WO2020004224A1 - Light source device and optical amplifier - Google Patents

Light source device and optical amplifier Download PDF

Info

Publication number
WO2020004224A1
WO2020004224A1 PCT/JP2019/024511 JP2019024511W WO2020004224A1 WO 2020004224 A1 WO2020004224 A1 WO 2020004224A1 JP 2019024511 W JP2019024511 W JP 2019024511W WO 2020004224 A1 WO2020004224 A1 WO 2020004224A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
input port
optical amplifier
source device
Prior art date
Application number
PCT/JP2019/024511
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 剛
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/255,947 priority Critical patent/US20210249834A1/en
Priority to CN201980042784.5A priority patent/CN112313844A/en
Priority to EP19825590.3A priority patent/EP3817161A4/en
Priority to JP2020527458A priority patent/JP7081664B2/en
Publication of WO2020004224A1 publication Critical patent/WO2020004224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094061Shared pump, i.e. pump light of a single pump source is used to pump plural gain media in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094073Non-polarized pump, e.g. depolarizing the pump light for Raman lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to a light source device and an optical amplifier, and more particularly, to a light source device that outputs pump light and an optical amplifier using the same.
  • a fiber optical amplifier is used to amplify an attenuated optical signal.
  • a fiber-type optical amplifier that amplifies this attenuated optical signal one that amplifies the signal intensity of the optical signal by inputting the excitation light output from the excitation light source to the rare-earth-doped fiber to which the optical signal is input. is there.
  • Such a fiber amplifier has high efficiency and high gain, and is used as an amplifier for relaying an optical signal in an optical fiber communication system.
  • Patent Documents 1 to 4 propose such an optical amplifier and an excitation light source for outputting excitation light used in the optical amplifier.
  • Patent Documents 1 to 4 do not mention an optical amplifier configuration including a plurality of optical amplifiers, and when the intensity of pump light required by a plurality of optical amplifiers in such an optical amplifier configuration differs, No consideration is given to the input of the pump light having the optimum intensity to the optical amplifier.
  • An object of the present invention is a light source device which is suitable for an optical amplifier including a plurality of optical amplifiers, and which can input excitation light having an optimum intensity to each of the plurality of optical amplifiers, and an optical amplifier using the light source device. Is to provide.
  • a light source device includes a first light source and a second light source that output excitation light, a first input port, a second input port, a first output port, and a second output port.
  • a polarization beam combiner that receives the excitation light from the first light source and the second light source and inputs and multiplexes and demultiplexes the excitation light to the first input port and the second input port.
  • An optical amplifier includes: a light source device; a first optical amplifying unit that amplifies an optical signal using the pump light from the first output port and the second output port of the polarization beam combiner; A second optical amplifier.
  • FIG. 2 is a configuration diagram illustrating a light source device according to an embodiment.
  • FIG. 2 is a configuration diagram illustrating an optical amplifier according to a first embodiment.
  • FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment.
  • FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment.
  • FIG. 6 is a configuration diagram for describing a light source device and an optical amplifier according to a second embodiment. It is an explanatory view for explaining operation of a light source device of a second embodiment. It is an explanatory view for explaining operation of a light source device of a second embodiment. It is an explanatory view for explaining operation of a light source device of a second embodiment. It is an explanatory view for explaining operation of a light source device of a second embodiment.
  • FIG. 1A is a configuration diagram for explaining the light source device according to the first embodiment.
  • FIG. 1B is a configuration diagram for explaining the optical amplifier according to the first embodiment.
  • 1C to 1E are explanatory diagrams for explaining the operation of the light source device according to the first embodiment.
  • the light source device of FIG. 1A includes a laser diode (LD) 2a and a laser diode (LD) 2b as an example of a first light source and a second light source that output excitation light, an input port 1, an input port 2, an output port 1, and A polarization beam combiner (PBC) 1 that includes an output port 2 and that receives the pump light from the LDs 2a and 2b and is input to the input port 1 and the input port 2 to be multiplexed and demultiplexed.
  • LD laser diode
  • LD laser diode
  • PBC polarization beam combiner
  • the PBC 1 multiplexes or demultiplexes the pump light emitted from the LD 2a and the pump light emitted from the LD 2b, and then distributes the pump light to a plurality of rare earth-doped fibers of a fiber optical amplifier described later.
  • the optical amplifier of FIG. 1B shows a more specific configuration using the light source device of FIG. 1A.
  • the optical amplifier of FIG. 1B includes a light source device of FIG. 1A, a first optical amplifying unit that amplifies an optical signal using the pump light from the output port 1 and the pump light from the output port 2 of the PBC 1 of the light source device, and a second optical amplifying unit.
  • An erbium-doped fiber optical amplifier (EDFA) 3a and an erbium-doped fiber optical amplifier (EDFA) 3b are included as examples of the optical amplifier.
  • the input port 1 of the PBC 1 in FIG. 1A is a TE (Transverse Electric Wave) input port
  • the input port 2 of the PBC 1 in FIG. 1A is a TM (Transverse Magnetic Wave) input port.
  • the output fibers of the LDs 2a and 2b and the fibers of the TE input port and the TM input port of the PBC 1 are both polarization maintaining fibers.
  • the fiber fusion angle at the fusion point 1 between the LD2a and the TE input port of the PBC1 at the fusion point 1 is 0 degree
  • the output fiber of the LD 2a and the fiber of the TE input port of the PBC 1 are fused at the fusion point 1, and the angle formed by the slow axis of the fusion spliced fiber is 0 degree.
  • the output fiber of the LD 2b and the fiber of the TM input port of the PBC 1 are fused at the fusion point 2, and the angle of the slow axis of the fusion spliced fiber is 90 degrees.
  • the PBC 1 has a coupling portion 1a having a structure in which two fiber cores are brought close to each other, as shown in FIGS. 1C and 1D, thereby combining pump light input to the TE input port and the TM input port. Perform waves and split waves.
  • the ratio of the intensity of the excitation light emitted from the two output ports of the PBC 1 can be changed by designing the coupling unit 1a. Specifically, the distance between adjacent cores at the coupling portion 1a, the length of the section at the coupling portion 1a, the refractive index and cross-sectional size of the core of the coupling portion 1a, the refractive index of the cladding of the coupling portion 1a, and the like. Design as design parameters.
  • the EDFA 3a and the EDFA 3b each receive excitation light from the light source device into the excitation light input port, amplify the signal light to the signal light input port, and output the amplified signal light from the signal light output port.
  • the operation of the optical amplifier and light source device of FIG. 1B will be described with reference to FIGS. 1C, 1D, and 1E.
  • the pumping lights emitted from the LDs 2a and 2b are input to the input ports 1 and 2 of the PBC 1, multiplexed and demultiplexed, and then input to the respective pumping light input ports of the EDFAs 3a and 3b.
  • the optical signals input to the respective signal light input ports of the EDFAs 3a and 3b are amplified by the power of the pump light inside the EDFAs 3a and 3b, and output from the signal light output ports.
  • the excitation light beams having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 1B.
  • pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 1B. Therefore, in an optical amplifier having a configuration including a plurality of EDFAs, pump lights having an optimum intensity are respectively made to enter. be able to.
  • the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b.
  • the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 1B is equal.
  • FIG. 2A is a configuration diagram illustrating a light source device and an optical amplifier according to a second embodiment.
  • 2B to 2D are explanatory diagrams for explaining the operation of the light source device according to the second embodiment.
  • the second embodiment is a modification of the first embodiment and is based on the light source device shown in FIG. 1A.
  • the same elements as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the optical amplifier of FIG. 2A includes a light source device similar to the light source device of FIG. 1A. That is, the light source device of FIG. 2A includes a laser diode (LD) 2a and a laser diode (LD) 2b as an example of a first light source and a second light source that output excitation light, a TE input port, a TM input port, and an output port 1.
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • LD laser diode
  • a polarization beam combiner (PBC) 1 that includes the pumping light from the LDs 2a and 2b and is input to a TE power port and a TM input port for multiplexing and demultiplexing.
  • the PBC 1 multiplexes or demultiplexes the pump light emitted from the LD 2a and the pump light emitted from the LD 2b, and then distributes the pump light to a plurality of rare earth-doped fibers of the fiber optical amplifier.
  • the optical amplifier of FIG. 2A further includes a first optical amplifier and a second optical amplifier that amplify an optical signal using pump light from the output port 1 and the output port 2 of the PBC 1 of the light source device similar to the optical amplifier of FIG. 1B.
  • An erbium-doped fiber optical amplifier (EDFA) 3a and an erbium-doped fiber optical amplifier (EDFA) 3b are included as examples of the amplifier.
  • the output fibers of the LDs 2a and 2b and the fibers of the TE input port and the TM input port of the PBC 1 are both polarization maintaining fibers.
  • the fiber fusion angle at the fusion point 1 between the LD 2a and the TE input port of the PBC 1 is 0 °, ⁇ 1 (degree) different from 90 °, and the TM input port of the LD 2b and the PBC 1 is used.
  • the fiber fusion angle at the fusion point 2 is 0 ° and ⁇ 2 (degree) different from 90 °.
  • the output fiber of the LD 2a and the fiber of the TE input port of the PBC 1 are fused at the fusion point 1, and the angle formed by the slow axis of the fusion spliced fiber is ⁇ 1 (degree).
  • the output fiber of the LD 2b and the fiber of the TM input port of the PBC 1 are fused at the fusion point 2, and the angle formed by the slow axis of the fusion spliced fiber is ⁇ 2 (degree).
  • the fiber fusion angle ⁇ 1 at the fusion point 1 between the LD 2a and the TE input port of the PBC1 is different from the fiber fusion angle ⁇ 2 at the fusion point 2 between the LD 2b and the TM input port of the PBC1.
  • the PBC 1 has a coupling section 1a having a structure in which the cores of two fibers are brought close to each other as shown in FIG. 2B and FIG. 2C, thereby combining the pump light input to the TE input port and the TM input port. Perform waves and split waves.
  • the ratio of the intensity of the excitation light emitted from the two output ports of the PBC 1 can be changed by designing the coupling unit 1a. Specifically, the distance between adjacent cores at the coupling portion 1a, the length of the section at the coupling portion 1a, the refractive index and the cross-sectional size of the core of the coupling portion 1a, the refractive index of the cladding of the coupling portion 1a, and the like. Design as design parameters.
  • the EDFA 3a and the EDFA 3b each receive excitation light from the light source device into the excitation light input port, amplify the signal light to the signal light input port, and output the amplified signal light from the signal light output port.
  • the operation of the optical amplifier and the light source device of FIG. 2A will be described with reference to FIGS. 2B, 2C, and 2D.
  • the pumping lights emitted from the LDs 2a and 2b are input to the input ports 1 and 2 of the PBC 1, multiplexed and demultiplexed, and then input to the respective pumping light input ports of the EDFAs 3a and 3b.
  • the optical signals input to the respective signal light input ports of the EDFAs 3a and 3b are amplified by the power of the pump light inside the EDFAs 3a and 3b, and output from the signal light output ports.
  • excitation lights having different light intensities can be incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2A.
  • pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2A. Therefore, in an optical amplifier having a configuration including a plurality of EDFAs, pump lights having optimum intensities are made incident. be able to.
  • the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b.
  • the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 2A is equal.
  • the ratio of the pump light power emitted from the two output ports of the PBC1 can be changed by designing the coupling part 1a of the PBC1, but not only that, but also the TE port of the PBC1, It can also be changed by the fiber fusion angle for each TM port. That is, the fiber fusion angle ⁇ 1 at the fusion point 1 between the LD2a and the TE input port of the PBC1 at the fusion point 1 and the fiber fusion angle ⁇ 2 at the fusion point 2 between the LD2b and the TM input port of the PBC1 can be optimally designed. For example, the same operation as the first embodiment can be realized.
  • the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b.
  • the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 2A is equal.
  • the ratio of the intensity of the pump light emitted from the two output ports of the PBC 1 depends not only on the design of the coupling portion 1a of the PBC 1 but also on the design of the fiber fusion angle for each of the TE input port and the TM input port. , The ratio can be varied.
  • the fiber fusion angle for each of the TE input port and the TM input port pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2B. In each of the optical amplifiers described above, the excitation light having the optimum intensity can be incident.
  • the ratio of the excitation light intensity is changed by designing the fiber fusion angle with respect to each of the TE input port and the TM input port while using the PBC1 that is already commercially available, and the optical amplifier of FIG. Excitation lights having different light intensities can be incident on the EDFAs 3a and 3b.
  • the output port of the polarization beam combiner is directly connected to the excitation light input port of the erbium-doped fiber optical amplifier (EDFA). It is not limited to this configuration. The same effect can be obtained not only when the output port is directly connected but also when, for example, the output port of the PBC is connected to a branch coupler and the output of the branch coupler is connected to a plurality of EDFAs.
  • an erbium-doped fiber optical amplifier was used as the rare earth-doped fiber optical amplifier, but other elements of rare earth were added, for example, praseodymium ( Similar effects can be expected with other types of fiber-type optical amplifiers to which Pr), thulium (Tm), or ytterbium (Yb) is added.

Abstract

Provided are a light source device that is suitable for an optical amplifier including a plurality of optical amplification units and that can emit excitation light of optimal intensity to each of the optical amplification units, and an optical amplifier that uses this light source device. The light source device includes: first and second light sources that each emit excitation light; and a polarization beam combiner that includes first and second input ports and first and second output ports and that multiplexes/demultiplexes the excitation light emitted from the first and second light sources and inputted to the first and second input ports.

Description

光源装置、及び光増幅器Light source device and optical amplifier
 本発明は、光源装置、及び光増幅器に関し、特に励起光を出力する光源装置と、これを用いた光増幅器に関する。 The present invention relates to a light source device and an optical amplifier, and more particularly, to a light source device that outputs pump light and an optical amplifier using the same.
 光通信システムにおいて、減衰した光信号を増幅するために、ファイバー型光増幅器が用いられる。この減衰した光信号を増幅するファイバー型光増幅器としては、光信号が入力される希土類添加ファイバーに、励起光源から出力される励起光を入力することで、光信号の信号強度を増幅するものがある。このようなファイバー型増幅器は、高効率・高利得であり、光ファイバー通信システムの光信号中継用の増幅器として用いられる。 フ ァ イ バ ー In an optical communication system, a fiber optical amplifier is used to amplify an attenuated optical signal. As a fiber-type optical amplifier that amplifies this attenuated optical signal, one that amplifies the signal intensity of the optical signal by inputting the excitation light output from the excitation light source to the rare-earth-doped fiber to which the optical signal is input. is there. Such a fiber amplifier has high efficiency and high gain, and is used as an amplifier for relaying an optical signal in an optical fiber communication system.
 特許文献1乃至特許文献4では、このような光増幅器や、光増幅器に用いられる励起光を出力する励起光源が提案されている。 Patent Documents 1 to 4 propose such an optical amplifier and an excitation light source for outputting excitation light used in the optical amplifier.
特開2014-6298号公報JP 2014-6298 A 特開2013-4667号公報JP 2013-4667 A 特開2004-104473号公報JP 2004-104473 A 特開平8-304860号公報JP-A-8-304860
 しかしながら、上述した光源装置、及び光増幅器には次のような課題がある。 However, the above-described light source device and optical amplifier have the following problems.
 すなわち複数の光増幅部を含む光増幅器の構成において、複数の光増幅部が必要とする励起光の強度が異なる場合に、それぞれの光増幅部に最適な強度の励起光を入射することができない点である。 That is, in the configuration of the optical amplifier including the plurality of optical amplifiers, when the intensity of the pump light required by the plurality of optical amplifiers is different, the excitation light having the optimum intensity cannot be incident on each optical amplifier. Is a point.
 特許文献1乃至特許文献4では、複数の光増幅器からなる光アンプ構成について言及はなく、またこのような光アンプ構成で複数の光増幅器が必要とする励起光の強度が異なる場合に、それぞれの光増幅器に最適な強度の励起光を入射することについて関知していない。 Patent Documents 1 to 4 do not mention an optical amplifier configuration including a plurality of optical amplifiers, and when the intensity of pump light required by a plurality of optical amplifiers in such an optical amplifier configuration differs, No consideration is given to the input of the pump light having the optimum intensity to the optical amplifier.
 本発明の目的は、複数の光増幅部を含む光増幅器に好適で、複数の光増幅部にそれぞれ最適な強度の励起光を入射することができる光源装置と、この光源装置を用いた光増幅器を提供することにある。 An object of the present invention is a light source device which is suitable for an optical amplifier including a plurality of optical amplifiers, and which can input excitation light having an optimum intensity to each of the plurality of optical amplifiers, and an optical amplifier using the light source device. Is to provide.
 前記目的を達成するため、本発明に係る光源装置は、励起光を出力する第1光源及び第2光源と、第1入力ポート、第2入力ポート、第1出力ポート及び第2出力ポートを含み、上記第1光源及び上記第2光源からの上記励起光が上記第1入力ポート及び第2入力ポートに入力されて合波分波する偏波ビームコンバイナーと、を含む。 In order to achieve the above object, a light source device according to the present invention includes a first light source and a second light source that output excitation light, a first input port, a second input port, a first output port, and a second output port. A polarization beam combiner that receives the excitation light from the first light source and the second light source and inputs and multiplexes and demultiplexes the excitation light to the first input port and the second input port.
 本発明に係る光増幅器は、上記光源装置と、上記偏波ビームコンバイナーの上記第1出力ポート及び上記第2出力ポートからの上記励起光を用いてそれぞれ光信号を増幅する第1光増幅部及び第2光増幅部と、を含む。 An optical amplifier according to the present invention includes: a light source device; a first optical amplifying unit that amplifies an optical signal using the pump light from the first output port and the second output port of the polarization beam combiner; A second optical amplifier.
 本発明によれば、光増幅器の複数の光増幅部に、それぞれ最適な強度の励起光を入射する光源装置を実現することができる。 According to the present invention, it is possible to realize a light source device in which excitation light having an optimum intensity is incident on a plurality of optical amplifiers of an optical amplifier.
実施形態による光源装置を説明するための構成図である。FIG. 2 is a configuration diagram illustrating a light source device according to an embodiment. 第1実施形態による光増幅器を説明するための構成図である。FIG. 2 is a configuration diagram illustrating an optical amplifier according to a first embodiment. 第1実施形態の光源装置の動作を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment. 第1実施形態の光源装置の動作を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment. 第1実施形態の光源装置の動作を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an operation of the light source device of the first embodiment. 第2実施形態による光源装置、及び光増幅器を説明するための構成図である。FIG. 6 is a configuration diagram for describing a light source device and an optical amplifier according to a second embodiment. 第2実施形態の光源装置の動作を説明するための説明図である。It is an explanatory view for explaining operation of a light source device of a second embodiment. 第2実施形態の光源装置の動作を説明するための説明図である。It is an explanatory view for explaining operation of a light source device of a second embodiment. 第2実施形態の光源装置の動作を説明するための説明図である。It is an explanatory view for explaining operation of a light source device of a second embodiment.
 本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。 好 ま し い Preferred embodiments of the present invention will be described in detail with reference to the drawings.
 〔第1実施形態〕
 初めに、第1実施形態による光源装置、及び光増幅器について、説明する。図1Aは、第1実施形態による光源装置を説明するための構成図である。図1Bは、第1実施形態による光増幅器を説明するための構成図である。図1C乃至図1Eは、第1実施形態による光源装置の動作を説明するための説明図である。
[First Embodiment]
First, the light source device and the optical amplifier according to the first embodiment will be described. FIG. 1A is a configuration diagram for explaining the light source device according to the first embodiment. FIG. 1B is a configuration diagram for explaining the optical amplifier according to the first embodiment. 1C to 1E are explanatory diagrams for explaining the operation of the light source device according to the first embodiment.
 (実施形態の構成)
 図1Aの光源装置は、励起光を出力する第1光源及び第2光源の一例としてのレーザーダイオード(LD)2a及びレーザーダイオード(LD)2bと、入力ポート1、入力ポート2、出力ポート1及び出力ポート2を含み、上記LD2a及びLD2bからの上記励起光が入力ポート1及び入力ポート2に入力されて合波分波する偏波ビームコンバイナー(PBC)1と、を含む。PBC1は、LD2aから出射された励起光とLD2bから出射された励起光との合波や分波を行った後、後述するファイバー型光増幅器の複数の希土類添加ファイバーへ励起光を分配する。
(Configuration of the embodiment)
The light source device of FIG. 1A includes a laser diode (LD) 2a and a laser diode (LD) 2b as an example of a first light source and a second light source that output excitation light, an input port 1, an input port 2, an output port 1, and A polarization beam combiner (PBC) 1 that includes an output port 2 and that receives the pump light from the LDs 2a and 2b and is input to the input port 1 and the input port 2 to be multiplexed and demultiplexed. The PBC 1 multiplexes or demultiplexes the pump light emitted from the LD 2a and the pump light emitted from the LD 2b, and then distributes the pump light to a plurality of rare earth-doped fibers of a fiber optical amplifier described later.
 図1Bの光増幅器は、図1Aの光源装置を用いて、より具体的に構成した場合を示している。図1Bの光増幅器は、図1Aの光源装置と、光源装置のPBC1の上記出力ポート1及び上記出力ポート2からの上記励起光を用いてそれぞれ光信号を増幅する第1光増幅部及び第2光増幅部の一例としての、エルビウムドープファイバー型光増幅部(EDFA)3a及びエルビウムドープファイバー型光増幅部(EDFA)3bと、を含む。 (1) The optical amplifier of FIG. 1B shows a more specific configuration using the light source device of FIG. 1A. The optical amplifier of FIG. 1B includes a light source device of FIG. 1A, a first optical amplifying unit that amplifies an optical signal using the pump light from the output port 1 and the pump light from the output port 2 of the PBC 1 of the light source device, and a second optical amplifying unit. An erbium-doped fiber optical amplifier (EDFA) 3a and an erbium-doped fiber optical amplifier (EDFA) 3b are included as examples of the optical amplifier.
 なお図1Bの光増幅器は、図1AのPBC1の入力ポート1をTE(Transverse Electric wave)入力ポートとし、図1AのPBC1の入力ポート2をTM(Transverse Magnetic wave)入力ポートとしている。なおここで、LD2a及びLD2bの出力ファイバーと、PBC1のTE入力ポート及びTM入力ポートのファイバーとが、ともに偏波保存ファイバーである。 1B, the input port 1 of the PBC 1 in FIG. 1A is a TE (Transverse Electric Wave) input port, and the input port 2 of the PBC 1 in FIG. 1A is a TM (Transverse Magnetic Wave) input port. Here, the output fibers of the LDs 2a and 2b and the fibers of the TE input port and the TM input port of the PBC 1 are both polarization maintaining fibers.
 さらに図1Bの光増幅器では、LD2aとPBC1のTE入力ポートとの融着点1でのファイバー融着角度を0度、LD2bとPBC1のTM入力ポートとの融着点2でのファイバー融着角度を90度としている。言い換えると、LD2aの出力ファイバーとPBC1のTE入力ポートのファイバーとが融着点1で融着され、融着接続されたファイバーのスロー軸のなす角度が0度である。さらにLD2bの出力ファイバーとPBC1のTM入力ポートのファイバーとが融着点2で融着され、融着接続されたファイバーのスロー軸のなす角度が90度である。 Further, in the optical amplifier of FIG. 1B, the fiber fusion angle at the fusion point 1 between the LD2a and the TE input port of the PBC1 at the fusion point 1 is 0 degree, and the fiber fusion angle at the fusion point 2 between the LD2b and the TM input port of the PBC1. Is 90 degrees. In other words, the output fiber of the LD 2a and the fiber of the TE input port of the PBC 1 are fused at the fusion point 1, and the angle formed by the slow axis of the fusion spliced fiber is 0 degree. Further, the output fiber of the LD 2b and the fiber of the TM input port of the PBC 1 are fused at the fusion point 2, and the angle of the slow axis of the fusion spliced fiber is 90 degrees.
 PBC1は、図1Cや図1Dに示される、二つのファイバーのコア同士を近接させた構造の結合部1aを有しており、これによりTE入力ポート及びTM入力ポートへ入力される励起光を合波や分波を行う。PBC1の二つの出力ポートから出射される励起光強度の割合は、結合部1aの設計により変化させることができる。具体的には、結合部1aで近接するコア同士の距離、結合部1aで近接する区間の長さ、結合部1aのコアの屈折率と断面サイズ、や結合部1aのクラッドの屈折率などを設計パラメータとして設計を行う。 The PBC 1 has a coupling portion 1a having a structure in which two fiber cores are brought close to each other, as shown in FIGS. 1C and 1D, thereby combining pump light input to the TE input port and the TM input port. Perform waves and split waves. The ratio of the intensity of the excitation light emitted from the two output ports of the PBC 1 can be changed by designing the coupling unit 1a. Specifically, the distance between adjacent cores at the coupling portion 1a, the length of the section at the coupling portion 1a, the refractive index and cross-sectional size of the core of the coupling portion 1a, the refractive index of the cladding of the coupling portion 1a, and the like. Design as design parameters.
 EDFA3a、EDFA3bは、光源装置からそれぞれ励起光入力ポートへ励起光が入射され、信号光入力ポートへの信号光を増幅して、信号光出力ポートから増幅された信号光を出力する。 The EDFA 3a and the EDFA 3b each receive excitation light from the light source device into the excitation light input port, amplify the signal light to the signal light input port, and output the amplified signal light from the signal light output port.
 (実施形態の動作)
 図1Bの光増幅器、光源装置の動作について、図1C、図1D及び図1Eを参照して説明する。LD2a、LD2bから出射された励起光は、PBC1の入力ポート1及び入力ポート2に入力され、合波、分波されたのち、EDFA3a、EDFA3bのそれぞれの励起光入力ポートに入力される。一方、EDFA3a、EDFA3bのそれぞれの信号光入力ポートに入力された光信号は、EDFA3a、EDFA3bの内部において励起光のパワーにより増幅されて、信号光出力ポートからそれぞれ出力される。
(Operation of the embodiment)
The operation of the optical amplifier and light source device of FIG. 1B will be described with reference to FIGS. 1C, 1D, and 1E. The pumping lights emitted from the LDs 2a and 2b are input to the input ports 1 and 2 of the PBC 1, multiplexed and demultiplexed, and then input to the respective pumping light input ports of the EDFAs 3a and 3b. On the other hand, the optical signals input to the respective signal light input ports of the EDFAs 3a and 3b are amplified by the power of the pump light inside the EDFAs 3a and 3b, and output from the signal light output ports.
 図1Cに示すように、LD2aからPBC1のTE入力ポートへ入力された励起光については、0.6:0.4の割合で分配され、PBC1の出力ポート1、出力ポート2から出射される。すなわち、PBC1のTE入力ポートへの光強度Pin1=1に対し、PBC1の出力ポート1からの光強度Pout=0.6、出力ポート2からの光強度Pout=0.4のように分配される。 As shown in FIG. 1C, the pump light input from the LD 2a to the TE input port of the PBC 1 is distributed at a ratio of 0.6: 0.4, and emitted from the output port 1 and the output port 2 of the PBC 1. That is, for the light intensity P in1 = 1 to TE input port of PBC1, the light intensity P out = 0.6 from the output port 1 of PBC1, as the light intensity P out = 0.4 from the output port 2 Be distributed.
 図1Dに示すように、LD2bからPBC1のTM入力ポートへ入力された励起光については、0.6:0.4の割合で分配され、PBC1の出力ポート1、出力ポート2から出射される。すなわち、PBC1のTM入力ポートへの光強度Pin2=1に対し、PBC1の出力ポート1からの光強度Pout=0.6、出力ポート2からの光強度Pout=0.4のように分配される。 As shown in FIG. 1D, the pump light input from the LD 2b to the TM input port of the PBC 1 is distributed at a ratio of 0.6: 0.4, and emitted from the output port 1 and the output port 2 of the PBC 1. That is, for the light intensity Pin2 = 1 to TM input port of PBC1, the light intensity P out = 0.6 from the output port 1 of PBC1, distributed as light intensity P out = 0.4 from the output port 2 Is done.
 (実施形態の効果)
 こうして本実施形態の光源装置では、図1Bの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができる。このように図1Bの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができるので、複数のEDFAを含む構成の光増幅器において、それぞれ最適な強度の励起光を入射することができる。
(Effects of the embodiment)
Thus, in the light source device of the present embodiment, the excitation light beams having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 1B. As described above, pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 1B. Therefore, in an optical amplifier having a configuration including a plurality of EDFAs, pump lights having an optimum intensity are respectively made to enter. be able to.
 図1Cに示すような、LD2aからPBC1のTE入力ポートへ入力された励起光の分配と、図1Dに示すような、LD2bからPBC1のTE入力ポートへ入力された励起光の分配とを総合すると、図1Eのようになる。LD2aからPBC1のTE入力ポートへの入力光強度Pin1=1、及びLD2bからPBC1のTM入力ポートへの入力光強度Pin2=1に対し、PBC1の出力ポート1からの出力光強度Pout1=1.2、PBC1の出力ポート2からの出力光強度Pout2=0.8となる。このようにPBC1では、出力ポート1、出力ポート2から出射される励起光に、LD2a、LD2bからの光強度がそれぞれ等しく含まれている。これにより、仮にLD2a、LD2bのどちらの励起レーザーが故障した場合でも、図1BのEDFA3a、EDFA3bに入射される励起光の減衰割合は等しい。これにより、光アンプ構成を含む光通信システムの設計において、励起レーザーの故障や経時劣化を想定したシステム設計が容易になる。 The distribution of the pump light input from the LD 2a to the TE input port of the PBC 1 as shown in FIG. 1C and the distribution of the pump light input from the LD 2b to the TE input port of the PBC 1 as shown in FIG. , FIG. 1E. For the input light intensity P in1 = 1 from LD2a to the TE input port of PBC1 and the input light intensity P in2 = 1 from LD2b to the TM input port of PBC1, the output light intensity P out1 = from the output port 1 of PBC1 = 1.2, the output light intensity P out2 from the output port 2 of the PBC 1 becomes P out2 = 0.8. As described above, in the PBC 1, the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b. Thus, even if either of the pump lasers LD2a and LD2b fails, the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 1B is equal. As a result, in designing an optical communication system including an optical amplifier configuration, it is easy to design a system that assumes failure of the pump laser or deterioration with time.
 〔第2実施形態〕
 次に、第2実施形態による光源装置、及び光増幅器について、説明する。図2Aは、第2実施形態による光源装置、及び光増幅器を説明するための構成図である。図2B乃至図2Dは、第2実施形態による光源装置の動作を説明するための説明図である。第2実施形態は、第1実施形態の変形例であり、図1Aに示される光源装置を基礎とするものとする。第1実施形態と同様な要素に対しては同じ参照番号を付して、その詳細な説明を省略することとする。
[Second embodiment]
Next, a light source device and an optical amplifier according to a second embodiment will be described. FIG. 2A is a configuration diagram illustrating a light source device and an optical amplifier according to a second embodiment. 2B to 2D are explanatory diagrams for explaining the operation of the light source device according to the second embodiment. The second embodiment is a modification of the first embodiment and is based on the light source device shown in FIG. 1A. The same elements as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 (実施形態の構成)
 図2Aの光増幅器は、図1Aの光源装置と同様な光源装置を含む。すなわち図2Aの光源装置は、励起光を出力する第1光源及び第2光源の一例としてのレーザーダイオード(LD)2a及びレーザーダイオード(LD)2bと、TE入力ポート、TM入力ポート、出力ポート1及び出力ポート2を含み、上記LD2a及びLD2bからの上記励起光がTE力ポート及びTM入力ポートに入力されて合波分波する偏波ビームコンバイナー(PBC)1と、を含む。PBC1は、LD2aから出射された励起光とLD2bから出射された励起光との合波や分波を行った後、ファイバー型光増幅器の複数の希土類添加ファイバーへ励起光を分配する。
(Configuration of the embodiment)
The optical amplifier of FIG. 2A includes a light source device similar to the light source device of FIG. 1A. That is, the light source device of FIG. 2A includes a laser diode (LD) 2a and a laser diode (LD) 2b as an example of a first light source and a second light source that output excitation light, a TE input port, a TM input port, and an output port 1. A polarization beam combiner (PBC) 1 that includes the pumping light from the LDs 2a and 2b and is input to a TE power port and a TM input port for multiplexing and demultiplexing. The PBC 1 multiplexes or demultiplexes the pump light emitted from the LD 2a and the pump light emitted from the LD 2b, and then distributes the pump light to a plurality of rare earth-doped fibers of the fiber optical amplifier.
 図2Aの光増幅器はさらに、図1Bの光増幅器と同様な光源装置のPBC1の出力ポート1及び出力ポート2からの励起光を用いてそれぞれ光信号を増幅する第1光増幅部及び第2光増幅部の一例としての、エルビウムドープファイバー型光増幅部(EDFA)3a及びエルビウムドープファイバー型光増幅部(EDFA)3bと、を含む。なおここで、LD2a及びLD2bの出力ファイバーと、PBC1のTE入力ポート及びTM入力ポートのファイバーとが、ともに偏波保存ファイバーである。 The optical amplifier of FIG. 2A further includes a first optical amplifier and a second optical amplifier that amplify an optical signal using pump light from the output port 1 and the output port 2 of the PBC 1 of the light source device similar to the optical amplifier of FIG. 1B. An erbium-doped fiber optical amplifier (EDFA) 3a and an erbium-doped fiber optical amplifier (EDFA) 3b are included as examples of the amplifier. Here, the output fibers of the LDs 2a and 2b and the fibers of the TE input port and the TM input port of the PBC 1 are both polarization maintaining fibers.
 さらに図2Bの光増幅器では、LD2aとPBC1のTE入力ポートとの融着点1でのファイバー融着角度を0度、90度とは異なるθ1(度)としており、LD2bとPBC1のTM入力ポートとの融着点2でのファイバー融着角度を0度、90度とは異なるθ2(度)としている。言い換えると、LD2aの出力ファイバーとPBC1のTE入力ポートのファイバーとが融着点1で融着され、融着接続されたファイバーのスロー軸のなす角度がθ1(度)である。さらにLD2bの出力ファイバーとPBC1のTM入力ポートのファイバーとが融着点2で融着され、融着接続されたファイバーのスロー軸のなす角度がθ2(度)である。なお、LD2aとPBC1のTE入力ポートとの融着点1でのファイバー融着角度θ1と、LD2bとPBC1のTM入力ポートとの融着点2でのファイバー融着角度θ2とはお互いに異なる。 Further, in the optical amplifier of FIG. 2B, the fiber fusion angle at the fusion point 1 between the LD 2a and the TE input port of the PBC 1 is 0 °, θ1 (degree) different from 90 °, and the TM input port of the LD 2b and the PBC 1 is used. The fiber fusion angle at the fusion point 2 is 0 ° and θ2 (degree) different from 90 °. In other words, the output fiber of the LD 2a and the fiber of the TE input port of the PBC 1 are fused at the fusion point 1, and the angle formed by the slow axis of the fusion spliced fiber is θ1 (degree). Further, the output fiber of the LD 2b and the fiber of the TM input port of the PBC 1 are fused at the fusion point 2, and the angle formed by the slow axis of the fusion spliced fiber is θ2 (degree). The fiber fusion angle θ1 at the fusion point 1 between the LD 2a and the TE input port of the PBC1 is different from the fiber fusion angle θ2 at the fusion point 2 between the LD 2b and the TM input port of the PBC1.
 PBC1は、図2Bや図2Cに示される、二つのファイバーのコア同士を近接させた構造の結合部1aを有しており、これによりTE入力ポート及びTM入力ポートへ入力される励起光を合波や分波を行う。PBC1の二つの出力ポートから出射される励起光強度の割合は、結合部1aの設計により変化させることができる。具体的には、結合部1aで近接するコア同士の距離、結合部1aで近接する区間の長さ、結合部1aのコアの屈折率と断面サイズ、や結合部1aのクラッドの屈折率などを設計パラメータとして設計を行う。 The PBC 1 has a coupling section 1a having a structure in which the cores of two fibers are brought close to each other as shown in FIG. 2B and FIG. 2C, thereby combining the pump light input to the TE input port and the TM input port. Perform waves and split waves. The ratio of the intensity of the excitation light emitted from the two output ports of the PBC 1 can be changed by designing the coupling unit 1a. Specifically, the distance between adjacent cores at the coupling portion 1a, the length of the section at the coupling portion 1a, the refractive index and the cross-sectional size of the core of the coupling portion 1a, the refractive index of the cladding of the coupling portion 1a, and the like. Design as design parameters.
 EDFA3a、EDFA3bは、光源装置からそれぞれ励起光入力ポートへ励起光が入射され、信号光入力ポートへの信号光を増幅して、信号光出力ポートから増幅された信号光を出力する。 The EDFA 3a and the EDFA 3b each receive excitation light from the light source device into the excitation light input port, amplify the signal light to the signal light input port, and output the amplified signal light from the signal light output port.
 (実施形態の動作)
 図2Aの光増幅器、光源装置の動作について、図2B、図2C及び図2Dを参照して説明する。LD2a、LD2bから出射された励起光は、PBC1の入力ポート1及び入力ポート2に入力され、合波、分波されたのち、EDFA3a、EDFA3bのそれぞれの励起光入力ポートに入力される。一方、EDFA3a、EDFA3bのそれぞれの信号光入力ポートに入力された光信号は、EDFA3a、EDFA3bの内部において励起光のパワーにより増幅されて、信号光出力ポートからそれぞれ出力される。
(Operation of the embodiment)
The operation of the optical amplifier and the light source device of FIG. 2A will be described with reference to FIGS. 2B, 2C, and 2D. The pumping lights emitted from the LDs 2a and 2b are input to the input ports 1 and 2 of the PBC 1, multiplexed and demultiplexed, and then input to the respective pumping light input ports of the EDFAs 3a and 3b. On the other hand, the optical signals input to the respective signal light input ports of the EDFAs 3a and 3b are amplified by the power of the pump light inside the EDFAs 3a and 3b, and output from the signal light output ports.
 図2Bに示すように、LD2aからPBC1のTE入力ポートへ入力された励起光については、0.6:0.4の割合で分配され、PBC1の出力ポート1、出力ポート2から出射される。すなわち、PBC1のTE入力ポートへの光強度Pin1=1に対し、PBC1の出力ポート1からの光強度Pout=0.6、出力ポート2からの光強度Pout=0.4のように分配される。 As shown in FIG. 2B, the pump light input from the LD 2a to the TE input port of the PBC 1 is distributed at a ratio of 0.6: 0.4, and emitted from the output port 1 and the output port 2 of the PBC 1. That is, for the light intensity P in1 = 1 to TE input port of PBC1, the light intensity P out = 0.6 from the output port 1 of PBC1, as the light intensity P out = 0.4 from the output port 2 Be distributed.
 図2Cに示すように、LD2bからPBC1のTM入力ポートへ入力された励起光については、0.6:0.4の割合で分配され、PBC1の出力ポート1、出力ポート2から出射される。すなわち、PBC1のTM入力ポートへの光強度Pin2=1に対し、PBC1の出力ポート1からの光強度Pout=0.6、出力ポート2からの光強度Pout=0.4のように分配される。 As shown in FIG. 2C, the pump light input from the LD 2b to the TM input port of the PBC 1 is distributed at a ratio of 0.6: 0.4, and emitted from the output port 1 and the output port 2 of the PBC 1. That is, for the light intensity P in2 = 1 to the TM input port of PBC1, the light intensity P out = 0.6 from the output port 1 of PBC1 and the light intensity P out = 0.4 from the output port 2 of PBC1. Be distributed.
 こうして本実施形態の光源装置では、図2Aの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができる。このように図2Aの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができるので、複数のEDFAを含む構成の光増幅器において、それぞれ最適な強度の励起光を入射することができる。 Thus, in the light source device of the present embodiment, excitation lights having different light intensities can be incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2A. As described above, pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2A. Therefore, in an optical amplifier having a configuration including a plurality of EDFAs, pump lights having optimum intensities are made incident. be able to.
 図2Bに示すような、LD2aからPBC1のTE入力ポートへ入力された励起光の分配と、図2Cに示すような、LD2bからPBC1のTE入力ポートへ入力された励起光の分配とを総合すると、図2Dのようになる。LD2aからPBC1のTE入力ポートへの入力光強度Pin1=1、及びLD2bからPBC1のTM入力ポートへの入力光強度Pin2=1に対し、PBC1の出力ポート1からの出力光強度Pout1=1.2、PBC1の出力ポート2からの出力光強度Pout2=0.8となる。このようにPBC1では、出力ポート1、出力ポート2から出射される励起光に、LD2a、LD2bからの光強度がそれぞれ等しく含まれている。これにより、仮にLD2a、LD2bのどちらの励起レーザーが故障した場合でも、図2AのEDFA3a、EDFA3bに入射される励起光の減衰割合は等しい。これにより、光アンプ構成を含む光通信システムの設計において、励起レーザーの故障を想定したシステム設計が容易になる。 The distribution of the pump light input from the LD 2a to the TE input port of the PBC 1 as shown in FIG. 2B and the distribution of the pump light input from the LD 2b to the TE input port of the PBC 1 as shown in FIG. , FIG. 2D. For the input light intensity P in1 = 1 from LD2a to the TE input port of PBC1 and the input light intensity P in2 = 1 from LD2b to the TM input port of PBC1, the output light intensity P out1 = from the output port 1 of PBC1 = 1.2, the output light intensity P out2 from the output port 2 of the PBC 1 becomes P out2 = 0.8. As described above, in the PBC 1, the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b. Thus, even if either of the pump lasers LD2a and LD2b fails, the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 2A is equal. Thus, in designing an optical communication system including an optical amplifier configuration, it is easy to design a system that assumes a failure of the pump laser.
 PBC1の二つの出力ポートから出射される励起光パワーの割合は、第1実施形態で説明したようにPBC1の結合部1aの設計により変化させることができるが、それだけではなく、PBC1のTEポート、TMポートそれぞれに対するファイバー融着角度によっても変化させることができる。すなわち、LD2aとPBC1のTE入力ポートとの融着点1でのファイバー融着角度θ1、LD2bとPBC1のTM入力ポートとの融着点2でのファイバー融着角度θ2を最適に設計することで、例えば第1実施形態と同じ動作を実現することができる。 As described in the first embodiment, the ratio of the pump light power emitted from the two output ports of the PBC1 can be changed by designing the coupling part 1a of the PBC1, but not only that, but also the TE port of the PBC1, It can also be changed by the fiber fusion angle for each TM port. That is, the fiber fusion angle θ1 at the fusion point 1 between the LD2a and the TE input port of the PBC1 at the fusion point 1 and the fiber fusion angle θ2 at the fusion point 2 between the LD2b and the TM input port of the PBC1 can be optimally designed. For example, the same operation as the first embodiment can be realized.
 (実施形態の効果)
 こうして本実施形態の光源装置では第1実施形態と同様に、図2Aの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができる。このように図2Aの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができるので、複数のEDFAを含む構成の光増幅器において、それぞれ最適な強度の励起光を入射することができる。
(Effects of the embodiment)
In this way, in the light source device of the present embodiment, similarly to the first embodiment, it is possible to make the excitation lights having different light intensities enter the EDFAs 3a and 3b of the optical amplifier of FIG. 2A. As described above, pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2A. Therefore, in an optical amplifier having a configuration including a plurality of EDFAs, pump lights having optimum intensities are made incident. be able to.
 図2Bに示すような、LD2aからPBC1のTE入力ポートへ入力された励起光の分配と、図2Cに示すような、LD2bからPBC1のTE入力ポートへ入力された励起光の分配とを総合すると、図2Dのようになる。LD2aからPBC1のTE入力ポートへの入力光強度Pin1=1、及びLD2bからPBC1のTM入力ポートへの入力光強度Pin2=1に対し、PBC1の出力ポート1からの出力光強度Pout1=1.2、PBC1の出力ポート2からの出力光強度Pout2=0.8となる。このようにPBC1では、出力ポート1、出力ポート2から出射される励起光に、LD2a、LD2bからの光強度がそれぞれ等しく含まれている。これにより、仮にLD2a、LD2bのどちらの励起レーザーが故障した場合でも、図2AのEDFA3a、EDFA3bに入射される励起光の減衰割合は等しい。これにより、光アンプ構成を含む光通信システムの設計において、励起レーザーの故障や経時劣化を想定したシステム設計が容易になる。 The distribution of the pump light input from the LD 2a to the TE input port of the PBC 1 as shown in FIG. 2B and the distribution of the pump light input from the LD 2b to the TE input port of the PBC 1 as shown in FIG. , FIG. 2D. For the input light intensity P in1 = 1 from LD2a to the TE input port of PBC1 and the input light intensity P in2 = 1 from LD2b to the TM input port of PBC1, the output light intensity P out1 = from the output port 1 of PBC1 = 1.2, the output light intensity P out2 from the output port 2 of the PBC 1 becomes P out2 = 0.8. As described above, in the PBC 1, the pump light emitted from the output port 1 and the output port 2 includes the same light intensity from the LD 2a and the LD 2b. Thus, even if either of the pump lasers LD2a and LD2b fails, the attenuation ratio of the pump light incident on the EDFA 3a and EDFA 3b in FIG. 2A is equal. As a result, in designing an optical communication system including an optical amplifier configuration, it is easy to design a system that assumes failure of the pump laser or deterioration with time.
 次に、第1実施形態では得られない、第2実施形態に特有の効果について説明する。前述のように、PBC1の二つの出力ポートから出射される励起光強度の割合は、PBC1の結合部1aの設計だけでなく、TE入力ポート、TM入力ポートそれぞれに対するファイバー融着角度の設計によっても、その割合を変化させることができる。このTE入力ポート、TM入力ポートそれぞれに対するファイバー融着角度の設計によって、図2Bの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することができるので、複数のEDFAを含む構成の光増幅器において、それぞれ最適な強度の励起光を入射することができる。 Next, effects unique to the second embodiment, which cannot be obtained in the first embodiment, will be described. As described above, the ratio of the intensity of the pump light emitted from the two output ports of the PBC 1 depends not only on the design of the coupling portion 1a of the PBC 1 but also on the design of the fiber fusion angle for each of the TE input port and the TM input port. , The ratio can be varied. By designing the fiber fusion angle for each of the TE input port and the TM input port, pump lights having different light intensities can be made incident on the EDFAs 3a and 3b of the optical amplifier of FIG. 2B. In each of the optical amplifiers described above, the excitation light having the optimum intensity can be incident.
 本実施形態によれば、既存で市販されているPBC1を用いつつ、TE入力ポート、TM入力ポートそれぞれに対するファイバー融着角度の設計によって励起光強度の割合を変化させて、図2Aの光増幅器のEDFA3a、EDFA3bにお互いに異なる光強度の励起光を入射することもできる。 According to the present embodiment, the ratio of the excitation light intensity is changed by designing the fiber fusion angle with respect to each of the TE input port and the TM input port while using the PBC1 that is already commercially available, and the optical amplifier of FIG. Excitation lights having different light intensities can be incident on the EDFAs 3a and 3b.
 〔その他の実施形態〕
 以上好ましい実施形態について説明したが、本発明はこれらの実施形態に限られるものではなく、様々な変更が可能である。第1実施形態及び第2実施形態においては、偏波ビームコンバイナー(PBC)の出力ポートが、エルビウムドープファイバー型光増幅部(EDFA)の励起光入力ポートに直接接続されていたが、本発明はこの構成に限られない。直接接続されている場合に限らず、例えば、PBCの出力ポートが分岐カップラーに接続され、その分岐カップラーの出力が複数のEDFAに接続されている場合でも、同様の効果が得られる。
[Other embodiments]
Although the preferred embodiments have been described above, the present invention is not limited to these embodiments, and various modifications are possible. In the first and second embodiments, the output port of the polarization beam combiner (PBC) is directly connected to the excitation light input port of the erbium-doped fiber optical amplifier (EDFA). It is not limited to this configuration. The same effect can be obtained not only when the output port is directly connected but also when, for example, the output port of the PBC is connected to a branch coupler and the output of the branch coupler is connected to a plurality of EDFAs.
 また、上述した第1実施形態及び第2実施形態では、希土類添加ファイバー型光増幅器として、エルビウムドープファイバー型光増幅器を用いた例を示したが、希土類の他の元素が添加、例えば、プラセオジム(Pr)、ツリウム(Tm)、或いはイッテルビウム(Yb)が添加、された他の種類のファイバー型光アンプであっても同様の効果が期待される。 Further, in the first and second embodiments described above, an example was described in which an erbium-doped fiber optical amplifier was used as the rare earth-doped fiber optical amplifier, but other elements of rare earth were added, for example, praseodymium ( Similar effects can be expected with other types of fiber-type optical amplifiers to which Pr), thulium (Tm), or ytterbium (Yb) is added.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれに限定されるものではない。請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれることはいうまでもない。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this. Various modifications are possible within the scope of the invention described in the claims, and it goes without saying that they are also included in the scope of the present invention.
 本発明の活用例として、長距離光通信システムにおける中継用光アンプが挙げられる。 活用 As an example of application of the present invention, there is a relay optical amplifier in a long-distance optical communication system.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as a typical example. However, the invention is not limited to the embodiments described above. That is, the present invention can apply various aspects that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2018年6月28日に出願された日本出願特願2018-122973号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2018-122973 filed on June 28, 2018, the entire disclosure of which is incorporated herein.
 1  偏波ビームコンバイナー
 1a  結合部
 2a、2b  レーザーダイオード
 3a、3b  エルビウムドープファイバー型光増幅部
DESCRIPTION OF SYMBOLS 1 Polarization beam combiner 1a Coupling part 2a, 2b Laser diode 3a, 3b Erbium-doped fiber type optical amplification part

Claims (6)

  1.  励起光を出力する第1光源及び第2光源と、第1入力ポート、第2入力ポート、第1出力ポート及び第2出力ポートを含み、前記第1光源及び前記第2光源からの前記励起光が前記第1入力ポート及び前記第2入力ポートに入力されて合波分波する偏波ビームコンバイナーと、を含む光源装置。 A first light source and a second light source that output excitation light; a first input port, a second input port, a first output port, and a second output port; and the excitation light from the first light source and the second light source. And a polarization beam combiner that is input to the first input port and the second input port and multiplexes and demultiplexes.
  2.  前記偏波ビームコンバイナーの前記第1入力ポートはTE入力ポートであり、前記第2入力ポートはTM入力ポートである、請求項1に記載の光源装置。 The light source device according to claim 1, wherein the first input port of the polarization beam combiner is a TE input port, and the second input port is a TM input port.
  3.  前記第1光源の出力ファイバーと、前記偏波ビームコンバイナーの前記TE入力ポートとが融着接続されており、融着接続されたファイバーのスロー軸のなす角度が略0度であり、
     前記第2光源の出力ファイバーと、前記偏波ビームコンバイナーの前記TM入力ポートとが融着接続されており、融着接続されたファイバーのスロー軸のなす角度が略90度である、請求項2に記載の光源装置。
    The output fiber of the first light source and the TE input port of the polarization beam combiner are fusion-spliced, and the angle of the slow axis of the fusion-spliced fiber is substantially 0 degrees,
    3. The output fiber of the second light source and the TM input port of the polarization beam combiner are fusion-spliced, and an angle formed by a slow axis of the fusion-spliced fiber is approximately 90 degrees. 4. The light source device according to item 1.
  4.  前記第1光源の出力ファイバーと、前記偏波ビームコンバイナーの前記TE入力ポートとが融着接続されており、融着接続されたファイバーのスロー軸のなす角度がθ1度であり、
     前記第2光源の出力ファイバーと、前記偏波ビームコンバイナーの前記TM入力ポートとが融着接続されており、融着接続されたファイバーのスロー軸のなす角度がθ2度である、請求項2に記載の光源装置。
    The output fiber of the first light source and the TE input port of the polarization beam combiner are fusion-spliced, and the angle of the slow axis of the fusion-spliced fiber is θ1 °,
    The output fiber of the second light source and the TM input port of the polarization beam combiner are fusion-spliced, and the angle formed by the slow axis of the fusion-spliced fiber is θ2 degrees. The light source device according to any one of the preceding claims.
  5.  前記θ1度は0度とは異なる角度であり、前記θ2度は90度とは異なる角度である、請求項4に記載の光源装置。 5. The light source device according to claim 4, wherein the θ1 degree is an angle different from 0 degrees, and the θ2 degree is an angle different from 90 degrees.
  6.  請求項1乃至請求項5のいずれか一項に記載の光源装置と、前記偏波ビームコンバイナーの前記第1出力ポート及び前記第2出力ポートからの前記励起光を用いて光信号を増幅する第1光増幅部及び第2光増幅部と、を含む光増幅器。 A light source device according to any one of claims 1 to 5, and amplifying an optical signal using the pump light from the first output port and the second output port of the polarization beam combiner. An optical amplifier including a first optical amplifier and a second optical amplifier.
PCT/JP2019/024511 2018-06-28 2019-06-20 Light source device and optical amplifier WO2020004224A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/255,947 US20210249834A1 (en) 2018-06-28 2019-06-20 Light source device and optical amplifier
CN201980042784.5A CN112313844A (en) 2018-06-28 2019-06-20 Light source device and optical amplifier
EP19825590.3A EP3817161A4 (en) 2018-06-28 2019-06-20 Light source device and optical amplifier
JP2020527458A JP7081664B2 (en) 2018-06-28 2019-06-20 Light source device and optical amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018122973 2018-06-28
JP2018-122973 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004224A1 true WO2020004224A1 (en) 2020-01-02

Family

ID=68984973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024511 WO2020004224A1 (en) 2018-06-28 2019-06-20 Light source device and optical amplifier

Country Status (5)

Country Link
US (1) US20210249834A1 (en)
EP (1) EP3817161A4 (en)
JP (1) JP7081664B2 (en)
CN (1) CN112313844A (en)
WO (1) WO2020004224A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526537B1 (en) * 2014-02-05 2015-06-10 주식회사 예스코 Apparatus for locking plug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136495A (en) * 1991-11-08 1993-06-01 Mitsubishi Electric Corp Fibertype optical amplifier
JPH08304860A (en) 1995-05-11 1996-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber amplifier
JP2002116014A (en) * 2000-10-10 2002-04-19 Furukawa Electric Co Ltd:The Method for detection and adjustment of position of stress-giving part in polarization-preserving optical fiber
US20020181859A1 (en) * 2001-05-29 2002-12-05 Thomas Clark Shared forward pumping in optical communications network
JP2004104473A (en) 2002-09-10 2004-04-02 Mitsubishi Electric Corp Optical amplification repeater
JP2013004667A (en) 2011-06-15 2013-01-07 Nec Corp Excited light output device and method of controlling excited light output
JP2014006298A (en) 2012-06-21 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and excitation light source for optical amplifier
JP2018122973A (en) 2017-02-01 2018-08-09 株式会社豊田自動織機 Fork lift

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768766B1 (en) * 1991-11-08 2001-07-04 Mitsubishi Denki Kabushiki Kaisha Optical fiber amplifier repeating system
JP3284507B2 (en) * 1993-06-28 2002-05-20 富士通株式会社 Optical transmitting device and optical amplifying device for optical communication system
US6603593B2 (en) 2001-03-13 2003-08-05 Jds Uniphase Corporation Optical transmission link including raman amplifier
JP5662375B2 (en) 2012-04-27 2015-01-28 日本電信電話株式会社 Excitation light source for optical circuit and optical amplifier
CN102684048B (en) * 2012-05-10 2014-04-09 清华大学 Super-fluorescence optical fiber light source based on parallel structure
US11374377B2 (en) 2017-04-20 2022-06-28 Nec Corporation Optical amplifying apparatus and method of amplifying optical signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136495A (en) * 1991-11-08 1993-06-01 Mitsubishi Electric Corp Fibertype optical amplifier
JPH08304860A (en) 1995-05-11 1996-11-22 Kokusai Denshin Denwa Co Ltd <Kdd> Optical fiber amplifier
JP2002116014A (en) * 2000-10-10 2002-04-19 Furukawa Electric Co Ltd:The Method for detection and adjustment of position of stress-giving part in polarization-preserving optical fiber
US20020181859A1 (en) * 2001-05-29 2002-12-05 Thomas Clark Shared forward pumping in optical communications network
JP2004104473A (en) 2002-09-10 2004-04-02 Mitsubishi Electric Corp Optical amplification repeater
JP2013004667A (en) 2011-06-15 2013-01-07 Nec Corp Excited light output device and method of controlling excited light output
JP2014006298A (en) 2012-06-21 2014-01-16 Nippon Telegr & Teleph Corp <Ntt> Optical circuit and excitation light source for optical amplifier
JP2018122973A (en) 2017-02-01 2018-08-09 株式会社豊田自動織機 Fork lift

Also Published As

Publication number Publication date
EP3817161A4 (en) 2021-09-01
JPWO2020004224A1 (en) 2021-07-08
US20210249834A1 (en) 2021-08-12
JP7081664B2 (en) 2022-06-07
EP3817161A1 (en) 2021-05-05
CN112313844A (en) 2021-02-02

Similar Documents

Publication Publication Date Title
US5808786A (en) Optical fiber amplifying device and method therefor
US6646796B2 (en) Wide band erbium-doped fiber amplifier (EDFA)
US11509110B2 (en) Broadband Ho-doped optical fiber amplifier
US7848014B2 (en) Erbium and Erbium/Ytterbium cladding pumped hybrid optical amplifier
JP2015167158A (en) multi-core fiber amplifier
US8363309B2 (en) Optical amplifier and method for suppressing polarization dependent gain of optical amplifier
US9762020B1 (en) Bi-directionally pumped polarization maintaining fiber amplifier
US9768581B2 (en) Pump and signal combiner for high numerical aperture use
WO2020004224A1 (en) Light source device and optical amplifier
US9322993B1 (en) All pump combiner with cladless inputs
CN102130416B (en) Laser apparatus
WO2018135621A1 (en) Multicore optical fiber amplifier and optical amplification method using multicore optical fiber amplification medium
KR100474714B1 (en) Wideband optical fiber amplifier
JP3570927B2 (en) Optical fiber communication system using Raman amplification.
KR20030022974A (en) Dispersion-compensated optical fiber amplifier
EP1087474A2 (en) High power, multi-stage doped optical amplifier
EP1339178B1 (en) Dispersion-compensated raman optical fiber amplifier
CN109952686B (en) Optical amplifier
US20220337025A1 (en) Optical amplifier
JP7416226B2 (en) Optical amplification device and optical amplification method
JP2740676B2 (en) Optical amplification transmission circuit
WO2023228348A1 (en) Side-pumping optical fiber and optical amplifier
US9362709B1 (en) Optical fiber laser architecture with partitioned pump and signal coupling
JP2627562B2 (en) Rare earth element doped optical fiber laser amplifier
WO2022202737A1 (en) Optical amplifier, optical relay, and optical communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019825590

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019825590

Country of ref document: EP

Effective date: 20210128