の場合に条件Iは真であり、それ以外の場合に条件Iは偽であってもよい。
 なお、ステップS4448~S4452の処理は、図70に示すステップS4415~S4419の処理と同様であり、重複する説明は省略する。
 図79は、本実施の形態に係る三次元データ符号化装置による三次元データ符号化処理(早期終端ノード判定処理)の変形例のフローチャートである。図79に示す処理は、図78に示す処理に対して、ステップS4453及びS4454が追加されている点が異なる。
 三次元データ符号化装置は、EarlyTerminatdCodingFlag=1の場合(S4444でYes)、次に、NeighbourPatternCodingFlagが1であるか否かを判定する(S4453)。
 NeighbourPatternCodingFlag=1の場合(S4453でYes)、三次元データ符号化装置は、隣接占有パターンBの値に、隣接占有パターンAの値を設定する(S4454)。
 NeighbourPatternCodingFlag=0の場合(S4453でNo)、三次元データ符号化装置は、隣接占有パターンBを算出する(S4445)。
 このように、三次元データ符号化装置は、隣接占有パターンAを算出した場合には、隣接占有パターンBとして隣接占有パターンAを用いる。つまり、条件Iの判定に隣接占有パターンAが用いられる。これにより、三次元データ符号化装置は、隣接占有パターンAを算出している場合には、隣接占有パターンBを算出しないので処理量を削減できる。
 図80は、本実施の形態に係る三次元データ復号装置による三次元データ復号処理(早期終端ノード判定処理)の変形例のフローチャートである。
 まず、三次元データ復号装置は、ビットストリームのヘッダからNeighbourPatternCodingFlagを復号する(S4461)。次に、三次元データ復号装置は、ビットストリームのヘッダからEarlyTerminatdCodingFlagを復号を復号する(S4462)。
 次に、三次元データ復号装置は、復号したNeighbourPatternCodingFlagが1であるか否かを判定する(S4463)。
 NeighbourPatternCodingFlagが1である場合(S4463でYes)、三次元データ復号装置は、対象ノードの隣接占有パターンAを算出する(S4464)。なお、三次元データ復号装置は、算出した隣接占有パターンを、オキュパンシー符号を算術復号するための符号化テーブルの選択に用いてもよい。
 NeighbourPatternCodingFlagが0である場合(S4463でNo)、三次元データ復号装置は、隣接占有パターンAを0に設定する(S4465)。
 次に、三次元データ復号装置は、EarlyTerminatdCodingFlagが1であるか否かを判定する(S4466)。
 EarlyTerminatdCodingFlag=1の場合(S4466でYes)、三次元データ復号装置は、対象ノードの隣接占有パターンBを算出する(S4467)。この隣接占有パターンBは、例えば、条件Iの判定に用いられる。
 一方、EarlyTerminatdCodingFlag=0の場合(S4466でNo)、三次元データ復号装置は、隣接占有パターンBを算出せずに、隣接占有パターンBの値を0に設定する(S4468)。
 例えば、三次元データ復号装置は、隣接占有パターンAの算出と隣接占有パターンBの算出とに異なる方法を用いる。例えば、三次元データ復号装置は、隣接占有パターンAを6個の隣接ノードを用いる方法を用いて算出し、隣接占有パターンBを3個の隣接ノードを用いる方法を用いて算出する。
 なお、三次元データ復号装置は、隣接占有パターンAを値0で初期化しておき、NeighbourPatternCodingFlag=1であれば、隣接占有パターンAの値を更新してもよい。また、三次元データ復号装置は、隣接占有パターンBを値0で初期化しておき、EarlyTerminatedCodingFlag=1であれば、隣接占有パターンBの値を更新してもよい。
 次に、三次元データ符号化装置は、条件Iが満たされるか否かを判定する(S4469)。この処理の詳細は、例えば図72に示すS4426と同様である。ただし、ステップS4426における隣接占有パターンとして、隣接占有パターンBが用いられる点が異なる。つまり、条件Iは、EarlyTerminatdCodingFlag=1を満たすかの条件を含んでもよい。また、条件Iは、隣接占有パターンB=0を満たすかの条件を含んでもよい。例えば、EarlyTerminatedCodingFlag=1、かつ、隣接占有パターンB=0の場合に条件Iは真であり、それ以外の場合に条件Iは偽であってもよい。
 なお、ステップS4470~S4473の処理は、図72に示すステップS4427~S4430の処理と同様であり、重複する説明は省略する。
 図81は、本実施の形態に係る三次元データ復号装置による三次元データ復号処理(早期終端ノード判定処理)の変形例のフローチャートである。図81に示す処理は、図80に示す処理に対して、ステップS4474及びS4475が追加されている点が異なる。
 三次元データ復号装置は、EarlyTerminatdCodingFlag=1の場合(S4466でYes)、次に、NeighbourPatternCodingFlagが1であるか否かを判定する(S4474)。
 NeighbourPatternCodingFlag=1の場合(S4474でYes)、三次元データ復号装置は、隣接占有パターンBの値に、隣接占有パターンAの値を設定する(S4475)。
 NeighbourPatternCodingFlag=0の場合(S4474でNo)、三次元データ符号化装置は、隣接占有パターンBを算出する(S4467)。
 このように、三次元データ復号装置は、隣接占有パターンAを算出した場合には、隣接占有パターンBとして隣接占有パターンAを用いる。つまり、条件Iの判定に隣接占有パターンAが用いられる。これにより、三次元データ復号装置は、隣接占有パターンAを算出している場合には、隣接占有パターンBを算出しないので処理量を削減できる。
 なお、上記で述べた各種フラグの値(0又は1)とその意味との対応関係は一例であり、各種フラグの値とその意味との対応関係は上記と逆であってもよい。
 以上のように、本実施の形態に係る三次元データ符号化装置は、図82に示す処理を行う。
 三次元データ符号化装置は、第1フラグ(例えばNeighbourPatternCodingFlag)が第1の値(例えば1)を示すか否かを判定する(S4481)。三次元データ符号化装置は、第1フラグが第1の値を示す場合(S4481でYes)、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターン(例えば隣接占有パターンA)を生成する(S4482)(例えば、図79のS4442及びS4454)。
 次に、三次元データ符号化装置は、第1占有パターンに基づき、対象ノードを複数の子ノードに分割せず、対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化(例えば早期終端ノード)を使用可能か否かを判定する(S4483)(例えば、図79のS4447)。
 三次元データ符号化装置は、第1フラグが第1の値と異なる第2の値(例えば0)を示す場合(S4481でNo)、対象ノードと親ノードが異なる第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターン(例えば隣接占有パターンB)を生成する(S4484)(例えば、図79のS4445)。次に、三次元データ符号化装置は、第2占有パターンに基づき、第1符号化を使用可能か否かを判定する(S4485)(例えば、図79のS4447)。
 また、三次元データ符号化装置は、第1フラグを含むビットストリームを生成する(S4486)。
 これによれば、三次元データ符号化装置は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 例えば、三次元データ符号化装置は、第1符号化を使用可能と判定された場合、所定の条件(例えば条件J)に基づき、第1符号化を用いるか否かを判定し(例えば、図79のS4448)、第1符号化を用いると判定した場合、第1符号化を用いて対象ノードを符号化し(例えば、図79のS4450)、第1符号化を用いないと判定した場合、対象ノードを複数の子ノードに分割する第2符号化を用いて対象ノードを符号化する(例えば、図79のS4452)。ビットストリームは、さらに、第1符号化を用いるか否かを示す第2フラグ(例えばearly_terminated_node_flag)を含む。
 例えば、三次元データ符号化装置は、第1占有パターン又は第2占有パターンに基づく、第1符号化を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、親ノードに含まれる占有状態のノードの数とに基づき、第1符号化を使用可能か否かを判定する。例えば、三次元データ符号化装置は、親ノードに含まれる占有状態のノードの数が予め定められた数より少ない場合、第1符号化を使用可能と判定し、親ノードに含まれる占有状態のノードの数が予め定められた数より多い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ符号化装置は、第1占有パターン又は第2占有パターンに基づく、第1符号化を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、第1符号化を使用可能か否かを判定する。例えば、三次元データ符号化装置は、祖父ノードに含まれる占有状態のノードの数が予め定められた数より少ない場合、第1符号化を使用可能と判定し、祖父ノードに含まれる占有状態のノードの数が予め定められた数より多い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ符号化装置は、第1占有パターン又は第2占有パターンに基づく、第1符号化を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、対象ノードが属する階層とに基づき、第1符号化を使用可能か否かを判定する。例えば、三次元データ符号化装置は、対象ノードが属する階層が予め定められた階層より低い場合、第1符号化を使用可能と判定し、対象ノードが属する階層が予め定められた階層より高い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ符号化装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 また、本実施の形態に係る三次元データ復号装置は、図83に示す処理を行う。まず、三次元データ復号装置は、ビットストリームから第1フラグ(例えばNeighbourPatternCodingFlag)を取得する(S4491)。三次元データ復号装置は、第1フラグが第1の値(例えば1)を示すか否かを判定する(S4492)。
 三次元データ復号装置は、第1フラグが第1の値を示す場合(S4492でNo)、三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターン(例えば隣接占有パターンA)を生成する(S4493)(例えば、図81のS4464及びS4475)。次に、三次元データ復号装置は、第1占有パターンに基づき、対象ノードを複数の子ノードに分割せず、対象ノードに含まれる複数の三次元の位置情報を復号する第1復号(例えば早期終端ノード)を使用可能か否かを判定する(S4494)(例えば、図81のS4469)。
 三次元データ復号装置は、第1フラグが第1の値と異なる第2の値(例えば0)を示す場合(S4492でNo)、対象ノードと親ノードが異なる第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターン(例えば隣接占有パターンB)を生成する(S4495)(例えば、図81のS4467)。次に、三次元データ復号装置は、第2占有パターンに基づき、第1復号を使用可能か否かを判定する(S4496)(例えば、図81のS4469)。
 これによれば、三次元データ復号装置は、第1フラグに応じて第1符号化を使用可能か否かの判定に用いる隣接ノードの占有パターンを切り替えることができる。これにより、第1符号化を使用可能かを適切に判定できるので、符号化効率を向上できる。
 例えば、三次元データ復号装置は、第1復号を使用可能と判定された場合、ビットストリームから第1復号を用いるか否かを示す第2フラグを取得し(例えば、図81のS4470)、第2フラグにより第1復号を用いることが示される場合、第1復号を用いて対象ノードを復号し(例えば、図81のS4472)、第2フラグにより第1復号を用いないことが示される場合、対象ノードを複数の子ノードに分割する第2復号を用いて対象ノードを復号する(例えば、図81のS4473)。
 例えば、三次元データ復号装置は、第1占有パターン又は第2占有パターンに基づく、第1復号を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、親ノードに含まれる占有状態のノードの数とに基づき、第1復号を使用可能か否かを判定する。例えば、三次元データ復号訴追は、親ノードに含まれる占有状態のノードの数が予め定められた数より少ない場合、第1符号化を使用可能と判定し、親ノードに含まれる占有状態のノードの数が予め定められた数より多い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ復号装置は、第1占有パターン又は第2占有パターンに基づく、第1復号を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、第1復号を使用可能か否かを判定する。例えば、三次元データ復号訴追は、祖父ノードに含まれる占有状態のノードの数が予め定められた数より少ない場合、第1符号化を使用可能と判定し、祖父ノードに含まれる占有状態のノードの数が予め定められた数より多い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ復号装置は、第1占有パターン又は第2占有パターンに基づく、第1復号を使用可能か否かの判定では、第1占有パターン又は第2占有パターンと、対象ノードが属する階層とに基づき、第1復号を使用可能か否かを判定する。例えば、三次元データ復号装置は、対象ノードが属する階層が予め定められた階層より低い場合、第1符号化を使用可能と判定し、対象ノードが属する階層が予め定められた階層より高い場合、第1符号化を使用可能でないと判定する。
 例えば、三次元データ復号装置は、プロセッサと、メモリとを備え、プロセッサは、メモリを用いて、上記の処理を行う。
 以上、本開示の実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等について説明したが、本開示は、この実施の形態に限定されるものではない。
 また、上記実施の形態に係る三次元データ符号化装置及び三次元データ復号装置等に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、本開示は、三次元データ符号化装置及び三次元データ復号装置等により実行される三次元データ符号化方法又は三次元データ復号方法等として実現されてもよい。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 以上、一つまたは複数の態様に係る三次元データ符号化装置及び三次元データ復号装置等について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示は、三次元データ符号化装置及び三次元データ復号装置に適用できる。
 100、400 三次元データ符号化装置
 101、201、401、501 取得部
 102、402 符号化領域決定部
 103 分割部
 104、644 符号化部
 111 三次元データ
 112、211、413、414、511、634 符号化三次元データ
 200、500 三次元データ復号装置
 202 復号開始GOS決定部
 203 復号SPC決定部
 204、625 復号部
 212、512、513 復号三次元データ
 403 SWLD抽出部
 404 WLD符号化部
 405 SWLD符号化部
 411 入力三次元データ
 412 抽出三次元データ
 502 ヘッダ解析部
 503 WLD復号部
 504 SWLD復号部
 620、620A 三次元データ作成装置
 621、641 三次元データ作成部
 622 要求範囲決定部
 623 探索部
 624、642 受信部
 626 合成部
 631、651 センサ情報
 632 第1三次元データ
 633 要求範囲情報
 635 第2三次元データ
 636 第3三次元データ
 640 三次元データ送信装置
 643 抽出部
 645 送信部
 652 第5三次元データ
 654 第6三次元データ
 700 三次元情報処理装置
 701 三次元マップ取得部
 702 自車検知データ取得部
 703 異常ケース判定部
 704 対処動作決定部
 705 動作制御部
 711 三次元マップ
 712 自車検知三次元データ
 810 三次元データ作成装置
 811 データ受信部
 812、819 通信部
 813 受信制御部
 814、821 フォーマット変換部
 815 センサ
 816 三次元データ作成部
 817 三次元データ合成部
 818 三次元データ蓄積部
 820 送信制御部
 822 データ送信部
 831、832、834、835、836、837 三次元データ
 833 センサ情報
 901 サーバ
 902、902A、902B、902C クライアント装置
 1011、1111 データ受信部
 1012、1020、1112、1120 通信部
 1013、1113 受信制御部
 1014、1019、1114、1119 フォーマット変換部
 1015 センサ
 1016、1116 三次元データ作成部
 1017 三次元画像処理部
 1018、1118 三次元データ蓄積部
 1021、1121 送信制御部
 1022、1122 データ送信部
 1031、1032、1135 三次元マップ
 1033、1037、1132 センサ情報
 1034、1035、1134 三次元データ
 1117 三次元データ合成部
 1201 三次元マップ圧縮/復号処理部
 1202 センサ情報圧縮/復号処理部
 1211 三次元マップ復号処理部
 1212 センサ情報圧縮処理部
 1300 三次元データ符号化装置
 1301 分割部
 1302 減算部
 1303 変換部
 1304 量子化部
 1305、1402 逆量子化部
 1306、1403 逆変換部
 1307、1404 加算部
 1308、1405 参照ボリュームメモリ
 1309、1406 イントラ予測部
 1310、1407 参照スペースメモリ
 1311、1408 インター予測部
 1312、1409 予測制御部
 1313 エントロピー符号化部
 1400 三次元データ復号装置
 1401 エントロピー復号部
 2100 三次元データ符号化装置
 2101、2111 8分木生成部
 2102、2112 幾何情報算出部
 2103、2113 符号化テーブル選択部
 2104 エントロピー符号化部
 2110 三次元データ復号装置
 2114 エントロピー復号部
 4400 三次元データ符号化装置
 4401、4411 8分木生成部
 4402、4412 幾何情報算出部
 4403、4413 符号化テーブル選択部
 4404 エントロピー符号化部
 4410 三次元データ復号装置
 4414 エントロピー復号部

Claims (12)

  1.  第1フラグが第1の値を示す場合、
      三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、
      前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し、
     前記第1フラグが前記第1の値と異なる第2の値を示す場合、
      前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、
      前記第2占有パターンに基づき、前記第1符号化を使用可能か否かを判定し、
     前記第1フラグを含むビットストリームを生成する
     三次元データ符号化方法。
  2.  前記第1符号化を使用可能と判定された場合、
      所定の条件に基づき、前記第1符号化を用いるか否かを判定し、
      前記第1符号化を用いると判定した場合、前記第1符号化を用いて前記対象ノードを符号化し、
      前記第1符号化を用いないと判定した場合、前記対象ノードを複数の子ノードに分割する第2符号化を用いて前記対象ノードを符号化し、
      前記ビットストリームは、さらに、前記第1符号化を用いるか否かを示す第2フラグを含む
     請求項1記載の三次元データ符号化方法。
  3.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記親ノードに含まれる占有状態のノードの数とに基づき、前記第1符号化を使用可能か否かを判定する
     請求項1又は2記載の三次元データ符号化方法。
  4.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、前記第1符号化を使用可能か否かを判定する
     請求項1又は2記載の三次元データ符号化方法。
  5.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1符号化を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードが属する階層とに基づき、前記第1符号化を使用可能か否かを判定する
     請求項1又は2記載の三次元データ符号化方法。
  6.  ビットストリームから第1フラグを取得し、
     前記第1フラグが第1の値を示す場合、
      三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、
      前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を復号する第1復号を使用可能か否かを判定し、
     前記第1フラグが前記第1の値と異なる第2の値を示す場合、
      前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、
      前記第2占有パターンに基づき、前記第1復号を使用可能か否かを判定する
     三次元データ復号方法。
  7.  前記第1復号を使用可能と判定された場合、前記ビットストリームから前記第1復号を用いるか否かを示す第2フラグを取得し、
     前記第2フラグにより前記第1復号を用いることが示される場合、前記第1復号を用いて前記対象ノードを復号し、
     前記第2フラグにより前記第1復号を用いないことが示される場合、前記対象ノードを複数の子ノードに分割する第2復号を用いて前記対象ノードを復号する
     請求項6記載の三次元データ復号方法。
  8.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記親ノードに含まれる占有状態のノードの数とに基づき、前記第1復号を使用可能か否かを判定する
     請求項6又は7記載の三次元データ復号方法。
  9.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードの祖父ノードに含まれる占有状態のノードの数とに基づき、前記第1復号を使用可能か否かを判定する
     請求項6又は7記載の三次元データ復号方法。
  10.  前記第1占有パターン又は前記第2占有パターンに基づく、前記第1復号を使用可能か否かの判定では、前記第1占有パターン又は前記第2占有パターンと、前記対象ノードが属する階層とに基づき、前記第1復号を使用可能か否かを判定する
     請求項6又は7記載の三次元データ復号方法。
  11.  属性情報を有する複数の三次元点を符号化する三次元データ符号化装置であって、
     プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     第1フラグが第1の値を示す場合、
      三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、
      前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を符号化する第1符号化を使用可能か否かを判定し、
     前記第1フラグが前記第1の値と異なる第2の値を示す場合、
      前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、
      前記第2占有パターンに基づき、前記第1符号化を使用可能か否かを判定し、
     前記第1フラグを含むビットストリームを生成する
     三次元データ符号化装置。
  12.  属性情報を有する複数の三次元点を復号する三次元データ復号装置であって、
     プロセッサと、
     メモリとを備え、
     前記プロセッサは、前記メモリを用いて、
     前記第1フラグが第1の値を示す場合、
      三次元データに含まれる複数の三次元点のN(Nは2以上の整数)分木構造に含まれる対象ノードと親ノードが異なる第1隣接ノードを含む複数の第2隣接ノードの占有状態を示す第1占有パターンを生成し、
      前記第1占有パターンに基づき、前記対象ノードを複数の子ノードに分割せず、前記対象ノードに含まれる複数の三次元の位置情報を復号する第1復号を使用可能か否かを判定し、
     前記第1フラグが前記第1の値と異なる第2の値を示す場合、
      前記対象ノードと親ノードが異なる前記第1隣接ノードを含まない複数の第3隣接ノードの占有状態を示す第2占有パターンを生成し、
      前記第2占有パターンに基づき、前記第1復号を使用可能か否かを判定する
     三次元データ復号装置。
PCT/JP2019/025376 2018-06-27 2019-06-26 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置 WO2020004461A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112020024802-9A BR112020024802A2 (pt) 2018-06-27 2019-06-26 método de codificação de dados tridimensionais, método de decodificação de dados tridimensionais, dispositivo de codificação de dados tridimensionais e dispositivo de decodificação de dados tridimensionais
JP2020527576A JP7322020B2 (ja) 2018-06-27 2019-06-26 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
KR1020207036463A KR20210020924A (ko) 2018-06-27 2019-06-26 삼차원 데이터 부호화 방법, 삼차원 데이터 복호 방법, 삼차원 데이터 부호화 장치, 및 삼차원 데이터 복호 장치
MX2020013646A MX2020013646A (es) 2018-06-27 2019-06-26 Metodo de codificacion de datos tridimensionales, metodo de decodificacion de datos tridimensionales, dispositivo codificador de datos tridimensionales y dispositivo decodificador de datos tridimensionales.
CA3104630A CA3104630A1 (en) 2018-06-27 2019-06-26 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
CN201980040980.9A CN112313711A (zh) 2018-06-27 2019-06-26 三维数据编码方法、三维数据解码方法、三维数据编码装置、以及三维数据解码装置
EP19825080.5A EP3816940A4 (en) 2018-06-27 2019-06-26 METHOD FOR CODING THREE-DIMENSIONAL DATA, METHOD FOR DECODING THREE-DIMENSIONAL DATA, DEVICE FOR CODING THREE-DIMENSIONAL DATA AND DEVICE FOR DECODING THREE-DIMENSIONAL DATA
US17/126,848 US11206426B2 (en) 2018-06-27 2020-12-18 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device using occupancy patterns
US17/526,640 US20220078487A1 (en) 2018-06-27 2021-11-15 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
JP2023121982A JP7506231B2 (ja) 2018-06-27 2023-07-26 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP2024095640A JP2024116339A (ja) 2018-06-27 2024-06-13 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862690581P 2018-06-27 2018-06-27
US62/690,581 2018-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/126,848 Continuation US11206426B2 (en) 2018-06-27 2020-12-18 Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device using occupancy patterns

Publications (1)

Publication Number Publication Date
WO2020004461A1 true WO2020004461A1 (ja) 2020-01-02

Family

ID=68984882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025376 WO2020004461A1 (ja) 2018-06-27 2019-06-26 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置

Country Status (9)

Country Link
US (2) US11206426B2 (ja)
EP (1) EP3816940A4 (ja)
JP (3) JP7322020B2 (ja)
KR (1) KR20210020924A (ja)
CN (1) CN112313711A (ja)
BR (1) BR112020024802A2 (ja)
CA (1) CA3104630A1 (ja)
MX (1) MX2020013646A (ja)
WO (1) WO2020004461A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141090A1 (ja) * 2020-01-10 2021-07-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022075428A1 (ja) * 2020-10-09 2022-04-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2022109885A1 (zh) * 2020-11-25 2022-06-02 Oppo广东移动通信有限公司 点云编解码方法、编码器、解码器以及计算机存储介质
JP2022550579A (ja) * 2020-04-17 2022-12-02 テンセント・アメリカ・エルエルシー ポイントクラウドコーディングのための方法及び装置
JP2023513140A (ja) * 2020-11-16 2023-03-30 テンセント・アメリカ・エルエルシー 点群コーディングのための方法、装置、およびコンピュータプログラム
US11917198B2 (en) 2020-03-24 2024-02-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for intra prediction

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213096A1 (en) * 2018-01-18 2023-07-19 BlackBerry Limited Methods and devices for entropy coding point clouds
EP4040683A4 (en) * 2019-09-30 2022-11-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. OCCUPANCY INFORMATION PREDICTION METHOD, ENCODER, DECODER AND STORAGE MEDIA
CN114930823A (zh) * 2020-01-06 2022-08-19 Oppo广东移动通信有限公司 帧内预测方法、装置、编码器、解码器、及存储介质
CN114868389A (zh) * 2020-01-06 2022-08-05 Oppo广东移动通信有限公司 一种帧内预测方法、编码器、解码器及存储介质
US11816868B2 (en) * 2020-08-14 2023-11-14 Tencent America LLC Coding of multiple-component attributes for point cloud coding
CN115474049A (zh) * 2021-06-11 2022-12-13 维沃移动通信有限公司 点云编码处理方法、解码处理方法及装置
CN113676738B (zh) * 2021-08-19 2024-03-29 上海交通大学 一种三维点云的几何编解码方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259139A (ja) * 2004-03-08 2005-09-22 Samsung Electronics Co Ltd 適応的2n進ツリーの生成方法、ならびにそれを利用して3次元体積データを符号化/復号化する方法および装置
WO2014020663A1 (ja) 2012-07-30 2014-02-06 三菱電機株式会社 地図表示装置
US20170347122A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Scalable point cloud compression with transform, and corresponding decompression
WO2018083999A1 (ja) * 2016-11-01 2018-05-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 表示方法及び表示装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157746A (en) * 1997-02-12 2000-12-05 Sarnoff Corporation Apparatus and method for encoding wavelet trees generated by a wavelet-based coding method
EP1431919B1 (en) * 2002-12-05 2010-03-03 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding three-dimensional object data by using octrees
FR2903554A1 (fr) * 2006-07-10 2008-01-11 France Telecom Dispositif et procede de codage et de decodage echelonnables de flux de donnees d'images, signal et programme d'ordinateur correspondants.
CN102132247B (zh) * 2008-08-19 2014-09-10 汤姆森特许公司 传播地图
CN106231337B (zh) 2010-04-13 2020-06-19 Ge视频压缩有限责任公司 解码器、解码方法、编码器以及编码方法
EP3703369B1 (en) 2010-04-13 2024-07-24 GE Video Compression, LLC Sample region merging
KR101842852B1 (ko) * 2010-09-24 2018-03-27 선 페이턴트 트러스트 화상 부호화 방법, 화상 복호화 방법, 화상 부호화 장치, 및 화상 복호화 장치
JP5281624B2 (ja) * 2010-09-29 2013-09-04 日本電信電話株式会社 画像符号化方法,画像復号方法,画像符号化装置,画像復号装置およびそれらのプログラム
CN103518387A (zh) * 2011-04-12 2014-01-15 汤姆逊许可公司 编码网格模型的方法、已编码网格模型和解码网格模型的方法
JP5936687B2 (ja) * 2011-07-18 2016-06-22 トムソン ライセンシングThomson Licensing ツリー構造の適応的エントロピー符号化方法
EP2777019A4 (en) * 2011-11-07 2016-07-06 Thomson Licensing PREDICTIVE POSITION DECODING
US9706200B2 (en) * 2012-06-18 2017-07-11 Qualcomm Incorporated Unification of signaling lossless coding mode and pulse code modulation (PCM) mode in video coding
US8930374B2 (en) * 2012-06-29 2015-01-06 Nokia Corporation Method and apparatus for multidimensional data storage and file system with a dynamic ordered tree structure
US20150324481A1 (en) * 2014-05-06 2015-11-12 International Business Machines Corporation Building Entity Relationship Networks from n-ary Relative Neighborhood Trees
US10181216B2 (en) * 2015-01-30 2019-01-15 Hewlett-Packard Development Company, L.P. Generating slice data from a voxel representation
WO2016195460A1 (ko) * 2015-06-05 2016-12-08 한양대학교 산학협력단 화면 내 예측에 대한 부호화/복호화 방법 및 장치
EP3169028B1 (en) * 2015-11-13 2020-09-23 Institut Mines Telecom Semi-exhaustive recursive block decoding method and device
US20170214943A1 (en) * 2016-01-22 2017-07-27 Mitsubishi Electric Research Laboratories, Inc. Point Cloud Compression using Prediction and Shape-Adaptive Transforms
US10482196B2 (en) * 2016-02-26 2019-11-19 Nvidia Corporation Modeling point cloud data using hierarchies of Gaussian mixture models
CN106326427B (zh) * 2016-08-24 2019-08-06 明算科技(北京)股份有限公司 线性结构到树形结构的数据结构转换方法
US10609423B2 (en) * 2016-09-07 2020-03-31 Qualcomm Incorporated Tree-type coding for video coding
US10255720B1 (en) * 2016-10-13 2019-04-09 Bentley Systems, Incorporated Hybrid mesh from 2.5D and 3D point data
US10430975B2 (en) * 2016-11-17 2019-10-01 Google Llc Advanced k-D tree encoding for point clouds by most significant axis selection
US20180242024A1 (en) * 2017-02-21 2018-08-23 Mediatek Inc. Methods and Apparatuses of Candidate Set Determination for Quad-tree Plus Binary-tree Splitting Blocks
CN111108529B (zh) * 2017-09-29 2023-10-03 索尼公司 信息处理设备和方法
EP4213096A1 (en) * 2018-01-18 2023-07-19 BlackBerry Limited Methods and devices for entropy coding point clouds
EP3514969B1 (en) * 2018-01-18 2021-08-04 BlackBerry Limited Methods and devices using direct coding in point cloud compression
EP3553746B1 (en) * 2018-04-09 2021-08-25 BlackBerry Limited Methods and devices for predictive coding of point clouds
EP3553747B1 (en) * 2018-04-09 2021-09-01 BlackBerry Limited Methods and devices for predictive coding of point clouds
EP3553745B1 (en) * 2018-04-09 2021-09-01 BlackBerry Limited Methods and devices for binary entropy coding of point clouds
US10796458B2 (en) * 2018-04-23 2020-10-06 Qualcomm Incorporated Compression of point clouds via a novel hybrid coder
BR112020025049A2 (pt) 2018-06-15 2021-03-23 Panasonic Intellectual Property Corporation Of America método de codificação de dados tridimensionais, método de decodificação de dados tridimensionais, dispositivo de codificação de dados tridimensionais e dispositivo de decodificação de dados tridimensionais
BR112020026567A2 (pt) * 2018-06-25 2021-03-23 Huawei Technologies Co., Ltd. Aparelho e método para obtenção de códigos geométricos híbridos de nuvens de pontos
EP3595180B1 (en) * 2018-07-10 2021-12-08 BlackBerry Limited Methods and devices for neighbourhood-based occupancy prediction in point cloud compression
EP3595179B1 (en) * 2018-07-10 2023-07-05 BlackBerry Limited Methods and devices for lossy coding of point cloud occupancy
EP3595181B1 (en) * 2018-07-11 2023-09-06 BlackBerry Limited Predictor-copy coding mode for coding of point clouds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259139A (ja) * 2004-03-08 2005-09-22 Samsung Electronics Co Ltd 適応的2n進ツリーの生成方法、ならびにそれを利用して3次元体積データを符号化/復号化する方法および装置
WO2014020663A1 (ja) 2012-07-30 2014-02-06 三菱電機株式会社 地図表示装置
US20170347122A1 (en) * 2016-05-28 2017-11-30 Microsoft Technology Licensing, Llc Scalable point cloud compression with transform, and corresponding decompression
WO2018083999A1 (ja) * 2016-11-01 2018-05-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 表示方法及び表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3816940A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021141090A1 (ja) * 2020-01-10 2021-07-15 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
US11917198B2 (en) 2020-03-24 2024-02-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for intra prediction
JP2022550579A (ja) * 2020-04-17 2022-12-02 テンセント・アメリカ・エルエルシー ポイントクラウドコーディングのための方法及び装置
JP7478816B2 (ja) 2020-04-17 2024-05-07 テンセント・アメリカ・エルエルシー ポイントクラウドコーディングのための方法及び装置
WO2022075428A1 (ja) * 2020-10-09 2022-04-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP2023513140A (ja) * 2020-11-16 2023-03-30 テンセント・アメリカ・エルエルシー 点群コーディングのための方法、装置、およびコンピュータプログラム
JP7497443B2 (ja) 2020-11-16 2024-06-10 テンセント・アメリカ・エルエルシー 点群コーディングのための方法、装置、およびコンピュータプログラム
WO2022109885A1 (zh) * 2020-11-25 2022-06-02 Oppo广东移动通信有限公司 点云编解码方法、编码器、解码器以及计算机存储介质

Also Published As

Publication number Publication date
US11206426B2 (en) 2021-12-21
US20220078487A1 (en) 2022-03-10
JP2023145607A (ja) 2023-10-11
CN112313711A (zh) 2021-02-02
JPWO2020004461A1 (ja) 2021-07-08
EP3816940A1 (en) 2021-05-05
KR20210020924A (ko) 2021-02-24
CA3104630A1 (en) 2020-01-02
EP3816940A4 (en) 2021-09-08
BR112020024802A2 (pt) 2021-03-02
US20210105505A1 (en) 2021-04-08
MX2020013646A (es) 2021-03-25
JP7322020B2 (ja) 2023-08-07
JP7506231B2 (ja) 2024-06-25
JP2024116339A (ja) 2024-08-27

Similar Documents

Publication Publication Date Title
JP7419480B2 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP7562737B2 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP7506231B2 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019156141A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019216434A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP7535942B2 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JP7490844B2 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019146691A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019240215A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019235366A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020184443A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2019240167A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020138464A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
JPWO2019230920A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020075862A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
WO2020196765A1 (ja) 三次元データ符号化方法、三次元データ復号方法、三次元データ符号化装置、及び三次元データ復号装置
CN111213176B (zh) 三维数据编码方法、解码方法、三维数据编码装置、解码装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020527576

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024802

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3104630

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019825080

Country of ref document: EP

Effective date: 20210127

ENP Entry into the national phase

Ref document number: 112020024802

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201204