WO2020004148A1 - Concentrating solar power generation module and concentrating solar power generation device - Google Patents

Concentrating solar power generation module and concentrating solar power generation device Download PDF

Info

Publication number
WO2020004148A1
WO2020004148A1 PCT/JP2019/024115 JP2019024115W WO2020004148A1 WO 2020004148 A1 WO2020004148 A1 WO 2020004148A1 JP 2019024115 W JP2019024115 W JP 2019024115W WO 2020004148 A1 WO2020004148 A1 WO 2020004148A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
cell
frame
solar power
light
Prior art date
Application number
PCT/JP2019/024115
Other languages
French (fr)
Japanese (ja)
Inventor
和正 鳥谷
永井 陽一
充 稲垣
宗譜 上山
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2020004148A1 publication Critical patent/WO2020004148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a concentrating solar power generation module and a concentrating solar power generation device.
  • This application claims the priority based on Japanese Patent Application No. 2018-121995 filed on June 27, 2018, and incorporates all the contents described in the Japanese application.
  • the condensing type solar power generation device has a minimum unit of a basic configuration of an optical system that collects sunlight by a condensing lens and makes it incident on a small cell for power generation.
  • a concentrating photovoltaic power generation module in which the concentrating photovoltaic power generation units having this basic configuration are arranged in a matrix in a housing. Furthermore, an array (panel) is configured by arranging a large number of such concentrating solar power generation modules, and one concentrating solar power generation device is obtained.
  • a tracking pedestal on which the array is mounted is supported by a column so that it can be driven in two axes, azimuth and elevation (for example, see Patent Document 1).
  • the sunlight can be accurately collected at the target position on the cell, but in practice there may be a slight shift.
  • a ball lens is arranged slightly above the cell, and even if the light slightly shifts, the light can enter the ball lens. (For example, see Patent Documents 2 and 3).
  • JP 2014-226025 A United States Patent Application Publication US2010 / 0236603A1 JP 2014-63779 A JP 2015-90914 A
  • a concentrating photovoltaic module includes a plurality of concentrating photovoltaic units for concentrating sunlight and generating power, the concentrating photovoltaic module being arranged in a housing.
  • the frame includes an enclosing frame, and a light-transmissive sealing resin that seals the cells inside the frame.
  • FIG. 1 is a perspective view of one example of a concentrating solar power generation device as viewed from the light receiving surface side, and shows the solar power generation device in a completed state.
  • FIG. 2 is a perspective view of one example of a concentrating solar power generation device as viewed from the light-receiving surface side, and shows the solar power generation device in the middle of assembly.
  • FIG. 3 is a perspective view showing, as an example, the attitude of the array facing the sun.
  • FIG. 4 is a perspective view showing an example of the configuration of the concentrating solar power generation module.
  • FIG. 5 is a cross-sectional view illustrating an example of a concentrating photovoltaic power generation unit as a basic configuration of a concentrating photovoltaic power generation system constituting the concentrating photovoltaic module.
  • FIG. 6 is a cross-sectional view of the concentrator photovoltaic power generation unit similar to FIG. 5, but shows an example of a state in which a slight tracking shift has occurred.
  • FIG. 7 is a cross-sectional view showing only the light receiving unit of FIG. 8A and 8B are plan views of the flexible printed wiring board, in which FIG. 8A is a diagram showing a state of a conductive pattern, FIG. 8B is a diagram showing a place where a frame and a cell are attached by hatching with dotted lines, and FIG. It is a figure which shows the state which attached the frame and the cell to the area
  • FIG. 8A is a diagram showing a state of a conductive pattern
  • FIG. 8B is a diagram showing a place where a frame and a cell are attached by hatching with dotted lines
  • FIG. It is a figure which shows the state which attached the frame and the cell to the area
  • FIG. 9 is a perspective view showing how to attach the frame and the secondary lens to the conductive pattern of the flexible printed wiring board.
  • FIG. 10 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 1 of the light receiving unit.
  • FIG. 11 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 2 of the light receiving unit.
  • FIG. 12 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 3 of the light receiving unit.
  • FIG. 13 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 4 of the light receiving unit.
  • FIG. 14 is a perspective view of a conventional package with a ball lens mounted thereon.
  • FIG. 14 is a perspective view of the package 52 with the ball lens 51 placed thereon.
  • the package 52 holds a cell (not shown) below the ball lens 51 and also serves as a support for supporting the ball lens 51.
  • the use of a large number of packages 52 for one module is an obstacle to further cost reduction.
  • the present disclosure provides a light-receiving unit in a concentrating photovoltaic power generation unit that constitutes a concentrating photovoltaic power generation module, with a simple and low-cost structure, and with improved light guiding and heat radiation functions. Aim.
  • the light-receiving part in the concentrating photovoltaic power generation unit which comprises a concentrating photovoltaic power generation module can be made simple and low-cost structure, and the light guide and heat dissipation function can be improved.
  • the gist of the embodiments of the present invention includes at least the following.
  • This is a concentrating photovoltaic power generation module configured by arranging a plurality of concentrating photovoltaic power generation units for concentrating sunlight and generating power, and is arranged in a housing.
  • Each of the photovoltaic units is a primary lens that condenses incident sunlight, a flexible printed wiring board provided on the bottom surface of the housing, and the flexible printed wiring board, when facing the sun, A cell that is provided at a position that coincides with the optical axis of the primary lens and that performs photoelectric conversion on the collected light; a frame that is bonded to the conductive pattern of the flexible printed wiring board and surrounds the cell; And a light transmitting sealing resin for sealing the cell.
  • the frame contributes to reflect light that has left the cell and guide it to the cell. Further, since the frame is in a relationship of being joined to the conductive pattern, the heat of the cells is conducted to the frame via the conductive pattern, and the frame contributes to heat radiation. In this manner, both the light guiding and heat radiation effects can be enhanced by eliminating the cell resin package and the like and using a simple and inexpensive structure.
  • the material of the frame is any one of a metal, a ceramic and a resin having a thermal conductivity of 1 [W / m ⁇ K] or more. It is preferable that Such a frame contributes to heat dissipation of the cell due to a certain degree of thermal conductivity. In particular, a metal frame can be manufactured at low cost.
  • a gap may be formed between the primary lens and the cell on the optical axis and between the primary lens and the cell.
  • a secondary lens held by the frame may be provided.
  • the frame serves as a support for the secondary lens, and can also reflect the scattered light leaked from the secondary lens and guide it to the cell.
  • the frame body includes a cylindrical support base and an end of the support base on a light incident side. And a flange-shaped shielding portion formed at the bottom. In this case, it is possible to prevent the OFF-AXIS light whose focus position deviates from the cell from hitting the bypass diode, for example, by the shielding unit, and protect the bypass diode from the OFF-AXIS light.
  • the frame may have a shape in which an opening is widened toward a light incident side.
  • the frame body can receive light that does not directly enter the cell through the wide opening, and can reflect the light on the inner surface and guide the light to the cell.
  • the secondary lens can be omitted.
  • the frame may be attached to the conductive pattern to which one of the poles on the bottom side of the cell is joined. Are also joined. In this case, since the frame is also joined to the conductive pattern through which the heat of the cell is easily conducted, it is effective for heat dissipation of the cell.
  • the concentrator photovoltaic power generation device in which a plurality of concentrator photovoltaic modules of (1) are arranged on a mount for tracking the sun to form an array can be provided.
  • FIG. 1 and FIG. 2 are perspective views of one example of a concentrating solar power generation device as viewed from the light receiving surface side.
  • FIG. 1 shows the photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows the photovoltaic power generation device 100 in a state of being assembled.
  • FIG. 2 shows a state in which the framework of the tracking gantry 25 is visible in the right half, and a state in which the concentrating photovoltaic module (hereinafter, also simply referred to as a module) 1M is attached is shown in the left half.
  • the module 1M When actually mounting the module 1M on the tracking gantry 25, the mounting is performed with the tracking gantry 25 laid on the ground.
  • the photovoltaic power generation device 100 includes an array (entire photovoltaic power generation panel) 1 that is continuous on the upper side and divided into left and right sides on the lower side, and a support device 2 for the array.
  • the array 1 is configured by arranging the modules 1M on a tracking rack 25 (FIG. 2) on the rear side.
  • the support device 2 includes a support 21, a foundation 22, a two-axis drive unit 23, and a horizontal shaft 24 (FIG. 2) serving as a drive shaft.
  • the support 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 at the upper end.
  • the foundation 22 is buried firmly in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the two-axis driving unit 23 can rotate the horizontal axis 24 in two directions of an azimuth (an angle with the support 21 as a central axis) and an elevation (an angle with the horizontal axis 24 as a central axis).
  • a reinforcing member 25 a for reinforcing the tracking gantry 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal rails 25b are attached to the reinforcing member 25a.
  • the support device 2 supporting the array 1 with one support 21 is shown, but the configuration of the support device 2 is not limited to this. In short, any supporting device that can support the array 1 so as to be movable in two axes (azimuth and elevation) may be used.
  • FIG. 3 is a perspective view showing the attitude of the array 1 facing the sun as an example.
  • the array 1 takes a horizontal posture with the light receiving surface facing the sun.
  • the light receiving surface of the array 1 is oriented horizontally with the light receiving surface facing the ground.
  • FIG. 4 is a perspective view illustrating an example of a configuration of the concentrating solar power generation module 1M.
  • the module 1M includes, as a physical form in appearance, a rectangular flat-bottomed container 11 made of, for example, metal or resin, and a light collector 12 mounted thereon like a lid. I have.
  • the condensing unit 12 is configured by, for example, attaching a resin primary lens (Fresnel lens) 12f to the back surface of a single light-transmitting glass plate 12a.
  • a resin primary lens Resnel lens
  • each of the sections of the illustrated square (14 ⁇ 10 in this example, but the number is merely an example for explanation) is a primary lens 12f, and converges sunlight to a focal position. be able to.
  • one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as illustrated.
  • the flexible printed wiring board 13 has a relatively wide portion and a narrow portion.
  • a cell (not shown) is mounted on a wide area. The cells are arranged at positions corresponding to the respective optical axes of the Fresnel lens 12f.
  • a metal shielding plate 14 is attached between the flexible printed wiring board 13 and the light collector 12.
  • a square opening 14a similar to the square of the primary lens 12f is formed at a position corresponding to the center of each primary lens 12f. If the array 1 accurately tracks the sun and the incident angle of the sunlight on the module 1M is 0 degree, the light collected by the primary lens 12f can pass through the opening 14a. If the tracking deviates significantly, the collected light is shielded by the shield plate 14. However, when the tracking shift is slight, the collected light passes through the opening 14a.
  • FIG. 5 is a cross-sectional view illustrating an example of a concentrating photovoltaic power generation unit 1U as a basic configuration of a concentrating photovoltaic power generation optical system constituting the module 1M.
  • Each part shown in FIG. 5 is appropriately enlarged and drawn for convenience of description of the structure, and is not necessarily a figure proportional to the actual dimensions (the same applies to FIG. 6 and subsequent figures).
  • the light receiving section R includes a secondary lens 30, a frame 31, a conductive pattern 32, a cell 33, and a sealing resin.
  • the frame 31 is provided so as to surround the cell 33.
  • the light receiving unit R is mounted on the flexible printed wiring board 13.
  • a bypass diode is connected to the cell 33 in parallel, where the bypass diode is provided is not particularly limited in the present embodiment.
  • the secondary lens 30 is, for example, a ball lens.
  • the secondary lens 30 is supported by the upper end inner peripheral edge 31 e of the frame 31 so that a gap in the optical axis Ax direction is formed between the secondary lens 30 and the cell 33.
  • the frame body 31 has, for example, a rectangular tubular shape and is made of metal.
  • the cell 33 and the frame 31 are joined to the conductive pattern 32 by applying, for example, a conductive silver paste.
  • the sealing resin 34 is a light-transmitting silicone resin, for example, and is provided so as to fill a space formed between the secondary lens 30 and the cell 33 inside the frame 31.
  • FIG. 6 is a cross-sectional view of the concentrating solar power generation unit 1U similar to FIG. 5, but shows an example of a state where a slight tracking shift has occurred. As described above, there is no light shielding by the shielding plate 14 with a slight tracking deviation. Light that has entered the secondary lens 30 is guided to the cell 33, but light that has not entered the secondary lens 30 impinges on the end face 31 a of the frame 31. Since the frame body 31 is made of metal, there is no possibility of thermal damage due to light.
  • FIG. 7 is a cross-sectional view of only the light receiving portion R of FIG.
  • the light that has entered the secondary lens 30 is guided to the cell 33 as shown in FIG. 5, but in practice the light is slightly scattered in the secondary lens 30.
  • the scattered light may go out of the secondary lens 30 without going to the cell 33, but the light is reflected by the inner surface 31 b of the frame 31 having a metallic luster. , To the cell 33.
  • the secondary lens 30 As least a part of the light that has exited the secondary lens 30 as scattered light is guided to the cell 33 and contributes to power generation.
  • FIG. 8 is a plan view of the flexible printed wiring board 13, and is a view showing a procedure for attaching the frame 31 and the cell 33 to the conductive pattern 32.
  • the conductive pattern 32 is formed in a state where the positive conductive pattern 32p and the negative conductive pattern 32n are insulated from each other.
  • (B) of FIG. 8 shows the location where the frame body 31 and the cell 33 are attached by hatching with dotted lines.
  • C is a diagram showing a state in which silver paste is applied to the hatched area, and the frame body 31 and the cell 33 are attached (joined).
  • the bottom surface which is the positive pole of the cell 33, is physically and electrically connected to the conductive pattern 32p.
  • the negative pole on the surface side of the cell 33 is electrically connected to the conductive pattern 32n via a gold wire 35.
  • the frame 31 is electrically connected to the conductive pattern 32p by being joined to the conductive pattern 32p with a silver paste.
  • the frame 31 is not an electrical member, but has good thermal conductivity with the conductive pattern 32p by being electrically connected.
  • the heat generated in the cell 33 is conducted to the conductive pattern 32p and further to the frame 31. Therefore, the frame 31 serves as a heat radiator and contributes to the heat radiation of the cell 33.
  • the thermal conductivity is about 0.2 [W / m ⁇ K]
  • the thermal conductivity is, for example, 236 [W / m]. [K], and there is an overwhelming difference in thermal conductivity.
  • the frame can also be joined by reflow at the same time, and joining can be performed in a simple process.
  • FIG. 9 is a perspective view showing a procedure for attaching the frame 31 and the secondary lens 30 to the conductive pattern 32 p of the flexible printed wiring board 13.
  • the frame 31 is joined to the conductive pattern 32p, and contributes to heat dissipation of the cell 33 (FIG. 8).
  • the metal frame 31 is provided with a notch 31c so as not to contact the negative conductive pattern 32n. Therefore, the conductive pattern 32n on the minus side does not contact the frame 31, and the insulation between the conductive patterns 32p and 32n is maintained.
  • the frame 31 is filled with a sealing resin 34 (FIG. 5), and the secondary lens 30 is provided so as to ride on the frame 31.
  • the sealing resin 34 is filled in the frame 31 between the secondary lens 30 and the cell 33, and the secondary lens 30 is also adhered and fixed by solidifying the sealing resin 34.
  • FIG. 10 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 1 of the light receiving unit R.
  • the difference from the light receiving unit R shown in FIGS. 5 to 9 is that the frame body 31 is not a square tube but a cylinder. Other configurations are the same. In this case, it is necessary to provide a notch 31c as shown in FIG. 9 appropriately so that the metal frame 31 does not ride on both the conductive patterns 32p and 32n shown in FIG.
  • the secondary lens 30 can be placed exactly on the upper end of the frame 31 without any gap. For example, such a frame 31 can be easily manufactured by cutting a metal pipe into a short tube.
  • FIG. 11 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 2 of the light receiving unit R.
  • the frame 31 integrally includes a cylindrical support base 31s and a flange-shaped shielding portion 31f at an end on the light incident side.
  • Other configurations are the same.
  • the shielding portion 31f widely covers the periphery of the cell 33, even when the tracking accuracy of the sun is reduced and the OFF-AXIS light is likely to hit the bypass diode 36, this can be surely prevented. Further, it is possible to prevent not only the bypass diode 36 but also the flexible printed wiring board 13 from being irradiated with the OFF-AXIS light.
  • FIG. 12 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 3 of the light receiving unit R.
  • a metal frame 31 as a reflector is provided instead of the secondary lens.
  • This frame 31 is joined to the conductive pattern 32 (32p) in the same manner as in FIG.
  • the opening of the frame body 31 is widened toward the light incident side (upper side in the cross-sectional view), and has a role as a light guide section that receives light widely and guides it to the cell 33.
  • At least a portion of the light that has not directly entered the cell 33 is reflected by the inner surface 31b of the frame 31 and guided to the cell 33, as indicated by the optical path indicated by the arrow in the figure.
  • the inside of the frame 31 is filled with a sealing resin 34 to seal the cell 33.
  • Such a frame body 31 also serves as a shielding part for preventing light from shining on the bypass diode 36.
  • FIG. 13 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 4 of the light receiving unit R.
  • the frame 31 shown in FIG. 13 is formed by integrally forming a reflector 31y similar to the frame 31 shown in FIG. 12 on a rectangular tubular base 31x as shown in FIG.
  • Other configurations are the same as the configuration example described above.
  • each light receiving unit R of the above concentrating solar power generation module is provided with the frame 31 that is joined to the conductive pattern 32 p of the flexible printed wiring board 13 and surrounds the cell 33.
  • the frame body 31 contributes to reflecting light that has left the cell 33 and guiding the light to the cell 33. Further, since the frame 31 is connected to the conductive pattern 32p, the heat of the cell 33 is conducted to the frame 31 via the conductive pattern 32p, and the frame 31 contributes to heat radiation. In this way, the resin package and the like of the cell 33 are eliminated, and both light guide and heat radiation effects can be enhanced with a simple and inexpensive structure.
  • the frame body 31 has been described as being made of metal.
  • the metal frame 31 can be manufactured at low cost, and has excellent heat resistance and thermal conductivity.
  • the material of the frame 31 may be other than metal.
  • ceramic or resin having heat resistance and a certain level of thermal conductivity can be used as the material of the frame 31.
  • the thermal conductivity of a certain level or more for example, the thermal conductivity is preferably 1 [W / m ⁇ K] or more from the viewpoint of at least the same level as glass.
  • the frame 31 is also joined to the conductive pattern 32p to which one of the poles on the bottom side of the cell 33 is joined, the frame 31 is also joined to the conductive pattern 32p where heat of the cell 33 is easily conducted. This is effective for heat dissipation of the cell 33.
  • the secondary lens 30 is located between the primary lens 12 f and the cell 33 on the optical axis Ax so that a frame is formed between the primary lens 12 f and the cell 33. 31. That is, the frame 31 serves as a support for the secondary lens 30, and can also reflect the scattered light leaked from the secondary lens 30 and guide the scattered light to the cell 33.
  • the frame 31 includes a cylindrical support base 31 s and a flange-shaped shielding part 31 f formed at an end of the support base 31 s on the light incident side. May be. In this case, it is possible to suppress the OFF-AXIS light from hitting, for example, the bypass diode 36 by the shielding portion 31f, and protect the bypass diode 36 from the OFF-AXIS light.
  • the frame body 31 can have a shape in which the opening is widened toward the light incident side. .
  • the frame body 31 can receive light that does not directly enter the cell 33 through the wide opening, and can reflect the light on the inner surface and guide the light to the cell 33.
  • the secondary lens can be omitted.

Abstract

This concentrating solar power generation module is configured by arraying, in a casing, a plurality of concentrating solar power generation units for concentrating solar light and generating power. Each of the concentrating solar power generation units is provided with: a primary lens that concentrates solar light having entered therein; a flexible printed wiring board (13) that is provided on the bottom surface of the casing; a cell (33) that is provided on the flexible printed wiring board (13) at a position aligned with the optical axis of the primary lens when facing the sun and that performs photoelectric conversion for the concentrated light; a frame body (31) that is joined to the conductive pattern (32) of the flexible printed wiring board (13) so as to surround the cell (33); and a light-transmissive sealing resin that is located inside the frame body (31) so as to seal the cell (33).

Description

集光型太陽光発電モジュール及び集光型太陽光発電装置Concentrating solar power module and concentrating solar power generating device
 本発明は、集光型太陽光発電モジュール及び集光型太陽光発電装置に関する。
 本出願は、2018年6月27日出願の日本出願第2018-121995号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to a concentrating solar power generation module and a concentrating solar power generation device.
This application claims the priority based on Japanese Patent Application No. 2018-121995 filed on June 27, 2018, and incorporates all the contents described in the Japanese application.
 集光型太陽光発電装置は、集光レンズにより太陽光を集めて発電用の小さなセルに入射させる光学系の基本構成を最小単位としている。この基本構成である集光型太陽光発電ユニットを、筐体内にマトリクス状に並べたものが、集光型太陽光発電モジュールである。さらに、この集光型太陽光発電モジュールを多数並べてアレイ(パネル)が構成され、1基の集光型太陽光発電装置となる。太陽を追尾するため、アレイを載せる追尾架台は、方位角及び仰角の2軸駆動が可能なように支柱に支持されている(例えば、特許文献1参照。)。 The condensing type solar power generation device has a minimum unit of a basic configuration of an optical system that collects sunlight by a condensing lens and makes it incident on a small cell for power generation. A concentrating photovoltaic power generation module in which the concentrating photovoltaic power generation units having this basic configuration are arranged in a matrix in a housing. Furthermore, an array (panel) is configured by arranging a large number of such concentrating solar power generation modules, and one concentrating solar power generation device is obtained. In order to track the sun, a tracking pedestal on which the array is mounted is supported by a column so that it can be driven in two axes, azimuth and elevation (for example, see Patent Document 1).
 太陽の追尾が理想的に行われていれば、太陽光を正確にセル上の狙った位置に集めることができるが、実際には僅かなずれが生じる場合もある。このような僅かなずれを吸収するために、セルを含む受光部の構造として、ボールレンズをセルの少し上に配置し、光が僅かにずれてもボールレンズに入りさえすれば、光をセルに導くことができるようにする技術も提案されている(例えば、特許文献2,3参照。)。 If the sun is ideally tracked, the sunlight can be accurately collected at the target position on the cell, but in practice there may be a slight shift. In order to absorb such a slight shift, as a structure of the light receiving section including the cell, a ball lens is arranged slightly above the cell, and even if the light slightly shifts, the light can enter the ball lens. (For example, see Patent Documents 2 and 3).
特開2014-226025号公報JP 2014-226025 A 米国特許出願公開US2010/0236603A1United States Patent Application Publication US2010 / 0236603A1 特開2014-63779号公報JP 2014-63779 A 特開2015-90914号公報JP 2015-90914 A
 本開示は、以下の発明を含む。但し、本発明は、請求の範囲によって定められるものである。 This disclosure includes the following inventions. However, the present invention is defined by the claims.
 本発明の一表現に係る集光型太陽光発電モジュールは、太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、入射する太陽光を集光する一次レンズと、前記筐体の底面に設けられたフレキシブルプリント配線板と、前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、前記フレキシブルプリント配線板の導電パターンに接合され、前記セルを囲む枠体と、前記枠体の内側にあって、前記セルを封止する光透過性の封止樹脂と、を備えている。 A concentrating photovoltaic module according to an embodiment of the present invention includes a plurality of concentrating photovoltaic units for concentrating sunlight and generating power, the concentrating photovoltaic module being arranged in a housing. A module, wherein each of the concentrating solar power generation units includes a primary lens that condenses incident sunlight, a flexible printed wiring board provided on a bottom surface of the housing, and a flexible printed wiring board on the flexible printed wiring board. A cell that is provided at a position that coincides with the optical axis of the primary lens when facing the sun, and that performs photoelectric conversion on condensed light, and is bonded to a conductive pattern of the flexible printed wiring board. The frame includes an enclosing frame, and a light-transmissive sealing resin that seals the cells inside the frame.
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。FIG. 1 is a perspective view of one example of a concentrating solar power generation device as viewed from the light receiving surface side, and shows the solar power generation device in a completed state. 図2は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、組立途中の状態での太陽光発電装置を示している。FIG. 2 is a perspective view of one example of a concentrating solar power generation device as viewed from the light-receiving surface side, and shows the solar power generation device in the middle of assembly. 図3は、一例として、太陽に正対しているアレイの姿勢を示す斜視図である。FIG. 3 is a perspective view showing, as an example, the attitude of the array facing the sun. 図4は、集光型太陽光発電モジュールの構成の一例を示す斜視図である。FIG. 4 is a perspective view showing an example of the configuration of the concentrating solar power generation module. 図5は、集光型太陽光発電モジュールを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニットの一例を示す断面図である。FIG. 5 is a cross-sectional view illustrating an example of a concentrating photovoltaic power generation unit as a basic configuration of a concentrating photovoltaic power generation system constituting the concentrating photovoltaic module. 図6は、図5と同様の集光型太陽光発電ユニットの断面図であるが、僅かな追尾のずれが発生した状態の一例を示している。FIG. 6 is a cross-sectional view of the concentrator photovoltaic power generation unit similar to FIG. 5, but shows an example of a state in which a slight tracking shift has occurred. 図7は、図5の受光部のみを抜き出した断面図である。FIG. 7 is a cross-sectional view showing only the light receiving unit of FIG. 図8は、フレキシブルプリント配線板の平面図であり、(a)は導電パターンの状態の図、(b)は枠体及びセルを取り付ける場所を点線のハッチングで示した図、(c)は、このハッチングの領域に枠体及びセルを取り付けた(接合した)状態を示す図である。8A and 8B are plan views of the flexible printed wiring board, in which FIG. 8A is a diagram showing a state of a conductive pattern, FIG. 8B is a diagram showing a place where a frame and a cell are attached by hatching with dotted lines, and FIG. It is a figure which shows the state which attached the frame and the cell to the area | region of this hatching (joined). 図9は、フレキシブルプリント配線板の導電パターンに枠体及び二次レンズを取り付ける要領を示す斜視図である。FIG. 9 is a perspective view showing how to attach the frame and the secondary lens to the conductive pattern of the flexible printed wiring board. 図10は、受光部の他の構成例1を示す断面図(上)及び平面図(下)である。FIG. 10 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 1 of the light receiving unit. 図11は、受光部の他の構成例2を示す断面図(上)及び平面図(下)である。FIG. 11 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 2 of the light receiving unit. 図12は、受光部の他の構成例3を示す断面図(上)及び平面図(下)である。FIG. 12 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 3 of the light receiving unit. 図13は、受光部の他の構成例4を示す断面図(上)及び平面図(下)である。FIG. 13 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 4 of the light receiving unit. 図14は、ボールレンズを載せた状態での、従来のパッケージの斜視図である。FIG. 14 is a perspective view of a conventional package with a ball lens mounted thereon.
 [本開示が解決しようとする課題]
 集光型太陽光発電モジュールにおいて、ボールレンズを支持するには、例えば樹脂成型したパッケージが用いられる。図14は、ボールレンズ51を載せた状態でのパッケージ52の斜視図である。パッケージ52は、ボールレンズ51の下にあるセル(図示せず。)を保持するとともに、ボールレンズ51を支える支持部にもなる。しかしながら、1モジュールに多数のパッケージ52を使うことは、さらなるコスト削減のためには、その阻害要因にもなっている。
[Problems to be solved by the present disclosure]
In the concentrating photovoltaic power generation module, for example, a resin molded package is used to support the ball lens. FIG. 14 is a perspective view of the package 52 with the ball lens 51 placed thereon. The package 52 holds a cell (not shown) below the ball lens 51 and also serves as a support for supporting the ball lens 51. However, the use of a large number of packages 52 for one module is an obstacle to further cost reduction.
 また、ボールレンズの代わりにホモジナイザを使う受光部もあるが(例えば、特許文献4参照。)、やはり受光部の構造が複雑、かつ、高価である。
 なお、受光部は、光をより良く導くことや放熱にも配慮する必要がある。
In addition, there is a light receiving unit using a homogenizer instead of a ball lens (for example, see Patent Document 4), but the structure of the light receiving unit is also complicated and expensive.
Note that the light receiving unit needs to take into consideration the better guiding of light and heat radiation.
 かかる課題に鑑み、本開示は、集光型太陽光発電モジュールを構成する集光型太陽光発電ユニットにおける受光部を、簡素で低コストな構造としつつ、導光及び放熱の機能を高めることを目的とする。 In view of such a problem, the present disclosure provides a light-receiving unit in a concentrating photovoltaic power generation unit that constitutes a concentrating photovoltaic power generation module, with a simple and low-cost structure, and with improved light guiding and heat radiation functions. Aim.
 [本開示の効果]
 本開示によれば、集光型太陽光発電モジュールを構成する集光型太陽光発電ユニットにおける受光部を、簡素で低コストな構造としつつ、導光及び放熱の機能を高めることができる。
[Effects of the present disclosure]
ADVANTAGE OF THE INVENTION According to this indication, the light-receiving part in the concentrating photovoltaic power generation unit which comprises a concentrating photovoltaic power generation module can be made simple and low-cost structure, and the light guide and heat dissipation function can be improved.
 [実施形態の要旨]
 本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
[Summary of Embodiment]
The gist of the embodiments of the present invention includes at least the following.
 (1)これは、太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、入射する太陽光を集光する一次レンズと、前記筐体の底面に設けられたフレキシブルプリント配線板と、前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、前記フレキシブルプリント配線板の導電パターンに接合され、前記セルを囲む枠体と、前記枠体の内側にあって、前記セルを封止する光透過性の封止樹脂と、を備えている。 (1) This is a concentrating photovoltaic power generation module configured by arranging a plurality of concentrating photovoltaic power generation units for concentrating sunlight and generating power, and is arranged in a housing. Each of the photovoltaic units is a primary lens that condenses incident sunlight, a flexible printed wiring board provided on the bottom surface of the housing, and the flexible printed wiring board, when facing the sun, A cell that is provided at a position that coincides with the optical axis of the primary lens and that performs photoelectric conversion on the collected light; a frame that is bonded to the conductive pattern of the flexible printed wiring board and surrounds the cell; And a light transmitting sealing resin for sealing the cell.
 上記のように構成された集光型太陽光発電モジュールにおける集光型太陽光発電ユニットでは、枠体が、セルを外れた光を反射してセルに導くことに寄与する。また、枠体は導電パターンと互いに接合された関係にあるので、セルの熱が導電パターンを介して枠体に伝導し、枠体は放熱に寄与する。このようにして、セルの樹脂パッケージ等を廃し、簡素で安価な構造により、導光及び放熱の両方の効果を高めることができる。 枠 In the concentrating photovoltaic power generation unit in the concentrating photovoltaic power generation module configured as described above, the frame contributes to reflect light that has left the cell and guide it to the cell. Further, since the frame is in a relationship of being joined to the conductive pattern, the heat of the cells is conducted to the frame via the conductive pattern, and the frame contributes to heat radiation. In this manner, both the light guiding and heat radiation effects can be enhanced by eliminating the cell resin package and the like and using a simple and inexpensive structure.
 (2)また、(1)の集光型太陽光発電モジュールにおいて、前記枠体の材質は、金属、並びに、熱伝導率が1[W/m・K]以上のセラミック及び樹脂の、いずれかであることが好ましい。
 このような枠体は、一定以上の熱伝導性により、セルの放熱に寄与する。特に、金属製の枠体は安価に製作できる。
(2) In the concentrator photovoltaic module of (1), the material of the frame is any one of a metal, a ceramic and a resin having a thermal conductivity of 1 [W / m · K] or more. It is preferable that
Such a frame contributes to heat dissipation of the cell due to a certain degree of thermal conductivity. In particular, a metal frame can be manufactured at low cost.
 (3)また、(1)又は(2)の集光型太陽光発電モジュールにおいて、前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成するように前記枠体によって保持されている二次レンズ、を備えてもよい。
 この場合、枠体は二次レンズの支持体になるとともに、二次レンズから漏れ出た散乱光を反射してセルに導くこともできる。
(3) In the concentrator photovoltaic module according to (1) or (2), a gap may be formed between the primary lens and the cell on the optical axis and between the primary lens and the cell. A secondary lens held by the frame may be provided.
In this case, the frame serves as a support for the secondary lens, and can also reflect the scattered light leaked from the secondary lens and guide it to the cell.
 (4)また、(1)~(3)のいずれかの集光型太陽光発電モジュールにおいて、前記枠体は、筒状の支持基部と、当該支持基部の、光が入射する側の端部に形成されたフランジ状の遮蔽部とを備えていてもよい。
 この場合、集光位置がセルから外れるOFF-AXIS光が、例えばバイパスダイオードに当たるのを、遮蔽部によって抑制し、バイパスダイオードをOFF-AXIS光から保護することができる。
(4) In the concentrator photovoltaic power generation module according to any one of (1) to (3), the frame body includes a cylindrical support base and an end of the support base on a light incident side. And a flange-shaped shielding portion formed at the bottom.
In this case, it is possible to prevent the OFF-AXIS light whose focus position deviates from the cell from hitting the bypass diode, for example, by the shielding unit, and protect the bypass diode from the OFF-AXIS light.
 (5)また、(1)の集光型太陽光発電モジュールにおいて、前記枠体は、光の入射側に向かって開口が拡がっている形状であってもよい。
 この場合、枠体は、セルに直接入射しない光を広い開口により受け入れ、かつ、内面で反射してセルに導くことができる。この場合、二次レンズは省略することができる。
(5) In the concentrator photovoltaic module of (1), the frame may have a shape in which an opening is widened toward a light incident side.
In this case, the frame body can receive light that does not directly enter the cell through the wide opening, and can reflect the light on the inner surface and guide the light to the cell. In this case, the secondary lens can be omitted.
 (6)また、(1)~(5)のいずれかの集光型太陽光発電モジュールにおいて、例えば、前記セルの底面側である一方の極が接合されている前記導電パターンに、前記枠体も接合されている。
 この場合、セルの熱が伝導しやすい導電パターンに枠体も接合されているので、セルの放熱に効果的である。
(6) In the concentrator photovoltaic module according to any one of (1) to (5), for example, the frame may be attached to the conductive pattern to which one of the poles on the bottom side of the cell is joined. Are also joined.
In this case, since the frame is also joined to the conductive pattern through which the heat of the cell is easily conducted, it is effective for heat dissipation of the cell.
 (7)また、(1)の集光型太陽光発電モジュールを、太陽を追尾する架台上に複数個並べてアレイを構成した集光型太陽光発電装置とすることができる。 (7) Further, the concentrator photovoltaic power generation device in which a plurality of concentrator photovoltaic modules of (1) are arranged on a mount for tracking the sun to form an array can be provided.
 [実施形態の詳細]
 以下、本発明の一実施形態に係る集光型太陽光発電装置及び集光型太陽光発電モジュールについて、図面を参照して説明する。
[Details of Embodiment]
Hereinafter, a concentrating solar power generation device and a concentrating solar power generation module according to an embodiment of the present invention will be described with reference to the drawings.
 《太陽光発電装置》
 図1及び図2はそれぞれ、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2は、追尾架台25の骨組みが見える状態を右半分に示し、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mが取り付けられた状態を左半分に示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
《Solar power generator》
FIG. 1 and FIG. 2 are perspective views of one example of a concentrating solar power generation device as viewed from the light receiving surface side. FIG. 1 shows the photovoltaic power generation device 100 in a completed state, and FIG. 2 shows the photovoltaic power generation device 100 in a state of being assembled. FIG. 2 shows a state in which the framework of the tracking gantry 25 is visible in the right half, and a state in which the concentrating photovoltaic module (hereinafter, also simply referred to as a module) 1M is attached is shown in the left half. When actually mounting the module 1M on the tracking gantry 25, the mounting is performed with the tracking gantry 25 laid on the ground.
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ(太陽光発電パネル全体)1と、その支持装置2とを備えている。アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。 In FIG. 1, the photovoltaic power generation device 100 includes an array (entire photovoltaic power generation panel) 1 that is continuous on the upper side and divided into left and right sides on the lower side, and a support device 2 for the array. The array 1 is configured by arranging the modules 1M on a tracking rack 25 (FIG. 2) on the rear side. In the example of FIG. 1, the array 1 is an aggregate of a total of 200 modules 1M including (96 (= 12 × 8) × 2) pieces constituting left and right wings and eight pieces at the center crossover part. It is configured.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24(図2)とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。 The support device 2 includes a support 21, a foundation 22, a two-axis drive unit 23, and a horizontal shaft 24 (FIG. 2) serving as a drive shaft. The support 21 has a lower end fixed to the foundation 22 and a biaxial drive unit 23 at the upper end.
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向へのレール25bが取り付けられている。従って、水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。 In FIG. 1, the foundation 22 is buried firmly in the ground so that only the upper surface can be seen. With the foundation 22 buried underground, the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal. The two-axis driving unit 23 can rotate the horizontal axis 24 in two directions of an azimuth (an angle with the support 21 as a central axis) and an elevation (an angle with the horizontal axis 24 as a central axis). In FIG. 2, a reinforcing member 25 a for reinforcing the tracking gantry 25 is attached to the horizontal shaft 24. A plurality of horizontal rails 25b are attached to the reinforcing member 25a. Thus, if the horizontal axis 24 rotates in the azimuth or elevation direction, the array 1 also rotates in that direction.
 なお、図1,図2では1本の支柱21でアレイ1を支える支持装置2を示したが、支持装置2の構成は、これに限られるものではない。要するに、アレイ1を、2軸(方位角、仰角)で可動なように支持できる支持装置であればよい。 In FIGS. 1 and 2, the support device 2 supporting the array 1 with one support 21 is shown, but the configuration of the support device 2 is not limited to this. In short, any supporting device that can support the array 1 so as to be movable in two axes (azimuth and elevation) may be used.
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面が常に太陽に正対する姿勢となるよう、2軸駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 図3は、一例として、太陽に正対しているアレイ1の姿勢を示す斜視図である。また、例えば赤道付近の南中時刻であれば、アレイ1は受光面を太陽に向けて水平な姿勢となる。夜間は、例えば、アレイ1の受光面を地面に向けて水平な姿勢となる。
The vertical orientation of the array 1 as in FIG. 1 is usually before dawn and before sunset.
During the day, the two-axis driving unit 23 operates so that the light receiving surface of the array 1 always faces the sun, and the array 1 performs a sun tracking operation.
FIG. 3 is a perspective view showing the attitude of the array 1 facing the sun as an example. In addition, for example, when the time is in the middle of the south near the equator, the array 1 takes a horizontal posture with the light receiving surface facing the sun. At night, for example, the light receiving surface of the array 1 is oriented horizontally with the light receiving surface facing the ground.
 《集光型太陽光発電モジュールの構成例》
 図4は、集光型太陽光発電モジュール1Mの構成の一例を示す斜視図である。但し、底面11b側はフレキシブルプリント配線板13のみ示し、ここでは、他の構成要素は省略している。
 モジュール1Mは、外観上の物理的な形態としては、例えば金属製又は樹脂製で長方形の平底容器状の筐体11と、その上に蓋のように取り付けられる集光部12と、を備えている。集光部12は、例えば1枚の光透過性のガラス板12aの裏面に樹脂製の一次レンズ(フレネルレンズ)12fが貼り付けられて構成されている。例えば図示の正方形(この例では14個×10個であるが、数量は説明上の一例に過ぎない。)の区画の1つ1つが、一次レンズ12fであり、太陽光を焦点位置に収束させることができる。
<< Configuration example of concentrating solar power generation module >>
FIG. 4 is a perspective view illustrating an example of a configuration of the concentrating solar power generation module 1M. However, only the flexible printed wiring board 13 is shown on the bottom surface 11b side, and other components are omitted here.
The module 1M includes, as a physical form in appearance, a rectangular flat-bottomed container 11 made of, for example, metal or resin, and a light collector 12 mounted thereon like a lid. I have. The condensing unit 12 is configured by, for example, attaching a resin primary lens (Fresnel lens) 12f to the back surface of a single light-transmitting glass plate 12a. For example, each of the sections of the illustrated square (14 × 10 in this example, but the number is merely an example for explanation) is a primary lens 12f, and converges sunlight to a focal position. be able to.
 筐体11の底面11b上には、例えば筐体11の左半分及び右半分の各々において、1本の細長いフレキシブルプリント配線板13が図示のように方向転換しながら整列するように配置されている。フレキシブルプリント配線板13には相対的に幅広な部位と幅狭な部位とがある。セル(図示せず。)が実装されるのは幅広な部位である。セルはフレネルレンズ12fの各々の光軸に対応する位置に配置される。 On the bottom surface 11 b of the housing 11, for example, in each of the left half and the right half of the housing 11, one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as illustrated. . The flexible printed wiring board 13 has a relatively wide portion and a narrow portion. A cell (not shown) is mounted on a wide area. The cells are arranged at positions corresponding to the respective optical axes of the Fresnel lens 12f.
 フレキシブルプリント配線板13と集光部12との間には、例えば金属製の遮蔽板14が取り付けられている。遮蔽板14には、個々の一次レンズ12fの中心に対応した位置に、一次レンズ12fの正方形に相似な正方形の開口14aが形成されている。アレイ1が太陽を正確に追尾し、モジュール1Mに対する太陽光の入射角が0度であれば、一次レンズ12fにより集光された光は開口14aを通過することができる。追尾が大きくずれた場合は、集光された光は遮蔽板14により遮蔽される。但し、追尾のずれが僅かな場合は、集光された光は開口14aを通過する。 例 え ば For example, a metal shielding plate 14 is attached between the flexible printed wiring board 13 and the light collector 12. In the shielding plate 14, a square opening 14a similar to the square of the primary lens 12f is formed at a position corresponding to the center of each primary lens 12f. If the array 1 accurately tracks the sun and the incident angle of the sunlight on the module 1M is 0 degree, the light collected by the primary lens 12f can pass through the opening 14a. If the tracking deviates significantly, the collected light is shielded by the shield plate 14. However, when the tracking shift is slight, the collected light passes through the opening 14a.
 《集光型太陽光発電ユニットの構成例》
 図5は、モジュール1Mを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニット1Uの一例を示す断面図である。なお、図5に示す各部は、構造説明の都合上、適宜拡大して描いており、必ずしも実際の寸法に比例した図ではない(図6以降も同様である。)。
<< Configuration example of concentrating solar power generation unit >>
FIG. 5 is a cross-sectional view illustrating an example of a concentrating photovoltaic power generation unit 1U as a basic configuration of a concentrating photovoltaic power generation optical system constituting the module 1M. Each part shown in FIG. 5 is appropriately enlarged and drawn for convenience of description of the structure, and is not necessarily a figure proportional to the actual dimensions (the same applies to FIG. 6 and subsequent figures).
 図5において、集光型太陽光発電ユニット1Uが、太陽と正対し、太陽光の入射角が0度であると、一次レンズ12fの光軸Ax上に、受光部Rの二次レンズ30及びセル33があり、一次レンズ12fにより集光する光は遮蔽板14の開口14aを通り、受光部Rの二次レンズ30に取り込まれ、セル33に導かれる。 In FIG. 5, when the concentrating photovoltaic power generation unit 1U faces the sun and the incident angle of the sunlight is 0 degree, the secondary lens 30 of the light receiving unit R and the secondary lens 30 on the optical axis Ax of the primary lens 12f. There is a cell 33, and light condensed by the primary lens 12f passes through the opening 14a of the shielding plate 14, is taken into the secondary lens 30 of the light receiving unit R, and is guided to the cell 33.
 図5において、受光部Rは、二次レンズ30、枠体31、導電パターン32、セル33、及び、封止樹脂34を備えている。枠体31は、セル33を囲むように設けられている。受光部Rは、フレキシブルプリント配線板13上に実装されている。なお、セル33には並列にバイパスダイオードが接続されるが、バイパスダイオードがどこに設けられるかは、本実施形態では特に限定していない。 In FIG. 5, the light receiving section R includes a secondary lens 30, a frame 31, a conductive pattern 32, a cell 33, and a sealing resin. The frame 31 is provided so as to surround the cell 33. The light receiving unit R is mounted on the flexible printed wiring board 13. Although a bypass diode is connected to the cell 33 in parallel, where the bypass diode is provided is not particularly limited in the present embodiment.
 二次レンズ30は例えばボールレンズである。二次レンズ30は枠体31の上端部内周エッジ31eにより、セル33との間に光軸Ax方向の隙間が形成されるように支持されている。枠体31は、例えば角筒状であり、金属製である。セル33及び枠体31は、導電パターン32に、例えば、導電性の銀ペーストを塗って接合されている。封止樹脂34は、光透過性の例えばシリコーン樹脂であり、枠体31の内側の、二次レンズ30とセル33との間に形成される空間を満たすように設けられている。 The secondary lens 30 is, for example, a ball lens. The secondary lens 30 is supported by the upper end inner peripheral edge 31 e of the frame 31 so that a gap in the optical axis Ax direction is formed between the secondary lens 30 and the cell 33. The frame body 31 has, for example, a rectangular tubular shape and is made of metal. The cell 33 and the frame 31 are joined to the conductive pattern 32 by applying, for example, a conductive silver paste. The sealing resin 34 is a light-transmitting silicone resin, for example, and is provided so as to fill a space formed between the secondary lens 30 and the cell 33 inside the frame 31.
 図6は、図5と同様の集光型太陽光発電ユニット1Uの断面図であるが、僅かな追尾のずれが発生した状態の一例を示している。前述のように、僅かな追尾ずれでは、遮蔽板14による光の遮蔽はない。二次レンズ30に入った光はセル33に導かれるが、二次レンズ30に入りきらなかった光は、枠体31の端面31aに当たる。枠体31は金属製であるため、光による熱的損傷の恐れはない。 FIG. 6 is a cross-sectional view of the concentrating solar power generation unit 1U similar to FIG. 5, but shows an example of a state where a slight tracking shift has occurred. As described above, there is no light shielding by the shielding plate 14 with a slight tracking deviation. Light that has entered the secondary lens 30 is guided to the cell 33, but light that has not entered the secondary lens 30 impinges on the end face 31 a of the frame 31. Since the frame body 31 is made of metal, there is no possibility of thermal damage due to light.
 図7は、図5の受光部Rのみを抜き出した断面図である。図において、二次レンズ30内に入った光は、概ね図5に示すようにセル33に導かれるが、実際には二次レンズ30内で僅かな、光の散乱が生じる。例えば、図7の二点鎖線に示すように、散乱光はセル33に向かわないで二次レンズ30から出て行く場合があるが、金属光沢のある枠体31の内面31bにより光が反射し、セル33に導かれる。このようにして、散乱光として二次レンズ30を出た光も、その少なくとも一部は、セル33に導かれ、発電に寄与する。 FIG. 7 is a cross-sectional view of only the light receiving portion R of FIG. In the figure, the light that has entered the secondary lens 30 is guided to the cell 33 as shown in FIG. 5, but in practice the light is slightly scattered in the secondary lens 30. For example, as shown by the two-dot chain line in FIG. 7, the scattered light may go out of the secondary lens 30 without going to the cell 33, but the light is reflected by the inner surface 31 b of the frame 31 having a metallic luster. , To the cell 33. Thus, at least a part of the light that has exited the secondary lens 30 as scattered light is guided to the cell 33 and contributes to power generation.
 図8は、フレキシブルプリント配線板13の平面図であり、また、導電パターン32への枠体31及びセル33の取り付け要領を示す図である。まず、(a)に示すように、導電パターン32は、プラス側の導電パターン32pと、マイナス側の導電パターン32nとが互いに絶縁された状態で形成されている。 FIG. 8 is a plan view of the flexible printed wiring board 13, and is a view showing a procedure for attaching the frame 31 and the cell 33 to the conductive pattern 32. First, as shown in (a), the conductive pattern 32 is formed in a state where the positive conductive pattern 32p and the negative conductive pattern 32n are insulated from each other.
 図8の(b)は、枠体31及びセル33を取り付ける場所を点線のハッチングで示している。(c)は、このハッチングの領域に銀ペーストを塗り、枠体31及びセル33を取り付けた(接合した)状態を示す図である。セル33のプラス極である底面は、導電パターン32pと物理的且つ電気的に接続される。また、セル33の表面側のマイナス極は、金ワイヤー35を介して、導電パターン32nと電気的に接続されている。枠体31は、導電パターン32pに銀ペーストで接合されていることにより、電気的に導電パターン32pと接続されている。枠体31は電気的部材ではないが、電気的に接続されていることにより、導電パターン32pとの間で良好な熱伝導性を有する。従って、セル33の発熱が導電パターン32pに伝導し、さらに枠体31に伝導する。従って、枠体31は、放熱体となり、セル33の放熱に寄与する。枠体31がエポキシ樹脂などのパッケージの場合、熱伝導率は、0.2[W/m・K]程度であるが、アルミニウム又はアルミ合金の場合、熱伝導率は、例えば236[W/m・K]であり、熱伝導率に圧倒的な差がある。アルミニウム又はアルミ合金以外でも、例えば銅(熱伝導率398[W/m・K])又はステンレス(熱伝導率26[W/m・K])などを使えば、例えばセルやダイオードを接合する際に枠体も同時にリフローによる接合を行うことができ、簡易な工程で接合が可能となる。 ((B) of FIG. 8 shows the location where the frame body 31 and the cell 33 are attached by hatching with dotted lines. (C) is a diagram showing a state in which silver paste is applied to the hatched area, and the frame body 31 and the cell 33 are attached (joined). The bottom surface, which is the positive pole of the cell 33, is physically and electrically connected to the conductive pattern 32p. The negative pole on the surface side of the cell 33 is electrically connected to the conductive pattern 32n via a gold wire 35. The frame 31 is electrically connected to the conductive pattern 32p by being joined to the conductive pattern 32p with a silver paste. The frame 31 is not an electrical member, but has good thermal conductivity with the conductive pattern 32p by being electrically connected. Therefore, the heat generated in the cell 33 is conducted to the conductive pattern 32p and further to the frame 31. Therefore, the frame 31 serves as a heat radiator and contributes to the heat radiation of the cell 33. When the frame 31 is a package such as an epoxy resin, the thermal conductivity is about 0.2 [W / m · K], but when the frame 31 is aluminum or an aluminum alloy, the thermal conductivity is, for example, 236 [W / m]. [K], and there is an overwhelming difference in thermal conductivity. Other than aluminum or aluminum alloy, for example, when using copper (thermal conductivity 398 [W / m · K]) or stainless steel (thermal conductivity 26 [W / m · K]), for example, when joining cells or diodes In addition, the frame can also be joined by reflow at the same time, and joining can be performed in a simple process.
 図9は、フレキシブルプリント配線板13の導電パターン32pに枠体31及び二次レンズ30を取り付ける要領を示す斜視図である。前述のように、枠体31は、導電パターン32pに接合され、セル33(図8)の放熱に寄与する。金属製の枠体31には、マイナス側の導電パターン32nと接触しないように、切り欠き部31cが設けられている。従って、マイナス側の導電パターン32nは、枠体31と接触せず、導電パターン32p、32n間の絶縁は維持されている。枠体31の中には封止樹脂34(図5)が充填され、二次レンズ30が枠体31に乗るように設けられる。封止樹脂34は、枠体31内で、二次レンズ30とセル33との間に充填され、封止樹脂34の固化により二次レンズ30も接着固定される。 FIG. 9 is a perspective view showing a procedure for attaching the frame 31 and the secondary lens 30 to the conductive pattern 32 p of the flexible printed wiring board 13. As described above, the frame 31 is joined to the conductive pattern 32p, and contributes to heat dissipation of the cell 33 (FIG. 8). The metal frame 31 is provided with a notch 31c so as not to contact the negative conductive pattern 32n. Therefore, the conductive pattern 32n on the minus side does not contact the frame 31, and the insulation between the conductive patterns 32p and 32n is maintained. The frame 31 is filled with a sealing resin 34 (FIG. 5), and the secondary lens 30 is provided so as to ride on the frame 31. The sealing resin 34 is filled in the frame 31 between the secondary lens 30 and the cell 33, and the secondary lens 30 is also adhered and fixed by solidifying the sealing resin 34.
 《受光部の他の構成例1》
 図10は、受光部Rの他の構成例1を示す断面図(上)及び平面図(下)である。図5~図9に示した受光部Rとの違いは、枠体31が、角筒状ではなく、円筒状である点である。その他の構成は同様である。この場合、金属製の枠体31が、図8に示した導電パターン32p,32nの両方に乗らないよう、適宜、図9に示したような切り欠き部31cを設ける必要がある。円筒状の枠体31の場合、二次レンズ30を、枠体31の上端と隙間なく、ぴったりと乗せることができる。例えば金属パイプを短管状に切断すれば容易に、このような枠体31を作製することができる。
<< Another configuration example 1 of light receiving section >>
FIG. 10 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 1 of the light receiving unit R. The difference from the light receiving unit R shown in FIGS. 5 to 9 is that the frame body 31 is not a square tube but a cylinder. Other configurations are the same. In this case, it is necessary to provide a notch 31c as shown in FIG. 9 appropriately so that the metal frame 31 does not ride on both the conductive patterns 32p and 32n shown in FIG. In the case of the cylindrical frame 31, the secondary lens 30 can be placed exactly on the upper end of the frame 31 without any gap. For example, such a frame 31 can be easily manufactured by cutting a metal pipe into a short tube.
 《受光部の他の構成例2》
 図11は、受光部Rの他の構成例2を示す断面図(上)及び平面図(下)である。図10に示した受光部Rとの違いは、枠体31が、円筒状の支持基部31sと、光の入射側の端部にフランジ状の遮蔽部31fとを一体に備えている点である。その他の構成は同様である。この場合、遮蔽部31fがセル33の周囲を広く覆うことにより、太陽の追尾精度が低下してOFF-AXIS光がバイパスダイオード36に当たりそうなときも、確実にこれを防止することができる。また、バイパスダイオード36のみならず、フレキシブルプリント配線板13にOFF-AXIS光が当たることを防止することができる。
<< Another configuration example 2 of the light receiving section >>
FIG. 11 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 2 of the light receiving unit R. The difference from the light receiving portion R shown in FIG. 10 is that the frame 31 integrally includes a cylindrical support base 31s and a flange-shaped shielding portion 31f at an end on the light incident side. . Other configurations are the same. In this case, since the shielding portion 31f widely covers the periphery of the cell 33, even when the tracking accuracy of the sun is reduced and the OFF-AXIS light is likely to hit the bypass diode 36, this can be surely prevented. Further, it is possible to prevent not only the bypass diode 36 but also the flexible printed wiring board 13 from being irradiated with the OFF-AXIS light.
 《受光部の他の構成例3》
 図12は、受光部Rの他の構成例3を示す断面図(上)及び平面図(下)である。この受光部Rでは、二次レンズの代わりにリフレクタとしての金属製の枠体31が設けられる。この枠体31は、図8と同様の要領で導電パターン32(32p)に接合される。但し、この枠体31は、光の入射側(断面図の上側)に向かって開口が拡がっており、広く光を受け入れてセル33に導く導光部としての役割を有している。セル33に直接入射しなかった光の少なくとも一部は、図中の矢印を付した光路に示すように、枠体31の内面31bで反射してセル33に導かれる。枠体31の内側には封止樹脂34が充填され、セル33を封止している。このような枠体31は、バイパスダイオード36に光が当たるのを防止する遮蔽部の役割も果たす。
<< Other configuration example 3 of light receiving section >>
FIG. 12 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 3 of the light receiving unit R. In the light receiving section R, a metal frame 31 as a reflector is provided instead of the secondary lens. This frame 31 is joined to the conductive pattern 32 (32p) in the same manner as in FIG. However, the opening of the frame body 31 is widened toward the light incident side (upper side in the cross-sectional view), and has a role as a light guide section that receives light widely and guides it to the cell 33. At least a portion of the light that has not directly entered the cell 33 is reflected by the inner surface 31b of the frame 31 and guided to the cell 33, as indicated by the optical path indicated by the arrow in the figure. The inside of the frame 31 is filled with a sealing resin 34 to seal the cell 33. Such a frame body 31 also serves as a shielding part for preventing light from shining on the bypass diode 36.
 《受光部の他の構成例4》
 図13は、受光部Rの他の構成例4を示す断面図(上)及び平面図(下)である。図13の枠体31は、図9に示したような角筒状の基部31xの上に一体に、図12に示した枠体31と類似したリフレクタ部31yが形成されたものである。その他の構成は、既述の構成例と同様である。
<< Other configuration example 4 of light receiving section >>
FIG. 13 is a cross-sectional view (upper) and a plan view (lower) illustrating another configuration example 4 of the light receiving unit R. The frame 31 shown in FIG. 13 is formed by integrally forming a reflector 31y similar to the frame 31 shown in FIG. 12 on a rectangular tubular base 31x as shown in FIG. Other configurations are the same as the configuration example described above.
 《まとめ》
 以上のように、上記の集光型太陽光発電モジュールの各受光部Rは、フレキシブルプリント配線板13の導電パターン32pに接合され、セル33を囲む枠体31を備えている。枠体31は、セル33を外れた光を反射してセル33に導くことに寄与する。また、枠体31は導電パターン32pと互いに接合された関係にあるので、セル33の熱が導電パターン32pを介して枠体31に伝導し、枠体31は放熱に寄与する。このようにして、セル33の樹脂パッケージ等を廃し、簡素で安価な構造により、導光及び放熱の両方の効果を高めることができる。
 また、上記の説明では、枠体31は金属製であるとして説明した。金属製の枠体31は安価に作成することができ、耐熱性、熱伝導性にも優れている。但し、枠体31の材質としては、金属以外でも可能である。例えば、耐熱性があり一定以上の熱伝導性のあるセラミック又は樹脂も、枠体31の材質とすることが可能である。一定以上の熱伝導性としては、例えば、少なくともガラスと同等レベルとしての観点から、熱伝導率が1[W/m・K]以上であることが好ましい。
《Summary》
As described above, each light receiving unit R of the above concentrating solar power generation module is provided with the frame 31 that is joined to the conductive pattern 32 p of the flexible printed wiring board 13 and surrounds the cell 33. The frame body 31 contributes to reflecting light that has left the cell 33 and guiding the light to the cell 33. Further, since the frame 31 is connected to the conductive pattern 32p, the heat of the cell 33 is conducted to the frame 31 via the conductive pattern 32p, and the frame 31 contributes to heat radiation. In this way, the resin package and the like of the cell 33 are eliminated, and both light guide and heat radiation effects can be enhanced with a simple and inexpensive structure.
In the above description, the frame body 31 has been described as being made of metal. The metal frame 31 can be manufactured at low cost, and has excellent heat resistance and thermal conductivity. However, the material of the frame 31 may be other than metal. For example, ceramic or resin having heat resistance and a certain level of thermal conductivity can be used as the material of the frame 31. As the thermal conductivity of a certain level or more, for example, the thermal conductivity is preferably 1 [W / m · K] or more from the viewpoint of at least the same level as glass.
 なお、セル33の底面側である一方の極が接合されている導電パターン32pに、枠体31も接合されていることにより、セル33の熱が伝導しやすい導電パターン32pに枠体31も接合されていることになるので、セル33の放熱に効果的である。 Since the frame 31 is also joined to the conductive pattern 32p to which one of the poles on the bottom side of the cell 33 is joined, the frame 31 is also joined to the conductive pattern 32p where heat of the cell 33 is easily conducted. This is effective for heat dissipation of the cell 33.
 また、二次レンズ30を設ける受光部Rの場合、二次レンズ30は、光軸Ax上で一次レンズ12fとセル33との間にあって、セル33との間に隙間を形成するように枠体31によって保持されている。
 すなわち、枠体31は二次レンズ30の支持体になるとともに、二次レンズ30から漏れ出た散乱光を反射してセル33に導くこともできる。
In the case of the light receiving portion R provided with the secondary lens 30, the secondary lens 30 is located between the primary lens 12 f and the cell 33 on the optical axis Ax so that a frame is formed between the primary lens 12 f and the cell 33. 31.
That is, the frame 31 serves as a support for the secondary lens 30, and can also reflect the scattered light leaked from the secondary lens 30 and guide the scattered light to the cell 33.
 また、図11に示したように、枠体31は、筒状の支持基部31sと、当該支持基部31sの、光が入射する側の端部に形成されたフランジ状の遮蔽部31fとを備えていてもよい。
 この場合、OFF-AXIS光が例えばバイパスダイオード36に当たるのを、遮蔽部31fによって抑制し、バイパスダイオード36をOFF-AXIS光から保護することができる。
As shown in FIG. 11, the frame 31 includes a cylindrical support base 31 s and a flange-shaped shielding part 31 f formed at an end of the support base 31 s on the light incident side. May be.
In this case, it is possible to suppress the OFF-AXIS light from hitting, for example, the bypass diode 36 by the shielding portion 31f, and protect the bypass diode 36 from the OFF-AXIS light.
 一方、二次レンズを使用しない受光部Rの場合には、図12又は図13に示したように、枠体31は、光の入射側に向かって開口が拡がっている形状とすることができる。
 この場合、枠体31は、セル33に直接入射しない光を広い開口により受け入れ、かつ、内面で反射してセル33に導くことができる。この場合、二次レンズは省略することができる。
On the other hand, in the case of the light receiving unit R that does not use the secondary lens, as shown in FIG. 12 or 13, the frame body 31 can have a shape in which the opening is widened toward the light incident side. .
In this case, the frame body 31 can receive light that does not directly enter the cell 33 through the wide opening, and can reflect the light on the inner surface and guide the light to the cell 33. In this case, the secondary lens can be omitted.
 《その他》
 なお、上述の受光部Rの各構成例については、その少なくとも一部を、相互に任意に組み合わせてもよい。
《Other》
Note that at least a part of each configuration example of the light receiving unit R described above may be arbitrarily combined with each other.
 《補記》
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<< Appendix >>
It should be understood that the embodiments disclosed this time are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 アレイ
 1M 集光型太陽光発電モジュール(モジュール)
 1U 集光型太陽光発電ユニット
 2 支持装置
 11 筐体
 11b 底面
 12 集光部
 12a ガラス板
 12f 一次レンズ
 13 フレキシブルプリント配線板
 14 遮蔽板
 14a 開口
 21 支柱
 22 基礎
 23 2軸駆動部
 24 水平軸
 25 追尾架台
 25a 補強材
 25b レール
 30 二次レンズ
 31 枠体
 31a 端面
 31b 内面
 31c 切り欠き部
 31e 上端部内周エッジ
 31f 遮蔽部
 31s 支持基部
 31x 基部
 31y リフレクタ部
 32,32p,32n 導電パターン
 33 セル
 34 封止樹脂
 35 金ワイヤー
 36 バイパスダイオード
 51 ボールレンズ
 52 パッケージ
 100 太陽光発電装置
 Ax 光軸
 R 受光部
1 array 1M concentrating solar power generation module (module)
1U Concentrating type photovoltaic power generation unit 2 Support device 11 Housing 11b Bottom surface 12 Condensing unit 12a Glass plate 12f Primary lens 13 Flexible printed wiring board 14 Shielding plate 14a Opening 21 Support 22 Base 23 2-axis driving unit 24 Horizontal axis 25 Tracking Mount 25a Reinforcement material 25b Rail 30 Secondary lens 31 Frame 31a End face 31b Inner face 31c Cutout part 31e Upper end inner peripheral edge 31f Shielding part 31s Support base 31x Base 31y Reflector part 32, 32p, 32n Conductive pattern 33 Cell sealing 35 Gold wire 36 Bypass diode 51 Ball lens 52 Package 100 Photovoltaic device Ax Optical axis R Light receiving unit

Claims (7)

  1.  太陽光を集光して発電する集光型太陽光発電ユニットが複数個、筐体内に並んで構成された集光型太陽光発電モジュールであって、前記集光型太陽光発電ユニットの各々は、
     入射する太陽光を集光する一次レンズと、
     前記筐体の底面に設けられたフレキシブルプリント配線板と、
     前記フレキシブルプリント配線板上の、太陽と正対したときの前記一次レンズの光軸と一致する位置に設けられ、集光した光について光電変換を行うセルと、
     前記フレキシブルプリント配線板の導電パターンに接合され、前記セルを囲む枠体と、
     前記枠体の内側にあって、前記セルを封止する光透過性の封止樹脂と、
     を備えている集光型太陽光発電モジュール。
    A plurality of concentrating solar power generation units for concentrating sunlight and generating power, a concentrating solar power generation module configured side by side in a housing, each of the concentrating solar power generation units is ,
    A primary lens that collects incoming sunlight,
    A flexible printed wiring board provided on the bottom surface of the housing,
    A cell on the flexible printed wiring board, which is provided at a position coinciding with the optical axis of the primary lens when facing the sun, and performs photoelectric conversion on collected light,
    A frame body joined to the conductive pattern of the flexible printed wiring board and surrounding the cell,
    A light-transmissive sealing resin that seals the cell, inside the frame body,
    Concentrating photovoltaic module equipped with.
  2.  前記枠体の材質は、金属、並びに、熱伝導率が1[W/m・K]以上のセラミック及び樹脂の、いずれかである請求項1に記載の集光型太陽光発電モジュール。 材質 The concentrating solar power generation module according to claim 1, wherein the material of the frame is any one of a metal, and a ceramic or a resin having a thermal conductivity of 1 [W / m · K] or more.
  3.  前記光軸上で前記一次レンズと前記セルとの間にあって、前記セルとの間に隙間を形成するように前記枠体によって保持されている二次レンズ、を備える請求項1又は請求項2に記載の集光型太陽光発電モジュール。 3. The secondary lens according to claim 1, further comprising: a secondary lens that is provided between the primary lens and the cell on the optical axis and is held by the frame so as to form a gap between the primary lens and the cell. 4. The concentrating photovoltaic module as described.
  4.  前記枠体は、筒状の支持基部と、当該支持基部の、光が入射する側の端部に形成されたフランジ状の遮蔽部とを備えている請求項1~請求項3のいずれか1項に記載の集光型太陽光発電モジュール。 The frame according to any one of claims 1 to 3, wherein the frame includes a cylindrical support base, and a flange-shaped shield formed at an end of the support base on the light incident side. A concentrating solar power generation module according to the item.
  5.  前記枠体は、光の入射側に向かって開口が拡がっている形状である請求項1に記載の集光型太陽光発電モジュール。 The concentrator photovoltaic module according to claim 1, wherein the frame has a shape in which an opening is widened toward a light incident side.
  6.  前記セルの底面側である一方の極が接合されている前記導電パターンに、前記枠体も接合されている請求項1~請求項5のいずれか1項に記載の集光型太陽光発電モジュール。 The concentrating solar power generation module according to any one of claims 1 to 5, wherein the frame is also joined to the conductive pattern to which one of the poles on the bottom side of the cell is joined. .
  7.  請求項1の集光型太陽光発電モジュールを、太陽を追尾する架台上に複数個並べてアレイを構成した集光型太陽光発電装置。 A concentrator photovoltaic power generation device comprising a plurality of concentrator photovoltaic modules according to claim 1 arranged on a gantry for tracking the sun to form an array.
PCT/JP2019/024115 2018-06-27 2019-06-18 Concentrating solar power generation module and concentrating solar power generation device WO2020004148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-121995 2018-06-27
JP2018121995 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004148A1 true WO2020004148A1 (en) 2020-01-02

Family

ID=68986573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024115 WO2020004148A1 (en) 2018-06-27 2019-06-18 Concentrating solar power generation module and concentrating solar power generation device

Country Status (2)

Country Link
TW (1) TW202013758A (en)
WO (1) WO2020004148A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091391A2 (en) * 2009-02-09 2010-08-12 Semprius, Inc. Concentrator-type photovoltaic (cpv) modules, receivers and sub-receivers and methods of forming same
JP2013187288A (en) * 2012-03-07 2013-09-19 Ngk Insulators Ltd Concentrator photovoltaic system and homogenizer thereof
US20130319507A1 (en) * 2012-05-29 2013-12-05 Essence Solar Solutions Ltd. Photovoltaic module assembly
US20140034127A1 (en) * 2012-07-31 2014-02-06 Semprius, Inc. Surface-mountable lens cradles and interconnection structures for concentrator-type photovoltaic devices
WO2016006573A1 (en) * 2014-07-10 2016-01-14 住友電気工業株式会社 Power generation circuit unit
WO2017022322A1 (en) * 2015-08-03 2017-02-09 住友電気工業株式会社 Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091391A2 (en) * 2009-02-09 2010-08-12 Semprius, Inc. Concentrator-type photovoltaic (cpv) modules, receivers and sub-receivers and methods of forming same
JP2013187288A (en) * 2012-03-07 2013-09-19 Ngk Insulators Ltd Concentrator photovoltaic system and homogenizer thereof
US20130319507A1 (en) * 2012-05-29 2013-12-05 Essence Solar Solutions Ltd. Photovoltaic module assembly
US20140034127A1 (en) * 2012-07-31 2014-02-06 Semprius, Inc. Surface-mountable lens cradles and interconnection structures for concentrator-type photovoltaic devices
WO2016006573A1 (en) * 2014-07-10 2016-01-14 住友電気工業株式会社 Power generation circuit unit
WO2017022322A1 (en) * 2015-08-03 2017-02-09 住友電気工業株式会社 Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device

Also Published As

Publication number Publication date
TW202013758A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
JP5016251B2 (en) Concentrating optical energy collector using solid optical components
US9464783B2 (en) Concentrated photovoltaic panel
US9595627B2 (en) Photovoltaic panel
JP5153868B2 (en) Tracking drive solar power generator
TWI648945B (en) Concentrating solar power generation unit, concentrating solar power generation module, concentrating solar power generation module, and concentrating solar power generation device
EP3333902B1 (en) Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
EP3333903B1 (en) Concentrator photovoltaic unit, concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic device
WO2006132265A1 (en) Condensing photovoltaic power generation unit and condensing photovoltaic power generation system, and condensing lens, condensing lens structure, and production method of condensing lens structure
AU2012101946A4 (en) Energy convertor/concentrator system
JP5214005B2 (en) Concentrating solar cell module and solar power generation system
AU2016267138A1 (en) Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus
WO2020004148A1 (en) Concentrating solar power generation module and concentrating solar power generation device
CN105210195A (en) Solar cell assembly and high concentration solar cell module including same
WO2019159554A1 (en) Concentrator photovoltaic module and concentrator photovoltaic device
WO2019198450A1 (en) Light condensing solar power generation module and light condensing solar power generation device
WO2019171935A1 (en) Light-receiving part for concentrated solar power generation unit, concentrated solar power generation module, and light-receiving part production method
JP2022015028A (en) Concentrated photovoltaic power generation module and concentrated photovoltaic power generation device
JP2019170145A (en) Condensation-type solar battery module and condensation-type photovoltaic power generation system
KR20150049757A (en) High concentrating photovoltaic module for easily arraying lens plate
WO2014138932A1 (en) Photovoltaic system
KR20150049335A (en) Solar cell assembly for high concentrating photovoltaic module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP