WO2020003890A1 - Brake control device - Google Patents

Brake control device Download PDF

Info

Publication number
WO2020003890A1
WO2020003890A1 PCT/JP2019/021716 JP2019021716W WO2020003890A1 WO 2020003890 A1 WO2020003890 A1 WO 2020003890A1 JP 2019021716 W JP2019021716 W JP 2019021716W WO 2020003890 A1 WO2020003890 A1 WO 2020003890A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
brake control
motor
magnet
brake
Prior art date
Application number
PCT/JP2019/021716
Other languages
French (fr)
Japanese (ja)
Inventor
亮平 丸尾
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020003890A1 publication Critical patent/WO2020003890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a brake control device.
  • Japanese Patent Application Laid-Open No. H11-157572 discloses that a rotation detection unit disposed on a control board facing a magnet detects a change in magnetic flux density caused by rotation of a magnet attached to a rotation shaft of a motor that drives a pump.
  • a brake control for detecting a number is disclosed.
  • An opening is formed on the bottom surface of the storage recess that houses the rotating part of the pump, and an opening communicating the inside and the outside of the storage recess is formed, and the rotation shaft of the motor passes through this opening.
  • An oil seal is arranged between the inner peripheral surface of the opening and the outer peripheral surface of the rotating shaft with the aim of suppressing brake fluid leakage toward the control board.
  • Patent Document 1 there is a possibility that the function of the oil seal is reduced due to deterioration in durability, and the brake fluid leaks to the control board side.
  • An object of the present invention is to provide a brake control device capable of suppressing brake fluid leakage to the control board.
  • a brake control device according to an embodiment of the present invention is configured such that a shaft rotated by a motor extends in a direction of a rotation axis of the motor from a first surface to a second surface of the housing, and a magnet provided on the shaft is provided.
  • a control board unit that detects a rotation state of the motor is disposed to face the second surface.
  • FIG. 2 is a right side view of the brake control device 1 according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the brake control device 1.
  • FIG. 4 is a partial perspective view illustrating a configuration of a second substrate housing portion 511b according to the first embodiment.
  • FIG. 2 is an exploded perspective view illustrating the periphery of a motor and a sensor shaft according to the first embodiment.
  • FIG. 6 is a longitudinal sectional view of a brake control device 1 according to a second embodiment.
  • FIG. 10 is a longitudinal sectional view of a brake control device 1 according to a third embodiment.
  • FIG. 1 is a right side view of the brake control device 1 according to the first embodiment
  • FIG. 2 is a longitudinal sectional view of the brake control device 1.
  • the brake control device 1 is applied to an electric vehicle.
  • the electric vehicle is a hybrid vehicle having an engine and a motor generator as a prime mover for driving wheels, an electric vehicle having only a motor generator as a prime mover, and the like.
  • a regenerative braking device including a motor generator can perform regenerative braking that brakes the vehicle by converting kinetic energy of the vehicle into electric energy by power generation.
  • the brake control device 1 generates a braking force by converting kinetic energy of a vehicle into thermal energy by friction.
  • Each wheel is provided with a brake operating unit.
  • the brake actuation unit is a hydraulic pressure generator including a wheel cylinder.
  • the brake operation unit is, for example, a disk type and has a hydraulic brake caliper.
  • Brake calipers have brake discs and brake pads.
  • the brake disk is a brake rotor that rotates integrally with the tire.
  • the brake pad is arranged with a predetermined clearance with respect to the brake disc, and moves by the hydraulic pressure of the wheel cylinder. When the brake pad is pressed against the brake disc, a braking force is generated by the frictional force.
  • the brake control device 1 has two primary and secondary brake pipes.
  • the brake piping type is, for example, an X piping type. In addition, you may employ
  • the brake control device 1 is disposed between the master cylinder and each brake operation unit, supplies brake fluid to each brake operation unit, and controls the brake fluid pressure of the wheel cylinder.
  • the brake control device 1 is arranged in a motor room separated from the driver's cab of the vehicle.
  • the brake control device 1 has a housing 2, a motor 3, a stroke simulator 4, and a control unit 5.
  • the housing 2 is a housing that houses therein the pump 6, a plurality of solenoid valves 7, etc., a plurality of hydraulic pressure sensors 8, and the like.
  • the housing 2 is a substantially rectangular parallelepiped block formed of an aluminum alloy.
  • the housing 2 has two primary and secondary circuits through which the brake fluid flows. The two circuits are composed of a plurality of liquid paths.
  • the housing 2 is fixed to the floor F of the motor room via an insulator and a bracket B (not shown).
  • the bracket B is fastened to the floor F by a plurality of screws.
  • the housing 2 is supported by the bracket B so that the rotation axis O1 has an angle with respect to the horizontal floor F.
  • the brake control device 1 in the direction of the rotation axis O1, the side of the motor 3 is tilted downward, and the side of the control unit 5 is tilted upward.
  • the motor 3 is a brushless electric motor, and has a motor case 31, a stator 32, a rotor shaft 33, and a rotor.
  • the motor case 31 is formed in a bottomed cylindrical shape having a cylindrical portion 31a and two bottom portions 31b and 31c. The center of the bottom 31c is open.
  • the motor case 31 is fastened to the front surface (first surface) 21 of the housing 2 using a screw (not shown).
  • Stator 32 is fixed to the inner peripheral surface of cylindrical portion 31a.
  • the rotor shaft 33 is formed in a cylindrical shape, and is attached to the motor case 31 so as to be rotatable around the rotation axis O1.
  • the X-axis is set in the direction in which the rotation axis O1 extends, and the direction from the bottom 31b to the bottom 31c is defined as the X-axis positive direction.
  • the radial direction of the rotation axis O1 is defined as a radial direction, and the direction around the rotation axis O1 is defined as a circumferential direction.
  • XA negative end of the rotor shaft 33 in the X-axis direction is rotatably supported by the motor case 31 by a bearing 37a attached to the bottom 31b.
  • the positive side in the X-axis direction of the rotor shaft 33 is rotatably supported by the motor case 31 by a bearing 37b attached to the bottom 31c.
  • the X-axis positive direction end of the rotor shaft 33 protrudes toward the X-positive direction from the bottom 31c.
  • the rotor 34 is fixed to the outer periphery of the rotor shaft 33 and faces the stator 32 in the radial direction. The rotor 34 rotates integrally with the rotor shaft 33.
  • the power supply unit 36c is a conductive member for supplying power to the stator 32 from a later-described first control board 52 of the control unit 5.
  • the power supply section 36c protrudes outside the motor case 31, and extends in the X-axis positive direction along a through hole 2a that penetrates the inside of the housing 2 in the X-axis direction. Most of the power supply section 36c is covered with a synthetic resin.
  • the rotor shaft 33 is a rotating shaft for driving the pump 6.
  • the positive end of the rotor shaft 33 in the X-axis direction is accommodated on the X-axis negative direction side with respect to the rear surface (second surface) 22 of the housing 2.
  • the stroke simulator 4 has a built-in plunger supported by a spring. The movement of the plunger absorbs the movement of the brake fluid discharged from the master cylinder and simultaneously generates a reaction force on the brake pedal.
  • the stroke simulator 4 is fastened to the right side surface 23 of the housing 2 using a screw 41.
  • the pump 6 draws in brake fluid in a reservoir tank (not shown) by rotation of the motor 3, and discharges the brake fluid to the wheel cylinder.
  • the pump 6 is shared by two systems, a primary system and a secondary system.
  • five plunger pumps 6a having excellent sound vibration performance and the like are employed.
  • Each plunger pump 6a is housed in five cylinder housing holes 2b formed in the housing 2.
  • Two cylinder accommodation holes 2b are arranged on the right side surface 23 of the housing 2, two on the left side surface, and one on the bottom surface 24, and are arranged at a constant pitch in the circumferential direction.
  • Each cylinder housing hole 2b is connected to the cam chamber 2c.
  • the cam chamber 2c extends in the X-axis direction and opens on the front surface 21 of the housing 2. When viewed from the X-axis direction, the center of the cam chamber 2c is on the rotation axis O1. The cam chamber 2c is connected to the shaft receiving hole 2d.
  • the shaft receiving hole 2d is a cylindrical hole with a bottom, extends in the X-axis direction, and is closed by a bottom 22a (see an enlarged view of FIG. 2) formed on the back surface 22 side of the housing 2.
  • the cam chamber 2c accommodates a sensor shaft 33b integrally formed at the end of the rotor shaft 33 on the X-axis positive direction side.
  • a cam portion 33a is formed on the rotor shaft 33 in the positive X-axis direction.
  • a bearing 62 is attached to the outer periphery of the cam portion 33a.
  • the plurality of solenoid valves 7 and the like are solenoid valves that operate in accordance with a control signal from the control unit 5, and the valve body strokes in accordance with energization of the solenoid to switch between opening and closing of the liquid path (disconnecting and connecting the liquid path). ).
  • the solenoid valve 7 and the like generate a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid.
  • Part of the solenoid valve 7 and the like is housed in the plurality of valve housing holes 2e. Each valve accommodation hole 2e extends in the X-axis direction and opens on the back surface 22 of the housing 2.
  • the plurality of hydraulic pressure sensors 8 and the like detect a master cylinder hydraulic pressure, primary and secondary wheel cylinder hydraulic pressures, and a discharge pressure of the pump 6.
  • the hydraulic pressure sensor 8 and the like are partially accommodated in the plurality of sensor accommodation holes 2f.
  • Each sensor accommodation hole 2f extends in the X-axis direction and opens on the back surface 22 of the housing 2. When viewed from the X-axis direction, each valve accommodation hole 2e and each sensor accommodation hole 2f are arranged apart from each other.
  • the control unit 5 receives a stroke sensor, such as a hydraulic pressure sensor 8 attached to the housing 2, for detecting a stroke of a brake pedal, and information on a running state from the vehicle.
  • the control unit 5 controls the wheel cylinder fluid pressure of each wheel by operating the plurality of solenoid valves 7 and the like and the motor 3 using the input information according to a built-in program.
  • This allows various types of brake control (anti-lock brake control to suppress wheel slippage due to braking, boost control to reduce the driver's braking force, brake control for vehicle motion control, following vehicle ahead Automatic brake control such as control, regenerative cooperative brake control, etc.).
  • Vehicle motion control includes vehicle behavior stabilization control such as sideslip prevention.
  • regenerative cooperative brake control wheel cylinder fluid pressure is controlled so as to achieve a target deceleration (target braking force) in cooperation with regenerative braking.
  • the control unit 5 includes a case 51, a first control board 52, and a second control board 53.
  • the first control board 52 and the second control board 53 are control board sections.
  • the second control board 53 is formed so as to be housed between the plurality of electromagnetic valves 7 and is smaller in size than the first control board 52.
  • the case 51 has a main body 511 and a cover 512.
  • the main body 511 has a concave shape on the X-axis negative direction side, and covers the solenoids 7a and the like of the plurality of solenoid valves 7 and the like.
  • the main body 511 is fastened to the back surface 22 of the housing 2 by a screw (not shown).
  • the main body 511 has a first substrate housing 511a on the X-axis positive direction side.
  • the first control board 52 is housed in the first board housing section 511a.
  • a second substrate housing portion 511b is provided on the housing side of the first substrate housing portion 511a, that is, on the X-axis negative direction side.
  • the second control board 53 is accommodated in the second board accommodation section 511b.
  • the second control board 53 is installed at a position where at least a part thereof overlaps with the rotation axis 01 when viewed from the axial direction.
  • the first control board 52 and the second control board 53 are electrically connected.
  • the cover 512 is a lid member that is fixed to the X-axis positive direction side of the main body 511 and covers the first substrate housing 511a.
  • the first control board 52 is disposed in the board accommodating portion 511a in parallel with the back surface 22 of the housing 2.
  • the first control board 52 has a motor control circuit for controlling the energization state of the motor 3 and each solenoid 7a, a motor drive circuit, a solenoid drive circuit, and a solenoid control circuit.
  • the motor control circuit has a microcomputer (or ASIC), a memory, and the like, and is a circuit for driving (a driving element of) the motor driving circuit.
  • the motor drive circuit has a drive element such as a MOSFET and drives the motor 3.
  • the solenoid control circuit is a circuit that includes a microcomputer (or ASIC), a memory, and the like, and drives a solenoid drive circuit (a drive element thereof).
  • the solenoid drive circuit has a drive element such as a MOSFET and drives each solenoid 7a.
  • the second control board 53 is arranged in the second board accommodating portion 511b in parallel with the first control board 52 and at a predetermined distance from the first control board 52 in the negative X-axis direction.
  • the magnetic flux detector 9c is mounted on the surface of the second control board 53 on the negative side in the X-axis direction.
  • the magnetic flux detector 9c is close to the magnet 9a attached to the sensor shaft 33b, and faces the magnet 9a in the axial direction.
  • the magnetic flux detection unit 9c has a detection element such as a Hall element, and detects a rotation angle (mechanical angle) of the rotor shaft 33, that is, a motor rotation speed by detecting a change in magnetic flux density due to rotation of the magnet 9a. I do.
  • the motor rotation speed detected by the magnetic flux detector 9c is output to the motor control circuit and the solenoid control circuit of the first control board 52, and is used for controlling the motor 3 and each solenoid 7a.
  • the magnet 9a and the magnetic flux detector 9c constitute a motor speed sensor.
  • FIG. 3 is a partial perspective view illustrating the configuration of the second substrate housing portion 511b of the first embodiment.
  • This figure is a diagram viewed from the inside of the control unit 5.
  • the second substrate housing part 511b is formed in a region surrounded by the plurality of coils 7a.
  • the second control board 53 has a substantially rectangular plate shape, and has an engaging portion 53a formed on a short side thereof so as to be bent so that the fixing hook 511b1 can be engaged.
  • the second board accommodating section 511b sandwiches the second control board 53 from both sides and a pedestal section 511b2 supporting the second control board 53, and urges toward the pedestal section 511b2.
  • a fixing hook 511b1 that is engaged with the fixing hook 511b1.
  • a terminal 511b3 for electrically connecting the second control board 53 and the first control board 52 is provided between the fixing hook 511b1 and the base 5111b2.
  • FIG. 4 is an exploded perspective view illustrating the periphery of the motor and the sensor shaft according to the first embodiment.
  • a magnet holder 100 is provided on the outer periphery of the end of the sensor shaft 33b in the X-axis positive direction.
  • the magnet holder 100 is a substantially cylindrical member, and the diameter of the cylinder is larger than the diameter of the sensor shaft 33b.
  • a press-fit portion 101 into which the tip of the sensor shaft 33b is press-fitted is formed.
  • a magnet accommodating portion 102 for accommodating the disk-shaped magnet 9a is formed on the substrate side of the magnet holder 100. As shown in FIG.
  • the magnet 9a has S poles and N poles arranged alternately in the rotation direction, and is magnetized in the axial direction in the order of S pole ⁇ N pole or N pole ⁇ S pole.
  • the magnet 9a is, for example, a neodymium magnet, and is fixed to the magnet housing 102. Therefore, the fixed magnetic flux detector 9c detects a change in the magnetic flux density of the magnet 9a that rotates with the rotation of the rotor shaft 33, and detects the motor rotation speed.
  • the brake fluid leaked to the cam chamber 2c during the operation of the pump 6 flows to a fluid reservoir (not shown) arranged near the bottom surface 24 of the housing 2.
  • a part of the brake fluid leaked to the cam chamber 2c moves to the X axis positive direction side along the rotor shaft 33 and the sensor shaft 33b.
  • the magnet 9a of the motor rotation speed sensor needs to be arranged close to the magnetic flux detector 9c. For this reason, when the brake fluid leaked to the cam chamber 2c reaches the control boards 52 and 53 along the sensor shaft 33b, a problem such as overheating occurs.
  • the oil seal installed between the housing and the pump shaft suppresses the brake fluid leakage from the cam chamber to the control board side. , There is a possibility that the brake fluid leaks.
  • the shaft receiving hole 2d formed in the housing 2 is formed in a cylindrical shape with a bottom, and includes a bottom 22a.
  • the aluminum housing 2 is made of a non-magnetic material, and since the second control board 53 is disposed close to the bottom 22a, the motor rotation speed sensor can be configured without causing leakage of brake fluid.
  • the motor 3 has a front surface 21 (first surface) on which the motor 3 is arranged, and a back surface 22 (second surface) separated from the front surface 21 by a predetermined distance in the direction of the rotation axis of the motor 3.
  • the housing 2 a rotor shaft 33 extending in the direction of the rotation axis 01 from the front 21 to the back 22 and rotated by the motor 3, a magnet 9a provided on a sensor shaft 33b integrated with the rotor shaft 33, and a magnet
  • a second control board 53 (control board unit) is provided to face the rear face 22 and 9a, and a magnetic flux detection unit 9c provided on the second control board 53 and detecting a rotation state of the motor 3 is provided. Therefore, it is possible to prevent the brake fluid from leaking to the second control board 53 side.
  • the control board section includes a first control board 52 (first board) arranged opposite to the back face 22 and a second control board section arranged opposite to the first control board 52 on the opposite side to the back face 22.
  • a magnetic flux detector 9c is provided on the second control board 53.
  • the substrate is composed of two large and small substrates, and one of the substrates is arranged close to the rear surface 22, so that the rotor shaft 33 and the sensor shaft 33b are not unnecessarily lengthened, and the brake control device is reduced in size and weight. be able to.
  • the first control board 52 and the second control board 53 are electrically connected. Therefore, information detected by the second control board 53 can be shared with the first control board 52.
  • the back surface 22 has a plurality of coils 7a, and the second control board 53 is disposed between the plurality of coils 7a. Therefore, the size can be reduced by effectively utilizing the dead space, and the second control board 53 can be disposed close to the magnet 9a regardless of the thickness of the coil 7a in the rotation axis direction.
  • the plurality of coils 7a and the magnetic flux detector 9c are arranged on the rear surface 22, which is the same surface of the housing 2. Therefore, electrical connection with the first control board 52 can be easily ensured.
  • FIG. 5 is a longitudinal sectional view of the brake control device 1 according to the second embodiment.
  • the bottom portion 22a of the bottomed shaft receiving hole 2d formed in the housing 2 is formed.
  • a through-hole 22b is formed at the bottom of the shaft receiving hole 2d, and a resin-made lid member 200 made of a non-magnetic material is attached to the through-hole 22b to close the shaft receiving hole 2d.
  • a lid member 200 made of resin is arranged between the magnet 9a and the magnetic flux detection unit 9c. As a result, generation of an eddy current can be avoided as compared with the case where the housing 2 is closed, and a change in magnetic flux can be detected with high accuracy.
  • FIG. 6 is a longitudinal sectional view of the brake control device 1 according to the third embodiment.
  • the bottom of the shaft housing hole 2d formed in the housing 2 has an extension 220 extending toward the first control board 52 from the back surface 22 as a coil arrangement surface on which the plurality of coils 7a are arranged, and an extension And a bottom 22a for closing the bottom of 220.
  • the sensor shaft 33b is housed in the extension 220, and the magnet holder 100 attached to the sensor shaft 33b is arranged at a position close to the bottom 22a.
  • the second control board 53 is not provided, and the magnetic flux detecting unit 9c is mounted on the housing side of the first control board 52. Accordingly, it is possible to reduce costs and reduce the number of assembling steps by suppressing the number of control boards while avoiding oil leakage and the like.
  • the housing 2 has a back surface 22 as a coil arrangement surface on which a plurality of coils are arranged, extends from the back surface 22 in the direction of the rotation axis, and has a part of the sensor shaft 33b therein and a tip end of the sensor shaft 33b. And an extension portion 220 for accommodating the magnet 9a provided. A bottom surface 22a is formed at one end of the extension portion 220. Therefore, oil leakage can be avoided without separately providing a lid member.
  • the magnet 9a can be brought close to the first control board 52, and the magnetic flux detection unit 9c can be mounted on the first control board 52 installed separately from the back surface 22 due to the presence of the coil 7a. Therefore, it is not necessary to provide a plurality of control boards, and the number of control boards can be reduced to reduce costs and reduce the number of assembling steps.
  • the rotor shaft 33 and the sensor shaft 33b are arranged coaxially.
  • a gear is arranged at the tip of the rotor shaft 33, and the sensor shaft 33b is located at a position radially offset from the rotation axis of the rotor shaft 33. It may be arranged.
  • the degree of freedom in layout can be increased and the assemblability can be improved.
  • the configuration in which the magnet 9a is attached to the magnet holder 100 has been described.
  • the magnet 9a may be fixed to the sensor shaft 33b with an adhesive.
  • the example in which the brushless motor is used as the motor 3 is described, but a motor with a brush may be used.
  • the present invention is applied to a brake control device for a brake-by-wire system mounted on an electric vehicle, but may be a brake control device mounted on an engine vehicle.
  • the present invention may be applied to an anti-lock brake system that avoids wheel lock during braking or a brake control device that includes a vehicle dynamics control system that improves stability during turning of a vehicle.
  • the example in which the magnetic flux detection unit 9c is a single IC chip has been described.
  • a dual die IC chip including two detection units may be employed.
  • the brake control device includes a motor, a first surface on which the motor is arranged, and a second surface separated from the first surface by a predetermined distance in a direction of a rotation axis of the motor, A shaft extending from the first surface to the second surface in the direction of the rotation axis and rotated by the motor, a magnet provided on the shaft, the magnet,
  • the control board includes a control board section facing the second surface, and a detection section provided on the control board section to detect a rotation state of the motor.
  • control board portion is configured to face the first substrate on a side opposite to the second face and the first board disposed on the second face. And a second substrate, which is disposed in a predetermined position, wherein the detection unit is disposed on the second substrate.
  • first substrate and the second substrate are electrically connected.
  • the second surface has a plurality of coils, and the second substrate is disposed between the plurality of coils.
  • a plurality of coils and the detection section are arranged on the same surface of the housing.
  • a resin lid member is disposed between the magnet and the detection unit.
  • the housing is a coil arrangement surface on which a plurality of coils are arranged, and an extension portion extending from the coil arrangement surface in the direction of the rotation axis.
  • the extension portion for accommodating a part of the shaft and the magnet provided at the tip of the shaft, and the second portion is provided at one end of the extension portion.
  • Surface is formed.
  • a holder member to which the magnet is fixed is attached to a tip of the shaft.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • O1 rotation axis 1 brake controller 2 housing 3 motor 9a magnet 9c magnetic flux detector 21 front (first surface) 22 back (second surface) 33b sensor shaft 52 first control board (control board) 53 second control Board (control board part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

In this brake control device, a shaft rotated by a motor extends in the direction of the rotation axis of the motor from a first surface of a housing toward a second surface, and a magnet provided to the shaft and a control substrate unit for detecting the rotation state of the motor are disposed facing the second surface.

Description

ブレーキ制御装置Brake control device
 本発明は、ブレーキ制御装置に関する。 The present invention relates to a brake control device.
 特許文献1には、ポンプを駆動するモータの回転軸に取り付けられたマグネットの回転に伴う磁束密度変化を、マグネットと対向する制御基板上に配置された回転検出部で検出することにより、モータ回転数を検出するブレーキ制御装置が開示されている。ポンプの回転部を収容する収納凹部の底面には、収納凹部内の内外を連通させる開口部が形成され、この開口部にモータの回転軸が貫通する。開口部の内周面と回転軸の外周面との間には、制御基板の側へのブレーキ液漏れを抑制することを狙いとし、オイルシールが配置されている。 Japanese Patent Application Laid-Open No. H11-157572 discloses that a rotation detection unit disposed on a control board facing a magnet detects a change in magnetic flux density caused by rotation of a magnet attached to a rotation shaft of a motor that drives a pump. A brake control for detecting a number is disclosed. An opening is formed on the bottom surface of the storage recess that houses the rotating part of the pump, and an opening communicating the inside and the outside of the storage recess is formed, and the rotation shaft of the motor passes through this opening. An oil seal is arranged between the inner peripheral surface of the opening and the outer peripheral surface of the rotating shaft with the aim of suppressing brake fluid leakage toward the control board.
特開2015-189366号公報JP 2015-189366 A
 しかしながら、上記特許文献1にあっては、耐久劣化によりオイルシールの機能が低下し、制御基板の側へのブレーキ液漏れが生じるおそれがあった。 However, in Patent Document 1, there is a possibility that the function of the oil seal is reduced due to deterioration in durability, and the brake fluid leaks to the control board side.
  本発明の目的の一つは、制御基板の側へのブレーキ液漏れを抑制できるブレーキ制御装置を提供することにある。
 本発明の一実施形態におけるブレーキ制御装置は、モータによって回転されるシャフトがハウジングの第1の面から第2の面へ向かってモータの回転軸線の方向に延出し、シャフトに設けられたマグネットとモータの回転状態を検出する制御基板部とが、第2の面に対向して配置されている。
An object of the present invention is to provide a brake control device capable of suppressing brake fluid leakage to the control board.
A brake control device according to an embodiment of the present invention is configured such that a shaft rotated by a motor extends in a direction of a rotation axis of the motor from a first surface to a second surface of the housing, and a magnet provided on the shaft is provided. A control board unit that detects a rotation state of the motor is disposed to face the second surface.
 よって、本発明の一実施形態によれば、制御基板の側へのブレーキ液漏れを抑制できる。 Therefore, according to the embodiment of the present invention, it is possible to suppress the brake fluid from leaking to the control board side.
実施例1のブレーキ制御装置1の右側面図である。FIG. 2 is a right side view of the brake control device 1 according to the first embodiment. ブレーキ制御装置1の縦断面図である。FIG. 2 is a longitudinal sectional view of the brake control device 1. 実施例1の第2基板収容部511bの構成を表す部分斜視図である。FIG. 4 is a partial perspective view illustrating a configuration of a second substrate housing portion 511b according to the first embodiment. 実施例1のモータ及びセンサシャフト周辺を表す分解斜視図である。FIG. 2 is an exploded perspective view illustrating the periphery of a motor and a sensor shaft according to the first embodiment. 実施例2のブレーキ制御装置1の縦断面図である。FIG. 6 is a longitudinal sectional view of a brake control device 1 according to a second embodiment. 実施例3のブレーキ制御装置1の縦断面図である。FIG. 10 is a longitudinal sectional view of a brake control device 1 according to a third embodiment.
 〔実施例1〕
  図1は実施例1のブレーキ制御装置1の右側面図、図2はブレーキ制御装置1の縦断面図である。
  ブレーキ制御装置1は、電動車両に適用されている。電動車両は、車輪を駆動する原動機としてエンジンおよびモータ・ジェネレータを備えたハイブリッド車、原動機としてモータ・ジェネレータのみを備えた電気自動車等である。電動車両では、モータ・ジェネレータを含む回生制動装置により、車両の運動エネルギを発電により電気エネルギに変換することで車両を制動する回生制動を実行可能である。ブレーキ制御装置1は、車両の運動エネルギを摩擦により熱エネルギに変換することで制動力を発生させる。各車輪には、ブレーキ作動ユニットが取り付けられている。ブレーキ作動ユニットは、ホイルシリンダを含む液圧発生部である。ブレーキ作動ユニットは、例えばディスク式であり、液圧式のブレーキキャリパを有する。
[Example 1]
FIG. 1 is a right side view of the brake control device 1 according to the first embodiment, and FIG. 2 is a longitudinal sectional view of the brake control device 1.
The brake control device 1 is applied to an electric vehicle. The electric vehicle is a hybrid vehicle having an engine and a motor generator as a prime mover for driving wheels, an electric vehicle having only a motor generator as a prime mover, and the like. In an electric vehicle, a regenerative braking device including a motor generator can perform regenerative braking that brakes the vehicle by converting kinetic energy of the vehicle into electric energy by power generation. The brake control device 1 generates a braking force by converting kinetic energy of a vehicle into thermal energy by friction. Each wheel is provided with a brake operating unit. The brake actuation unit is a hydraulic pressure generator including a wheel cylinder. The brake operation unit is, for example, a disk type and has a hydraulic brake caliper.
 ブレーキキャリパはブレーキディスクおよびブレーキパッドを有する。ブレーキディスクはタイヤと一体に回転するブレーキロータである。ブレーキパッドは、ブレーキディスクに対し所定クリアランスをもって配置され、ホイルシリンダの液圧によって移動する。ブレーキパッドがブレーキディスクに押し付けられることにより、その摩擦力によって制動力が発生する。ブレーキ制御装置1は、プライマリおよびセカンダリの2系統のブレーキ配管を有する。ブレーキ配管形式は、例えばX配管形式である。なお、前後配管等、他の配管形式を採用してもよい。ブレーキ制御装置1は、マスタシリンダと各ブレーキ作動ユニットとの間に配置され、各ブレーキ作動ユニットにブレーキ液を供給し、ホイルシリンダのブレーキ液圧を制御する。 Brake calipers have brake discs and brake pads. The brake disk is a brake rotor that rotates integrally with the tire. The brake pad is arranged with a predetermined clearance with respect to the brake disc, and moves by the hydraulic pressure of the wheel cylinder. When the brake pad is pressed against the brake disc, a braking force is generated by the frictional force. The brake control device 1 has two primary and secondary brake pipes. The brake piping type is, for example, an X piping type. In addition, you may employ | adopt other piping types, such as front and back piping. The brake control device 1 is disposed between the master cylinder and each brake operation unit, supplies brake fluid to each brake operation unit, and controls the brake fluid pressure of the wheel cylinder.
 ブレーキ制御装置1は、車両の運転室から隔離されたモータ室内に配置されている。ブレーキ制御装置1は、ハウジング2、モータ3、ストロークシミュレータ4およびコントロールユニット5を有する。ハウジング2は、その内部にポンプ6、複数の電磁弁7等および複数の液圧センサ8等を収容する筐体である。ハウジング2は、アルミニウム合金で形成された略直方体のブロックである。ハウジング2は、その内部に、ブレーキ液が流通するプライマリおよびセカンダリの2系統の回路を有する。2系統の回路は、複数の液路から構成されている。 The brake control device 1 is arranged in a motor room separated from the driver's cab of the vehicle. The brake control device 1 has a housing 2, a motor 3, a stroke simulator 4, and a control unit 5. The housing 2 is a housing that houses therein the pump 6, a plurality of solenoid valves 7, etc., a plurality of hydraulic pressure sensors 8, and the like. The housing 2 is a substantially rectangular parallelepiped block formed of an aluminum alloy. The housing 2 has two primary and secondary circuits through which the brake fluid flows. The two circuits are composed of a plurality of liquid paths.
 図1に示すように、ハウジング2は、図外のインシュレータおよびブラケットBを介してモータ室のフロアFに固定されている。ブラケットBは、複数のスクリュによりフロアFと締結されている。ハウジング2は、水平なフロアFに対して回転軸線O1が角度を持つようにブラケットBに支持されている。これにより、ブレーキ制御装置1は、回転軸線O1の方向において、モータ3の側が下方に傾き、コントロールユニット5の側が上方に傾いている。 ハ ウ ジ ン グ As shown in FIG. 1, the housing 2 is fixed to the floor F of the motor room via an insulator and a bracket B (not shown). The bracket B is fastened to the floor F by a plurality of screws. The housing 2 is supported by the bracket B so that the rotation axis O1 has an angle with respect to the horizontal floor F. Thus, in the brake control device 1, in the direction of the rotation axis O1, the side of the motor 3 is tilted downward, and the side of the control unit 5 is tilted upward.
 モータ3は、ブラシレス電動機であり、モータケース31、ステータ32、ロータシャフト33、ロータ34を有する。モータケース31は、円筒部31aおよび2つの底部31b,31cを有する有底円筒状に形成されている。底部31cの中心は開口する。モータケース31は、ハウジング2の正面(第1の面)21に図外のスクリュを用いて締結されている。ステータ32は、円筒部31aの内周面に固定されている。ロータシャフト33は、円筒状に形成され、モータケース31に対し回転軸線O1周りに回転可能に取り付けられている。以下、回転軸線O1が延びる方向にX軸を設定し、底部31bの側から底部31cの側へ向かう方向をX軸正方向と規定する。また、回転軸線O1の放射方向を径方向、回転軸線O1周りの方向を周方向とする。 The motor 3 is a brushless electric motor, and has a motor case 31, a stator 32, a rotor shaft 33, and a rotor. The motor case 31 is formed in a bottomed cylindrical shape having a cylindrical portion 31a and two bottom portions 31b and 31c. The center of the bottom 31c is open. The motor case 31 is fastened to the front surface (first surface) 21 of the housing 2 using a screw (not shown). Stator 32 is fixed to the inner peripheral surface of cylindrical portion 31a. The rotor shaft 33 is formed in a cylindrical shape, and is attached to the motor case 31 so as to be rotatable around the rotation axis O1. Hereinafter, the X-axis is set in the direction in which the rotation axis O1 extends, and the direction from the bottom 31b to the bottom 31c is defined as the X-axis positive direction. The radial direction of the rotation axis O1 is defined as a radial direction, and the direction around the rotation axis O1 is defined as a circumferential direction.
 ロータシャフト33のX軸負方向端は、底部31bに取り付けられたベアリング37aにより、モータケース31に対し回転可能に支持されている。ロータシャフト33のX軸正方向側は、底部31cに取り付けられたベアリング37bにより、モータケース31に対し回転可能に支持されている。ロータシャフト33のX軸正方向端は、底部31cよりもX正方向側へ突出する。ロータ34は、ロータシャフト33の外周に固定され、ステータ32と径方向に対向する。ロータ34はロータシャフト33と一体に回転する。 XA negative end of the rotor shaft 33 in the X-axis direction is rotatably supported by the motor case 31 by a bearing 37a attached to the bottom 31b. The positive side in the X-axis direction of the rotor shaft 33 is rotatably supported by the motor case 31 by a bearing 37b attached to the bottom 31c. The X-axis positive direction end of the rotor shaft 33 protrudes toward the X-positive direction from the bottom 31c. The rotor 34 is fixed to the outer periphery of the rotor shaft 33 and faces the stator 32 in the radial direction. The rotor 34 rotates integrally with the rotor shaft 33.
 電力供給部36cは、コントロールユニット5の後述する第1制御基板52からステータ32へ電力を供給するための導電部材である。電力供給部36cは、モータケース31の外部に突出し、ハウジング2の内部をX軸方向に貫通する貫通孔2aに沿ってX軸正方向側へ延びる。電力供給部36cの大部分は合成樹脂で覆われている。ロータシャフト33は、ポンプ6を駆動するための回転軸である。ロータシャフト33のX軸正方向端は、ハウジング2の背面(第2の面)22よりもX軸負方向側に収容されている。
  ストロークシミュレータ4は、スプリングで支持されたプランジャを内蔵する。プランジャの移動により、マスタシリンダから排出されたブレーキ液の移動を吸収すると同時に、ブレーキペダルに反力を発生させる。ストロークシミュレータ4は、ハウジング2の右側面23にスクリュ41を用いて締結されている。
The power supply unit 36c is a conductive member for supplying power to the stator 32 from a later-described first control board 52 of the control unit 5. The power supply section 36c protrudes outside the motor case 31, and extends in the X-axis positive direction along a through hole 2a that penetrates the inside of the housing 2 in the X-axis direction. Most of the power supply section 36c is covered with a synthetic resin. The rotor shaft 33 is a rotating shaft for driving the pump 6. The positive end of the rotor shaft 33 in the X-axis direction is accommodated on the X-axis negative direction side with respect to the rear surface (second surface) 22 of the housing 2.
The stroke simulator 4 has a built-in plunger supported by a spring. The movement of the plunger absorbs the movement of the brake fluid discharged from the master cylinder and simultaneously generates a reaction force on the brake pedal. The stroke simulator 4 is fastened to the right side surface 23 of the housing 2 using a screw 41.
 ポンプ6は、モータ3の回転駆動により図外のリザーバタンク内のブレーキ液を吸入し、ホイルシリンダへ向けて吐出する。ポンプ6は、プライマリ系統とセカンダリ系統の2系統で共用されている。実施例1では、ポンプ6として、音振性能等に優れた5つのプランジャポンプ6aを採用している。各プランジャポンプ6aは、ハウジング2に形成された5つのシリンダ収容孔2bに収容されている。各シリンダ収容孔2bは、ハウジング2の右側面23に2個、左側面に2個、底面24に1個配置され、周方向に等ピッチで並ぶ。各シリンダ収容孔2bは、カム室2cと接続する。カム室2cは、X軸方向へ向かって延び、ハウジング2の正面21に開口する。X軸方向から見たとき、カム室2cの中心は回転軸線O1上にある。カム室2cは、シャフト収容孔2dと接続する。 The pump 6 draws in brake fluid in a reservoir tank (not shown) by rotation of the motor 3, and discharges the brake fluid to the wheel cylinder. The pump 6 is shared by two systems, a primary system and a secondary system. In the first embodiment, as the pump 6, five plunger pumps 6a having excellent sound vibration performance and the like are employed. Each plunger pump 6a is housed in five cylinder housing holes 2b formed in the housing 2. Two cylinder accommodation holes 2b are arranged on the right side surface 23 of the housing 2, two on the left side surface, and one on the bottom surface 24, and are arranged at a constant pitch in the circumferential direction. Each cylinder housing hole 2b is connected to the cam chamber 2c. The cam chamber 2c extends in the X-axis direction and opens on the front surface 21 of the housing 2. When viewed from the X-axis direction, the center of the cam chamber 2c is on the rotation axis O1. The cam chamber 2c is connected to the shaft receiving hole 2d.
 シャフト収容孔2dは、有底円筒状の孔であり、X軸方向へ向かって延び、ハウジング2の背面22側に形成された底部22a(図2の拡大図参照)によって閉塞される。X軸方向から見たとき、シャフト収容孔2dの中心は回転軸線O1上にある。カム室2cには、ロータシャフト33のX軸正方向側端部に一体に形成されたセンサシャフト33bが収容されている。ロータシャフト33のX軸正方向側には、カム部33aが形成されている。カム部33aの外周には、ベアリング62が取り付けられている。モータ3の回転駆動によりカム部33aが回転すると、各プランジャポンプ6aにおいてベアリング62の外輪と当接するプランジャ6a1が往復運動することにより、ポンプ6は、ブレーキ液の吸入と吐出を行う。 The shaft receiving hole 2d is a cylindrical hole with a bottom, extends in the X-axis direction, and is closed by a bottom 22a (see an enlarged view of FIG. 2) formed on the back surface 22 side of the housing 2. When viewed from the X-axis direction, the center of the shaft housing hole 2d is on the rotation axis O1. The cam chamber 2c accommodates a sensor shaft 33b integrally formed at the end of the rotor shaft 33 on the X-axis positive direction side. A cam portion 33a is formed on the rotor shaft 33 in the positive X-axis direction. A bearing 62 is attached to the outer periphery of the cam portion 33a. When the cam portion 33a is rotated by the rotation of the motor 3, the plunger 6a1 in contact with the outer ring of the bearing 62 in each plunger pump 6a reciprocates, so that the pump 6 sucks and discharges the brake fluid.
 複数の電磁弁7等は、コントロールユニット5からの制御信号に応じて動作するソレノイドバルブであり、ソレノイドへの通電に応じて弁体がストロークし、液路の開閉を切り替える(液路を断接する)。電磁弁7等は、上記回路の連通状態を制御し、ブレーキ液の流通状態を調整することにより、制御液圧を発生する。電磁弁7等は、複数の弁収容孔2eにその一部が収容されている。各弁収容孔2eは、X軸方向に向かって延び、ハウジング2の背面22に開口する。
  複数の液圧センサ8等は、マスタシリンダ液圧、プライマリおよびセカンダリのホイルシリンダ液圧、およびポンプ6の吐出圧を検出する。液圧センサ8等は、複数のセンサ収容孔2fにその一部が収容されている。各センサ収容孔2fは、X軸方向に向かって延び、ハウジング2の背面22に開口する。X軸方向から見たとき、各弁収容孔2eおよび各センサ収容孔2fは、互いに離間して配置されている。
The plurality of solenoid valves 7 and the like are solenoid valves that operate in accordance with a control signal from the control unit 5, and the valve body strokes in accordance with energization of the solenoid to switch between opening and closing of the liquid path (disconnecting and connecting the liquid path). ). The solenoid valve 7 and the like generate a control hydraulic pressure by controlling the communication state of the circuit and adjusting the flow state of the brake fluid. Part of the solenoid valve 7 and the like is housed in the plurality of valve housing holes 2e. Each valve accommodation hole 2e extends in the X-axis direction and opens on the back surface 22 of the housing 2.
The plurality of hydraulic pressure sensors 8 and the like detect a master cylinder hydraulic pressure, primary and secondary wheel cylinder hydraulic pressures, and a discharge pressure of the pump 6. The hydraulic pressure sensor 8 and the like are partially accommodated in the plurality of sensor accommodation holes 2f. Each sensor accommodation hole 2f extends in the X-axis direction and opens on the back surface 22 of the housing 2. When viewed from the X-axis direction, each valve accommodation hole 2e and each sensor accommodation hole 2f are arranged apart from each other.
 コントロールユニット5は、ハウジング2に取り付けられた液圧センサ8等、ブレーキペダルのストロークを検出するストロークセンサおよび車両側からの走行状態に関する情報が入力される。コントロールユニット5は、内蔵されたプログラムに従い、入力された情報を用いて複数の電磁弁7等やモータ3を作動することにより、各車輪のホイルシリンダ液圧を制御する。これにより、各種のブレーキ制御(制動による車輪のスリップを抑制するためのアンチロックブレーキ制御、ドライバのブレーキ操作力を低減するための倍力制御、車両の運動制御のためのブレーキ制御、先行車追従制御等の自動ブレーキ制御、回生協調ブレーキ制御等)を実行できる。車両の運動制御には、横滑り防止等の車両挙動安定化制御が含まれる。回生協調ブレーキ制御では、回生ブレーキと協調して目標減速度(目標制動力)を達成するようにホイルシリンダ液圧を制御する。 The control unit 5 receives a stroke sensor, such as a hydraulic pressure sensor 8 attached to the housing 2, for detecting a stroke of a brake pedal, and information on a running state from the vehicle. The control unit 5 controls the wheel cylinder fluid pressure of each wheel by operating the plurality of solenoid valves 7 and the like and the motor 3 using the input information according to a built-in program. This allows various types of brake control (anti-lock brake control to suppress wheel slippage due to braking, boost control to reduce the driver's braking force, brake control for vehicle motion control, following vehicle ahead Automatic brake control such as control, regenerative cooperative brake control, etc.). Vehicle motion control includes vehicle behavior stabilization control such as sideslip prevention. In regenerative cooperative brake control, wheel cylinder fluid pressure is controlled so as to achieve a target deceleration (target braking force) in cooperation with regenerative braking.
 コントロールユニット5は、ケース51、第1制御基板52、第2制御基板53を有する。第1制御基板52および第2制御基板53は制御基板部である。第2制御基板53は、複数の電磁弁7の間に収容可能に形成され、第1制御基板52よりも小型サイズである。ケース51は、本体部511およびカバー512を有する。本体部511は、X軸負方向側が凹状に形成され、複数の電磁弁7等の各ソレノイド7a等を覆う。本体部511は、図外のスクリュによりハウジング2の背面22に締結されている。本体部511は、X軸正方向側に第1基板収容部511aを有する。第1基板収容部511aには、第1制御基板52が収容されている。第1基板収容部511aのハウジング側、すなわちX軸負方向側には、第2基板収容部511bを有する。第2基板収容部511bには、第2制御基板53が収容されている。第2制御基板53は、軸方向から見たとき、少なくとも一部が回転軸線01と重なる位置に設置される。第1制御基板52と第2制御基板53とは、電気的に接続されている。カバー512は、本体部511のX軸正方向側に固定され、第1基板収容部511aを覆う蓋部材である。 The control unit 5 includes a case 51, a first control board 52, and a second control board 53. The first control board 52 and the second control board 53 are control board sections. The second control board 53 is formed so as to be housed between the plurality of electromagnetic valves 7 and is smaller in size than the first control board 52. The case 51 has a main body 511 and a cover 512. The main body 511 has a concave shape on the X-axis negative direction side, and covers the solenoids 7a and the like of the plurality of solenoid valves 7 and the like. The main body 511 is fastened to the back surface 22 of the housing 2 by a screw (not shown). The main body 511 has a first substrate housing 511a on the X-axis positive direction side. The first control board 52 is housed in the first board housing section 511a. A second substrate housing portion 511b is provided on the housing side of the first substrate housing portion 511a, that is, on the X-axis negative direction side. The second control board 53 is accommodated in the second board accommodation section 511b. The second control board 53 is installed at a position where at least a part thereof overlaps with the rotation axis 01 when viewed from the axial direction. The first control board 52 and the second control board 53 are electrically connected. The cover 512 is a lid member that is fixed to the X-axis positive direction side of the main body 511 and covers the first substrate housing 511a.
 第1制御基板52は、基板収容部511a内において、ハウジング2の背面22と平行に配置されている。第1制御基板52は、モータ3および各ソレノイド7aへの通電状態を制御するモータ制御回路、モータ駆動回路、ソレノイド駆動回路およびソレノイド制御回路を有する。モータ制御回路は、マイコン(またはASIC)やメモリ等を有し、モータ駆動回路(の駆動素子)を駆動させる回路である。モータ駆動回路は、MOSFET等の駆動素子を有し、モータ3を駆動させる回路である。ソレノイド制御回路は、マイコン(またはASIC)やメモリ等を有し、ソレノイド駆動回路(の駆動素子)を駆動させる回路である。ソレノイド駆動回路は、MOSFET等の駆動素子を有し、各ソレノイド7aを駆動させる回路である。 The first control board 52 is disposed in the board accommodating portion 511a in parallel with the back surface 22 of the housing 2. The first control board 52 has a motor control circuit for controlling the energization state of the motor 3 and each solenoid 7a, a motor drive circuit, a solenoid drive circuit, and a solenoid control circuit. The motor control circuit has a microcomputer (or ASIC), a memory, and the like, and is a circuit for driving (a driving element of) the motor driving circuit. The motor drive circuit has a drive element such as a MOSFET and drives the motor 3. The solenoid control circuit is a circuit that includes a microcomputer (or ASIC), a memory, and the like, and drives a solenoid drive circuit (a drive element thereof). The solenoid drive circuit has a drive element such as a MOSFET and drives each solenoid 7a.
 第2制御基板53は、第2基板収容部511b内において、第1制御基板52と並行かつ第1制御基板52のX軸負方向側に所定距離離れて配置されている。第2制御基板53のX軸負方向側の面には、磁束検出部9cが実装されている。磁束検出部9cは、センサシャフト33bに取り付けられたマグネット9aと近接し、マグネット9aと軸方向に対向する。磁束検出部9cは、例えばホール素子等の検出素子を有し、マグネット9aの回転に伴う磁束密度の変化を検出することにより、ロータシャフト33の回転角度(機械角)、すなわちモータ回転数を検出する。磁束検出部9cにより検出されたモータ回転数は、第1制御基板52のモータ制御回路およびソレノイド制御回路へ出力され、モータ3および各ソレノイド7aの制御に用いられる。マグネット9aおよび磁束検出部9cによりモータ回転数センサが構成される。 The second control board 53 is arranged in the second board accommodating portion 511b in parallel with the first control board 52 and at a predetermined distance from the first control board 52 in the negative X-axis direction. The magnetic flux detector 9c is mounted on the surface of the second control board 53 on the negative side in the X-axis direction. The magnetic flux detector 9c is close to the magnet 9a attached to the sensor shaft 33b, and faces the magnet 9a in the axial direction. The magnetic flux detection unit 9c has a detection element such as a Hall element, and detects a rotation angle (mechanical angle) of the rotor shaft 33, that is, a motor rotation speed by detecting a change in magnetic flux density due to rotation of the magnet 9a. I do. The motor rotation speed detected by the magnetic flux detector 9c is output to the motor control circuit and the solenoid control circuit of the first control board 52, and is used for controlling the motor 3 and each solenoid 7a. The magnet 9a and the magnetic flux detector 9c constitute a motor speed sensor.
 図3は、実施例1の第2基板収容部511bの構成を表す部分斜視図である。この図は、コントロールユニット5の内側から見た図である。第2基板収容部511bは、複数のコイル7aに囲まれた領域内に形成されている。第2制御基板53は、略長方形の板形状であり、短辺に固定用フック511b1が係合可能に湾曲形成された係合部53aを有する。第2基板収容部511bは、第2制御基板53を支持する十字状に立設された台座部511b2と、第2制御基板53を両側から挟むと共に、台座部511b2側に向けて付勢するように係合する固定用フック511b1と、を有する。固定用フック511b1と台座部5111b2との間には、第2制御基板53と第1制御基板52とを電気的に接続する端子511b3を有する。 FIG. 3 is a partial perspective view illustrating the configuration of the second substrate housing portion 511b of the first embodiment. This figure is a diagram viewed from the inside of the control unit 5. The second substrate housing part 511b is formed in a region surrounded by the plurality of coils 7a. The second control board 53 has a substantially rectangular plate shape, and has an engaging portion 53a formed on a short side thereof so as to be bent so that the fixing hook 511b1 can be engaged. The second board accommodating section 511b sandwiches the second control board 53 from both sides and a pedestal section 511b2 supporting the second control board 53, and urges toward the pedestal section 511b2. And a fixing hook 511b1 that is engaged with the fixing hook 511b1. A terminal 511b3 for electrically connecting the second control board 53 and the first control board 52 is provided between the fixing hook 511b1 and the base 5111b2.
 図4は、実施例1のモータ及びセンサシャフト周辺を表す分解斜視図である。センサシャフト33bのX軸正方向の端部外周には、マグネットホルダ100を有する。マグネットホルダ100は、略円筒状の部材であり、円筒の直径は、センサシャフト33bの直径よりも大きい。マグネットホルダ100のモータ側端部には、センサシャフト33bの先端が圧入される圧入部101が形成されている。一方、マグネットホルダ100の基板側には、円盤状のマグネット9aを収容するマグネット収容部102が形成されている。マグネット9aは、図4に示すように、S極とN極とが回転方向に交互に並び、かつ、軸方向にS極→N極もしくはN極→S極の順に着磁されている。マグネット9aは、例えばネオジム磁石であり、マグネット収容部102に固定されている。よって、固定された磁束検出部9cは、ロータシャフト33の回転に伴って回転するマグネット9aの磁束密度変化を検出し、モータ回転数を検出する。 FIG. 4 is an exploded perspective view illustrating the periphery of the motor and the sensor shaft according to the first embodiment. A magnet holder 100 is provided on the outer periphery of the end of the sensor shaft 33b in the X-axis positive direction. The magnet holder 100 is a substantially cylindrical member, and the diameter of the cylinder is larger than the diameter of the sensor shaft 33b. At the motor-side end of the magnet holder 100, a press-fit portion 101 into which the tip of the sensor shaft 33b is press-fitted is formed. On the other hand, on the substrate side of the magnet holder 100, a magnet accommodating portion 102 for accommodating the disk-shaped magnet 9a is formed. As shown in FIG. 4, the magnet 9a has S poles and N poles arranged alternately in the rotation direction, and is magnetized in the axial direction in the order of S pole → N pole or N pole → S pole. The magnet 9a is, for example, a neodymium magnet, and is fixed to the magnet housing 102. Therefore, the fixed magnetic flux detector 9c detects a change in the magnetic flux density of the magnet 9a that rotates with the rotation of the rotor shaft 33, and detects the motor rotation speed.
 実施例1のブレーキ制御装置1において、ポンプ6の作動中にカム室2cにリークしたブレーキ液は、ハウジング2の底面24付近に配置された図外の液溜まりへと流れる。このとき、カム室2cにリークしたブレーキ液の一部は、ロータシャフト33及びセンサシャフト33bを伝ってX軸正方向側へと移動する。ここで、モータ回転数センサのマグネット9aは、磁束検出部9cに近接して配置する必要がある。このため、カム室2cにリークしたブレーキ液がセンサシャフト33bを伝って制御基板52,53に達すると、過熱等の不具合が生じる。従来のブレーキ制御装置では、ハウジングとポンプシャフトとの間に設置されたオイルシールによりカム室から制御基板の側へのブレーキ液漏れを抑制しているが、耐久劣化によってオイルシールの機能が低下すると、ブレーキ液漏れが生じるおそれがある。 In the brake control device 1 of the first embodiment, the brake fluid leaked to the cam chamber 2c during the operation of the pump 6 flows to a fluid reservoir (not shown) arranged near the bottom surface 24 of the housing 2. At this time, a part of the brake fluid leaked to the cam chamber 2c moves to the X axis positive direction side along the rotor shaft 33 and the sensor shaft 33b. Here, the magnet 9a of the motor rotation speed sensor needs to be arranged close to the magnetic flux detector 9c. For this reason, when the brake fluid leaked to the cam chamber 2c reaches the control boards 52 and 53 along the sensor shaft 33b, a problem such as overheating occurs. In the conventional brake control device, the oil seal installed between the housing and the pump shaft suppresses the brake fluid leakage from the cam chamber to the control board side. , There is a possibility that the brake fluid leaks.
 これに対し、実施例1のブレーキ制御装置1は、ハウジング2内に形成されたシャフト収容孔2dが有底円筒状に形成され、底部22aを備える。アルミ製のハウジング2は、非磁性材料であり、底部22aに第2制御基板53が近接配置されているため、ブレーキ液の漏れを生じることなく、モータ回転数センサを構成することができる。 On the other hand, in the brake control device 1 of the first embodiment, the shaft receiving hole 2d formed in the housing 2 is formed in a cylindrical shape with a bottom, and includes a bottom 22a. The aluminum housing 2 is made of a non-magnetic material, and since the second control board 53 is disposed close to the bottom 22a, the motor rotation speed sensor can be configured without causing leakage of brake fluid.
 以上説明したように、実施例1では、下記の作用効果が得られる。
  (1)モータ3と、モータ3が配置される正面21(第1の面)と、正面21からモータ3の回転軸線の方向に所定距離離間した背面22(第2の面)と、を有するハウジング2と、正面21から背面22へ向かって回転軸線01の方向に延出し、モータ3によって回転されるロータシャフト33と、ロータシャフト33と一体のセンサシャフト33bに設けられたマグネット9aと、マグネット9aと背面22に対向して配置された第2制御基板53(制御基板部)と、第2制御基板53に設けられ、モータ3の回転状態を検出する磁束検出部9cと、を備えた。
  よって、第2制御基板53側にブレーキ液がもれることを抑制できる。
As described above, in the first embodiment, the following operational effects can be obtained.
(1) The motor 3 has a front surface 21 (first surface) on which the motor 3 is arranged, and a back surface 22 (second surface) separated from the front surface 21 by a predetermined distance in the direction of the rotation axis of the motor 3. The housing 2, a rotor shaft 33 extending in the direction of the rotation axis 01 from the front 21 to the back 22 and rotated by the motor 3, a magnet 9a provided on a sensor shaft 33b integrated with the rotor shaft 33, and a magnet A second control board 53 (control board unit) is provided to face the rear face 22 and 9a, and a magnetic flux detection unit 9c provided on the second control board 53 and detecting a rotation state of the motor 3 is provided.
Therefore, it is possible to prevent the brake fluid from leaking to the second control board 53 side.
 (2)制御基板部は、背面22と対向して配置された第1制御基板52(第1基板)と、背面22とは反対側で、第1制御基板52と対向して配置された第2制御基板53と、を備え、磁束検出部9cは、第2制御基板53に配置されている。
  すなわち、基板を大小2枚から構成し、一方を背面22に近づけて配置することで、ロータシャフト33及びセンサシャフト33bを不要に長くすることがなく、ブレーキ制御装置のコンパクト化及び軽量化を図ることができる。
  (3)第1制御基板52と第2制御基板53とは、電気的に接続されている。よって、第2制御基板53で検知した情報を第1制御基板52と共有できる。
  (4)背面22は、複数のコイル7aを有し、第2制御基板53は、複数のコイル7aの間に配置される。よって、デッドスペースを有効活用することでコンパクト化を図ると共に、コイル7aの回転軸線方向の厚みに関わらず、第2制御基板53をマグネット9aに近接配置できる。
  (5)ハウジング2の同一面である背面22に、複数のコイル7aと磁束検出部9cとが配置されている。よって、第1制御基板52と容易に電気的接続を確保できる。
(2) The control board section includes a first control board 52 (first board) arranged opposite to the back face 22 and a second control board section arranged opposite to the first control board 52 on the opposite side to the back face 22. A magnetic flux detector 9c is provided on the second control board 53.
In other words, the substrate is composed of two large and small substrates, and one of the substrates is arranged close to the rear surface 22, so that the rotor shaft 33 and the sensor shaft 33b are not unnecessarily lengthened, and the brake control device is reduced in size and weight. be able to.
(3) The first control board 52 and the second control board 53 are electrically connected. Therefore, information detected by the second control board 53 can be shared with the first control board 52.
(4) The back surface 22 has a plurality of coils 7a, and the second control board 53 is disposed between the plurality of coils 7a. Therefore, the size can be reduced by effectively utilizing the dead space, and the second control board 53 can be disposed close to the magnet 9a regardless of the thickness of the coil 7a in the rotation axis direction.
(5) The plurality of coils 7a and the magnetic flux detector 9c are arranged on the rear surface 22, which is the same surface of the housing 2. Therefore, electrical connection with the first control board 52 can be easily ensured.
 (6)センサシャフト33bの先端に、マグネット9aが固定されたマグネットホルダ100(ホルダ部材)を取り付ける。よって、マグネット9aを回転体であるセンサシャフト33bに容易に取り付けることができ、安定的にマグネット9aを保持することができる。特に、マグネット9aをマグネットホルダ100のマグネット収容部102内に収容するため、接着剤等でマグネット9aを固定する場合に比べて、遠心力による剥がれを回避できる。 (6) Attach the magnet holder 100 (holder member) to which the magnet 9a is fixed to the tip of the sensor shaft 33b. Therefore, the magnet 9a can be easily attached to the sensor shaft 33b, which is a rotating body, and the magnet 9a can be stably held. In particular, since the magnet 9a is accommodated in the magnet accommodating portion 102 of the magnet holder 100, separation due to centrifugal force can be avoided as compared with a case where the magnet 9a is fixed with an adhesive or the like.
 〔実施例2〕
  次に実施例2について説明する。基本的な構成は実施例1と同じであるため、実施例1と相違する部分のみ説明する。図5は、実施例2のブレーキ制御装置1の縦断面図である。実施例1では、ハウジング2内に形成された有底のシャフト収容孔2dの底部22aが形成されていた。これに対し、実施例2では、シャフト収容孔2dの底部に貫通孔22bが形成され、貫通孔22bに非磁性体である樹脂製の蓋部材200が取り付けられ、シャフト収容孔2dを閉塞している点が異なる。
[Example 2]
Next, a second embodiment will be described. Since the basic configuration is the same as that of the first embodiment, only the differences from the first embodiment will be described. FIG. 5 is a longitudinal sectional view of the brake control device 1 according to the second embodiment. In the first embodiment, the bottom portion 22a of the bottomed shaft receiving hole 2d formed in the housing 2 is formed. On the other hand, in the second embodiment, a through-hole 22b is formed at the bottom of the shaft receiving hole 2d, and a resin-made lid member 200 made of a non-magnetic material is attached to the through-hole 22b to close the shaft receiving hole 2d. Are different.
 実施例1の場合、アルミ製のハウジング2の一部によりシャフト収容孔2dの底部22aで閉塞しているため、オイル漏れ等の心配はないものの、回転磁束によって渦電流が発生し、磁束検出部9cで検出される磁束の変化に影響を与えるおそれがあった。これに対し、実施例2では、マグネット9aと磁束検出部9cとの間を樹脂製の蓋部材200で閉塞するため、渦電流が生じるおそれがなく、磁束の変化を精度よく検出することができる。 In the case of the first embodiment, since the bottom portion 22a of the shaft housing hole 2d is closed by a part of the aluminum housing 2, there is no fear of oil leakage or the like. This may affect the change in the magnetic flux detected in 9c. On the other hand, in the second embodiment, since the gap between the magnet 9a and the magnetic flux detector 9c is closed by the resin lid member 200, there is no possibility that an eddy current is generated, and the change in the magnetic flux can be detected accurately. .
 実施例2では、下記の作用効果が得られる。
  (7)マグネット9aと磁束検出部9cとの間に、樹脂製の蓋部材200が配置されている。これにより、ハウジング2で閉塞する場合に比べて渦電流の発生を回避でき、磁束の変化を精度よく検出できる。
In the second embodiment, the following operational effects can be obtained.
(7) A lid member 200 made of resin is arranged between the magnet 9a and the magnetic flux detection unit 9c. As a result, generation of an eddy current can be avoided as compared with the case where the housing 2 is closed, and a change in magnetic flux can be detected with high accuracy.
 〔実施例3〕
  次に実施例3について説明する。基本的な構成は実施例1と同じであるため、実施例1と相違する部分のみ説明する。図6は、実施例3のブレーキ制御装置1の縦断面図である。ハウジング2に形成されたシャフト収容孔2dの底部は、複数のコイル7aが配置されるコイル配置面としての背面22よりも第1制御基板52側に延出した延出部220と、延出部220の底部を閉塞する底部22aと、を有する。センサシャフト33bは、延出部220内に収容され、センサシャフト33bに取り付けられたマグネットホルダ100は、底部22aに近接する位置に配置されている。実施例3では、第2制御基板53を備えておらず、第1制御基板52のハウジング側に磁束検出部9cが実装されている。これにより、オイル漏れ等を回避しつつ、制御基板の数を抑制することで、コストを削減し、また、組み付け工数の低減を図ることができる。
[Example 3]
Next, a third embodiment will be described. Since the basic configuration is the same as that of the first embodiment, only the differences from the first embodiment will be described. FIG. 6 is a longitudinal sectional view of the brake control device 1 according to the third embodiment. The bottom of the shaft housing hole 2d formed in the housing 2 has an extension 220 extending toward the first control board 52 from the back surface 22 as a coil arrangement surface on which the plurality of coils 7a are arranged, and an extension And a bottom 22a for closing the bottom of 220. The sensor shaft 33b is housed in the extension 220, and the magnet holder 100 attached to the sensor shaft 33b is arranged at a position close to the bottom 22a. In the third embodiment, the second control board 53 is not provided, and the magnetic flux detecting unit 9c is mounted on the housing side of the first control board 52. Accordingly, it is possible to reduce costs and reduce the number of assembling steps by suppressing the number of control boards while avoiding oil leakage and the like.
 実施例3では、下記の作用効果が得られる。
  (8)ハウジング2は、複数のコイルが配置されるコイル配置面としての背面22と、背面22から回転軸線の方向に延出し、内部にセンサシャフト33bの一部と、センサシャフト33bの先端に設けられたマグネット9aとを収容する延出部220と、を有し、延出部220の一端に底面22aが形成されている。よって、蓋部材を別途設けることなくオイル漏れを回避できる。また、マグネット9aを第1制御基板52に近接させることが可能となり、コイル7aの存在によって背面22から離間して設置された第1制御基板52に磁束検出部9cを実装することができる。よって、複数の制御基板を設ける必要がなく、制御基板の数を抑制することでコストを削減し、また、組み付け工数の低減を図ることができる。
In the third embodiment, the following operation and effect can be obtained.
(8) The housing 2 has a back surface 22 as a coil arrangement surface on which a plurality of coils are arranged, extends from the back surface 22 in the direction of the rotation axis, and has a part of the sensor shaft 33b therein and a tip end of the sensor shaft 33b. And an extension portion 220 for accommodating the magnet 9a provided. A bottom surface 22a is formed at one end of the extension portion 220. Therefore, oil leakage can be avoided without separately providing a lid member. In addition, the magnet 9a can be brought close to the first control board 52, and the magnetic flux detection unit 9c can be mounted on the first control board 52 installed separately from the back surface 22 due to the presence of the coil 7a. Therefore, it is not necessary to provide a plurality of control boards, and the number of control boards can be reduced to reduce costs and reduce the number of assembling steps.
 〔他の実施例〕
  実施例1では、ロータシャフト33とセンサシャフト33bとを同軸上に配置したが、ロータシャフト33の先端に歯車を配置し、ロータシャフト33の回転軸線から径方向にオフセットした位置にセンサシャフト33bを配置してもよい。これにより、レイアウト自由度を高め、組み付け性を向上することができる。
[Other embodiments]
In the first embodiment, the rotor shaft 33 and the sensor shaft 33b are arranged coaxially. However, a gear is arranged at the tip of the rotor shaft 33, and the sensor shaft 33b is located at a position radially offset from the rotation axis of the rotor shaft 33. It may be arranged. As a result, the degree of freedom in layout can be increased and the assemblability can be improved.
 また、実施例1では、マグネットホルダ100にマグネット9aを取り付ける構成を示したが、センサシャフト33bに対して接着剤によりマグネット9aを固定してもよい。
  また、実施例1では、モータ3としてブラシレスモータを採用した例を示したが、ブラシ付きモータを採用してもよい。すなわち、実施例1では、本発明を、電気自動車に搭載するブレーキバイワイヤシステム用のブレーキ制御装置として適用したが、エンジン車両に搭載されるブレーキ制御装置としてもよい。具体的には、本発明を、制動時の車輪ロックを回避するアンチロックブレーキシステムや、車両の旋回時における安定性を向上するビークルダイナミクスコントロールシステムを備えたブレーキ制御装置に適用してもよい。
  また、実施例1では、磁束検出部9cを一つのICチップとした例について説明したが、二つの検出部から構成されるデュアルダイのICチップを採用してもよい。
In the first embodiment, the configuration in which the magnet 9a is attached to the magnet holder 100 has been described. However, the magnet 9a may be fixed to the sensor shaft 33b with an adhesive.
In the first embodiment, the example in which the brushless motor is used as the motor 3 is described, but a motor with a brush may be used. That is, in the first embodiment, the present invention is applied to a brake control device for a brake-by-wire system mounted on an electric vehicle, but may be a brake control device mounted on an engine vehicle. Specifically, the present invention may be applied to an anti-lock brake system that avoids wheel lock during braking or a brake control device that includes a vehicle dynamics control system that improves stability during turning of a vehicle.
In the first embodiment, the example in which the magnetic flux detection unit 9c is a single IC chip has been described. However, a dual die IC chip including two detection units may be employed.
 以上説明した実施例から把握し得る技術的思想について、以下に記載する。
  ブレーキ制御装置は、その一つの態様において、モータと、前記モータが配置される第1の面と、前記第1の面から前記モータの回転軸線の方向に所定距離離間した第2の面と、を有するハウジングと、前記第1の面から前記第2の面へ向かって前記回転軸線の方向に延出し、前記モータによって回転されるシャフトと、前記シャフトに設けられたマグネットと、前記マグネットと前記第2の面に対向して配置された制御基板部と、前記制御基板部に設けられ、前記モータの回転状態を検出する検出部と、を備える。
  より好ましい態様では、上記態様において、前記制御基板部は、前記第2の面と対向して配置された第1基板と、前記第2の面とは反対側で、前記第1基板と対向して配置された第2基板と、を備え、前記検出部は、前記第2基板に配置されている。
  別の好ましい態様では、上記態様のいずれかにおいて、前記第1基板と前記第2基板とは、電気的に接続されている。
The technical ideas that can be grasped from the embodiments described above will be described below.
In one aspect, the brake control device includes a motor, a first surface on which the motor is arranged, and a second surface separated from the first surface by a predetermined distance in a direction of a rotation axis of the motor, A shaft extending from the first surface to the second surface in the direction of the rotation axis and rotated by the motor, a magnet provided on the shaft, the magnet, The control board includes a control board section facing the second surface, and a detection section provided on the control board section to detect a rotation state of the motor.
In a more preferred aspect, in the above aspect, the control board portion is configured to face the first substrate on a side opposite to the second face and the first board disposed on the second face. And a second substrate, which is disposed in a predetermined position, wherein the detection unit is disposed on the second substrate.
In another preferred aspect, in any one of the above aspects, the first substrate and the second substrate are electrically connected.
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記第2の面は、複数のコイルを有し、前記第2基板は、前記複数のコイルの間に配置される。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ハウジングの同一面に、複数のコイルと前記検出部とが配置されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記マグネットと前記検出部との間に、樹脂製の蓋部材が配置されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記ハウジングは、複数のコイルが配置されるコイル配置面と、該コイル配置面から前記回転軸線の方向に延出する延出部であって、該延出部の内部に、前記シャフトの一部と、該シャフトの先端に設けられた前記マグネットとを収容する前記延出部と、を有し、前記延出部の一端に前記第2の面が形成されている。
  さらに別の好ましい態様では、上記態様のいずれかにおいて、前記シャフトの先端に、前記マグネットが固定されたホルダ部材を取り付ける。
In still another preferred aspect, in any one of the above aspects, the second surface has a plurality of coils, and the second substrate is disposed between the plurality of coils.
In still another preferred aspect, in any one of the above aspects, a plurality of coils and the detection section are arranged on the same surface of the housing.
In still another preferred aspect, in any one of the above aspects, a resin lid member is disposed between the magnet and the detection unit.
In still another preferred aspect, in any one of the above aspects, the housing is a coil arrangement surface on which a plurality of coils are arranged, and an extension portion extending from the coil arrangement surface in the direction of the rotation axis. Inside the extension portion, the extension portion for accommodating a part of the shaft and the magnet provided at the tip of the shaft, and the second portion is provided at one end of the extension portion. Surface is formed.
In still another preferred aspect, in any of the above aspects, a holder member to which the magnet is fixed is attached to a tip of the shaft.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
 本願は、2018年6月29日付出願の日本国特許出願第2018-123869号に基づく優先権を主張する。2018年6月29日付出願の日本国特許出願第2018-123869号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims the priority based on Japanese Patent Application No. 2018-123869 filed on June 29, 2018. The entire disclosure of Japanese Patent Application No. 2018-123869, filed on June 29, 2018, including the specification, claims, drawings, and abstract, is incorporated herein by reference in its entirety.
O1 回転軸線1  ブレーキ制御装置2  ハウジング3  モータ9a マグネット9c 磁束検出部21 正面(第1の面)22 背面(第2の面)33b  センサシャフト52 第1制御基板(制御基板部)53 第2制御基板(制御基板部) O1 rotation axis 1 brake controller 2 housing 3 motor 9a magnet 9c magnetic flux detector 21 front (first surface) 22 back (second surface) 33b sensor shaft 52 first control board (control board) 53 second control Board (control board part)

Claims (10)

  1.  ブレーキ制御装置であって、該ブレーキ制御装置は、
     モータと、
     前記モータが配置される第1の面と、前記第1の面から前記モータの回転軸線の方向に所定距離離間した第2の面と、を有するハウジングと、
     前記第1の面から前記第2の面へ向かって前記回転軸線の方向に延出し、前記モータによって回転されるシャフトと、
     前記シャフトに設けられたマグネットと、
     前記マグネットと前記第2の面に対向して配置された制御基板部と、
     前記制御基板部に設けられ、前記モータの回転状態を検出する検出部と、
     を備えるブレーキ制御装置。
    A brake control device, the brake control device comprising:
    Motor and
    A housing having a first surface on which the motor is arranged, and a second surface separated from the first surface by a predetermined distance in a direction of a rotation axis of the motor;
    A shaft extending in a direction of the rotation axis from the first surface toward the second surface and rotated by the motor;
    A magnet provided on the shaft,
    A control board portion disposed opposite to the magnet and the second surface;
    A detection unit that is provided on the control board unit and detects a rotation state of the motor;
    A brake control device comprising:
  2.  請求項1に記載のブレーキ制御装置において、
     前記制御基板部は、
     前記第2の面と対向して配置された第1基板と、
     前記第2の面とは反対側で、前記第1基板と対向して配置された第2基板と、
     を備え、
     前記検出部は、前記第2基板に配置されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 1,
    The control board unit includes:
    A first substrate disposed opposite to the second surface;
    A second substrate disposed on the side opposite to the second surface and facing the first substrate;
    With
    The said control part is arrange | positioned at the said 2nd board | substrate, The brake control apparatus characterized by the above-mentioned.
  3.  請求項2に記載のブレーキ制御装置において、
     前記第1基板と前記第2基板とは、電気的に接続されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 2,
    The first board and the second board are electrically connected to each other.
  4.  請求項2に記載のブレーキ制御装置において、
     前記第2の面は、複数のコイルを有し、
     前記第2基板は、前記複数のコイルの間に配置されることを特徴とするブレーキ制御装置。
    The brake control device according to claim 2,
    The second surface has a plurality of coils,
    The brake control device according to claim 1, wherein the second substrate is disposed between the plurality of coils.
  5.  請求項4に記載のブレーキ制御装置において、
     前記第1基板と前記第2基板とは、電気的に接続されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 4,
    The first board and the second board are electrically connected to each other.
  6.  請求項1に記載のブレーキ制御装置において、
     前記ハウジングの同一面に、複数のコイルと前記検出部とが配置されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 1,
    A brake control device, wherein a plurality of coils and the detection unit are arranged on the same surface of the housing.
  7.  請求項6に記載のブレーキ制御装置において、
     前記マグネットと前記検出部との間に、樹脂製の蓋部材が配置されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 6,
    A brake control device, wherein a resin lid member is disposed between the magnet and the detection unit.
  8.  請求項1に記載のブレーキ制御装置において、
     前記ハウジングは、
     複数のコイルが配置されるコイル配置面と、
     該コイル配置面から前記回転軸線の方向に延出する延出部であって、該延出部の内部に、前記シャフトの一部と、該シャフトの先端に設けられた前記マグネットとを収容する前記延出部と、を有し、
     前記延出部の一端に前記第2の面が形成されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 1,
    The housing is
    A coil arrangement surface on which a plurality of coils are arranged,
    An extension extending from the coil disposition surface in the direction of the rotation axis, wherein a part of the shaft and the magnet provided at a tip of the shaft are accommodated inside the extension. And the extending portion,
    The brake control device, wherein the second surface is formed at one end of the extension.
  9.  請求項1に記載のブレーキ制御装置において、
     前記マグネットと前記検出部との間に、樹脂製の蓋部材が配置されていることを特徴とするブレーキ制御装置。
    The brake control device according to claim 1,
    A brake control device, wherein a resin lid member is disposed between the magnet and the detection unit.
  10.  請求項1に記載のブレーキ制御装置において、
     前記シャフトの先端に、前記マグネットが固定されたホルダ部材を取り付けることを特徴とするブレーキ制御装置。
    The brake control device according to claim 1,
    A brake control device, wherein a holder member to which the magnet is fixed is attached to a tip of the shaft.
PCT/JP2019/021716 2018-06-29 2019-05-31 Brake control device WO2020003890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-123869 2018-06-29
JP2018123869A JP6898888B2 (en) 2018-06-29 2018-06-29 Brake control device

Publications (1)

Publication Number Publication Date
WO2020003890A1 true WO2020003890A1 (en) 2020-01-02

Family

ID=68985001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021716 WO2020003890A1 (en) 2018-06-29 2019-05-31 Brake control device

Country Status (2)

Country Link
JP (1) JP6898888B2 (en)
WO (1) WO2020003890A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023040476A (en) * 2021-09-10 2023-03-23 住友重機械工業株式会社 reduction gear

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117807A (en) * 1992-10-08 1994-04-28 Aisan Ind Co Ltd Rotating angle sensor
JP2009196627A (en) * 2008-01-24 2009-09-03 Advics Co Ltd Brake hydraulic pressure control device
JP2010093869A (en) * 2008-10-03 2010-04-22 Nippon Densan Corp Motor
JP2011063060A (en) * 2009-09-15 2011-03-31 Nissin Kogyo Co Ltd Electronic control unit and brake hydraulic control device for vehicle
JP2015189366A (en) * 2014-03-28 2015-11-02 株式会社デンソー Actuator for brake liquid pressure control
JP2018506957A (en) * 2015-01-28 2018-03-08 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Motor pump device for brake system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117807A (en) * 1992-10-08 1994-04-28 Aisan Ind Co Ltd Rotating angle sensor
JP2009196627A (en) * 2008-01-24 2009-09-03 Advics Co Ltd Brake hydraulic pressure control device
JP2010093869A (en) * 2008-10-03 2010-04-22 Nippon Densan Corp Motor
JP2011063060A (en) * 2009-09-15 2011-03-31 Nissin Kogyo Co Ltd Electronic control unit and brake hydraulic control device for vehicle
JP2015189366A (en) * 2014-03-28 2015-11-02 株式会社デンソー Actuator for brake liquid pressure control
JP2018506957A (en) * 2015-01-28 2018-03-08 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Motor pump device for brake system

Also Published As

Publication number Publication date
JP2020001583A (en) 2020-01-09
JP6898888B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
US9776604B2 (en) Integrated brake device for vehicle
CN107585153B (en) Actuator assembly for integrated dynamic braking device
US20170298941A1 (en) Electric pump
KR101985156B1 (en) Hydraulic Controls And Brake Systems
US8875861B2 (en) Liquid friction clutch
WO2017141725A1 (en) Brake device, brake system and master cylinder
JP5327155B2 (en) Pedal device
WO2020003890A1 (en) Brake control device
JP5282126B2 (en) Motor pump equipment
JP7320123B2 (en) Brake fluid pressure control device and straddle-type vehicle
WO2019116844A1 (en) Brake control device
WO2021221143A1 (en) Braking device
JP7157166B2 (en) Brake fluid pressure controller
JP7289401B2 (en) Brake fluid pressure control device and vehicle
JP6873029B2 (en) Brake control device
WO2020026673A1 (en) Brake control device
WO2020059324A1 (en) Brake control device
US20080197697A1 (en) Hydraulic brake pressure control apparatus for vehicle
JP2000278905A (en) Fixing structure of motor for pump operation of antilock brake device for vehicle
KR101921531B1 (en) Electronic disc brakes with brushless motor for commercial vehicle brake system
JP7452467B2 (en) pedal device
JP7572785B2 (en) Brake fluid pressure control device and vehicle
JP2018012377A (en) Brake device and master cylinder
JP2024050892A (en) Pedal device
JP2021133807A (en) Brake fluid pressure control device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826472

Country of ref document: EP

Kind code of ref document: A1