WO2020004173A1 - Electrochemical capacitor - Google Patents

Electrochemical capacitor Download PDF

Info

Publication number
WO2020004173A1
WO2020004173A1 PCT/JP2019/024290 JP2019024290W WO2020004173A1 WO 2020004173 A1 WO2020004173 A1 WO 2020004173A1 JP 2019024290 W JP2019024290 W JP 2019024290W WO 2020004173 A1 WO2020004173 A1 WO 2020004173A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical capacitor
cathode
electrolyte
anode
mxene
Prior art date
Application number
PCT/JP2019/024290
Other languages
French (fr)
Japanese (ja)
Inventor
武志 部田
裕一 本田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020004173A1 publication Critical patent/WO2020004173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electrochemical capacitor, and more particularly, to an electrochemical capacitor in which a cathode and an anode are separated from each other in an electrolytic solution.
  • An electrochemical capacitor is a capacitor that utilizes a capacity developed due to a physicochemical reaction between an electrode (electrode active material) and an ion (electrolyte ion) in an electrolytic solution, and is a device that stores electric energy (power storage). Device).
  • a metal oxide or a layered material (or an intercalation compound) is used as an electrode active material, and a reaction involving transfer of electrons between an electrode and ions in an electrolytic solution (for example, an electrode active material)
  • an electrolytic solution for example, an electrode active material
  • a capacitor that exhibits a capacitance (pseudo-capacitance) due to a change in the oxidation number of a metal element constituting the element is called a “pseudo capacitor” or a “redox capacitor”.
  • MXene is one kind of a so-called two-dimensional material, and as described later, is a layered material having a form of a plurality of layers, and each layer is composed of M n + 1 X n (where M is at least one kind of a third third material).
  • X is a carbon and / or nitrogen atom, and n is 1, 2, or 3), and each X is within an octahedral array of M Is a material having a terminal (or modification) T such as a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom on the surface of each layer.
  • T a terminal (or modification) T such as a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom on the surface of each layer.
  • an aqueous electrolyte an electrolyte in which an electrolyte is dissolved in an aqueous solvent
  • a non-aqueous electrolyte an electrolyte or an ionic liquid in which an electrolyte is dissolved in a nonaqueous solvent
  • electrochemical capacitor electrochemical capacitor
  • the energy density is generally calculated as ⁇ CV 2 , where C is the specific capacity (more specifically, the capacity per unit volume of the electrode active material (F / cm 3 ) or the unit of the electrode active material).
  • / Cm 3 or FV 2 / g can generally be expressed in terms of units Wh / L or Wh / kg.
  • the electrode used for the other electrode is no longer used.
  • the value of the specific capacity Cf (F / cm 3 or F / g) that can be measured by full cell measurement when one of them is also used to form an electrochemical capacitor can be conveniently calculated as being equal to 1 / 4C 3p. It is. A larger operating potential range contributes significantly to obtaining a higher energy density.
  • Non-Patent Document 1 in a three-electrode Swagelok cell, one of MXene, Ti 3 C 2 T x (T x means a surface functional group), is used for a working electrode, and excess activated carbon is used.
  • the membrane was used as a counter electrode, an Ag wire was used as a reference electrode, and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) was used as a non-aqueous electrolyte at 1M in acetonitrile (AN). It has been disclosed that the capacitor characteristics of an electrochemical capacitor were evaluated using a solution containing the same.
  • Patent Document 1 MXene is used as an electrode active material for one of two electrodes, and a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte that generates protons in the non-aqueous solvent is used. (See paragraphs 0029 to 0035 of Patent Document 1).
  • Patent Document 1 discloses that a three-electrode Swagelok cell uses Ti 3 C 2 T s (T s means a surface functional group), which is one of MXene, as a working electrode, Using an activated carbon membrane having a capacity as a counter electrode, an Ag wire as a reference electrode, and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) and bis (trifluoromethane) as nonaqueous electrolytes It is disclosed that a mixture with sulfonyl) imide (HTFSI) was used to evaluate the capacitor properties of electrochemical capacitors. In such an electrochemical capacitor, a wider operating potential range (see paragraphs 0062 to 0063 of Patent Document 1, potential window 3.0 V) is realized, and an energy density larger than that of Non-Patent Document 1 can be obtained. Can be.
  • T s means a surface functional group
  • EMI-TFSI 1-ethyl-3
  • an electrolytic solution that provides a large energy density when a certain material is used for a cathode electrode active material
  • an electrolytic solution that provides a large energy density when a certain material is used for an anode electrode active material It can be different from a liquid.
  • MXene is used as the electrode active material for both the cathode and the anode, it is impossible to predict an electrolyte capable of achieving a large energy density, and it is extremely difficult to find such an electrolyte.
  • the present invention relates to an electrochemical capacitor in which a cathode and an anode are spaced apart from each other in an electrolyte, using MXene as an electrode active material for both the cathode and the anode, and achieving a large energy density. It is an object to provide a stable electrochemical capacitor.
  • an electrochemical capacitor having a cathode and an anode spaced apart in an electrolyte
  • the cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula: M n + 1 X n Wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom or a combination thereof; n is 1, 2 or 3) And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom
  • An electrochemical capacitor wherein the electrolytic solution contains gamma-butyrolactone as a solvent and at least one of lithium bis (trifluorome
  • an electrochemical capacitor having a cathode and an anode spaced apart in an electrolytic solution
  • the cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula: M n + 1 X n Wherein M is at least one Group 3, 4, 5, 6, 7 metal; X is a carbon atom, a nitrogen atom or a combination thereof; n is 1, 2 or 3) And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom
  • An electrochemical capacitor wherein the electrolytic solution contains ethyl isopropyl sulfone as a solvent and at least one of sodium bis (
  • the predetermined layered material (also referred to as “MXene” in the present specification) is used as the electrode active material for both the cathode and the anode, and gamma-butyrolactone is used as a solvent and an electrolyte is used.
  • At least one of lithium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, or ethylisopropylsulfone as a solvent and sodium bis (trifluorofluoride) as an electrolyte A large energy density can be achieved by using an electrolyte containing at least one of (i) methanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.
  • the novel electrochemical capacitor is provided.
  • the formula M n + 1 X n may be any selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C.
  • an electrochemical capacitor in which a cathode and an anode are arranged separately in an electrolytic solution, MXene is used as an electrode active material of both the cathode and the anode, and gamma-butyrolactone is used as a solvent, and as an electrolyte
  • an electrolyte containing at least one of sulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, a new energy density can be achieved.
  • Electrochemical capacitors are provided.
  • FIG. 1 is a schematic cross-sectional view illustrating an electrochemical capacitor according to one embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing MXene which is a layered material that can be used for an electrochemical capacitor according to one embodiment of the present invention.
  • the electrochemical capacitor 20 of the present embodiment has a configuration in which the cathode 15 a and the anode 15 b are disposed separately in the electrolytic solution 13.
  • the cathode 15a and the anode 15b are electrically connected to terminals A and B, respectively, and can function as electrodes.
  • the cathode 15a and the anode 15b are separated from each other in any suitable container (or cell) 11 in the electrolyte 13 by, for example, a separator 17 (although not essential to this embodiment). Can be arranged.
  • any suitable member can be used as long as it does not hinder the movement of the electrolyte ions in the electrolyte solution 13.
  • a porous film of a polyolefin such as polypropylene or polytetrafluoroethylene may be used.
  • the material of the container 11 is not particularly limited, and may be, for example, a metal such as stainless steel, a resin such as polytetrafluoroethylene, or any other appropriate material.
  • the container 11 may be closed or open, and the container 11 may or may not be empty.
  • the cathode 15a and the anode 15b are arranged in the container 11 so as to be separated from each other in any appropriate form other than the illustrated form, such as being stacked and wound with the separator 17 interposed therebetween. May be.
  • Both the cathode 15a and the anode 15b contain a predetermined layered material including a plurality of layers as an electrode active material.
  • the electrode active material refers to a material that exchanges electrons with electrolyte ions in the electrolyte 13.
  • the predetermined layered material that can be used in this embodiment is MXene, defined as follows: A layered material comprising a plurality of layers, each layer having the following formula: M n + 1 X n Wherein M is at least one Group 3, 4, 5, 6, 7 metal and is a so-called early transition metal such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Mn may include at least one selected from the group consisting of: X is a carbon atom, a nitrogen atom or a combination thereof; n is 1, 2 or 3) And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the following (this is also referred to as “M n + 1 X n T s ”, where
  • Such MXene can be obtained by selectively etching A atoms from the MAX phase.
  • the MAX phase has the following formula: M n + 1 AX n Wherein M, X and n are as described above, and A is at least one group 12, 13, 14, 15, 16 element, usually a group A element, typically IIIA And at least one selected from the group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al) And each X has a crystal lattice located in an octahedral array of M, and a layer composed of A atoms is located between layers represented by M n + 1 X n. Have.
  • the MAX phase roughly, one layer of X atoms is arranged between each of the n + 1 layers of M atoms (these layers are collectively referred to as “M n + 1 X n layers”), and the (n + 1) th M layer is formed.
  • M n + 1 X n layers these layers are collectively referred to as “M n + 1 X n layers”
  • a atomic layer an A atomic layer
  • a atomic layer By selectively etching A atoms from the MAX phase, the A atomic layer is removed, and an etching solution (usually, an aqueous solution of fluorinated acid is used, which is used on the exposed surface of the M n + 1 X n layer.
  • an etching solution usually, an aqueous solution of fluorinated acid is used, which is used on the exposed surface of the M n + 1 X n layer.
  • M can be titanium or vanadium and X can be a carbon or nitrogen atom.
  • MAX-phase is Ti 3 AlC 2
  • MXene is Ti 3 C 2 T s.
  • MXene may contain a relatively small amount of the remaining A atom, for example, 10% by mass or less based on the original A atom.
  • the MXene 10 thus obtained is such that the M n + 1 X n layers 1 a, 1 b, 1 c are modified or terminated with surface modification or termination at T 3 a, 5 a, 3 b, 5 b, 3 c, 5 c.
  • Layered material having two or more MXene layers 7a, 7b, 7c (this is also referred to as “M n + 1 X n T s ” and s is an arbitrary number). It is shown by way of example, but not limited thereto).
  • the MXene 10 is a laminate (multi-layer structure) in which the plurality of MXene layers are separately separated from each other (single-layer structure), and the plurality of MXene layers are separated from each other and laminated. Or a mixture thereof.
  • the MXene can be a collection of individual MXene layers (monolayer) and / or a stack of MXene layers (which may also be referred to as particles, powders or flakes).
  • two adjacent MXene layers for example, 7a and 7b, 7b and 7c) do not necessarily need to be completely separated, and may be in partial contact.
  • each MXene layer is, for example, 0.8 nm or more and 5 nm or less, particularly 0.8 nm or more and 3 nm or less.
  • the maximum dimension in a plane (two-dimensional sheet plane) parallel to the layers is, for example, 0.1 ⁇ m or more and 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less.
  • the interlayer distance or gap size, indicated by d in FIG.
  • each laminate is, for example, 0.8 nm or more and 10 nm or less, particularly 0.8 nm or more and 5 nm or less, more particularly
  • the thickness is about 1 nm, and the total number of layers may be 2 or more, for example, 50 to 100,000, particularly 1,000 to 20,000, and the thickness in the stacking direction is, for example, 0.1 ⁇ m or more. It is 200 ⁇ m or less, particularly 1 ⁇ m or more and 40 ⁇ m or less, and the maximum dimension in a plane (two-dimensional sheet surface) perpendicular to the laminating direction is, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, particularly 1 ⁇ m or more and 20 ⁇ m or less.
  • these dimensions are calculated
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the cathode 15a and the anode 15b may be substantially composed of only MXene, which is an electrode active material, or may be composed by adding a binder or the like thereto. MXene included in the cathode 15a and MXene included in the anode 15b may be the same.
  • the binder can be typically a resin, and for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, and the like can be used.
  • the cathode 15a and the anode 15b may be formed independently of each other in the form of a free-standing film or in the form of a film and / or a film on a current collector (not shown).
  • the collector may be made of any suitable conductive material, and may be made of, for example, stainless steel, aluminum, an aluminum alloy, or the like.
  • the electrolyte 13 is Gamma-butyrolactone (gBL) as a solvent; Lithium bis (trifluoromethanesulfonyl) imide (Li-TFSI, also referred to as bis (trifluoromethane) sulfonimide lithium salt) and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) as electrolytes , 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide).
  • Li-TFSI Lithium bis (trifluoromethanesulfonyl) imide
  • EMI-TFSI 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide
  • the electrolyte 13 is Ethyl isopropyl sulfone (EiPS) as a solvent; Sodium bis (trifluoromethanesulfonyl) imide (Na-TFSI, also referred to as bis (trifluoromethane) sulfonimide sodium salt) and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) as electrolytes ) Is included in combination.
  • EiPS Ethyl isopropyl sulfone
  • Na-TFSI Sodium bis (trifluoromethanesulfonyl) imide
  • EMI-TFSI 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide
  • the molar concentration of the electrolyte (at least one of Li-TFSI and EMI-TFSI, or at least one of Na-TFSI and EMI-TFSI) in the electrolyte solution 13 (if both of the above “at least one” are present, each molar concentration)
  • the total of the concentrations is not particularly limited, but may be, for example, 0.01 to 10 mol / L, particularly 0.2 to 2 mol / L (all based on the whole).
  • the electrolytic solution 13 may contain a solvent and an electrolyte and any appropriate additive in a relatively small amount.
  • the terminals A and B of the electrochemical capacitor 20 can be connected to a load to perform discharge. Further, the terminals A and B of the electrochemical capacitor 20 can be connected to a power supply to perform charging.
  • the present inventor is not bound by any theory, it is speculated that in the cathode, a large amount of cations are attracted from the electrolytic solution into the MXene layer, and the H atoms of the cations are oriented to the MXene to perform electron transfer, thereby producing capacity. In the anode, it can be inferred that capacity is developed by the exchange (ion exchange) of cations and anions.
  • an electrolyte using MXene as the electrode active material of both the cathode and the anode, and containing gBL as a solvent and at least one of Li-TFSI and EMI-TFSI as an electrolyte Alternatively, a large energy density can be achieved by using an electrolytic solution containing EiPS as a solvent and at least one of Na-TFSI and EMI-TFSI as an electrolyte.
  • the capacitor characteristics of the electrochemical capacitor of the present embodiment are evaluated at a voltage scanning speed of 5 mV / s, the energy density can be, for example, 10 Wh / L or more.
  • MXene has a larger gap between layers than an oxide-based material such as MnO 2 .
  • an oxide-based material such as MnO 2 .
  • the solvent in both the cathode and the anode, the solvent easily enters between the layers of MXene, and between the layers of MXene and the surface of the layers. It can be understood that a higher energy density is obtained because anions and cations have become more accessible to certain reaction fields.
  • the electrochemical capacitor of the present embodiment can also exhibit a high power density.
  • the power density can be, for example, 80 W / L or more, particularly 100 W / L or more.
  • MXene which has a high electrical conductivity exceeding 1,000 S / cm, among MXene (1,000 S / cm). It should be noted that the conductivity exceeding cm is higher than activated carbon (conductivity of about 300 S / cm) or graphene (conductivity of 500 to 1,000 S / cm) that can be used for conventional electrochemical capacitors.
  • the MXene (X) wherein the above formula M n + 1 X n is any one selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C More specifically, any one selected from the group consisting of Ti 3 C 2 T s , Ti 2 CT s and V 2 CT s ), which exceeds 1,000 S / cm and 10,000 S / cm cm or less.
  • the mass m c (g) of the cathode electrode active material and the mass m a (g) of the anode electrode active material may be close to each other. It can.
  • m c (g): m a (g) can be for example 1: 0.8 to 1.2, especially 1: 0.9 to 1.1, preferably 1: 1.
  • each area of the cathode and anode was fixed, by varying the cathode and the thickness of the anode, generally be obtained m c and m a for the purpose although, in the case where m c and m a considerable different, cathode and one of the thickness of the anode is considerably greater (e.g., more than 80 [mu] m), and the example, the current collector with a predetermined thickness (for example, about 20 [mu] m) And / or when the electrochemical capacitor is operated, it may be difficult for the solvent to sufficiently penetrate between the layers of MXene (for example, 80 ⁇ m or more) which is considerably thick, and the specific capacity may be reduced. Problem can occur. If the m c and m a are close to each other, it can be avoided such a problem arises.
  • Qc Cc * mc * Vc
  • Q a C a ⁇ m a ⁇ V a
  • C c denotes a cathode electrode active material unit mass per volume (F / g)
  • C a is the anode electrode active material means a unit mass per volume (F / g)
  • V a denotes an anode voltage (V).
  • C c and C a may be different from each other, and V c and V a may be different from each other, and these vary depending on the solvent and electrolyte used. , Can not be predicted.
  • the electrochemical capacitor of the present embodiment the above specific combination of solvent and an electrolyte, and a m c and m a be brought closer to each other as described above, were confirmed by the present inventors.
  • the mass (or volume) can be made as small as possible, and the energy density as large as possible can be obtained.
  • MXene is used for both the cathode and anode electrode active materials.
  • MXene non-capacitance is hardly reduced even if the electrode thickness is increased to some extent, and a large capacity can be preferably secured as compared with the case of using MnO 2 , so that the electrode thickness is further increased.
  • it is 3 ⁇ m or more, particularly 5 ⁇ m or more, and the upper limit is not particularly limited, but can be typically 50 ⁇ m or less.
  • Electrode active material (MXene) per unit volume capacity for example, 30F / cm 3 or more, particularly 50F / cm 3 or more, preferably 80F / cm 3 or higher, more preferably at 150F / cm 3 or more, the upper limit is not particularly limited Typically, it can be 1500 F / cm 3 or less.
  • gBL and EiPS are understood as non-aqueous solvents
  • the electrolyte 13 is composed of gBL and at least one of Li-TFSI and EMI-TFSI, or EiPS and Na-TFSI and EMI- It may be a non-aqueous electrolyte containing at least one combination of TFSI and not containing water.
  • Such an electrochemical capacitor of the present embodiment can obtain a large operating potential range as compared with a case where an aqueous electrolyte is used and a case where a non-aqueous solvent containing acetonitrile is used as a solvent, and the use of an aqueous electrolyte.
  • the electrochemical capacitor of the present embodiment has an operating potential range (potential window) of 1.5 V or more, particularly 2.0 V or more, preferably 2.5 V or more, more preferably 3 V or more, and the upper limit is not particularly limited.
  • the usable temperature range can be ⁇ 40 to 90 ° C., particularly ⁇ 40 to 80 ° C.
  • the electrolytic solution 13 includes gBL and at least one combination of Li-TFSI and EMI-TFSI, or EiPS and at least one combination of Na-TFSI and EMI-TFSI, Unlike the electrochemical capacitor of Patent Document 1, it does not include an electrolyte that generates protons in a non-aqueous solvent.
  • the electrolytic solution contains an electrolyte (for example, HTFSI) that generates protons in a non-aqueous solvent, a member (so-called package, specifically, a container (cell)) that exhibits strong acidity and can come into contact with the electrolytic solution in an electrolytic capacitor.
  • the electrochemical capacitor according to the present embodiment does not need to use an acid-resistant material for the member, and is excellent in the degree of freedom of material selection.
  • Example 1 An electrochemical capacitor was assembled as follows, the energy density and the power density were measured, and the capacitor characteristics were evaluated.
  • Electrolyte solution A mixture of gBL (manufactured by Shigma Aldrich, product number B103608) as a solvent and EMI-TFSI (manufactured by Solvionic, product number Im0208a) as an electrolyte at a molar concentration of 1 mol / L (total basis) The mixture was prepared as an electrolyte.
  • the two MXene electrodes prepared as described above are opposed to each other as a cathode and an anode inside the cell body, and a separator film is interposed between them. Insert and fit the extraction electrode with the ferrule from each of the two openings facing each other in the cell body until it comes into contact with the MXene electrode, fill the cell body with the electrolytic solution, and replace the remaining openings with rubber. After sealing with a stopper, an electrochemical capacitor for evaluating a power storage device was assembled.
  • Example 2 The diameter of the MXene (Ti 3 C 2 T s ) electrode (anode and cathode) was 3.86 mm, the mass of the MXene electrode used for the cathode was 0.055 mg, and the mass of the MXene electrode used for the anode was 0 0.056 mg (these mass ratios were almost 1: 1).
  • gBL manufactured by Shigma Aldrich, product number B103608
  • Li-TFSI Sigma Aldrich
  • Example 3 An electrochemical capacitor was assembled as follows, the energy density and the power density were measured, and the capacitor characteristics were evaluated.
  • the MXene electrode used for the cathode has a thickness of 3 ⁇ m, a specific gravity of 2.9 g / cm 3 and a mass of 0.11 mg, and the MXene electrode used for the anode has a thickness of 5 ⁇ m, a specific gravity of 1.6 g / cm 3 and a mass of 0.1 g. 63 mg, and their mass ratio was approximately 5: 1.
  • ADVANTEC registered trademark manufactured by Advantech Toyo Co., Ltd., model: GA-100, glass fiber filter paper
  • Electrolyte A mixture of EiPS as a solvent and Na-TFSI as an electrolyte (manufactured by Tokyo Chemical Industry Co., Ltd., product number: S0989) at a molar concentration of 1 mol / L (total basis) is prepared as an electrolyte. did.
  • the two MXene electrodes prepared as described above are opposed to each other as a cathode and an anode inside the cell body, with a separator film interposed therebetween.
  • the battery was placed, the electrolyte was filled in the cell body, the package was sealed with a coin caulking machine, and an electrochemical capacitor for evaluating a power storage device was assembled.
  • the MXene (Ti 3 C 2 T s ) electrode used for the cathode had a diameter of 7 mm, a thickness of 5 ⁇ m, a specific gravity of 2.3 g / cm 3 and a mass of 0.36 mg, and the MXene (Ti 3 C 2 T s) used for the anode )
  • the electrode had a diameter of 12 mm, a thickness of 4 ⁇ m, a specific gravity of 2.2 g / cm 3 and a mass of 0.1 mg (the mass ratio was approximately 3: 1), and was a solvent as an electrolyte.
  • Example 3 was the same as Example 3 except that EiPS was mixed with an electrolyte EMI-TFSI (Kishida Chemical Co., Ltd., product number: ILD-28294) at a molar concentration of 1 mol / L (overall standard). Similarly, an electrochemical capacitor was assembled, and energy density and power density were measured as capacitor characteristics. Table 4 shows the results.
  • Examples 1 to 4 can obtain higher energy density and power density at the same voltage scanning speed as compared with Comparative Example 1, and particularly, the electrode active material.
  • a larger value was obtained in the energy density per unit volume of the electrode active material (Wh / L) and the power density (W / L) than the energy density per unit mass (Wh / L) and the power density (W / L).
  • the voltage scanning speed is 5 mV / s
  • the energy density of 7 Wh / L and the power density of 64 W / L in Comparative Example 1 are 47 Wh / L and 65 Wh / L in Examples 1 to 4.
  • activated carbon can be operated at a low temperature to a high temperature and has a high degree of freedom in selecting materials for members constituting the capacitor.
  • activated carbon it is difficult to obtain such a large energy density and power density.
  • the capacitor characteristics of an electrochemical capacitor using activated carbon for both the cathode and anode electrode active materials are evaluated at a voltage scanning rate of 5 mV / s, the energy density can be at most less than 10 Wh / L, The density can be at most less than 100 W / L.
  • the electrochemical capacitor of the present invention can be used in a wide variety of fields as a power storage device or the like, but is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

This electrochemical capacitor has a cathode and an anode disposed and spaced apart from each other in an electrolytic solution. The cathode and the anode contain, as an electrode active substance, a layered material including a plurality of layers. Each of the layers is represented by formula: Mn+1Xn (in the formula, M represents at least one group 3, 4, 5, 6, or 7 metal, X represents a carbon atom and/or a nitrogen atom, and n represents 1, 2, or 3), has a crystal lattice in which each X is positioned in the octahedral array of M, and includes, in at least one of the two opposite surfaces of each of the layers, the layered material having a terminal end T or at least one modification selected from the group consisting of a hydroxy group, a fluorine atom, an oxygen atom, and a hydrogen atom. The electrolytic solution contains gamma-butyrolactone as a solvent, and, as an electrolyte, lithium bis(trifluoromethanesulfonyl)imide and/or 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.

Description

電気化学キャパシタElectrochemical capacitor
 本発明は、電気化学キャパシタに関し、より詳細には、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタに関する。 The present invention relates to an electrochemical capacitor, and more particularly, to an electrochemical capacitor in which a cathode and an anode are separated from each other in an electrolytic solution.
 電気化学キャパシタは、電極(電極活物質)と電解液中のイオン(電解質イオン)との間での物理化学反応に起因して発現する容量を利用したキャパシタであり、電気エネルギーを蓄えるデバイス(蓄電デバイス)として使用可能である。電気化学キャパシタのうち、電極活物質に金属酸化物や層状材料(またはインターカレーション化合物)等を利用し、電極と電解液中のイオンとの間で電子の授受を伴う反応(例えば電極活物質を構成している金属元素の酸化数変化)が生じることにより容量(疑似容量)が発現するものは「シュードキャパシタ」や「レドックスキャパシタ」などと呼ばれている。 BACKGROUND ART An electrochemical capacitor is a capacitor that utilizes a capacity developed due to a physicochemical reaction between an electrode (electrode active material) and an ion (electrolyte ion) in an electrolytic solution, and is a device that stores electric energy (power storage). Device). In an electrochemical capacitor, a metal oxide or a layered material (or an intercalation compound) is used as an electrode active material, and a reaction involving transfer of electrons between an electrode and ions in an electrolytic solution (for example, an electrode active material) A capacitor that exhibits a capacitance (pseudo-capacitance) due to a change in the oxidation number of a metal element constituting the element is called a “pseudo capacitor” or a “redox capacitor”.
 かかる電気化学キャパシタ(特にシュードキャパシタ)として、従来、電極活物質にMXeneを使用した電気化学キャパシタが知られている(特許文献1および非特許文献1参照)。MXeneは、いわゆる二次元材料の1種であり、後述するように、複数の層の形態を有する層状材料であって、各層は、Mn+1(式中、Mは少なくとも1種の第3、4、5、6、7族金属であり、Xは炭素原子および/または窒素原子であり、nは1、2または3である)で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の表面に、例えば水酸基、フッ素原子、酸素原子および水素原子などの終端(または修飾)Tを有する材料である。 Conventionally, as such an electrochemical capacitor (particularly a pseudo capacitor), an electrochemical capacitor using MXene as an electrode active material has been known (see Patent Document 1 and Non-Patent Document 1). MXene is one kind of a so-called two-dimensional material, and as described later, is a layered material having a form of a plurality of layers, and each layer is composed of M n + 1 X n (where M is at least one kind of a third third material). , 4, 5, 6, and 7 metals, X is a carbon and / or nitrogen atom, and n is 1, 2, or 3), and each X is within an octahedral array of M Is a material having a terminal (or modification) T such as a hydroxyl group, a fluorine atom, an oxygen atom and a hydrogen atom on the surface of each layer.
国際公開第2018/066549号International Publication No. WO2018 / 066549
 電気化学キャパシタに使用可能な電解液として、一般的に、水系電解液(電解質を水溶媒に溶解させた電解液)と非水電解液(電解質を非水溶媒に溶解させた電解液またはイオン液体から成る電解液)とが知られている。水系電解液の場合、電気化学キャパシタの動作電位範囲(「電位窓」と呼ばれる)が、水の電気分解を生じないように最大1.2V以下に制限され、よって、エネルギー密度が制限されるという難点がある。また、水系電解液の場合、電気化学キャパシタの使用可能温度範囲が、水が液体で安定に存在し得る温度(凍結および気化を起こさない温度)に制限されるという難点もある。他方、非水電解液は、かかる難点を回避できるという利点がある。なお、エネルギー密度は、一般的に、1/2×CVで計算され、式中、Cは比容量(より詳細には電極活物質単位体積あたり容量(F/cm)または電極活物質単位質量あたり容量(F/g)、以下、本明細書においてこれらを総称して「比容量」と言う)を意味し、Vは動作電位範囲(V)を意味し、エネルギー密度は、単位FV/cmまたはFV/gとなり得るが、一般的に、単位Wh/LまたはWh/kgに変換して表記され得る。但し、カソードおよびアノードのいずれか一方の電極の比容量を3極測定により測定した測定値C3p(F/cmまたはF/g)が判明している場合、当該一方に用いた電極をもう一方にも用いて電気化学キャパシタを構成した場合にフルセル測定により測定され得る比容量の値Cf(F/cmまたはF/g)は、便宜的に、1/4C3pに等しいものとして計算可能である。より大きい動作電位範囲は、より高いエネルギー密度を得るのに顕著に寄与する。 Generally, an aqueous electrolyte (an electrolyte in which an electrolyte is dissolved in an aqueous solvent) and a non-aqueous electrolyte (an electrolyte or an ionic liquid in which an electrolyte is dissolved in a nonaqueous solvent) can be used as an electrolyte for an electrochemical capacitor. (Electrolyte solution consisting of). In the case of aqueous electrolytes, the operating potential range of the electrochemical capacitor (referred to as the "potential window") is limited to a maximum of 1.2 V or less so as not to cause water electrolysis, and thus the energy density is limited. There are difficulties. Further, in the case of the aqueous electrolyte, there is also a drawback that the usable temperature range of the electrochemical capacitor is limited to a temperature at which water can be stably present as a liquid (a temperature at which freezing and vaporization do not occur). On the other hand, non-aqueous electrolytes have the advantage that such difficulties can be avoided. The energy density is generally calculated as ×× CV 2 , where C is the specific capacity (more specifically, the capacity per unit volume of the electrode active material (F / cm 3 ) or the unit of the electrode active material). The capacity per mass (F / g), hereinafter, these are collectively referred to as “specific capacity”), V means the operating potential range (V), and the energy density is expressed in units of FV 2. / Cm 3 or FV 2 / g, but can generally be expressed in terms of units Wh / L or Wh / kg. However, if the measured value C 3p (F / cm 3 or F / g) obtained by measuring the specific capacity of one of the cathode and anode electrodes by three-electrode measurement is known, the electrode used for the other electrode is no longer used. The value of the specific capacity Cf (F / cm 3 or F / g) that can be measured by full cell measurement when one of them is also used to form an electrochemical capacitor can be conveniently calculated as being equal to 1 / 4C 3p. It is. A larger operating potential range contributes significantly to obtaining a higher energy density.
 例えば、非特許文献1には、3極Swagelokセルにて、MXeneの1つであるTi(Tは表面官能基を意味する)を作用電極に使用し、過剰容量の活性炭膜を対向電極とし、Agワイヤを参照電極に使用し、非水電解液として、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)をアセトニトリル(AN)中に1Mで含む溶液を使用して、電気化学キャパシタのキャパシタ特性を評価したことが開示されている。しかしながら、かかる電気化学キャパシタは、アセトニトリルの電気分解に起因すると想定される動作電位範囲の狭さ(約1.6V)が問題となり、よって、水系電解液の場合に比べてエネルギー密度が多少改善され得るものの、依然として、大きいエネルギー密度を得ることはできない。 For example, in Non-Patent Document 1, in a three-electrode Swagelok cell, one of MXene, Ti 3 C 2 T x (T x means a surface functional group), is used for a working electrode, and excess activated carbon is used. The membrane was used as a counter electrode, an Ag wire was used as a reference electrode, and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) was used as a non-aqueous electrolyte at 1M in acetonitrile (AN). It has been disclosed that the capacitor characteristics of an electrochemical capacitor were evaluated using a solution containing the same. However, such an electrochemical capacitor has a problem of a narrow operating potential range (approximately 1.6 V) which is assumed to be caused by electrolysis of acetonitrile, and therefore has a somewhat improved energy density as compared with the case of an aqueous electrolyte. Although it can be obtained, it is still not possible to obtain a large energy density.
 また例えば、特許文献1には、2つの電極のいずれかに電極活物質としてMXeneを使用し、かつ、非水溶媒と、該非水溶媒中でプロトンを生じる電解質とを含む非水電解液を使用した電気化学キャパシタが開示されている(特許文献1の第0029~0035段落等参照)。より具体的には、特許文献1には、3極Swagelokセルにて、MXeneの1つであるTi(Tは表面官能基を意味する)を作用電極に使用し、過剰容量の活性炭膜を対向電極とし、Agワイヤを参照電極に使用し、非水電解液として、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)とビス(トリフルオロメタンスルホニル)イミド(HTFSI)との混合物を使用して、電気化学キャパシタのキャパシタ特性を評価したことが開示されている。かかる電気化学キャパシタでは、より広い動作電位範囲(特許文献1の第0062~0063段落参照、電位窓3.0V)が実現されており、非特許文献1の電気化学キャパシタより大きいエネルギー密度を得ることができる。 Further, for example, in Patent Document 1, MXene is used as an electrode active material for one of two electrodes, and a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte that generates protons in the non-aqueous solvent is used. (See paragraphs 0029 to 0035 of Patent Document 1). More specifically, Patent Document 1 discloses that a three-electrode Swagelok cell uses Ti 3 C 2 T s (T s means a surface functional group), which is one of MXene, as a working electrode, Using an activated carbon membrane having a capacity as a counter electrode, an Ag wire as a reference electrode, and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) and bis (trifluoromethane) as nonaqueous electrolytes It is disclosed that a mixture with sulfonyl) imide (HTFSI) was used to evaluate the capacitor properties of electrochemical capacitors. In such an electrochemical capacitor, a wider operating potential range (see paragraphs 0062 to 0063 of Patent Document 1, potential window 3.0 V) is realized, and an energy density larger than that of Non-Patent Document 1 can be obtained. Can be.
 しかしながら、電気化学キャパシタのカソードおよびアノードの双方の電極活物質にMXeneを使用し、かつ、大きいエネルギー密度を達成し得る電気化学キャパシタは知られていない。従来、電気化学キャパシタのカソードにおいて電極活物質にMXeneを使用した場合に、比容量および動作電位範囲ひいてはエネルギー密度を大きくする電解液についての知見は比較的豊富に存在しているが、アノードにおいて電極活物質にMXeneを使用した場合に、比容量および動作電位範囲ひいてはエネルギー密度を大きくする電解液についての知見はほぼ存在しない。 However, there is no known electrochemical capacitor that uses MXene for both the cathode and anode electrode active materials of the electrochemical capacitor and can achieve a large energy density. Conventionally, when MXene is used as an electrode active material in the cathode of an electrochemical capacitor, there is relatively abundant knowledge about an electrolytic solution that increases the specific capacity and the operating potential range, and thus the energy density. When MXene is used as the active material, there is almost no knowledge about an electrolytic solution that increases the specific capacity and the operating potential range, and thus the energy density.
 一般的に、ある材料をカソードの電極活物質に使用した場合に、大きいエネルギー密度が得られる電解液と、当該ある材料をアノードの電極活物質に使用した場合に、大きいエネルギー密度が得られる電解液とは異なり得る。カソードおよびアノードの双方の電極活物質にMXeneを使用した場合に、大きいエネルギー密度を達成できる電解液を予測することはできず、かかる電解液を見出すことは極めて困難である。 Generally, an electrolytic solution that provides a large energy density when a certain material is used for a cathode electrode active material, and an electrolytic solution that provides a large energy density when a certain material is used for an anode electrode active material. It can be different from a liquid. When MXene is used as the electrode active material for both the cathode and the anode, it is impossible to predict an electrolyte capable of achieving a large energy density, and it is extremely difficult to find such an electrolyte.
 本発明は、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、カソードおよびアノードの双方の電極活物質にMXeneを使用し、かつ、大きいエネルギー密度を達成し得る新規な電気化学キャパシタを提供することを目的とする。 The present invention relates to an electrochemical capacitor in which a cathode and an anode are spaced apart from each other in an electrolyte, using MXene as an electrode active material for both the cathode and the anode, and achieving a large energy density. It is an object to provide a stable electrochemical capacitor.
 本発明の1つの要旨によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
 前記カソードおよび前記アノードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
  Mn+1
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1、2または3である)
で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
 前記電解液が、溶媒としてガンマブチロラクトンと、電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む、電気化学キャパシタが提供される。
According to one aspect of the present invention, there is provided an electrochemical capacitor having a cathode and an anode spaced apart in an electrolyte,
The cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula:
M n + 1 X n
Wherein M is at least one Group 3, 4, 5, 6, 7 metal;
X is a carbon atom, a nitrogen atom or a combination thereof;
n is 1, 2 or 3)
And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the group consisting of:
An electrochemical capacitor, wherein the electrolytic solution contains gamma-butyrolactone as a solvent and at least one of lithium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as an electrolyte. Is done.
 本発明のもう1つの要旨によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
 前記カソードおよび前記アノードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
  Mn+1
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1、2または3である)
で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
 前記電解液が、溶媒としてエチルイソプロピルスルホンと、電解質としてナトリウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む、電気化学キャパシタが提供される。
According to another aspect of the present invention, there is provided an electrochemical capacitor having a cathode and an anode spaced apart in an electrolytic solution,
The cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula:
M n + 1 X n
Wherein M is at least one Group 3, 4, 5, 6, 7 metal;
X is a carbon atom, a nitrogen atom or a combination thereof;
n is 1, 2 or 3)
And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the group consisting of:
An electrochemical capacitor, wherein the electrolytic solution contains ethyl isopropyl sulfone as a solvent and at least one of sodium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as an electrolyte. Provided.
 かかる本発明の電気化学キャパシタによれば、カソードおよびアノードの双方の電極活物質に上記所定の層状材料(本明細書において「MXene」とも言う)を使用し、かつ、溶媒としてガンマブチロラクトンと、電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む電解液、あるいは、溶媒としてエチルイソプロピルスルホンと、電解質としてナトリウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む電解液を使用することによって、大きいエネルギー密度を達成することができる新規な電気化学キャパシタが提供される。 According to the electrochemical capacitor of the present invention, the predetermined layered material (also referred to as “MXene” in the present specification) is used as the electrode active material for both the cathode and the anode, and gamma-butyrolactone is used as a solvent and an electrolyte is used. Or at least one of lithium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, or ethylisopropylsulfone as a solvent and sodium bis (trifluorofluoride) as an electrolyte A large energy density can be achieved by using an electrolyte containing at least one of (i) methanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide. The novel electrochemical capacitor is provided.
 本発明の1つの態様において、前記式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかであり得る。 In one embodiment of the present invention, the formula M n + 1 X n may be any selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C.
 本発明によれば、カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタにおいて、カソードおよびアノードの双方の電極活物質にMXeneを使用し、かつ、溶媒としてガンマブチロラクトンと、電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む電解液、あるいは、溶媒としてエチルイソプロピルスルホンと、電解質としてナトリウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む電解液を使用することによって、大きいエネルギー密度を達成し得る新規な電気化学キャパシタが提供される。 According to the present invention, in an electrochemical capacitor in which a cathode and an anode are arranged separately in an electrolytic solution, MXene is used as an electrode active material of both the cathode and the anode, and gamma-butyrolactone is used as a solvent, and as an electrolyte, An electrolytic solution containing at least one of lithium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, or ethylisopropylsulfone as a solvent and sodium bis (trifluoromethane) as an electrolyte By using an electrolyte containing at least one of sulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, a new energy density can be achieved. Electrochemical capacitors are provided.
本発明の1つの実施形態における電気化学キャパシタを説明する概略模式断面図である。1 is a schematic cross-sectional view illustrating an electrochemical capacitor according to one embodiment of the present invention. 本発明の1つの実施形態における電気化学キャパシタに利用可能な層状材料であるMXeneを示す概略模式断面図である。FIG. 1 is a schematic cross-sectional view showing MXene which is a layered material that can be used for an electrochemical capacitor according to one embodiment of the present invention.
 本発明の電気化学キャパシタの実施形態について以下に詳述するが、本発明はかかる実施形態に限定されるものではない。 実 施 Embodiments of the electrochemical capacitor of the present invention will be described in detail below, but the present invention is not limited to such embodiments.
 図1を参照して、本実施形態の電気化学キャパシタ20は、カソード15aおよびアノード15bが電解液13中に離間して配置された構成を有する。カソード15aおよびアノード15bは、それぞれ端子A、Bに電気的に接続され、電極として機能し得る。図示する態様において、カソード15aおよびアノード15bは、任意の適切な容器(またはセル)11内において、電解液13中に、例えば(本実施形態に必須ではないが)セパレータ17を挟んで、互いに離間して配置され得る。セパレータ17は、電解液13中の電解質イオンの移動を妨げない限り、任意の適切な部材が使用可能であり、例えばポリプロピレン、ポリテトラフルオロエチレンなどのポリオレフィンの多孔質膜などが使用され得る。容器11の材質は特に限定されず、例えば、ステンレス鋼などの金属や、ポリテトラフルオロエチレンなどの樹脂、その他任意の適切な材料であってよい。容器11は密閉されていても開放されていてもよく、容器11内に空寸が存在していても存在していなくてもよい。なお、カソード15aおよびアノード15bは、容器11内において、セパレータ17をそれらの間に挟んで積層されて巻回されている等、図示する形態以外の任意の適切な形態で互いに離間して配置されていてもよい。 を Referring to FIG. 1, the electrochemical capacitor 20 of the present embodiment has a configuration in which the cathode 15 a and the anode 15 b are disposed separately in the electrolytic solution 13. The cathode 15a and the anode 15b are electrically connected to terminals A and B, respectively, and can function as electrodes. In the embodiment shown, the cathode 15a and the anode 15b are separated from each other in any suitable container (or cell) 11 in the electrolyte 13 by, for example, a separator 17 (although not essential to this embodiment). Can be arranged. As the separator 17, any suitable member can be used as long as it does not hinder the movement of the electrolyte ions in the electrolyte solution 13. For example, a porous film of a polyolefin such as polypropylene or polytetrafluoroethylene may be used. The material of the container 11 is not particularly limited, and may be, for example, a metal such as stainless steel, a resin such as polytetrafluoroethylene, or any other appropriate material. The container 11 may be closed or open, and the container 11 may or may not be empty. The cathode 15a and the anode 15b are arranged in the container 11 so as to be separated from each other in any appropriate form other than the illustrated form, such as being stacked and wound with the separator 17 interposed therebetween. May be.
 カソード15aおよびアノード15bの双方が、電極活物質として、複数の層を含む所定の層状材料を含む。電極活物質とは、電解液13中の電解質イオンとの間で電子の授受を行う物質を言う。 Both the cathode 15a and the anode 15b contain a predetermined layered material including a plurality of layers as an electrode active material. The electrode active material refers to a material that exchanges electrons with electrolyte ions in the electrolyte 13.
 本実施形態において使用可能な所定の層状材料はMXeneであり、次のように規定される:
 複数の層を含む層状材料であって、各層が、以下の式:
  Mn+1
 (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、いわゆる早期遷移金属、例えばSc、Ti、Zr、Hf、V、Nb、Ta、Cr、MoおよびMnからなる群より選択される少なくとも1種を含み得、
  Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
  nは、1、2または3である)
で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料(これは「Mn+1」とも表され、sは任意の数であり、従来、sに代えてxが使用されることもある)。
The predetermined layered material that can be used in this embodiment is MXene, defined as follows:
A layered material comprising a plurality of layers, each layer having the following formula:
M n + 1 X n
Wherein M is at least one Group 3, 4, 5, 6, 7 metal and is a so-called early transition metal such as Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and Mn may include at least one selected from the group consisting of:
X is a carbon atom, a nitrogen atom or a combination thereof;
n is 1, 2 or 3)
And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the following (this is also referred to as “M n + 1 X n T s ”, where s is an arbitrary number, and conventionally, x is used instead of s) Sometimes).
 かかるMXeneは、MAX相からA原子を選択的にエッチングすることにより得ることができる。MAX相は、以下の式:
  Mn+1AX
 (式中、M、Xおよびnは、上記の通りであり、Aは、少なくとも1種の第12、13、14、15、16族元素であり、通常はA族元素、代表的にはIIIA族およびIVA族であり、より詳細にはAl、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、SおよびCdからなる群より選択される少なくとも1種を含み得、好ましくはAlである)
で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、Mn+1で表される層の間に、A原子により構成される層が位置した結晶構造を有する。MAX相は、概略的には、n+1層のM原子の層の各間にX原子の層が1層ずつ配置され(これらを合わせて「Mn+1層」とも称する)、n+1番目のM原子の層の次の層としてA原子の層(「A原子層」)が配置された繰り返し単位を有する。MAX相からA原子が選択的にエッチングされることにより、A原子層が除去されて、露出したMn+1層の表面にエッチング液(通常、含フッ素酸の水溶液が使用されるがこれに限定されない)中に存在する水酸基、フッ素原子、酸素原子および水素原子等が修飾して、かかる表面を終端する。
Such MXene can be obtained by selectively etching A atoms from the MAX phase. The MAX phase has the following formula:
M n + 1 AX n
Wherein M, X and n are as described above, and A is at least one group 12, 13, 14, 15, 16 element, usually a group A element, typically IIIA And at least one selected from the group consisting of Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, S and Cd, preferably Al)
And each X has a crystal lattice located in an octahedral array of M, and a layer composed of A atoms is located between layers represented by M n + 1 X n. Have. In the MAX phase, roughly, one layer of X atoms is arranged between each of the n + 1 layers of M atoms (these layers are collectively referred to as “M n + 1 X n layers”), and the (n + 1) th M layer is formed. As the next layer of the atomic layer, there is a repeating unit in which an A atomic layer (“A atomic layer”) is arranged. By selectively etching A atoms from the MAX phase, the A atomic layer is removed, and an etching solution (usually, an aqueous solution of fluorinated acid is used, which is used on the exposed surface of the M n + 1 X n layer. (But not limited to) hydroxyl groups, fluorine atoms, oxygen atoms, hydrogen atoms, and the like present therein to modify and terminate such surfaces.
 代表的には、上記の式において、Mがチタンまたはバナジウムであり、Xが炭素原子または窒素原子であり得る。例えば、MAX相は、TiAlCであり、MXeneは、Tiである。 Typically, in the above formula, M can be titanium or vanadium and X can be a carbon or nitrogen atom. For example, MAX-phase is Ti 3 AlC 2, MXene is Ti 3 C 2 T s.
 なお、本発明において、MXeneは、残留するA原子を比較的少量、例えば元のA原子に対して10質量%以下で含んでいてもよい。 In the present invention, MXene may contain a relatively small amount of the remaining A atom, for example, 10% by mass or less based on the original A atom.
 図2に模式的に示すように、このようにして得られるMXene10は、Mn+1層1a、1b、1cが修飾または終端T 3a、5a、3b、5b、3c、5cで表面修飾または終端されたMXene層7a、7b、7c(これは「Mn+1」とも表され、sは任意の数である)を2つ以上有する層状材料であり得る(図中、3つの層を例示的に示しているが、これに限定されない)。MXene10は、かかる複数のMXene層が個々に分離されて存在するもの(単層構造体)であっても、複数のMXene層が互いに離間して積層された積層体(多層構造体)であっても、それらの混合物であってもよい。MXeneは、個々のMXene層(単層)および/またはMXene層の積層体の集合体(粒子、粉末またはフレークとも称され得る)であり得る。積層体である場合、隣接する2つのMXene層(例えば7aと7b、7bと7c)は、必ずしも完全に離間していなくてもよく、部分的に接触していてもよい。 As schematically shown in FIG. 2, the MXene 10 thus obtained is such that the M n + 1 X n layers 1 a, 1 b, 1 c are modified or terminated with surface modification or termination at T 3 a, 5 a, 3 b, 5 b, 3 c, 5 c. Layered material having two or more MXene layers 7a, 7b, 7c (this is also referred to as “M n + 1 X n T s ” and s is an arbitrary number). It is shown by way of example, but not limited thereto). The MXene 10 is a laminate (multi-layer structure) in which the plurality of MXene layers are separately separated from each other (single-layer structure), and the plurality of MXene layers are separated from each other and laminated. Or a mixture thereof. The MXene can be a collection of individual MXene layers (monolayer) and / or a stack of MXene layers (which may also be referred to as particles, powders or flakes). In the case of a laminate, two adjacent MXene layers (for example, 7a and 7b, 7b and 7c) do not necessarily need to be completely separated, and may be in partial contact.
 本実施形態を限定するものではないが、MXeneの各層(上記のMXene層7a、7b、7cに相当する)の厚さは、例えば0.8nm以上5nm以下、特に0.8nm以上3nm以下であり(主に、各層に含まれるM原子層の数により異なり得る)、層に平行な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上200μm以下、特に1μm以上40μm以下である。MXeneが積層体である場合、個々の積層体について、層間距離(または空隙寸法、図1中にdにて示す)は、例えば0.8nm以上10nm以下、特に0.8nm以上5nm以下、より特に約1nmであり、層の総数は、2以上であればよいが、例えば50以上100,000以下、特に1,000以上20,000以下であり、積層方向の厚さは、例えば0.1μm以上200μm以下、特に1μm以上40μm以下であり、積層方向に垂直な平面(二次元シート面)内における最大寸法は、例えば0.1μm以上100μm以下、特に1μm以上20μm以下である。なお、これら寸法は、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)写真に基づく数平均寸法(例えば少なくとも40個の数平均)として求められる。 Although not limiting the present embodiment, the thickness of each MXene layer (corresponding to the above MXene layers 7a, 7b, 7c) is, for example, 0.8 nm or more and 5 nm or less, particularly 0.8 nm or more and 3 nm or less. The maximum dimension in a plane (two-dimensional sheet plane) parallel to the layers (mainly, it may vary depending on the number of M atomic layers included in each layer) is, for example, 0.1 μm or more and 200 μm or less, particularly 1 μm or more and 40 μm or less. . When MXene is a laminate, the interlayer distance (or gap size, indicated by d in FIG. 1) of each laminate is, for example, 0.8 nm or more and 10 nm or less, particularly 0.8 nm or more and 5 nm or less, more particularly The thickness is about 1 nm, and the total number of layers may be 2 or more, for example, 50 to 100,000, particularly 1,000 to 20,000, and the thickness in the stacking direction is, for example, 0.1 μm or more. It is 200 μm or less, particularly 1 μm or more and 40 μm or less, and the maximum dimension in a plane (two-dimensional sheet surface) perpendicular to the laminating direction is, for example, 0.1 μm or more and 100 μm or less, particularly 1 μm or more and 20 μm or less. In addition, these dimensions are calculated | required as a number average dimension (for example, number average of at least 40 pieces) based on a scanning electron microscope (SEM) or a transmission electron microscope (TEM) photograph.
 カソード15aおよびアノード15bは、電極活物質であるMXeneのみから実質的に構成されていても、これにバインダ等が添加されて構成されていてもよい。カソード15aに含まれるMXeneとアノード15bに含まれるMXeneとは同じであってよい。バインダは、代表的には樹脂であり得、例えばポリテトラフルオロエチレン、ポリビニリデンフルオライド、スチレンブタジエンゴムなどからなる群より選択される少なくとも1種を使用し得る。 (4) The cathode 15a and the anode 15b may be substantially composed of only MXene, which is an electrode active material, or may be composed by adding a binder or the like thereto. MXene included in the cathode 15a and MXene included in the anode 15b may be the same. The binder can be typically a resin, and for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, and the like can be used.
 カソード15aおよびアノード15bは、互いに独立して、フリースタンディングフィルムの形態であっても、集電体(図示せず)の上にフィルムおよび/または膜の形態で形成されていてもよい。集電体には、任意の適切な導電性材料を使用してよいが、例えばステンレス鋼、アルミ、アルミ合金などから構成され得る。 The cathode 15a and the anode 15b may be formed independently of each other in the form of a free-standing film or in the form of a film and / or a film on a current collector (not shown). The collector may be made of any suitable conductive material, and may be made of, for example, stainless steel, aluminum, an aluminum alloy, or the like.
 電解液13は、
 溶媒としてガンマブチロラクトン(gBL)と、
 電解質としてリチウムビス(トリフルオロメタンスルホニル)イミド(Li-TFSI、ビス(トリフルオロメタン)スルホンイミドリチウム塩とも称され得る)および1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミドとも称され得る)の少なくとも一方と
を組み合わせて含む。
 あるいは、電解液13は、
 溶媒としてエチルイソプロピルスルホン(EiPS)と、
 電解質としてナトリウムビス(トリフルオロメタンスルホニル)イミド(Na-TFSI、ビス(トリフルオロメタン)スルホンイミドナトリウム塩とも称され得る)および1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)の少なくとも一方と
を組み合わせて含む。
 本発明者は、溶媒と電解質の上記特定の組合せにより、カソードおよびアノードの双方の電極活物質にMXeneを使用しつつ、高いエネルギー密度を達成し得ることを見出した。
The electrolyte 13 is
Gamma-butyrolactone (gBL) as a solvent;
Lithium bis (trifluoromethanesulfonyl) imide (Li-TFSI, also referred to as bis (trifluoromethane) sulfonimide lithium salt) and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) as electrolytes , 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide).
Alternatively, the electrolyte 13 is
Ethyl isopropyl sulfone (EiPS) as a solvent;
Sodium bis (trifluoromethanesulfonyl) imide (Na-TFSI, also referred to as bis (trifluoromethane) sulfonimide sodium salt) and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (EMI-TFSI) as electrolytes ) Is included in combination.
The present inventor has found that the above specific combination of solvent and electrolyte can achieve high energy density while using MXene for both cathode and anode electrode active materials.
 電解液13における電解質(Li-TFSIおよびEMI-TFSIの少なくとも一方、あるいは、Na-TFSIおよびEMI-TFSIの少なくとも一方)のモル濃度(上記「少なくとも一方」のうち双方が存在する場合には各モル濃度の合計)は、特に限定されないが、例えば0.01~10モル/L、特に0.2~2モル/L(いずれも全体基準)であってよい。 The molar concentration of the electrolyte (at least one of Li-TFSI and EMI-TFSI, or at least one of Na-TFSI and EMI-TFSI) in the electrolyte solution 13 (if both of the above “at least one” are present, each molar concentration) The total of the concentrations is not particularly limited, but may be, for example, 0.01 to 10 mol / L, particularly 0.2 to 2 mol / L (all based on the whole).
 電解液13は、溶媒および電解質のほか、任意の適切な添加剤を比較的少量で含んでいてもよい。 The electrolytic solution 13 may contain a solvent and an electrolyte and any appropriate additive in a relatively small amount.
 かかる電気化学キャパシタ20の端子A、Bを負荷に接続して、放電を行い得る。また、電気化学キャパシタ20の端子A、Bを電源に接続して、充電を行い得る。本発明者はいかなる理論によっても拘束されないが、カソードでは、電解液からカチオンがMXene層内に大量に引き寄せられ、カチオンのH原子がMXeneに配向して電子授受を行なうことにより容量が発現すると推測され得、アノードでは、カチオンとアニオンが入れ替わる(イオン交換する)ことにより容量が発現すると推測され得る。 (4) The terminals A and B of the electrochemical capacitor 20 can be connected to a load to perform discharge. Further, the terminals A and B of the electrochemical capacitor 20 can be connected to a power supply to perform charging. Although the present inventor is not bound by any theory, it is speculated that in the cathode, a large amount of cations are attracted from the electrolytic solution into the MXene layer, and the H atoms of the cations are oriented to the MXene to perform electron transfer, thereby producing capacity. In the anode, it can be inferred that capacity is developed by the exchange (ion exchange) of cations and anions.
 本実施形態の電気化学キャパシタによれば、カソードおよびアノードの双方の電極活物質にMXeneを使用し、かつ、溶媒としてgBLと、電解質としてLi-TFSIおよびEMI-TFSIの少なくとも一方とを含む電解液、あるいは、溶媒としてEiPSと、電解質としてNa-TFSIおよびEMI-TFSIの少なくとも一方とを含む電解液を使用することによって、大きいエネルギー密度を達成することができる。本実施形態の電気化学キャパシタのキャパシタ特性を電圧走査速度5mV/sで評価した場合、エネルギー密度は、例えば10Wh/L以上であり得る。 According to the electrochemical capacitor of the present embodiment, an electrolyte using MXene as the electrode active material of both the cathode and the anode, and containing gBL as a solvent and at least one of Li-TFSI and EMI-TFSI as an electrolyte Alternatively, a large energy density can be achieved by using an electrolytic solution containing EiPS as a solvent and at least one of Na-TFSI and EMI-TFSI as an electrolyte. When the capacitor characteristics of the electrochemical capacitor of the present embodiment are evaluated at a voltage scanning speed of 5 mV / s, the energy density can be, for example, 10 Wh / L or more.
 MXeneは、MnO等の酸化物系材料に比較して、層間の空隙が大きい。そして、本発明はいかなる理論によっても拘束されないが、本発明における溶媒と電解質の上記特定の組合せにより、カソードおよびアノードの双方において、MXeneの層間に溶媒が進入し易く、MXeneの層間かつ層表面にある反応場に陰イオンおよび陽イオンがアクセスし易くなったため、大きいエネルギー密度が得られるものと理解され得る。 MXene has a larger gap between layers than an oxide-based material such as MnO 2 . And, while the present invention is not bound by any theory, by the above specific combination of the solvent and the electrolyte in the present invention, in both the cathode and the anode, the solvent easily enters between the layers of MXene, and between the layers of MXene and the surface of the layers. It can be understood that a higher energy density is obtained because anions and cations have become more accessible to certain reaction fields.
 本実施形態の電気化学キャパシタは、高いパワー密度をも示し得る。本実施形態の電気化学キャパシタのキャパシタ特性を電圧走査速度5mV/sで評価した場合、パワー密度は、例えば80W/L以上、特に100W/L以上であり得る。 電 気 The electrochemical capacitor of the present embodiment can also exhibit a high power density. When the capacitor characteristics of the electrochemical capacitor of the present embodiment are evaluated at a voltage scanning speed of 5 mV / s, the power density can be, for example, 80 W / L or more, particularly 100 W / L or more.
 本実施形態を限定するものではないが、より高いパワー密度を得るためには、MXeneのなかでも、1,000S/cmを超える高い電導率を示すMXeneを使用することが好ましい(1,000S/cmを超える電導率は、従来の電気化学キャパシタに使われ得る活性炭(電導率300S/cm程度)やグラフェン(電導率500~1,000S/cm)に比べて高いことに留意されたい)。1,000S/cmを超える高い電導率を示すMXeneとしては、上記の式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかであるMXene(より具体的には、Ti、TiCTおよびVCTからなる群より選択されるいずれか)が挙げられ、これらは1,000S/cmを超え、10,000S/cm以下の範囲の導電率を示し得る。 Although not limiting the present embodiment, in order to obtain a higher power density, it is preferable to use MXene, which has a high electrical conductivity exceeding 1,000 S / cm, among MXene (1,000 S / cm). It should be noted that the conductivity exceeding cm is higher than activated carbon (conductivity of about 300 S / cm) or graphene (conductivity of 500 to 1,000 S / cm) that can be used for conventional electrochemical capacitors. As the MXene exhibiting a high conductivity of more than 1,000 S / cm, the MXene (X) wherein the above formula M n + 1 X n is any one selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C More specifically, any one selected from the group consisting of Ti 3 C 2 T s , Ti 2 CT s and V 2 CT s ), which exceeds 1,000 S / cm and 10,000 S / cm cm or less.
 更に加えて、本実施形態に必須ではないが、電気化学キャパシタにおいて、カソードの電極活物質の質量m(g)と、アノードの電極活物質の質量m(g)とを互いに近づけることができる。m(g):m(g)は、例えば1:0.8~1.2、特に1:0.9~1.1、好ましくは1:1であり得る。 In addition, although not essential to the present embodiment, in the electrochemical capacitor, the mass m c (g) of the cathode electrode active material and the mass m a (g) of the anode electrode active material may be close to each other. it can. m c (g): m a (g) can be for example 1: 0.8 to 1.2, especially 1: 0.9 to 1.1, preferably 1: 1.
 mとmとは互いに近いほうが、電気化学キャパシタを製造し易いので好ましい。より具体的には、電気化学キャパシタを量産する場合、カソードおよびアノードの各面積を固定し、カソードおよびアノードの厚さを変化させることにより、目的とするmおよびmを得ることが一般的であるが、mおよびmが相当異なる場合には、カソードおよびアノードのいずれかの厚さが相当大きく(例えば80μm以上)となり、例えば、所定厚さ(例えば20μm程度)の集電体上に形成し難いという問題が生じ得、および/または、電気化学キャパシタを動作させた場合に、相当厚い(例えば80μm以上の)MXeneの層間に溶媒が十分に進入し難くなり得、比容量が低下するという問題が生じ得る。mとmとが互いに近い場合、かかる問題が生じることを回避できる。 closer to each other and m c and m a it is, because it is easy to produce a electrochemical capacitor preferred. More specifically, in the case of mass production of electrochemical capacitors, each area of the cathode and anode was fixed, by varying the cathode and the thickness of the anode, generally be obtained m c and m a for the purpose although, in the case where m c and m a considerable different, cathode and one of the thickness of the anode is considerably greater (e.g., more than 80 [mu] m), and the example, the current collector with a predetermined thickness (for example, about 20 [mu] m) And / or when the electrochemical capacitor is operated, it may be difficult for the solvent to sufficiently penetrate between the layers of MXene (for example, 80 μm or more) which is considerably thick, and the specific capacity may be reduced. Problem can occur. If the m c and m a are close to each other, it can be avoided such a problem arises.
 しかしながら、電極活物質にMXeneを使用する場合、これらを互いに近づけることは本来容易ではない。電気化学キャパシタにおいては、理論上、カソードに貯まる電荷Q(クーロン)とアノードに貯まる電荷Q(クーロン)は等しくなる。
 Q=C×m×V
 Q=C×m×V
 式中、Q、Q、m、mは上記の通りであり、Cはカソードの電極活物質単位質量あたり容量(F/g)を意味し、Cはアノードの電極活物質単位質量あたり容量(F/g)を意味し、Vはカソードの電圧(V)を意味し、Vはアノードの電圧(V)を意味する。
 よって、Q=Qを満たすC、m、V、C、m、Vを選択することが好ましい(Q=Qを満たさない場合、いずれか小さい方の電荷がカソードおよびアノードにそれぞれ貯まることとなり、過剰質量分の電極活物質はキャパシタとして使用されずに無駄になるためである)。mとmとを互いに近づけて、例えば、m:m=1:1とする場合、C×V=C×Vを満たすように、C、V、C、Vをマッチングさせることとなる。しかしながら、カソードおよびアノードの双方の電極活物質にMXeneを使用した場合、CおよびCは互いに異なり得、VおよびVも互いに異なり得、これらは使用する溶媒および電解質によって様々に変化し、予測することはできない。
However, when MXene is used as the electrode active material, it is inherently not easy to bring them close to each other. In an electrochemical capacitor, theoretically, the charge Q c (coulomb) stored in the cathode is equal to the charge Q a (coulomb) stored in the anode.
Qc = Cc * mc * Vc
Q a = C a × m a × V a
Wherein, Q c, Q a, m c, m a are as described above, C c denotes a cathode electrode active material unit mass per volume (F / g), C a is the anode electrode active material means a unit mass per volume (F / g), the V c by means of the cathode voltage (V), V a denotes an anode voltage (V).
Therefore, C c satisfying Q c = Q a, m c , V c, C a, m a, when selecting a V a is not satisfied the preferred (Q c = Q a, smaller one charge of This is because the electrode active material is stored in the cathode and the anode, respectively, and the excess mass of the electrode active material is wasted without being used as a capacitor.) close the m c and m a mutually, for example, m c: m a = 1: when 1, so as to satisfy the C c × V c = C a × V a, C c, V c, C a , so that the matching of the V a. However, when MXene is used for both the cathode and anode electrode active materials, C c and C a may be different from each other, and V c and V a may be different from each other, and these vary depending on the solvent and electrolyte used. , Can not be predicted.
 これに対して、本実施形態の電気化学キャパシタにおいては、溶媒と電解質の上記特定の組合せにより、mとmとを上記のように互いに近づけられることが、本発明者により確認された。かかる本実施形態の電気化学キャパシタによれば、mとmとを互いに近づけることができるので、従来の電気化学キャパシタのように、C×VとC×Vとが相当異なる場合にQ=Qを満たすようにmとmを相当異ならせて調節した設計とする必要がないので、カソードおよびアノードの合計の質量(または体積)、ひいては電気化学キャパシタの質量(または体積)をできるだけ小さくすることが可能となり、できるだけ大きいエネルギー密度を得ることが可能となる。 In contrast, in the electrochemical capacitor of the present embodiment, the above specific combination of solvent and an electrolyte, and a m c and m a be brought closer to each other as described above, were confirmed by the present inventors. According to electrochemical capacitor according the present embodiment, it is possible to approximate the m c and m a to each other as in the conventional electrochemical capacitors, and the C c × V c and C a × V a C c since corresponding different equivalent not necessary not to adjust the designed different m c and m a to satisfy Q c = Q a in the case, the cathode and anode of the total mass (or volume), therefore the electrochemical capacitor The mass (or volume) can be made as small as possible, and the energy density as large as possible can be obtained.
 本実施形態の電気化学キャパシタにおいては、カソードおよびアノードの双方の電極活物質にMXeneを使用している。MXeneを使用する場合、MnOを使用する場合に比べて、電極厚みをある程度大きくしても非容量が低下し難く、好ましくは大容量を確保することができ、よって、電極厚みをより大きくすることができ、例えば3μm以上、特に5μm以上で、上限は特に限定されないが代表的には50μm以下とすることができる。 In the electrochemical capacitor of the present embodiment, MXene is used for both the cathode and anode electrode active materials. In the case of using MXene, non-capacitance is hardly reduced even if the electrode thickness is increased to some extent, and a large capacity can be preferably secured as compared with the case of using MnO 2 , so that the electrode thickness is further increased. For example, it is 3 μm or more, particularly 5 μm or more, and the upper limit is not particularly limited, but can be typically 50 μm or less.
 本実施形態の電気化学キャパシタにおいては、溶媒と電解質の上記特定の組合せにより、十分に大きい比容量、特に電極活物質単位体積あたり容量を達成することができる。電極活物質(MXene)単位体積あたり容量は、例えば30F/cm以上、特に50F/cm以上、好ましくは80F/cm以上、より好ましくは150F/cm以上で、上限は特に限定されないが代表的には1500F/cm以下とすることができる。 In the electrochemical capacitor of the present embodiment, a sufficiently large specific capacity, particularly a capacity per unit volume of the electrode active material, can be achieved by the above specific combination of the solvent and the electrolyte. Electrode active material (MXene) per unit volume capacity, for example, 30F / cm 3 or more, particularly 50F / cm 3 or more, preferably 80F / cm 3 or higher, more preferably at 150F / cm 3 or more, the upper limit is not particularly limited Typically, it can be 1500 F / cm 3 or less.
 本実施形態の電気化学キャパシタにおいて、gBLおよびEiPSは非水溶媒として理解され、電解液13は、gBLならびにLi-TFSIおよびEMI-TFSIの少なくとも一方の組み合わせ、あるいは、EiPSならびにNa-TFSIおよびEMI-TFSIの少なくとも一方の組み合わせを含み、水を含まない非水電解液であり得る。かかる本実施形態の電気化学キャパシタは、水系電解液を使用した場合および溶媒としてアセトニトリルを含む非水溶媒を使用した場合に比べて、大きい動作電位範囲が得られ、かつ、水系電解液を使用した場合に比べて、より幅広い(低温~高温の)使用可能温度範囲が得られる。例えば、本実施形態の電気化学キャパシタは、動作電位範囲(電位窓)が、1.5V以上、特に2.0V以上、好ましくは2.5V以上、より好ましくは3V以上で、上限は特に限定されないが代表的には4V以下であり得、使用可能温度範囲が、-40~90℃、特に-40~80℃であり得る。 In the electrochemical capacitor of the present embodiment, gBL and EiPS are understood as non-aqueous solvents, and the electrolyte 13 is composed of gBL and at least one of Li-TFSI and EMI-TFSI, or EiPS and Na-TFSI and EMI- It may be a non-aqueous electrolyte containing at least one combination of TFSI and not containing water. Such an electrochemical capacitor of the present embodiment can obtain a large operating potential range as compared with a case where an aqueous electrolyte is used and a case where a non-aqueous solvent containing acetonitrile is used as a solvent, and the use of an aqueous electrolyte. A wider usable temperature range (low to high temperature) can be obtained compared to the case. For example, the electrochemical capacitor of the present embodiment has an operating potential range (potential window) of 1.5 V or more, particularly 2.0 V or more, preferably 2.5 V or more, more preferably 3 V or more, and the upper limit is not particularly limited. Can be typically 4 V or less, and the usable temperature range can be −40 to 90 ° C., particularly −40 to 80 ° C.
 更に、本実施形態の電気化学キャパシタでは、電解液13は、gBLならびにLi-TFSIおよびEMI-TFSIの少なくとも一方の組み合わせ、あるいは、EiPSならびにNa-TFSIおよびEMI-TFSIの少なくとも一方の組み合わせを含み、特許文献1の電気化学キャパシタとは異なり、非水溶媒中でプロトンを生じる電解質を含まない。電解液が、非水溶媒中でプロトンを生じる電解質(例えばHTFSI)を含むと、強い酸性を示し、電解化学キャパシタにおいて電解液と接触し得る部材(いわゆるパッケージ、具体的には、容器(セル)11および存在する場合にはセパレータ17等)に、かかる電解液で酸腐食されない材料を選定しなければならない。これに対して、本実施形態の電気化学キャパシタは、上記部材に、耐酸性のある材料を使用する必要がなく、材料の選択自由度に優れる。 Further, in the electrochemical capacitor of the present embodiment, the electrolytic solution 13 includes gBL and at least one combination of Li-TFSI and EMI-TFSI, or EiPS and at least one combination of Na-TFSI and EMI-TFSI, Unlike the electrochemical capacitor of Patent Document 1, it does not include an electrolyte that generates protons in a non-aqueous solvent. When the electrolytic solution contains an electrolyte (for example, HTFSI) that generates protons in a non-aqueous solvent, a member (so-called package, specifically, a container (cell)) that exhibits strong acidity and can come into contact with the electrolytic solution in an electrolytic capacitor. 11 and, if present, the separator 17 etc.) must be selected from materials which are not acid eroded by such electrolytes. On the other hand, the electrochemical capacitor according to the present embodiment does not need to use an acid-resistant material for the member, and is excellent in the degree of freedom of material selection.
(実施例1)
 以下のようにして電気化学キャパシタを組み立てて、エネルギー密度およびパワー密度を測定して、キャパシタ特性を評価した。
(Example 1)
An electrochemical capacitor was assembled as follows, the energy density and the power density were measured, and the capacitor characteristics were evaluated.
 ・カソードおよびアノード(MXene電極)
 まず、特許文献1の実施例1と同様にして、Tiから実質的になる可撓性のフリースタンディングフィルムを得た。次に、これにより得られたTiのフリースタンディングフィルムを直径5mmの円形に2つ打ち抜いて、2つのMXene(Ti)電極(アノードおよびカソード)を得た。得られたMXene電極の厚さは1.8~2.0μmであり、比重は3.5~4.0g/cmであった。カソードに使用するMXene電極の質量は0.213mgであり、アノードに使用するMXene電極の質量は0.202mgであり、これらの質量比は、ほぼ1:1であった。
・ Cathode and anode (MXene electrode)
First, in the same manner as in Example 1 of Patent Document 1, to obtain a flexible freestanding film consisting essentially Ti 3 C 2 T s. Next, two punched freestanding film of the resulting Ti 3 C 2 T s Thus the circle having a diameter of 5 mm, to obtain a two MXene (Ti 3 C 2 T s ) electrodes (anode and cathode). The thickness of the obtained MXene electrode was 1.8 to 2.0 μm, and the specific gravity was 3.5 to 4.0 g / cm 3 . The mass of the MXene electrode used for the cathode was 0.213 mg, the mass of the MXene electrode used for the anode was 0.202 mg, and their mass ratio was approximately 1: 1.
 ・セパレータ
 市販のセパレータ(GEヘルスケアライフサイエンス社製、Whatman(登録商標)、グラスマイクロファイバーフィルター、グレードGF/A)を直径6mmに加工したセパレータ膜を準備した。
Separator A separator membrane prepared by processing a commercially available separator (manufactured by GE Healthcare Life Sciences, Whatman (registered trademark), glass microfiber filter, grade GF / A) into a diameter of 6 mm was prepared.
 ・電解液
 溶媒であるgBL(Shigma Aldrich社製、製品番号B103608)に電解質であるEMI-TFSI(Solvionic社製、製品番号Im0208a)を1モル/L(全体基準)のモル濃度で混合してなる混合物を電解液として準備した。
・ Electrolyte solution A mixture of gBL (manufactured by Shigma Aldrich, product number B103608) as a solvent and EMI-TFSI (manufactured by Solvionic, product number Im0208a) as an electrolyte at a molar concentration of 1 mol / L (total basis) The mixture was prepared as an electrolyte.
 ・電気化学キャパシタの組み立て
 セルボディにSwagelokチューブ継手(Swagelok社製、Bored-Through Union Tee、製品番号SS-810-3BT、SUS316製)を用い、その互いに対向する2つの開口部のそれぞれに、フェルール(Swagelok社製、PTFE Ferrule Set、製品番号T-810-SET、ポリテトラフルオロエチレン製)および引き出し電極(直径12mm、長さ40mmのSUS316製丸棒)を組み合わせて使用し、残りの開口部をゴム栓で封止して、セルを構成するものとした。グローブボックス(O濃度およびHO濃度ともに0.1ppm以下)内で、セルボディの内部に、上記の通り準備した2つのMXene電極をカソードおよびアノードとして互いに対向させ、これらの間にセパレータ膜を挟んで配置し、セルボディの互いに対向する2つの開口部のそれぞれから、フェルールを装着した引き出し電極をMXene電極と接触するまで挿入して嵌め、電解液をセルボディに充填し、残りの開口部をゴム栓で封止して、蓄電デバイス評価用の電気化学キャパシタを組み立てた。
・ Assembly of electrochemical capacitor Swagelok tube fittings (manufactured by Swagelok, Bored-Through Union Tee, product number SS-810-3BT, manufactured by SUS316) are used for the cell body, and ferrules ( Swagelok, PTFE Ferrule Set, product number T-810-SET, made of polytetrafluoroethylene) and extraction electrode (12 mm diameter, 40 mm length SUS316 round bar) used in combination, and the remaining opening is rubber The cell was sealed with a stopper to form a cell. In a glove box (both O 2 concentration and H 2 O concentration 0.1 ppm or less), the two MXene electrodes prepared as described above are opposed to each other as a cathode and an anode inside the cell body, and a separator film is interposed between them. Insert and fit the extraction electrode with the ferrule from each of the two openings facing each other in the cell body until it comes into contact with the MXene electrode, fill the cell body with the electrolytic solution, and replace the remaining openings with rubber. After sealing with a stopper, an electrochemical capacitor for evaluating a power storage device was assembled.
 ・キャパシタ特性評価
 上記で組み立てた電気化学キャパシタに外部電極を接続し、Bio-Logic Science Instruments SAS社製の電気化学計測装置VMP3およびソフトウェア EC-Lab V11.12を用いて、電圧走査速度を種々に設定し、キャパシタ特性としてエネルギー密度およびパワー密度を測定した。結果を表1に示す。
・ Evaluation of capacitor characteristics Connect the external electrodes to the electrochemical capacitor assembled above, and use the electrochemical measurement device VMP3 manufactured by Bio-Logic Science Instruments SAS and software EC-Lab V11.12 to vary the voltage scanning speed. After setting, the energy density and the power density were measured as the capacitor characteristics. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 MXene(Ti)電極(アノードおよびカソード)の直径を3.86mmとしたこと、カソードに使用したMXene電極の質量は0.055mgであり、アノードに使用したMXene電極の質量は0.056mgであった(これらの質量比は、ほぼ1:1であった)こと、電解液として、溶媒であるgBL(Shigma Aldrich社製、製品番号B103608)に電解質であるLi-TFSI(Shigma Aldrich社製、製品番号544094)を1モル/L(全体基準)のモル濃度で混合してなる混合物を使用したこと以外は、実施例1と同様にして、電気化学キャパシタを組み立てて、キャパシタ特性としてエネルギー密度およびパワー密度を測定した。結果を表2に示す。
(Example 2)
The diameter of the MXene (Ti 3 C 2 T s ) electrode (anode and cathode) was 3.86 mm, the mass of the MXene electrode used for the cathode was 0.055 mg, and the mass of the MXene electrode used for the anode was 0 0.056 mg (these mass ratios were almost 1: 1). As an electrolytic solution, gBL (manufactured by Shigma Aldrich, product number B103608) was added to Li-TFSI (Shigma Aldrich) as an electrolyte. Company number 544094) at a molar concentration of 1 mol / L (total basis) except that a mixture was used in the same manner as in Example 1, except that a mixture was used. Energy density and power density were measured. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 以下のようにして電気化学キャパシタを組み立てて、エネルギー密度およびパワー密度を測定して、キャパシタ特性を評価した。
(Example 3)
An electrochemical capacitor was assembled as follows, the energy density and the power density were measured, and the capacitor characteristics were evaluated.
 ・カソードおよびアノード(MXene電極)
 まず、特許文献1の実施例1と同様にして、Tiから実質的になる可撓性のフリースタンディングフィルムを得た。次に、これにより得られたTiのフリースタンディングフィルムを、カソード用に直径5mmの円形に、アノード用に直径10mmの円形に、それぞれ1つずつ打ち抜いて、それらをステンレス網(株式会社ニラコ製、製品番号:788500、SUS316、500メッシュ)に400MPaの圧力でプレスして貼り付けて、MXene(Ti)電極としてカソードおよびアノードを得た。カソードに使用するMXene電極は、厚さ3μm、比重2.9g/cmおよび質量0.11mgであり、アノードに使用するMXene電極は、厚さ5μm、比重1.6g/cmおよび質量0.63mgであり、これらの質量比は、ほぼ5:1であった。
・ Cathode and anode (MXene electrode)
First, in the same manner as in Example 1 of Patent Document 1, to obtain a flexible freestanding film consisting essentially Ti 3 C 2 T s. Next, the resulting free standing films of Ti 3 C 2 T s were punched out one by one into a circle having a diameter of 5 mm for the cathode and a circle having a diameter of 10 mm for the anode, and the stainless steel mesh ( It was pressed and adhered to Nilaco Co., Ltd., product number: 788500, SUS316, 500 mesh) at a pressure of 400 MPa to obtain a cathode and an anode as MXene (Ti 3 C 2 T s ) electrodes. The MXene electrode used for the cathode has a thickness of 3 μm, a specific gravity of 2.9 g / cm 3 and a mass of 0.11 mg, and the MXene electrode used for the anode has a thickness of 5 μm, a specific gravity of 1.6 g / cm 3 and a mass of 0.1 g. 63 mg, and their mass ratio was approximately 5: 1.
 ・セパレータ
 市販のセパレータ(アドバンテック東洋株式会社製、ADVANTEC(登録商標)、型式:GA-100、ガラス繊維濾紙)を直径16mmに加工したセパレータ膜を準備した。
Separator A separator membrane prepared by processing a commercially available separator (ADVANTEC (registered trademark) manufactured by Advantech Toyo Co., Ltd., model: GA-100, glass fiber filter paper) into a diameter of 16 mm was prepared.
 ・電解液
 溶媒であるEiPSに電解質であるNa-TFSI(東京化成工業株式会社製、製品番号:S0989)を1モル/L(全体基準)のモル濃度で混合してなる混合物を電解液として準備した。
Electrolyte A mixture of EiPS as a solvent and Na-TFSI as an electrolyte (manufactured by Tokyo Chemical Industry Co., Ltd., product number: S0989) at a molar concentration of 1 mol / L (total basis) is prepared as an electrolyte. did.
 ・電気化学キャパシタの組み立て
 セルボディにボタン電池パッケージ(MTI Corporation製、製品名:CR2032 Coin Cell Cases、SS316製)を用い、オーリングガスケットを1個、スペーサーを1枚(MTI Corporation製、製品名:EQ-CR2325-Spacer)、その下にウェーブスプリングを2枚(MTI Corporation製、製品名:EQ-CR20WS-Spring)を用い、コインカシメ機(Hohsen Corp.)を用いて封止して、セルを構成するものとした。乾燥雰囲気下のドライルーム(露点:-60℃未満)内で、セルボディの内部に上記の通り準備した2枚のMXene電極をそれぞれカソードとアノードとして互いに対向させ、これらの間にセパレータ膜を挟んで配置し、電解液をセルボディに充填し、コインカシメ機でパッケージを封止して、蓄電デバイス評価用の電気化学キャパシタを組み立てた。
・ Assembly of electrochemical capacitor Using a button battery package (manufactured by MTI Corporation, product name: CR2032 Coin Cell Cases, manufactured by SS316) in the cell body, one O-ring gasket and one spacer (manufactured by MTI Corporation, product name: EQ) -CR2325-Spacer), under which two wave springs (MTI Corporation, product name: EQ-CR20WS-Spring) are used and sealed with a coin caulking machine (Hohsen Corp.) to form a cell. It was taken. In a dry room under a dry atmosphere (dew point: less than −60 ° C.), the two MXene electrodes prepared as described above are opposed to each other as a cathode and an anode inside the cell body, with a separator film interposed therebetween. The battery was placed, the electrolyte was filled in the cell body, the package was sealed with a coin caulking machine, and an electrochemical capacitor for evaluating a power storage device was assembled.
 ・キャパシタ特性評価
 上記で組み立てた電気化学キャパシタに外部電極を接続し、Bio-Logic Science Instruments SAS社製の電気化学計測装置VMPおよびソフトウェア EC-Lab V11.20を用いて、電圧走査速度を種々に設定し、キャパシタ特性としてエネルギー密度およびパワー密度を測定した。結果を表3に示す。
・ Evaluation of capacitor characteristics By connecting external electrodes to the electrochemical capacitor assembled above, using the electrochemical measurement device VMP manufactured by Bio-Logic Science Instruments SAS and software EC-Lab V11.20, the voltage scanning speed was varied. After setting, the energy density and the power density were measured as the capacitor characteristics. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 カソードに使用したMXene(Ti)電極は、直径7mm、厚さ5μm、比重2.3g/cmおよび質量0.36mgであり、アノードに使用したMXene(Ti)電極は、直径12mm、厚さ4μm、比重2.2g/cmおよび質量0.1mgであった(これらの質量比は、ほぼ3:1であった)こと、電解液として、溶媒であるEiPSに電解質であるEMI-TFSI(キシダ化学株式会社、製品番号:ILD-28294)を1モル/L(全体基準)のモル濃度で混合してなる混合物を使用したこと以外は、実施例3と同様にして、電気化学キャパシタを組み立てて、キャパシタ特性としてエネルギー密度およびパワー密度を測定した。結果を表4に示す。
(Example 4)
The MXene (Ti 3 C 2 T s ) electrode used for the cathode had a diameter of 7 mm, a thickness of 5 μm, a specific gravity of 2.3 g / cm 3 and a mass of 0.36 mg, and the MXene (Ti 3 C 2 T s) used for the anode ) The electrode had a diameter of 12 mm, a thickness of 4 μm, a specific gravity of 2.2 g / cm 3 and a mass of 0.1 mg (the mass ratio was approximately 3: 1), and was a solvent as an electrolyte. Example 3 was the same as Example 3 except that EiPS was mixed with an electrolyte EMI-TFSI (Kishida Chemical Co., Ltd., product number: ILD-28294) at a molar concentration of 1 mol / L (overall standard). Similarly, an electrochemical capacitor was assembled, and energy density and power density were measured as capacitor characteristics. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例1)
 MXene(Ti)電極(アノードおよびカソード)の直径を3.86mmとしたこと、カソードに使用したMXene電極の質量は0.082mgであり、アノードに使用したMXene電極の質量は0.087mgであった(これらの質量比は、ほぼ1:1であった)こと、電解液として、エチレンカーボネート(EC)(Shigma Aldrich社製、製品番号676802-1L)およびジエチルカーボネート(DEC)(Shigma Aldrich社製、製品番号517135)の混合溶媒(体積比 EC:DEC=3:7)に電解質であるLi-TFSI(Shigma Aldrich社製、製品番号544094)を1モル/L(全体基準)のモル濃度で混合してなる混合物を使用したこと以外は、実施例1と同様にして、電気化学キャパシタを組み立てて、キャパシタ特性としてエネルギー密度およびパワー密度を測定した。結果を表5に示す。
(Comparative Example 1)
The diameter of the MXene (Ti 3 C 2 T s ) electrode (anode and cathode) was 3.86 mm, the mass of the MXene electrode used for the cathode was 0.082 mg, and the mass of the MXene electrode used for the anode was 0 0.087 mg (these mass ratios were approximately 1: 1), and ethylene carbonate (EC) (manufactured by Shigma Aldrich, product number 676802-1L) and diethyl carbonate (DEC) ( To a mixed solvent (volume ratio EC: DEC = 3: 7) of Shigma Aldrich, product number 517135) was added 1 mol / L (total basis) of Li-TFSI (electrode, product number 544094) as an electrolyte. An electrochemical capacitor was assembled in the same manner as in Example 1 except that a mixture obtained by mixing at a molar concentration was used. The density and power density were measured. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~5から理解されるように、比較例1に比べて、実施例1~4のほうが、同じ電圧走査速度において、より大きいエネルギー密度およびパワー密度を得ることができ、特に、電極活物質単位質量あたりエネルギー密度(Wh/L)およびパワー密度(W/L)より電極活物質単位体積あたりエネルギー密度(Wh/L)およびパワー密度(W/L)にて大きい値を得ることができた。例えば、電圧走査速度5mV/sの場合、比較例1では7Wh/Lのエネルギー密度および64W/Lのパワー密度であったのに対して、実施例1~4にて47Wh/L、65Wh/L、15Wh/Lおよび11Wh/Lのエネルギー密度および251W/L、484W/L、97W/Lおよび87W/Lのパワー密度を得ることができた。また例えばエネルギー密度の最大値に着目した場合、比較例1ではエネルギー密度の最大は12Wh/Lであったのに対して、実施例1~3ではエネルギー密度の最大は49Wh/L、65Wh/Lおよび17Wh/Lであった。 As can be understood from Tables 1 to 5, Examples 1 to 4 can obtain higher energy density and power density at the same voltage scanning speed as compared with Comparative Example 1, and particularly, the electrode active material. A larger value was obtained in the energy density per unit volume of the electrode active material (Wh / L) and the power density (W / L) than the energy density per unit mass (Wh / L) and the power density (W / L). . For example, when the voltage scanning speed is 5 mV / s, the energy density of 7 Wh / L and the power density of 64 W / L in Comparative Example 1 are 47 Wh / L and 65 Wh / L in Examples 1 to 4. , 15 Wh / L and 11 Wh / L and power densities of 251 W / L, 484 W / L, 97 W / L and 87 W / L. For example, when focusing on the maximum value of the energy density, the maximum of the energy density is 12 Wh / L in Comparative Example 1, whereas the maximum of the energy density is 49 Wh / L and 65 Wh / L in Examples 1 to 3. And 17 Wh / L.
 従来の電気化学キャパシタにおいて使用される電極活物質のうち、低温~高温で動作でき、キャパシタを構成する部材の材料の選択自由度に優れるものとしては活性炭が挙げられる。しかしながら、活性炭では、このように大きいエネルギー密度およびパワー密度を得ることは難しい。例えば、カソードおよびアノードの双方の電極活物質に活性炭を使用した電気化学キャパシタのキャパシタ特性を電圧走査速度5mV/sで評価した場合、エネルギー密度は、大きくても10Wh/L未満であり得、パワー密度は、大きくても100W/L未満であり得る。 活性 Among the electrode active materials used in conventional electrochemical capacitors, activated carbon can be operated at a low temperature to a high temperature and has a high degree of freedom in selecting materials for members constituting the capacitor. However, with activated carbon, it is difficult to obtain such a large energy density and power density. For example, when the capacitor characteristics of an electrochemical capacitor using activated carbon for both the cathode and anode electrode active materials are evaluated at a voltage scanning rate of 5 mV / s, the energy density can be at most less than 10 Wh / L, The density can be at most less than 100 W / L.
 本発明の電気化学キャパシタは、蓄電デバイス等として幅広く様々な分野に利用可能であるが、これに限定されない。 電 気 The electrochemical capacitor of the present invention can be used in a wide variety of fields as a power storage device or the like, but is not limited thereto.
 本願は、2018年6月28日付けで米国特許商標庁に仮出願された米国出願No. 62/691,158に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。 This application claims the benefit of U.S. Application No. 62 / 691,158, which was provisionally filed with the United States Patent and Trademark Office on June 28, 2018, the entire contents of which are hereby incorporated by reference. Incorporated.
  1a、1b、1c Mn+1
  3a、5a、3b、5b、3c、5c 修飾または終端T
  7a、7b、7c MXene層
  10 MXene(層状材料)
  11 容器(セル)
  13 非水電解液
  15a カソード
  15b アノード
  17 セパレータ
  20 電気化学キャパシタ
  A、B 端子
1a, 1b, 1c M n + 1 X n layer 3a, 5a, 3b, 5b, 3c, 5c Modification or termination T
7a, 7b, 7c MXene layer 10 MXene (layered material)
11 containers (cells)
13 Non-aqueous electrolyte 15a Cathode 15b Anode 17 Separator 20 Electrochemical capacitor A, B terminal

Claims (3)

  1.  カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
     前記カソードおよび前記アノードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
      Mn+1
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1、2または3である)
    で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
     前記電解液が、溶媒としてガンマブチロラクトンと、電解質としてリチウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む、電気化学キャパシタ。
    An electrochemical capacitor in which a cathode and an anode are spaced apart in an electrolyte,
    The cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula:
    M n + 1 X n
    Wherein M is at least one Group 3, 4, 5, 6, 7 metal;
    X is a carbon atom, a nitrogen atom or a combination thereof;
    n is 1, 2 or 3)
    And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the group consisting of:
    An electrochemical capacitor, wherein the electrolytic solution contains gamma-butyrolactone as a solvent and at least one of lithium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as an electrolyte.
  2.  カソードおよびアノードが電解液中に離間して配置された電気化学キャパシタであって、
     前記カソードおよび前記アノードが、電極活物質として、複数の層を含む層状材料であって、各層が、以下の式:
      Mn+1
     (式中、Mは、少なくとも1種の第3、4、5、6、7族金属であり、
      Xは、炭素原子、窒素原子またはそれらの組み合わせであり、
      nは、1、2または3である)
    で表され、かつ、各XがMの八面体アレイ内に位置する結晶格子を有し、各層の互いに対向する2つの表面の少なくとも一方に、水酸基、フッ素原子、酸素原子および水素原子からなる群より選択される少なくとも1種の修飾または終端Tを有する層状材料を含み、
     前記電解液が、溶媒としてエチルイソプロピルスルホンと、電解質としてナトリウムビス(トリフルオロメタンスルホニル)イミドおよび1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドの少なくとも一方とを含む、電気化学キャパシタ。
    An electrochemical capacitor in which a cathode and an anode are spaced apart in an electrolyte,
    The cathode and the anode are layered materials including a plurality of layers as an electrode active material, and each layer has the following formula:
    M n + 1 X n
    Wherein M is at least one Group 3, 4, 5, 6, 7 metal;
    X is a carbon atom, a nitrogen atom or a combination thereof;
    n is 1, 2 or 3)
    And each X has a crystal lattice located in an octahedral array of M, and at least one of two opposing surfaces of each layer has a group consisting of a hydroxyl group, a fluorine atom, an oxygen atom, and a hydrogen atom A layered material having at least one modification or termination T selected from the group consisting of:
    An electrochemical capacitor, wherein the electrolytic solution contains ethyl isopropyl sulfone as a solvent and at least one of sodium bis (trifluoromethanesulfonyl) imide and 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as an electrolyte.
  3.  前記式Mn+1が、Ti、TiCおよびVCからなる群より選択されるいずれかである、請求項1または2に記載の電気化学キャパシタ。 3. The electrochemical capacitor according to claim 1, wherein the formula M n + 1 X n is any one selected from the group consisting of Ti 3 C 2 , Ti 2 C and V 2 C. 4.
PCT/JP2019/024290 2018-06-28 2019-06-19 Electrochemical capacitor WO2020004173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862691158P 2018-06-28 2018-06-28
US62/691,158 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004173A1 true WO2020004173A1 (en) 2020-01-02

Family

ID=68985019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024290 WO2020004173A1 (en) 2018-06-28 2019-06-19 Electrochemical capacitor

Country Status (1)

Country Link
WO (1) WO2020004173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501645B2 (en) 2020-09-02 2024-06-18 株式会社村田製作所 Conductive two-dimensional particles and their manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124427A1 (en) * 2011-03-17 2012-09-20 太陽誘電株式会社 Nonaqueous electrolyte solution for electric double layer capacitors
JP2014225574A (en) * 2013-05-16 2014-12-04 住友電気工業株式会社 Capacitor and charge and discharge method thereof
JP2016521006A (en) * 2013-04-24 2016-07-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrochemical supercapacitor device produced from an electrolyte solution comprising at least one salt produced from an alkali element other than lithium as the conductive salt
JP2017076739A (en) * 2015-10-16 2017-04-20 国立大学法人 東京大学 Method for manufacturing electrode material for electrochemical capacitor including layer compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124427A1 (en) * 2011-03-17 2012-09-20 太陽誘電株式会社 Nonaqueous electrolyte solution for electric double layer capacitors
JP2016521006A (en) * 2013-04-24 2016-07-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Electrochemical supercapacitor device produced from an electrolyte solution comprising at least one salt produced from an alkali element other than lithium as the conductive salt
JP2014225574A (en) * 2013-05-16 2014-12-04 住友電気工業株式会社 Capacitor and charge and discharge method thereof
JP2017076739A (en) * 2015-10-16 2017-04-20 国立大学法人 東京大学 Method for manufacturing electrode material for electrochemical capacitor including layer compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501645B2 (en) 2020-09-02 2024-06-18 株式会社村田製作所 Conductive two-dimensional particles and their manufacturing method

Similar Documents

Publication Publication Date Title
Dong et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors
He et al. Effective strategies for long-cycle life lithium–sulfur batteries
Wang et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
WO2018066549A1 (en) Electrochemical capacitor
WO2019135315A1 (en) Solid electrolyte material and battery
US10217571B2 (en) High energy density hybrid pseudocapacitors and method of making and using the same
JP5273256B2 (en) Non-aqueous electrolyte and metal-air battery
KR20110031414A (en) Magnesium ion-containing nonaqueous electrolyte solution and electrochemical device using the same
JPH0613110A (en) Method for inserting alalkali metal into material of secondary electrochemical battery and highly graphitized carbon electrode
US20120050950A1 (en) Lithium ion capacitor
Samantaray et al. Unleashing recent electrolyte materials for next-generation supercapacitor applications: a comprehensive review
WO2022038835A1 (en) Lithium secondary battery
WO2014021044A1 (en) Heat-tolerant battery and charging/discharging method thereof
WO2014083951A1 (en) Molten salt battery and method for manufacturing same
WO2020179585A1 (en) Electrochemical capacitor
WO2019181526A1 (en) Electrochemical capacitor
WO2021124958A1 (en) Electrochemical capacitor
US11271204B2 (en) Active material for fluoride-ion secondary battery and fluoride-ion secondary battery using same
WO2020004173A1 (en) Electrochemical capacitor
US20210233719A1 (en) Electrochemical capacitor
WO2019021522A1 (en) Semisolid electrolyte solution, semisolid electrolyte, semisolid electrolyte layer, and secondary battery
JPH1097956A (en) Electric double-layer capacitor
WO2022054338A1 (en) Lithium secondary battery
WO2023042262A1 (en) Lithium secondary battery
WO2021177382A1 (en) Positive electrode material and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP