WO2020004166A1 - Variable-capacity compressor - Google Patents

Variable-capacity compressor Download PDF

Info

Publication number
WO2020004166A1
WO2020004166A1 PCT/JP2019/024241 JP2019024241W WO2020004166A1 WO 2020004166 A1 WO2020004166 A1 WO 2020004166A1 JP 2019024241 W JP2019024241 W JP 2019024241W WO 2020004166 A1 WO2020004166 A1 WO 2020004166A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
drive shaft
port
supply passage
Prior art date
Application number
PCT/JP2019/024241
Other languages
French (fr)
Japanese (ja)
Inventor
田口 幸彦
清人 菊池
Original Assignee
サンデン・オートモーティブコンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブコンポーネント株式会社 filed Critical サンデン・オートモーティブコンポーネント株式会社
Publication of WO2020004166A1 publication Critical patent/WO2020004166A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block

Definitions

  • the present invention relates to a variable displacement compressor used for, for example, an air conditioner for a vehicle.
  • a second control valve that adjusts an opening degree of a pressure release passage that discharges a refrigerant in a crank chamber to a suction chamber includes a valve chamber that receives pressure in the crank chamber and a pressure supply.
  • the end surface of the partition member opposite to the end wall of the partition member abuts against the wall surface of the valve chamber opposite to the back pressure chamber, and the valve portion of the spool is opposite to the back pressure chamber of the valve chamber.
  • the pressure receiving portion of the spool comes into contact with the end wall of the partition member.
  • the configuration of the second control valve is such that a back pressure chamber that receives the pressure of the pressure supply passage and a valve chamber that receives the pressure of the crank chamber are partitioned.
  • the pressure receiving section is provided in the chamber, and the valve section is provided in the valve chamber.
  • the length of the second control valve along the axial direction of the drive shaft becomes longer, and it is necessary to provide a dedicated storage chamber for disposing the second control valve inside the variable displacement compressor.
  • the length of the variable displacement compressor along the axial direction of the shaft becomes long.
  • the present invention has been made in view of the above problems, and has an object to provide a variable displacement compressor that can suppress an increase in size in a direction along an axial direction of a drive shaft. I do.
  • one embodiment of the present invention is to change the pressure in the crank chamber by adjusting the opening degree of a first control valve that changes the opening degree of a supply passage that supplies the refrigerant in the discharge chamber to the crank chamber. Then, the stroke of the piston is adjusted by changing the inclination angle of the swash plate. Further, the compressor is a variable displacement compressor that compresses the refrigerant sucked from the suction chamber into the cylinder bore by the stroke-adjusted piston and discharges the refrigerant to the discharge chamber.
  • variable capacity compressor is arranged on a side closer to the crank chamber than the first control valve in the supply passage, the second control valve for adjusting the opening degree of the discharge passage that connects the crank chamber and the suction chamber,
  • a check valve for preventing the refrigerant from moving from the crank chamber to the first control valve is provided.
  • the variable displacement compressor includes a throttle passage that communicates a supply passage between the first control valve and the check valve with the suction chamber.
  • the second control valve has a valve chamber disposed between one end of the drive shaft and the valve plate in the center bore, and a valve body accommodated in the valve chamber so as to be movable in the axial direction of the drive shaft. .
  • the valve chamber has a first wall arranged on one side in the moving direction of the valve body, a second wall arranged on the other side in the moving direction of the valve body, and a first wall in the supply passage which is opened on the first wall. It has a first port communicating with the area between the control valve and the check valve.
  • the valve chamber opens to the second wall surface and communicates with the crank chamber through a part of the discharge passage, and the suction chamber opens to the second wall surface and communicates through a part of the discharge passage.
  • a third port that communicates with the The valve body has a first pressure receiving surface that is a surface facing the first wall surface, and a second pressure receiving surface that is a surface facing the second wall surface, and is provided between the first control valve and the check valve in the supply passage. It moves between the first wall surface and the second wall surface according to the difference between the pressure in the region and the pressure in the crankcase.
  • the valve body contacts the second wall surface to close the second port and the third port. By doing so, the opening degree of the discharge passage is minimized.
  • the valve body separates from the second wall surface and opens the second port and the third port. By doing so, the opening degree of the discharge passage is maximized.
  • a portion of the center bore between one end of the drive shaft and the valve plate is a valve chamber, and the valve chamber has a pressure in a region between the first control valve and the check valve in the supply passage. And a valve element that moves according to the difference between the pressure and the pressure in the crank chamber.
  • FIG. 2 is an enlarged view of a range surrounded by a line II in FIG. 1. It is a figure showing the structure of a valve room.
  • FIG. 4 is a sectional view taken along line IV-IV of FIG. 3. It is a figure showing the structure of a valve element. It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. It is a figure showing the modification of a 1st embodiment.
  • the first embodiment described below exemplifies a configuration for embodying the technical idea of the present invention
  • the technical idea of the present invention is based on the materials of components, their shapes, The structure, arrangement, etc. are not specified as follows.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • the directions “left and right” and “up and down” in the following description are simply definitions for convenience of description, and do not limit the technical idea of the present invention. Therefore, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course.
  • variable displacement compressor 1 includes a cylinder block 2, a front housing 3, a valve plate 4, a cylinder head 5, a drive shaft 6, a supply passage 7, a discharge passage 8, A first control valve 9 and a second control valve 10 are provided.
  • the upper side in FIG. 1 is the upper side in the vertical direction.
  • the lower part in FIG. 1 is the lower part in the vertical direction.
  • variable displacement compressor 1 is configured as a clutchless variable displacement compressor applied to an air conditioner system (air conditioner system) for a vehicle (vehicle).
  • air conditioner system air conditioner system
  • vehicle vehicle
  • the cylinder block 2, the front housing 3, the valve plate 4, and the cylinder head 5 are fastened by through bolts 11 via a gasket (not shown) to form a housing of the variable displacement compressor 1.
  • a plurality of cylinder bores 21 and one center bore 22 are defined in the cylinder block 2.
  • the plurality of cylinder bores 21 are arranged annularly.
  • a piston 23 is housed inside the cylinder bore 21.
  • the center bore 22 is arranged radially inside the plurality of annularly arranged cylinder bores 21 at the center, and is a space penetrating the cylinder block 2.
  • the front housing 3 closes one end side (front side; left side in FIG. 1) of the cylinder block 2.
  • the front housing 3 defines a crank chamber 30 together with the cylinder block 2.
  • the crank chamber 30 is a space formed by the front housing 3 and the cylinder block 2, and has a swash plate 31 disposed therein.
  • the drive shaft 6 is disposed inside the crank chamber 30 so that the axial direction thereof is horizontal.
  • the swash plate 31 is formed in an annular shape and surrounds the drive shaft 6 from the radial direction.
  • the swash plate 31 is connected to a rotor 32 fixed to the drive shaft 6 via a link mechanism 33, and rotates together with the drive shaft 6. That is, the rotor 32 is fixed to the drive shaft 6 and rotates integrally with the drive shaft 6. Further, the swash plate 31 can change the inclination angle (inclination angle) with respect to the axis of the drive shaft 6.
  • the link mechanism 33 includes a first arm 33a, a second arm 33b, and a link arm 33c. The first arm 33a protrudes from a surface of the rotor 32 facing the swash plate 31.
  • the second arm 33b protrudes from a surface of the swash plate 31 facing the rotor 32.
  • One end of the link arm 33c is rotatably connected to the first arm 33a via a first connection pin 33d.
  • the other end of the link arm 33c is rotatably connected to the second arm 33b via a second connection pin 33e.
  • the swash plate 31 is formed with a through hole 34 in such a shape that the swash plate 31 can be tilted within the range of the maximum tilt angle and the minimum tilt angle.
  • the through-hole 34 is formed with a minimum inclination restricting portion (not shown) that contacts the drive shaft 6.
  • the minimum inclination restricting unit can displace the swash plate 31 by approximately 0 [°]. It is formed to be possible. Also, when the inclination angle of the swash plate 31 is maximized, the swash plate 31 comes into contact with the rotor 32 and the increase of the inclination angle is restricted.
  • an inclination-reducing spring 35 that urges the swash plate 31 in the direction of decreasing the inclination until the swash plate 31 has the minimum inclination.
  • a tilt-increase spring 37 that urges the swash plate 31 in a direction to increase the tilt angle is mounted.
  • the urging force of the inclination increasing spring 37 at the minimum inclination is set to be larger than the urging force of the inclination decreasing spring 35. Therefore, when the drive shaft 6 is not rotating, the inclination angle of the swash plate 31 is an angle at which the urging force of the inclination decreasing spring 35 and the urging force of the inclination increasing spring 37 are balanced.
  • the outer peripheral portion of the swash plate 31 is accommodated in an inner space formed at an end of the piston 23 that protrudes toward the crank chamber 30 side.
  • the swash plate 31 is configured to interlock with the piston 23 via the pair of shoes 38. Accordingly, the rotation of the swash plate 31 accompanying the rotation of the drive shaft 6 causes each piston 23 to reciprocate inside the accommodated cylinder bore 21. That is, the swash plate 31 and the shoe 38 form a conversion mechanism that converts the rotation of the drive shaft 6 into a reciprocating motion of the piston 23.
  • the piston 23 is disposed in each of the plurality of cylinder bores 21 and reciprocates in the axial direction of the drive shaft 6.
  • the swash plate 31 is connected to the rotor 32 and is slidably attached to the drive shaft 6 such that the swash plate 31 rotates in synchronization with the rotor 32 and has a variable inclination angle with respect to the axis of the drive shaft 6.
  • the valve plate 4 is provided between the cylinder block 2 and the cylinder head 5. One surface of the valve plate 4 closes the other end side (the right side in FIG. 1) of the cylinder block 2 so that each cylinder bore 21 is closed. It is closed. Further, a discharge hole 41 and a suction hole 42 are formed in the valve plate 4. The discharge hole 41 and the suction hole 42 communicate with the respective cylinder bores 21. That is, the valve plate 4 closes the other end side (rear side, right side in FIG. 1) of the cylinder block 2, and has a discharge hole 41 and a suction hole 42 communicating with the cylinder bore 21.
  • the cylinder head 5 is provided to face the cylinder block 2 with the valve plate 4 interposed therebetween. That is, the cylinder head 5 is provided on the other end side of the cylinder block 2 via the valve plate 4. Further, the cylinder head 5 is formed with a suction chamber 51 and a discharge chamber 52 partitioned inside the cylinder head 5. The suction chamber 51 and the discharge chamber 52 are closed by the other surface of the valve plate 4. The suction chamber 51 is disposed at the center of the cylinder head 5 when viewed from the axial direction of the drive shaft 6.
  • the suction chamber 51 is connected to a suction side external refrigerant circuit of the air conditioner system via a suction port 53 and a suction passage 54, and a low pressure side refrigerant (refrigerant gas) from the suction side external refrigerant circuit. Inhalation.
  • the suction chamber 51 communicates with each cylinder bore 21 via a suction hole 42 provided in the valve plate 4 and a suction valve (not shown).
  • the discharge chamber 52 is disposed at a position surrounding the suction chamber 51 in a ring shape when viewed from the axial direction of the drive shaft 6. That is, the discharge chamber 52 is annularly arranged outside the suction chamber 51.
  • the discharge chamber 52 communicates with each cylinder bore 21 via a discharge valve (not shown) and a discharge hole 41 provided in the valve plate 4.
  • the low-pressure side refrigerant drawn into the suction chamber 51 from the suction-side external refrigerant circuit is drawn into the cylinder bore 21 containing the piston 23 by the reciprocating motion of the piston 23.
  • the reciprocating motion of the piston 23 causes the piston 23 to be compressed to a high pressure and discharged to the discharge chamber 52. That is, the cylinder bore 21 and the piston 23 form a compression unit that compresses the refrigerant drawn into the suction chamber 51.
  • the discharge chamber 52 is connected to a discharge-side external refrigerant circuit of the air conditioning system via a discharge passage 55 and a discharge port 56.
  • the refrigerant discharged into the discharge chamber 52 and compressed by the compression unit is discharged as a high-pressure refrigerant (refrigerant gas) to the external refrigerant circuit on the discharge side via the discharge passage 55 and the discharge port 56.
  • a discharge check valve 57 is arranged between the discharge chamber 52 and the discharge passage 55.
  • the discharge check valve 57 operates in response to a pressure difference between the discharge chamber 52 (upstream) and the discharge passage 55 (downstream).
  • the discharge check valve 57 shuts off the space between the discharge chamber 52 and the discharge passage 55, and the refrigerant flows from the discharge passage 55 to the discharge chamber 52. Prevent movement.
  • the discharge check valve 57 makes the discharge chamber 52 and the discharge passage 55 communicate with each other. Therefore, the high-pressure side refrigerant discharged from the discharge chamber 52 to the discharge-side external refrigerant circuit through the discharge passage 55 and the discharge port 56 is prevented from flowing backward by the discharge check valve 57.
  • the drive shaft 6 is disposed inside the front housing 3 and the cylinder block 2, and both ends are rotatably supported by the front housing 3 and the cylinder block 2.
  • One end of the drive shaft 6 is inserted into the center bore 22.
  • a first slide bearing 61 is arranged between the drive shaft 6 and the center bore 22.
  • An end surface of the drive shaft 6 on the side facing the valve plate 4 is supported by an annular thrust plate 62.
  • the contact state (gap) between the drive shaft 6 and the thrust plate 62 is adjusted by the attachment state of the adjustment screw 63 to the cylinder block 2.
  • the adjusting screw 63 is formed in an annular shape, and has a male screw (not shown) formed on an outer diameter surface.
  • a female screw (not shown) that fits with a male screw formed on the adjustment screw 63 is formed.
  • the adjusting screw 63 is disposed inside the center bore 22 at a position closer to the valve plate 4 than the drive shaft 6 by fitting a male screw to the female screw of the center bore 22. Further, as shown in FIG. 4, the gap portion of the adjustment screw 63 is formed in a hexagonal shape.
  • the adjusting screw 63 is formed with a screw-side passage 63 a that allows a surface of the adjusting screw 63 facing the drive shaft 6 to communicate with an outer diameter surface of the adjusting screw 63.
  • the screw-side passage 63a is formed in a shape in which a part of a surface of the adjusting screw 63 facing the drive shaft 6 is cut away when viewed from the axial direction of the drive shaft 6. Therefore, a portion of the surface of the adjusting screw 63 facing the drive shaft 6 where the screw side passage 63 a is not formed is in contact with the thrust plate 62.
  • a part of the other end of the drive shaft 6 projects outside the front housing 3 and is connected to a power transmission device (not shown).
  • the power transmission device is connected to a driving force generating source (not shown) such as an engine via a belt. Therefore, when the driving force generated by the driving force generation source is transmitted to the power transmission device, the drive shaft 6 can rotate in synchronization with the rotation of the power transmission device.
  • a second sliding bearing 64 and a shaft sealing device 65 are arranged between the drive shaft 6 and the front housing 3.
  • the second sliding bearing 64 supports the drive shaft 6 rotatably in the radial direction. Further, a load in the thrust direction toward the other end of the drive shaft 6 is supported by a thrust bearing 66 via the rotor 32.
  • the connected body formed by the drive shaft 6 and the rotor 32 is supported by the first sliding bearing 61 and the second sliding bearing 64 so as to be rotatable in the radial direction, and the thrust plate 62 and the thrust bearing 66 provide thrust. It is supported so that it can rotate in the direction.
  • One end (rear side) of the drive shaft 6 is inserted into the center bore 22 and supported by the cylinder block 2, and the other end (front side) of the drive shaft 6 is supported by the front housing 3.
  • the shaft sealing device 65 blocks the inside of the crank chamber 30 from the external space. Note that lubricating oil (not shown) is sealed inside the variable capacity compressor 1 and the oil is stirred when the drive shaft 6 rotates.
  • lubricating oil (not shown) is sealed inside the variable capacity compressor 1 and the oil is stirred when the drive shaft 6 rotates.
  • the supply passage 7 communicates the discharge chamber 52 with the crank chamber 30 and is a path for supplying the refrigerant in the discharge chamber 52 to the crank chamber 30.
  • the supply passage 7 includes a head-side supply passage forming portion 71, a plate-side supply passage forming portion 72, and a block-side supply passage forming portion 73.
  • the head-side supply passage forming portion 71 is a passage formed in the cylinder head 5 in the supply passage 7, and a portion of the supply passage 7 for discharging the refrigerant supplied from the discharge chamber 52 and a plate-side supply passage formation portion.
  • the section 72 is communicated with the section 72.
  • the plate-side supply passage forming portion 72 is a portion of the supply passage 7 formed in the valve plate 4, and communicates the head-side supply passage forming portion 71 with the valve chamber 100.
  • a throttle passage 74 that connects the plate-side supply passage forming portion 72 of the supply passage 7 with the suction chamber 51 is formed. A detailed description of the valve chamber 100 will be described later.
  • the block-side supply passage forming portion 73 is a passage formed in the cylinder block 2 in the supply passage 7 and communicates the plate-side supply passage forming portion 72 with the crank chamber 30. Further, a part of the block-side supply passage forming portion 73 communicates with the center bore 22.
  • a check valve 75 is disposed at an end of the block-side supply passage forming portion 73 on the side of the crank chamber 30. That is, the throttle passage 74 allows the supply passage between the first control valve 9 and the check valve 75 to communicate with the suction chamber 51.
  • the check valve 75 operates in response to a pressure difference between the supply passage between the first control valve 9 (upstream side) and the check valve 75 and the crank chamber 30 (downstream side).
  • the check valve 75 establishes a connection between the crank chamber 30 and the first control valve 9. It shuts off and prevents the movement of the refrigerant from the crank chamber 30 to the first control valve 9.
  • the check valve 75 establishes a connection between the first control valve 9 and the crank chamber 30.
  • the check valve 75 is disposed closer to the crank chamber 30 than the first control valve 9 in the supply passage 7 and prevents the refrigerant from moving from the crank chamber 30 to the first control valve 9.
  • the discharge passage 8 connects the crank chamber 30 and the suction chamber 51 and is a path for discharging the refrigerant in the crank chamber 30 to the suction chamber 51. Further, the discharge passage 8 includes an in-shaft passage 81, a block-side discharge passage forming portion 82, and a plate-side discharge passage forming portion 83.
  • the in-shaft passage 81 is a passage formed in the drive shaft 6 in the discharge passage 8. That is, a part of the discharge passage 8 is formed inside the drive shaft 6.
  • One end of the in-shaft passage 81 is open to the side surface of the drive shaft 6 and communicates with the crank chamber 30.
  • the other end of the in-shaft passage 81 is open at the end face of the drive shaft 6 on the side facing the valve plate 4, and communicates with a part of the center bore 22 via a screw-side passage 63 a, and has an adjusting screw 63. It communicates with a part of the valve chamber 100 via the gap. Therefore, the discharge passage 8 includes a part of the valve chamber 100.
  • the shaft passage 81 communicates the crank chamber 30 with the region of the center bore 22 on the valve plate 4 side.
  • the block-side discharge passage forming portion 82 is a passage formed in the cylinder block 2 of the discharge passage 8, and includes a throttle 82a, an expansion portion 82b, and a discharge portion 82c.
  • the throttle 82a is formed in a shape in which a part of the surface of the cylinder block 2 that faces the valve plate 4 is cut away, and always communicates the in-shaft passage 81 and the expansion portion 82b.
  • the extension portion 82b is a passage formed between the cylinder bore 21 and the center bore 22 in the cylinder block 2, and communicates the throttle 82a with the discharge portion 82c. That is, the expansion portion 82b of the discharge passage 8 is provided at a position closer to the crank chamber 30 than the valve chamber 100, communicates with the third port P3, and has a larger flow path cross-sectional area than the third port P3. .
  • the description of the third port P3 will be described later.
  • the discharge portion 82c is a passage formed in the cylinder block 2 at a position farther from the crank chamber 30 than the expansion portion 82b, and communicates the expansion portion 82b with the plate-side discharge passage formation portion 83.
  • the discharge portion 82c of the discharge passage 8 is disposed outside of the valve chamber 100 in the radial direction (radial direction of the drive shaft 6) as viewed from the axial direction of the drive shaft 6, and the expansion portion 82b and the suction chamber 51 And the cross-sectional area of the flow path is smaller than that of the expanded portion 82b.
  • the block-side discharge passage forming portion 82 is formed, for example, by closing an opening of the expansion portion 82b on the crank chamber 30 side with the closing member 84 in the center bore 22.
  • the plate-side discharge passage forming portion 83 is an opening formed in the valve plate 4 of the discharge passage 8 and communicates the discharge portion 82 c with the suction chamber 51.
  • the first control valve 9 connects the discharge chamber 52 and the crank chamber 30 inside the cylinder head 5, and is disposed in the supply passage 7. Further, the first control valve 9 can adjust the opening degree (cross-sectional area) of the supply passage 7. By adjusting the opening degree of the supply passage 7 by the first control valve 9, it is possible to control the amount of refrigerant introduced from the discharge chamber 52 to the crank chamber 30. Therefore, by adjusting the opening degree of the supply passage 7 by the first control valve 9 to change the pressure of the crank chamber 30 and change the inclination angle of the swash plate 31, the stroke of the piston 23 can be changed. It becomes. When the stroke of the piston 23 is changed, the discharge capacity (flow rate of the discharged refrigerant) of the variable displacement compressor 1 can be variably controlled.
  • variable displacement compressor 1 changes the inclination of the swash plate 31 by changing the pressure of the crank chamber 30 by adjusting the opening of the first control valve 9, and adjusts the stroke of the piston 23. Further, the variable displacement compressor 1 compresses the refrigerant drawn into the cylinder bore 21 from the suction chamber 51 by the piston 23 whose stroke has been adjusted, and discharges the compressed refrigerant to the discharge chamber 52. For example, when the air conditioner is operating, that is, when the variable displacement compressor 1 is operating, the energization amount of the solenoid built in the first control valve 9 is adjusted based on a signal received from outside. You. Thus, the discharge displacement of the variable displacement compressor 1 is variably controlled so that the pressure in the suction chamber 51 becomes a predetermined value.
  • the first control valve 9 can control the suction pressure to an optimum value according to the external environment. Also, for example, when the air conditioner is not operating, that is, when the variable displacement compressor 1 is not operating, the supply passage 7 is forcibly opened by not energizing the solenoid built in the first control valve 9. Then, the discharge displacement of the variable displacement compressor 1 is controlled to a minimum.
  • the second control valve 10 is housed in the center bore 22 between the one end of the drive shaft 6 and the valve plate 4, and is movably accommodated in the valve room 100 along the axial direction of the drive shaft 6.
  • the valve element 110 is provided.
  • the valve chamber 100 is formed by a part of the center bore 22 on the side closer to the valve plate 4. Further, the valve chamber 100 is a space disposed between the one end of the drive shaft 6 and the valve plate 4 in the center bore 22 as shown in FIG. One end of the drive shaft 6 is an end on the side facing the valve plate 4. Further, the valve chamber 100 has a first wall surface 101, a second wall surface 102, a peripheral wall surface 103, a first port P1, a second port P2, and a third port P3. Communicates with the other end.
  • a passage is formed between the valve chamber 100 and the in-shaft passage 81 by a gap part of the thrust plate 62 and a gap part of the adjustment screw 63.
  • the inner diameter of the gap portion of the thrust plate 62 is larger than the inner diameter of the axial passage 81.
  • the inner diameter of the gap of the adjusting screw 63 is larger than the inner diameter of the gap of the thrust plate 62.
  • the first wall surface 101 is a wall surface on the side closer to the valve plate 4 in the valve chamber 100, and constitutes a wall surface arranged on one side (rear side) in the moving direction of the valve body 110.
  • the suction valve forming plate 104 is a plate-shaped member arranged between the cylinder block 2 and the valve plate 4.
  • the second wall surface 102 is a wall surface facing the first wall surface 101 in the axial direction of the drive shaft 6, and constitutes a wall surface arranged on the other side (front side) in the moving direction of the valve element 110.
  • the first port P ⁇ b> 1 is an opening that opens to the first wall surface 101 and communicates a region between the first control valve 9 and the check valve 75 in the supply passage 7 with the valve chamber 100. That is, the first port P ⁇ b> 1 opens to the first wall surface 101 and communicates with a region in the supply passage 7 between the first control valve 9 and the check valve 75.
  • the second port P ⁇ b> 2 is an opening that opens to the second wall surface 102, and communicates the gap of the adjustment screw 63 with the valve chamber 100. That is, the second port P ⁇ b> 2 is an opening communicating with the crank chamber 30 through a part of the discharge passage 8. The second port P2 communicates with the crank chamber 30 via the shaft passage 81.
  • the second port P ⁇ b> 2 includes a region of the center bore 22 where the drive shaft 6 is arranged, when viewed from the axial direction of the drive shaft 6.
  • the third port P3 is an opening that opens to the second wall surface 102 and that allows the expansion portion 82b to communicate with the valve chamber 100. That is, the third port P3 is an opening communicating with the suction chamber 51 via a part of the discharge passage 8. As shown in FIG. 4, the third port P ⁇ b> 3 is disposed outside the area of the center bore 22 where the drive shaft 6 is disposed, when viewed from the axial direction of the drive shaft 6.
  • the peripheral wall surface 103 is a wall surface that connects the first wall surface 101 and the second wall surface 102, and is formed in an annular shape when viewed from the axial direction of the drive shaft 6.
  • a part of the peripheral wall surface 103 communicates with the block-side supply passage forming portion 73.
  • the supply passage 7 is formed in the cylinder block 2 through a path different from the valve chamber 100 and the center bore 22, and has a block-side supply path connected to the crank chamber 30 and the valve chamber 100.
  • the supply passage 7 is formed on the first wall surface 101 and connected to the plate-side supply passage connected to the valve chamber 100 via the first port P1, and to the plate-side supply passage and the first control valve 9. It has a head side supply passage.
  • valve body 110 is formed in a disk shape.
  • the valve chamber 100 can be formed using a necessary space, for example, in the operation of disposing the drive shaft 6 and the thrust plate 62 in the center bore 22 and attaching the adjusting screw 63 to the cylinder block 2. .
  • the valve chamber 100 is provided in the variable displacement compressor 1 instead of a space formed as a dedicated storage chamber for disposing the second control valve 10 (valve element 110) inside the variable displacement compressor 1.
  • This is a configuration that can be formed using an existing configuration.
  • a material for forming the valve body 110 for example, a metal material or a resin material can be used.
  • a resin material is used as a material for forming the valve body 110.
  • a resin material for example, a polyphenylene sulfide resin, a nylon (polyamide) resin, or the like can be used as the resin material.
  • the thickness direction of the valve body 110 is parallel to the axial direction of the drive shaft 6.
  • the thickness of the valve body 110 (the length in the left-right direction in FIGS. 1 and 5) is the length along the axial direction of the drive shaft 6 of the valve chamber 100 (the left-right direction in FIGS. 1 and 5). Length).
  • the valve body 110 includes a large diameter portion 110a and a small diameter portion 110b.
  • the large diameter portion 110a is located closer to the drive shaft 6 than the small diameter portion 110b.
  • the outer diameter of the large diameter portion 110a is smaller than the inner diameter of the peripheral wall surface 103.
  • a second concave portion 112a is formed on a second pressure receiving surface 112 which is a surface facing the drive shaft 6.
  • the bottom surface of the second concave portion 112a faces the axial passage 81 when viewed from the axial direction of the drive shaft 6.
  • a part of the second pressure receiving surface 112 where the second concave portion 112a is not formed faces the third port P3 and the throttle 82a when viewed from the axial direction of the drive shaft 6. Therefore, the second pressure receiving surface 112 is a surface facing the second wall surface 102.
  • the small diameter portion 110b is continuous with the large diameter portion 110a, and is disposed closer to the valve plate 4 than the large diameter portion 110a.
  • the outer diameter of the small diameter portion 110b is smaller than the outer diameter of the large diameter portion 110a.
  • the center of the circle formed by the small diameter portion 110b and the center of the circle formed by the large diameter portion 110a overlap when viewed from the axial direction of the drive shaft 6.
  • a first concave portion 111a is formed on a first pressure receiving surface 111 which is a surface facing the valve plate 4.
  • the bottom surface of the first recess 111a faces the first port P1 when viewed from the axial direction of the drive shaft 6. Therefore, the first pressure receiving surface 111 is a surface facing the first wall surface 101.
  • the valve element 110 includes the first pressure receiving surface 111 which is a surface facing the first wall surface 101 and the second pressure receiving surface 112 which is a surface facing the second wall surface 102.
  • variable displacement compressor 1 An example of the operation performed by the variable displacement compressor 1 of the first embodiment and the operation will be described with reference to FIGS. 1 to 5 and FIGS. 6 to 8.
  • the variable displacement compressor 1 when the rotor 32 and the swash plate 31 rotate by the rotation of the drive shaft 6, the rotation of the drive shaft 6 is converted into reciprocating motion of the piston 23 by the swash plate 31 and the shoe 38, and the cylinder bore 21 Compresses the refrigerant supplied to the inside.
  • the stroke of the piston 23 inside the cylinder bore 21 is changed by adjusting the opening degree of the supply passage 7 by the first control valve 9.
  • a valve body in which the first pressure receiving surface 111 faces the first wall surface 101 and the second pressure receiving surface 112 faces the second wall surface 102 in the valve chamber 100 provided in the cylinder block 2. 110 are accommodated.
  • the first control valve 9 When the opening of the supply passage 7 is controlled, when the first control valve 9 opens the supply passage 7, the first control valve 9 passes through the first port P ⁇ b> 1 that is applied to the first pressure receiving surface 111 including the first concave portion 111 a and passes through the valve chamber 100. The pressure of the refrigerant moving to increases. For this reason, the valve element 110 is pressed by the pressure of the refrigerant moving to the valve chamber 100 through the first port P ⁇ b> 1, and the valve element 110 moves in a direction away from the valve plate 4. Thereby, as shown in FIG. 6, the first pressure receiving surface 111 is separated from the first wall surface 101, and the second pressure receiving surface 112 is in contact with the second wall surface 102. In FIG. 6, the flow of the refrigerant is indicated by broken arrows.
  • the third port P3 is closed by the valve body 110, so that the crank chamber 30 and the suction chamber 51 communicate with each other via the throttle 82a of the discharge passage 8.
  • the opening degree of the discharge passage 8 is minimized. That is, when the first control valve 9 opens the supply passage 7, the pressure of the refrigerant moving to the valve chamber 100 through the first port P ⁇ b> 1 is higher than the pressure of the refrigerant in the second port P ⁇ b> 2.
  • it When it is raised, it contacts the second wall surface 102.
  • the in-shaft passage 81 and the expansion portion 82b are communicated only by the throttle 82a, and the opening of the discharge passage 8 is set to the minimum opening larger than zero.
  • the valve body 110 contacts the second wall surface 102 and the second port By closing P2 and the third port P3, the opening degree of the discharge passage 8 is minimized.
  • the throttle 82a provided in the discharge passage 8 always connects the second port P2 and the third port P3.
  • the valve body 110 opens the second wall surface. Move away from 102.
  • the opening degree of the discharge passage 8 is maximized by setting the interval between the valve body 110 and the second wall surface 102 to the maximum value. Therefore, when the pressure in the area between the first control valve 9 and the check valve 75 in the supply passage 7 is lower than the pressure in the crank chamber 30, the valve body 110 separates from the second wall surface 102 and By opening P2 and the third port P3, the opening degree of the discharge passage 8 is maximized.
  • valve body 110 When pressure is applied to the second pressure receiving surface 112 including the second concave portion 112a, the valve body 110 moves in a direction away from the drive shaft 6. When pressure is applied to the first pressure receiving surface 111 including the first concave portion 111a, the valve body 110 moves in a direction away from the valve plate 4. As described above, the valve body 110 is configured such that the first wall surface 101 and the second wall surface correspond to the difference between the pressure in the region between the first control valve 9 and the check valve 75 in the supply passage 7 and the pressure in the crank chamber 30. 102 along the axial direction of the drive shaft 6. Further, the outer peripheral surface of the large diameter portion 110a forms a guide surface when the valve element 110 moves inside the valve chamber 100.
  • the second control valve 10 is arranged in the discharge passage 8, and adjusts the opening degree of the discharge passage 8 according to a change in the pressure of the supply passage 7.
  • the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment.
  • Various changes can be made according to the design and the like within a range not departing from the technical idea.
  • a second control valve 10 for adjusting the opening degree of the discharge passage 8 includes a valve chamber 100 disposed between one end of the drive shaft 6 and the valve plate 4 in the center bore, and a drive shaft 6 connected to the valve chamber 100.
  • the valve body 110 is accommodated so as to be movable along the axial direction.
  • the valve body 110 comes into contact with the second wall surface 102 and By closing the second port P2 and the third port P3, the opening degree of the discharge passage 8 is minimized.
  • valve body 110 separates from the second wall surface 102 and the second By opening the port P2 and the third port P3, the opening degree of the discharge passage 8 is maximized.
  • the space between one end of the drive shaft 6 and the valve plate 4 in the center bore is defined as a valve chamber 100, and the valve body 110 is accommodated in the valve chamber 100, so that the second control unit is provided inside the variable displacement compressor 1. It is not necessary to provide a dedicated storage chamber for disposing the valve 10. As a result, it is possible to provide the variable displacement compressor 1 capable of suppressing an increase in the size of the drive shaft 6 in the axial direction.
  • the supply passage 7 is formed in the cylinder block 2 by a path different from the valve chamber 100 and the center bore 22, and has a block-side supply passage connected to the crank chamber 30 and the valve chamber 100.
  • the supply passage 7 is formed in the first wall surface 101 and connected to the plate-side supply passage connected to the valve chamber 100 via the first port P1, and to the plate-side supply passage and the first control valve 9. It has a head side supply passage.
  • the second port P2 includes an area of the center bore 22 where the drive shaft 6 is disposed, as viewed from the axial direction of the drive shaft 6.
  • the third port P ⁇ b> 3 is disposed outside the area of the center bore 22 where the drive shaft 6 is disposed, as viewed from the axial direction of the drive shaft 6.
  • the discharge passage 8 is provided at a position closer to the crank chamber 30 than the valve chamber 100, communicates with the third port P3, and has an expanded portion 82b having a larger flow path cross-sectional area than the third port P3.
  • the discharge passage 8 is disposed radially outside the valve chamber 100 when viewed from the axial direction of the drive shaft 6 to communicate the extended portion 82b and the suction chamber 51, and to flow more than the extended portion 82b. It has the discharge part 82c with a small road cross-sectional area. Further, the discharge portion 82c is provided at a position farther from the crank chamber 30 than the extension portion 82b.
  • the provision of the extension portion 82b allows the third port P3 to be easily connected to the suction chamber 51. It becomes possible.
  • the flow velocity of the refrigerant moving from the crank chamber 30 to the suction chamber 51 decreases, and the direction in which the refrigerant moves reverses, so that the oil contained in the refrigerant flows out to the suction chamber 51. Can be suppressed.
  • the discharge passage 8 is provided with a throttle 82a that constantly connects the second port P2 and the third port P3.
  • a throttle 82a that constantly connects the second port P2 and the third port P3.
  • the second port P2 communicates with the crank chamber 30 via an in-shaft passage 81 that opens on a surface of the drive shaft 6 facing the valve element 110.
  • the valve element 110 includes a second concave portion 112a which is a concave portion formed on the second pressure receiving surface 112, and the bottom surface of the second concave portion 112a faces the axial passage 81.
  • the valve body 110 includes a first concave portion 111a which is a concave portion formed on the first pressure receiving surface 111, and the bottom surface of the first concave portion 111a faces the first port P1.
  • a part of the discharge passage 8 is formed by the in-shaft passage 81 formed inside the drive shaft 6.
  • the present invention is not limited to this.
  • the drive shaft 6 may not be provided with the in-shaft passage 81.
  • a part of the discharge passage 8 is, for example, a gap formed between the drive shaft 6 and the first sliding bearing 61 (a gap secured for rotating the drive shaft 6) and a cylinder block. 2 may be formed by the block side discharge passage 85 formed.
  • the block-side discharge passage 85 is a passage that allows the center bore 22 to communicate with the expansion portion 82b. Note that, in FIG. 9, the flow of the refrigerant is indicated by broken-line arrows as in FIG.
  • SYMBOLS 1 Variable capacity compressor, 2 ... Cylinder block, 3 ... Front housing, 4 ... Valve plate, 5 ... Cylinder head, 6 ... Drive shaft, 7 ... Supply passage, 8 ... Discharge passage, 9 ... First control valve, 10 ... second control valve, 11 ... through bolt, 21 ... cylinder bore, 22 ... center bore, 23 ... piston, 30 ... crank chamber, 31 ... swash plate, 32 ... rotor, 33 ... link mechanism, 33a ... first arm, 33b ... Second arm, 33c link arm, 33d first connection pin, 33e second connection pin, 34 through hole, 35 inclination decreasing spring, 36 spring supporting member, 37 inclination increasing spring, 38 shoe 41 ...
  • valve chamber 101 ... first wall surface, 102 ... second wall surface, 103 ... peripheral wall surface, 104 ... suction valve forming plate
  • 110 valve element
  • 110a large diameter portion
  • 110b small diameter portion
  • 111 first pressure receiving surface
  • 111a first concave portion
  • 112 second pressure receiving surface
  • 112a second concave portion
  • P1 first port, P2 ... Second port, P3 ... No. Port

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

[Problem] To provide a variable-capacity compressor that makes it possible to curb any increase in size in a direction running along an axial direction of a drive shaft. [Solution] A variable-capacity compressor (1) where opening degree adjustment of a first control valve (9) for changing the opening degree of a supply channel (7) changes the pressure of a crankcase (30), thus adjusting the stroke of a piston (23), wherein a second control valve (10) includes: a valve chamber (100) arranged, out of a center bore (22), between one end of a drive shaft (6) and a valve plate (4), and a valve element (110) accommodated so as to be moveable along an axial direction of the drive shaft (6) to the valve chamber (100); and the valve element (110) moves between a first wall surface (101) where a first port (P1) opens and a second wall surface (102) where a second port (P2) and a third port (P3) open, in accordance with the difference between the pressure of a region between the first control valve (9) and a check valve (75) in the supply channel (7), and the pressure of the crankcase (30).

Description

可変容量圧縮機Variable capacity compressor
 本発明は、例えば、車両用の空調装置等に用いる可変容量圧縮機に関する。 The present invention relates to a variable displacement compressor used for, for example, an air conditioner for a vehicle.
 容量制御弁を備え、クランク室内の調圧によって吐出容量が制御される可変容量圧縮機としては、例えば、特許文献1に記載されている構成のものがある。
 特許文献1に記載されている可変容量圧縮機では、クランク室の冷媒を吸入室に排出する放圧通路の開度を調整する第二制御弁において、クランク室の圧力を受ける弁室と圧力供給通路の圧力を受ける背圧室とを区画する区画部材を備える。また、区画部材は、スプールの弁部を囲むように設けられた側壁と、側壁の一端側に接続してスプールの軸部が貫通する端壁を有する。そして、第二制御弁において区画部材の側壁の端壁と反対側の端面が弁室における背圧室と反対側の壁面と当接し、スプールの弁部が、弁室における背圧室と反対側の壁面に当接したときに、スプールの受圧部が区画部材の端壁と当接する。
As a variable displacement compressor which is provided with a displacement control valve and whose discharge displacement is controlled by regulating the pressure in a crank chamber, there is, for example, one having a configuration described in Patent Document 1.
In the variable displacement compressor described in Patent Literature 1, a second control valve that adjusts an opening degree of a pressure release passage that discharges a refrigerant in a crank chamber to a suction chamber includes a valve chamber that receives pressure in the crank chamber and a pressure supply. A partition member for partitioning the back pressure chamber receiving the pressure of the passage; The partition member has a side wall provided so as to surround the valve portion of the spool, and an end wall connected to one end of the side wall and through which a shaft portion of the spool passes. In the second control valve, the end surface of the partition member opposite to the end wall of the partition member abuts against the wall surface of the valve chamber opposite to the back pressure chamber, and the valve portion of the spool is opposite to the back pressure chamber of the valve chamber. When it comes into contact with the wall surface, the pressure receiving portion of the spool comes into contact with the end wall of the partition member.
特開2016-108960号公報JP 2016-108960 A
 特許文献1に記載されている可変容量圧縮機では、第二制御弁の構成が、圧力供給通路の圧力を受ける背圧室とクランク室の圧力を受ける弁室とが区画されており、背圧室に受圧部が設けられ、弁室に弁部が設けられる構成となる。このため、駆動軸の軸方向に沿った第二制御弁の長さが長くなり、可変容量圧縮機の内部に、第二制御弁を配置するために専用の収容室を設ける必要があり、駆動軸の軸方向に沿った可変容量圧縮機の長さが長くなるという問題点がある。
 本発明は、上記のような問題点に着目してなされたもので、駆動軸の軸方向に沿った方向への大型化を抑制することが可能な可変容量圧縮機を提供することを目的とする。
In the variable displacement compressor described in Patent Literature 1, the configuration of the second control valve is such that a back pressure chamber that receives the pressure of the pressure supply passage and a valve chamber that receives the pressure of the crank chamber are partitioned. The pressure receiving section is provided in the chamber, and the valve section is provided in the valve chamber. For this reason, the length of the second control valve along the axial direction of the drive shaft becomes longer, and it is necessary to provide a dedicated storage chamber for disposing the second control valve inside the variable displacement compressor. There is a problem that the length of the variable displacement compressor along the axial direction of the shaft becomes long.
The present invention has been made in view of the above problems, and has an object to provide a variable displacement compressor that can suppress an increase in size in a direction along an axial direction of a drive shaft. I do.
 上記課題を解決するために、本発明の一態様は、吐出室の冷媒をクランク室へ供給する供給通路の開度を変化させる第一制御弁の開度調整によりクランク室の圧力を変化させることで、斜板の傾角を変更してピストンのストロークを調整する。さらに、ストロークを調整したピストンにより吸入室からシリンダボアに吸入された冷媒を圧縮して吐出室に吐出する可変容量圧縮機である。また、可変容量圧縮機は、クランク室と吸入室とを連通させる排出通路の開度を調整する第二制御弁と、供給通路のうち第一制御弁よりもクランク室に近い側に配置され、且つクランク室から第一制御弁への冷媒の移動を阻止する逆止弁を備えている。また、可変容量圧縮機は、第一制御弁と逆止弁との間の供給通路と前記吸入室とを連通させる絞り通路を備えている。さらに、第二制御弁は、センタボアのうち駆動軸の一端とバルブプレートとの間に配置された弁室と、弁室へ駆動軸の軸方向に沿って移動可能に収容された弁体を有する。弁室は、弁体の移動方向の一方側に配置される第一壁面と、弁体の移動方向の他方側に配置される第二壁面と、第一壁面に開口して供給通路における第一制御弁と逆止弁との間の領域と連通する第一ポートを有する。これに加え、弁室は、第二壁面に開口して排出通路の一部を介してクランク室に連通する第二ポートと、第二壁面に開口して排出通路の一部を介して吸入室に連通する第三ポートを有する。弁体は、第一壁面と対向する面である第一受圧面と、第二壁面と対向する面である第二受圧面を備え、供給通路における第一制御弁と逆止弁との間の領域の圧力とクランク室の圧力との差に応じて第一壁面と第二壁面との間を移動する。そして、供給通路における第一制御弁と逆止弁との間の領域の圧力がクランク室の圧力よりも高いときは、弁体が第二壁面に当接して第二ポート及び第三ポートを閉鎖することで排出通路の開度を最小とする。一方、供給通路における第一制御弁と逆止弁との間の領域の圧力がクランク室の圧力よりも低いときは、弁体が第二壁面から離間して第二ポート及び第三ポートを開放することで排出通路の開度を最大とする。 In order to solve the above-described problem, one embodiment of the present invention is to change the pressure in the crank chamber by adjusting the opening degree of a first control valve that changes the opening degree of a supply passage that supplies the refrigerant in the discharge chamber to the crank chamber. Then, the stroke of the piston is adjusted by changing the inclination angle of the swash plate. Further, the compressor is a variable displacement compressor that compresses the refrigerant sucked from the suction chamber into the cylinder bore by the stroke-adjusted piston and discharges the refrigerant to the discharge chamber. Further, the variable capacity compressor is arranged on a side closer to the crank chamber than the first control valve in the supply passage, the second control valve for adjusting the opening degree of the discharge passage that connects the crank chamber and the suction chamber, In addition, a check valve for preventing the refrigerant from moving from the crank chamber to the first control valve is provided. In addition, the variable displacement compressor includes a throttle passage that communicates a supply passage between the first control valve and the check valve with the suction chamber. Further, the second control valve has a valve chamber disposed between one end of the drive shaft and the valve plate in the center bore, and a valve body accommodated in the valve chamber so as to be movable in the axial direction of the drive shaft. . The valve chamber has a first wall arranged on one side in the moving direction of the valve body, a second wall arranged on the other side in the moving direction of the valve body, and a first wall in the supply passage which is opened on the first wall. It has a first port communicating with the area between the control valve and the check valve. In addition to this, the valve chamber opens to the second wall surface and communicates with the crank chamber through a part of the discharge passage, and the suction chamber opens to the second wall surface and communicates through a part of the discharge passage. A third port that communicates with the The valve body has a first pressure receiving surface that is a surface facing the first wall surface, and a second pressure receiving surface that is a surface facing the second wall surface, and is provided between the first control valve and the check valve in the supply passage. It moves between the first wall surface and the second wall surface according to the difference between the pressure in the region and the pressure in the crankcase. When the pressure in the region between the first control valve and the check valve in the supply passage is higher than the pressure in the crank chamber, the valve body contacts the second wall surface to close the second port and the third port. By doing so, the opening degree of the discharge passage is minimized. On the other hand, when the pressure in the area between the first control valve and the check valve in the supply passage is lower than the pressure in the crank chamber, the valve body separates from the second wall surface and opens the second port and the third port. By doing so, the opening degree of the discharge passage is maximized.
 本発明の一態様によれば、センタボアのうち駆動軸の一端とバルブプレートとの間を弁室とし、その弁室に、供給通路における第一制御弁と逆止弁との間の領域の圧力とクランク室の圧力との差に応じて移動する弁体が収容されている。
 これにより、可変容量圧縮機の内部に、第二制御弁を配置するために専用の収容室を設ける必要が無くなる。このため、駆動軸の軸方向に沿った方向への大型化を抑制することが可能な可変容量圧縮機を提供することが可能となる。
According to one aspect of the present invention, a portion of the center bore between one end of the drive shaft and the valve plate is a valve chamber, and the valve chamber has a pressure in a region between the first control valve and the check valve in the supply passage. And a valve element that moves according to the difference between the pressure and the pressure in the crank chamber.
This eliminates the need to provide a dedicated storage chamber for disposing the second control valve inside the variable displacement compressor. For this reason, it is possible to provide a variable displacement compressor that can suppress an increase in the size of the drive shaft in the axial direction.
本発明の第一実施形態における可変容量圧縮機の構成を表す断面図である。It is a sectional view showing the composition of the variable displacement compressor in a first embodiment of the present invention. 図1中に線IIで囲んだ範囲の拡大図である。FIG. 2 is an enlarged view of a range surrounded by a line II in FIG. 1. 弁室の構成を表す図である。It is a figure showing the structure of a valve room. 図3のIV-IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV of FIG. 3. 弁体の構成を表す図である。It is a figure showing the structure of a valve element. 第一実施形態の可変容量圧縮機が行う動作を表す図である。It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. 第一実施形態の可変容量圧縮機が行う動作を表す図である。It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. 第一実施形態の可変容量圧縮機が行う動作を表す図である。It is a figure showing the operation which the variable capacity compressor of a first embodiment performs. 第一実施形態の変形例を表す図である。It is a figure showing the modification of a 1st embodiment.
 図面を参照して、本発明の第一実施形態を以下において説明する。以下の説明で参照する図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、厚さと平面寸法との関係や、各層の厚さの比率等は、現実のものとは異なることに留意すべきである。したがって、具体的な厚さや寸法は、以下の説明を参酌して判断すべきものである。また、図面相互間においても、互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A first embodiment of the present invention will be described below with reference to the drawings. In the description of the drawings referred to in the following description, the same or similar portions are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, and the like are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, it is needless to say that dimensional relationships and ratios are different between drawings.
 さらに、以下に示す第一実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質や、それらの形状、構造、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることが可能である。また、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」になり、「右」が「左」になることは勿論である。 Furthermore, the first embodiment described below exemplifies a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the materials of components, their shapes, The structure, arrangement, etc. are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims. Further, the directions “left and right” and “up and down” in the following description are simply definitions for convenience of description, and do not limit the technical idea of the present invention. Therefore, for example, if the paper is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course.
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(構成)
 図1から図5を用いて、第一実施形態の構成を説明する。
(可変容量圧縮機)
 図1中に表すように、可変容量圧縮機1は、シリンダブロック2と、フロントハウジング3と、バルブプレート4と、シリンダヘッド5と、駆動軸6と、供給通路7と、排出通路8と、第一制御弁9と、第二制御弁10を備える。なお、図1における上方は、鉛直方向の上方である。同様に、図1における下方は、鉛直方向の下方である。
 第一実施形態では、一例として、可変容量圧縮機1が、車両用(車載)のエアコンシステム(エア・コンディショナー・システム)に適用される、クラッチレス可変容量圧縮機として構成されている場合について説明する。
 シリンダブロック2と、フロントハウジング3と、バルブプレート4と、シリンダヘッド5は、図示しないガスケットを介し、通しボルト11により締結されることで、可変容量圧縮機1のハウジングを形成している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
(Constitution)
The configuration of the first embodiment will be described with reference to FIGS.
(Variable capacity compressor)
As shown in FIG. 1, the variable displacement compressor 1 includes a cylinder block 2, a front housing 3, a valve plate 4, a cylinder head 5, a drive shaft 6, a supply passage 7, a discharge passage 8, A first control valve 9 and a second control valve 10 are provided. Note that the upper side in FIG. 1 is the upper side in the vertical direction. Similarly, the lower part in FIG. 1 is the lower part in the vertical direction.
In the first embodiment, as an example, a case will be described in which the variable displacement compressor 1 is configured as a clutchless variable displacement compressor applied to an air conditioner system (air conditioner system) for a vehicle (vehicle). I do.
The cylinder block 2, the front housing 3, the valve plate 4, and the cylinder head 5 are fastened by through bolts 11 via a gasket (not shown) to form a housing of the variable displacement compressor 1.
(シリンダブロック)
 シリンダブロック2には、複数のシリンダボア21と、一つのセンタボア22が区画形成されている。
 複数のシリンダボア21は、環状に配列されている。
 シリンダボア21の内部には、ピストン23が収容されている。
 センタボア22は、環状に配列された複数のシリンダボア21の径方向内側で中心に配置されており、シリンダブロック2を貫通する空間である。
(Cylinder block)
A plurality of cylinder bores 21 and one center bore 22 are defined in the cylinder block 2.
The plurality of cylinder bores 21 are arranged annularly.
A piston 23 is housed inside the cylinder bore 21.
The center bore 22 is arranged radially inside the plurality of annularly arranged cylinder bores 21 at the center, and is a space penetrating the cylinder block 2.
(フロントハウジング)
 フロントハウジング3は、シリンダブロック2の一端側(フロント側。図1中では、左側)を閉塞している。また、フロントハウジング3は、シリンダブロック2と共に、クランク室30を画成している。
 クランク室30は、フロントハウジング3とシリンダブロック2によって形成された空間であり、斜板31が配置されている。また、クランク室30の内部には、駆動軸6が、軸方向を水平に向けて配置されている。
(Front housing)
The front housing 3 closes one end side (front side; left side in FIG. 1) of the cylinder block 2. The front housing 3 defines a crank chamber 30 together with the cylinder block 2.
The crank chamber 30 is a space formed by the front housing 3 and the cylinder block 2, and has a swash plate 31 disposed therein. The drive shaft 6 is disposed inside the crank chamber 30 so that the axial direction thereof is horizontal.
 斜板31は、円環状に形成されており、駆動軸6を径方向から包囲している。
 また、斜板31は、駆動軸6に固定されたロータ32に、リンク機構33を介して連結されており、駆動軸6と共に回転する。すなわち、ロータ32は、駆動軸6に固定されて駆動軸6と一体に回転する。
 さらに、斜板31は、駆動軸6の軸線に対する傾角(傾斜角度)を変化させることが可能である。
 リンク機構33は、第一アーム33aと、第二アーム33bと、リンクアーム33cを含む。
 第一アーム33aは、ロータ32の斜板31と対向する面から突出している。第二アーム33bは、斜板31のロータ32と対向する面から突出している。リンクアーム33cの一端側は、第一連結ピン33dを介して第一アーム33aと回転可能に連結されている。リンクアーム33cの他端側は、第二連結ピン33eを介して第二アーム33bと回転可能に連結されている。
The swash plate 31 is formed in an annular shape and surrounds the drive shaft 6 from the radial direction.
The swash plate 31 is connected to a rotor 32 fixed to the drive shaft 6 via a link mechanism 33, and rotates together with the drive shaft 6. That is, the rotor 32 is fixed to the drive shaft 6 and rotates integrally with the drive shaft 6.
Further, the swash plate 31 can change the inclination angle (inclination angle) with respect to the axis of the drive shaft 6.
The link mechanism 33 includes a first arm 33a, a second arm 33b, and a link arm 33c.
The first arm 33a protrudes from a surface of the rotor 32 facing the swash plate 31. The second arm 33b protrudes from a surface of the swash plate 31 facing the rotor 32. One end of the link arm 33c is rotatably connected to the first arm 33a via a first connection pin 33d. The other end of the link arm 33c is rotatably connected to the second arm 33b via a second connection pin 33e.
 また、斜板31には、斜板31が最大傾角と最小傾角の範囲で傾動可能となる形状に、貫通孔34が形成されている。貫通孔34には、駆動軸6と接触する最小傾角規制部(図示せず)が形成されている。最小傾角規制部は、斜板31が駆動軸6に対して直交するときの斜板31の傾角を0[°]とした場合、斜板31を、ほぼ0[°]まで傾角変位させることが可能に形成されている。また、斜板31は、傾角が最大となると、ロータ32に接触して、傾角の増加が規制される。 貫通 Further, the swash plate 31 is formed with a through hole 34 in such a shape that the swash plate 31 can be tilted within the range of the maximum tilt angle and the minimum tilt angle. The through-hole 34 is formed with a minimum inclination restricting portion (not shown) that contacts the drive shaft 6. When the inclination angle of the swash plate 31 when the swash plate 31 is perpendicular to the drive shaft 6 is 0 [°], the minimum inclination restricting unit can displace the swash plate 31 by approximately 0 [°]. It is formed to be possible. Also, when the inclination angle of the swash plate 31 is maximized, the swash plate 31 comes into contact with the rotor 32 and the increase of the inclination angle is restricted.
 ロータ32と斜板31の間には、斜板31が最小傾角となるまで、斜板31の傾角を減少させる方向に付勢する傾角減少バネ35が装着されている。また、斜板31とバネ支持部材36との間には、斜板31の傾角を増大させる方向に付勢する傾角増大バネ37が装着されている。
 最小傾角における傾角増大バネ37の付勢力は、傾角減少バネ35の付勢力よりも大きく設定されている。このため、駆動軸6が回転していないとき、斜板31の傾角は、傾角減少バネ35の付勢力と傾角増大バネ37の付勢力とが釣り合う角度となる。
Between the rotor 32 and the swash plate 31 is mounted an inclination-reducing spring 35 that urges the swash plate 31 in the direction of decreasing the inclination until the swash plate 31 has the minimum inclination. Further, between the swash plate 31 and the spring support member 36, a tilt-increase spring 37 that urges the swash plate 31 in a direction to increase the tilt angle is mounted.
The urging force of the inclination increasing spring 37 at the minimum inclination is set to be larger than the urging force of the inclination decreasing spring 35. Therefore, when the drive shaft 6 is not rotating, the inclination angle of the swash plate 31 is an angle at which the urging force of the inclination decreasing spring 35 and the urging force of the inclination increasing spring 37 are balanced.
 斜板31の外周部は、ピストン23のうち、クランク室30側に突出している端部に形成された内側空間に収容されている。これにより、斜板31は、一対のシュー38を介して、ピストン23と連動する構成となっている。したがって、駆動軸6の回転に伴う斜板31の回転により、各ピストン23が、収容されているシリンダボア21の内部を往復運動する。すなわち、斜板31とシュー38は、駆動軸6の回転をピストン23の往復運動に変換する変換機構を形成する。また、ピストン23は、複数のシリンダボア21にそれぞれ配設され、且つ駆動軸6の軸方向に往復運動する。また、斜板31は、ロータ32に連結され、且つロータ32と同期回転して駆動軸6の軸線に対して傾角が可変となるように、駆動軸6へ摺動自在に取り付けられている。 The outer peripheral portion of the swash plate 31 is accommodated in an inner space formed at an end of the piston 23 that protrudes toward the crank chamber 30 side. Thus, the swash plate 31 is configured to interlock with the piston 23 via the pair of shoes 38. Accordingly, the rotation of the swash plate 31 accompanying the rotation of the drive shaft 6 causes each piston 23 to reciprocate inside the accommodated cylinder bore 21. That is, the swash plate 31 and the shoe 38 form a conversion mechanism that converts the rotation of the drive shaft 6 into a reciprocating motion of the piston 23. Further, the piston 23 is disposed in each of the plurality of cylinder bores 21 and reciprocates in the axial direction of the drive shaft 6. The swash plate 31 is connected to the rotor 32 and is slidably attached to the drive shaft 6 such that the swash plate 31 rotates in synchronization with the rotor 32 and has a variable inclination angle with respect to the axis of the drive shaft 6.
(バルブプレート)
 バルブプレート4は、シリンダブロック2とシリンダヘッド5との間に設けられており、一方の面がシリンダブロック2の他端側(図1中では、右側)を閉塞することで、各シリンダボア21を閉塞している。
 また、バルブプレート4には、吐出孔41と、吸入孔42が形成されている。
 吐出孔41と吸入孔42は、それぞれ、各シリンダボア21と連通している。
 すなわち、バルブプレート4は、シリンダブロック2の他端側(リア側。図1中では、右側)を閉塞し、且つシリンダボア21と連通する吐出孔41及び吸入孔42が形成されている。
(Valve plate)
The valve plate 4 is provided between the cylinder block 2 and the cylinder head 5. One surface of the valve plate 4 closes the other end side (the right side in FIG. 1) of the cylinder block 2 so that each cylinder bore 21 is closed. It is closed.
Further, a discharge hole 41 and a suction hole 42 are formed in the valve plate 4.
The discharge hole 41 and the suction hole 42 communicate with the respective cylinder bores 21.
That is, the valve plate 4 closes the other end side (rear side, right side in FIG. 1) of the cylinder block 2, and has a discharge hole 41 and a suction hole 42 communicating with the cylinder bore 21.
(シリンダヘッド)
 シリンダヘッド5は、バルブプレート4を間に挟んで、シリンダブロック2と対向して設けられている。すなわち、シリンダヘッド5は、バルブプレート4を介して、シリンダブロック2の他端側に設けられている。
 また、シリンダヘッド5には、吸入室51と吐出室52が、シリンダヘッド5の内部に区画されて形成されている。なお、吸入室51と吐出室52は、バルブプレート4の他方の面により閉塞されている。
 吸入室51は、駆動軸6の軸方向から見て、シリンダヘッド5の中央に配置されている。
 また、吸入室51は、吸入ポート53と吸入通路54を介して、エアコンシステムが有する吸入側の外部冷媒回路と接続されており、吸入側の外部冷媒回路から、低圧側の冷媒(冷媒ガス)を吸入する。
(cylinder head)
The cylinder head 5 is provided to face the cylinder block 2 with the valve plate 4 interposed therebetween. That is, the cylinder head 5 is provided on the other end side of the cylinder block 2 via the valve plate 4.
Further, the cylinder head 5 is formed with a suction chamber 51 and a discharge chamber 52 partitioned inside the cylinder head 5. The suction chamber 51 and the discharge chamber 52 are closed by the other surface of the valve plate 4.
The suction chamber 51 is disposed at the center of the cylinder head 5 when viewed from the axial direction of the drive shaft 6.
In addition, the suction chamber 51 is connected to a suction side external refrigerant circuit of the air conditioner system via a suction port 53 and a suction passage 54, and a low pressure side refrigerant (refrigerant gas) from the suction side external refrigerant circuit. Inhalation.
 さらに、吸入室51は、バルブプレート4に設けられた吸入孔42と、吸入弁(図示せず)を介して、各シリンダボア21と連通している。
 吐出室52は、駆動軸6の軸方向から見て、吸入室51を環状に包囲する位置に配置されている。すなわち、吐出室52は、吸入室51の外側へ環状に配置されている。
 また、吐出室52は、吐出弁(図示せず)と、バルブプレート4に設けられた吐出孔41を介して、各シリンダボア21と連通している。
Further, the suction chamber 51 communicates with each cylinder bore 21 via a suction hole 42 provided in the valve plate 4 and a suction valve (not shown).
The discharge chamber 52 is disposed at a position surrounding the suction chamber 51 in a ring shape when viewed from the axial direction of the drive shaft 6. That is, the discharge chamber 52 is annularly arranged outside the suction chamber 51.
The discharge chamber 52 communicates with each cylinder bore 21 via a discharge valve (not shown) and a discharge hole 41 provided in the valve plate 4.
 したがって、吸入側の外部冷媒回路から吸入室51の内部へ吸入された低圧側の冷媒は、ピストン23の往復運動によって、ピストン23を収容しているシリンダボア21に吸入される。そして、ピストン23の往復運動によって、圧縮されて高圧となり、吐出室52へ吐出される。すなわち、シリンダボア21及びピストン23によって、吸入室51の内部へ吸入された冷媒を圧縮する圧縮部が形成されている。
 さらに、吐出室52は、吐出通路55と吐出ポート56を介して、エアコンシステムが有する吐出側の外部冷媒回路と接続されている。したがって、吐出室52へ吐出された、圧縮部によって圧縮された冷媒は、吐出通路55と吐出ポート56を介して、吐出側の外部冷媒回路へ、高圧側の冷媒(冷媒ガス)が吐出される。
Therefore, the low-pressure side refrigerant drawn into the suction chamber 51 from the suction-side external refrigerant circuit is drawn into the cylinder bore 21 containing the piston 23 by the reciprocating motion of the piston 23. Then, the reciprocating motion of the piston 23 causes the piston 23 to be compressed to a high pressure and discharged to the discharge chamber 52. That is, the cylinder bore 21 and the piston 23 form a compression unit that compresses the refrigerant drawn into the suction chamber 51.
Further, the discharge chamber 52 is connected to a discharge-side external refrigerant circuit of the air conditioning system via a discharge passage 55 and a discharge port 56. Accordingly, the refrigerant discharged into the discharge chamber 52 and compressed by the compression unit is discharged as a high-pressure refrigerant (refrigerant gas) to the external refrigerant circuit on the discharge side via the discharge passage 55 and the discharge port 56. .
 吐出室52と吐出通路55との間には、吐出逆止弁57が配置されている。
 吐出逆止弁57は、吐出室52(上流側)と吐出通路55(下流側)との圧力差に応答して動作する。そして、吐出逆止弁57は、圧力差が予め設定した閾値の圧力よりも小さい場合には、吐出室52と吐出通路55との間を遮断して、吐出通路55から吐出室52への冷媒の移動を阻止する。一方、吐出逆止弁57は、圧力差が閾値の圧力よりも大きい場合には、吐出室52と吐出通路55との間を連通させる。
 したがって、吐出室52から、吐出通路55と吐出ポート56を介して、吐出側の外部冷媒回路へ吐出される高圧側の冷媒は、吐出逆止弁57によって、逆流を阻止されている。
A discharge check valve 57 is arranged between the discharge chamber 52 and the discharge passage 55.
The discharge check valve 57 operates in response to a pressure difference between the discharge chamber 52 (upstream) and the discharge passage 55 (downstream). When the pressure difference is smaller than a preset threshold pressure, the discharge check valve 57 shuts off the space between the discharge chamber 52 and the discharge passage 55, and the refrigerant flows from the discharge passage 55 to the discharge chamber 52. Prevent movement. On the other hand, when the pressure difference is larger than the threshold pressure, the discharge check valve 57 makes the discharge chamber 52 and the discharge passage 55 communicate with each other.
Therefore, the high-pressure side refrigerant discharged from the discharge chamber 52 to the discharge-side external refrigerant circuit through the discharge passage 55 and the discharge port 56 is prevented from flowing backward by the discharge check valve 57.
(駆動軸)
 駆動軸6は、フロントハウジング3及びシリンダブロック2の内部へ配置されており、両端がフロントハウジング3とシリンダブロック2に、回転可能に支持されている。
 駆動軸6の一端は、センタボア22へ挿入されている。駆動軸6とセンタボア22との間には、第一滑り軸受61が配置されている。
 また、駆動軸6のバルブプレート4と対向する側の端面は、円環状のスラストプレート62で支持されている。
 駆動軸6とスラストプレート62との接触状態(隙間)は、シリンダブロック2に対する調整ねじ63の取り付け状態によって調整されている。
 調整ねじ63は、円環状に形成されており、外径面に雄ねじ(図示せず)が形成されている。また、センタボア22のうち、調整ねじ63の外径面と対向する面には、調整ねじ63に形成されている雄ねじと嵌合する雌ねじ(図示せず)が形成されている。
(Drive shaft)
The drive shaft 6 is disposed inside the front housing 3 and the cylinder block 2, and both ends are rotatably supported by the front housing 3 and the cylinder block 2.
One end of the drive shaft 6 is inserted into the center bore 22. A first slide bearing 61 is arranged between the drive shaft 6 and the center bore 22.
An end surface of the drive shaft 6 on the side facing the valve plate 4 is supported by an annular thrust plate 62.
The contact state (gap) between the drive shaft 6 and the thrust plate 62 is adjusted by the attachment state of the adjustment screw 63 to the cylinder block 2.
The adjusting screw 63 is formed in an annular shape, and has a male screw (not shown) formed on an outer diameter surface. On the surface of the center bore 22 that faces the outer diameter surface of the adjustment screw 63, a female screw (not shown) that fits with a male screw formed on the adjustment screw 63 is formed.
 したがって、調整ねじ63は、センタボア22の雌ねじに雄ねじを嵌合させることで、駆動軸6よりもバルブプレート4に近い位置で、センタボア22の内部へ配置されている。
 また、図4中に示すように、調整ねじ63が有する空隙部は、六角形に形成されている。
 また、調整ねじ63は、調整ねじ63の駆動軸6と対向する面と調整ねじ63の外径面とを連通させるねじ側通路63aが形成されている。
 ねじ側通路63aは、駆動軸6の軸方向から見て、調整ねじ63の駆動軸6と対向する面の一部を切除した形状に形成されている。したがって、調整ねじ63の駆動軸6と対向する面のうち、ねじ側通路63aを形成していない部分が、スラストプレート62と接触している。
Therefore, the adjusting screw 63 is disposed inside the center bore 22 at a position closer to the valve plate 4 than the drive shaft 6 by fitting a male screw to the female screw of the center bore 22.
Further, as shown in FIG. 4, the gap portion of the adjustment screw 63 is formed in a hexagonal shape.
The adjusting screw 63 is formed with a screw-side passage 63 a that allows a surface of the adjusting screw 63 facing the drive shaft 6 to communicate with an outer diameter surface of the adjusting screw 63.
The screw-side passage 63a is formed in a shape in which a part of a surface of the adjusting screw 63 facing the drive shaft 6 is cut away when viewed from the axial direction of the drive shaft 6. Therefore, a portion of the surface of the adjusting screw 63 facing the drive shaft 6 where the screw side passage 63 a is not formed is in contact with the thrust plate 62.
 駆動軸6の他端は、一部がフロントハウジング3の外側へ突出し、動力伝達装置(図示せず)に連結されている。動力伝達装置は、エンジン等の駆動力発生源(図示せず)にベルトを介して連結されている。したがって、駆動力発生源が発生させた駆動力が動力伝達装置に伝達されると、駆動軸6は、動力伝達装置の回転と同期して回転可能となっている。
 駆動軸6とフロントハウジング3との間には、第二滑り軸受64と、軸封装置65が配置されている。第二滑り軸受64は、駆動軸6を、ラジアル方向から回転可能に支持している。また、駆動軸6の他端側に向かうスラスト方向の荷重を、ロータ32を介してスラスト軸受66で支持している。
A part of the other end of the drive shaft 6 projects outside the front housing 3 and is connected to a power transmission device (not shown). The power transmission device is connected to a driving force generating source (not shown) such as an engine via a belt. Therefore, when the driving force generated by the driving force generation source is transmitted to the power transmission device, the drive shaft 6 can rotate in synchronization with the rotation of the power transmission device.
A second sliding bearing 64 and a shaft sealing device 65 are arranged between the drive shaft 6 and the front housing 3. The second sliding bearing 64 supports the drive shaft 6 rotatably in the radial direction. Further, a load in the thrust direction toward the other end of the drive shaft 6 is supported by a thrust bearing 66 via the rotor 32.
 したがって、駆動軸6とロータ32で形成される連結体は、第一滑り軸受61と第二滑り軸受64によって、ラジアル方向に回転可能に支持されており、スラストプレート62とスラスト軸受66によって、スラスト方向に回転可能に支持されている。駆動軸6の一端(リア側)は、センタボア22に挿通されてシリンダブロック2に支持されており、駆動軸6の他端(フロント側)は、フロントハウジング3に支持されている。
 軸封装置65は、クランク室30の内部を、外部空間から遮断している。
 なお、可変容量圧縮機1の内部には、潤滑用のオイル(図示せず)が封入されており、駆動軸6が回転すると、オイルが攪拌される。また、可変容量圧縮機1の内部を冷媒が移動すると、冷媒と共にオイルが移動して、可変容量圧縮機1の内部が潤滑される。
Therefore, the connected body formed by the drive shaft 6 and the rotor 32 is supported by the first sliding bearing 61 and the second sliding bearing 64 so as to be rotatable in the radial direction, and the thrust plate 62 and the thrust bearing 66 provide thrust. It is supported so that it can rotate in the direction. One end (rear side) of the drive shaft 6 is inserted into the center bore 22 and supported by the cylinder block 2, and the other end (front side) of the drive shaft 6 is supported by the front housing 3.
The shaft sealing device 65 blocks the inside of the crank chamber 30 from the external space.
Note that lubricating oil (not shown) is sealed inside the variable capacity compressor 1 and the oil is stirred when the drive shaft 6 rotates. When the refrigerant moves inside the variable displacement compressor 1, oil moves together with the refrigerant, and the inside of the variable displacement compressor 1 is lubricated.
(供給通路)
 供給通路7は、吐出室52とクランク室30とを連通させており、吐出室52の冷媒をクランク室30へ供給する通路である。
 また、供給通路7は、図2中に示すように、ヘッド側供給通路形成部71と、プレート側供給通路形成部72と、ブロック側供給通路形成部73を有する。
 ヘッド側供給通路形成部71は、供給通路7のうちシリンダヘッド5に形成されている通路であり、供給通路7のうち吐出室52から供給された冷媒を排出する部分と、プレート側供給通路形成部72とを連通させている。
 プレート側供給通路形成部72は、供給通路7のうちバルブプレート4に形成されている部分であり、ヘッド側供給通路形成部71と、弁室100とを連通させている。なお、バルブプレート4には、供給通路7のうちプレート側供給通路形成部72と吸入室51とを連通させる絞り通路74が形成されている。また、弁室100の詳細な説明は、後述する。
(Supply passage)
The supply passage 7 communicates the discharge chamber 52 with the crank chamber 30 and is a path for supplying the refrigerant in the discharge chamber 52 to the crank chamber 30.
2, the supply passage 7 includes a head-side supply passage forming portion 71, a plate-side supply passage forming portion 72, and a block-side supply passage forming portion 73.
The head-side supply passage forming portion 71 is a passage formed in the cylinder head 5 in the supply passage 7, and a portion of the supply passage 7 for discharging the refrigerant supplied from the discharge chamber 52 and a plate-side supply passage formation portion. The section 72 is communicated with the section 72.
The plate-side supply passage forming portion 72 is a portion of the supply passage 7 formed in the valve plate 4, and communicates the head-side supply passage forming portion 71 with the valve chamber 100. In the valve plate 4, a throttle passage 74 that connects the plate-side supply passage forming portion 72 of the supply passage 7 with the suction chamber 51 is formed. A detailed description of the valve chamber 100 will be described later.
 ブロック側供給通路形成部73は、供給通路7のうちシリンダブロック2に形成されている通路であり、プレート側供給通路形成部72と、クランク室30とを連通させている。また、ブロック側供給通路形成部73の一部は、センタボア22と連通している。
 また、ブロック側供給通路形成部73のうち、クランク室30側の端部には、逆止弁75が配置されている。すなわち、絞り通路74は、第一制御弁9と逆止弁75との間の供給通路と、吸入室51とを連通させる。
The block-side supply passage forming portion 73 is a passage formed in the cylinder block 2 in the supply passage 7 and communicates the plate-side supply passage forming portion 72 with the crank chamber 30. Further, a part of the block-side supply passage forming portion 73 communicates with the center bore 22.
A check valve 75 is disposed at an end of the block-side supply passage forming portion 73 on the side of the crank chamber 30. That is, the throttle passage 74 allows the supply passage between the first control valve 9 and the check valve 75 to communicate with the suction chamber 51.
 逆止弁75は、第一制御弁9(上流側)と逆止弁75との間の供給通路とクランク室30(下流側)との圧力差に応答して動作する。そして、逆止弁75は、第一制御弁9と逆止弁75との間の供給通路の圧力がクランク室30の圧力よりも低くなると、クランク室30と第一制御弁9との間を遮断して、クランク室30から第一制御弁9への冷媒の移動を阻止する。一方、逆止弁75は、クランク室30の圧力が第一制御弁9と逆止弁75との間の供給通路の圧力よりも低くなると、第一制御弁9とクランク室30との間を連通させる。
 すなわち、逆止弁75は、供給通路7のうち第一制御弁9よりもクランク室30に近い側に配置され、且つクランク室30から第一制御弁9への冷媒の移動を阻止する。
The check valve 75 operates in response to a pressure difference between the supply passage between the first control valve 9 (upstream side) and the check valve 75 and the crank chamber 30 (downstream side). When the pressure in the supply passage between the first control valve 9 and the check valve 75 becomes lower than the pressure in the crank chamber 30, the check valve 75 establishes a connection between the crank chamber 30 and the first control valve 9. It shuts off and prevents the movement of the refrigerant from the crank chamber 30 to the first control valve 9. On the other hand, when the pressure in the crank chamber 30 becomes lower than the pressure in the supply passage between the first control valve 9 and the check valve 75, the check valve 75 establishes a connection between the first control valve 9 and the crank chamber 30. Communicate.
That is, the check valve 75 is disposed closer to the crank chamber 30 than the first control valve 9 in the supply passage 7 and prevents the refrigerant from moving from the crank chamber 30 to the first control valve 9.
(排出通路)
 排出通路8は、クランク室30と吸入室51とを連通させており、クランク室30の冷媒を吸入室51へ排出する通路である。
 また、排出通路8は、軸内通路81と、ブロック側排出通路形成部82と、プレート側排出通路形成部83を有する。
 軸内通路81は、排出通路8のうち駆動軸6の内部に形成されている通路である。すなわち、排出通路8の一部は、駆動軸6の内部に形成されている。
 軸内通路81の一端は、駆動軸6の側面に開口しており、クランク室30と連通している。軸内通路81の他端は、駆動軸6のバルブプレート4と対向する側の端面に開口しており、ねじ側通路63aを介してセンタボア22の一部と連通するとともに、調整ねじ63が有する空隙部を介して弁室100の一部と連通している。したがって、排出通路8には、弁室100の一部も含む。
(Discharge passage)
The discharge passage 8 connects the crank chamber 30 and the suction chamber 51 and is a path for discharging the refrigerant in the crank chamber 30 to the suction chamber 51.
Further, the discharge passage 8 includes an in-shaft passage 81, a block-side discharge passage forming portion 82, and a plate-side discharge passage forming portion 83.
The in-shaft passage 81 is a passage formed in the drive shaft 6 in the discharge passage 8. That is, a part of the discharge passage 8 is formed inside the drive shaft 6.
One end of the in-shaft passage 81 is open to the side surface of the drive shaft 6 and communicates with the crank chamber 30. The other end of the in-shaft passage 81 is open at the end face of the drive shaft 6 on the side facing the valve plate 4, and communicates with a part of the center bore 22 via a screw-side passage 63 a, and has an adjusting screw 63. It communicates with a part of the valve chamber 100 via the gap. Therefore, the discharge passage 8 includes a part of the valve chamber 100.
 したがって、軸内通路81は、クランク室30と、バルブプレート4側のセンタボア22の領域とを連通させている。
 ブロック側排出通路形成部82は、排出通路8のうちシリンダブロック2に形成されている通路であり、絞り82aと、拡張部82bと、排出部82cを備える。
 絞り82aは、シリンダブロック2のうち、バルブプレート4と対向する面の一部を切除した形状に形成されており、軸内通路81と、拡張部82bとを常時連通させている。
Therefore, the shaft passage 81 communicates the crank chamber 30 with the region of the center bore 22 on the valve plate 4 side.
The block-side discharge passage forming portion 82 is a passage formed in the cylinder block 2 of the discharge passage 8, and includes a throttle 82a, an expansion portion 82b, and a discharge portion 82c.
The throttle 82a is formed in a shape in which a part of the surface of the cylinder block 2 that faces the valve plate 4 is cut away, and always communicates the in-shaft passage 81 and the expansion portion 82b.
 拡張部82bは、シリンダブロック2のうち、シリンダボア21とセンタボア22との間に形成されている通路であり、絞り82aと、排出部82cとを連通させている。
 すなわち、排出通路8が有する拡張部82bは、弁室100よりもクランク室30に近い位置に設けられて第三ポートP3と連通しているとともに、第三ポートP3よりも流路断面積が大きい。なお、第三ポートP3の説明は、後述する。
 排出部82cは、シリンダブロック2のうち、拡張部82bよりもクランク室30から遠い位置に形成されている通路であり、拡張部82bと、プレート側排出通路形成部83とを連通させている。
The extension portion 82b is a passage formed between the cylinder bore 21 and the center bore 22 in the cylinder block 2, and communicates the throttle 82a with the discharge portion 82c.
That is, the expansion portion 82b of the discharge passage 8 is provided at a position closer to the crank chamber 30 than the valve chamber 100, communicates with the third port P3, and has a larger flow path cross-sectional area than the third port P3. . The description of the third port P3 will be described later.
The discharge portion 82c is a passage formed in the cylinder block 2 at a position farther from the crank chamber 30 than the expansion portion 82b, and communicates the expansion portion 82b with the plate-side discharge passage formation portion 83.
 すなわち、排出通路8が有する排出部82cは、駆動軸6の軸方向から見て弁室100よりも径方向(駆動軸6の径方向)の外側に配置されて拡張部82bと吸入室51とを連通させているとともに、拡張部82bよりも流路断面積が小さい。
 なお、ブロック側排出通路形成部82は、例えば、センタボア22のうち、拡張部82bのクランク室30側の開口部を閉塞部材84で閉塞することで形成されている。
 プレート側排出通路形成部83は、排出通路8のうちバルブプレート4に形成されている開口部であり、排出部82cと、吸入室51とを連通させている。
That is, the discharge portion 82c of the discharge passage 8 is disposed outside of the valve chamber 100 in the radial direction (radial direction of the drive shaft 6) as viewed from the axial direction of the drive shaft 6, and the expansion portion 82b and the suction chamber 51 And the cross-sectional area of the flow path is smaller than that of the expanded portion 82b.
The block-side discharge passage forming portion 82 is formed, for example, by closing an opening of the expansion portion 82b on the crank chamber 30 side with the closing member 84 in the center bore 22.
The plate-side discharge passage forming portion 83 is an opening formed in the valve plate 4 of the discharge passage 8 and communicates the discharge portion 82 c with the suction chamber 51.
(第一制御弁)
 第一制御弁9は、シリンダヘッド5の内部において、吐出室52とクランク室30とを連通させており、供給通路7に配置されている。
 また、第一制御弁9は、供給通路7の開度(断面積)を調整することが可能である。
 第一制御弁9によって供給通路7の開度を調整することで、吐出室52からクランク室30への冷媒の導入量を制御することが可能である。したがって、第一制御弁9によって供給通路7の開度を調整することによって、クランク室30の圧力を変化させ、斜板31の傾斜角を変化させると、ピストン23のストロークを変化させることが可能となる。そして、ピストン23のストロークを変化させると、可変容量圧縮機1の吐出容量(吐出する冷媒の流量)を、可変制御することが可能となる。
(First control valve)
The first control valve 9 connects the discharge chamber 52 and the crank chamber 30 inside the cylinder head 5, and is disposed in the supply passage 7.
Further, the first control valve 9 can adjust the opening degree (cross-sectional area) of the supply passage 7.
By adjusting the opening degree of the supply passage 7 by the first control valve 9, it is possible to control the amount of refrigerant introduced from the discharge chamber 52 to the crank chamber 30. Therefore, by adjusting the opening degree of the supply passage 7 by the first control valve 9 to change the pressure of the crank chamber 30 and change the inclination angle of the swash plate 31, the stroke of the piston 23 can be changed. It becomes. When the stroke of the piston 23 is changed, the discharge capacity (flow rate of the discharged refrigerant) of the variable displacement compressor 1 can be variably controlled.
 すなわち、可変容量圧縮機1は、第一制御弁9の開度調整によりクランク室30の圧力を変化させることで斜板31の傾角を変更して、ピストン23のストロークを調整する。さらに、可変容量圧縮機1は、ストロークを調整したピストン23により、吸入室51からシリンダボア21に吸入された冷媒を圧縮して、吐出室52に吐出する。
 例えば、空調装置の作動時、すなわち、可変容量圧縮機1を作動させている状態では、第一制御弁9に内蔵されるソレノイドの通電量が、外部から入力を受けた信号に基づいて調整される。これにより、吸入室51の圧力が所定値となるように、可変容量圧縮機1の吐出容量が可変制御される。このとき、第一制御弁9は、外部環境に応じて、吸入圧力を最適な値に制御することが可能である。
 また、例えば、空調装置の非作動時、すなわち、可変容量圧縮機1を作動させていない状態では、第一制御弁9に内蔵されるソレノイドを通電させないことにより、供給通路7を強制的に開放し、可変容量圧縮機1の吐出容量を最小に制御する。
That is, the variable displacement compressor 1 changes the inclination of the swash plate 31 by changing the pressure of the crank chamber 30 by adjusting the opening of the first control valve 9, and adjusts the stroke of the piston 23. Further, the variable displacement compressor 1 compresses the refrigerant drawn into the cylinder bore 21 from the suction chamber 51 by the piston 23 whose stroke has been adjusted, and discharges the compressed refrigerant to the discharge chamber 52.
For example, when the air conditioner is operating, that is, when the variable displacement compressor 1 is operating, the energization amount of the solenoid built in the first control valve 9 is adjusted based on a signal received from outside. You. Thus, the discharge displacement of the variable displacement compressor 1 is variably controlled so that the pressure in the suction chamber 51 becomes a predetermined value. At this time, the first control valve 9 can control the suction pressure to an optimum value according to the external environment.
Also, for example, when the air conditioner is not operating, that is, when the variable displacement compressor 1 is not operating, the supply passage 7 is forcibly opened by not energizing the solenoid built in the first control valve 9. Then, the discharge displacement of the variable displacement compressor 1 is controlled to a minimum.
(第二制御弁)
 第二制御弁10は、センタボア22のうち駆動軸6の一端とバルブプレート4との間に配置された弁室100と、弁室100に駆動軸6の軸方向に沿って移動可能に収容されている弁体110を有する。
(弁室)
 弁室100は、センタボア22のうち、バルブプレート4に近い側の一部によって形成されている。
 また、弁室100は、図3中に示すように、センタボア22のうち、駆動軸6の一端とバルブプレート4との間に配置された空間である。駆動軸6の一端とは、バルブプレート4と対向する側の端部である。
 さらに、弁室100は、第一壁面101と、第二壁面102と、周壁面103と、第一ポートP1と、第二ポートP2と、第三ポートP3を有しており、軸内通路81の他端と連通している。
(Second control valve)
The second control valve 10 is housed in the center bore 22 between the one end of the drive shaft 6 and the valve plate 4, and is movably accommodated in the valve room 100 along the axial direction of the drive shaft 6. The valve element 110 is provided.
(Valve room)
The valve chamber 100 is formed by a part of the center bore 22 on the side closer to the valve plate 4.
Further, the valve chamber 100 is a space disposed between the one end of the drive shaft 6 and the valve plate 4 in the center bore 22 as shown in FIG. One end of the drive shaft 6 is an end on the side facing the valve plate 4.
Further, the valve chamber 100 has a first wall surface 101, a second wall surface 102, a peripheral wall surface 103, a first port P1, a second port P2, and a third port P3. Communicates with the other end.
 また、弁室100と、軸内通路81との間には、スラストプレート62が有する空隙部と、調整ねじ63が有する空隙部により、通路が形成されている。スラストプレート62が有する空隙部の内径は、軸内通路81の内径よりも大きい。調整ねじ63が有する空隙部の内径は、スラストプレート62が有する空隙部の内径よりも大きい。
 第一壁面101は、弁室100のうち、バルブプレート4に近い側の壁面であり、弁体110の移動方向の一方側(リア側)に配置される壁面を構成している。
Further, a passage is formed between the valve chamber 100 and the in-shaft passage 81 by a gap part of the thrust plate 62 and a gap part of the adjustment screw 63. The inner diameter of the gap portion of the thrust plate 62 is larger than the inner diameter of the axial passage 81. The inner diameter of the gap of the adjusting screw 63 is larger than the inner diameter of the gap of the thrust plate 62.
The first wall surface 101 is a wall surface on the side closer to the valve plate 4 in the valve chamber 100, and constitutes a wall surface arranged on one side (rear side) in the moving direction of the valve body 110.
 第一実施形態では、一例として、第一壁面101を、吸入弁(図示せず)が形成された吸入弁形成板104によって形成した場合について説明する。吸入弁形成板104は、シリンダブロック2とバルブプレート4との間に配置した板状の部材である。
 第二壁面102は、駆動軸6の軸方向で、第一壁面101と対向する壁面であり、弁体110の移動方向の他方側(フロント側)に配置される壁面を構成している。
 第一ポートP1は、第一壁面101に開口しており、供給通路7における第一制御弁9と逆止弁75との間の領域と、弁室100とを連通させる開口部である。すなわち、第一ポートP1は、第一壁面101に開口して、供給通路7における第一制御弁9と逆止弁75との間の領域と連通する。
In the first embodiment, as an example, a case in which the first wall surface 101 is formed by a suction valve forming plate 104 on which a suction valve (not shown) is formed will be described. The suction valve forming plate 104 is a plate-shaped member arranged between the cylinder block 2 and the valve plate 4.
The second wall surface 102 is a wall surface facing the first wall surface 101 in the axial direction of the drive shaft 6, and constitutes a wall surface arranged on the other side (front side) in the moving direction of the valve element 110.
The first port P <b> 1 is an opening that opens to the first wall surface 101 and communicates a region between the first control valve 9 and the check valve 75 in the supply passage 7 with the valve chamber 100. That is, the first port P <b> 1 opens to the first wall surface 101 and communicates with a region in the supply passage 7 between the first control valve 9 and the check valve 75.
 第二ポートP2は、第二壁面102に開口しており、調整ねじ63が有する空隙部と弁室100とを連通させる開口部である。すなわち、第二ポートP2は、排出通路8の一部を介してクランク室30に連通する開口部である。また、第二ポートP2は、軸内通路81を介してクランク室30と連通している。
 また、図4中に示すように、第二ポートP2は、駆動軸6の軸方向から見て、センタボア22のうち駆動軸6が配置されている領域を含む。
The second port P <b> 2 is an opening that opens to the second wall surface 102, and communicates the gap of the adjustment screw 63 with the valve chamber 100. That is, the second port P <b> 2 is an opening communicating with the crank chamber 30 through a part of the discharge passage 8. The second port P2 communicates with the crank chamber 30 via the shaft passage 81.
In addition, as shown in FIG. 4, the second port P <b> 2 includes a region of the center bore 22 where the drive shaft 6 is arranged, when viewed from the axial direction of the drive shaft 6.
 第三ポートP3は、第二壁面102に開口しており、拡張部82bと弁室100とを連通させる開口部である。すなわち、第三ポートP3は、排出通路8の一部を介して吸入室51に連通する開口部である。
 また、図4中に示すように、第三ポートP3は、駆動軸6の軸方向から見て、センタボア22のうち駆動軸6が配置されている領域よりも外側に配置されている。
 周壁面103は、第一壁面101と第二壁面102とを連続させる壁面であり、駆動軸6の軸方向から見て、円環状に形成されている。
The third port P3 is an opening that opens to the second wall surface 102 and that allows the expansion portion 82b to communicate with the valve chamber 100. That is, the third port P3 is an opening communicating with the suction chamber 51 via a part of the discharge passage 8.
As shown in FIG. 4, the third port P <b> 3 is disposed outside the area of the center bore 22 where the drive shaft 6 is disposed, when viewed from the axial direction of the drive shaft 6.
The peripheral wall surface 103 is a wall surface that connects the first wall surface 101 and the second wall surface 102, and is formed in an annular shape when viewed from the axial direction of the drive shaft 6.
 また、周壁面103の一部は、ブロック側供給通路形成部73と連通している。
 以上により、供給通路7は、弁室100と、センタボア22とは別の経路でシリンダブロック2に形成され、且つクランク室30と弁室100に接続するブロック側供給通路を有する。これに加え、供給通路7は、第一壁面101に形成され、且つ第一ポートP1を介して弁室100に接続するプレート側供給通路と、プレート側供給通路及び第一制御弁9に接続するヘッド側供給通路を有する。
A part of the peripheral wall surface 103 communicates with the block-side supply passage forming portion 73.
As described above, the supply passage 7 is formed in the cylinder block 2 through a path different from the valve chamber 100 and the center bore 22, and has a block-side supply path connected to the crank chamber 30 and the valve chamber 100. In addition, the supply passage 7 is formed on the first wall surface 101 and connected to the plate-side supply passage connected to the valve chamber 100 via the first port P1, and to the plate-side supply passage and the first control valve 9. It has a head side supply passage.
(弁体)
 弁体110は、円板状に形成されている。
 なお、弁室100は、例えば、センタボア22に駆動軸6とスラストプレート62を配置し、さらに、シリンダブロック2に調整ねじ63を取り付ける作業において、必要な空間を用いて形成することが可能である。このため、弁室100は、可変容量圧縮機1の内部に、第二制御弁10(弁体110)を配置するために、専用の収容室として形成した空間ではなく、可変容量圧縮機1に既存の構成を利用して形成することが可能な構成である。
 弁体110を形成する材料としては、例えば、金属材料や樹脂材料を用いることが可能であるが、弁体110を軽量化するためには、弁体110を形成する材料として樹脂材料を用いることが好適である。弁体110を樹脂材料で形成する場合、樹脂材料としては、例えば、ポリフェニレンサルファイド樹脂や、ナイロン(ポリアミド)樹脂等を用いることが可能である。
(Valve)
The valve body 110 is formed in a disk shape.
In addition, the valve chamber 100 can be formed using a necessary space, for example, in the operation of disposing the drive shaft 6 and the thrust plate 62 in the center bore 22 and attaching the adjusting screw 63 to the cylinder block 2. . For this reason, the valve chamber 100 is provided in the variable displacement compressor 1 instead of a space formed as a dedicated storage chamber for disposing the second control valve 10 (valve element 110) inside the variable displacement compressor 1. This is a configuration that can be formed using an existing configuration.
As a material for forming the valve body 110, for example, a metal material or a resin material can be used. However, in order to reduce the weight of the valve body 110, a resin material is used as a material for forming the valve body 110. Is preferred. When the valve body 110 is formed of a resin material, for example, a polyphenylene sulfide resin, a nylon (polyamide) resin, or the like can be used as the resin material.
 弁体110の厚さ方向は、駆動軸6の軸方向と平行である。
 弁体110の厚さ(図1及び図5中では、左右方向の長さ)は、弁室100の駆動軸6の軸方向に沿った長さ(図1及び図5中では、左右方向の長さ)よりも小さい。
 また、弁体110は、図5中に示すように、大径部110aと、小径部110bを備えている。
 大径部110aは、小径部110bよりも駆動軸6に近い側に配置されている。
 大径部110aの外径は、周壁面103の内径よりも小さい。
 大径部110aのうち、駆動軸6と対向する面である第二受圧面112には、第二凹部112aが形成されている。
 第二凹部112aの底面は、駆動軸6の軸方向から見て、軸内通路81と対向している。
 第二受圧面112のうち、第二凹部112aが形成されていない部分の一部は、駆動軸6の軸方向から見て、第三ポートP3と、絞り82aと対向している。
 したがって、第二受圧面112は、第二壁面102と対向する面である。
The thickness direction of the valve body 110 is parallel to the axial direction of the drive shaft 6.
The thickness of the valve body 110 (the length in the left-right direction in FIGS. 1 and 5) is the length along the axial direction of the drive shaft 6 of the valve chamber 100 (the left-right direction in FIGS. 1 and 5). Length).
Further, as shown in FIG. 5, the valve body 110 includes a large diameter portion 110a and a small diameter portion 110b.
The large diameter portion 110a is located closer to the drive shaft 6 than the small diameter portion 110b.
The outer diameter of the large diameter portion 110a is smaller than the inner diameter of the peripheral wall surface 103.
In the large-diameter portion 110a, a second concave portion 112a is formed on a second pressure receiving surface 112 which is a surface facing the drive shaft 6.
The bottom surface of the second concave portion 112a faces the axial passage 81 when viewed from the axial direction of the drive shaft 6.
A part of the second pressure receiving surface 112 where the second concave portion 112a is not formed faces the third port P3 and the throttle 82a when viewed from the axial direction of the drive shaft 6.
Therefore, the second pressure receiving surface 112 is a surface facing the second wall surface 102.
 小径部110bは、大径部110aと連続しており、大径部110aよりもバルブプレート4に近い側に配置されている。
 小径部110bの外径は、大径部110aの外径よりも小さい。また、小径部110bが形成する円の中心と、大径部110aが形成する円の中心は、駆動軸6の軸方向から見て重なっている。
 小径部110bのうち、バルブプレート4と対向する面である第一受圧面111には、第一凹部111aが形成されている。
 第一凹部111aの底面は、駆動軸6の軸方向から見て、第一ポートP1と対向している。
 したがって、第一受圧面111は、第一壁面101と対向する面である。
 以上により、弁体110は、第一壁面101と対向する面である第一受圧面111と、第二壁面102と対向する面である第二受圧面112を備えている。
The small diameter portion 110b is continuous with the large diameter portion 110a, and is disposed closer to the valve plate 4 than the large diameter portion 110a.
The outer diameter of the small diameter portion 110b is smaller than the outer diameter of the large diameter portion 110a. The center of the circle formed by the small diameter portion 110b and the center of the circle formed by the large diameter portion 110a overlap when viewed from the axial direction of the drive shaft 6.
Of the small diameter portion 110b, a first concave portion 111a is formed on a first pressure receiving surface 111 which is a surface facing the valve plate 4.
The bottom surface of the first recess 111a faces the first port P1 when viewed from the axial direction of the drive shaft 6.
Therefore, the first pressure receiving surface 111 is a surface facing the first wall surface 101.
As described above, the valve element 110 includes the first pressure receiving surface 111 which is a surface facing the first wall surface 101 and the second pressure receiving surface 112 which is a surface facing the second wall surface 102.
(動作・作用)
 図1から図5を参照しつつ、図6から図8を用いて、第一実施形態の可変容量圧縮機1で行う動作の一例と、作用を説明する。
 可変容量圧縮機1の使用時には、駆動軸6の回転によりロータ32と斜板31が回転すると、斜板31とシュー38によって、駆動軸6の回転がピストン23の往復運動に変換され、シリンダボア21の内部に供給された冷媒を圧縮する。
 シリンダボア21の内部におけるピストン23のストロークは、第一制御弁9によって供給通路7の開度を調整することで変化する。
 ここで、第一実施形態の構成では、シリンダブロック2が備える弁室100に、第一受圧面111が第一壁面101と対向し、第二受圧面112が第二壁面102と対向する弁体110を収容している。
(Operation / action)
An example of the operation performed by the variable displacement compressor 1 of the first embodiment and the operation will be described with reference to FIGS. 1 to 5 and FIGS. 6 to 8.
When the variable displacement compressor 1 is used, when the rotor 32 and the swash plate 31 rotate by the rotation of the drive shaft 6, the rotation of the drive shaft 6 is converted into reciprocating motion of the piston 23 by the swash plate 31 and the shoe 38, and the cylinder bore 21 Compresses the refrigerant supplied to the inside.
The stroke of the piston 23 inside the cylinder bore 21 is changed by adjusting the opening degree of the supply passage 7 by the first control valve 9.
Here, in the configuration of the first embodiment, a valve body in which the first pressure receiving surface 111 faces the first wall surface 101 and the second pressure receiving surface 112 faces the second wall surface 102 in the valve chamber 100 provided in the cylinder block 2. 110 are accommodated.
 供給通路7の開度を制御する際に、第一制御弁9が供給通路7を開くと、第一凹部111aを含む第一受圧面111に加わる、第一ポートP1を通過して弁室100へ移動する冷媒の圧力が上昇する。
 このため、第一ポートP1を通過して弁室100へ移動する冷媒の圧力によって弁体110が押され、弁体110がバルブプレート4から離れる方向へ移動する。
 これにより、図6中に示すように、第一受圧面111が第一壁面101から離間するとともに、第二受圧面112が第二壁面102に当接する。なお、図6中には、冷媒の流れを、破線の矢印で示す。
When the opening of the supply passage 7 is controlled, when the first control valve 9 opens the supply passage 7, the first control valve 9 passes through the first port P <b> 1 that is applied to the first pressure receiving surface 111 including the first concave portion 111 a and passes through the valve chamber 100. The pressure of the refrigerant moving to increases.
For this reason, the valve element 110 is pressed by the pressure of the refrigerant moving to the valve chamber 100 through the first port P <b> 1, and the valve element 110 moves in a direction away from the valve plate 4.
Thereby, as shown in FIG. 6, the first pressure receiving surface 111 is separated from the first wall surface 101, and the second pressure receiving surface 112 is in contact with the second wall surface 102. In FIG. 6, the flow of the refrigerant is indicated by broken arrows.
 第二受圧面112が第二壁面102に当接すると、弁体110によって第三ポートP3が閉じられるため、クランク室30と吸入室51とが、排出通路8の絞り82aを介して連通する。これにより、排出通路8の開度が最小となる。
 すなわち、弁体110は、第一制御弁9が供給通路7を開くことで、第一ポートP1を通過して弁室100へ移動する冷媒の圧力が、第二ポートP2の冷媒の圧力よりも高くなったときに、第二壁面102に接触する。これにより、軸内通路81と拡張部82bとを絞り82aのみで連通させて、排出通路8の開度を、ゼロよりも大きな最小の開度とする。
When the second pressure receiving surface 112 abuts on the second wall surface 102, the third port P3 is closed by the valve body 110, so that the crank chamber 30 and the suction chamber 51 communicate with each other via the throttle 82a of the discharge passage 8. Thereby, the opening degree of the discharge passage 8 is minimized.
That is, when the first control valve 9 opens the supply passage 7, the pressure of the refrigerant moving to the valve chamber 100 through the first port P <b> 1 is higher than the pressure of the refrigerant in the second port P <b> 2. When it is raised, it contacts the second wall surface 102. Thereby, the in-shaft passage 81 and the expansion portion 82b are communicated only by the throttle 82a, and the opening of the discharge passage 8 is set to the minimum opening larger than zero.
 したがって、供給通路7における第一制御弁9と逆止弁75との間の領域の圧力がクランク室30の圧力よりも高いときは、弁体110が第二壁面102に当接して第二ポートP2及び第三ポートP3を閉鎖することで、排出通路8の開度を最小とする。
 排出通路8が備える絞り82aは、第二ポートP2と第三ポートP3とを常に連通させる。
 また、第一受圧面111が第一壁面101から離間すると、供給通路7を、弁室100から逆止弁75に向けて冷媒が流れ、逆止弁75の入口側の圧力が上昇する。このため、逆止弁75が供給通路7を開放し、クランク室30に冷媒が供給される。
Therefore, when the pressure in the area between the first control valve 9 and the check valve 75 in the supply passage 7 is higher than the pressure in the crank chamber 30, the valve body 110 contacts the second wall surface 102 and the second port By closing P2 and the third port P3, the opening degree of the discharge passage 8 is minimized.
The throttle 82a provided in the discharge passage 8 always connects the second port P2 and the third port P3.
When the first pressure receiving surface 111 is separated from the first wall surface 101, the refrigerant flows from the valve chamber 100 to the check valve 75 through the supply passage 7, and the pressure on the inlet side of the check valve 75 increases. Therefore, the check valve 75 opens the supply passage 7, and the refrigerant is supplied to the crank chamber 30.
 第一制御弁9が供給通路7を閉じると、第一制御弁9が供給通路7を閉じた直後は、供給通路7のうち、第一制御弁9と逆止弁75との間に存在する冷媒が、絞り通路74を介して吸入室51に排出される。これに加え、クランク室30に存在する冷媒が逆流して逆止弁75を押圧し、図7中に示すように、逆止弁75が供給通路7を閉じる。なお、図7中には、図6と同様、冷媒の流れを、破線の矢印で示す。
 逆止弁75が供給通路7を閉じると、弁室100の圧力が吸入室51の圧力Psと等しくなり、第一受圧面111に吸入室51の圧力が作用するとともに、第二受圧面112にクランク室30の圧力Pcが作用する。これにより、弁体110に、クランク室30の圧力Pcと吸入室51の圧力Psとの差圧(Pc-Ps)が作用する。
When the first control valve 9 closes the supply passage 7, immediately after the first control valve 9 closes the supply passage 7, the supply passage 7 exists between the first control valve 9 and the check valve 75. The refrigerant is discharged into the suction chamber 51 via the throttle passage 74. In addition, the refrigerant existing in the crank chamber 30 flows backward to press the check valve 75, and the check valve 75 closes the supply passage 7, as shown in FIG. Note that, in FIG. 7, similarly to FIG. 6, the flow of the refrigerant is indicated by dashed arrows.
When the check valve 75 closes the supply passage 7, the pressure in the valve chamber 100 becomes equal to the pressure Ps in the suction chamber 51, the pressure in the suction chamber 51 acts on the first pressure receiving face 111, and the pressure in the second pressure receiving face 112. The pressure Pc of the crank chamber 30 acts. As a result, a differential pressure (Pc−Ps) between the pressure Pc of the crank chamber 30 and the pressure Ps of the suction chamber 51 acts on the valve body 110.
 第一制御弁9が供給通路7を閉じた後、弁体110に作用する差圧(Pc-Ps)が、予め設定した閾値の圧力を超えると、弁体110がクランク室30の圧力Pcによって押されて移動し、図8中に示すように、第二受圧面112が第二壁面102から離間する。なお、図8中には、図6と同様、冷媒の流れを、破線の矢印で示す。
 そして、第一受圧面111が第一壁面101に当接すると、第二ポートP2と第三ポートP3が、弁室100のうち弁体110と第二壁面102との間を介して連通するとともに、第一ポートP1が、第二ポートP2及び第三ポートP3と遮断される。これにより、排出通路8の開度が最大となる。
After the first control valve 9 closes the supply passage 7, when the differential pressure (Pc−Ps) acting on the valve body 110 exceeds a preset threshold pressure, the valve body 110 is moved by the pressure Pc of the crank chamber 30. The second pressure receiving surface 112 is pushed away from the second wall surface 102 as shown in FIG. Note that, in FIG. 8, the flow of the refrigerant is indicated by broken-line arrows as in FIG.
When the first pressure receiving surface 111 abuts on the first wall surface 101, the second port P2 and the third port P3 communicate with each other through the valve body 110 and the second wall surface 102 of the valve chamber 100. , The first port P1 is disconnected from the second port P2 and the third port P3. Thereby, the opening degree of the discharge passage 8 is maximized.
 すなわち、弁体110は、第一制御弁9が供給通路7を閉じることで、第一ポートP1の冷媒の圧力が、第二ポートP2の冷媒の圧力よりも低くなったときに、第二壁面102から離間する。これにより、弁体110と第二壁面102との間隔を最大値として、排出通路8の開度を最大とする。
 したがって、供給通路7における第一制御弁9と逆止弁75との間の領域の圧力がクランク室30の圧力よりも低いときは、弁体110が第二壁面102から離間して第二ポートP2及び第三ポートP3を開放することで、排出通路8の開度を最大とする。
That is, when the first control valve 9 closes the supply passage 7 and the pressure of the refrigerant at the first port P1 becomes lower than the pressure of the refrigerant at the second port P2, the valve body 110 opens the second wall surface. Move away from 102. Thereby, the opening degree of the discharge passage 8 is maximized by setting the interval between the valve body 110 and the second wall surface 102 to the maximum value.
Therefore, when the pressure in the area between the first control valve 9 and the check valve 75 in the supply passage 7 is lower than the pressure in the crank chamber 30, the valve body 110 separates from the second wall surface 102 and By opening P2 and the third port P3, the opening degree of the discharge passage 8 is maximized.
 第二凹部112aを含む第二受圧面112に圧力が加わると、弁体110は、駆動軸6から離れる方向へ移動する。また、第一凹部111aを含む第一受圧面111に圧力が加わると、弁体110は、バルブプレート4から離れる方向へ移動する。
 以上により、弁体110は、供給通路7における第一制御弁9と逆止弁75との間の領域の圧力とクランク室30の圧力との差に応じて、第一壁面101と第二壁面102との間を、駆動軸6の軸方向に沿って移動する。また、大径部110aの外周面は、弁体110が弁室100の内部を移動する際の、ガイド面を形成する。
 すなわち、第二制御弁10は、排出通路8に配置されており、供給通路7の圧力変化に応じて、排出通路8の開度を調整する。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
When pressure is applied to the second pressure receiving surface 112 including the second concave portion 112a, the valve body 110 moves in a direction away from the drive shaft 6. When pressure is applied to the first pressure receiving surface 111 including the first concave portion 111a, the valve body 110 moves in a direction away from the valve plate 4.
As described above, the valve body 110 is configured such that the first wall surface 101 and the second wall surface correspond to the difference between the pressure in the region between the first control valve 9 and the check valve 75 in the supply passage 7 and the pressure in the crank chamber 30. 102 along the axial direction of the drive shaft 6. Further, the outer peripheral surface of the large diameter portion 110a forms a guide surface when the valve element 110 moves inside the valve chamber 100.
That is, the second control valve 10 is arranged in the discharge passage 8, and adjusts the opening degree of the discharge passage 8 according to a change in the pressure of the supply passage 7.
Note that the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment. Various changes can be made according to the design and the like within a range not departing from the technical idea.
(第一実施形態の効果)
 第一実施形態の可変容量圧縮機1であれば、以下に記載する効果を奏することが可能となる。
(1)排出通路8の開度を調整する第二制御弁10が、センタボアのうち駆動軸6の一端とバルブプレート4との間に配置された弁室100と、弁室100へ駆動軸6の軸方向に沿って移動可能に収容された弁体110を有する。これに加え、供給通路7における第一制御弁9と逆止弁75との間の領域の圧力が、クランク室30の圧力よりも高いときは、弁体110が第二壁面102に当接して第二ポートP2及び第三ポートP3を閉鎖することで、排出通路8の開度を最小とする。一方、供給通路7における第一制御弁9と逆止弁75との間の領域の圧力が、クランク室30の圧力よりも低いときは、弁体110が第二壁面102から離間して第二ポートP2及び第三ポートP3を開放することで、排出通路8の開度を最大とする。
 このため、センタボアのうち駆動軸6の一端とバルブプレート4との間を弁室100とし、この弁室100に弁体110を収容することで、可変容量圧縮機1の内部に、第二制御弁10を配置するために専用の収容室を設ける必要が無くなる。
 その結果、駆動軸6の軸方向に沿った方向への大型化を抑制することが可能な可変容量圧縮機1を提供することが可能となる。
(Effects of the first embodiment)
With the variable capacity compressor 1 of the first embodiment, the following effects can be obtained.
(1) A second control valve 10 for adjusting the opening degree of the discharge passage 8 includes a valve chamber 100 disposed between one end of the drive shaft 6 and the valve plate 4 in the center bore, and a drive shaft 6 connected to the valve chamber 100. The valve body 110 is accommodated so as to be movable along the axial direction. In addition, when the pressure in the region between the first control valve 9 and the check valve 75 in the supply passage 7 is higher than the pressure in the crank chamber 30, the valve body 110 comes into contact with the second wall surface 102 and By closing the second port P2 and the third port P3, the opening degree of the discharge passage 8 is minimized. On the other hand, when the pressure in the area between the first control valve 9 and the check valve 75 in the supply passage 7 is lower than the pressure in the crank chamber 30, the valve body 110 separates from the second wall surface 102 and the second By opening the port P2 and the third port P3, the opening degree of the discharge passage 8 is maximized.
For this reason, the space between one end of the drive shaft 6 and the valve plate 4 in the center bore is defined as a valve chamber 100, and the valve body 110 is accommodated in the valve chamber 100, so that the second control unit is provided inside the variable displacement compressor 1. It is not necessary to provide a dedicated storage chamber for disposing the valve 10.
As a result, it is possible to provide the variable displacement compressor 1 capable of suppressing an increase in the size of the drive shaft 6 in the axial direction.
(2)供給通路7が、弁室100と、センタボア22とは別の経路でシリンダブロック2に形成され、且つクランク室30と弁室100に接続するブロック側供給通路を有する。これに加え、供給通路7が、第一壁面101に形成され、且つ第一ポートP1を介して弁室100に接続するプレート側供給通路と、プレート側供給通路及び第一制御弁9に接続するヘッド側供給通路を有する。
 その結果、可変容量圧縮機1に既存の構成である、シリンダブロック2と、バルブプレート4と、シリンダヘッド5を加工することで、可変容量圧縮機1に新たな構成を追加すること無く、供給通路7を形成することが可能となる。
(2) The supply passage 7 is formed in the cylinder block 2 by a path different from the valve chamber 100 and the center bore 22, and has a block-side supply passage connected to the crank chamber 30 and the valve chamber 100. In addition, the supply passage 7 is formed in the first wall surface 101 and connected to the plate-side supply passage connected to the valve chamber 100 via the first port P1, and to the plate-side supply passage and the first control valve 9. It has a head side supply passage.
As a result, the cylinder block 2, the valve plate 4, and the cylinder head 5, which are the existing configurations of the variable displacement compressor 1, are processed to supply the variable displacement compressor 1 without adding a new configuration. The passage 7 can be formed.
(3)排出通路8の一部が、駆動軸6の内部に形成されている。
 その結果、可変容量圧縮機1に既存の構成である駆動軸6を用いて、排出通路8を形成することが可能となる。
(4)第二ポートP2が、駆動軸6の軸方向から見て、センタボア22のうち駆動軸6が配置されている領域を含む。これに加え、第三ポートP3が、駆動軸6の軸方向から見て、センタボア22のうち駆動軸6が配置されている領域よりも外側に配置されている。
 その結果、第二壁面102に、第二ポートP2及び第三ポートP3を容易に設けることが可能となる。
(3) A part of the discharge passage 8 is formed inside the drive shaft 6.
As a result, the discharge passage 8 can be formed using the drive shaft 6 having the existing configuration in the variable displacement compressor 1.
(4) The second port P2 includes an area of the center bore 22 where the drive shaft 6 is disposed, as viewed from the axial direction of the drive shaft 6. In addition, the third port P <b> 3 is disposed outside the area of the center bore 22 where the drive shaft 6 is disposed, as viewed from the axial direction of the drive shaft 6.
As a result, the second port P2 and the third port P3 can be easily provided on the second wall surface 102.
(5)排出通路8が、弁室100よりもクランク室30に近い位置に設けられて第三ポートP3と連通し、且つ第三ポートP3よりも流路断面積が大きい拡張部82bを有する。これに加え、排出通路8が、駆動軸6の軸方向から見て弁室100よりも径方向の外側に配置されて拡張部82bと吸入室51とを連通させ、且つ拡張部82bよりも流路断面積が小さい排出部82cを有する。さらに、排出部82cは、拡張部82bよりもクランク室30から遠い位置に設けられている。
 その結果、センタボア22のうちシリンダボア21に近い位置に第三ポートP3を設けた場合であっても、拡張部82bを設けることによって、第三ポートP3と吸入室51とを容易に接続させることが可能となる。
 これに加え、拡張部82bにおいて、クランク室30から吸入室51へ移動する冷媒の流速が低下し、さらに、冷媒の移動する向きが反転するため、冷媒が含むオイルが吸入室51へ流出することを抑制することが可能となる。
(5) The discharge passage 8 is provided at a position closer to the crank chamber 30 than the valve chamber 100, communicates with the third port P3, and has an expanded portion 82b having a larger flow path cross-sectional area than the third port P3. In addition, the discharge passage 8 is disposed radially outside the valve chamber 100 when viewed from the axial direction of the drive shaft 6 to communicate the extended portion 82b and the suction chamber 51, and to flow more than the extended portion 82b. It has the discharge part 82c with a small road cross-sectional area. Further, the discharge portion 82c is provided at a position farther from the crank chamber 30 than the extension portion 82b.
As a result, even when the third port P3 is provided at a position near the cylinder bore 21 in the center bore 22, the provision of the extension portion 82b allows the third port P3 to be easily connected to the suction chamber 51. It becomes possible.
In addition, in the expansion portion 82b, the flow velocity of the refrigerant moving from the crank chamber 30 to the suction chamber 51 decreases, and the direction in which the refrigerant moves reverses, so that the oil contained in the refrigerant flows out to the suction chamber 51. Can be suppressed.
(6)排出通路8が、第二ポートP2と第三ポートP3とを常に連通させる絞り82aを備える。
 その結果、第一制御弁9が供給通路7を開いているか閉じているかに係わらず、センタボア22と駆動軸6との間へ、冷媒が含むオイルを供給することが可能となるため、駆動軸6の潤滑を円滑に行うことが可能となる。
 また、弁体110の第二受圧面112が第二壁面102に当接しているときは、クランク室30から吸入室51に排出される冷媒の流れが第二受圧面112に作用するが、第二ポートP2は駆動軸6が挿通されるセンタボア22の領域よりも大きく開口している。このため、クランク室30から吸入室51に排出される冷媒の流速が極めて低くなり、冷媒の流れが第二受圧面112を押圧する力が小さくなるため、弁体110の第二受圧面112が不用意に第二壁面102から離間することを抑制することが可能となる。
(6) The discharge passage 8 is provided with a throttle 82a that constantly connects the second port P2 and the third port P3.
As a result, the oil contained in the refrigerant can be supplied between the center bore 22 and the drive shaft 6 regardless of whether the first control valve 9 opens or closes the supply passage 7. 6 can be smoothly performed.
When the second pressure receiving surface 112 of the valve body 110 is in contact with the second wall surface 102, the flow of the refrigerant discharged from the crank chamber 30 to the suction chamber 51 acts on the second pressure receiving surface 112. The two-port P2 is larger than the area of the center bore 22 through which the drive shaft 6 is inserted. For this reason, the flow velocity of the refrigerant discharged from the crank chamber 30 to the suction chamber 51 becomes extremely low, and the force of the flow of the refrigerant pressing the second pressure receiving surface 112 becomes small. It is possible to suppress inadvertent separation from the second wall surface 102.
(7)第二ポートP2が、駆動軸6の弁体110と対向する面に開口する軸内通路81を介してクランク室30と連通している。
 その結果、第二ポートP2とクランク室30とを、容易に連通させることが可能となる。
(8)弁体110が、第二受圧面112に形成された凹部である第二凹部112aを備えており、第二凹部112aの底面が、軸内通路81と対向している。
 その結果、第二ポートP2を通過して弁室100へ移動する冷媒の圧力を、第二凹部112aで効率的に受けることが可能となり、弁体110を、駆動軸6から離れる方向へ効率的に移動させることが可能となる。
(7) The second port P2 communicates with the crank chamber 30 via an in-shaft passage 81 that opens on a surface of the drive shaft 6 facing the valve element 110.
As a result, the second port P2 and the crank chamber 30 can be easily communicated.
(8) The valve element 110 includes a second concave portion 112a which is a concave portion formed on the second pressure receiving surface 112, and the bottom surface of the second concave portion 112a faces the axial passage 81.
As a result, the pressure of the refrigerant moving to the valve chamber 100 through the second port P2 can be efficiently received by the second concave portion 112a, and the valve body 110 can be efficiently moved away from the drive shaft 6. Can be moved.
(9)弁体110が、第一受圧面111に形成された凹部である第一凹部111aを備えており、第一凹部111aの底面が、第一ポートP1と対向している。
 その結果、第一ポートP1を通過して弁室100へ移動する冷媒の圧力を、第一凹部111aで効率的に受けることが可能となり、弁体110を、バルブプレート4から離れる方向へ効率的に移動させることが可能となる。
(9) The valve body 110 includes a first concave portion 111a which is a concave portion formed on the first pressure receiving surface 111, and the bottom surface of the first concave portion 111a faces the first port P1.
As a result, the pressure of the refrigerant that moves to the valve chamber 100 through the first port P1 can be efficiently received by the first recess 111a, and the valve body 110 can be efficiently moved away from the valve plate 4. Can be moved.
(第一実施形態の変形例)
(1)第一実施形態では、駆動軸6の内部に形成した軸内通路81により、排出通路8の一部を形成したが、これに限定するものではなく、例えば、図9中に示すように、駆動軸6に軸内通路81を形成しない構成としてもよい。
 この場合、排出通路8の一部を、例えば、駆動軸6と第一滑り軸受61との間に形成されている隙間(駆動軸6を回転させるために確保している隙間)と、シリンダブロック2に形成したブロック側排出通路85によって形成してもよい。
 ブロック側排出通路85は、センタボア22と拡張部82bとを連通させる通路である。
 なお、図9中には、図6と同様、冷媒の流れを、破線の矢印で示す。
(Modification of First Embodiment)
(1) In the first embodiment, a part of the discharge passage 8 is formed by the in-shaft passage 81 formed inside the drive shaft 6. However, the present invention is not limited to this. For example, as shown in FIG. Alternatively, the drive shaft 6 may not be provided with the in-shaft passage 81.
In this case, a part of the discharge passage 8 is, for example, a gap formed between the drive shaft 6 and the first sliding bearing 61 (a gap secured for rotating the drive shaft 6) and a cylinder block. 2 may be formed by the block side discharge passage 85 formed.
The block-side discharge passage 85 is a passage that allows the center bore 22 to communicate with the expansion portion 82b.
Note that, in FIG. 9, the flow of the refrigerant is indicated by broken-line arrows as in FIG.
 1…可変容量圧縮機、2…シリンダブロック、3…フロントハウジング、4…バルブプレート、5…シリンダヘッド、6…駆動軸、7…供給通路、8…排出通路、9…第一制御弁、10…第二制御弁、11…通しボルト、21…シリンダボア、22…センタボア、23…ピストン、30…クランク室、31…斜板、32…ロータ、33…リンク機構、33a…第一アーム、33b…第二アーム、33c…リンクアーム、33d…第一連結ピン、33e…第二連結ピン、34…貫通孔、35…傾角減少バネ、36…バネ支持部材、37…傾角増大バネ、38…シュー、41…吐出孔、42…吸入孔、51…吸入室、52…吐出室、53…吸入ポート、54…吸入通路、55…吐出通路、56…吐出ポート、57…吐出逆止弁、61…第一滑り軸受、62…スラストプレート、63…調整ねじ、63a…、64…第二滑り軸受、65…軸封装置、66…スラスト軸受、71…ヘッド側供給通路形成部、72…プレート側供給通路形成部、73…ブロック側供給通路形成部、74…絞り通路、75…逆止弁、81…軸内通路、82…ブロック側排出通路形成部、82a…絞り、82b…拡張部、82c…排出部、83…プレート側排出通路形成部、84…閉塞部材、85…ブロック側排出通路、100…弁室、101…第一壁面、102…第二壁面、103…周壁面、104…吸入弁形成板、110…弁体、110a…大径部、110b…小径部、111…第一受圧面、111a…第一凹部、112…第二受圧面、112a…第二凹部、P1…第一ポート、P2…第二ポート、P3…第三ポート DESCRIPTION OF SYMBOLS 1 ... Variable capacity compressor, 2 ... Cylinder block, 3 ... Front housing, 4 ... Valve plate, 5 ... Cylinder head, 6 ... Drive shaft, 7 ... Supply passage, 8 ... Discharge passage, 9 ... First control valve, 10 ... second control valve, 11 ... through bolt, 21 ... cylinder bore, 22 ... center bore, 23 ... piston, 30 ... crank chamber, 31 ... swash plate, 32 ... rotor, 33 ... link mechanism, 33a ... first arm, 33b ... Second arm, 33c link arm, 33d first connection pin, 33e second connection pin, 34 through hole, 35 inclination decreasing spring, 36 spring supporting member, 37 inclination increasing spring, 38 shoe 41 ... discharge hole, 42 ... suction hole, 51 ... suction chamber, 52 ... discharge chamber, 53 ... suction port, 54 ... suction passage, 55 ... discharge passage, 56 ... discharge port, 57 ... discharge check valve, 61 ... One slip Receiver, 62: thrust plate, 63: adjusting screw, 63a, 64: second sliding bearing, 65: shaft sealing device, 66: thrust bearing, 71: head side supply passage forming part, 72: plate side supply passage forming part 73, block-side supply passage forming portion, 74, throttle passage, 75, check valve, 81, axial passage, 82, block-side discharge passage forming portion, 82a, throttle, 82b, expansion portion, 82c, discharge portion, 83: plate side discharge passage forming portion, 84: closing member, 85 ... block side discharge passage, 100 ... valve chamber, 101 ... first wall surface, 102 ... second wall surface, 103 ... peripheral wall surface, 104 ... suction valve forming plate, 110: valve element, 110a: large diameter portion, 110b: small diameter portion, 111: first pressure receiving surface, 111a: first concave portion, 112: second pressure receiving surface, 112a: second concave portion, P1: first port, P2 ... Second port, P3 ... No. Port

Claims (8)

  1.  環状に配列された複数のシリンダボアと、前記複数のシリンダボアの内側に配置されたセンタボアと、が区画形成されたシリンダブロックと、
     前記シリンダブロックの一端側を閉塞し、且つ前記シリンダボアと連通する吐出孔及び吸入孔が形成されたバルブプレートと、
     前記シリンダブロックの他端側を閉塞し、且つ前記シリンダブロックと共にクランク室を画成するフロントハウジングと、
     前記バルブプレートを間に挟んで前記シリンダブロックと対向して設けられ、且つ中央に配置された吸入室と、前記吸入室の外側へ環状に配置された吐出室と、が形成されたシリンダヘッドと、
     一端が前記センタボアに挿通されて前記シリンダブロックに支持され、他端が前記フロントハウジングに支持された駆動軸と、
     前記複数のシリンダボアにそれぞれ配設され、且つ前記駆動軸の軸方向に往復運動するピストンと、
     前記駆動軸に固定されて駆動軸と一体に回転するロータと、
     前記ロータに連結され、且つ前記ロータと同期回転して前記駆動軸の軸線に対して傾角が可変となるように駆動軸へ摺動自在に取り付けられた斜板と、
     前記斜板の回転を前記ピストンの往復運動に変換する変換機構と、
     前記吐出室と前記クランク室とを連通させる供給通路と、
     前記供給通路に配置され、且つ前記供給通路の開度を調整する第一制御弁と、
     前記クランク室と前記吸入室とを連通させる排出通路と、
     前記排出通路に配置され、且つ前記排出通路の開度を調整する第二制御弁と、
     前記供給通路のうち前記第一制御弁よりも前記クランク室に近い側に配置され、且つ前記クランク室から前記第一制御弁への冷媒の移動を阻止する逆止弁と、
     前記第一制御弁と前記逆止弁との間の供給通路と前記吸入室とを連通させる絞り通路と、を備え、前記第一制御弁の開度調整により前記クランク室の圧力を変化させることで前記斜板の傾角を変更して前記ピストンのストロークを調整し、さらに、前記ストロークを調整した前記ピストンにより前記吸入室から前記シリンダボアに吸入された冷媒を圧縮して前記吐出室に吐出する可変容量圧縮機であって、
     前記第二制御弁は、前記センタボアのうち前記駆動軸の一端と前記バルブプレートとの間に配置された弁室と、前記弁室へ前記駆動軸の軸方向に沿って移動可能に収容された弁体と、を有し、
     前記弁室は、前記弁体の移動方向の一方側に配置される第一壁面と、前記弁体の移動方向の他方側に配置される第二壁面と、前記第一壁面に開口して前記供給通路における前記第一制御弁と前記逆止弁との間の領域と連通する第一ポートと、前記第二壁面に開口して前記排出通路の一部を介して前記クランク室に連通する第二ポートと、前記第二壁面に開口して前記排出通路の一部を介して前記吸入室に連通する第三ポートと、を有し、
     前記弁体は、前記第一壁面と対向する面である第一受圧面と、前記第二壁面と対向する面である第二受圧面と、を備え、前記供給通路における前記第一制御弁と前記逆止弁との間の領域の圧力と前記クランク室の圧力との差に応じて前記第一壁面と前記第二壁面との間を移動し、
     前記供給通路における前記第一制御弁と前記逆止弁との間の領域の圧力が前記クランク室の圧力よりも高いときは、前記弁体が前記第二壁面に当接して前記第二ポート及び前記第三ポートを閉鎖することで前記排出通路の開度を最小とし、
     前記供給通路における前記第一制御弁と前記逆止弁との間の領域の圧力が前記クランク室の圧力よりも低いときは、前記弁体が前記第二壁面から離間して前記第二ポート及び前記第三ポートを開放することで前記排出通路の開度を最大とすることを特徴とする可変容量圧縮機。
    A plurality of cylinder bores arranged in a ring, a center bore disposed inside the plurality of cylinder bores, and a cylinder block in which a partition is formed;
    A valve plate that closes one end of the cylinder block and has a discharge hole and a suction hole that communicate with the cylinder bore;
    A front housing that closes the other end of the cylinder block and defines a crank chamber together with the cylinder block;
    A cylinder head having a suction chamber provided opposite to the cylinder block with the valve plate interposed therebetween and having a suction chamber disposed at the center, and a discharge chamber disposed annularly outside the suction chamber; ,
    A drive shaft having one end inserted into the center bore and supported by the cylinder block, and the other end supported by the front housing;
    A piston disposed in each of the plurality of cylinder bores and reciprocating in the axial direction of the drive shaft;
    A rotor fixed to the drive shaft and rotating integrally with the drive shaft,
    A swash plate connected to the rotor, and slidably attached to the drive shaft such that the tilt angle with respect to the axis of the drive shaft is variable by rotating synchronously with the rotor;
    A conversion mechanism for converting the rotation of the swash plate into a reciprocating motion of the piston,
    A supply passage for communicating the discharge chamber and the crank chamber,
    A first control valve arranged in the supply passage, and adjusting an opening degree of the supply passage;
    A discharge passage communicating the crank chamber and the suction chamber,
    A second control valve arranged in the discharge passage and adjusting an opening degree of the discharge passage;
    A check valve disposed on the side closer to the crank chamber than the first control valve in the supply passage, and preventing movement of refrigerant from the crank chamber to the first control valve;
    A throttle passage that communicates a supply passage between the first control valve and the check valve with the suction chamber, wherein the pressure in the crank chamber is changed by adjusting an opening of the first control valve. Changing the inclination angle of the swash plate to adjust the stroke of the piston, and further compressing the refrigerant drawn from the suction chamber into the cylinder bore by the piston whose stroke has been adjusted, and discharging the compressed refrigerant to the discharge chamber. A capacity compressor,
    The second control valve includes a valve chamber disposed between the one end of the drive shaft and the valve plate in the center bore, and is housed in the valve chamber so as to be movable in an axial direction of the drive shaft. And a valve body,
    The valve chamber is a first wall disposed on one side in the moving direction of the valve body, a second wall disposed on the other side in the moving direction of the valve body, and opened to the first wall. A first port communicating with a region between the first control valve and the check valve in a supply passage, and a first port opening to the second wall surface and communicating with the crank chamber through a part of the discharge passage. A second port, and a third port that opens to the second wall surface and communicates with the suction chamber through a part of the discharge passage,
    The valve body includes a first pressure receiving surface that is a surface facing the first wall surface, and a second pressure receiving surface that is a surface facing the second wall surface, and the first control valve in the supply passage. Move between the first wall surface and the second wall surface according to the difference between the pressure in the area between the check valve and the pressure in the crank chamber,
    When the pressure in a region between the first control valve and the check valve in the supply passage is higher than the pressure of the crank chamber, the valve body contacts the second wall surface and the second port and By closing the third port to minimize the opening of the discharge passage,
    When the pressure in the region between the first control valve and the check valve in the supply passage is lower than the pressure of the crank chamber, the valve body is separated from the second wall surface and the second port and A variable displacement compressor wherein the opening of the discharge passage is maximized by opening the third port.
  2.  前記供給通路は、前記弁室と、前記センタボアとは別の経路で前記シリンダブロックに形成され、且つ前記クランク室と前記弁室に接続するブロック側供給通路と、前記第一壁面に形成され、且つ前記第一ポートを介して前記弁室に接続するプレート側供給通路と、前記プレート側供給通路及び前記第一制御弁に接続するヘッド側供給通路と、を有していることを特徴とする請求項1に記載した可変容量圧縮機。 The supply passage, the valve chamber, is formed in the cylinder block in a different path from the center bore, and a block-side supply passage connected to the crank chamber and the valve chamber, formed in the first wall surface, And a plate-side supply passage connected to the valve chamber via the first port, and a head-side supply passage connected to the plate-side supply passage and the first control valve. The variable displacement compressor according to claim 1.
  3.  前記第二ポートは、前記駆動軸の軸方向から見て、前記センタボアのうち前記駆動軸が配置されている領域を含み、
     前記第三ポートは、前記駆動軸の軸方向から見て、前記センタボアのうち前記駆動軸が配置されている領域よりも外側に配置されていることを特徴とする請求項1または請求項2に記載した可変容量圧縮機。
    The second port, when viewed from the axial direction of the drive shaft, includes an area of the center bore where the drive shaft is disposed,
    The said 3rd port is arrange | positioned outside the area | region where the said drive shaft is arrange | positioned among the said center bores, when seen from the axial direction of the said drive shaft, The Claim 1 or Claim 2 characterized by the above-mentioned. The variable capacity compressor described.
  4.  前記排出通路は、前記弁室よりも前記クランク室に近い位置に設けられて前記第三ポートと連通し、且つ前記第三ポートよりも流路断面積が大きい拡張部と、前記駆動軸の軸方向から見て前記弁室よりも径方向の外側に配置されて前記拡張部と前記吸入室とを連通させ、且つ前記拡張部よりも流路断面積が小さい排出部と、を有し、
     前記排出部は、前記拡張部よりも前記クランク室から遠い位置に設けられていることを特徴とする請求項1から請求項3のうちいずれか1項に記載した可変容量圧縮機。
    The discharge passage is provided at a position closer to the crank chamber than the valve chamber, communicates with the third port, and has an expanded portion having a larger flow path cross-sectional area than the third port, and an axis of the drive shaft. A discharge section disposed radially outward of the valve chamber when viewed from the direction to communicate the expansion section and the suction chamber, and having a smaller flow path cross-sectional area than the expansion section;
    The variable displacement compressor according to any one of claims 1 to 3, wherein the discharge unit is provided at a position farther from the crank chamber than the expansion unit.
  5.  前記排出通路は、前記第二ポートと前記第三ポートとを連通させる絞りを備えることを特徴とする請求項1から請求項4のうちいずれか1項に記載した可変容量圧縮機。 The variable displacement compressor according to any one of claims 1 to 4, wherein the discharge passage includes a throttle that communicates the second port and the third port.
  6.  前記第二ポートは、前記駆動軸の前記弁体と対向する面に開口する軸内通路を介して前記クランク室と連通していることを特徴とする請求項1から請求項5のうちいずれか1項に記載した可変容量圧縮機。 The said 2nd port is communicating with the said crank chamber via the axial passage which opens in the surface which opposes the said valve body of the said drive shaft, The Claim 1 characterized by the above-mentioned. 2. The variable displacement compressor according to claim 1.
  7.  前記第二受圧面は、前記駆動軸と対向し、
     前記弁体は、前記第二受圧面に形成された凹部である第二凹部を備え、
     前記第二凹部の底面は、前記軸内通路と対向していることを特徴とする請求項6に記載した可変容量圧縮機。
    The second pressure receiving surface is opposed to the drive shaft,
    The valve body includes a second concave portion that is a concave portion formed on the second pressure receiving surface,
    7. The variable displacement compressor according to claim 6, wherein a bottom surface of the second concave portion faces the axial passage.
  8.  前記第一受圧面は、前記バルブプレートと対向し、
     前記弁体は、前記第一受圧面に形成された凹部である第一凹部を備え、
     前記第一凹部の底面は、前記第一ポートと対向していることを特徴とする請求項1から請求項7のうちいずれか1項に記載した可変容量圧縮機。
    The first pressure receiving surface faces the valve plate,
    The valve body includes a first concave portion that is a concave portion formed on the first pressure receiving surface,
    The variable displacement compressor according to any one of claims 1 to 7, wherein a bottom surface of the first concave portion faces the first port.
PCT/JP2019/024241 2018-06-27 2019-06-19 Variable-capacity compressor WO2020004166A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121638A JP7052964B2 (en) 2018-06-27 2018-06-27 Variable capacity compressor
JP2018-121638 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004166A1 true WO2020004166A1 (en) 2020-01-02

Family

ID=68986268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024241 WO2020004166A1 (en) 2018-06-27 2019-06-19 Variable-capacity compressor

Country Status (2)

Country Link
JP (1) JP7052964B2 (en)
WO (1) WO2020004166A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231309A (en) * 1992-02-20 1993-09-07 Toyota Autom Loom Works Ltd Structure for lubrication in piston type compressor
JP2002048059A (en) * 2000-05-24 2002-02-15 Sanden Corp Variable displacement cam plate type compressor
KR20140100133A (en) * 2013-02-05 2014-08-14 한라비스테온공조 주식회사 Variable displacement swash plate type compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231309A (en) * 1992-02-20 1993-09-07 Toyota Autom Loom Works Ltd Structure for lubrication in piston type compressor
JP2002048059A (en) * 2000-05-24 2002-02-15 Sanden Corp Variable displacement cam plate type compressor
KR20140100133A (en) * 2013-02-05 2014-08-14 한라비스테온공조 주식회사 Variable displacement swash plate type compressor

Also Published As

Publication number Publication date
JP2020002837A (en) 2020-01-09
JP7052964B2 (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US5765464A (en) Reciprocating pistons of piston-type compressor
EP1798499A2 (en) Refrigerant compressor having an oil separator
EP2096308B1 (en) Swash plate type variable displacement compressor
US5842834A (en) Swash plate type compressor employing single-headed pistons
US8439652B2 (en) Suction throttle valve for variable displacement type compressor
US5873704A (en) Variable capacity refrigerant compressor
JP2008031857A (en) Compressor
US20150260175A1 (en) Variable displacement swash plate type compressor
JP6141930B2 (en) Capacity control valve
WO2020004166A1 (en) Variable-capacity compressor
JP3985507B2 (en) Swash plate compressor
JP5999622B2 (en) Variable capacity compressor
WO2020004165A1 (en) Variable-capacity compressor
US6679077B2 (en) Piston type variable displacement fluid machine
US9797638B2 (en) Compressor
JP2008111338A (en) Compressor
WO2019176476A1 (en) Compressor
JP6991107B2 (en) Variable capacity compressor
JP2007127081A (en) Compressor
JP6469994B2 (en) Compressor
US20180202424A1 (en) Compressor
KR20210118664A (en) Swash plate type compressor
JP2008184959A (en) Compressor
JPH01232180A (en) Variable displacement swash plate type compressor
US20180038359A1 (en) Variable-displacement swash plate-type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825848

Country of ref document: EP

Kind code of ref document: A1