WO2020004436A1 - Method and reagent for destroying exosomes in sample - Google Patents

Method and reagent for destroying exosomes in sample Download PDF

Info

Publication number
WO2020004436A1
WO2020004436A1 PCT/JP2019/025293 JP2019025293W WO2020004436A1 WO 2020004436 A1 WO2020004436 A1 WO 2020004436A1 JP 2019025293 W JP2019025293 W JP 2019025293W WO 2020004436 A1 WO2020004436 A1 WO 2020004436A1
Authority
WO
WIPO (PCT)
Prior art keywords
exosome
serum
antibody
poe
hlb value
Prior art date
Application number
PCT/JP2019/025293
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 庄司
豪 永井
小野 達也
Original Assignee
日立化成ダイアグノスティックス・システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成ダイアグノスティックス・システムズ株式会社 filed Critical 日立化成ダイアグノスティックス・システムズ株式会社
Priority to JP2020527563A priority Critical patent/JP7201961B2/en
Publication of WO2020004436A1 publication Critical patent/WO2020004436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a method and a reagent for destruction of exosomes in a sample.
  • Exosomes are vesicle granules secreted from animal cells and having a lipid bilayer structure of 30 to 200 nm in diameter. It is known that various membrane proteins exist on the exosome surface, similar to general cell surfaces, and microRNA (miRNA) may be contained in the exosome in addition to various proteins such as cytokines. It is known (Non-Patent Document 1). In addition, exosomes have been reported to be secreted from various cells, for example, cells of the immune system and various cancer cells, and function as a mediator of intercellular communication in vivo and are related to physiological phenomena, The association with diseases such as cancer is attracting attention.
  • miRNA microRNA
  • Non-Patent Document 2 a method of isolating exosomes by ultracentrifugation of cell culture supernatant or human serum (110,000 G for 70 minutes) and destroying the isolated exosomes with an antimicrobial peptide (Patent Literature 1), cell culture supernatant was ultracentrifuged (120,000 G, 100 minutes) to isolate exosomes, and the isolated exosomes were non-ionic detergent Triton X-100 (polyoxyethylene octyl) (Non-Patent Document 2) and the like are known.
  • exosomes are contacted with a solid phase carrier to which a ligand recognizing a surface antigen present on the surface of the exosomes is contacted to form a complex between the exosomes and the solid phase carrier.
  • a body forming step and a washing step of washing the complex wherein at least one of the complex forming step and the washing step is performed in the presence of a nonionic surfactant containing no aromatic group in the molecule.
  • An object of the present invention is to provide a method and a reagent for destruction of exosomes in a sample which are simple and rapid.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a sample was made of polyether alkylamine, polyoxyethylene polyoxypropylene alkyl ether (hereinafter referred to as POE-POP alkyl ether), and HLB (Hydrophile).
  • -Exosome can be rapidly destroyed by adding at least one surfactant selected from the group consisting of polyoxyethylene alkyl phenyl ether (hereinafter referred to as POE alkyl phenyl ether) having a Lipophile Balance value of 13 or less. Heading, the present invention has been completed.
  • the present invention relates to the following [1] to [4].
  • At least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is added to the sample. How to destroy exosomes in a sample.
  • Exosomal disruption reagent [4] The reagent according to [3], wherein the sample is serum or plasma.
  • a method and a reagent for destroying exosomes in a sample in a simple and rapid manner are provided.
  • the horizontal axis represents the elution fraction.
  • the left vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody), The amount of luminescence in each fraction is indicated by ⁇ .
  • the right vertical axis represents the absorbance at 560 nm obtained by the protein quantification method (BCA method) using bicinchoninic acid (BCA), and the absorbance at 560 nm in each fraction is indicated by ⁇ .
  • FIG. 4 is a gel filtration chromatogram showing the results of a test for destruction of exosomes in serum using an exosome-disrupting reagent containing a polyetheralkylamine and a control reagent.
  • the horizontal axis represents the elution fraction.
  • the vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody).
  • represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Nimeen L-202 (polyetheralkylamine).
  • ⁇ ⁇ indicates the amount of luminescence in each fraction when an exosome-disrupting reagent containing Nimeen DT-203 (polyetheralkylamine) was used.
  • indicates the amount of luminescence in each fraction when the control reagent was used.
  • 5 is a gel filtration chromatogram showing the results of an exosome disruption test using a exosome disrupting reagent containing POE-POP alkyl ether and a control reagent. The horizontal axis represents the elution fraction.
  • the vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody).
  • represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Wandasurf ID-50 (POE-POP alkyl ether).
  • indicates the amount of luminescence in each fraction when the control reagent was used.
  • the horizontal axis represents the elution fraction.
  • the vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody).
  • represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Nonion NS-204.5 (POE alkylphenyl ether having an HLB value of 13 or less; HLB value of 9.5).
  • the symbol ⁇ ⁇ indicates the amount of luminescence in each fraction when an exosome-destroying reagent containing nonionic HS-204.5 (POE alkylphenyl ether having an HLB value of 13 or less; HLB value of 9.8) is used.
  • indicates the amount of luminescence in each fraction when an exosome-disrupting reagent containing Triton X-100 (POE alkyl phenyl ether; HLB value 13.5) was used.
  • represents the amount of luminescence in each fraction when an exosome disrupting reagent containing Nonidet P-40 (POE alkylphenyl ether; HLB value 13.1) is used. ⁇ indicates the amount of luminescence in each fraction when the control reagent was used.
  • the exosome in the sample of the present invention is preferably selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less.
  • This is a method of breaking using at least one kind of surfactant.
  • ⁇ destroying the exosome '' means that the exosome-specific lipid bilayer structure of vesicle particles is lost and destroyed to the extent that substances contained inside the exosome are eluted outside the exosome. means.
  • destruction of an exosome may be expressed as destruction of an exosome membrane, dissolution of an exosome, or dissolution of an exosome membrane.
  • the method for confirming that the exosome has been destroyed by the method for destroying exosomes of the present invention is not particularly limited as long as it is a method capable of confirming the exosome breakdown, for example, a method using an electron microscope, an exosome that the exosome has on its surface. Examples include a method of measuring a unique antigen by an immunological assay. In the method using an electron microscope, destruction of exosomes can be confirmed by confirming disappearance of the shape of vesicle particles having a lipid bilayer structure specific to exosomes in an electron microscope image.
  • the exosomes of the present invention are compared with those before performing the exosome destruction method of the present invention.
  • the decrease in the measurement signal due to the exosome-specific antigen that is, the decrease in the measurement signal due to the exosome
  • the criterion for confirming the exosome destruction can be appropriately set. For example, a decrease of the measurement signal of 50% or more can be set as the criterion.
  • the mixture obtained by mixing the sample and the destruction reagent of the present invention is gel-gelated. Destruction of exosomes can also be confirmed by subjecting to chromosome chromatography and measuring exosomes in each of the obtained fractions.
  • the sample itself such as serum or plasma is subjected to gel filtration chromatography to confirm in advance the fraction from which exosomes are eluted, and thereafter, the sample such as serum or plasma and the disrupting reagent of the present invention are mixed.
  • the mixture obtained in (1) is subjected to gel filtration chromatography, the exosomes in the fraction previously confirmed are measured by immunoassay, and the decrease in the measurement signal is confirmed, thereby confirming the exosome destruction.
  • the criterion for confirming the exosome destruction can be appropriately set. For example, a decrease of the measurement signal of 50% or more can be set as the criterion.
  • the measurement signal is a signal obtained by an immunoassay for an exosome-specific antigen that the exosome has on its surface, and a exosome having an exosome-specific antigen on its surface, and a label formed by binding a label to an antibody against the exosome-specific antigen. Due to the label in the immune complex containing the conjugated antibody.
  • the measurement signal is not particularly limited as long as it is a signal capable of confirming exosome destruction, and examples thereof include color development (absorbance), fluorescence, and luminescence.
  • the measurement signal is color development (absorbance)
  • a peroxidase that is a label is reacted with a combination of its substrate, hydrogen peroxide and an oxidized chromogen, and the absorbance of the reaction solution is measured using a spectrophotometer or a multiwell.
  • a method of measuring with a plate reader or the like, a method of reacting a label ⁇ -D-galactosidase with its substrate, and measuring the absorbance of the reaction solution with a spectrophotometer, a multiwell plate reader, or the like can be used.
  • the oxidative coloring type chromogen include a leuco type chromogen and an oxidative coupling coloring type chromogen.
  • a leuco-type chromogen is a substance that is converted into a dye alone in the presence of a peroxide active substance such as hydrogen peroxide and peroxidase.
  • a peroxide active substance such as hydrogen peroxide and peroxidase.
  • CCAP 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine
  • MCDP 10-N-methylcarbamoyl-3,7- Bis (dimethylamino) -10H-phenothiazine
  • DA-64 N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine sodium salt
  • DA-67 10-N-carboxymethylcarbamoyl-3 , 7-bis (dimethylamino) -10H-phenothiazine sodium salt
  • DA-67 4,4'-bis (dimethylamino) diphen
  • An oxidatively coupled chromogen is a substance that produces a dye by oxidative coupling of two compounds in the presence of a peroxide active substance such as hydrogen peroxide and peroxidase.
  • a peroxide active substance such as hydrogen peroxide and peroxidase.
  • the combination of the two compounds include a combination of a coupler with an aniline (Trinder reagent) and a combination of a coupler with a phenol.
  • the coupler include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazine.
  • anilines include N- (3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- (2-hydroxy -3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methylaniline, N , N-bis (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3-methoxyaniline,
  • ⁇ ⁇ -D-galactosidase substrate includes, for example, o-nitrophenyl- ⁇ -D-galactopyranoside.
  • the measurement signal is fluorescence
  • a peroxidase that is a label is reacted with a combination of hydrogen peroxide and a fluorescent substrate of peroxidase, and the intensity of the generated fluorescence is measured with a fluorometer, a fluorescence multiwell plate reader, or the like.
  • a method in which ⁇ -D-galactosidase as a label is reacted with a fluorescent substrate of ⁇ -D-galactosidase, and the intensity of the generated fluorescence is measured with a fluorometer, a fluorescence multiwell plate reader, or the like.
  • Examples of the fluorescent substrate for peroxidase include 4-hydroxyphenylacetic acid, 3- (4-hydroxyphenyl) propionic acid, coumarin and the like.
  • Examples of the fluorescent substrate of ⁇ -D-galactosidase include 4-methylumbelliferyl- ⁇ -D-galactopyranoside.
  • the measurement signal is luminescence
  • a method for measuring the intensity of luminescence due to the luminescent substance as a label with a luminescence photometer or luminescence multiwell plate reader, etc., the peroxidase as a label, and the luminescence of hydrogen peroxide and peroxidase A method of measuring the intensity of luminescence generated by reacting with a combination of substrates with a luminescence intensity meter, a luminescence multi-well plate reader, or the like; a method of labeling ⁇ -D-galactosidase with a luminescent substrate of ⁇ -D-galactosidase; A method of measuring the intensity of the generated luminescence with a luminescence photometer or a luminescence multi-well plate reader, and reacting the alkaline phosphatase that is a label with a luminescent substrate of the alkaline phosphatase, and determining the intensity of the generated luminescence by the luminescence intensity.
  • Examples of the luminescent substance include acridinium esters and derivatives thereof, ruthenium complex compounds, lophine and the like.
  • Examples of the luminescent substrate of peroxidase include a luminol compound and a lucigenin compound.
  • Examples of the luminescent substrate of ⁇ -D-galactosidase include Galacton-Plus (manufactured by Applied Biosystems) and its analogous compounds.
  • Examples of the luminescent substrate for alkaline phosphatase include 3- (2′-spiroadamantane) -4-methoxy-4- (3′-phosphoryloxy) phenyl-1,2-dioxetane disodium salt (AMPPD), Chloro-5- ⁇ 4-methoxyspiro [1,2-dioxetane-3,2 ′ (5′-chloro) tricyclo [3.3.1.1 3.7 ] decane] -4-yl ⁇ phenylphosphate.
  • CDP-Star TM 3- ⁇ 4-methoxyspiro [1,2-dioxetane-3,2 ′-(5′-chloro) tricyclo [3.3.1.1 3.7 ] decane]- 4'-yl ⁇ phenyl phosphate disodium salt (CSPD TM), 9 - [(phenyloxy) (phosphoryloxy) methylidene] -10-methyl-acridan-disodium, - [(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methyl-acridan-disodium (Lumigen TM APS-5), and the like.
  • Examples of a method for confirming exosome destruction by measuring an exosome specific antigen on the surface of the exosome by an immunoassay include, for example, a method including the following steps.
  • ⁇ Method for confirming exosome destruction (1)> (1A) a step of adding at least one surfactant selected from the group consisting of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less to a sample; (2A) the sample obtained in the step (1A) is treated with a first antibody or an antibody fragment that binds to a first exosome specific antigen that the exosome has on its surface, and a second exosome that the exosome has on its surface An immune complex 1 comprising the second antibody or the antibody fragment that binds to a unique antigen and an aqueous medium, and reacting with the first antibody or the antibody fragment, exosomes, and the second antibody or the antibody
  • step (1A) at least one surfactant selected from the group consisting of polyetheralkylamine, POE-POP alkylether, and POEalkylphenylether having an HLB value of 13 or less is added to the sample Exosome destruction reagent of the present invention containing at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less, It can be performed by addition.
  • the step (4A) is a control exosome-destroying reagent that does not contain any of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less. Can be added to the sample.
  • the criterion for exosome destruction in the step (5A) can be set as appropriate. For example, the measurement signal obtained in the step (3A) is compared with the measurement signal obtained in the step (4A). , A criterion for determining that the exosome has been destroyed when the exosome is reduced by 50% or more can be set.
  • the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface may or may not be immobilized on the insoluble carrier, It is preferably immobilized.
  • the insoluble carrier is not particularly limited as long as the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface is immobilized and the exosome can be destroyed by the method of the present invention.
  • various types of plates such as synthetic resin plates such as microtiter plates, glass or synthetic resin granules (beads), glass or synthetic resin spheres (balls), latex, magnetic particles, nitrocellulose membrane, etc. Examples include membranes and test tubes made of synthetic resin. Examples of the synthetic resin plate include a polyethylene plate, a polypropylene plate, and a polystyrene plate.
  • the immobilization of the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface to the insoluble carrier is not particularly limited as long as the immobilization enables the method for destruction of the exosome of the present invention.
  • immobilization by physical adsorption, chemical bonding and the like examples include an electrostatic bond, a hydrogen bond, and a hydrophobic bond.
  • Examples of the chemical bond include a covalent bond and a coordinate bond.
  • the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface can be directly immobilized on the insoluble carrier by physical adsorption and / or chemical bonding, or indirectly immobilized on the insoluble carrier. You may.
  • the first exosome binds to the first exosome-specific antigen on the surface thereof through specific binding of biotin and avidins (avidin, streptavidin, neutravidin, etc.). Examples include a method of immobilizing the antibody or the antibody fragment on an insoluble carrier.
  • the first antibody or the antibody fragment that binds to the first exosome specific antigen that the exosome has on its surface may be immobilized on an insoluble carrier by covalent bonding via a linker.
  • the second antibody or the antibody fragment that binds to the second exosome specific antigen that the exosome has on its surface may or may not bind to the label.
  • the label include the above-mentioned labels and the like.
  • a third antibody bound to the second antibody or the antibody fragment or a labeled third antibody bound to a label to the antibody fragment or the antibody Using the fragment, the destruction of the exosome in the sample can be similarly confirmed. That is, the labeled third antibody or the antibody fragment is reacted with the second antibody or the antibody fragment in the immune complex 1, and the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment are reacted. And the labeled third antibody or the antibody fragment to form an immune complex 2, and measuring the label in the immune complex 2 by the above-described method, thereby obtaining the immune complex generated in the step (2A).
  • the third antibody include an antibody that binds to the Fc region of the second antibody or an antibody fragment thereof.
  • the label include the aforementioned labels.
  • the combination of the first exosome-specific antigen and the second exosome-specific antigen is not particularly limited as long as the combination enables the method of destructing exosomes of the present invention, and examples thereof include combinations shown in Table 1 below. No.
  • the combination of the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen is not particularly limited as long as the combination enables the method of destroying exosomes of the present invention. Instead, for example, the combinations shown in Table 2 below can be mentioned.
  • any antibody fragment that binds to the first exosome-specific antigen and enables the exosome-destroying method of the present invention can be used.
  • Fab obtained by treating the antibody with papain
  • F (ab ') 2 obtained by treating the antibody with pepsin
  • Fab' obtained by treating the antibody with pepsin and reducing
  • Examples include an antibody fragment from which the Fc portion has been removed, an antibody fragment from which the Fc portion has been removed by genetic engineering techniques, and the like.
  • any antibody fragment that binds to the second exosome-specific antigen and enables the exosome destruction method of the present invention can be used.
  • Fab obtained by treating the antibody with papain
  • F (ab ') 2 obtained by treating the antibody with pepsin
  • Fab' obtained by treating the antibody with pepsin and reducing
  • Examples include an antibody fragment from which the Fc portion has been removed, an antibody fragment from which the Fc portion has been removed by genetic engineering techniques, and the like.
  • the first antibody that binds to the first exosome specific antigen is not particularly limited as long as it is an antibody that binds to the first exosome specific antigen and enables the exosome destruction method of the present invention. Both polyclonal antibodies and monoclonal antibodies can be used.
  • the second antibody that binds to the second exosome specific antigen is not particularly limited as long as it is an antibody that binds to the second exosome specific antigen and enables the exosome destruction method of the present invention. Both polyclonal antibodies and monoclonal antibodies can be used.
  • a commercially available antibody can be used for both the first antibody that binds to the first exosome specific antigen and the second antibody that binds to the second exosome specific antigen.
  • Examples of commercially available antibodies include anti-CD9 monoclonal antibody (clone A100-4; manufactured by Institute of Medical Biology), Purified Mouse Anti-Human CD9 (manufactured by Becton Dickinson Japan), Purified Mouse Anti-Human CD63 (manufactured by Becton Japan) Dickinson), Purified Mouse Anti-Human CD81 (manufactured by Becton Dickinson Japan, clone: JS-81), anti-CD147 antibody [MEM-M6 / 1] (manufactured by Novous biologics) and the like.
  • ⁇ Method for confirming exosome destruction (2)> (1B) a step of adding to the sample at least one surfactant selected from the group consisting of polyetheralkylamines, POE-POP alkylethers, and POEalkylphenylethers having an HLB value of 13 or less; (2B) subjecting the sample obtained in the step (1B) to gel filtration chromatography to separate a fraction containing exosomes from other fractions; (3B) the exosome-containing fraction obtained in the step (2B) is treated with a first antibody or an antibody fragment thereof, which binds to a first exosome-specific antigen that the exosome has on its surface, and the exosome on its surface.
  • a surfactant selected from the group consisting of polyetheralkylamines, POE-POP alkylethers, and POEalkylphenylethers having an HLB value of 13 or less.
  • step (1B) Reacting the second antibody or the antibody fragment that binds to the second exosome-specific antigen with an aqueous medium, the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment; Generating an immune complex 1; (4B) a step of measuring the immune complex 1 generated in the step (3B); (5B) In the step (1B), at least one surfactant selected from the group consisting of polyetheralkylamine, POE-POP alkylether, and POEalkylphenylether having an HLB value of 13 or less is not added.
  • the addition of at least one or more surfactants selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less to the sample comprises: Exosome destruction reagent of the present invention containing at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less, It can be performed by addition.
  • the step (5B) does not contain at least one or more surfactants selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less. It can be performed by adding a control exosome disrupting reagent to the sample.
  • the criterion for exosome destruction in step (6B) can be appropriately set. For example, the measurement signal obtained in step (4B) is compared with the measurement signal obtained in step (5B). , A criterion for determining that the exosome has been destroyed when the exosome is reduced by 50% or more can be set.
  • the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface may or may not be immobilized on the insoluble carrier, It is preferably immobilized.
  • the insoluble carrier include the aforementioned insoluble carriers and the like.
  • the immobilization of the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface to an insoluble carrier include the above-described immobilization.
  • the second antibody or the antibody fragment that binds to the second exosome-specific antigen that the exosome has on its surface may or may not bind to the label. Is preferred.
  • the label include the above-mentioned labels and the like.
  • a third antibody bound to the second antibody or the antibody fragment or a labeled third antibody bound to a label to the antibody fragment or the antibody Using the fragment, the destruction of the exosome in the sample can be similarly confirmed. That is, the labeled third antibody or the antibody fragment is reacted with the second antibody or the antibody fragment in the immune complex 1, and the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment are reacted. And the labeled third antibody or the antibody fragment to form an immune complex 2, and measuring the label in the immune complex 2 by the above-described method, whereby the immune complex generated in the step (3B) is obtained.
  • the third antibody include an antibody that binds to the Fc region of the second antibody or an antibody fragment thereof.
  • the label include the aforementioned labels.
  • Examples of the combination of the first exosome specific antigen and the second exosome specific antigen include the above-described combinations and the like.
  • Examples of the combination of the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen include, for example, the combinations described above.
  • commercially available antibodies can be used as both the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen.
  • Examples of commercially available antibodies include the aforementioned antibodies and the like.
  • the exosome in the present invention is a vesicle granule secreted from animal cells and having a lipid bilayer structure of 30 to 200 nm in diameter.
  • the sample in the present invention means a sample on which exosome isolation operation such as ultracentrifugation has not been performed, and as an example, a biological sample containing exosomes (for example, whole blood, serum, plasma, urine, saliva, Body fluid samples such as milk, seminal plasma, cerebrospinal fluid, and feces), and cell culture media, and the like. Biological samples are preferred, and serum and plasma are particularly preferred.
  • the polyetheralkylamine in the exosome breaking method of the present invention is not particularly limited as long as it is a polyetheralkylamine that enables the exosome breaking method of the present invention, and a polyetheralkylamine having an HLB value of 13 or less is preferable. preferable.
  • the polyetheralkylamine in the present invention has a structure in which at least one of the hydrogen atoms bonded to the nitrogen atom of the alkylamine has been substituted with polyoxyethylene.
  • polyoxyalkylamine hereinafter referred to as POE Alkylamine
  • POE alkyl propylene diamine polyoxyethylene alkyl propylene diamine
  • Examples of the alkyl in the polyetheralkylamine include an alkyl having 8 to 24 carbon atoms, and an alkyl having 10 to 20 carbon atoms is preferable.
  • Examples of the alkyl having 8 to 24 carbon atoms include octyl, isooctyl, nonyl, decyl, isodecyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (cetyl), heptadecyl, octadecyl (stearyl), Oleyl, nonadecyl, icosyl, heneicosyl, docosyl (behenyl), tricosyl, tetracosyl and the like can be mentioned.
  • alkyl having 10 to 20 carbon atoms examples include decyl, isodecyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (cetyl), heptadecyl, octadecyl (stearyl), oleyl, nonadecyl, and icosyl. No.
  • commercially available POE alkylamines include, for example, Nymeen L-201 [oxyethylene dodecylamine; HLB value 3.8], Nymeen L-202 [POE dodecylamine; HLB value 6] .4], Nimeen L-207 [POE dodecylamine; HLB value 12.5], Nimeen S-204 [POE stearylamine; HLB value 8.0], Nimeen S-220 [POE stearylamine; HLB value 15.4] ], Nymin T2-210 [POE alkyl (tallow) amine; HLB value 12.5], Nymin F-202 [POE alkyl (coconut) amine; HLB value 6.1] (all manufactured by NOF CORPORATION), Brownon L -205 [POE dodecylamine; HLB value 10.4], Brownon L-210 [POE Dodecylamine; HLB value 13.6] (above, manufactured by Aoki Yu
  • POE alkyl propylene diamines include, for example, Nimeen DT-203 [POE alkyl propylene diamine; HLB value 6.0]. , Nimeen DT-208 [POE alkyl propylene diamine; HLB value 10.7] (above, manufactured by NOF CORPORATION), BROWNON DT-03 [POE alkyl (tallow) propylene diamine; HLB value 5.9], BROWNON DT-15 [POE alkyl (tallow) propylene diamine; HLB value 13.4] (all manufactured by Aoki Yushi Kogyo KK) and the like.
  • POE alkylamines include Nymene L-201 [oxyethylene dodecylamine; HLB value 3.8] and Nymene L-202 [POE dodecylamine; HLB] 6.4], Nimeen L-207 [POE dodecylamine; HLB value 12.5], Nimeen S-204 [POE stearylamine; HLB value 8.0], Nimeen T2-210 [POE alkyl (tallow) amine; HLB value 12.5], Nymein F-202 [POE alkyl (coconut) amine; HLB value 6.1] (all manufactured by NOF CORPORATION), Brownon L-205 [POE dodecylamine; HLB value 10.4] ( Aoki Yushi Kogyo Co., Ltd.).
  • POE alkyl propylene diamines having an HLB value of 13 or less include, for example, Nymein DT-203 [POE alkyl propylene diamine; HLB value 6.0], Nymein DT-208 [POE alkyl propylene diamine; HLB value 10.7] (Above, manufactured by NOF CORPORATION) and Brownon DT-03 [POE alkyl (tallow) propylene diamine; HLB value: 5.9] (above, manufactured by Aoki Yushi Kogyo Co., Ltd.).
  • the POE-POP alkyl ether in the method for destroying exosomes of the present invention is not particularly limited as long as it is a POE-POP alkyl ether that enables the method for destroying exosomes of the present invention, but POE-POP having an HLB value of 13 or less.
  • Alkyl ethers are particularly preferred.
  • Examples of the alkyl in the POE-POP alkyl ether include an alkyl having 8 to 24 carbon atoms, and an alkyl having 10 to 20 carbon atoms is preferable.
  • Examples of the alkyl having 8 to 24 carbon atoms include the aforementioned alkyl having 8 to 24 carbon atoms.
  • Examples of the alkyl having 10 to 20 carbon atoms include the aforementioned alkyl having 10 to 20 carbon atoms.
  • POE-POP alkyl ethers include, for example, Nonion HT-505 [POE-POP alkyl ether; HLB value 5], Nonion HT-510 [POE-POP alkyl ether; HLB value 10], Nonion HT-512 [ POE-POP alkyl ether; HLB value 12], Nonion HT-515 [POE-POP alkyl ether; HLB value 15] (all manufactured by NOF CORPORATION), Wandasurf ID-50 [POE-POP isodecyl ether; HLB value 10.5], Wandasurf ID-70 [POE-POP isodecyl ether; HLB value 12.1], Wandasurf ID-90 [POE-POP isodecyl ether; HLB value 13.2] (above, Aoki Yushi Kogyo Co., Ltd.) Co., Ltd.), Neugen TDS-30 [POE-POP tridecyl ether HLB value
  • POE-POP alkyl ethers having an HLB value of 13 or less include, for example, Nonion HT-505 [POE-POP alkyl ether; HLB value 5], Nonion HT-510 [POE-POP alkyl ether; HLB value 10], Nonion HT-512 [POE-POP alkyl ether; HLB value 12] (above, manufactured by NOF CORPORATION), Wandasurf ID-50 [POE-POP isodecyl ether; HLB value 10.5], Wandasurf ID -70 [POE-POP isodecyl ether; HLB value 12.1] (above, manufactured by Aoki Yushi Kogyo Co., Ltd.), Neugen TDS-30 [POE-POP tridecyl ether; HLB value 8], Neugen TDS-50 [POE- POP tridecyl ether; HLB value 10.5], Neugen TDS-70 [POE- OP tridecyl
  • the POE alkyl phenyl ether having an HLB value of 13 or less in the method for destroying exosomes of the present invention is not particularly limited as long as it is a POE alkyl phenyl ether having an HLB value of 13 or less that enables the method for destroying exosomes of the present invention.
  • Examples of the alkyl in the POE alkyl phenyl ether having an HLB value of 13 or less include an alkyl having 8 to 9 carbon atoms.
  • Examples of the alkyl having 8 to 9 carbon atoms include octyl and nonyl.
  • POE alkyl phenyl ethers having an HLB value of 13 or less include, for example, Nonion HS-204.5 [POE octyl phenyl ether; HLB value 9.8], Nonionic HS-206 [POE octyl phenyl ether; HLB value 11 .2], nonionic NS-202 [POE nonylphenyl ether; HLB value 5.7], nonionic NS-204.5 [POE nonylphenyl ether; HLB value 9.5], nonionic NS-208.5 [POE nonylphenyl] Ether; HLB value 12.6] (all manufactured by NOF Corporation), Brownon NK-8055 [POE octyl phenyl ether; HLB value 10.8], Brownon NK-808 [POE octyl phenyl ether; HLB value 12.5] , Brownon N-502 [POE Nonylphenyl A HLB value 5.7], Brownon
  • a method for adding at least one surfactant selected from the group consisting of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less Is not particularly limited as long as it is an addition method that enables the method of destroying exosomes of the present invention.
  • a method of directly adding the surfactant to a sample a method of dissolving the surfactant in an aqueous medium Adding the aqueous solution of the surfactant to a sample; adding the sample to an aqueous solution of the surfactant prepared by dissolving the surfactant in an aqueous medium;
  • An aqueous solution was prepared by dissolving a method of adding to the sample is preferred.
  • the aqueous medium is not particularly limited as long as it is an aqueous medium that enables the exosome destruction method of the present invention, and examples thereof include deionized water, distilled water, and a buffer, and a buffer is preferable.
  • the pH of the aqueous medium is, for example, 4 to 10.
  • a buffer is used as the aqueous medium, it is preferable to use a buffer suitable for the set pH.
  • the buffer used in the preparation of the buffer is not particularly limited as long as it has a buffering capacity.
  • examples include a lactate buffer, a citrate buffer, an acetate buffer, a succinate buffer, a phthalate buffer, Phosphate buffer, triethanolamine buffer, diethanolamine buffer, lysine buffer, barbitur buffer, imidazole buffer, malate buffer, oxalate buffer, glycine buffer, borate buffer, carbonate buffer And a good buffer.
  • buffers examples include 2-morpholinoethanesulfonic acid (MES) buffer, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris) buffer, and tris (hydroxymethyl) aminomethane (Tris) Buffer, N- (2-acetamido) iminodiacetic acid (ADA) buffer, piperazine-N, N'-bis (2-ethanesulfonic acid) (PIPES) buffer, 2- [N- (2-acetamido) Amino] ethanesulfonic acid (ACES) buffer, 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) buffer, 2- [N, N-bis (2-hydroxyethyl) amino] ethanesulfonic acid (BES) buffer Agent, 3-morpholinopropanesulfonic acid (MOPS) buffer, 2- ⁇ N- [tris (hydroxymethyl B) methyl] aminodiethanesulfonic acid (TES) buffer, N- (2-
  • the aqueous medium may contain salts, metal ions, sugars, preservatives, proteins and the like.
  • the salts include lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride, lithium bromide, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, and ammonium bromide.
  • the metal ion include a magnesium ion, a manganese ion, a zinc ion and the like.
  • the saccharide include mannitol and sorbitol.
  • preservatives examples include sodium azide, antibiotics (streptomycin, penicillin, gentamicin, etc.), Bioace, Proclin 300, Proxel GXL and the like.
  • protein examples include bovine serum albumin and the like.
  • the reaction temperature is not particularly limited as long as it allows the method for disrupting exosomes of the present invention, and is usually 0 to 50 ° C, preferably 4 to 45 ° C, and particularly preferably 15 to 40 ° C.
  • the reaction time of the reaction is not particularly limited as long as it allows the exosome destruction method of the present invention, and is usually 10 seconds to 24 hours, preferably 30 seconds to 3 hours, and preferably 1 minute to 2 hours. Is particularly preferred.
  • At least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less was added to a sample.
  • the subsequent concentration is not particularly limited as long as the concentration allows the method of destroying exosomes of the present invention, and is usually 0.001 to 10% (w / v), and 0.01 to 5% (w / v). ) Is preferred, and 0.04 to 1% (w / v) is particularly preferred.
  • exosome-destroying reagent in the sample of the present invention is a reagent used for the method of destructing exosomes in the sample of the present invention, and includes an exosome-disrupting agent in a sample, a exosome-destroying composition in a sample, and a sample. It can also be expressed as a reagent for lysing exosomes in a sample, an agent for lysing exosomes in a sample, and a composition for lysing exosomes in a sample. Examples of the sample containing exosomes to be destroyed using the disrupting reagent of the present invention include the above-described samples.
  • the polyether alkylamine, POE-POP alkyl ether, and POE alkylphenyl ether having an HLB value of 13 or less in the exosome-destroying reagent of the present invention include, for example, the aforementioned polyether alkylamine, POE-POP alkyl ether, And POE alkyl phenyl ethers having an HLB value of 13 or less, respectively.
  • the exosome-destroying reagent of the present invention may be in a liquid state or a lyophilized state.
  • a liquid breaking reagent at least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is prepared in advance by using the aforementioned aqueous solution. It is dissolved in the medium.
  • At least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is the aforementioned aqueous solution. It may be used by being dissolved in a medium or by directly contacting the sample.
  • the breaking reagent of the present invention may contain the above-mentioned salts, metal ions, saccharides, preservatives, proteins and the like.
  • the content of at least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less in the exosome-destroying reagent of the present invention is as follows. There is no particular limitation as long as the content allows the destruction method, and the concentration after mixing with the sample is usually 0.001 to 10% (w / v), and 0.01 to 5%. (W / v) is preferred, and a content of 0.04 to 1% (w / v) is particularly preferred.
  • streptavidin-conjugated magnetic particle solution a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP (alkaline phosphatase) -labeled anti-CD9 monoclonal antibody solution were prepared.
  • a streptavidin-binding magnetic particle solution A streptavidin-binding magnetic particle solution having the following composition was prepared using commercially available streptavidin-binding magnetic particles (Dynabeads MyOne Streptavidin C1).
  • biotin-conjugated anti-CD9 monoclonal antibody solution having the following composition was prepared.
  • MES pH 6.5
  • Biotin-conjugated anti-CD9 monoclonal antibody 75 ng / mL BSA 0.1% (w / v) Sodium chloride 0.1mol / L ⁇
  • Alkaline Phosphatase Labeling Kit-NH 2 manufactured by Dojin Chemical Laboratory Co., Ltd.
  • an ALP-labeled anti-CD9 monoclonal antibody solution having the following composition was prepared.
  • MES pH 6.5
  • ALP-labeled anti-CD9 monoclonal antibody 75 ng / mL BSA 0.1% (w / v) Sodium chloride 0.1mol / L
  • each fraction obtained in the above (2) was added to the streptavidin-bound magnetic particle solution (30 ⁇ L) prepared in the above (4), the biotin-bound anti-CD9 monoclonal antibody solution (30 ⁇ L) prepared in the above (4), and The ALP-labeled anti-CD9 monoclonal antibody solution (30 ⁇ L) prepared in the above (4) was added, stirred, and reacted at 37 ° C. for 10 minutes. Next, the magnetic particles were collected by magnetic force, the reaction solution other than the magnetic particles was removed, and the collected magnetic particles were washed five times with the following washing liquid.
  • the sandwich method (5) uses a sandwich method using an anti-CD9 monoclonal antibody as a primary antibody and an ALP-labeled anti-CD9 monoclonal antibody as a labeled secondary antibody, that is, a primary antibody and a secondary antibody.
  • fraction Nos. 20 to 40 since a large measurement signal was obtained by measurement using the BCA protein assay kit, fraction Nos. It was found that 20 to 40 contained a large amount of protein. These fractions were subjected to SDS-PAGE. As a result, these fractions contained large amounts of proteins corresponding to the molecular weights of albumin and gamma globulin (principal molecular weights of about 66 kDa and 150 kDa, respectively) in serum. was found to be contained. Here, in gel filtration chromatography, a molecule having a larger molecular weight elutes faster. However, as is evident from FIG. 1, fraction No.
  • Example 1 Each of the five surfactants shown in Table 3 below was added to PBS so as to have a concentration of 10% (w / v) to prepare exosome disrupting reagents A1 to A5.
  • Table 3 Two surfactants shown in Table 3 below, namely, Triton X-100 and Nonidet P-40 surfactants were added to PBS so as to be 10% (w / v), and the surfactants were used for exosome disruption.
  • Reagents B1 and B2 were prepared, respectively.
  • Comparative Example 2 PBS was used as a control reagent B0.
  • Example 2 ⁇ Destruction of exosomes using exosome destruction reagent containing polyetheralkylamine> (1) Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1, was subjected to 2,000 rpm at 25 ° C. for 20 minutes. After centrifugation, serum was prepared. To the prepared serum (900 ⁇ L), the exosome-disrupting reagent A1 (100 ⁇ L) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes.
  • Example 3 The fraction No. obtained in (2) of Comparative Example 3 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A1 in (4) of Example 2 described above. The light emission amount relative to 18 was calculated. Similarly, the fraction No. obtained from the serum treated with the exosome disrupting reagent A2 obtained in (4) of Example 2 above. The light emission amount relative to 18 was calculated. Table 4 shows the results.
  • Example 4 ⁇ Destruction of exosomes using exosome destruction reagent containing POE-POP alkyl ether> (1) Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1 and Example 2, was subjected to 2,000 rpm, 25 Centrifugation was performed at 20 ° C. for 20 minutes to prepare serum. To the prepared serum (900 ⁇ L), the exosome-disrupting reagent A3 (100 ⁇ L) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes.
  • Example 5 The fraction No. obtained in (2) of Comparative Example 4 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A3 in (2) of Example 4 described above. The light emission amount relative to 18 was calculated. Table 5 shows the results.
  • Example 6 ⁇ Destruction of exosomes using exosome destruction reagent containing POE alkyl phenyl ether having HLB value of 13 or less>
  • Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1, Example 2 and Example 4, was collected. The mixture was centrifuged at 2,000 rpm at 25 ° C. for 20 minutes to prepare a serum. To the prepared serum (900 ⁇ L), the exosome-disrupting reagent A4 (100 ⁇ L) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes.
  • the exosome-disrupting reagent A5 (100 ⁇ L) prepared in Example 1 described above was added and left to stand for 10 minutes.
  • Example 7 The fraction No. obtained in (2) of Comparative Example 6 above. Assuming that the amount of luminescence with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A4 in (2) of Example 6 described above. The light emission amount relative to 18 was calculated. Similarly, the fraction No. obtained from the serum treated with the exosome disrupting reagent A5 obtained in (2) of Example 6 above. The light emission amount relative to 18 was calculated. Table 6 shows the results. In addition, the fraction No. obtained in (2) of Comparative Example 6 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No.
  • Triton X-100 or Nonidet P-40 which are POE alkyl phenyl ethers having an HLB value of more than 13, to Nonion NS-204.5 or Nonion HS-204.5 to serum. It was found that the addition significantly destroyed the exosome. Therefore, it was revealed that by adding POE alkylphenyl ether having an HLB value of 13 or less to serum, exosomes in serum can be easily and quickly destroyed without isolating exosomes in serum.
  • Example 8 serum and plasma>
  • Serum 1 was prepared by centrifugation at 2,000 rpm for 20 minutes at 25 ° C.
  • the exosome-disrupting reagent A4 100 ⁇ L prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes to obtain serum 1 A4 .
  • the control reagent B0 (100 ⁇ L) prepared in Comparative Example 2 was added and allowed to stand for 10 minutes to obtain serum 1 B0 .
  • a measuring reagent used in a sandwich method using an antigen-antibody reaction A streptavidin-conjugated magnetic particle solution, a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP label were prepared in the same manner as in (4) of Reference Example 1 above. An anti-CD9 monoclonal antibody solution was prepared.
  • the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen TM APS-5).
  • the substrate solution 100 ⁇ L was added and stirred, the light emission quantity 1 A4 to serum 1 A4, and were measured an emission amount 1 B0 to serum 1 B0.
  • S / N ratio 1 A4 light emission amount 1 A4 / blank light emission amount
  • S / N ratio 1 B0 light emission amount 1 B0 / blank light emission amount (5)
  • the residual ratio of S / N was set to 1. Table 7 shows the results. Here, the closer the S / N ratio residual rate is to 100, the more the exosome is not destroyed. That is, the closer the S / N ratio residual ratio is to 0, the more the exosome is destroyed.
  • Nonionic NS-204.5 was added to PBS so as to have the concentration shown in Table 8 below, to prepare exosome disrupting reagents A6 to A8, respectively.
  • Example 10 ⁇ Destruction of exosomes in serum by exosome disrupting reagents A6 to A8> (1) Preparation of Serum and Treatment of Serum All samples collected from healthy persons belonging to Kyowa Medex Co., Ltd., which are different from the healthy persons in Reference Example 1, Example 2, Example 4, Example 6, and Example 8 Blood was centrifuged at 2,000 rpm at 25 ° C. for 20 minutes to prepare serum. To each of the prepared serum (900 ⁇ L), each of the exosome disrupting reagents A6 to A8 (100 ⁇ L) prepared in Example 9 described above was added and allowed to stand for 10 minutes to obtain serum A6 , serum A7 and serum A8 , respectively. Was.
  • control reagent B0 100 ⁇ L prepared in Comparative Example 2 was added to the prepared serum (900 ⁇ L), and the mixture was allowed to stand for 10 minutes to obtain serum B0 .
  • a streptavidin-conjugated magnetic particle solution, a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP label were prepared in the same manner as in (4) of Reference Example 1 above.
  • An anti-CD9 monoclonal antibody solution was prepared.
  • the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen TM APS-5).
  • the substrate solution 100 ⁇ L was added and stirred, and the luminescence A6 , luminescence A7 , luminescence A8 and luminescence B0 were measured respectively.
  • S / N ratio residual ratio When the S / N ratio B0 obtained in (4) above is set to 100, the S / N ratio A6 and S / N obtained in (4) above are obtained.
  • the relative values of the ratio A7 and the S / N ratio A8 were calculated, and were defined as the S / N ratio residual ratio A6 , the S / N ratio residual ratio A7, and the S / N ratio residual ratio A8 , respectively.
  • Table 9 shows the results.
  • the closer the S / N ratio residual rate is to 100 the more the exosome is not destroyed. That is, the closer the S / N ratio residual ratio is to 0, the more the exosome is destroyed.
  • a method and a reagent for destruction of exosomes in a sample which are simple and quick are provided.

Abstract

Provided are: a method for destroying exosomes in a sample, characterized by adding at least one surfactant selected from the group consisting of a polyether alkyl amine, a polyoxyethylene-polyoxypropylene alkyl ether, and a polyoxyethylene alkyl phenyl ether having an HLB value of no more than 13; and a reagent for destroying exosomes in a sample, characterized by comprising at least one surfactant selected from the group consisting of a polyether alkyl amine, a polyoxyethylene-polyoxypropylene alkyl ether, and a polyoxyethylene alkyl phenyl ether having an HLB value of no more than 13.

Description

試料中のエクソソームの破壊方法及び破壊用試薬Method for destruction of exosome in sample and reagent for destruction
 本発明は、試料中のエクソソームの破壊方法及び破壊用試薬に関する。 (4) The present invention relates to a method and a reagent for destruction of exosomes in a sample.
 エクソソームは、動物細胞から分泌される直径30~200nmの脂質二重膜構造を有する小胞顆粒である。エクソソーム表面には、一般的な細胞表面と同様に、種々の膜タンパク質が存在することが知られており、エクソソームの内部には、サイトカイン等各種タンパク質以外にもmicroRNA(miRNA)が含まれることも知られている(非特許文献1)。また、エクソソームは、種々の細胞、例えば免疫系の細胞や各種がん細胞から分泌されることが報告されており、生体内の細胞間コミュニケーションの媒介役として機能し生理現象と関連することや、がんなどの疾患との関連性が注目されている。 Exosomes are vesicle granules secreted from animal cells and having a lipid bilayer structure of 30 to 200 nm in diameter. It is known that various membrane proteins exist on the exosome surface, similar to general cell surfaces, and microRNA (miRNA) may be contained in the exosome in addition to various proteins such as cytokines. It is known (Non-Patent Document 1). In addition, exosomes have been reported to be secreted from various cells, for example, cells of the immune system and various cancer cells, and function as a mediator of intercellular communication in vivo and are related to physiological phenomena, The association with diseases such as cancer is attracting attention.
 エクソソームの内部に含まれる物質を分析するためには、エクソソームの脂質二重膜構造を破壊する必要がある。これまで、エクソソームの破壊方法として、細胞培養上清やヒト血清等を超遠心分離(110,000G・70分間)してエクソソームを単離し、該単離したエクソソームを抗菌ペプチドにより破壊する方法(特許文献1)、細胞培養上清を超遠心分離(120,000G・100分間)してエクソソームを単離し、該単離したエクソソームを非イオン性界面活性剤であるトリトンX-100(ポリオキシエチレンオクチルフェニルエーテル)により破壊する方法(非特許文献2)等が知られている。 In order to analyze the substance contained in the exosome, it is necessary to destroy the lipid bilayer structure of the exosome. Heretofore, as a method of destroying exosomes, a method of isolating exosomes by ultracentrifugation of cell culture supernatant or human serum (110,000 G for 70 minutes) and destroying the isolated exosomes with an antimicrobial peptide (Patent Literature 1), cell culture supernatant was ultracentrifuged (120,000 G, 100 minutes) to isolate exosomes, and the isolated exosomes were non-ionic detergent Triton X-100 (polyoxyethylene octyl) (Non-Patent Document 2) and the like are known.
 しかしながら、これらの方法は、エクソソーム破壊の前処理として、超遠心分離等によるエクソソームの単離が必要となることから、操作が煩雑で、かつ、操作に時間を要する。一方で、エクソソームの内部に含まれる物質の分析を臨床検査の現場に適用するにあたり、簡便かつ迅速なエクソソームの破壊方法が望まれている。 However, these methods require exosome isolation by ultracentrifugation or the like as a pretreatment for exosome disruption, so that the operation is complicated and the operation requires time. On the other hand, in applying the analysis of substances contained in exosomes to the site of clinical examination, a simple and rapid method for destruction of exosomes is desired.
 また、エクソソームの分離方法として、エクソソームと、該エクソソームの表面に存在する表面抗原を認識するリガンドが結合した固相担体とを接触させ、該エクソソームと該固相担体との複合体を形成させる複合体形成工程と、該複合体を洗浄する洗浄工程を含み、該複合体形成工程及び該洗浄工程の少なくともいずれかを、芳香族基を分子中に含まない非イオン性界面活性剤の存在下にて行うことを特徴とするエクソソームの分離方法が報告されている(特許文献2)。 Further, as a method for separating exosomes, exosomes are contacted with a solid phase carrier to which a ligand recognizing a surface antigen present on the surface of the exosomes is contacted to form a complex between the exosomes and the solid phase carrier. A body forming step and a washing step of washing the complex, wherein at least one of the complex forming step and the washing step is performed in the presence of a nonionic surfactant containing no aromatic group in the molecule. A method for separating exosomes has been reported (Patent Document 2).
国際公開第2016/143904号International Publication No. WO 2016/143904 国際公開第2015/068772号WO 2015/068772
 本発明の目的は、簡便かつ迅速な試料中のエクソソームの破壊方法及び破壊用試薬を提供することにある。 目的 An object of the present invention is to provide a method and a reagent for destruction of exosomes in a sample which are simple and rapid.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、試料に、ポリエーテルアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルエーテル(以下、POE-POPアルキルエーテルと記す)、及び、HLB(Hydrophile-Lipophile Balance)値が13以下のポリオキシエチレンアルキルフェニルエーテル(以下、POEアルキルフェニルエーテルと記す)からなる群より選ばれる少なくとも一種の界面活性剤を添加することにより、迅速にエクソソームを破壊できることを見出し、本発明を完成させた。 The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a sample was made of polyether alkylamine, polyoxyethylene polyoxypropylene alkyl ether (hereinafter referred to as POE-POP alkyl ether), and HLB (Hydrophile). -Exosome can be rapidly destroyed by adding at least one surfactant selected from the group consisting of polyoxyethylene alkyl phenyl ether (hereinafter referred to as POE alkyl phenyl ether) having a Lipophile Balance value of 13 or less. Heading, the present invention has been completed.
 すなわち、本発明は、以下の[1]~[4]に関する。
[1]試料に、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を添加することを特徴とする、試料中のエクソソームの破壊方法。
[2]試料が、血清又は血漿である、[1]記載の方法。
[3]ポリエーテルアルキルアミン;POE-POPアルキルエーテル;及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を含有することを特徴とする、試料中のエクソソーム破壊用試薬。
[4]試料が、血清又は血漿である、[3]記載の試薬。
That is, the present invention relates to the following [1] to [4].
[1] At least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is added to the sample. How to destroy exosomes in a sample.
[2] The method according to [1], wherein the sample is serum or plasma.
[3] The sample according to claim 1, further comprising at least one surfactant selected from the group consisting of polyether alkylamines; POE-POP alkyl ethers; and POE alkyl phenyl ethers having an HLB value of 13 or less. Exosomal disruption reagent.
[4] The reagent according to [3], wherein the sample is serum or plasma.
 本発明により、簡便かつ迅速な試料中のエクソソームの破壊方法及び破壊用試薬が提供される。 According to the present invention, a method and a reagent for destroying exosomes in a sample in a simple and rapid manner are provided.
血清をゲルろ過クロマトグラフィに供して得られたゲルろ過クロマトグラムである。横軸は、溶出分画を表す。左縦軸は、抗CD9モノクローナル抗体(第1抗体)、及び、アルカリホスファターゼ標識化抗CD9モノクローナル抗体(アルカリホスファターゼ標識化第2抗体)を用いるサンドイッチ法により得られた発光量(RLU)を表し、各分画における発光量を●で表す。右縦軸は、ビシンコニン酸(BCA)を用いる蛋白質定量法(BCA法)により得られた、560nmでの吸光度を表し、各分画における560nmでの吸光度を□で表す。It is a gel filtration chromatogram obtained by subjecting serum to gel filtration chromatography. The horizontal axis represents the elution fraction. The left vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody), The amount of luminescence in each fraction is indicated by ●. The right vertical axis represents the absorbance at 560 nm obtained by the protein quantification method (BCA method) using bicinchoninic acid (BCA), and the absorbance at 560 nm in each fraction is indicated by □. ポリエーテルアルキルアミンを含有するエクソソーム破壊用試薬、及び、対照用試薬を用いた、血清中のエクソソームの破壊試験の結果を示すゲルろ過クロマトグラムである。横軸は、溶出分画を表す。縦軸は、抗CD9モノクローナル抗体(第1抗体)、及び、アルカリホスファターゼ標識化抗CD9モノクローナル抗体(アルカリホスファターゼ標識化第2抗体)を用いるサンドイッチ法により得られた発光量(RLU)を表す。●は、ナイミーンL-202(ポリエーテルアルキルアミン)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。▲は、ナイミーンDT-203(ポリエーテルアルキルアミン)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。□は、対照用試薬を用いた場合の各分画における発光量を表す。4 is a gel filtration chromatogram showing the results of a test for destruction of exosomes in serum using an exosome-disrupting reagent containing a polyetheralkylamine and a control reagent. The horizontal axis represents the elution fraction. The vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody). ● represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Nimeen L-202 (polyetheralkylamine). The symbol 発 光 indicates the amount of luminescence in each fraction when an exosome-disrupting reagent containing Nimeen DT-203 (polyetheralkylamine) was used. □ indicates the amount of luminescence in each fraction when the control reagent was used. POE-POPアルキルエーテルを含有するエクソソーム破壊用試薬、及び、対照用試薬を用いたエクソソームの破壊試験の結果を示すゲルろ過クロマトグラムである。横軸は、溶出分画を表す。縦軸は、抗CD9モノクローナル抗体(第1抗体)、及び、アルカリホスファターゼ標識化抗CD9モノクローナル抗体(アルカリホスファターゼ標識化第2抗体)を用いるサンドイッチ法により得られた発光量(RLU)を表す。●は、ワンダサーフID-50(POE-POPアルキルエーテル)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。□は、対照用試薬を用いた場合の各分画における発光量を表す。5 is a gel filtration chromatogram showing the results of an exosome disruption test using a exosome disrupting reagent containing POE-POP alkyl ether and a control reagent. The horizontal axis represents the elution fraction. The vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody). ● represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Wandasurf ID-50 (POE-POP alkyl ether). □ indicates the amount of luminescence in each fraction when the control reagent was used. HLB値が13以下のPOEアルキルフェニルエーテルを含有するエクソソーム破壊用試薬、比較用エクソソーム破壊用試薬、及び、対照用試薬を用いたエクソソームの破壊試験の結果を示すゲルろ過クロマトグラムである。横軸は、溶出分画を表す。縦軸は、抗CD9モノクローナル抗体(第1抗体)、及び、アルカリホスファターゼ標識化抗CD9モノクローナル抗体(アルカリホスファターゼ標識化第2抗体)を用いるサンドイッチ法により得られた発光量(RLU)を表す。●は、ノニオンNS-204.5(HLB値が13以下のPOEアルキルフェニルエーテル;HLB値9.5)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。▲は、ノニオンHS-204.5(HLB値が13以下のPOEアルキルフェニルエーテル;HLB値9.8)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。○は、トリトンX-100(POEアルキルフェニルエーテル;HLB値13.5)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。△は、ノニデットP-40(POEアルキルフェニルエーテル;HLB値13.1)を含有するエクソソーム破壊用試薬を用いた場合の各分画における発光量を表す。□は、対照用試薬を用いた場合の各分画における発光量を表す。It is a gel filtration chromatogram which shows the result of the exosome destruction test which used the exosome destruction reagent containing the POE alkylphenyl ether whose HLB value is 13 or less, the comparative exosome destruction reagent, and the control reagent. The horizontal axis represents the elution fraction. The vertical axis represents the luminescence (RLU) obtained by a sandwich method using an anti-CD9 monoclonal antibody (first antibody) and an alkaline phosphatase-labeled anti-CD9 monoclonal antibody (alkaline phosphatase-labeled second antibody). ● represents the amount of luminescence in each fraction when using an exosome-destroying reagent containing Nonion NS-204.5 (POE alkylphenyl ether having an HLB value of 13 or less; HLB value of 9.5). The symbol 発 光 indicates the amount of luminescence in each fraction when an exosome-destroying reagent containing nonionic HS-204.5 (POE alkylphenyl ether having an HLB value of 13 or less; HLB value of 9.8) is used. ○ indicates the amount of luminescence in each fraction when an exosome-disrupting reagent containing Triton X-100 (POE alkyl phenyl ether; HLB value 13.5) was used. Δ represents the amount of luminescence in each fraction when an exosome disrupting reagent containing Nonidet P-40 (POE alkylphenyl ether; HLB value 13.1) is used. □ indicates the amount of luminescence in each fraction when the control reagent was used.
1.エクソソームの破壊方法
 本発明の試料中のエクソソームの破壊方法は、試料中のエクソソームを、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を用いて破壊する方法である。ここで「エクソソームを破壊する」とは、エクソソーム特有の脂質二重膜構造の小胞粒子の形状を消失させて、エクソソームの内部に含まれる物質がエクソソームの外部に溶出する程度まで破壊することを意味する。本明細書において、エクソソームの破壊は、エクソソーム膜の破壊、エクソソームの溶解、エクソソーム膜の溶解と表現されることもある。
1. Exosome Destruction Method The exosome in the sample of the present invention is preferably selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less. This is a method of breaking using at least one kind of surfactant. Here, `` destroying the exosome '' means that the exosome-specific lipid bilayer structure of vesicle particles is lost and destroyed to the extent that substances contained inside the exosome are eluted outside the exosome. means. In this specification, destruction of an exosome may be expressed as destruction of an exosome membrane, dissolution of an exosome, or dissolution of an exosome membrane.
 本発明のエクソソームの破壊方法によりエクソソームが破壊されたことを確認する方法としては、エクソソームの破壊を確認できる方法であれば特に制限はなく、例えば電子顕微鏡を用いる方法、エクソソームがその表面に有するエクソソーム特有抗原を免疫学的測定法により測定する方法等が挙げられる。電子顕微鏡を用いる方法においては、電子顕微鏡像でエクソソーム特有の脂質二重膜構造の小胞粒子の形状の消失を確認することにより、エクソソームの破壊を確認することができる。また、エクソソームがその表面に有するエクソソーム特有抗原を免疫学的測定法により測定することによりエクソソームの破壊を確認する場合、本発明のエクソソームの破壊方法を行う前に比較して、本発明のエクソソームの破壊方法を行った後で、エクソソーム特有抗原に起因する測定シグナルの減少、すなわち、エクソソームに起因する測定シグナルの減少を確認することにより、エクソソームの破壊を確認することができる。エクソソームの破壊を確認するための判断基準は、適宜、設定することができ、例えば、50%以上の該測定シグナルの減少を判断基準に設定することができる。さらに、エクソソームがその表面に有するエクソソーム特有抗原を免疫学的測定法により測定することによりエクソソームの破壊を確認する場合、試料と、本発明の破壊用試薬とを混合することによって得られる混合物をゲルろ過クロマトグラフィに供して、得られた各分画中のエクソソームを測定することによって、エクソソームの破壊を確認することもできる。この場合、血清や血漿等の試料そのものをゲルろ過クロマトグラフィに供して、予めエクソソームが溶出される分画を確認し、その後、血清や血漿等の試料と本発明の破壊用試薬とを混合することによって得られる混合物をゲルろ過クロマトグラフィに供して、予め確認しておいた該分画中のエクソソームを免疫学的測定法により測定し、測定シグナルの減少を確認することにより、エクソソームの破壊を確認することができる。エクソソームの破壊を確認するための判断基準は、適宜、設定することができ、例えば、50%以上の該測定シグナルの減少を判断基準に設定することができる。 The method for confirming that the exosome has been destroyed by the method for destroying exosomes of the present invention is not particularly limited as long as it is a method capable of confirming the exosome breakdown, for example, a method using an electron microscope, an exosome that the exosome has on its surface. Examples include a method of measuring a unique antigen by an immunological assay. In the method using an electron microscope, destruction of exosomes can be confirmed by confirming disappearance of the shape of vesicle particles having a lipid bilayer structure specific to exosomes in an electron microscope image. In addition, when the exosomes are examined for destruction of exosomes by measuring an exosome-specific antigen having an exosome on its surface by an immunoassay, the exosomes of the present invention are compared with those before performing the exosome destruction method of the present invention. After the disruption method is performed, the decrease in the measurement signal due to the exosome-specific antigen, that is, the decrease in the measurement signal due to the exosome, can be confirmed to confirm the exosome destruction. The criterion for confirming the exosome destruction can be appropriately set. For example, a decrease of the measurement signal of 50% or more can be set as the criterion. Furthermore, when exosomes are examined for destruction of exosomes by measuring an exosome-specific antigen on the surface thereof by an immunological assay, the mixture obtained by mixing the sample and the destruction reagent of the present invention is gel-gelated. Destruction of exosomes can also be confirmed by subjecting to chromosome chromatography and measuring exosomes in each of the obtained fractions. In this case, the sample itself such as serum or plasma is subjected to gel filtration chromatography to confirm in advance the fraction from which exosomes are eluted, and thereafter, the sample such as serum or plasma and the disrupting reagent of the present invention are mixed. The mixture obtained in (1) is subjected to gel filtration chromatography, the exosomes in the fraction previously confirmed are measured by immunoassay, and the decrease in the measurement signal is confirmed, thereby confirming the exosome destruction. be able to. The criterion for confirming the exosome destruction can be appropriately set. For example, a decrease of the measurement signal of 50% or more can be set as the criterion.
 測定シグナルは、エクソソームがその表面に有するエクソソーム特有抗原の免疫学的測定法により得られるシグナルであり、エクソソーム特有抗原を表面に有するエクソソームと、該エクソソーム特有抗原に対する抗体に標識が結合してなる標識化抗体とを含む免疫複合体中の標識に起因する。測定シグナルとしては、エクソソームの破壊を確認できるシグナルであれば特に制限はなく、例えば発色(吸光度)、蛍光、発光等が挙げられる。
 測定シグナルが発色(吸光度)の場合、例えば、標識であるペルオキシダーゼと、その基質である過酸化水素および酸化発色型色原体の組み合わせとを反応させ、反応液の吸光度を分光光度計やマルチウェルプレートリーダー等で測定する方法や、標識であるβ-D-ガラクトシダーゼとその基質とを反応させ、反応液の吸光度を分光光度計やマルチウェルプレートリーダー等で測定する方法等が挙げられる。酸化発色型色原体としては、例えばロイコ型色原体、酸化カップリング発色型色原体等が挙げられる。
 ロイコ型色原体は、過酸化水素およびペルオキシダーゼ等の過酸化活性物質の存在下、単独で色素へ変換される物質である。具体的には、テトラメチルベンジジン、O-フェニレンジアミン、10-N-カルボキシメチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(CCAP)、10-N-メチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジン(MCDP)、N-(カルボキシメチルアミノカルボニル)-4,4’-ビス(ジメチルアミノ)ジフェニルアミンナトリウム塩(DA-64)、10-N-カルボキシメチルカルバモイル-3,7-ビス(ジメチルアミノ)-10H-フェノチアジンナトリウム塩(DA-67)、4,4’-ビス(ジメチルアミノ)ジフェニルアミン、ビス[3-ビス(4-クロロフェニル)メチル-4-ジメチルアミノフェニル]アミン(BCMA)等が挙げられる。
The measurement signal is a signal obtained by an immunoassay for an exosome-specific antigen that the exosome has on its surface, and a exosome having an exosome-specific antigen on its surface, and a label formed by binding a label to an antibody against the exosome-specific antigen. Due to the label in the immune complex containing the conjugated antibody. The measurement signal is not particularly limited as long as it is a signal capable of confirming exosome destruction, and examples thereof include color development (absorbance), fluorescence, and luminescence.
When the measurement signal is color development (absorbance), for example, a peroxidase that is a label is reacted with a combination of its substrate, hydrogen peroxide and an oxidized chromogen, and the absorbance of the reaction solution is measured using a spectrophotometer or a multiwell. A method of measuring with a plate reader or the like, a method of reacting a label β-D-galactosidase with its substrate, and measuring the absorbance of the reaction solution with a spectrophotometer, a multiwell plate reader, or the like can be used. Examples of the oxidative coloring type chromogen include a leuco type chromogen and an oxidative coupling coloring type chromogen.
A leuco-type chromogen is a substance that is converted into a dye alone in the presence of a peroxide active substance such as hydrogen peroxide and peroxidase. Specifically, tetramethylbenzidine, O-phenylenediamine, 10-N-carboxymethylcarbamoyl-3,7-bis (dimethylamino) -10H-phenothiazine (CCAP), 10-N-methylcarbamoyl-3,7- Bis (dimethylamino) -10H-phenothiazine (MCDP), N- (carboxymethylaminocarbonyl) -4,4'-bis (dimethylamino) diphenylamine sodium salt (DA-64), 10-N-carboxymethylcarbamoyl-3 , 7-bis (dimethylamino) -10H-phenothiazine sodium salt (DA-67), 4,4'-bis (dimethylamino) diphenylamine, bis [3-bis (4-chlorophenyl) methyl-4-dimethylaminophenyl] Amine (BCMA) and the like.
 酸化カップリング発色型色原体は、過酸化水素およびペルオキシダーゼ等の過酸化活性物質の存在下、2つの化合物が酸化的カップリングして色素を生成する物質である。2つの化合物の組み合わせとしては、カプラーとアニリン類(トリンダー試薬)との組み合わせ、カプラーとフェノール類との組み合わせ等が挙げられる。
 カプラーとしては、例えば4-アミノアンチピリン(4-AA)、3-メチル-2-ベンゾチアゾリノンヒドラジン等が挙げられる。
 アニリン類としては、N-(3-スルホプロピル)アニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メチルアニリン(TOOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメチルアニリン(MAOS)、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(DAOS)、N-エチル-N-(3-スルホプロピル)-3-メチルアニリン(TOPS)、N-(2-ヒドロキシ-3-スルホプロピル)-3,5-ジメトキシアニリン(HDAOS)、N,N-ジメチル-3-メチルアニリン、N,N-ビス(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(3-スルホプロピル)アニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-(3-スルホプロピル)-3,5-ジメトキシアニリン、N-エチル-N-(3-スルホプロピル)-3,5-ジメチルアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-3-メトキシアニリン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)アニリン、N-エチル-N-(3-メチルフェニル)-N’サクシニルエチレンジアミン(EMSE)、N-エチル-N-(3-メチルフェニル)-N’アセチルエチレンジアミン、N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-4-フルオロ-3,5-ジメトキシアニリン(F-DAOS)等が挙げられる。
 フェノール類としては、フェノール、4-クロロフェノール、3-メチルフェノール、3-ヒドロキシ-2,4,6-トリヨード安息香酸(HTIB)等が挙げられる。
An oxidatively coupled chromogen is a substance that produces a dye by oxidative coupling of two compounds in the presence of a peroxide active substance such as hydrogen peroxide and peroxidase. Examples of the combination of the two compounds include a combination of a coupler with an aniline (Trinder reagent) and a combination of a coupler with a phenol.
Examples of the coupler include 4-aminoantipyrine (4-AA) and 3-methyl-2-benzothiazolinone hydrazine.
Examples of anilines include N- (3-sulfopropyl) aniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methylaniline (TOOS), N-ethyl-N- (2-hydroxy -3-sulfopropyl) -3,5-dimethylaniline (MAOS), N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (DAOS), N-ethyl-N- (3-sulfopropyl) -3-methylaniline (TOPS), N- (2-hydroxy-3-sulfopropyl) -3,5-dimethoxyaniline (HDAOS), N, N-dimethyl-3-methylaniline, N , N-bis (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl-N- (3-sulfopropyl) -3-methoxyaniline, N-ethyl N- (3-sulfopropyl) aniline, N-ethyl-N- (3-sulfopropyl) -3,5-dimethoxyaniline, N- (3-sulfopropyl) -3,5-dimethoxyaniline, N-ethyl- N- (3-sulfopropyl) -3,5-dimethylaniline, N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3-methoxyaniline, N-ethyl-N- (2-hydroxy-3 -Sulfopropyl) aniline, N-ethyl-N- (3-methylphenyl) -N'succinylethylenediamine (EMSE), N-ethyl-N- (3-methylphenyl) -N'acetylethylenediamine, N-ethyl-N -(2-hydroxy-3-sulfopropyl) -4-fluoro-3,5-dimethoxyaniline (F-DAOS) and the like.
Examples of phenols include phenol, 4-chlorophenol, 3-methylphenol, 3-hydroxy-2,4,6-triiodobenzoic acid (HTIB) and the like.
 β-D-ガラクトシダーゼの基質としては、例えばo-ニトロフェニル-β-D-ガラクトピラノシド等が挙げられる。 基質 β-D-galactosidase substrate includes, for example, o-nitrophenyl-β-D-galactopyranoside.
 測定シグナルが蛍光の場合、例えば、標識であるペルオキシダーゼと、過酸化水素およびペルオキシダーゼの蛍光性基質の組み合わせとを反応させ、生成した蛍光の強度を蛍光光度計や蛍光マルチウェルプレートリーダー等で測定する方法、標識であるβ-D-ガラクトシダーゼと、β-D-ガラクトシダーゼの蛍光性基質とを反応させ、生成した蛍光の強度を蛍光光度計や蛍光マルチウェルプレートリーダー等で測定する方法等が挙げられる。ペルオキシダーゼの蛍光性基質としては、例えば4-ヒドロキシフェニル酢酸、3-(4-ヒドロキシフェニル)プロピオン酸、クマリン等が挙げられる。β-D-ガラクトシダーゼの蛍光性基質としては、例えば4-メチルウンベリフェリル-β-D-ガラクトピラノシド等が挙げられる。 When the measurement signal is fluorescence, for example, a peroxidase that is a label is reacted with a combination of hydrogen peroxide and a fluorescent substrate of peroxidase, and the intensity of the generated fluorescence is measured with a fluorometer, a fluorescence multiwell plate reader, or the like. And a method in which β-D-galactosidase as a label is reacted with a fluorescent substrate of β-D-galactosidase, and the intensity of the generated fluorescence is measured with a fluorometer, a fluorescence multiwell plate reader, or the like. . Examples of the fluorescent substrate for peroxidase include 4-hydroxyphenylacetic acid, 3- (4-hydroxyphenyl) propionic acid, coumarin and the like. Examples of the fluorescent substrate of β-D-galactosidase include 4-methylumbelliferyl-β-D-galactopyranoside.
 測定シグナルが発光の場合、例えば、標識である発光物質に起因する発光の強度を発光光度計や発光マルチウェルプレートリーダー等で測定する方法、標識であるペルオキシダーゼと、過酸化水素およびペルオキシダーゼの発光性基質の組み合わせとを反応させ、生成した発光の強度を発光強度計や発光マルチウェルプレートリーダー等で測定する方法、標識であるβ-D-ガラクトシダーゼと、β-D-ガラクトシダーゼの発光性基質とを反応させ、生成した発光の強度を発光光度計や発光マルチウェルプレートリーダー等で測定する方法、標識であるアルカリホスファターゼと、アルカリホスファターゼの発光性基質とを反応させ、生成した発光の強度を発光強度計や発光マルチウェルプレートリーダー等で測定する方法等が挙げられる。発光物質としては、例えばアクリジニウムエステルおよびその誘導体、ルテニウム錯体化合物、ロフィン等が挙げられる。ペルオキシダーゼの発光性基質としては、例えばルミノール化合物、ルシゲニン化合物等が挙げられる。β-D-ガラクトシダーゼの発光性基質としては、例えばガラクトン-プラス(Galacton-Plus;アプライドバイオシステムズ社製)及びその類似化合物等が挙げられる。アルカリホスファターゼの発光性基質としては、例えば3-(2’-スピロアダマンタン)-4-メトキシ-4-(3’-ホスホリルオキシ)フェニル-1,2-ジオキセタン・二ナトリウム塩(AMPPD)、2-クロロ-5-{4-メトキシスピロ[1,2-ジオキセタン-3,2’(5’-クロロ)トリシクロ[3.3.1.13.7]デカン]-4-イル}フェニルホスフェート・二ナトリウム塩(CDP-StarTM)、3-{4-メトキシスピロ[1,2-ジオキセタン-3,2’-(5’-クロロ)トリシクロ[3.3.1.13.7]デカン]-4’-イル}フェニルホスフェート・二ナトリウム塩(CSPDTM)、9-[(フェニルオキシ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム(LumigenTM APS-5)等が挙げられる。 When the measurement signal is luminescence, for example, a method for measuring the intensity of luminescence due to the luminescent substance as a label with a luminescence photometer or luminescence multiwell plate reader, etc., the peroxidase as a label, and the luminescence of hydrogen peroxide and peroxidase A method of measuring the intensity of luminescence generated by reacting with a combination of substrates with a luminescence intensity meter, a luminescence multi-well plate reader, or the like; a method of labeling β-D-galactosidase with a luminescent substrate of β-D-galactosidase; A method of measuring the intensity of the generated luminescence with a luminescence photometer or a luminescence multi-well plate reader, and reacting the alkaline phosphatase that is a label with a luminescent substrate of the alkaline phosphatase, and determining the intensity of the generated luminescence by the luminescence intensity. And a method of measuring with a light-emitting multi-well plate reader or the like. Examples of the luminescent substance include acridinium esters and derivatives thereof, ruthenium complex compounds, lophine and the like. Examples of the luminescent substrate of peroxidase include a luminol compound and a lucigenin compound. Examples of the luminescent substrate of β-D-galactosidase include Galacton-Plus (manufactured by Applied Biosystems) and its analogous compounds. Examples of the luminescent substrate for alkaline phosphatase include 3- (2′-spiroadamantane) -4-methoxy-4- (3′-phosphoryloxy) phenyl-1,2-dioxetane disodium salt (AMPPD), Chloro-5- {4-methoxyspiro [1,2-dioxetane-3,2 ′ (5′-chloro) tricyclo [3.3.1.1 3.7 ] decane] -4-yl} phenylphosphate. Sodium salt (CDP-Star ), 3- {4-methoxyspiro [1,2-dioxetane-3,2 ′-(5′-chloro) tricyclo [3.3.1.1 3.7 ] decane]- 4'-yl} phenyl phosphate disodium salt (CSPD TM), 9 - [(phenyloxy) (phosphoryloxy) methylidene] -10-methyl-acridan-disodium, - [(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methyl-acridan-disodium (Lumigen TM APS-5), and the like.
 エクソソームがその表面に有するエクソソーム特有抗原を免疫学的測定法により測定することによりエクソソームの破壊を確認する方法としては、例えば以下の工程を含む方法等が挙げられる。
<エクソソームの破壊を確認する方法(1)>
(1A)試料に、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤を添加する工程;
(2A)前記工程(1A)で得られたサンプルを、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片、及び、エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片と、水性媒体中で反応させ、該第1抗体若しくは該抗体断片と、エクソソームと、該第2抗体若しくは該抗体断片と、からなる免疫複合体1を生成させる工程;
(3A)前記工程(2A)で生成した免疫複合体を測定する工程;
(4A)前記工程(1A)において、試料に、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルのいずれの界面活性剤も添加しないことを除いては、前記工程(1A)~(3A)と同じ工程により生成した免疫複合体を測定する工程;及び、
(5A)前記工程(3A)で得られた測定シグナルと、前記工程(4A)で得られた測定シグナルとを比較し、前記工程(3A)で得られた測定シグナルが、前記工程(4A)で得られた測定シグナルに比較して減少した場合には、エクソソームが破壊された、と判断する工程。
Examples of a method for confirming exosome destruction by measuring an exosome specific antigen on the surface of the exosome by an immunoassay include, for example, a method including the following steps.
<Method for confirming exosome destruction (1)>
(1A) a step of adding at least one surfactant selected from the group consisting of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less to a sample;
(2A) the sample obtained in the step (1A) is treated with a first antibody or an antibody fragment that binds to a first exosome specific antigen that the exosome has on its surface, and a second exosome that the exosome has on its surface An immune complex 1 comprising the second antibody or the antibody fragment that binds to a unique antigen and an aqueous medium, and reacting with the first antibody or the antibody fragment, exosomes, and the second antibody or the antibody fragment. Generating a;
(3A) measuring the immune complex generated in the step (2A);
(4A) Except that in the above step (1A), no surfactant of any of polyether alkylamine, POE-POP alkyl ether, and POE alkylphenyl ether having an HLB value of 13 or less was added to the sample. Measuring the immune complex generated by the same step as the above steps (1A) to (3A); and
(5A) The measured signal obtained in the step (3A) is compared with the measured signal obtained in the step (4A), and the measured signal obtained in the step (3A) is compared with the measured signal obtained in the step (4A). A step of judging that the exosome has been destroyed when the measured signal has decreased compared to the measurement signal obtained in the step.
 上記工程(1A)において、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤の試料への添加は、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤を含有する本発明のエクソソーム破壊用試薬の試料への添加により行うことができる。この場合、上記工程(4A)は、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルのいずれの界面活性剤も含有しない、対照用のエクソソーム破壊用試薬を試料に添加することにより行うことができる。また、工程(5A)におけるエクソソーム破壊の判断基準は、適宜、設定することができ、例えば、工程(3A)で得られた測定シグナルが、工程(4A)で得られた測定シグナルに比較して、50%以上減少した場合にエクソソームが破壊された、と判断する基準を設定することができる。
 上記工程(2A)において、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片は不溶性担体に固定化されていなくても、固定化されていてもよいが、固定化されていることが好ましい。不溶性担体としては、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片を固定化し、本発明のエクソソームの破壊方法を可能とする不溶性担体であれば特に制限はなく、例えばマイクロタイタープレート等の合成樹脂製プレート、ガラス製または合成樹脂製の粒状物(ビーズ)、ガラス製または合成樹脂製の球状物(ボール)、ラテックス、磁性粒子、ニトロセルロース膜等の各種メンブレン、合成樹脂製の試験管等が挙げられる。合成樹脂製プレートとしては、例えばポリエチレンプレート、ポリプロピレンプレート、ポリスチレンプレート等が挙げられる。
In the above step (1A), at least one surfactant selected from the group consisting of polyetheralkylamine, POE-POP alkylether, and POEalkylphenylether having an HLB value of 13 or less is added to the sample Exosome destruction reagent of the present invention containing at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less, It can be performed by addition. In this case, the step (4A) is a control exosome-destroying reagent that does not contain any of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less. Can be added to the sample. The criterion for exosome destruction in the step (5A) can be set as appropriate. For example, the measurement signal obtained in the step (3A) is compared with the measurement signal obtained in the step (4A). , A criterion for determining that the exosome has been destroyed when the exosome is reduced by 50% or more can be set.
In the step (2A), the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface may or may not be immobilized on the insoluble carrier, It is preferably immobilized. The insoluble carrier is not particularly limited as long as the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface is immobilized and the exosome can be destroyed by the method of the present invention. For example, various types of plates such as synthetic resin plates such as microtiter plates, glass or synthetic resin granules (beads), glass or synthetic resin spheres (balls), latex, magnetic particles, nitrocellulose membrane, etc. Examples include membranes and test tubes made of synthetic resin. Examples of the synthetic resin plate include a polyethylene plate, a polypropylene plate, and a polystyrene plate.
 エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片の不溶性担体への固定化としては、本発明のエクソソームの破壊方法を可能とする固定化であれば特に制限はなく、物理吸着、化学結合による固定化等が挙げられる。物理吸着としては、例えば静電的結合、水素結合、疎水結合等が挙げられる。化学結合としては、例えば共有結合、配位結合等が挙げられる。
 エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片は、物理吸着及び/又は化学結合により直接、不溶性担体に固定化しても、間接的に不溶性担体に固定化してもよい。間接的な固定化方法としては、例えばビオチンとアビジン類(アビジン、ストレプトアビジン、ニュートラアビジン等)との特異的結合を介して、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片を不溶性担体に固定化する方法等が挙げられる。また、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片は、リンカーを介した共有結合により不溶性担体に固定化してもよい。
 また、上記工程(2A)において、エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片は標識に結合しても、結合していなくてもよいが、結合していることが好ましい。標識としては、例えば前述の標識等が挙げられる。エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片が標識に結合している場合、上記工程(3A)における、生成した免疫複合体の測定は、生成した免疫複合体中の標識を測定することにより行うことができる。
 該第2抗体若しくは該抗体断片に標識が結合していない場合には、該第2抗体若しくは該抗体断片に結合する第3抗体若しくは該抗体断片に標識が結合した標識化第3抗体若しくは該抗体断片を用いて、同様に、試料中のエクソソームの破壊を確認することができる。すなわち、標識化第3抗体若しくは該抗体断片を、免疫複合体1中の第2抗体若しくは該抗体断片と反応させて、第1抗体若しくは該抗体断片と、エクソソームと、第2抗体若しくは該抗体断片と、標識化第3抗体若しくは該抗体断片と、からなる免疫複合体2を形成させ、免疫複合体2中の標識を前述の方法により測定することにより、工程(2A)で生成した免疫複合体1の量を測定することができる。第3抗体としては、例えば第2抗体のFc領域に結合する抗体若しくは該抗体断片等が挙げられる。標識としては、前述の標識等が挙げられる。
The immobilization of the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface to the insoluble carrier is not particularly limited as long as the immobilization enables the method for destruction of the exosome of the present invention. But immobilization by physical adsorption, chemical bonding and the like. Examples of the physical adsorption include an electrostatic bond, a hydrogen bond, and a hydrophobic bond. Examples of the chemical bond include a covalent bond and a coordinate bond.
The first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface can be directly immobilized on the insoluble carrier by physical adsorption and / or chemical bonding, or indirectly immobilized on the insoluble carrier. You may. As an indirect immobilization method, for example, the first exosome binds to the first exosome-specific antigen on the surface thereof through specific binding of biotin and avidins (avidin, streptavidin, neutravidin, etc.). Examples include a method of immobilizing the antibody or the antibody fragment on an insoluble carrier. In addition, the first antibody or the antibody fragment that binds to the first exosome specific antigen that the exosome has on its surface may be immobilized on an insoluble carrier by covalent bonding via a linker.
In the step (2A), the second antibody or the antibody fragment that binds to the second exosome specific antigen that the exosome has on its surface may or may not bind to the label. Is preferred. Examples of the label include the above-mentioned labels and the like. When the second antibody or the antibody fragment that binds to the second exosome-specific antigen that the exosome has on its surface is bound to the label, the measurement of the generated immune complex in the above step (3A) is performed by measuring the generated immune complex. It can be performed by measuring the label in the complex.
When no label is bound to the second antibody or the antibody fragment, a third antibody bound to the second antibody or the antibody fragment or a labeled third antibody bound to a label to the antibody fragment or the antibody Using the fragment, the destruction of the exosome in the sample can be similarly confirmed. That is, the labeled third antibody or the antibody fragment is reacted with the second antibody or the antibody fragment in the immune complex 1, and the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment are reacted. And the labeled third antibody or the antibody fragment to form an immune complex 2, and measuring the label in the immune complex 2 by the above-described method, thereby obtaining the immune complex generated in the step (2A). One quantity can be measured. Examples of the third antibody include an antibody that binds to the Fc region of the second antibody or an antibody fragment thereof. Examples of the label include the aforementioned labels.
 第1のエクソソーム特有抗原と第2のエクソソーム特有抗原との組み合わせとしては、本発明のエクソソームの破壊方法を可能とする組み合わせであれば特に制限はなく、例えば以下の表1に示した組み合わせ等が挙げられる。 The combination of the first exosome-specific antigen and the second exosome-specific antigen is not particularly limited as long as the combination enables the method of destructing exosomes of the present invention, and examples thereof include combinations shown in Table 1 below. No.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1のエクソソーム特有抗原に結合する第1抗体と、第2のエクソソーム特有抗原に結合する第2抗体との組み合わせとしては、本発明のエクソソームの破壊方法を可能とする組み合わせであれば特に制限はなく、例えば以下の表2に示した組み合わせ等が挙げられる。 The combination of the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen is not particularly limited as long as the combination enables the method of destroying exosomes of the present invention. Instead, for example, the combinations shown in Table 2 below can be mentioned.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明における、第1のエクソソーム特有抗原に結合する第1抗体の抗体断片としては、該第1のエクソソーム特有抗原に結合し、本発明のエクソソームの破壊方法を可能とする抗体断片であれば特に制限はなく、例えば、抗体をパパイン処理することにより得られるFab、抗体をペプシン処理することにより得られるF(ab’)、抗体をペプシン処理-還元処理することにより得られるFab’等の、Fc部分が除去された抗体断片、遺伝子工学的手法によりFc部分が除去された抗体断片等が挙げられる。
 本発明における、第2のエクソソーム特有抗原に結合する第2抗体の抗体断片としては、該第2のエクソソーム特有抗原に結合し、本発明のエクソソームの破壊方法を可能とする抗体断片であれば特に制限はなく、例えば、抗体をパパイン処理することにより得られるFab、抗体をペプシン処理することにより得られるF(ab’)、抗体をペプシン処理-還元処理することにより得られるFab’等の、Fc部分が除去された抗体断片、遺伝子工学的手法によりFc部分が除去された抗体断片等が挙げられる。
In the present invention, as the antibody fragment of the first antibody that binds to the first exosome-specific antigen, any antibody fragment that binds to the first exosome-specific antigen and enables the exosome-destroying method of the present invention can be used. There is no limitation, for example, Fab obtained by treating the antibody with papain, F (ab ') 2 obtained by treating the antibody with pepsin, Fab' obtained by treating the antibody with pepsin and reducing, and the like. Examples include an antibody fragment from which the Fc portion has been removed, an antibody fragment from which the Fc portion has been removed by genetic engineering techniques, and the like.
In the present invention, as the antibody fragment of the second antibody that binds to the second exosome-specific antigen, any antibody fragment that binds to the second exosome-specific antigen and enables the exosome destruction method of the present invention can be used. There is no limitation, for example, Fab obtained by treating the antibody with papain, F (ab ') 2 obtained by treating the antibody with pepsin, Fab' obtained by treating the antibody with pepsin and reducing, and the like. Examples include an antibody fragment from which the Fc portion has been removed, an antibody fragment from which the Fc portion has been removed by genetic engineering techniques, and the like.
 本発明における、第1のエクソソーム特有抗原に結合する第1抗体としては、該第1のエクソソーム特有抗原に結合し、本発明のエクソソームの破壊方法を可能とする抗体であれば特に制限はなく、ポリクローナル抗体、モノクローナル抗体のいずれも使用可能である。
 本発明における、第2のエクソソーム特有抗原に結合する第2抗体としては、該第2のエクソソーム特有抗原に結合し、本発明のエクソソームの破壊方法を可能とする抗体であれば特に制限はなく、ポリクローナル抗体、モノクローナル抗体のいずれも使用可能である。
In the present invention, the first antibody that binds to the first exosome specific antigen is not particularly limited as long as it is an antibody that binds to the first exosome specific antigen and enables the exosome destruction method of the present invention. Both polyclonal antibodies and monoclonal antibodies can be used.
In the present invention, the second antibody that binds to the second exosome specific antigen is not particularly limited as long as it is an antibody that binds to the second exosome specific antigen and enables the exosome destruction method of the present invention. Both polyclonal antibodies and monoclonal antibodies can be used.
 第1のエクソソーム特有抗原に結合する第1抗体、第2のエクソソーム特有抗原に結合する第2抗体のいずれの抗体も、市販の抗体を使用することができる。市販の抗体としては、例えば、抗CD9モノクローナル抗体(クローンA100-4;医学生物学研究所社製)、Purified Mouse Anti-Human CD9(日本ベクトン・ディッキンソン社製)、Purified Mouse Anti-HumanCD63(日本ベクトン・ディッキンソン社製)、Purified Mouse Anti-Human CD81(日本ベクトン・ディッキンソン社製、クローン:JS-81)、抗CD147抗体[MEM-M6/1](Novous biologicals社製)等が挙げられる。 市 販 A commercially available antibody can be used for both the first antibody that binds to the first exosome specific antigen and the second antibody that binds to the second exosome specific antigen. Examples of commercially available antibodies include anti-CD9 monoclonal antibody (clone A100-4; manufactured by Institute of Medical Biology), Purified Mouse Anti-Human CD9 (manufactured by Becton Dickinson Japan), Purified Mouse Anti-Human CD63 (manufactured by Becton Japan) Dickinson), Purified Mouse Anti-Human CD81 (manufactured by Becton Dickinson Japan, clone: JS-81), anti-CD147 antibody [MEM-M6 / 1] (manufactured by Novous biologics) and the like.
<エクソソームの破壊を確認する方法(2)>
(1B)試料に、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を添加する工程;
(2B)前記工程(1B)で得られたサンプルをゲルろ過クロマトグラフィに供し、エクソソームを含有する分画とそれ以外の分画とを分離する工程;
(3B)前記工程(2B)で得られたエクソソームを含有する分画を、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片、及び、エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片と、水性媒体中で反応させ、該第1抗体若しくは該抗体断片と、エクソソームと、該第2抗体若しくは該抗体断片と、からなる免疫複合体1を生成させる工程;
(4B)前記工程(3B)で生成した免疫複合体1を測定する工程;
(5B)前記工程(1B)において、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を添加しないことを除いては、前記工程(1B)~(4B)と同じ工程により生成した免疫複合体を測定する工程;及び、
(6B)前記工程(4B)で得られた測定シグナルと、前記工程(5B)で得られた測定シグナルとを比較し、前記工程(4B)で得られた測定シグナルが、前記工程(5B)で得られた測定シグナルに比較して減少した場合に、エクソソームが破壊された、と判断する工程。
<Method for confirming exosome destruction (2)>
(1B) a step of adding to the sample at least one surfactant selected from the group consisting of polyetheralkylamines, POE-POP alkylethers, and POEalkylphenylethers having an HLB value of 13 or less;
(2B) subjecting the sample obtained in the step (1B) to gel filtration chromatography to separate a fraction containing exosomes from other fractions;
(3B) the exosome-containing fraction obtained in the step (2B) is treated with a first antibody or an antibody fragment thereof, which binds to a first exosome-specific antigen that the exosome has on its surface, and the exosome on its surface. Reacting the second antibody or the antibody fragment that binds to the second exosome-specific antigen with an aqueous medium, the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment; Generating an immune complex 1;
(4B) a step of measuring the immune complex 1 generated in the step (3B);
(5B) In the step (1B), at least one surfactant selected from the group consisting of polyetheralkylamine, POE-POP alkylether, and POEalkylphenylether having an HLB value of 13 or less is not added. Measuring the immune complex generated by the same steps as the above steps (1B) to (4B), except for; and
(6B) The measurement signal obtained in the step (4B) is compared with the measurement signal obtained in the step (5B), and the measurement signal obtained in the step (4B) is compared with the measurement signal obtained in the step (5B). A step of determining that the exosome has been destroyed when the measured signal has decreased compared to the measurement signal obtained in the step.
 上記工程(1B)において、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤の試料への添加は、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤を含有する本発明のエクソソーム破壊用試薬の試料への添加により行うことができる。この場合、上記工程(5B)は、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種以上の界面活性剤を含有しない、対照用のエクソソーム破壊用試薬を試料に添加することにより行うことができる。また、工程(6B)におけるエクソソーム破壊の判断基準は、適宜、設定することができ、例えば、工程(4B)で得られた測定シグナルが、工程(5B)で得られた測定シグナルに比較して、50%以上減少した場合にエクソソームが破壊された、と判断する基準を設定することができる。
 上記工程(3B)において、エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片は不溶性担体に固定化されていなくても、固定化されていてもよいが、固定化されていることが好ましい。不溶性担体としては、例えば前述の不溶性担体等が挙げられる。
In the above step (1B), the addition of at least one or more surfactants selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less to the sample comprises: Exosome destruction reagent of the present invention containing at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less, It can be performed by addition. In this case, the step (5B) does not contain at least one or more surfactants selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less. It can be performed by adding a control exosome disrupting reagent to the sample. In addition, the criterion for exosome destruction in step (6B) can be appropriately set. For example, the measurement signal obtained in step (4B) is compared with the measurement signal obtained in step (5B). , A criterion for determining that the exosome has been destroyed when the exosome is reduced by 50% or more can be set.
In the above step (3B), the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface may or may not be immobilized on the insoluble carrier, It is preferably immobilized. Examples of the insoluble carrier include the aforementioned insoluble carriers and the like.
 エクソソームがその表面に有する第1のエクソソーム特有抗原に結合する第1抗体若しくは該抗体断片の不溶性担体への固定化としては、例えば前述の固定化等が挙げられる。
 また、上記工程(3B)において、エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片は標識に結合しても、結合していなくてもよいが、結合していることが好ましい。標識としては、例えば前述の標識等が挙げられる。エクソソームがその表面に有する第2のエクソソーム特有抗原に結合する第2抗体若しくは該抗体断片が標識に結合している場合、上記工程(4B)における、生成した免疫複合体1の測定は、生成した免疫複合体1中の標識を測定することにより行うことができる。
 該第2抗体若しくは該抗体断片に標識が結合していない場合には、該第2抗体若しくは該抗体断片に結合する第3抗体若しくは該抗体断片に標識が結合した標識化第3抗体若しくは該抗体断片を用いて、同様に、試料中のエクソソームの破壊を確認することができる。すなわち、標識化第3抗体若しくは該抗体断片を、免疫複合体1中の第2抗体若しくは該抗体断片と反応させて、第1抗体若しくは該抗体断片と、エクソソームと、第2抗体若しくは該抗体断片と、標識化第3抗体若しくは該抗体断片と、からなる免疫複合体2を形成させ、免疫複合体2中の標識を前述の方法により測定することにより、工程(3B)で生成した免疫複合体1の量を測定することができる。第3抗体としては、例えば第2抗体のFc領域に結合する抗体若しくは該抗体断片等が挙げられる。標識としては、前述の標識等が挙げられる。
Examples of the immobilization of the first antibody or the antibody fragment that binds to the first exosome-specific antigen that the exosome has on its surface to an insoluble carrier include the above-described immobilization.
In the step (3B), the second antibody or the antibody fragment that binds to the second exosome-specific antigen that the exosome has on its surface may or may not bind to the label. Is preferred. Examples of the label include the above-mentioned labels and the like. When the second antibody or the antibody fragment that binds to the second exosome-specific antigen that the exosome has on its surface is bound to the label, the measurement of the generated immune complex 1 in the step (4B) is performed. It can be performed by measuring the label in the immune complex 1.
When no label is bound to the second antibody or the antibody fragment, a third antibody bound to the second antibody or the antibody fragment or a labeled third antibody bound to a label to the antibody fragment or the antibody Using the fragment, the destruction of the exosome in the sample can be similarly confirmed. That is, the labeled third antibody or the antibody fragment is reacted with the second antibody or the antibody fragment in the immune complex 1, and the first antibody or the antibody fragment, the exosome, and the second antibody or the antibody fragment are reacted. And the labeled third antibody or the antibody fragment to form an immune complex 2, and measuring the label in the immune complex 2 by the above-described method, whereby the immune complex generated in the step (3B) is obtained. One quantity can be measured. Examples of the third antibody include an antibody that binds to the Fc region of the second antibody or an antibody fragment thereof. Examples of the label include the aforementioned labels.
 第1のエクソソーム特有抗原と第2のエクソソーム特有抗原との組み合わせとしては、例えば前述の組み合わせ等が挙げられる。
 第1のエクソソーム特有抗原に結合する第1抗体と、第2のエクソソーム特有抗原に結合する第2抗体との組み合わせとしては、例えば前述の組み合わせ等が挙げられる。
 第1のエクソソーム特有抗原に結合する第1抗体、第2のエクソソーム特有抗原に結合する第2抗体のいずれの抗体も、市販の抗体を使用することができる。市販の抗体としては、例えば前述の抗体等が挙げられる。
Examples of the combination of the first exosome specific antigen and the second exosome specific antigen include the above-described combinations and the like.
Examples of the combination of the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen include, for example, the combinations described above.
As both the first antibody that binds to the first exosome-specific antigen and the second antibody that binds to the second exosome-specific antigen, commercially available antibodies can be used. Examples of commercially available antibodies include the aforementioned antibodies and the like.
 本発明におけるエクソソームとは、動物細胞から分泌される直径30~200nmの脂質二重膜構造を有する小胞顆粒である。 エ The exosome in the present invention is a vesicle granule secreted from animal cells and having a lipid bilayer structure of 30 to 200 nm in diameter.
 本発明における試料とは、超遠心分離等のエクソソームの単離操作が行われていない試料を意味し、例として、エクソソームを含有する生体試料(例えば、全血、血清、血漿、尿、唾液、乳汁、精漿、脳脊髄液等の体液試料、及び糞便)、ならびに細胞培養液等が挙げられ、生体試料が好ましく、血清及び血漿が特に好ましい。 The sample in the present invention means a sample on which exosome isolation operation such as ultracentrifugation has not been performed, and as an example, a biological sample containing exosomes (for example, whole blood, serum, plasma, urine, saliva, Body fluid samples such as milk, seminal plasma, cerebrospinal fluid, and feces), and cell culture media, and the like. Biological samples are preferred, and serum and plasma are particularly preferred.
 本発明のエクソソームの破壊方法におけるポリエーテルアルキルアミンとしては、本発明のエクソソームの破壊方法を可能とするポリエーテルアルキルアミンであれば特に制限はないが、HLB値が13以下のポリエーテルアルキルアミンが好ましい。本発明におけるポリエーテルアルキルアミンとは、アルキルアミンの窒素原子に結合した水素原子の少なくとも1つが、ポリオキシエチレンで置換された構造を有するものであり、例えば、ポリオキシエチレンアルキルアミン(以下、POEアルキルアミンと記す)、ポリオキシエチレンアルキルプロピレンジアミン(以下、POEアルキルプロピレンジアミンと記す)等が挙げられる。
 ポリエーテルアルキルアミンにおけるアルキルとしては、例えば、炭素数8~24のアルキルが挙げられ、炭素数10~20のアルキルが好ましい。炭素数8~24のアルキルとしては、例えば、オクチル、イソオクチル、ノニル、デシル、イソデシル、ウンデシル、ドデシル(ラウリル)、トリデシル、テトラデシル(ミリスチル)、ペンタデシル、ヘキサデシル(セチル)、ヘプタデシル、オクタデシル(ステアリル)、オレイル、ノナデシル、イコシル、ヘネイコシル、ドコシル(ベヘニル)、トリコシル、テトラコシル等が挙げられる。炭素数10~20のアルキルとしては、例えばデシル、イソデシル、ウンデシル、ドデシル(ラウリル)、トリデシル、テトラデシル(ミリスチル)、ペンタデシル、ヘキサデシル(セチル)、ヘプタデシル、オクタデシル(ステアリル)、オレイル、ノナデシル、イコシル等が挙げられる。
The polyetheralkylamine in the exosome breaking method of the present invention is not particularly limited as long as it is a polyetheralkylamine that enables the exosome breaking method of the present invention, and a polyetheralkylamine having an HLB value of 13 or less is preferable. preferable. The polyetheralkylamine in the present invention has a structure in which at least one of the hydrogen atoms bonded to the nitrogen atom of the alkylamine has been substituted with polyoxyethylene. For example, polyoxyalkylamine (hereinafter referred to as POE) Alkylamine), polyoxyethylene alkyl propylene diamine (hereinafter referred to as POE alkyl propylene diamine) and the like.
Examples of the alkyl in the polyetheralkylamine include an alkyl having 8 to 24 carbon atoms, and an alkyl having 10 to 20 carbon atoms is preferable. Examples of the alkyl having 8 to 24 carbon atoms include octyl, isooctyl, nonyl, decyl, isodecyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (cetyl), heptadecyl, octadecyl (stearyl), Oleyl, nonadecyl, icosyl, heneicosyl, docosyl (behenyl), tricosyl, tetracosyl and the like can be mentioned. Examples of the alkyl having 10 to 20 carbon atoms include decyl, isodecyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl (myristyl), pentadecyl, hexadecyl (cetyl), heptadecyl, octadecyl (stearyl), oleyl, nonadecyl, and icosyl. No.
 ポリエーテルアルキルアミンの市販品のうち、POEアルキルアミンの市販品としては、例えば、ナイミーンL-201[オキシエチレンドデシルアミン;HLB値3.8]、ナイミーンL-202[POEドデシルアミン;HLB値6.4]、ナイミーンL-207[POEドデシルアミン;HLB値12.5]、ナイミーンS-204[POEステアリルアミン;HLB値8.0]、ナイミーンS-220[POEステアリルアミン;HLB値15.4]、ナイミーンT2-210[POEアルキル(牛脂)アミン;HLB値12.5]、ナイミーンF-202[POEアルキル(ヤシ)アミン;HLB値6.1](以上、日油社製)、ブラウノンL-205[POEドデシルアミン;HLB値10.4]、ブラウノンL-210[POEドデシルアミン;HLB値13.6](以上、青木油脂工業社製)等が挙げられ、POEアルキルプロピレンジアミンの市販品としては、例えばナイミーンDT-203[POEアルキルプロピレンジアミン;HLB値6.0]、ナイミーンDT-208[POEアルキルプロピレンジアミン;HLB値10.7](以上、日油社製)、ブラウノンDT-03[POEアルキル(牛脂)プロピレンジアミン;HLB値5.9]、ブラウノンDT-15[POEアルキル(牛脂)プロピレンジアミン;HLB値13.4](以上、青木油脂工業社製)等が挙げられる。
 HLB値が13以下のポリエーテルアルキルアミンの市販品として、例えば、POEアルキルアミンとしては、ナイミーンL-201[オキシエチレンドデシルアミン;HLB値3.8]、ナイミーンL-202[POEドデシルアミン;HLB値6.4]、ナイミーンL-207[POEドデシルアミン;HLB値12.5]、ナイミーンS-204[POEステアリルアミン;HLB値8.0]、ナイミーンT2-210[POEアルキル(牛脂)アミン;HLB値12.5]、ナイミーンF-202[POEアルキル(ヤシ)アミン;HLB値6.1](以上、日油社製)、ブラウノンL-205[POEドデシルアミン;HLB値10.4](青木油脂工業社製)等が挙げられる。HLB値が13以下のPOEアルキルプロピレンジアミンの市販品としては、例えば、ナイミーンDT-203[POEアルキルプロピレンジアミン;HLB値6.0]、ナイミーンDT-208[POEアルキルプロピレンジアミン;HLB値10.7](以上、日油社製)、ブラウノンDT-03[POEアルキル(牛脂)プロピレンジアミン;HLB値5.9](以上、青木油脂工業社製)等が挙げられる。
Among the commercially available polyetheralkylamines, commercially available POE alkylamines include, for example, Nymeen L-201 [oxyethylene dodecylamine; HLB value 3.8], Nymeen L-202 [POE dodecylamine; HLB value 6] .4], Nimeen L-207 [POE dodecylamine; HLB value 12.5], Nimeen S-204 [POE stearylamine; HLB value 8.0], Nimeen S-220 [POE stearylamine; HLB value 15.4] ], Nymin T2-210 [POE alkyl (tallow) amine; HLB value 12.5], Nymin F-202 [POE alkyl (coconut) amine; HLB value 6.1] (all manufactured by NOF CORPORATION), Brownon L -205 [POE dodecylamine; HLB value 10.4], Brownon L-210 [POE Dodecylamine; HLB value 13.6] (above, manufactured by Aoki Yushi Kogyo Co., Ltd.). Commercially available POE alkyl propylene diamines include, for example, Nimeen DT-203 [POE alkyl propylene diamine; HLB value 6.0]. , Nimeen DT-208 [POE alkyl propylene diamine; HLB value 10.7] (above, manufactured by NOF CORPORATION), BROWNON DT-03 [POE alkyl (tallow) propylene diamine; HLB value 5.9], BROWNON DT-15 [POE alkyl (tallow) propylene diamine; HLB value 13.4] (all manufactured by Aoki Yushi Kogyo KK) and the like.
As a commercially available product of a polyetheralkylamine having an HLB value of 13 or less, for example, POE alkylamines include Nymene L-201 [oxyethylene dodecylamine; HLB value 3.8] and Nymene L-202 [POE dodecylamine; HLB] 6.4], Nimeen L-207 [POE dodecylamine; HLB value 12.5], Nimeen S-204 [POE stearylamine; HLB value 8.0], Nimeen T2-210 [POE alkyl (tallow) amine; HLB value 12.5], Nymein F-202 [POE alkyl (coconut) amine; HLB value 6.1] (all manufactured by NOF CORPORATION), Brownon L-205 [POE dodecylamine; HLB value 10.4] ( Aoki Yushi Kogyo Co., Ltd.). Commercially available POE alkyl propylene diamines having an HLB value of 13 or less include, for example, Nymein DT-203 [POE alkyl propylene diamine; HLB value 6.0], Nymein DT-208 [POE alkyl propylene diamine; HLB value 10.7] (Above, manufactured by NOF CORPORATION) and Brownon DT-03 [POE alkyl (tallow) propylene diamine; HLB value: 5.9] (above, manufactured by Aoki Yushi Kogyo Co., Ltd.).
 本発明のエクソソームの破壊方法におけるPOE-POPアルキルエーテルとは、本発明のエクソソームの破壊方法を可能とするPOE-POPアルキルエーテルであれば特に制限はないが、HLB値が13以下のPOE-POPアルキルエーテルが特に好ましい。
 POE-POPアルキルエーテルにおけるアルキルとしては、例えば、炭素数8~24のアルキルが挙げられ、炭素数10~20のアルキルが好ましい。炭素数8~24のアルキルとしては、例えば、前述の炭素数8~24のアルキル等が挙げられる。炭素数10~20のアルキルとしては、例えば、前述の炭素数10~20のアルキル等が挙げられる。
The POE-POP alkyl ether in the method for destroying exosomes of the present invention is not particularly limited as long as it is a POE-POP alkyl ether that enables the method for destroying exosomes of the present invention, but POE-POP having an HLB value of 13 or less. Alkyl ethers are particularly preferred.
Examples of the alkyl in the POE-POP alkyl ether include an alkyl having 8 to 24 carbon atoms, and an alkyl having 10 to 20 carbon atoms is preferable. Examples of the alkyl having 8 to 24 carbon atoms include the aforementioned alkyl having 8 to 24 carbon atoms. Examples of the alkyl having 10 to 20 carbon atoms include the aforementioned alkyl having 10 to 20 carbon atoms.
 POE-POPアルキルエーテルの市販品としては、例えば、ノニオンHT-505[POE-POPアルキルエーテル;HLB値5]、ノニオンHT-510[POE-POPアルキルエーテル;HLB値10]、ノニオンHT-512[POE-POPアルキルエーテル;HLB値12]、ノニオンHT-515[POE-POPアルキルエーテル;HLB値15](以上、日油社製)、ワンダサーフID-50[POE-POPイソデシルエーテル;HLB値10.5]、ワンダサーフID-70[POE-POPイソデシルエーテル;HLB値12.1]、ワンダサーフID-90[POE-POPイソデシルエーテル;HLB値13.2](以上、青木油脂工業社製)、ノイゲンTDS-30[POE-POPトリデシルエーテル;HLB値8]、ノイゲンTDS-50[POE-POPトリデシルエーテル;HLB値10.5]、ノイゲンTDS-70[POE-POPトリデシルエーテル;HLB値12.1](以上、第一工業製薬社製)等が挙げられる。
 また、HLB値が13以下のPOE-POPアルキルエーテルの市販品としては、例えば、ノニオンHT-505[POE-POPアルキルエーテル;HLB値5]、ノニオンHT-510[POE-POPアルキルエーテル;HLB値10]、ノニオンHT-512[POE-POPアルキルエーテル;HLB値12](以上、日油社製)、ワンダサーフID-50[POE-POPイソデシルエーテル;HLB値10.5]、ワンダサーフID-70[POE-POPイソデシルエーテル;HLB値12.1](以上、青木油脂工業社製)、ノイゲンTDS-30[POE-POPトリデシルエーテル;HLB値8]、ノイゲンTDS-50[POE-POPトリデシルエーテル;HLB値10.5]、ノイゲンTDS-70[POE-POPトリデシルエーテル;HLB値12.1](以上、第一工業製薬社製)等が挙げられる。
Commercially available POE-POP alkyl ethers include, for example, Nonion HT-505 [POE-POP alkyl ether; HLB value 5], Nonion HT-510 [POE-POP alkyl ether; HLB value 10], Nonion HT-512 [ POE-POP alkyl ether; HLB value 12], Nonion HT-515 [POE-POP alkyl ether; HLB value 15] (all manufactured by NOF CORPORATION), Wandasurf ID-50 [POE-POP isodecyl ether; HLB value 10.5], Wandasurf ID-70 [POE-POP isodecyl ether; HLB value 12.1], Wandasurf ID-90 [POE-POP isodecyl ether; HLB value 13.2] (above, Aoki Yushi Kogyo Co., Ltd.) Co., Ltd.), Neugen TDS-30 [POE-POP tridecyl ether HLB value 8], Neugen TDS-50 [POE-POP tridecyl ether; HLB value 10.5], Neugen TDS-70 [POE-POP tridecyl ether; HLB value 12.1] (Daiichi Kogyo Seiyaku Co., Ltd.) Manufactured).
Commercially available POE-POP alkyl ethers having an HLB value of 13 or less include, for example, Nonion HT-505 [POE-POP alkyl ether; HLB value 5], Nonion HT-510 [POE-POP alkyl ether; HLB value 10], Nonion HT-512 [POE-POP alkyl ether; HLB value 12] (above, manufactured by NOF CORPORATION), Wandasurf ID-50 [POE-POP isodecyl ether; HLB value 10.5], Wandasurf ID -70 [POE-POP isodecyl ether; HLB value 12.1] (above, manufactured by Aoki Yushi Kogyo Co., Ltd.), Neugen TDS-30 [POE-POP tridecyl ether; HLB value 8], Neugen TDS-50 [POE- POP tridecyl ether; HLB value 10.5], Neugen TDS-70 [POE- OP tridecyl ether; HLB value 12.1 (or higher, Dai-ichi Kogyo Seiyaku Co., Ltd.).
 本発明のエクソソームの破壊方法におけるHLB値が13以下のPOEアルキルフェニルエーテルとは、本発明のエクソソームの破壊方法を可能とするHLB値が13以下のPOEアルキルフェニルエーテルであれば特に制限はない。
 HLB値が13以下のPOEアルキルフェニルエーテルにおけるアルキルとしては、例えば、炭素数8~9のアルキルが挙げられる。炭素数8~9のアルキルとしては、例えばオクチル、ノニル等が挙げられる。
The POE alkyl phenyl ether having an HLB value of 13 or less in the method for destroying exosomes of the present invention is not particularly limited as long as it is a POE alkyl phenyl ether having an HLB value of 13 or less that enables the method for destroying exosomes of the present invention.
Examples of the alkyl in the POE alkyl phenyl ether having an HLB value of 13 or less include an alkyl having 8 to 9 carbon atoms. Examples of the alkyl having 8 to 9 carbon atoms include octyl and nonyl.
 HLB値が13以下のPOEアルキルフェニルエーテルの市販品としては、例えば、ノニオンHS-204.5[POEオクチルフェニルエーテル;HLB値9.8]、ノニオンHS-206[POEオクチルフェニルエーテル;HLB値11.2]、ノニオンNS-202[POEノニルフェニルエーテル;HLB値5.7]、ノニオンNS-204.5[POEノニルフェニルエーテル;HLB値9.5]、ノニオンNS-208.5[POEノニルフェニルエーテル;HLB値12.6](以上、日油社製)、ブラウノンNK-8055[POEオクチルフェニルエーテル;HLB値10.8]、ブラウノンNK-808[POEオクチルフェニルエーテル;HLB値12.5]、ブラウノンN-502[POEノニルフェニルエーテル;HLB値5.7]、ブラウノンN-506[POEノニルフェニルエーテル;HLB値10.9]、ブラウノンDT-9[POEドデシルフェニルエーテル;HLB値12.0](以上、青木油脂工業社製)等が挙げられる。 Commercially available POE alkyl phenyl ethers having an HLB value of 13 or less include, for example, Nonion HS-204.5 [POE octyl phenyl ether; HLB value 9.8], Nonionic HS-206 [POE octyl phenyl ether; HLB value 11 .2], nonionic NS-202 [POE nonylphenyl ether; HLB value 5.7], nonionic NS-204.5 [POE nonylphenyl ether; HLB value 9.5], nonionic NS-208.5 [POE nonylphenyl] Ether; HLB value 12.6] (all manufactured by NOF Corporation), Brownon NK-8055 [POE octyl phenyl ether; HLB value 10.8], Brownon NK-808 [POE octyl phenyl ether; HLB value 12.5] , Brownon N-502 [POE Nonylphenyl A HLB value 5.7], Brownon N-506 [POE nonyl phenyl ether; HLB value 10.9], Brownon DT-9 [POE dodecyl phenyl ether; HLB value 12.0] (all manufactured by Aoki Yushi Kogyo Co., Ltd.) ) And the like.
 本発明のエクソソームの破壊方法におけるポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を試料に添加する方法としては、本発明のエクソソームの破壊方法を可能とする添加方法であれば特に制限はなく、例えば、該界面活性剤を、試料に直接添加する方法;該界面活性剤を水性媒体に溶解して調製した該界面活性剤の水溶液を、試料に添加する方法;試料を、該界面活性剤を水性媒体に溶解して調製した該界面活性剤の水溶液に添加する方法;試料を、該界面活性剤を水性媒体に溶解して調製した該界面活性剤の水溶液を凍結乾燥して得られる組成物に添加する方法等が挙げられ、該界面活性剤を水性媒体に溶解して調製した水溶液を、試料に添加する方法が好ましい。
 水性媒体としては、本発明のエクソソームの破壊方法を可能とする水性媒体であれば特に制限はなく、例えば、脱イオン水、蒸留水、緩衝液等が挙げられ、緩衝液が好ましい。水性媒体のpHとしては、例えば4~10である。水性媒体として緩衝液を用いる場合には、設定するpHに適した緩衝液を用いることが好ましい。緩衝液の調製に使用される緩衝剤としては、緩衝能を有するものならば特に限定はなく、例えば、乳酸緩衝剤、クエン酸緩衝剤、酢酸緩衝剤、コハク酸緩衝剤、フタル酸緩衝剤、リン酸緩衝剤、トリエタノールアミン緩衝剤、ジエタノールアミン緩衝剤、リジン緩衝剤、バルビツール緩衝剤、イミダゾール緩衝剤、リンゴ酸緩衝剤、シュウ酸緩衝剤、グリシン緩衝剤、ホウ酸緩衝剤、炭酸緩衝剤、グッド緩衝剤等が挙げられる。
As a method for adding at least one surfactant selected from the group consisting of a polyether alkylamine, a POE-POP alkyl ether, and a POE alkyl phenyl ether having an HLB value of 13 or less to the sample in the method of destroying exosomes of the present invention, Is not particularly limited as long as it is an addition method that enables the method of destroying exosomes of the present invention. For example, a method of directly adding the surfactant to a sample; a method of dissolving the surfactant in an aqueous medium Adding the aqueous solution of the surfactant to a sample; adding the sample to an aqueous solution of the surfactant prepared by dissolving the surfactant in an aqueous medium; A method in which an aqueous solution of the surfactant prepared by dissolving in an aqueous medium is added to a composition obtained by freeze-drying, and the like. An aqueous solution was prepared by dissolving a method of adding to the sample is preferred.
The aqueous medium is not particularly limited as long as it is an aqueous medium that enables the exosome destruction method of the present invention, and examples thereof include deionized water, distilled water, and a buffer, and a buffer is preferable. The pH of the aqueous medium is, for example, 4 to 10. When a buffer is used as the aqueous medium, it is preferable to use a buffer suitable for the set pH. The buffer used in the preparation of the buffer is not particularly limited as long as it has a buffering capacity.Examples include a lactate buffer, a citrate buffer, an acetate buffer, a succinate buffer, a phthalate buffer, Phosphate buffer, triethanolamine buffer, diethanolamine buffer, lysine buffer, barbitur buffer, imidazole buffer, malate buffer, oxalate buffer, glycine buffer, borate buffer, carbonate buffer And a good buffer.
 グッド緩衝剤としては、例えば2-モルホリノエタンスルホン酸(MES)緩衝剤、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)緩衝剤、トリス(ヒドロキシメチル)アミノメタン(Tris)緩衝剤、N-(2-アセトアミド)イミノ二酢酸(ADA)緩衝剤、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)緩衝剤、2-[N-(2-アセトアミド)アミノ]エタンスルホン酸(ACES)緩衝剤、3-モルホリノ-2-ヒドロキシプロパンスルホン酸(MOPSO)緩衝剤、2-[N,N-ビス(2-ヒドロキシエチル)アミノ]エタンスルホン酸(BES)緩衝剤、3-モルホリノプロパンスルホン酸(MOPS)緩衝剤、2-{N-[トリス(ヒドロキシメチル)メチル]アミノ}エタンスルホン酸(TES)緩衝剤、N-(2-ヒドロキシエチル)-N’-(2-スルホエチル)ピペラジン(HEPES)緩衝剤、3-[N,N-ビス(2-ヒドロキシエチル)アミノ]-2-ヒドロキシプロパンスルホン酸(DIPSO)緩衝剤、2-ヒドロキシ-3-{[N-トリス(ヒドロキシメチル)メチル]アミノ}プロパンスルホン酸(TAPSO)緩衝剤、ピペラジン-N,N’-ビス(2-ヒドロキシプロパン-3-スルホン酸)(POPSO)緩衝剤、N-(2-ヒドロキシエチル)-N’-(2-ヒドロキシ-3-スルホプロピル)ピペラジン(HEPPSO)緩衝剤、N-(2-ヒドロキシエチル)-N’-(3-スルホプロピル)ピペラジン(EPPS)緩衝剤、[N-トリス(ヒドロキシメチル)メチルグリシン](Trisine)緩衝剤、[N,N-ビス(2-ヒドロキシエチル)グリシン](Bicine)緩衝剤、3-[N-トリス(ヒドロキシメチル)メチル]アミノプロパンスルホン酸(TAPS)緩衝剤、2-(N-シクロヘキシルアミノ)エタンスルホン酸(CHES)緩衝剤、3-(N-シクロヘキシルアミノ)-2-ヒドロキシプロパンスルホン酸(CAPSO)緩衝剤、3-(N-シクロヘキシルアミノ)プロパンスルホン酸(CAPS)緩衝剤等が挙げられる。
 水性媒体には、塩類、金属イオン、糖類、防腐剤、蛋白質等が含有されてもよい。塩類としては、例えば塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化カルシウム、臭化マグネシウム、臭化アンモニウム等が挙げられる。金属イオンとしては、例えばマグネシウムイオン、マンガンイオン、亜鉛イオン等が挙げられる。糖類としては、例えばマンニトール、ソルビトール等が挙げられる。防腐剤としては、例えばアジ化ナトリウム、抗生物質(ストレプトマイシン、ペニシリン、ゲンタマイシン等)、バイオエース、プロクリン300、プロキセル(Proxel)GXL等が挙げられる。蛋白質としては、例えばウシ血清アルブミン等が挙げられる。
Examples of good buffers include 2-morpholinoethanesulfonic acid (MES) buffer, bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris) buffer, and tris (hydroxymethyl) aminomethane (Tris) Buffer, N- (2-acetamido) iminodiacetic acid (ADA) buffer, piperazine-N, N'-bis (2-ethanesulfonic acid) (PIPES) buffer, 2- [N- (2-acetamido) Amino] ethanesulfonic acid (ACES) buffer, 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) buffer, 2- [N, N-bis (2-hydroxyethyl) amino] ethanesulfonic acid (BES) buffer Agent, 3-morpholinopropanesulfonic acid (MOPS) buffer, 2- {N- [tris (hydroxymethyl B) methyl] aminodiethanesulfonic acid (TES) buffer, N- (2-hydroxyethyl) -N ′-(2-sulfoethyl) piperazine (HEPES) buffer, 3- [N, N-bis (2- Hydroxyethyl) amino] -2-hydroxypropanesulfonic acid (DIPSO) buffer, 2-hydroxy-3-{[N-tris (hydroxymethyl) methyl] amino} propanesulfonic acid (TAPSO) buffer, piperazine-N, N'-bis (2-hydroxypropane-3-sulfonic acid) (POPSO) buffer, N- (2-hydroxyethyl) -N '-(2-hydroxy-3-sulfopropyl) piperazine (HEPPSO) buffer, N- (2-hydroxyethyl) -N ′-(3-sulfopropyl) piperazine (EPPS) buffer, [N-tris (hydroxymethyl B) Methylglycine] (Trisine) buffer, [N, N-bis (2-hydroxyethyl) glycine] (Bicine) buffer, 3- [N-tris (hydroxymethyl) methyl] aminopropanesulfonic acid (TAPS) Buffer, 2- (N-cyclohexylamino) ethanesulfonic acid (CHES) buffer, 3- (N-cyclohexylamino) -2-hydroxypropanesulfonic acid (CAPSO) buffer, 3- (N-cyclohexylamino) propane Sulfonic acid (CAPS) buffer and the like.
The aqueous medium may contain salts, metal ions, sugars, preservatives, proteins and the like. Examples of the salts include lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, ammonium chloride, lithium bromide, sodium bromide, potassium bromide, calcium bromide, magnesium bromide, and ammonium bromide. . Examples of the metal ion include a magnesium ion, a manganese ion, a zinc ion and the like. Examples of the saccharide include mannitol and sorbitol. Examples of preservatives include sodium azide, antibiotics (streptomycin, penicillin, gentamicin, etc.), Bioace, Proclin 300, Proxel GXL and the like. Examples of the protein include bovine serum albumin and the like.
 本発明のエクソソームの破壊方法において、試料と、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤との反応の反応温度は、本発明のエクソソームの破壊方法を可能とする温度であれば特に制限はなく、通常、0~50℃であり、4~45℃が好ましく、15~40℃が特に好ましい。該反応の反応時間は、本発明のエクソソームの破壊方法を可能とする時間であれば特に制限はなく、通常、10秒間~24時間であり、30秒間~3時間が好ましく、1分間~2時間が特に好ましい。 In the method for destroying exosomes according to the present invention, the reaction between the sample and at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less. The reaction temperature is not particularly limited as long as it allows the method for disrupting exosomes of the present invention, and is usually 0 to 50 ° C, preferably 4 to 45 ° C, and particularly preferably 15 to 40 ° C. The reaction time of the reaction is not particularly limited as long as it allows the exosome destruction method of the present invention, and is usually 10 seconds to 24 hours, preferably 30 seconds to 3 hours, and preferably 1 minute to 2 hours. Is particularly preferred.
 本発明のエクソソームの破壊方法におけるポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤の、試料に添加された後の濃度は、本発明のエクソソームの破壊方法を可能とする濃度であれば特に制限はなく、通常0.001~10%(w/v)であり、0.01~5%(w/v)が好ましく、0.04~1%(w/v)が特に好ましい。 In the method for destroying exosomes of the present invention, at least one surfactant selected from the group consisting of polyether alkylamine, POE-POP alkyl ether, and POE alkyl phenyl ether having an HLB value of 13 or less was added to a sample. The subsequent concentration is not particularly limited as long as the concentration allows the method of destroying exosomes of the present invention, and is usually 0.001 to 10% (w / v), and 0.01 to 5% (w / v). ) Is preferred, and 0.04 to 1% (w / v) is particularly preferred.
2.エクソソームの破壊用試薬
 本発明の試料中のエクソソームの破壊用試薬は、本発明の試料中のエクソソームの破壊方法に用いられる試薬であり、試料中エクソソーム破壊剤、試料中エクソソーム破壊用組成物、試料中エクソソーム溶解用試薬、試料中エクソソーム溶解剤、試料中エクソソーム溶解用組成物とも表現されうる。本発明の破壊用試薬を用いて破壊するエクソソームを含有する試料としては、例えば前述の試料等が挙げられる。
 本発明のエクソソームの破壊用試薬におけるポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルとは、例えば、前述のポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルがそれぞれ挙げられる。
2. Exosome-destroying reagent The exosome-destroying reagent in the sample of the present invention is a reagent used for the method of destructing exosomes in the sample of the present invention, and includes an exosome-disrupting agent in a sample, a exosome-destroying composition in a sample, and a sample. It can also be expressed as a reagent for lysing exosomes in a sample, an agent for lysing exosomes in a sample, and a composition for lysing exosomes in a sample. Examples of the sample containing exosomes to be destroyed using the disrupting reagent of the present invention include the above-described samples.
The polyether alkylamine, POE-POP alkyl ether, and POE alkylphenyl ether having an HLB value of 13 or less in the exosome-destroying reagent of the present invention include, for example, the aforementioned polyether alkylamine, POE-POP alkyl ether, And POE alkyl phenyl ethers having an HLB value of 13 or less, respectively.
 本発明のエクソソームの破壊用試薬は、液状であっても凍結乾燥状態であってもよい。液状の破壊用試薬の場合、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤は、予め、前述の水性媒体中に溶解されている。凍結乾燥状態の破壊用試薬の場合、ポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤は、前述の水性媒体中に溶解されて使用されても、直接試料と接触することにより使用されても良い。本発明の破壊用試薬には、前述の塩類、金属イオン、糖類、防腐剤、蛋白質等が含有されてもよい。 エ The exosome-destroying reagent of the present invention may be in a liquid state or a lyophilized state. In the case of a liquid breaking reagent, at least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is prepared in advance by using the aforementioned aqueous solution. It is dissolved in the medium. In the case of a lyophilized breaking reagent, at least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less is the aforementioned aqueous solution. It may be used by being dissolved in a medium or by directly contacting the sample. The breaking reagent of the present invention may contain the above-mentioned salts, metal ions, saccharides, preservatives, proteins and the like.
 本発明のエクソソームの破壊用試薬におけるポリエーテルアルキルアミン、POE-POPアルキルエーテル、及び、HLB値が13以下のPOEアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤の含量は、本発明の破壊方法を可能とする含量であれば特に制限はなく、試料と混合された後の濃度が、通常0.001~10%(w/v)となる含量であり、0.01~5%(w/v)となる含量が好ましく、0.04~1%(w/v)となる含量が特に好ましい。 The content of at least one surfactant selected from the group consisting of polyether alkylamines, POE-POP alkyl ethers, and POE alkyl phenyl ethers having an HLB value of 13 or less in the exosome-destroying reagent of the present invention is as follows. There is no particular limitation as long as the content allows the destruction method, and the concentration after mixing with the sample is usually 0.001 to 10% (w / v), and 0.01 to 5%. (W / v) is preferred, and a content of 0.04 to 1% (w / v) is particularly preferred.
 以下、実施例により本発明を説明するが、本発明はこの実施例に限定されるものではない。
<材料>
 Superdex200HR 10/30(GEヘルスケア社製)、リン酸水素二ナトリウム(リン酸緩衝液;関東化学社製)、リン酸二水素ナトリウム(リン酸緩衝液;関東化学社製)、塩化ナトリウム(和光純薬工業社製)、アジ化ナトリウム(和光純薬工業社製)、BCAタンパク質アッセイキット(サーモフィッシャーサイエンティフィック社製)、MES(同仁化学研究所社製)、牛血清アルブミン(BSA;オリエンタル酵母工業社製)、ストレプトアビジン結合磁性粒子(Dynabeads MyOne Streptavidin C1;サーモフィッシャーサイエンティフィック社製)、Biotin Labeling Kit-NH(同仁化学研究所社製)、抗CD9モノクローナル抗体(クローンA100-4;医学生物学研究所社製)、MES(同仁化学研究所社製)、Alkaline Phosphatase Labeling Kit-NH(同仁化学研究所社製)、MOPS(同仁化学研究所社製)、塩化マグネシウム6水和物(和光純薬工業社製)、Tween20(ポリオキシエチレンソルビタンモノラウレート;和光純薬工業社製同仁化学研究所社製)、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム塩(LumigenTM APS-5;オリエンタル酵母工業社製)、ナイミーンL-202[POEラウリルアミン(ポリエーテルアルキルアミン);日油社製]、ナイミーンDT-203[POEアルキルプロピレンジアミン(ポリエーテルアルキルアミン);日油社製]、ワンダサーフID-50[POE-POPイソデシルエーテル(POE-POPアルキルエーテル);青木油脂工業社製]、ノニオンNS-204.5[POEノニルフェニルエーテル(HLB値が13以下のPOEアルキルフェニルエーテル);日油社製]、ノニオンHS-204.5[POEオクチルフェニルエーテル(HLB値が13以下のPOEアルキルフェニルエーテル);日油社製]、トリトンX-100[POEオクチルフェニルエーテル(HLB値13.5);シグマアルドリッチ社製]、ノニデットP-40[POEノニルフェニルエーテル(HLB値13.1);シグマアルドリッチ社製]。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
<Material>
Superdex200HR 10/30 (GE Healthcare), disodium hydrogen phosphate (phosphate buffer; manufactured by Kanto Kagaku), sodium dihydrogen phosphate (phosphate buffer; manufactured by Kanto Kagaku), sodium chloride (sum Sodium azide (manufactured by Wako Pure Chemical Industries), BCA protein assay kit (manufactured by Thermo Fisher Scientific), MES (manufactured by Dojindo Laboratories), bovine serum albumin (BSA; Oriental) Yeast Industry Co., Ltd.), streptavidin-bound magnetic particles (Dynabeads MyOne Streptavidin C1; manufactured by Thermo Fisher Scientific), Biotin Labeling Kit-NH 2 (manufactured by Dojindo Laboratories), anti-CD9 monoclonal antibody (clone A100-4) ; Medicine Manufactured goods Institute Inc.), MES (Dojin Chemical Laboratories), manufactured by Alkaline Phosphatase Labeling Kit-NH 2 (Dojin Chemical Laboratories), MOPS (manufactured by Dojindo Laboratories), magnesium chloride hexahydrate (Manufactured by Wako Pure Chemical Industries, Ltd.), Tween 20 (polyoxyethylene sorbitan monolaurate; manufactured by Dojindo Laboratories, manufactured by Wako Pure Chemical Industries, Ltd.), 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10 -Methylacridan disodium salt (Lumigen APS-5; manufactured by Oriental Yeast Co., Ltd.), Nimeen L-202 [POE laurylamine (polyetheralkylamine); manufactured by NOF CORPORATION], Nimeen DT-203 [POE alkyl Propylenediamine (polyether alkylamine); NOF Corporation ], Wandasurf ID-50 [POE-POP isodecyl ether (POE-POP alkyl ether); manufactured by Aoki Yushi Kogyo Co., Ltd.], Nonion NS-204.5 [POE nonylphenyl ether (POE alkylphenyl having an HLB value of 13 or less) Nonyl HS-204.5 [POE octyl phenyl ether (POE alkyl phenyl ether having an HLB value of 13 or less); NOF]; Triton X-100 [POE octyl phenyl ether (HLB) Value 13.5); manufactured by Sigma-Aldrich], Nonidet P-40 [POE nonylphenyl ether (HLB value 13.1); manufactured by Sigma-Aldrich].
〔参考例1〕
<血清をゲルろ過クロマトグラフィに供した際に得られる、エクソソームを含有する分画の同定>
(1)血清の調製
 協和メデックス株式会社所属の健常人より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清を調製した。
(2)ゲルろ過クロマトグラフィによる血清成分の分離操作
 ゲルろ過クロマトグラフィ用カラムであるSuperdex200HR 10/30に、上記(1)で調製した血清(500μL)をアプライし、次いで、溶出液として、アジ化ナトリウム0.2g/Lを添加したPBS[リン酸緩衝化生理食塩水(0.15mol/L塩化ナトリウムを含有する10mmol/Lリン酸緩衝液、pH7.2)]を流速0.5mL/minで流し、その溶出分画として分画No.1~80(各0.5mL)を得た。
(3)上記(2)で得られた各分画の、BCAタンパク質アッセイキットによる測定
 上記(2)で得られた分画No.1~80の各分画について、蛋白質量の測定用キットであるBCAタンパク質アッセイキットを用いて、該キットの使用説明書に従って反応を行い、吸光度(560nm)を測定した。その結果を図1に示す。
[Reference Example 1]
<Identification of exosome-containing fraction obtained when serum is subjected to gel filtration chromatography>
(1) Preparation of Serum Whole blood collected from healthy individuals belonging to Kyowa Medex Co., Ltd. was centrifuged at 2,000 rpm and 25 ° C. for 20 minutes to prepare serum.
(2) Separation of Serum Components by Gel Filtration Chromatography The serum (500 μL) prepared in the above (1) was applied to Superdex200HR 10/30, which is a column for gel filtration chromatography, and then sodium azide 0 was used as an eluate. 0.2 g / L of PBS [phosphate-buffered saline (10 mmol / L phosphate buffer containing 0.15 mol / L sodium chloride, pH 7.2)] was flowed at a flow rate of 0.5 mL / min. As the elution fraction, fraction No. 1-80 (0.5 mL each) were obtained.
(3) Measurement of each fraction obtained in the above (2) using a BCA protein assay kit The fractions 1 to 80 were reacted using a BCA protein assay kit, which is a kit for measuring the amount of protein, according to the instruction manual for the kit, and the absorbance (560 nm) was measured. The result is shown in FIG.
(4)抗原抗体反応を用いるサンドイッチ法に用いる測定試薬の調製
 ストレプトアビジン結合磁性粒子溶液、ビオチン結合抗CD9モノクローナル抗体溶液、及び、ALP(アルカリホスファターゼ)標識抗CD9モノクローナル抗体溶液を調製した。
・ストレプトアビジン結合磁性粒子溶液
 市販のストレプトアビジン結合磁性粒子(Dynabeads MyOne Streptavidin C1)を用いて、以下の組成からなるストレプトアビジン結合磁性粒子溶液を調製した。
   MES(pH6.5)           0.05mol/L
   BSA                  0.1%(w/v)
   塩化ナトリウム              0.1mol/L
   ストレプトアビジン結合磁性粒子      0.225mg/mL
・ビオチン結合抗CD9モノクローナル抗体溶液
 Biotin Labeling Kit-NH(同仁化学研究所社製)を用いて、該キットの使用説明書に従い、抗CD9モノクローナル抗体(クローンA100-4;医学生物学研究所社製)をビオチンで標識し、ビオチン結合抗CD9モノクローナル抗体を調製した。得られたビオチン結合抗CD9モノクローナル抗体を用いて、以下の組成からなるビオチン結合抗CD9モノクローナル抗体溶液を調製した。
   MES(pH6.5)           0.05mol/L
   ビオチン結合抗CD9モノクローナル抗体  75ng/mL
   BSA                  0.1%(w/v)
   塩化ナトリウム              0.1mol/L
・ALP標識抗CD9モノクローナル抗体溶液
 Alkaline Phosphatase Labeling Kit-NH(同仁化学研究所社製)を用いて、該キットの取扱説明書に従い、抗CD9モノクローナル抗体(クローンA100-4;医学生物学研究所社製)をALPで標識し、ALP標識抗CD9モノクローナル抗体を調製した。得られたALP標識抗CD9モノクローナル抗体を用いて、以下の組成からなるALP標識抗CD9モノクローナル抗体溶液を調製した。
   MES(pH6.5)           0.05mol/L
   ALP標識抗CD9モノクローナル抗体   75ng/mL
   BSA                  0.1%(w/v)
   塩化ナトリウム              0.1mol/L
(4) Preparation of Reagent for Measurement Used in Sandwich Method Using Antigen-Antibody Reaction A streptavidin-conjugated magnetic particle solution, a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP (alkaline phosphatase) -labeled anti-CD9 monoclonal antibody solution were prepared.
-Streptavidin-binding magnetic particle solution A streptavidin-binding magnetic particle solution having the following composition was prepared using commercially available streptavidin-binding magnetic particles (Dynabeads MyOne Streptavidin C1).
MES (pH 6.5) 0.05 mol / L
BSA 0.1% (w / v)
Sodium chloride 0.1mol / L
Streptavidin-bound magnetic particles 0.225mg / mL
-Using a biotin-conjugated anti-CD9 monoclonal antibody solution Biotin Labeling Kit-NH 2 (manufactured by Dojindo Laboratories) and following the instructions for use of the kit, an anti-CD9 monoclonal antibody (clone A100-4; Medical Biology Laboratories) Was labeled with biotin to prepare a biotin-conjugated anti-CD9 monoclonal antibody. Using the obtained biotin-conjugated anti-CD9 monoclonal antibody, a biotin-conjugated anti-CD9 monoclonal antibody solution having the following composition was prepared.
MES (pH 6.5) 0.05 mol / L
Biotin-conjugated anti-CD9 monoclonal antibody 75 ng / mL
BSA 0.1% (w / v)
Sodium chloride 0.1mol / L
· ALP using a labeled anti-CD9 monoclonal antibody solution Alkaline Phosphatase Labeling Kit-NH 2 (manufactured by Dojin Chemical Laboratory Co., Ltd.), according to the instruction manual of the kit, the anti-CD9 monoclonal antibodies (clone A100-4; Medical & Biological Laboratories Was labeled with ALP to prepare an ALP-labeled anti-CD9 monoclonal antibody. Using the obtained ALP-labeled anti-CD9 monoclonal antibody, an ALP-labeled anti-CD9 monoclonal antibody solution having the following composition was prepared.
MES (pH 6.5) 0.05 mol / L
ALP-labeled anti-CD9 monoclonal antibody 75 ng / mL
BSA 0.1% (w / v)
Sodium chloride 0.1mol / L
(5)上記(2)で得られた各分画の、抗原抗体反応を用いるサンドイッチ法による測定
 上記(2)で得られた分画No.1~80について、各分画(10μL)に、上記(4)で調製したストレプトアビジン結合磁性粒子溶液(30μL)、上記(4)で調製したビオチン結合抗CD9モノクローナル抗体溶液(30μL)、及び、上記(4)で調製したALP標識抗CD9モノクローナル抗体溶液(30μL)を加えて撹拌し、37℃で10分間反応させた。次いで、磁性粒子を磁力で収集し、磁性粒子以外の反応溶液を除去するとともに、下記の洗浄液で該収集された磁性粒子を5回洗浄した。
・洗浄液
   MOPS(pH7.3)         0.005mol/L
   塩化ナトリウム             0.3mol/L
   塩化マグネシウム6水和物        0.2mmol/L
   Tween20             0.075%(w/v)
その後、該収集され洗浄された磁性粒子に、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム塩(LumigenTM APS-5)を主成分とする発光基質液100μLを添加して撹拌し、生じた発光量(RLU)を測定した。その結果を図1に示す。
(5) Measurement of each fraction obtained in the above (2) by a sandwich method using an antigen-antibody reaction. For 1 to 80, each fraction (10 μL) was added to the streptavidin-bound magnetic particle solution (30 μL) prepared in the above (4), the biotin-bound anti-CD9 monoclonal antibody solution (30 μL) prepared in the above (4), and The ALP-labeled anti-CD9 monoclonal antibody solution (30 μL) prepared in the above (4) was added, stirred, and reacted at 37 ° C. for 10 minutes. Next, the magnetic particles were collected by magnetic force, the reaction solution other than the magnetic particles was removed, and the collected magnetic particles were washed five times with the following washing liquid.
・ Washing liquid MOPS (pH 7.3) 0.005mol / L
Sodium chloride 0.3mol / L
Magnesium chloride hexahydrate 0.2 mmol / L
Tween 20 0.075% (w / v)
Thereafter, the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen APS-5). 100 μL of the substrate solution was added and stirred, and the generated luminescence (RLU) was measured. The result is shown in FIG.
(6)エクソソームを含有する分画の同定
 上記(5)の結果を示した図1から明らかなように、分画No.18及びその前後の分画は、抗CD9モノクローナル抗体を用いたサンドイッチ法による測定により大きな測定シグナルが得られた。したがって、分画No.18及びその前後の分画には、CD9をその表面に有するエクソソームが含まれていることが判明した。
 血清中には、CD9をその表面に有するエクソソームの他、単分子のCD9が存在する可能性がある。しかし、上記(5)のサンドイッチ法は、1次抗体としての抗CD9モノクローナル抗体と、標識化2次抗体としてのALP標識抗CD9モノクローナル抗体とを用いるサンドイッチ法、すなわち、1次抗体と2次抗体の両抗体に、同一のエプトープを認識する抗体を用いるサンドイッチ法であるため、単分子のCD9をサンドイッチすることはできない。したがって、図1においてサンドイッチ法によりシグナルが得られるということは、CD9をその表面に有するエクソソームのみを検出し、単分子のCD9自体は検出されていないことを意味する。
(6) Identification of Fraction Containing Exosome As is clear from FIG. 18 and fractions before and after 18 showed a large measurement signal by the sandwich method using an anti-CD9 monoclonal antibody. Therefore, the fraction No. It was found that exosome having CD9 on its surface was contained in 18 and the fractions before and after it.
In serum, monomolecule CD9 may be present in addition to exosomes having CD9 on its surface. However, the sandwich method (5) uses a sandwich method using an anti-CD9 monoclonal antibody as a primary antibody and an ALP-labeled anti-CD9 monoclonal antibody as a labeled secondary antibody, that is, a primary antibody and a secondary antibody. In this method, a single molecule of CD9 cannot be sandwiched because both antibodies use an antibody that recognizes the same epitope. Therefore, the fact that a signal is obtained by the sandwich method in FIG. 1 means that only the exosome having CD9 on its surface is detected, and the single molecule CD9 itself is not detected.
 また、図1から明らかなように、分画No.20~40は、BCAタンパク質アッセイキットを用いた測定により大きな測定シグナルが得られたことから、分画No.20~40には、大量の蛋白質が含まれていることが判明した。また、これらの分画をSDS-PAGEに供した結果、これらの分画には、血清中の主要な蛋白質であるアルブミン及びガンマグロブリンの分子量(それぞれ分子量約66kDa及び150kDa)に相当する蛋白質が大量に含有されていることが判明した。
 ここで、ゲルろ過クロマトグラフィにおいては、分子量が大きい分子ほど溶出が早い。しかしながら、図1から明らかなように、CD9(分子量約24kDa)に起因するシグナルを示す分画No.18付近の分画は、アルブミン(分子量約66kDa)及びガンマグロブリン(分子量約150kDa)と比較して溶出が早い。したがって、CD9に起因するシグナルを示す分画No.18付近の分画には、単分子のCD9ではなく、CD9をその表面に有するエクソソームが含まれていることが判明した。
In addition, as is apparent from FIG. In Nos. 20 to 40, since a large measurement signal was obtained by measurement using the BCA protein assay kit, fraction Nos. It was found that 20 to 40 contained a large amount of protein. These fractions were subjected to SDS-PAGE. As a result, these fractions contained large amounts of proteins corresponding to the molecular weights of albumin and gamma globulin (principal molecular weights of about 66 kDa and 150 kDa, respectively) in serum. Was found to be contained.
Here, in gel filtration chromatography, a molecule having a larger molecular weight elutes faster. However, as is evident from FIG. 1, fraction No. 1 showing a signal derived from CD9 (molecular weight: about 24 kDa). The fraction around 18 elutes faster than albumin (molecular weight about 66 kDa) and gamma globulin (molecular weight about 150 kDa). Therefore, the fraction No. showing a signal attributable to CD9. It was found that the fraction around 18 contained exosomes having CD9 on its surface instead of single molecule CD9.
<エクソソーム破壊用試薬の調製>
〔実施例1〕
 PBSへ、以下の表3に示した5つの界面活性剤の各界面活性剤を10%(w/v)となるように添加し、エクソソーム破壊用試薬A1~A5をそれぞれ調製した。
〔比較例1〕
 PBSへ、以下の表3に示した2つの界面活性剤、すなわち、トリトンX-100とノニデットP-40の各界面活性剤を10%(w/v)となるように添加し、エクソソーム破壊用試薬B1及びB2をそれぞれ調製した。
〔比較例2〕
 PBSを、対照用試薬B0とした。
<Preparation of reagent for exosome disruption>
[Example 1]
Each of the five surfactants shown in Table 3 below was added to PBS so as to have a concentration of 10% (w / v) to prepare exosome disrupting reagents A1 to A5.
[Comparative Example 1]
Two surfactants shown in Table 3 below, namely, Triton X-100 and Nonidet P-40 surfactants were added to PBS so as to be 10% (w / v), and the surfactants were used for exosome disruption. Reagents B1 and B2 were prepared, respectively.
[Comparative Example 2]
PBS was used as a control reagent B0.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
〔実施例2〕
<ポリエーテルアルキルアミンを含有するエクソソーム破壊用試薬を用いたエクソソームの破壊>
(1)血清の調製、及び、界面活性剤による血清の処理
 参考例1における健常人とは異なる、協和メデックス株式会社所属の健常人より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清を調製した。
 調製した血清(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A1(100μL)を添加し、10分間静置した。同様に、調製した血清(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A2(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィによる血清成分の分離操作
 ゲルろ過クロマトグラフィ用カラムであるSuperdex200HR 10/30(GEヘルスケア社製)を使用し、上記(1)で調製及び界面活性剤処理をした血清の成分の分離操作を行った。まず、該カラムに該界面活性剤処理した血清500μLをアプライし、次いで、溶出液として、アジ化ナトリウム0.2g/Lを含有するPBS[リン酸緩衝化生理食塩水(0.15mol/L塩化ナトリウムを含有する10mmol/Lリン酸緩衝液、pH7.2)]を流速0.5mL/minで流し、溶出分画として分画No.1~80(各0.5mL)を得た。
[Example 2]
<Destruction of exosomes using exosome destruction reagent containing polyetheralkylamine>
(1) Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1, was subjected to 2,000 rpm at 25 ° C. for 20 minutes. After centrifugation, serum was prepared.
To the prepared serum (900 μL), the exosome-disrupting reagent A1 (100 μL) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes. Similarly, the exosome-disrupting reagent A2 (100 μL) prepared in Example 1 was added to the prepared serum (900 μL), and the mixture was allowed to stand for 10 minutes.
(2) Separation Operation of Serum Components by Gel Filtration Chromatography Serum components prepared and surfactant-treated in (1) above using Superdex200HR 10/30 (manufactured by GE Healthcare) which is a column for gel filtration chromatography. Was performed. First, 500 μL of the serum treated with the surfactant was applied to the column, and then PBS [phosphate-buffered saline (0.15 mol / L chloride) containing 0.2 g / L of sodium azide was used as an eluent. Sodium-containing 10 mmol / L phosphate buffer, pH 7.2)] at a flow rate of 0.5 mL / min. 1-80 (0.5 mL each) were obtained.
(3)抗原抗体反応を用いるサンドイッチ法に用いる測定試薬の調製
 上記の参考例1の(4)と同様の方法により、ストレプトアビジン結合磁性粒子溶液、ビオチン結合抗CD9モノクローナル抗体溶液、及び、ALP標識抗CD9モノクローナル抗体溶液を調製した。
(4)上記(2)で得られた各分画の、抗原抗体反応を用いるサンドイッチ法による測定
 上記(2)で得られた分画No.1~80のうち、分画No.15~25について、各分画10μLに、上記(3)で調製したストレプトアビジン結合磁性粒子溶液30μL、上記(3)で調製したビオチン結合抗CD9モノクローナル抗体溶液30μL、及び、上記(3)で調製したALP標識抗CD9モノクローナル抗体溶液30μLを加えて撹拌し、37℃で10分間反応させた。次いで、磁性粒子を磁力で収集し、磁性粒子以外の反応溶液を除去するとともに、上記の参考例1の(5)で使用した洗浄液で該収集された磁性粒子を5回洗浄した。その後、該収集され洗浄された磁性粒子に、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム塩(LumigenTM APS-5)を主成分とする発光基質液100μLを添加して撹拌し、生じた発光量(RLU)を測定した。その結果を図2に示す。
(3) Preparation of measurement reagent used for sandwich method using antigen-antibody reaction Streptavidin-conjugated magnetic particle solution, biotin-conjugated anti-CD9 monoclonal antibody solution, and ALP labeling were performed in the same manner as in (4) of Reference Example 1 above. An anti-CD9 monoclonal antibody solution was prepared.
(4) Measurement of each fraction obtained in the above (2) by a sandwich method using an antigen-antibody reaction. Among the fraction Nos. 1 to 80, For 15 to 25, 30 μL of the streptavidin-conjugated magnetic particle solution prepared in (3) above, 30 μL of the biotin-conjugated anti-CD9 monoclonal antibody solution prepared in (3) above, and 10 μL of each fraction prepared in (3) above 30 μL of the prepared ALP-labeled anti-CD9 monoclonal antibody solution was added, stirred, and reacted at 37 ° C. for 10 minutes. Next, the magnetic particles were collected by magnetic force, the reaction solution other than the magnetic particles was removed, and the collected magnetic particles were washed five times with the washing solution used in (5) of Reference Example 1 described above. Thereafter, the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen APS-5). 100 μL of the substrate solution was added and stirred, and the generated luminescence (RLU) was measured. The result is shown in FIG.
〔比較例3〕
(1)血清の調製、及び、対照用試薬B0による血清の処理
 上記の実施例2の(1)で調製した血清(900μL)に、上記の比較例2で調製した対照用試薬B0(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによる血清成分の分離操作、及び、該ゲルろ過クロマトグラフィにより溶出された分画No.15~25の、抗原抗体反応を用いるサンドイッチ法による測定を行った。その結果を図2に示す。
[Comparative Example 3]
(1) Preparation of Serum and Treatment of Serum with Control Reagent B0 Serum (900 μL) prepared in (1) of Example 2 above was added to control reagent B0 (100 μL) prepared in Comparative Example 2 above. Was added and allowed to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), Separation of serum components by gel filtration chromatography, and fraction No. eluted by gel filtration chromatography. 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔実施例3〕
 上記の比較例3の(2)で得られた分画No.18に対する発光量を100としたときの、上記の実施例2の(4)において、エクソソーム破壊用試薬A1で処理された血清より得られた分画No.18に対する相対的発光量を算出した。同様に、上記の実施例2の(4)で得られた、エクソソーム破壊用試薬A2で処理された血清より得られた分画No.18に対する相対的発光量を算出した。その結果を表4に示す。
[Example 3]
The fraction No. obtained in (2) of Comparative Example 3 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A1 in (4) of Example 2 described above. The light emission amount relative to 18 was calculated. Similarly, the fraction No. obtained from the serum treated with the exosome disrupting reagent A2 obtained in (4) of Example 2 above. The light emission amount relative to 18 was calculated. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 図2及び表4から明らかなように、ナイミーンL-202又はナイミーンDT-203を含有するエクソソーム破壊用試薬で10分間血清を処理した場合、エクソソームを含有する分画(分画No.18)に対する発光量は、対照用試薬B0で血清を処理した場合と比較して、顕著に減少しており、ナイミーンL-202又はナイミーンDT-203の血清への添加により、短時間でエクソソームが破壊されることが判明した。したがって、ポリエーテルアルキルアミンの血清への添加により、血清中のエクソソームを単離することなく、簡便かつ迅速に、血清中のエクソソームを破壊できることが明らかとなった。 As is clear from FIG. 2 and Table 4, when the serum was treated for 10 minutes with the exosome disrupting reagent containing Nimeen L-202 or Nimeen DT-203, the exosome-containing fraction (fraction No. 18) was removed. The luminescence amount is remarkably reduced as compared with the case where the serum was treated with the control reagent B0. Exosome is destroyed in a short time by adding Niamin L-202 or Niamin DT-203 to the serum. It has been found. Therefore, it was revealed that the addition of polyetheralkylamine to serum can easily and quickly destroy exosomes in serum without isolating exosomes in serum.
〔実施例4〕
<POE-POPアルキルエーテルを含有するエクソソーム破壊用試薬を用いたエクソソームの破壊>
(1)血清の調製、及び、界面活性剤による血清の処理
 参考例1及び実施例2における健常人とは異なる、協和メデックス株式会社所属の健常人より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清を調製した。
 調製した血清(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A3(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによるエクソソームとそれ以外の成分との分離、及び、該ゲルろ過クロマトグラフィにより得られた分画No.15~25中のエクソソームを、抗原抗体反応を用いるサンドイッチ法により測定した。その結果を図3に示す。
[Example 4]
<Destruction of exosomes using exosome destruction reagent containing POE-POP alkyl ether>
(1) Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1 and Example 2, was subjected to 2,000 rpm, 25 Centrifugation was performed at 20 ° C. for 20 minutes to prepare serum.
To the prepared serum (900 μL), the exosome-disrupting reagent A3 (100 μL) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), The exosomes are separated from the other components by gel filtration chromatography, and the fraction No. 1 obtained by the gel filtration chromatography is separated. Exosomes in 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔比較例4〕
(1)血清の調製、及び、対照用試薬B0による血清の処理
 上記の実施例4の(1)で調製した血清(900μL)に、上記の比較例2で調製した対照用試薬B0(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによるエクソソームとそれ以外の成分との分離、及び、該ゲルろ過クロマトグラフィにより得られた分画No.15~25中のエクソソームを、抗原抗体反応を用いるサンドイッチ法により測定した。その結果を図3に示す。
[Comparative Example 4]
(1) Preparation of Serum and Treatment of Serum with Control Reagent B0 Serum (900 μL) prepared in (1) of Example 4 above was added to control reagent B0 (100 μL) prepared in Comparative Example 2 above. Was added and allowed to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), The exosomes are separated from the other components by gel filtration chromatography, and the fraction No. 1 obtained by the gel filtration chromatography is separated. Exosomes in 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔実施例5〕
 上記の比較例4の(2)で得られた分画No.18に対する発光量を100としたときの、上記の実施例4の(2)において、エクソソーム破壊用試薬A3で処理された血清より得られた分画No.18に対する相対的発光量を算出した。その結果を表5に示す。
[Example 5]
The fraction No. obtained in (2) of Comparative Example 4 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A3 in (2) of Example 4 described above. The light emission amount relative to 18 was calculated. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図3及び表5から明らかなように、ワンダサーフID-50を含有するエクソソーム破壊用試薬で10分間血清を処理した場合、エクソソームを含有する分画(分画No.18)に対する発光量は、対照用試薬B0で血清を処理した場合と比較して、顕著に減少しており、ワンダサーフID-50の血清への添加により、短時間でエクソソームが破壊されることが判明した。したがって、POE-POPアルキルエーテルの血清への添加により、血清中のエクソソームを単離することなく、簡便かつ迅速に、血清中のエクソソームを破壊できることが明らかとなった。 As is clear from FIG. 3 and Table 5, when the serum was treated with the exosome disrupting reagent containing Wandasurf ID-50 for 10 minutes, the luminescence amount for the exosome-containing fraction (fraction No. 18) was: Compared with the case where the serum was treated with the control reagent B0, the exosome was significantly reduced, and it was found that the addition of Wandasurf ID-50 to the serum destroyed the exosome in a short time. Therefore, it was revealed that the addition of POE-POP alkyl ether to serum can easily and quickly destroy exosomes in serum without isolating exosomes in serum.
〔実施例6〕
<HLB値が13以下のPOEアルキルフェニルエーテルを含有するエクソソーム破壊用試薬を用いたエクソソームの破壊>
(1)血清の調製、及び、界面活性剤による血清の処理
 参考例1、実施例2及び実施例4における健常人とは異なる、協和メデックス株式会社所属の健常人より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清を調製した。
 調製した血清(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A4(100μL)を添加し、10分間静置した。同様に、調製した血清(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A5(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによるエクソソームとそれ以外の成分との分離、及び、該ゲルろ過クロマトグラフィにより得られた分画No.15~25中のエクソソームを、抗原抗体反応を用いるサンドイッチ法により測定した。その結果を図4に示す。
[Example 6]
<Destruction of exosomes using exosome destruction reagent containing POE alkyl phenyl ether having HLB value of 13 or less>
(1) Preparation of Serum and Treatment of Serum with Surfactant Whole blood collected from a healthy person belonging to Kyowa Medex Co., Ltd., which is different from the healthy person in Reference Example 1, Example 2 and Example 4, was collected. The mixture was centrifuged at 2,000 rpm at 25 ° C. for 20 minutes to prepare a serum.
To the prepared serum (900 μL), the exosome-disrupting reagent A4 (100 μL) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes. Similarly, to the prepared serum (900 μL), the exosome-disrupting reagent A5 (100 μL) prepared in Example 1 described above was added and left to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), The exosomes are separated from the other components by gel filtration chromatography, and the fraction No. 1 obtained by the gel filtration chromatography is separated. Exosomes in 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔比較例5〕
<HLB値が13を超えたPOEアルキルフェニルエーテルを含有するエクソソーム破壊用試薬を用いたエクソソームの破壊>
(1)血清の調製、及び、界面活性剤による血清の処理
 上記の実施例6の(1)で調製した血清(900μL)に、上記の比較例1で調製したエクソソームの破壊用試薬B1(100μL)を添加し、10分間静置した。同様に、上記の実施例6の(1)で調製した血清(900μL)に、上記の比較例1で調製したエクソソームの破壊用試薬B2(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによるエクソソームとそれ以外の成分との分離、及び、該ゲルろ過クロマトグラフィにより得られた分画No.15~25中のエクソソームを、抗原抗体反応を用いるサンドイッチ法により測定した。その結果を図4に示す。
[Comparative Example 5]
<Destruction of exosomes using exosome destruction reagent containing POE alkyl phenyl ether having HLB value of more than 13>
(1) Preparation of Serum and Treatment of Serum with Surfactant Serum (900 μL) prepared in (1) of Example 6 was added to exosome disrupting reagent B1 (100 μL) prepared in Comparative Example 1 above. ) Was added and allowed to stand for 10 minutes. Similarly, the exosome-disrupting reagent B2 (100 μL) prepared in Comparative Example 1 was added to the serum (900 μL) prepared in (1) of Example 6 described above, and allowed to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), The exosomes are separated from the other components by gel filtration chromatography, and the fraction No. 1 obtained by the gel filtration chromatography is separated. Exosomes in 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔比較例6〕
(1)血清の調製、及び、対照用試薬B0による血清の処理
 上記の実施例6の(1)で調製した血清(900μL)に、上記の比較例2で調製した対照用試薬B0(100μL)を添加し、10分間静置した。
(2)ゲルろ過クロマトグラフィ~抗原抗体反応を用いるサンドイッチ法による測定
 ゲルろ過クロマトグラフィ用のサンプルとして、上記(1)で得られた血清を用いる以外は、上記の実施例2の(2)~(4)と同様の方法により、ゲルろ過クロマトグラフィによるエクソソームとそれ以外の成分との分離、及び、該ゲルろ過クロマトグラフィにより得られた分画No.15~25中のエクソソームを、抗原抗体反応を用いるサンドイッチ法により測定した。その結果を図4に示す。
[Comparative Example 6]
(1) Preparation of Serum and Treatment of Serum with Control Reagent B0 Serum (900 μL) prepared in (1) of Example 6 was added to control reagent B0 (100 μL) prepared in Comparative Example 2 above. Was added and allowed to stand for 10 minutes.
(2) Measurement by sandwich method using gel filtration chromatography-antigen-antibody reaction Except for using the serum obtained in (1) above as a sample for gel filtration chromatography, (2) to (4) of Example 2 described above. ), The exosomes are separated from the other components by gel filtration chromatography, and the fraction No. 1 obtained by the gel filtration chromatography is separated. Exosomes in 15 to 25 were measured by a sandwich method using an antigen-antibody reaction. The result is shown in FIG.
〔実施例7〕
 上記の比較例6の(2)で得られた分画No.18に対する発光量を100としたときの、上記の実施例6の(2)において、エクソソーム破壊用試薬A4で処理された血清より得られた分画No.18に対する相対的発光量を算出した。同様に、上記の実施例6の(2)で得られた、エクソソーム破壊用試薬A5で処理された血清より得られた分画No.18に対する相対的発光量を算出した。その結果を表6に示す。
 また、上記の比較例6の(2)で得られた分画No.18に対する発光量を100とし、上記の比較例5の(2)で得られた、エクソソーム破壊用試薬B1で処理された血清より得られた分画No.18に対する相対的発光量を算出した。同様に、上記の比較例5の(2)で得られた、エクソソーム破壊用試薬B2で処理された血清より得られた分画No.18に対する相対的発光量を算出した。その結果を表6に示す。
[Example 7]
The fraction No. obtained in (2) of Comparative Example 6 above. Assuming that the amount of luminescence with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome disrupting reagent A4 in (2) of Example 6 described above. The light emission amount relative to 18 was calculated. Similarly, the fraction No. obtained from the serum treated with the exosome disrupting reagent A5 obtained in (2) of Example 6 above. The light emission amount relative to 18 was calculated. Table 6 shows the results.
In addition, the fraction No. obtained in (2) of Comparative Example 6 above. Assuming that the luminescence amount with respect to No. 18 was 100, the fraction No. obtained from the serum treated with the exosome-destroying reagent B1 obtained in (2) of Comparative Example 5 above was used. The light emission amount relative to 18 was calculated. Similarly, the fraction No. obtained from the serum treated with the exosome disrupting reagent B2 obtained in (2) of Comparative Example 5 above. The light emission amount relative to 18 was calculated. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図4及び表6から明らかなように、ノニオンNS-204.5又はノニオンHS-204.5を含有するエクソソーム破壊用試薬で10分間血清を処理した場合、エクソソームを含有する分画(分画No.18)に対する発光量は、対照用試薬B0で血清を処理した場合と比較して、顕著に減少しており、ノニオンNS-204.5又はノニオンHS-204.5の血清への添加により、短時間でエクソソームが破壊されることが判明した。したがって、HLB値が13以下のPOEアルキルフェニルエーテルの血清への添加により、血清中のエクソソームを単離することなく、簡便かつ迅速に、血清中のエクソソームを破壊できることが明らかとなった。
 また、図4及び表6から明らかなように、ノニオンNS-204.5又はノニオンHS-204.5を含有するエクソソーム破壊用試薬で10分間血清を処理した場合、エクソソームを含有する分画(分画No.18)に対する発光量は、HLB値が13を超えるPOEアルキルフェニルエーテルであるトリトンX-100又はノニデットP-40を含有するエクソソーム破壊用試薬により血清を処理した場合と比較しても、顕著に低かった。したがって、HLB値が13を超えるPOEアルキルフェニルエーテルであるトリトンX-100又はノニデットP-40の血清への添加に比較して、ノニオンNS-204.5又はノニオンHS-204.5の血清への添加により、顕著にエクソソームが破壊されることが判明した。したがって、HLB値が13以下のPOEアルキルフェニルエーテルの血清への添加により、血清中のエクソソームを単離することなく、簡便かつ迅速に、血清中のエクソソームを破壊できることが明らかとなった。
As is clear from FIG. 4 and Table 6, when the serum was treated for 10 minutes with the exosome disrupting reagent containing Nonion NS-204.5 or Nonion HS-204.5, the fraction containing exosomes (fraction No. .18) was significantly reduced as compared to the case where the serum was treated with the control reagent B0, and the addition of Nonion NS-204.5 or Nonion HS-204.5 to the serum resulted in Exosomes were found to be destroyed in a short time. Therefore, it was revealed that by adding POE alkylphenyl ether having an HLB value of 13 or less to serum, exosomes in serum can be easily and quickly destroyed without isolating exosomes in serum.
As is clear from FIG. 4 and Table 6, when the serum was treated for 10 minutes with the exosome disrupting reagent containing Nonion NS-204.5 or Nonion HS-204.5, the fraction containing the exosome (fraction The luminescence amount for the image No. 18) was higher than that in the case where the serum was treated with an exosome-disrupting reagent containing Triton X-100 or Nonidet P-40, which is a POE alkylphenyl ether having an HLB value of more than 13. Notably low. Therefore, compared to the addition of Triton X-100 or Nonidet P-40, which are POE alkyl phenyl ethers having an HLB value of more than 13, to Nonion NS-204.5 or Nonion HS-204.5 to serum. It was found that the addition significantly destroyed the exosome. Therefore, it was revealed that by adding POE alkylphenyl ether having an HLB value of 13 or less to serum, exosomes in serum can be easily and quickly destroyed without isolating exosomes in serum.
〔実施例8〕
<試料差:血清及び血漿>
(1)血清の調製、及び、血清の処理
 参考例1、実施例2、実施例4及び実施例6における健常人とは異なる、協和メデックス株式会社所属の健常人1より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清1を調製した。
 調製した血清1(900μL)に、上記の実施例1で調製したエクソソーム破壊用試薬A4(100μL)を添加して10分間静置し、血清1A4 を得た。
 また、調製した血清1(900μL)に、上記の比較例2で調製した対照用試薬B0(100μL)を添加して10分間静置し、血清1B0 を得た。
(2)抗原抗体反応を用いるサンドイッチ法に用いる測定試薬の調製
 上記の参考例1の(4)と同様の方法により、ストレプトアビジン結合磁性粒子溶液、ビオチン結合抗CD9モノクローナル抗体溶液、及び、ALP標識抗CD9モノクローナル抗体溶液を調製した。
(3)抗原抗体反応を用いるサンドイッチ法による測定
 上記(1)で調製した血清1A4 及び血清1B0 の各血清(10μL)に、上記(2)で調製したストレプトアビジン結合磁性粒子溶液(30μL)、上記(2)で調製したビオチン結合抗CD9モノクローナル抗体溶液(30μL)、及び、上記(2)で調製したALP標識抗CD9モノクローナル抗体溶液(30μL)を加えて撹拌し、37℃で10分間反応させた。次いで、磁性粒子を磁力で収集し、磁性粒子以外の反応溶液を除去するとともに、上記の参考例1の(5)で使用した洗浄液で該収集された磁性粒子を5回洗浄した。その後、該収集され洗浄された磁性粒子に、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム塩(LumigenTM APS-5)を主成分とする発光基質液100μLを添加して撹拌し、血清1A4 に対する発光量1A4 、及び、血清1B0 に対する発光量1B0 をそれぞれ測定した。
Example 8
<Sample difference: serum and plasma>
(1) Preparation of Serum and Treatment of Serum Whole blood collected from a healthy person 1 belonging to Kyowa Medex Co., which is different from a healthy person in Reference Example 1, Example 2, Example 4 and Example 6, Serum 1 was prepared by centrifugation at 2,000 rpm for 20 minutes at 25 ° C.
To the prepared serum 1 (900 μL), the exosome-disrupting reagent A4 (100 μL) prepared in Example 1 was added, and the mixture was allowed to stand for 10 minutes to obtain serum 1 A4 .
Further, to the prepared serum 1 (900 μL), the control reagent B0 (100 μL) prepared in Comparative Example 2 was added and allowed to stand for 10 minutes to obtain serum 1 B0 .
(2) Preparation of a measuring reagent used in a sandwich method using an antigen-antibody reaction A streptavidin-conjugated magnetic particle solution, a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP label were prepared in the same manner as in (4) of Reference Example 1 above. An anti-CD9 monoclonal antibody solution was prepared.
(3) Measurement by sandwich method using antigen-antibody reaction To each serum (10 μL) of serum 1 A4 and serum 1 B0 prepared in (1) above, a solution of streptavidin-bound magnetic particles (30 μL) prepared in (2) above Then, the biotin-conjugated anti-CD9 monoclonal antibody solution (30 μL) prepared in (2) and the ALP-labeled anti-CD9 monoclonal antibody solution (30 μL) prepared in (2) are added, stirred, and reacted at 37 ° C. for 10 minutes. I let it. Next, the magnetic particles were collected by magnetic force, the reaction solution other than the magnetic particles was removed, and the collected magnetic particles were washed five times with the washing solution used in (5) of Reference Example 1 described above. Thereafter, the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen APS-5). the substrate solution 100μL was added and stirred, the light emission quantity 1 A4 to serum 1 A4, and were measured an emission amount 1 B0 to serum 1 B0.
(4)サンドイッチ法におけるブランク発光量の測定、及び、S/N比の算出
 サンプルとして生理食塩水を用いる以外は、上記(3)と同様の測定により、ブランク発光量を測定した。
 次いで、該ブランク発光量と、上記(3)で得られた発光量1A4 及び発光量1B0 とから、S/N比(シグナル/ノイズ比)を下記の式により算出した。

  S/N比1A4 = 発光量1A4 /ブランク発光量
  S/N比1B0 = 発光量1B0 /ブランク発光量

(5)S/N比残存率の算出
 上記の(4)で得られたS/N比1B0 を100とし、上記の(4)で得られたS/N比1A4 の相対値を算出し、S/N比残存率1とした。その結果を表7に示す。
 ここで、S/N比残存率が100に近ければ近いほど、エクソソームが破壊されていないことを意味する。すなわち、S/N比残存率が0に近ければ近いほど、エクソソームがより破壊されていることを意味する。
(6)血漿1、並びに、血清2及び血漿2におけるS/N比残存率の算出
 サンプルとして上記(1)の健常人1から得られたEDTA血漿1を用いる以外は、上記(1)~(5)と同様の方法により、S/N比残存率1’を算出した。その結果を表7に示す。
 また、サンプルとして上記(1)の健常人1とは別の健常人2から得られた血清2又はEDTA血漿2を用いる以外は、上記(1)~(5)と同様の方法により、S/N比残存率2及びS/N比残存率2’をそれぞれ算出した。その結果を表7に示す。
(4) Measurement of blank luminescence in sandwich method and calculation of S / N ratio Blank luminescence was measured by the same measurement as in (3) above, except that physiological saline was used as a sample.
Next, the S / N ratio (signal / noise ratio) was calculated from the blank light emission amount, the light emission amount 1 A4 and the light emission amount 1 B0 obtained in the above (3) by the following equation.

S / N ratio 1 A4 = light emission amount 1 A4 / blank light emission amount S / N ratio 1 B0 = light emission amount 1 B0 / blank light emission amount

(5) Calculation of S / N ratio residual ratio With the S / N ratio 1 B0 obtained in the above (4) being 100, the relative value of the S / N ratio 1 A4 obtained in the above (4) is calculated. The residual ratio of S / N was set to 1. Table 7 shows the results.
Here, the closer the S / N ratio residual rate is to 100, the more the exosome is not destroyed. That is, the closer the S / N ratio residual ratio is to 0, the more the exosome is destroyed.
(6) Calculation of residual ratio of S / N ratio in plasma 1 and serum 2 and plasma 2 Except for using EDTA plasma 1 obtained from healthy person 1 in (1) above as a sample, The S / N ratio residual ratio 1 ′ was calculated in the same manner as in 5). Table 7 shows the results.
In addition, except that serum 2 or EDTA plasma 2 obtained from a healthy person 2 different from the healthy person 1 in the above (1) is used as a sample, S / S is obtained in the same manner as in the above (1) to (5). The N ratio residual ratio 2 and the S / N ratio residual ratio 2 ′ were calculated respectively. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7から明らかなように、健常人1より得られた血清と血漿のいずれの試料においても、ノニオンNS-204.5の添加により、短時間で該試料中のエクソソームが破壊されることが判明した。また、健常人2より得られた血清と血漿のいずれの試料においても、ノニオンNS-204.5の添加により、短時間で該試料中のエクソソームが破壊されることが判明した。したがって、健常人の相違にかかわらず、血清及び血漿のいずれの試料においても、本発明のエクソソーム破壊用試薬により、簡便かつ迅速に、該試料中のエクソソームを破壊できることが明らかとなった。 As is clear from Table 7, it was found that the addition of nonionic NS-204.5 destroyed the exosomes in both the serum and plasma samples obtained from the healthy subject 1 in a short time. did. In addition, it was found that the addition of Nonion NS-204.5 destroyed the exosomes in the serum and plasma samples obtained from the healthy subject 2 in a short time. Therefore, it has been clarified that the exosome in the sample can be easily and quickly destroyed by the exosome-destroying reagent of the present invention in any of serum and plasma samples regardless of the difference between healthy individuals.
〔実施例9〕
<エクソソーム破壊用試薬の調製>
 PBSへ、以下の表8に示した濃度となるようノニオンNS-204.5を添加し、エクソソーム破壊用試薬A6~A8をそれぞれ調製した。
[Example 9]
<Preparation of reagent for exosome disruption>
Nonionic NS-204.5 was added to PBS so as to have the concentration shown in Table 8 below, to prepare exosome disrupting reagents A6 to A8, respectively.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
〔実施例10〕
<エクソソーム破壊用試薬A6~A8による血清中のエクソソームの破壊>
(1)血清の調製、及び、血清の処理
 参考例1、実施例2、実施例4、実施例6及び実施例8における健常人とは異なる、協和メデックス株式会社所属の健常人より採取した全血を、2,000rpm、25℃で20分間遠心分離し、血清を調製した。
 調製した血清(900μL)に、上記の実施例9で調製したエクソソーム破壊用試薬A6~A8の各試薬(100μL)を添加して10分間静置し、血清A6 、血清A7 及び血清A8 をそれぞれ得た。
 また、調製した血清(900μL)に、上記の比較例2で調製した対照用試薬B0(100μL)を添加して10分間静置し、血清B0 を得た。
(2)抗原抗体反応を用いるサンドイッチ法に用いる測定試薬の調製
 上記の参考例1の(4)と同様の方法により、ストレプトアビジン結合磁性粒子溶液、ビオチン結合抗CD9モノクローナル抗体溶液、及び、ALP標識抗CD9モノクローナル抗体溶液を調製した。
(3)抗原抗体反応を用いるサンドイッチ法による測定
 上記(1)で調製した血清A6 、血清A7 、血清A8 及び血清B0 10μLに、上記(2)で調製したストレプトアビジン結合磁性粒子溶液(30μL)、上記(2)で調製したビオチン結合抗CD9モノクローナル抗体溶液(30μL)、及び、上記(2)で調製したALP標識抗CD9モノクローナル抗体溶液(30μL)を加えて撹拌し、37℃で10分間反応させた。次いで、磁性粒子を磁力で収集し、磁性粒子以外の反応溶液を除去するとともに、上記の参考例1の(5)で使用した洗浄液で該収集された磁性粒子を5回洗浄した。その後、該収集され洗浄された磁性粒子に、9-[(4-クロロフェニルチオ)(ホスホリルオキシ)メチリデン]-10-メチルアクリダン・二ナトリウム塩(LumigenTM APS-5)を主成分とする発光基質液(100μL)を添加して撹拌し、発光量A6 、発光量A7 、発光量A8 及び発光量B0 をそれぞれ測定した。
[Example 10]
<Destruction of exosomes in serum by exosome disrupting reagents A6 to A8>
(1) Preparation of Serum and Treatment of Serum All samples collected from healthy persons belonging to Kyowa Medex Co., Ltd., which are different from the healthy persons in Reference Example 1, Example 2, Example 4, Example 6, and Example 8 Blood was centrifuged at 2,000 rpm at 25 ° C. for 20 minutes to prepare serum.
To each of the prepared serum (900 μL), each of the exosome disrupting reagents A6 to A8 (100 μL) prepared in Example 9 described above was added and allowed to stand for 10 minutes to obtain serum A6 , serum A7 and serum A8 , respectively. Was.
Further, the control reagent B0 (100 μL) prepared in Comparative Example 2 was added to the prepared serum (900 μL), and the mixture was allowed to stand for 10 minutes to obtain serum B0 .
(2) Preparation of a measuring reagent used in a sandwich method using an antigen-antibody reaction A streptavidin-conjugated magnetic particle solution, a biotin-conjugated anti-CD9 monoclonal antibody solution, and an ALP label were prepared in the same manner as in (4) of Reference Example 1 above. An anti-CD9 monoclonal antibody solution was prepared.
(3) Measurement by Sandwich Method Using Antigen-Antibody Reaction To 10 μL of serum A6 , serum A7 , serum A8 and serum B0 prepared in (1) above, the streptavidin-bound magnetic particle solution (30 μL) prepared in (2) above, The biotin-conjugated anti-CD9 monoclonal antibody solution (30 μL) prepared in (2) and the ALP-labeled anti-CD9 monoclonal antibody solution (30 μL) prepared in (2) are added, and the mixture is stirred and reacted at 37 ° C. for 10 minutes. Was. Next, the magnetic particles were collected by magnetic force, the reaction solution other than the magnetic particles was removed, and the collected magnetic particles were washed five times with the washing solution used in (5) of Reference Example 1 described above. Thereafter, the collected and washed magnetic particles were subjected to luminescence mainly composed of 9-[(4-chlorophenylthio) (phosphoryloxy) methylidene] -10-methylacridan disodium salt (Lumigen APS-5). The substrate solution (100 μL) was added and stirred, and the luminescence A6 , luminescence A7 , luminescence A8 and luminescence B0 were measured respectively.
(4)サンドイッチ法におけるブランク発光量の測定、及び、S/N比の算出
 サンプルとして生理食塩水を用いる以外は、上記(3)と同様の測定により、ブランク発光量を測定した。
 次いで、該ブランク発光量と、上記(3)で得られた発光量A6 、発光量A7 、発光量A8 及び発光量B0 の各発光量とから、S/N比を下記の式により算出した。

  S/N比A6 = 発光量A6 /ブランク発光量
  S/N比A7 = 発光量A7 /ブランク発光量
  S/N比A8 = 発光量A8 /ブランク発光量
  S/N比B0 = 発光量B0 /ブランク発光量

(5)S/N比残存率の算出
 上記の(4)で得られたS/N比B0 を100としたときの、上記の(4)で得られたS/N比A6 、S/N比A7 及びS/N比A8 の相対値を算出し、それぞれS/N比残存率A6 、S/N比残存率A7 及びS/N比残存率A8 とした。その結果を表9に示す。ここで、S/N比残存率が100に近ければ近いほど、エクソソームが破壊されていないことを意味する。すなわち、S/N比残存率が0に近ければ近いほど、エクソソームがより破壊されていることを意味する。
(4) Measurement of blank luminescence in sandwich method and calculation of S / N ratio Blank luminescence was measured by the same measurement as in (3) above, except that physiological saline was used as a sample.
Next, the S / N ratio was calculated from the blank light emission amount and each of the light emission amounts A6 , A7 , A8 and B0 obtained in the above (3) by the following equation.

S / N ratio A6 = light emission amount A6 / blank light emission amount S / N ratio A7 = light emission amount A7 / blank light emission amount S / N ratio A8 = light emission amount A8 / blank light emission amount S / N ratio B0 = light emission amount B0 / blank Light output

(5) Calculation of S / N ratio residual ratio When the S / N ratio B0 obtained in (4) above is set to 100, the S / N ratio A6 and S / N obtained in (4) above are obtained. The relative values of the ratio A7 and the S / N ratio A8 were calculated, and were defined as the S / N ratio residual ratio A6 , the S / N ratio residual ratio A7, and the S / N ratio residual ratio A8 , respectively. Table 9 shows the results. Here, the closer the S / N ratio residual rate is to 100, the more the exosome is not destroyed. That is, the closer the S / N ratio residual ratio is to 0, the more the exosome is destroyed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9から明らかなように、血清と混合した後のノニオンNS-204.5が0.04~1%の濃度の範囲において、S/N比残存率が50%未満であり、血清中のエクソソームが破壊されていることが判明した。すなわち、広範な濃度のノニオンNS-204.5が、血清中のエクソソームの破壊に有効であることが判明した。したがって、本発明のエクソソーム破壊用試薬を用いることにより、簡便かつ迅速に、血清中のエクソソームを破壊できることが明らかとなった。 As is clear from Table 9, in a concentration range of 0.04 to 1% of nonionic NS-204.5 after mixing with serum, the S / N ratio remaining rate was less than 50%, and exosomes in serum Turned out to be destroyed. That is, it was found that a wide range of concentrations of nonion NS-204.5 was effective for destroying exosomes in serum. Therefore, it was revealed that exosomes in serum can be easily and quickly destroyed by using the reagent for disrupting exosomes of the present invention.
 本発明により、簡便かつ迅速な、試料中のエクソソームの破壊方法及び破壊用試薬が提供される。 According to the present invention, a method and a reagent for destruction of exosomes in a sample which are simple and quick are provided.

Claims (4)

  1.  試料に、ポリエーテルアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、及び、HLB値が13以下のポリオキシエチレンアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を添加することを特徴とする、試料中のエクソソームの破壊方法。 The sample is characterized by adding at least one surfactant selected from the group consisting of polyether alkylamine, polyoxyethylene polyoxypropylene alkyl ether, and polyoxyethylene alkyl phenyl ether having an HLB value of 13 or less. To destroy exosomes in a sample.
  2.  試料が、血清又は血漿である、請求項1記載の方法。 The method according to claim 1, wherein the sample is serum or plasma.
  3.  ポリエーテルアルキルアミン、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、及び、HLB値が13以下のポリオキシエチレンアルキルフェニルエーテルからなる群より選ばれる少なくとも一種の界面活性剤を含有することを特徴とする、試料中のエクソソーム破壊用試薬。 A sample comprising at least one surfactant selected from the group consisting of polyether alkylamines, polyoxyethylene polyoxypropylene alkyl ethers, and polyoxyethylene alkyl phenyl ethers having an HLB value of 13 or less. Exosome destruction reagents inside.
  4.  試料が、血清又は血漿である、請求項3記載の試薬。 The reagent according to claim 3, wherein the sample is serum or plasma.
PCT/JP2019/025293 2018-06-27 2019-06-26 Method and reagent for destroying exosomes in sample WO2020004436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527563A JP7201961B2 (en) 2018-06-27 2019-06-26 Method for disrupting exosomes in sample and reagent for disruption

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-122077 2018-06-27
JP2018122077 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004436A1 true WO2020004436A1 (en) 2020-01-02

Family

ID=68986241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025293 WO2020004436A1 (en) 2018-06-27 2019-06-26 Method and reagent for destroying exosomes in sample

Country Status (2)

Country Link
JP (1) JP7201961B2 (en)
WO (1) WO2020004436A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132213A1 (en) * 2019-12-23 2021-07-01 富士レビオ株式会社 Extracellular vesicle recovery method and blood collection tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025918A (en) * 2012-06-20 2014-02-06 Arkray Inc Treatment method of sample containing blood component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083145A1 (en) * 2010-01-08 2011-07-14 Cavadis B.V. Determination of exosomel biomarkers for predicting cardiovascular events
JP2017133831A (en) * 2014-05-28 2017-08-03 国立研究開発法人医薬基盤・健康・栄養研究所 Detecting method for colorectal cancer metastasis
EP3155431A1 (en) * 2014-06-13 2017-04-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for diagnosing, monitoring and treating cancer
JP2016211925A (en) * 2015-05-01 2016-12-15 地方独立行政法人東京都健康長寿医療センター Method of evaluating tolerance of cancer to docetaxel or paclitaxel, method of evaluating malignant alteration of cancer, and kits used for the same in cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025918A (en) * 2012-06-20 2014-02-06 Arkray Inc Treatment method of sample containing blood component

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEFARGE, N. ET AL.: "Co-Formulants in Glyphosate- Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels", INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, vol. 13, no. 3, 26 February 2016 (2016-02-26), pages 264-1 - 264-17, XP55674633, Retrieved from the Internet <URL:http://www.mdpi.com/1660-4601/13/3/264/htm> [retrieved on 20190814], DOI: 10.3390/ijerph13030264 *
VELLA, L. J ET AL.: "Packaging of prions into exosomes is associated with a novel pathway of PrP processing", THE JOURNAL OF PATHOLOGY, vol. 211, no. 5, 2 March 2007 (2007-03-02), pages 582 - 590, XP055674622, DOI: 10.1002/path.2145 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132213A1 (en) * 2019-12-23 2021-07-01 富士レビオ株式会社 Extracellular vesicle recovery method and blood collection tube

Also Published As

Publication number Publication date
JP7201961B2 (en) 2023-01-11
JPWO2020004436A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP4866724B2 (en) Immunoassay method and reagent with suppressed non-specific reaction
CA2668001C (en) A method of immunoassaying a component to be measured in a sample containing hemoglobin
EP2919011B1 (en) Method and kit for measuring component to be assayed in specimen
JP7177767B2 (en) Methods and compositions for assaying vitamin D
EP3985393B1 (en) Method for measuring fibroblast growth factor-23 and reagent therefor
WO2020004436A1 (en) Method and reagent for destroying exosomes in sample
JP7281092B2 (en) Method for measuring exosomes in sample, measurement reagent and measurement kit
JP6934587B2 (en) Method for measuring steroid hormones in samples
JP2022058732A (en) Method for measuring fibroblast growth factor-23, measurement reagent and measuring kit
JP7084590B2 (en) Selection method and selection reagent for subjects in need of treatment for dyslipidemia
WO2018079658A1 (en) Method for measuring oxidized high-density lipoprotein
JP2022153331A (en) Measuring method, measuring reagent and measuring kit for dupan-2 antigen
WO2017159473A1 (en) Method for assessing likelihood of chronic kidney disease patient developing hyperphosphatemia
JP5902714B2 (en) Method for suppressing non-specific reaction in continuous immunoassay of analyte in specimen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527563

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824881

Country of ref document: EP

Kind code of ref document: A1