WO2020003807A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2020003807A1
WO2020003807A1 PCT/JP2019/019851 JP2019019851W WO2020003807A1 WO 2020003807 A1 WO2020003807 A1 WO 2020003807A1 JP 2019019851 W JP2019019851 W JP 2019019851W WO 2020003807 A1 WO2020003807 A1 WO 2020003807A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
motor
current
magnetomotive force
phases
Prior art date
Application number
PCT/JP2019/019851
Other languages
French (fr)
Japanese (ja)
Inventor
勝洋 星野
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980028555.8A priority Critical patent/CN112292810B/en
Priority to DE112019002548.1T priority patent/DE112019002548T5/en
Priority to JP2020527281A priority patent/JP7069313B2/en
Publication of WO2020003807A1 publication Critical patent/WO2020003807A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Definitions

  • the present invention relates to a motor control device.
  • Patent Document 1 discloses a motor drive device that controls the driving of a multiphase motor in which armature windings of each phase are provided independently of each other, and converts DC power supplied via a DC bus into a multiphase motor.
  • An inverter circuit that converts the power into AC power and outputs the AC power to each of the armature windings of the respective phases; and a controller for controlling the inverter circuit.
  • a motor that adjusts a phase difference between currents flowing through the normal-phase armature windings so that when the phase is lost, the alternating-current powers of the other normal phases except for the phase that has lost the phase are canceled out with each other.
  • a drive device is disclosed.
  • Patent Literature 1 When the motor driving device described in Patent Document 1 is applied to a three-phase motor, there is no particular problem when the U phase or the W phase is lost, but when the V phase is lost, the phase of the current is adjusted. This causes a problem that the rotation direction of the motor becomes the opposite direction. As described above, the technique of Patent Literature 1 has a problem that the phase of the current cannot be appropriately adjusted depending on the phase that has been lost.
  • a motor control device has a plurality of windings corresponding to each of a plurality of phases, and controls the driving of a motor in which each winding is independently connected to each other.
  • the phase of the current flowing through the normal phase other than the reference phase is defined as one of the normal phases excluding the missing phase, as the reference phase. Adjust so that there is no straddling.
  • the phase of the current can be appropriately adjusted even if any phase is lost in the multi-phase motor.
  • FIG. 1 is a diagram illustrating a configuration of a motor drive system including a motor control device according to an embodiment of the present invention.
  • the figure which shows the magnetomotive force vector after the phase adjustment in the motor at the time of W phase loss The figure which shows an example of the current waveform of each phase before and after the phase adjustment in the motor when the U phase is lost.
  • the figure which shows the magnetomotive force vector after the phase adjustment by the conventional method in the motor when a V phase is lost.
  • FIG. 3 is a diagram illustrating a phase adjustment method according to the method of the present invention. Diagram for explaining vector control of motor after phase adjustment at the time of phase loss
  • FIG. 1 is a diagram showing a configuration of a motor drive system including a motor control device according to one embodiment of the present invention.
  • the motor drive system 200 shown in FIG. 1 is connected to a motor 100 used in a hybrid vehicle (HEV), an electric vehicle (EV), or the like, and controls driving of the motor 100.
  • the motor drive system 200 has a DC power supply 201, a smoothing capacitor 202, a controller 203, and an inverter circuit 210.
  • the motor 100 is an independent winding type six-wire three-phase AC motor having three-phase armature windings 121a, 121b, and 121c respectively corresponding to the U-phase, the V-phase, and the W-phase. These armature windings 121a to 121c are connected to the motor drive system 200 independently of each other.
  • the motor drive system 200 can drive the motor 100 by independently controlling the current flowing through the armature windings 121a to 121c corresponding to the U phase, the V phase, and the W phase, respectively.
  • the armature winding 121a corresponding to the U-phase is referred to as “U-phase coil 121a”
  • the armature winding 121b corresponding to the V-phase is referred to as “V-phase coil 121b”
  • the armature corresponding to the W-phase is referred to as “W-phase coil 121c”.
  • a magnetic pole position detector 113 for detecting the magnetic pole position ⁇ of the motor 100 is attached to the output shaft 115 of the motor 100.
  • the magnetic pole position detector 113 is configured using, for example, a resolver or the like.
  • the detection result of the magnetic pole position ⁇ by the magnetic pole position detector 113 is output to the controller 203.
  • DC power supply 201 supplies DC power to inverter circuit 210 via DC buses 201a and 201b.
  • the DC power supply 201 for example, a secondary battery such as a lithium ion battery can be used.
  • the smoothing capacitor 202 is for suppressing a change in the DC voltage caused by the operation of the inverter circuit 210, and is connected between the DC bus 201a and the DC bus 201b in parallel with the inverter circuit 210.
  • the controller 203 outputs drive signals Gu, Gv, and Gw to the bridge circuits 210a, 210b, and 210c of each phase of the inverter circuit 210, respectively.
  • the controller 203 can control the inverter circuit 210 by operating the bridge circuits 210a, 210b, and 210c according to the drive signals Gu, Gv, and Gw, respectively.
  • the controller 203 corresponds to a motor control device according to an embodiment of the present invention.
  • the inverter circuit 210 has full-bridge type bridge circuits 210a, 210b, and 210c corresponding to the U phase, the V phase, and the W phase, respectively.
  • Each of the bridge circuits 210a, 210b, 210c has four IGBTs 211 functioning as switching elements of the upper and lower arms, and four diodes 212 provided in parallel with the IGBTs 211.
  • each IGBT 211 performs a switching operation according to the drive signals Gu, Gv, and Gw from the controller 203.
  • the DC power supplied from the DC power supply 201 is converted into three-phase AC power, and the armature windings of each phase of the motor 100 from the bridge circuits 210a, 210b, and 210c via the AC power cables 130 of each phase. It is output to 121a, 121b and 121c, respectively.
  • a current sensor 140 for detecting each current flowing through the armature windings 121a, 121b, 121c of the motor 100 is provided on the AC power cable 130 of each phase.
  • the current values i u , i v , and i w of each phase detected by the current sensor 140 are output to the controller 203.
  • the controller 203 performs a predetermined current control calculation based on the current values i u , iv , i w of each phase input from the current sensor 140 and the magnetic pole position ⁇ input from the magnetic pole position detector 113. Then, drive signals Gu, Gv, and Gw of each phase are output based on the calculation result.
  • FIG. 2 is a diagram showing an example of the structure of the motor 100.
  • motor 100 includes stator 120 in which armature windings 121a to 121c are electrically attached to each other so as to have a phase difference of 120 ° and output shaft 115, and a plurality of permanent magnets.
  • This is an embedded magnet type motor including a magnet 112 and a rotor 111 embedded therein.
  • An air gap 101 is provided between the stator 120 and the rotor 111.
  • FIG. 3 is a diagram illustrating an example of a current waveform of each phase in the motor 100 in a normal state.
  • the motor 100 having the internal structure shown in FIG. 2 is connected to the motor drive system 200 as shown in FIG. 1, the AC power supplied from the motor drive system 200 causes the armature windings 121a to 121c of the motor 100 to rotate.
  • An example is shown of current values i u , iv and i w of each phase flowing through 121c.
  • the rotor 111 of FIG. 2 rotates counterclockwise.
  • FIG. 4 is a diagram illustrating a magnetomotive force vector in the motor 100 in a normal state.
  • FIG. 4 shows magnetomotive force vectors in the motor 100 corresponding to the respective electrical angles A to E shown in FIG. 4, magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a, the magnetomotive force vector F v is raised to the V-phase current i v, flowing through the V-phase coil 121b is made represents magnetic, magnetomotive force vector F w is, W-phase current i w flowing through the W-phase coil 121c represents a magnetomotive force to make.
  • magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current.
  • synthetic magnetomotive force vector F uvw is a three-phase magnetomotive force vector F u, F v, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change Become.
  • FIG. 4 shows the A magnetomotive force vector F u at each electrical angle of ⁇ E, F v, F w and synthetic magnetomotive force vector F uvw shown in FIG. 3, each of the remaining F ⁇ M magnetomotive force vector F u of an electrical angle, F v, are omitted F w and synthetic magnetomotive force vector F uvw.
  • v u , v v , v w and i u , iv , i w represent the voltage and current of the U phase, V phase, W phase, respectively, and R is one phase.
  • P represents a differential operator.
  • the induced voltages e u , e v , e w of each phase, the self inductances L u , L v , L w of each phase, and the mutual inductances M uv , M vw , M wu between the phases are as follows.
  • And are represented by the following equations (2), (3), and (4), respectively.
  • ⁇ e represents the electric angular rotation speed of the motor 100
  • ⁇ m represents the flux linkage of the windings of the permanent magnet 112.
  • l a denotes the leakage inductance of one phase of the formula (3)
  • L a, L as the mean value and amplitude components of the effective inductance of one phase Each is represented.
  • the shaft torque T output from the motor 100 to the output shaft 115 is represented by the following equation (5).
  • P OUT represents mechanical energy (shaft output) output from the motor 100 to the output shaft 115
  • ⁇ m represents a rotation angular velocity (shaft rotation speed) of the output shaft 115.
  • That shaft torque T is a value obtained by dividing the axial output P OUT in the axial rotational speed omega m. Therefore, if the shaft rotation speed ⁇ m and the motor shaft output P OUT are constant values, the shaft torque T also becomes constant.
  • the axis output P OUT of the motor 100 in the above equation (5) is represented by the following equation (6).
  • the shaft output P OUT represented by the equation (6) is equal to a value obtained by subtracting each loss such as copper loss and iron loss from the input power P IN of the motor 100.
  • the input power P IN of the motor 100 is obtained by adding the products of the instantaneous voltages v u , v v , v w of each phase and the instantaneous currents i u , iv , i w as shown in the following equation (7). Value.
  • FIG. 5 is a diagram illustrating an example of waveforms of the induced voltage, current, and power of each phase in the motor 100 in a normal state.
  • the phase difference of the induced voltage of each phase generated U-phase coil 121a, V-phase coil 121b, the W-phase coil 121c, respectively e u, e v, e w are both 120 °.
  • the controller 203 sets the currents i u , iv and i w of the respective phases flowing through the U-phase coil 121a, the V-phase coil 121b and the W-phase coil 121c to a phase difference of 120 ° from each other.
  • the operation timing of the IGBT 211 in each of the bridge circuits 210a, 210b, 210c is determined so that As a result, the electric powers P u , P v , and P w of each phase obtained by the product of the induced voltage and the current pulsate at a frequency twice the induced voltage and the current, as shown in FIG. Is 60 °.
  • three-phase power P u, P v, the input power P IN to the sum of P w is constant as shown in FIG. Therefore, it can be seen that if the induced voltage and current are sinusoidal, torque pulsation does not occur in principle.
  • the controller 203 can operate the motor 100 without any problem by treating the induced voltage waveform or the current waveform as a sine wave and controlling the motor 100.
  • the independent winding type motor 100 that can independently control the currents flowing through the U-phase coil 121a, the V-phase coil 121b, and the W-phase coil 121c, the state in which the three-phase currents are balanced. This makes it possible to rotate the motor 100 while generating a constant torque.
  • This principle is also valid for independent winding type multi-phase motors other than three-phase motors. That is, assuming that the number of phases of the motor is n, the current of each phase is balanced by shifting the phase of the current of each phase by 360 / n °, and the motor can be rotated with a constant torque.
  • the motor drive system 200 can control the torque of the motor 100 to drive the motor 100 by rotating all the phases of the motor 100.
  • an abnormality occurs in the operation of the IGBT 211 in one of the bridge circuits 210a, 210b, and 210c, or an abnormality such as a disconnection occurs in the AC power cable 130 or the wiring in the motor 100 in any phase. If any of the phases is lost and the power cannot be supplied, the torque of the motor 100 cannot be appropriately controlled by the same control method as in the normal state.
  • the controller 203 controls each of the other normal phases excluding the missing phase.
  • the phase difference of the current flowing through the normal-phase armature winding is adjusted so that the AC powers cancel each other. Thereby, the pulsation of the output torque in the motor 100 is reduced, and the rotation of the motor 100 can be continued.
  • FIG. 6 is a diagram illustrating waveform examples of the induced voltage, current, and power of each phase in the motor 100 when the current phase is adjusted when the W phase is lost. If the W-phase is open phase, the controller 203 in the motor drive system 200 as shown in FIG. 6, by shifting the phase of the current i v of the V-phase from the normal to 60 ° advances direction (left direction in the drawing) , And the phase difference between the current and the U-phase current iu is adjusted to 60 °.
  • the current control operation by the control unit 203 performs, to adjust the phase of the V-phase current i v, to be output, in accordance with the the adjusted phase, the bridge circuit 210b of the V-phase from the controller 203 In response, it outputs drive signal Gv.
  • the valley portions of the U-phase power P peak portions u and the V-phase power P v, and U-phase power P u valleys and V-phase peak portions of the power P v of overlap respectively So that they cancel each other out.
  • the open-phase of the W-phase can be a constant three-phase power P u, P v
  • FIG. 7 is a diagram illustrating an example of the current waveform of each phase before and after the phase adjustment in the motor 100 when the W phase is lost.
  • (a) shows the waveform of the previous phase adjustment U-phase current i u and the V-phase current i v, as described in FIG. 5, they are as a phase difference of 120 °.
  • (B) both shows a waveform after the phase adjustment U-phase current i u and the V-phase current i v, as described in FIG. 6, these are as a phase difference of 60 ° I have.
  • FIG. 7B shows a case where the phase of the V-phase current iv is shifted by 60 ° from the normal time (leftward in the drawing), as described with reference to FIG.
  • FIG. 7 (c) shows a case where shifting the phase of the U-phase current i u from normal to 60 ° delayed direction (right direction in the drawing).
  • FIG. 8 is a diagram showing the magnetomotive force vector after the phase adjustment in the motor 100 when the W phase is lost.
  • FIG. 8 shows magnetomotive force vectors in the motor 100 corresponding to the electrical angles A to E shown in FIG. 7B.
  • the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a
  • the magnetomotive force vector F v is raised to the V-phase current i v
  • flowing through the V-phase coil 121b is made Represents magnetic force.
  • These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current.
  • synthetic magnetomotive force vector F uv is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F v, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the W-phase 8 is open-phase, W-phase current i w magnetomotive force vector F w by is not present.
  • the combined magnetomotive force vector Fuv rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector Fuv . That is, the rotation direction of the rotor 111 after the phase adjustment when the W phase is lost coincides with the normal rotation direction of the rotor 111 described with reference to FIG. Therefore, when the W phase is lost, the phase of the U-phase current iu or the V-phase current iv is adjusted as described above, so that the rotor 111 can be rotated in the normal rotation direction while suppressing torque pulsation. I understand.
  • the controller 203 when the W phase has open phase is, FIG. 7 (b), the by any method (c), the phase difference between the U-phase current i u and the V-phase current i v, 60 ° to adjust.
  • the controller 203 when the W phase has open phase is, FIG. 7 (b), the by any method (c), the phase difference between the U-phase current i u and the V-phase current i v, 60 ° to adjust.
  • FIG. 9 is a diagram illustrating an example of the current waveform of each phase before and after the phase adjustment in the motor 100 when the U phase is lost.
  • (a) shows the waveform of the previous phase adjustment the V-phase current i v, and W-phase current i w, as described in FIG. 5, they are as a phase difference of 120 °.
  • (B) it has a phase difference of (c) are both shows the waveform of the V-phase current i v, and W-phase current i w after phase adjustment, these 60 °.
  • FIG. 9B shows a case where the phase of the W-phase current i w is shifted by 60 ° from the normal time (to the left in the drawing).
  • FIG. 10 is a diagram showing the magnetomotive force vector after the phase adjustment in the motor 100 when the U phase is lost.
  • FIG. 10 shows the magnetomotive force vector in the motor 100 corresponding to each of the electrical angles A to E shown in FIG. 9B.
  • the magnetomotive force vector F v is V-phase current i v that flows in V phase coil 121b
  • the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made
  • These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current.
  • synthetic magnetomotive force vector F vw is the magnetomotive force vector F v, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the U-phase in Figure 10 is open-phase, U-phase current i magnetomotive force vector F u by u does not exist.
  • the combined magnetomotive force vector Fvw rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector Fvw . That is, the rotation direction of the rotor 111 after the phase adjustment when the U phase is lost is the same as the rotation direction of the rotor 111 in the normal state described with reference to FIG. I do. Therefore, when the U-phase is open phase, by adjusting the phase of the V-phase current i v, and W-phase current i w, as described above, while suppressing the torque ripple, can be rotating the rotor 111 in the forward direction I understand.
  • the controller 203 when the U-phase is open phase is, FIG. 9 (b), the by any method (c), the phase difference between the V-phase current i v, and W-phase current i w is 60 ° to adjust.
  • the phase difference between the V-phase current i v, and W-phase current i w is 60 ° to adjust.
  • FIG. 11 is a diagram illustrating an example of the current waveform of each phase in the motor 100 before the phase adjustment and after the phase adjustment by the conventional method when the V phase is lost.
  • (a) shows the waveforms of the U-phase current i u and the W-phase current i w before the phase adjustment, and these have a phase difference of 120 °.
  • (B) and (c) show the waveforms of the U-phase current i u and the W-phase current i w after the phase adjustment by the conventional method, and these have a phase difference of 60 °.
  • the W-phase current i w close to the U-phase current i u and shifted in the advance direction the phase shown in FIG.
  • FIG. 12 is a diagram showing the magnetomotive force vector of the motor 100 after the phase adjustment by the conventional method when the V phase is lost.
  • FIG. 12 shows magnetomotive force vectors in the motor 100 corresponding to the respective electric angles A to E shown in FIG. 11B. 12
  • the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a
  • the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made Represents magnetic force.
  • These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current.
  • synthetic magnetomotive force vector F uw is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the V-phase in Figure 12 is open-phase, V-phase current i v magnetomotive force vector F v by are not present.
  • the resultant magnetomotive force vector F uw rotates clockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the resultant magnetomotive force vector F uw . That is, in the conventional method, the rotation direction of the rotor 111 after the phase adjustment when the V phase is lost is different from the rotation direction when the U phase and the W phase are lost, as described with reference to FIG. The direction of rotation of the rotor 111 is opposite. Therefore, when the V phase is lost, if the phase adjustment of the U-phase current i u or the W-phase current i w is performed by the conventional method as described above, the rotor 111 rotates in the reverse direction with respect to the normal rotation direction. Will be done.
  • the phase of the rotor 111 is adjusted by a method different from the conventional method, thereby preventing the reverse rotation of the rotor 111.
  • the specific method will be described below.
  • FIG. 13 is a diagram showing an example of the current waveform of each phase before the phase adjustment and after the phase adjustment by the method of the present invention in the motor 100 when the V phase is lost.
  • (a) shows the waveforms of the U-phase current i u and the W-phase current i w before the phase adjustment, and these have a phase difference of 120 ° as in FIG. (B) and (c) show the waveforms of the U-phase current i u and the W-phase current i w after the phase adjustment by the method of the present invention, and these have a phase difference of 60 °.
  • FIG. 13B contrary to the case of FIG.
  • the phase of the W-phase current i w is shifted in the delay direction (rightward direction in the figure) from the normal time, and the W-phase current i w is shifted to the U-phase. close to the current i u, the phase of the U-phase current i u indicates a case where as delayed 60 ° with respect to W-phase current i w.
  • FIG. 14 is a diagram showing the magnetomotive force vector of the motor 100 after phase adjustment by the method of the present invention when the V phase is lost.
  • FIG. 14 shows magnetomotive force vectors in the motor 100 corresponding to the electrical angles A to E shown in FIG. 13B.
  • the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a
  • the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made Represents magnetic force.
  • These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current.
  • synthetic magnetomotive force vector F uw is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the V-phase in Figure 14 is open-phase, V-phase current i v magnetomotive force vector F v by are not present.
  • the combined magnetomotive force vector F uw rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector F uw . That is, according to the method of the present invention, the rotation direction of the rotor 111 after the phase adjustment when the V phase is lost is the same as that in the case where the U phase and the W phase are lost. The rotation direction can be matched. Therefore, when the V-phase is lost, the phase of the U-phase current i u or the W-phase current i w is adjusted by the method of the present invention as described above, so that the torque pulsation is suppressed and the rotor 111 is moved. It turns out that it can rotate in the forward direction.
  • the controller 203 sets the phase difference between the U-phase current i u and the W-phase current i w to 60 by one of the methods shown in FIGS. ° to adjust.
  • the controller 203 sets the phase difference between the U-phase current i u and the W-phase current i w to 60 by one of the methods shown in FIGS. ° to adjust.
  • FIG. 15 is a diagram illustrating a phase adjustment method according to the method of the present invention.
  • FIG. 15A shows the phase relationship among the currents i u , iv and i w of each phase when the three phases in the motor 100 are sound without any phase loss.
  • the currents i u , iv and i w of each phase have a phase difference of 120 °.
  • FIG. 15 (b) represents the phase relationship between the V-phase current i v, and W-phase current i w of the phase-adjustment in the case of open-phase is the U phase of the three-phase in the motor 100.
  • the controller 203 shifts the phase of the W-phase current i w by 60 ° from the normal time as described with reference to FIG. 9B, for example. That is, when the U phase is lost, the controller 203 sets the V phase which is one of the normal phases excluding the missing U phase among the three phases as the reference phase, as shown in FIG.
  • the phase of the W-phase current i w flowing through the remaining W-phases is shifted in the leading direction (clockwise direction) by a shift amount of 60 °.
  • the phase of the W-phase current i w is adjusted without straddling the U-phase which is out of phase.
  • the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing the torque pulsation.
  • the phase adjustment method described with reference to FIG. 9B that is, the case where the phase of the W-phase current i w is shifted by 60 ° in the leading direction (clockwise) with the V phase as the reference phase.
  • the phase adjustment method described with reference to FIG. 9C may be used.
  • the controller 203 sets the W phase, which is the other of the normal phases excluding the missing U phase among the three phases, as the reference phase, and sets the remaining V phases to the remaining V phases.
  • the phase of the V-phase current i v, flowing may be shifted by a shift amount of 60 ° to the delay direction (counterclockwise direction). Phase of this time the V-phase current i v, is adjusted without cross the open phase and U-phase.
  • FIG. 15 (c) represents the phase relationship between the U-phase current i u and the V-phase current i v, after the phase adjustment in the case of open-phase is the W phase of the three-phase in the motor 100.
  • the controller 203 for example as described in the previous FIG. 7 (b), the shifting in the direction of the phase advances 60 ° from normal the V-phase current i v. That is, when the W phase is lost, the controller 203 sets the U phase which is one of the normal phases excluding the missing W phase among the three phases as the reference phase, as shown in FIG. as the phase of the V-phase current i v, flowing to the rest of the V-phase, thereby advances the shift amount of shift of 60 ° in the direction (clockwise direction). Phase of this time the V-phase current i v, is adjusted without cross the open phase was W-phase. Accordingly, even when the W phase is lost, the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing the torque pulsation.
  • the phase adjustment method described with reference to FIG. 7B that is, the case where the phase of the V-phase current iv is shifted by 60 ° in the advancing direction (clockwise) with the U-phase as the reference phase.
  • the phase adjustment method described with reference to FIG. 7C may be used.
  • the controller 203 sets the V phase, which is the other of the normal phases excluding the missing W phase among the three phases, as the reference phase, and sets the remaining U phases to the remaining U phases.
  • the phase of the flowing U-phase current iu may be shifted in the delay direction (counterclockwise) by a shift amount of 60 °. Phase of this time the U-phase current i u is adjusted without cross the open phase was W-phase.
  • FIG. 15D shows the phase relationship between the U-phase current i u and the W-phase current i w after the phase adjustment when the V phase is lost in the three phases in the motor 100.
  • the controller 203 shifts the phase of the W-phase current i w in a direction delayed by 60 ° from the normal time, for example, as described with reference to FIG. That is, when the V phase is lost, the controller 203 sets the U phase which is one of the normal phases excluding the missing V phase among the three phases as the reference phase, as shown in FIG.
  • the phase of the W-phase current i w flowing through the remaining W-phase is shifted by 60 ° in a delay direction (counterclockwise direction) opposite to the U-phase open phase shown in FIG. Shift. Phase of this time the W-phase current i w is adjusted without cross the V-phase that is open-phase.
  • the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing torque pulsation.
  • phase of the W-phase current i w is shifted in the leading direction (clockwise direction), which is the same direction as in the U-phase open phase shown in FIG.
  • the phase of the W-phase current i w is adjusted with a shift amount of 180 ° over the missing V phase.
  • the resultant magnetomotive force vector F uw that rotates clockwise in the rotor 111 is generated, so that the rotation direction of the motor 100 is reversed with respect to the normal state.
  • the phase adjustment method described with reference to FIG. 13B that is, the phase of the W-phase current i w is shifted by 60 ° in the delay direction (counterclockwise) with the U phase as the reference phase.
  • the controller 203 sets the W phase, which is the other of the normal phases excluding the missing V phase among the three phases, as a reference phase, and sets the remaining U phases to the remaining U phases.
  • the phase of the flow the U-phase current i u, the time W Aiketsu phase may be shifted by a shift amount of 60 ° in the direction opposite to the leading direction (clockwise direction). Phase of this time the U-phase current i u is adjusted without cross the V-phase that is open-phase.
  • FIG. 16 is a diagram illustrating the vector control of the motor 100 after the phase adjustment at the time of the phase loss.
  • the controller 203 determines which one of the currents i u , iv , and i w of each phase flows through the normal phase excluding the missing phase.
  • the phase difference between the combined magnetomotive force vectors F uv , F vw , and F uw of the normal phase and the magnetic pole position of the rotor 111 always becomes a certain value. Then, the amplitude and phase of the current flowing in the normal phase are controlled.
  • the motor 100 can be driven by changing the rotational position of the rotor 111 from, for example, FIG. 16A to FIG. 16B and continuing the same control.
  • the phase difference between the resultant magnetomotive force vector and the magnetic pole position at this time can be changed according to, for example, the operating state (torque, rotation speed) of the motor 100.
  • the magnetic pole position can be detected by the magnetic pole position detector 113.
  • the reduction of torque pulsation by the current phase adjustment at the time of phase loss as described above can be applied to a multi-phase motor of an independent winding type other than three phases. That is, assuming that the number of phases of the motor to be controlled is n and the number of missing phases is m, the motor control device according to the present invention provides each normal Are adjusted so that the phase difference Dp (°) of the above satisfies the following equation (8). At this time, with any one of the normal phases as a reference phase, the phases of the currents flowing through the normal phases other than the reference phase are adjusted so as not to cross over the missing phase.
  • the phase difference Di (°) of each current flowing through the normal-phase armature winding may be adjusted so as to satisfy the following expression (9).
  • Di 360 / (nm) -360 / n (9)
  • the controller 203 which is a motor control device, controls driving of the motor 100.
  • the motor 100 has a plurality of armature windings 121a, 121b, 121c corresponding to each of a plurality of phases, and the armature windings are connected independently of each other.
  • the controller 203 sets the phase of the current flowing through the normal phase other than the reference phase as one of the normal phases excluding the missing phase as a reference phase. , So that there is no straddling over the missing phase. With this configuration, the phase of the current can be appropriately adjusted even if any phase is lost in the multiphase motor.
  • the plurality of phases of the motor 100 correspond to the U phase, the V phase, and the W phase, respectively.
  • the controller 203 sets one of the non-out-of-phase V-phase or W-phase as a reference phase and the remaining W-phase or V-phase as described with reference to FIGS. current flowing through the phase i w, the phase of the i v, shifting by a predetermined shift amount (60 °) in a predetermined shifting direction (leading direction or the delay direction).
  • a predetermined shift amount 60 °
  • the W phase is lost, as described with reference to FIG. 7 and FIG. 15C, one of the U phase and the V phase that is not lost is used as a reference phase and flows into the remaining V phase or U phase.
  • the phases of the currents iv and iu are shifted by the shift amount (60 °) in the shift direction (leading direction or lagging direction).
  • the V phase is lost, as described with reference to FIG. 13 and FIG. 15D, one of the U phase and the W phase that is not missing is used as a reference phase and flows into the remaining W phase or U phase.
  • the phases of the currents i w and i u are shifted by the shift amount (60 °) in the direction opposite to the shift direction (the delay direction or the advance direction).
  • the phase of the current can be appropriately adjusted even if any of the U, V, and W phases is lost.
  • the shift amount when the controller 203 adjusts the phases of the currents i u , iv and i w at the time of phase loss is 60 ° in phase angle.
  • the magnetic pole position detector 113 for detecting the magnetic pole position of the rotor 111 of the motor 100 is attached to the motor 100.
  • the controller 203 drives the motor 100 by controlling the amplitude and phase of the current flowing in the normal phase based on the magnetic pole position detected by the magnetic pole position detector 113. With this configuration, the driving of the motor 100 can be appropriately continued even during the phase loss.
  • motor 111 rotor 113: magnetic pole position detector
  • stator 121a armature winding (U-phase coil)
  • 121b armature winding (V-phase coil)
  • 121c armature winding (W-phase coil)
  • AC power cable 140 Current sensor 200: Motor drive system 201: DC power supply 201a, 201b: DC bus 202: Smoothing capacitor 203: Controller 210: Inverter circuit 210a, 210b, 210c: Bridge circuit 211: IGBT 212: diode

Abstract

In a multiphase motor, no matter which phase there is phase interruption for, the phase of the current is adjusted appropriately. A controller 203 controls the driving of a motor 100. The motor 100 has a plurality of armature windings 121a, 121b, 121c corresponding respectively to a U phase, V phase, and a W phase, and each armature winding is connected independently from each other. When there is phase interruption to any phase of the U phase, the V phase, and the W phase, with any of the normal phases excluding the phase for which there was phase interruption as a reference phase, the controller 203 adjusts the phase of the current flowing in the normal phase other than the reference phase so as to not extend to the phase for which phase interruption occurred.

Description

モータ制御装置Motor control device
 本発明は、モータ制御装置に関する。 << The present invention relates to a motor control device.
 本技術分野の背景技術として、下記特許文献1が知られている。特許文献1には、各相の電気子巻線が互いに独立して設けられた多相モータの駆動を制御するモータ駆動装置であって、直流母線を介して供給される直流電力を多相の交流電力に変換して前記各相の電気子巻線にそれぞれ出力するインバータ回路と、前記インバータ回路を制御するための制御器と、を備え、前記制御器は、前記交流電力においていずれかの相が欠相した場合に、前記欠相した相を除いた他の正常相の各交流電力が互いに相殺されるように、前記正常相の電気子巻線に流れる各電流の位相差を調整するモータ駆動装置が開示されている。 下 記 As a background art in this technical field, the following Patent Document 1 is known. Patent Document 1 discloses a motor drive device that controls the driving of a multiphase motor in which armature windings of each phase are provided independently of each other, and converts DC power supplied via a DC bus into a multiphase motor. An inverter circuit that converts the power into AC power and outputs the AC power to each of the armature windings of the respective phases; and a controller for controlling the inverter circuit. A motor that adjusts a phase difference between currents flowing through the normal-phase armature windings so that when the phase is lost, the alternating-current powers of the other normal phases except for the phase that has lost the phase are canceled out with each other. A drive device is disclosed.
特許第6194113号Patent No. 6194113
 特許文献1に記載のモータ駆動装置を三相モータに適用した場合、U相またはW相が欠相した場合には特に問題ないが、V相が欠相した場合には、電流の位相を調整することでモータの回転方向がそれまでとは反対方向になるという問題が生じる。このように、特許文献1の技術では、欠相した相によっては電流の位相を適切に調整できないという問題がある。 When the motor driving device described in Patent Document 1 is applied to a three-phase motor, there is no particular problem when the U phase or the W phase is lost, but when the V phase is lost, the phase of the current is adjusted. This causes a problem that the rotation direction of the motor becomes the opposite direction. As described above, the technique of Patent Literature 1 has a problem that the phase of the current cannot be appropriately adjusted depending on the phase that has been lost.
 本発明によるモータ制御装置は、複数の相のそれぞれに対応する複数の巻線を有し、各巻線が互いに独立して接続されたモータの駆動を制御するものであって、前記複数の相のうちいずれかの相が欠相した場合に、前記欠相した相を除いた正常相のいずれかを基準相として、前記基準相以外の前記正常相に流れる電流の位相を、前記欠相した相を跨がないように調整する。 A motor control device according to the present invention has a plurality of windings corresponding to each of a plurality of phases, and controls the driving of a motor in which each winding is independently connected to each other. When any of the phases is lost, the phase of the current flowing through the normal phase other than the reference phase is defined as one of the normal phases excluding the missing phase, as the reference phase. Adjust so that there is no straddling.
 本発明によれば、多相モータにおいていずれの相が欠相した場合であっても、電流の位相を適切に調整できる。 According to the present invention, the phase of the current can be appropriately adjusted even if any phase is lost in the multi-phase motor.
本発明の一実施形態に係るモータ制御装置を含むモータ駆動システムの構成を示す図FIG. 1 is a diagram illustrating a configuration of a motor drive system including a motor control device according to an embodiment of the present invention. モータの構造の一例を示す図Diagram showing an example of the structure of the motor 通常時のモータにおける各相の電流波形の一例を示す図Diagram showing an example of the current waveform of each phase in the motor at normal time 通常時のモータにおける起磁力ベクトルを示す図Diagram showing magnetomotive force vector in motor at normal time 通常時のモータにおける各相の誘起電圧、電流および電力の波形例を示す図Diagram showing waveform example of induced voltage, current and power of each phase in motor at normal time W相が欠相したときに電流の位相調整を行った場合のモータにおける各相の誘起電圧、電流および電力の波形例を示す図The figure which shows the example of a waveform of the induced voltage of each phase, a current, and electric power in the motor when the phase adjustment of the current is performed when the W phase is lost. W相が欠相したときのモータにおける位相調整前と位相調整後の各相の電流波形の一例を示す図The figure which shows an example of the current waveform of each phase before and after the phase adjustment in the motor when the W phase is lost. W相が欠相したときのモータにおける位相調整後の起磁力ベクトルを示す図The figure which shows the magnetomotive force vector after the phase adjustment in the motor at the time of W phase loss U相が欠相したときのモータにおける位相調整前と位相調整後の各相の電流波形の一例を示す図The figure which shows an example of the current waveform of each phase before and after the phase adjustment in the motor when the U phase is lost. U相が欠相したときのモータにおける位相調整後の起磁力ベクトルを示す図The figure which shows the magnetomotive force vector after the phase adjustment in the motor at the time of U phase being lost. V相が欠相したときのモータにおける位相調整前と従来の方法による位相調整後の各相の電流波形の一例を示す図The figure which shows an example of the current waveform of each phase before the phase adjustment in the motor when the V phase is lost, and after the phase adjustment by the conventional method. V相が欠相したときのモータにおける従来の方法による位相調整後の起磁力ベクトルを示す図The figure which shows the magnetomotive force vector after the phase adjustment by the conventional method in the motor when a V phase is lost. V相が欠相したときのモータにおける位相調整前と本発明の方法による位相調整後の各相の電流波形の一例を示す図The figure which shows an example of the current waveform of each phase before the phase adjustment in the motor when the V phase is lost, and after the phase adjustment by the method of this invention. V相が欠相したときのモータにおける本発明の方法による起磁力ベクトルを示す図The figure which shows the magnetomotive force vector by the method of this invention in the motor when a V phase is lost. 本発明の方法による位相調整方法を説明する図FIG. 3 is a diagram illustrating a phase adjustment method according to the method of the present invention. 欠相時の位相調整後におけるモータのベクトル制御を説明する図Diagram for explaining vector control of motor after phase adjustment at the time of phase loss
 以下、図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係るモータ制御装置を含むモータ駆動システムの構成を示す図である。図1に示すモータ駆動システム200は、ハイブリッド自動車(HEV)や電気自動車(EV)などに利用されるモータ100と接続されており、モータ100の駆動を制御する。モータ駆動システム200は、直流電源201、平滑コンデンサ202、制御器203およびインバータ回路210を有する。 FIG. 1 is a diagram showing a configuration of a motor drive system including a motor control device according to one embodiment of the present invention. The motor drive system 200 shown in FIG. 1 is connected to a motor 100 used in a hybrid vehicle (HEV), an electric vehicle (EV), or the like, and controls driving of the motor 100. The motor drive system 200 has a DC power supply 201, a smoothing capacitor 202, a controller 203, and an inverter circuit 210.
 モータ100は、U相、V相、W相にそれぞれ対応する三相の電気子巻線121a、121b、121cを有する独立巻線型の六線三相式交流モータである。これらの電気子巻線121a~121cは、互いに独立してモータ駆動システム200に接続されている。モータ駆動システム200は、U相、V相、W相にそれぞれ対応する電気子巻線121a~121cに流れる電流をそれぞれ独立に制御することで、モータ100を駆動させることができる。なお、以下の説明では、U相に対応する電気子巻線121aを「U相コイル121a」、V相に対応する電気子巻線121bを「V相コイル121b」、W相に対応する電気子巻線121cを「W相コイル121c」と言うこともある。 The motor 100 is an independent winding type six-wire three-phase AC motor having three- phase armature windings 121a, 121b, and 121c respectively corresponding to the U-phase, the V-phase, and the W-phase. These armature windings 121a to 121c are connected to the motor drive system 200 independently of each other. The motor drive system 200 can drive the motor 100 by independently controlling the current flowing through the armature windings 121a to 121c corresponding to the U phase, the V phase, and the W phase, respectively. In the following description, the armature winding 121a corresponding to the U-phase is referred to as “U-phase coil 121a”, the armature winding 121b corresponding to the V-phase is referred to as “V-phase coil 121b”, and the armature corresponding to the W-phase. The winding 121c may be referred to as a “W-phase coil 121c”.
 モータ100の出力軸115には、モータ100の磁極位置θを検出する磁極位置検出器113が取り付けられている。磁極位置検出器113は、例えばレゾルバ等を用いて構成される。磁極位置検出器113による磁極位置θの検出結果は、制御器203に出力される。 磁 A magnetic pole position detector 113 for detecting the magnetic pole position θ of the motor 100 is attached to the output shaft 115 of the motor 100. The magnetic pole position detector 113 is configured using, for example, a resolver or the like. The detection result of the magnetic pole position θ by the magnetic pole position detector 113 is output to the controller 203.
 直流電源201は、直流母線201a、201bを介してインバータ回路210に直流電力を供給する。直流電源201には、たとえばリチウムイオン電池等の二次電池などを利用することができる。 DC power supply 201 supplies DC power to inverter circuit 210 via DC buses 201a and 201b. As the DC power supply 201, for example, a secondary battery such as a lithium ion battery can be used.
 平滑コンデンサ202は、インバータ回路210の動作に伴って生じる直流電圧の変動を抑制するためのものであり、直流母線201aと直流母線201bの間に、インバータ回路210と並列に接続されている。 (4) The smoothing capacitor 202 is for suppressing a change in the DC voltage caused by the operation of the inverter circuit 210, and is connected between the DC bus 201a and the DC bus 201b in parallel with the inverter circuit 210.
 制御器203は、インバータ回路210が有する各相のブリッジ回路210a、210b、210cに対して、ドライブ信号Gu、Gv、Gwをそれぞれ出力する。このドライブ信号Gu、Gv、Gwに応じてブリッジ回路210a、210b、210cをそれぞれ動作させることで、制御器203はインバータ回路210を制御することができる。なお、制御器203は、本発明の一実施形態に係るモータ制御装置に相当する。 The controller 203 outputs drive signals Gu, Gv, and Gw to the bridge circuits 210a, 210b, and 210c of each phase of the inverter circuit 210, respectively. The controller 203 can control the inverter circuit 210 by operating the bridge circuits 210a, 210b, and 210c according to the drive signals Gu, Gv, and Gw, respectively. Note that the controller 203 corresponds to a motor control device according to an embodiment of the present invention.
 インバータ回路210は、U相、V相、W相にそれぞれ対応するフルブリッジ型のブリッジ回路210a、210bおよび210cを有している。各ブリッジ回路210a、210b、210cは、上下各アームのスイッチング素子として機能する4つのIGBT211と、各IGBT211と並列に設けられた4つのダイオード212とを有している。ブリッジ回路210a、210b、210cにおいて、各IGBT211は、制御器203からのドライブ信号Gu、Gv、Gwに応じてスイッチング動作を行う。これにより、直流電源201から供給された直流電力が三相交流電力に変換され、ブリッジ回路210a、210b、210cから各相の交流パワーケーブル130を介して、モータ100の各相の電気子巻線121a、121b、121cにそれぞれ出力される。 The inverter circuit 210 has full-bridge type bridge circuits 210a, 210b, and 210c corresponding to the U phase, the V phase, and the W phase, respectively. Each of the bridge circuits 210a, 210b, 210c has four IGBTs 211 functioning as switching elements of the upper and lower arms, and four diodes 212 provided in parallel with the IGBTs 211. In the bridge circuits 210a, 210b, and 210c, each IGBT 211 performs a switching operation according to the drive signals Gu, Gv, and Gw from the controller 203. As a result, the DC power supplied from the DC power supply 201 is converted into three-phase AC power, and the armature windings of each phase of the motor 100 from the bridge circuits 210a, 210b, and 210c via the AC power cables 130 of each phase. It is output to 121a, 121b and 121c, respectively.
 各相の交流パワーケーブル130には、モータ100の電気子巻線121a、121b、121cに流れる各電流を検出するための電流センサ140がそれぞれ設けられている。電流センサ140により検出された各相の電流値i、i、iは、制御器203に出力される。制御器203は、電流センサ140から入力される各相の電流値i、i、iと、磁極位置検出器113から入力される磁極位置θとに基づいて、所定の電流制御演算を行い、その演算結果に基づいて、各相のドライブ信号Gu、Gv、Gwを出力する。 A current sensor 140 for detecting each current flowing through the armature windings 121a, 121b, 121c of the motor 100 is provided on the AC power cable 130 of each phase. The current values i u , i v , and i w of each phase detected by the current sensor 140 are output to the controller 203. The controller 203 performs a predetermined current control calculation based on the current values i u , iv , i w of each phase input from the current sensor 140 and the magnetic pole position θ input from the magnetic pole position detector 113. Then, drive signals Gu, Gv, and Gw of each phase are output based on the calculation result.
 図2は、モータ100の構造の一例を示す図である。図2に示すように、たとえばモータ100は、電気子巻線121a~121cが互いに電気的に120°の位相差となるように取り付けられたステータ120と、出力軸115に固定され、複数の永久磁石112が内部に埋め込まれたロータ111とによって構成される埋め込み磁石型モータである。ステータ120とロータ111の間には、エアギャップ101が設けられている。 FIG. 2 is a diagram showing an example of the structure of the motor 100. As shown in FIG. 2, for example, motor 100 includes stator 120 in which armature windings 121a to 121c are electrically attached to each other so as to have a phase difference of 120 ° and output shaft 115, and a plurality of permanent magnets. This is an embedded magnet type motor including a magnet 112 and a rotor 111 embedded therein. An air gap 101 is provided between the stator 120 and the rotor 111.
 図3は、通常時のモータ100における各相の電流波形の一例を示す図である。図3では、図2に示す内部構造のモータ100を、図1のようにモータ駆動システム200と接続した場合に、モータ駆動システム200から供給される交流電力によってモータ100の電気子巻線121a~121cにそれぞれ流れる各相の電流値i、i、iの例を示している。本図に示す三相交流電流を通電した場合、図2のロータ111は反時計回りに回転する。 FIG. 3 is a diagram illustrating an example of a current waveform of each phase in the motor 100 in a normal state. In FIG. 3, when the motor 100 having the internal structure shown in FIG. 2 is connected to the motor drive system 200 as shown in FIG. 1, the AC power supplied from the motor drive system 200 causes the armature windings 121a to 121c of the motor 100 to rotate. An example is shown of current values i u , iv and i w of each phase flowing through 121c. When the three-phase alternating current shown in the figure is applied, the rotor 111 of FIG. 2 rotates counterclockwise.
 図4は、通常時のモータ100における起磁力ベクトルを示す図である。図4では、図3に示したA~Eの各電気角に対応するモータ100内の起磁力ベクトルを示している。図4において、起磁力ベクトルFは、U相コイル121aに流れるU相電流iが作る起磁力を表し、起磁力ベクトルFは、V相コイル121bに流れるV相電流iが作る起磁力を表し、起磁力ベクトルFは、W相コイル121cに流れるW相電流iが作る起磁力を表している。これらの起磁力ベクトルは、電流の時間変化に伴って振幅の大きさと正負が変化する交番磁界である。また、合成起磁力ベクトルFuvwは、三相の起磁力ベクトルF、F、Fを合計した起磁力を表しており、これは時間変化と共に一定の大きさのまま回転する回転磁界となる。 FIG. 4 is a diagram illustrating a magnetomotive force vector in the motor 100 in a normal state. FIG. 4 shows magnetomotive force vectors in the motor 100 corresponding to the respective electrical angles A to E shown in FIG. 4, magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a, the magnetomotive force vector F v is raised to the V-phase current i v, flowing through the V-phase coil 121b is made represents magnetic, magnetomotive force vector F w is, W-phase current i w flowing through the W-phase coil 121c represents a magnetomotive force to make. These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current. Also, synthetic magnetomotive force vector F uvw is a three-phase magnetomotive force vector F u, F v, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change Become.
 図2に示す内部構造のモータ100に図3の三相交流電流を流した場合、これらによって生じる合成起磁力ベクトルFuvwは、図4に示すように反時計回りに回転する。ロータ111は、この合成起磁力ベクトルFuvwが表す磁界に同期して回転する。なお、図4では、図3に示したA~Eの各電気角での起磁力ベクトルF、F、Fおよび合成起磁力ベクトルFuvwを示しており、残りのF~Mの各電気角での起磁力ベクトルF、F、Fおよび合成起磁力ベクトルFuvwを省略している。F~Mの各電気角では、A~Eの各電気角と同様に、これらの起磁力が反時計回りの回転を継続する。 When the three-phase AC current shown in FIG. 3 is applied to the motor 100 having the internal structure shown in FIG. 2, the resultant magnetomotive force vector F uvw rotates counterclockwise as shown in FIG. The rotor 111 rotates in synchronization with the magnetic field represented by the resultant magnetomotive force vector Fuvw . In FIG. 4 shows the A magnetomotive force vector F u at each electrical angle of ~ E, F v, F w and synthetic magnetomotive force vector F uvw shown in FIG. 3, each of the remaining F ~ M magnetomotive force vector F u of an electrical angle, F v, are omitted F w and synthetic magnetomotive force vector F uvw. At each of the electrical angles F to M, like the electrical angles A to E, these magnetomotive forces continue to rotate counterclockwise.
 図2に示したような永久磁石を用いたモータ100の電圧方程式は、以下の式(1)で表される。 電 圧 The voltage equation of the motor 100 using the permanent magnet as shown in FIG. 2 is represented by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)において、v、v、vおよびi、i、iは、U相、V相、W相の電圧と電流をそれぞれ表しており、Rは一相分の巻線抵抗を、Pは微分演算子をそれぞれ表している。また、式(1)において、各相の誘起電圧e、e、e、各相の自己インダクタンスL、L、L、各相間の相互インダクタンスMuv、Mvw、Mwuは、以下の式(2)、(3)、(4)でそれぞれ表される。 In the above formula (1), v u , v v , v w and i u , iv , i w represent the voltage and current of the U phase, V phase, W phase, respectively, and R is one phase. , And P represents a differential operator. In the equation (1), the induced voltages e u , e v , e w of each phase, the self inductances L u , L v , L w of each phase, and the mutual inductances M uv , M vw , M wu between the phases are as follows. , And are represented by the following equations (2), (3), and (4), respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(2)において、ωはモータ100の電気角回転速度を表し、ψは永久磁石112の巻線鎖交磁束を表している。また、式(3)において、lは一相分の漏れインダクタンスを表し、式(3)、(4)において、L、Lasは一相分の有効インダクタンスの平均値成分と振幅成分をそれぞれ表している。 In Expression (2), ω e represents the electric angular rotation speed of the motor 100, and ψ m represents the flux linkage of the windings of the permanent magnet 112. Further, in the equation (3), l a denotes the leakage inductance of one phase of the formula (3), in (4), L a, L as the mean value and amplitude components of the effective inductance of one phase Each is represented.
 なお、図2に示した埋め込み磁石型モータの場合、式(3)、(4)においてLas≠0となる。 In the case of interior permanent magnet type motor shown in FIG. 2, the formula (3), and L the as ≠ 0 in (4).
 モータ100が出力軸115に対して出力する軸トルクTは、以下の式(5)で表さる。式(5)において、POUTはモータ100が出力軸115に出力する機械エネルギー(軸出力)を表し、ωは出力軸115の回転角速度(軸回転速度)を表している。すなわち軸トルクTは、軸出力POUTを軸回転速度ωで割った値である。そのため、軸回転速度ωとモータ軸出力POUTが一定値であれば、軸トルクTも一定になる。なお、式(5)では計算の簡略化のために、モータ100の極対数を1とし、ω=ωとして計算しているが、実際にはモータ100の極対数をPとすると、ω=ω/Pの関係が成り立つ。 The shaft torque T output from the motor 100 to the output shaft 115 is represented by the following equation (5). In the equation (5), P OUT represents mechanical energy (shaft output) output from the motor 100 to the output shaft 115, and ω m represents a rotation angular velocity (shaft rotation speed) of the output shaft 115. That shaft torque T is a value obtained by dividing the axial output P OUT in the axial rotational speed omega m. Therefore, if the shaft rotation speed ω m and the motor shaft output P OUT are constant values, the shaft torque T also becomes constant. In Equation (5), the number of pole pairs of the motor 100 is set to 1 and ω e = ω m for simplicity of calculation. However, in actuality, if the number of pole pairs of the motor 100 is P p , The relationship ω m = ω e / P p holds.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記の式(5)におけるモータ100の軸出力POUTは、以下の式(6)で表される。 The axis output P OUT of the motor 100 in the above equation (5) is represented by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、式(6)で表される軸出力POUTは、モータ100の入力電力PINから銅損や鉄損などの各損失を差し引いた値に等しい。モータ100の入力電力PINは、以下の式(7)に示すように、各相の瞬時電圧v、v、vと瞬時電流i、i、iの積をそれぞれ足し合わせた値として求められる。 Note that the shaft output P OUT represented by the equation (6) is equal to a value obtained by subtracting each loss such as copper loss and iron loss from the input power P IN of the motor 100. The input power P IN of the motor 100 is obtained by adding the products of the instantaneous voltages v u , v v , v w of each phase and the instantaneous currents i u , iv , i w as shown in the following equation (7). Value.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 表面磁石型モータや突極比の比較的小さな埋め込み磁石型モータでは、式(6)に示すように、入力電力PINのうち、各相の誘起電圧e、e、eと瞬時電流i、i、iの積で決まる電力P、P、Pが主に軸出力POUTに変換される。 The relatively small embedded magnet type motor of the surface magnet type motor or salient pole ratio, as shown in equation (6), of the input power P IN, each phase of the induced voltage e u, e v, e w and instantaneous current i u, i v, power determined by the product of i w P u, P v, is P w is converted mainly into shaft output P OUT.
 式(5)から判るように、モータ100が一定の軸回転速度ωで回転しているときに軸出力POUTが一定値であれば、軸トルクTが一定になる。式(6)から判るように、モータ100の軸出力POUTを一定にするためには、先に述べたように、入力電力PINのうち各相の誘起電圧e、e、eと瞬時電流i、i、iの積で決まる電力P、P、Pの和が一定である必要がある。 As it can be seen from equation (5), if the shaft output P OUT is a constant value when the motor 100 is rotating at a constant axial rotation speed omega m, shaft torque T is constant. As can be seen from equation (6), in order to make the shaft power P OUT of the motor 100 constant, as mentioned above, each phase of the induced voltage e u of the input power P IN, e v, e w the instantaneous current i u, i v, i w power P u determined by a product of, P v, it is necessary that the sum of P w is constant.
 図5は、通常時のモータ100における各相の誘起電圧、電流および電力の波形例を示す図である。前述のように、U相コイル121a、V相コイル121b、W相コイル121cにそれぞれ生じる各相の誘起電圧e、e、eの位相差は、いずれも120°である。通常時には、制御器203は図5に示すように、U相コイル121a、V相コイル121b、W相コイル121cにそれぞれ流れる各相の電流i、i、iが互いに120°の位相差となるように、各ブリッジ回路210a、210b、210cにおけるIGBT211の動作タイミングを決定する。その結果、誘起電圧と電流の積で求められる各相の電力P、P、Pは、図5に示すように、誘起電圧および電流の2倍の周波数で脈動し、互いの位相差は60°となる。一方、三相の電力P、P、Pを合計した入力電力PINは、図5に示すように一定となる。したがって、誘起電圧と電流が正弦波であれば、原理的にトルク脈動が発生しないことが分かる。 FIG. 5 is a diagram illustrating an example of waveforms of the induced voltage, current, and power of each phase in the motor 100 in a normal state. As described above, the phase difference of the induced voltage of each phase generated U-phase coil 121a, V-phase coil 121b, the W-phase coil 121c, respectively e u, e v, e w are both 120 °. Normally, as shown in FIG. 5, the controller 203 sets the currents i u , iv and i w of the respective phases flowing through the U-phase coil 121a, the V-phase coil 121b and the W-phase coil 121c to a phase difference of 120 ° from each other. The operation timing of the IGBT 211 in each of the bridge circuits 210a, 210b, 210c is determined so that As a result, the electric powers P u , P v , and P w of each phase obtained by the product of the induced voltage and the current pulsate at a frequency twice the induced voltage and the current, as shown in FIG. Is 60 °. On the other hand, three-phase power P u, P v, the input power P IN to the sum of P w is constant as shown in FIG. Therefore, it can be seen that if the induced voltage and current are sinusoidal, torque pulsation does not occur in principle.
 なお、上記の説明では、誘起電圧波形や電流波形が理想的な正弦波と仮定しているが、実際には、誘起電圧波形や電流波形には多少の高調波が含まれており、理想的な正弦波とはならない。しかしこの場合でも、制御器203は、誘起電圧波形や電流波形を正弦波として扱ってモータ100を制御することで、モータ100を概ね問題無く動作させることが可能である。 In the above description, it is assumed that the induced voltage waveform and the current waveform are ideal sine waves, but actually, the induced voltage waveform and the current waveform contain some harmonics, and It does not become a simple sine wave. However, even in this case, the controller 203 can operate the motor 100 without any problem by treating the induced voltage waveform or the current waveform as a sine wave and controlling the motor 100.
 以上説明したように、U相コイル121a、V相コイル121b、W相コイル121cに流れる電流をそれぞれ独立に制御可能な独立巻線型のモータ100においても、三相の電流が平衡している状態を作ることで、一定のトルクを発生させながらモータ100を回すことが可能である。この原理は、三相以外の独立巻線型の多相モータについても成り立つ。すなわち、モータの相数をnとすると、各相の電流の位相を360/n°ずつずらすことで、各相の電流を平衡させ、一定のトルクでモータを回転させることができる。 As described above, even in the independent winding type motor 100 that can independently control the currents flowing through the U-phase coil 121a, the V-phase coil 121b, and the W-phase coil 121c, the state in which the three-phase currents are balanced. This makes it possible to rotate the motor 100 while generating a constant torque. This principle is also valid for independent winding type multi-phase motors other than three-phase motors. That is, assuming that the number of phases of the motor is n, the current of each phase is balanced by shifting the phase of the current of each phase by 360 / n °, and the motor can be rotated with a constant torque.
 通常時にモータ駆動システム200は、モータ100の全ての相を通電することで、モータ100のトルクを制御してモータ100を回転駆動させることができる。しかし、たとえばブリッジ回路210a、210b、210cのいずれかにおいてIGBT211の動作に異常が生じたり、いずれかの相で交流パワーケーブル130やモータ100内の配線に断線等の異常が生じたりすることで、いずれかの相が欠相して通電不可能となった場合は、通常時と同じ制御方法ではモータ100のトルクを適切に制御することができない。すなわち、インバータ回路210からモータ100のU相コイル121a、V相コイル121b、W相コイル121cにそれぞれ出力される交流電力においていずれかの相が欠相した場合に、通常時と同様に各相の電流i、i、iの位相を120°ずつずらして電流制御を行うと、モータ100において大きなトルク脈動が発生してしまう。そのため、従来のモータ駆動システムでは、モータに出力する交流電力においていずれかの相が欠相した場合には、モータの回転を停止させる必要があった。 At normal times, the motor drive system 200 can control the torque of the motor 100 to drive the motor 100 by rotating all the phases of the motor 100. However, for example, an abnormality occurs in the operation of the IGBT 211 in one of the bridge circuits 210a, 210b, and 210c, or an abnormality such as a disconnection occurs in the AC power cable 130 or the wiring in the motor 100 in any phase. If any of the phases is lost and the power cannot be supplied, the torque of the motor 100 cannot be appropriately controlled by the same control method as in the normal state. That is, when any phase is lost in the AC power output from the inverter circuit 210 to the U-phase coil 121a, the V-phase coil 121b, and the W-phase coil 121c of the motor 100, respectively, If current control is performed by shifting the phases of the currents i u , iv and i w by 120 °, a large torque pulsation occurs in the motor 100. Therefore, in the conventional motor drive system, when any phase is lost in the AC power output to the motor, it is necessary to stop the rotation of the motor.
 一方、本発明に係るモータ駆動システム200では、モータ100に出力する交流電力においていずれかの相が欠相した場合には、制御器203により、欠相した相を除いた他の正常相の各交流電力が互いに相殺されるように、正常相の電気子巻線に流れる電流の位相差を調整する。これにより、モータ100における出力トルクの脈動を低減させ、モータ100の回転を継続できるようにする。 On the other hand, in the motor drive system 200 according to the present invention, when any phase is lost in the AC power output to the motor 100, the controller 203 controls each of the other normal phases excluding the missing phase. The phase difference of the current flowing through the normal-phase armature winding is adjusted so that the AC powers cancel each other. Thereby, the pulsation of the output torque in the motor 100 is reduced, and the rotation of the motor 100 can be continued.
 図6は、W相が欠相したときに電流の位相調整を行った場合のモータ100における各相の誘起電圧、電流および電力の波形例を示す図である。W相が欠相した場合、モータ駆動システム200において制御器203は図6に示すように、V相の電流iの位相を通常時から60°進む方向(図の左側方向)にずらすことで、これとU相の電流iとの位相差が60°となるように調整する。具体的には、制御器203が行う電流制御演算において、出力しようとするV相電流iの位相を調整し、この調整後の位相に合わせて、制御器203からV相のブリッジ回路210bに対してドライブ信号Gvを出力する。これにより、図6に示すように、U相電力Pの山部分とV相電力Pの谷部分、およびU相電力Pの谷部分とV相電力Pの山部分がそれぞれ重なるようにして、これらが互いに相殺されるようにする。その結果、W相の欠相時においても、三相の電力P、P、Pを合計した入力電力PINを図6に示すように一定とすることができる。そのため、トルク脈動を抑えつつ、モータ100の回転を継続させることができる。 FIG. 6 is a diagram illustrating waveform examples of the induced voltage, current, and power of each phase in the motor 100 when the current phase is adjusted when the W phase is lost. If the W-phase is open phase, the controller 203 in the motor drive system 200 as shown in FIG. 6, by shifting the phase of the current i v of the V-phase from the normal to 60 ° advances direction (left direction in the drawing) , And the phase difference between the current and the U-phase current iu is adjusted to 60 °. Specifically, the current control operation by the control unit 203 performs, to adjust the phase of the V-phase current i v, to be output, in accordance with the the adjusted phase, the bridge circuit 210b of the V-phase from the controller 203 In response, it outputs drive signal Gv. Thus, as shown in FIG. 6, as the valley portions of the U-phase power P peak portions u and the V-phase power P v, and U-phase power P u valleys and V-phase peak portions of the power P v of overlap, respectively So that they cancel each other out. As a result, even when the open-phase of the W-phase can be a constant three-phase power P u, P v, the input power P IN to the sum of P w as shown in FIG. Therefore, rotation of motor 100 can be continued while suppressing torque pulsation.
 図7は、W相が欠相したときのモータ100における位相調整前と位相調整後の各相の電流波形の一例を示す図である。図7において、(a)は位相調整前のU相電流iとV相電流iの波形を示しており、図5で説明したように、これらは120°の位相差となっている。(b)、(c)はいずれも位相調整後のU相電流iとV相電流iの波形を示しており、図6で説明したように、これらは60°の位相差となっている。なお、図7(b)では図6で説明したのと同様に、V相電流iの位相を通常時から60°進む方向(図の左側方向)にずらした場合を示している。一方、図7(c)では図6で説明したのとは異なり、U相電流iの位相を通常時から60°遅れる方向(図の右側方向)にずらした場合を示している。 FIG. 7 is a diagram illustrating an example of the current waveform of each phase before and after the phase adjustment in the motor 100 when the W phase is lost. In FIG. 7, (a) shows the waveform of the previous phase adjustment U-phase current i u and the V-phase current i v, as described in FIG. 5, they are as a phase difference of 120 °. (B), (c) both shows a waveform after the phase adjustment U-phase current i u and the V-phase current i v, as described in FIG. 6, these are as a phase difference of 60 ° I have. Note that FIG. 7B shows a case where the phase of the V-phase current iv is shifted by 60 ° from the normal time (leftward in the drawing), as described with reference to FIG. Meanwhile, unlike that described in FIG. 6, FIG. 7 (c), the shows a case where shifting the phase of the U-phase current i u from normal to 60 ° delayed direction (right direction in the drawing).
 図8は、W相が欠相したときのモータ100における位相調整後の起磁力ベクトルを示す図である。図8では、図7(b)に示したA~Eの各電気角に対応するモータ100内の起磁力ベクトルを示している。図8において、起磁力ベクトルFは、U相コイル121aに流れるU相電流iが作る起磁力を表し、起磁力ベクトルFは、V相コイル121bに流れるV相電流iが作る起磁力を表している。これらの起磁力ベクトルは、電流の時間変化に伴って振幅の大きさと正負が変化する交番磁界である。また、合成起磁力ベクトルFuvは、起磁力ベクトルF、Fを合計した起磁力を表しており、これは時間変化と共に一定の大きさのまま回転する回転磁界となる。なお、図8ではW相が欠相しているため、W相電流iによる起磁力ベクトルFは存在しない。 FIG. 8 is a diagram showing the magnetomotive force vector after the phase adjustment in the motor 100 when the W phase is lost. FIG. 8 shows magnetomotive force vectors in the motor 100 corresponding to the electrical angles A to E shown in FIG. 7B. 8, the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a, the magnetomotive force vector F v is raised to the V-phase current i v, flowing through the V-phase coil 121b is made Represents magnetic force. These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current. Also, synthetic magnetomotive force vector F uv is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F v, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the W-phase 8 is open-phase, W-phase current i w magnetomotive force vector F w by is not present.
 図8では、合成起磁力ベクトルFuvが反時計回りに回転しており、ロータ111は、この合成起磁力ベクトルFuvが表す磁界に同期して回転する。すなわち、W相が欠相したときの位相調整後のロータ111の回転方向は、図4で説明した通常時のロータ111の回転方向と一致している。そのため、W相が欠相した場合には、上記のようにU相電流iまたはV相電流iの位相調整を行うことで、トルク脈動を抑えつつ、ロータ111を正転方向に回転できることが分かる。 In FIG. 8, the combined magnetomotive force vector Fuv rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector Fuv . That is, the rotation direction of the rotor 111 after the phase adjustment when the W phase is lost coincides with the normal rotation direction of the rotor 111 described with reference to FIG. Therefore, when the W phase is lost, the phase of the U-phase current iu or the V-phase current iv is adjusted as described above, so that the rotor 111 can be rotated in the normal rotation direction while suppressing torque pulsation. I understand.
 以上説明したように、W相が欠相した場合に制御器203は、図7(b)、(c)いずれかの方法により、U相電流iとV相電流iの位相差が60°となるように調整する。これにより、モータ100の回転状態を維持しつつ、三相の電力P、P、Pを合計した入力電力PINを一定としてトルク脈動を抑えることが可能となる。 As described above, the controller 203 when the W phase has open phase is, FIG. 7 (b), the by any method (c), the phase difference between the U-phase current i u and the V-phase current i v, 60 ° to adjust. Thus, while maintaining the rotation state of the motor 100, it is possible to suppress the torque pulsation three-phase power P u, P v, the input power P IN to the sum of P w is constant.
 図9は、U相が欠相したときのモータ100における位相調整前と位相調整後の各相の電流波形の一例を示す図である。図9において、(a)は位相調整前のV相電流iとW相電流iの波形を示しており、図5で説明したように、これらは120°の位相差となっている。(b)、(c)はいずれも位相調整後のV相電流iとW相電流iの波形を示しており、これらは60°の位相差となっている。なお、図9(b)ではW相電流iの位相を通常時から60°進む方向(図の左側方向)にずらした場合を示している。一方、図9(c)ではV相電流iの位相を通常時から60°遅れる方向(図の右側方向)にずらした場合を示している。 FIG. 9 is a diagram illustrating an example of the current waveform of each phase before and after the phase adjustment in the motor 100 when the U phase is lost. In FIG. 9, (a) shows the waveform of the previous phase adjustment the V-phase current i v, and W-phase current i w, as described in FIG. 5, they are as a phase difference of 120 °. (B), it has a phase difference of (c) are both shows the waveform of the V-phase current i v, and W-phase current i w after phase adjustment, these 60 °. Note that FIG. 9B shows a case where the phase of the W-phase current i w is shifted by 60 ° from the normal time (to the left in the drawing). On the other hand, shows a case where shifted in a direction from the normal delayed 60 ° (right direction in the drawing) to the phase shown in FIG. 9 (c) the V-phase current i v.
 図10は、U相が欠相したときのモータ100における位相調整後の起磁力ベクトルを示す図である。図10では、図9(b)に示したA~Eの各電気角に対応するモータ100内の起磁力ベクトルを示している。図10において、起磁力ベクトルFは、V相コイル121bに流れるV相電流iが作る起磁力を表し、起磁力ベクトルFは、W相コイル121cに流れるW相電流iが作る起磁力を表している。これらの起磁力ベクトルは、電流の時間変化に伴って振幅の大きさと正負が変化する交番磁界である。また、合成起磁力ベクトルFvwは、起磁力ベクトルF、Fを合計した起磁力を表しており、これは時間変化と共に一定の大きさのまま回転する回転磁界となる。なお、図10ではU相が欠相しているため、U相電流iによる起磁力ベクトルFは存在しない。 FIG. 10 is a diagram showing the magnetomotive force vector after the phase adjustment in the motor 100 when the U phase is lost. FIG. 10 shows the magnetomotive force vector in the motor 100 corresponding to each of the electrical angles A to E shown in FIG. 9B. 10, the magnetomotive force vector F v is V-phase current i v that flows in V phase coil 121b represents the magnetomotive force created by the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made Represents magnetic force. These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current. Also, synthetic magnetomotive force vector F vw is the magnetomotive force vector F v, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the U-phase in Figure 10 is open-phase, U-phase current i magnetomotive force vector F u by u does not exist.
 図10では、合成起磁力ベクトルFvwが反時計回りに回転しており、ロータ111は、この合成起磁力ベクトルFvwが表す磁界に同期して回転する。すなわち、U相が欠相したときの位相調整後のロータ111の回転方向についても、前述のW相が欠相した場合と同様に、図4で説明した通常時のロータ111の回転方向と一致している。そのため、U相が欠相した場合には、上記のようにV相電流iまたはW相電流iの位相調整を行うことで、トルク脈動を抑えつつ、ロータ111を正転方向に回転できることが分かる。 In FIG. 10, the combined magnetomotive force vector Fvw rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector Fvw . That is, the rotation direction of the rotor 111 after the phase adjustment when the U phase is lost is the same as the rotation direction of the rotor 111 in the normal state described with reference to FIG. I do. Therefore, when the U-phase is open phase, by adjusting the phase of the V-phase current i v, and W-phase current i w, as described above, while suppressing the torque ripple, can be rotating the rotor 111 in the forward direction I understand.
 以上説明したように、U相が欠相した場合に制御器203は、図9(b)、(c)いずれかの方法により、V相電流iとW相電流iの位相差が60°となるように調整する。これにより、モータ100の回転状態を維持しつつ、三相の電力P、P、Pを合計した入力電力PINを一定とし、トルク脈動を抑えることが可能となる。 As described above, the controller 203 when the U-phase is open phase is, FIG. 9 (b), the by any method (c), the phase difference between the V-phase current i v, and W-phase current i w is 60 ° to adjust. Thus, while maintaining the rotation state of the motor 100, three-phase power P u, P v, the input power P IN to the sum of P w is constant, it is possible to suppress the torque pulsation.
 図11は、V相が欠相したときのモータ100における位相調整前と従来の方法による位相調整後の各相の電流波形の一例を示す図である。図11において、(a)は位相調整前のU相電流iとW相電流iの波形を示しており、これらは120°の位相差となっている。(b)、(c)はいずれも従来の方法での位相調整後のU相電流iとW相電流iの波形を示しており、これらは60°の位相差となっている。なお、図11(b)ではW相電流iの位相を通常時から進み方向(図の左側方向)にずらしてW相電流iをU相電流iに近づけ、U相電流iに対してW相電流iの位相が60°遅れるようにした場合を示している。一方、図11(c)ではU相電流iの位相を通常時から遅れ方向(図の右側方向)にずらしてU相電流iをW相電流iに近づけ、U相電流iに対してW相電流iの位相が60°遅れるようにした場合を示している。 FIG. 11 is a diagram illustrating an example of the current waveform of each phase in the motor 100 before the phase adjustment and after the phase adjustment by the conventional method when the V phase is lost. In FIG. 11, (a) shows the waveforms of the U-phase current i u and the W-phase current i w before the phase adjustment, and these have a phase difference of 120 °. (B) and (c) show the waveforms of the U-phase current i u and the W-phase current i w after the phase adjustment by the conventional method, and these have a phase difference of 60 °. Incidentally, the W-phase current i w close to the U-phase current i u and shifted in the advance direction the phase shown in FIG. 11 (b) in the W-phase current i w from normal (left direction in the drawing), the U-phase current i u On the other hand, the case where the phase of the W-phase current i w is delayed by 60 ° is shown. On the other hand, close the U-phase current i u and W-phase current i w are shifted in the direction behind the phase shown in FIG. 11 (c) the U-phase current i u from normal (right direction in the drawing), the U-phase current i u On the other hand, the case where the phase of the W-phase current i w is delayed by 60 ° is shown.
 図12は、V相が欠相したときのモータ100における従来の方法による位相調整後の起磁力ベクトルを示す図である。図12では、図11(b)に示したA~Eの各電気角に対応するモータ100内の起磁力ベクトルを示している。図12において、起磁力ベクトルFは、U相コイル121aに流れるU相電流iが作る起磁力を表し、起磁力ベクトルFは、W相コイル121cに流れるW相電流iが作る起磁力を表している。これらの起磁力ベクトルは、電流の時間変化に伴って振幅の大きさと正負が変化する交番磁界である。また、合成起磁力ベクトルFuwは、起磁力ベクトルF、Fを合計した起磁力を表しており、これは時間変化と共に一定の大きさのまま回転する回転磁界となる。なお、図12ではV相が欠相しているため、V相電流iによる起磁力ベクトルFは存在しない。 FIG. 12 is a diagram showing the magnetomotive force vector of the motor 100 after the phase adjustment by the conventional method when the V phase is lost. FIG. 12 shows magnetomotive force vectors in the motor 100 corresponding to the respective electric angles A to E shown in FIG. 11B. 12, the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a, the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made Represents magnetic force. These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current. Also, synthetic magnetomotive force vector F uw is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the V-phase in Figure 12 is open-phase, V-phase current i v magnetomotive force vector F v by are not present.
 図12では、合成起磁力ベクトルFuwが時計回りに回転しており、ロータ111は、この合成起磁力ベクトルFuwが表す磁界に同期して回転する。すなわち、従来の方法では、V相が欠相したときの位相調整後のロータ111の回転方向は、前述のU相やW相が欠相した場合とは異なり、図4で説明した通常時のロータ111の回転方向とは反対になっている。そのため、V相が欠相した場合には、上記のようにして従来の方法でU相電流iまたはW相電流iの位相調整を行うと、ロータ111が正転方向に対して逆回転してしまうことになる。 In FIG. 12, the resultant magnetomotive force vector F uw rotates clockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the resultant magnetomotive force vector F uw . That is, in the conventional method, the rotation direction of the rotor 111 after the phase adjustment when the V phase is lost is different from the rotation direction when the U phase and the W phase are lost, as described with reference to FIG. The direction of rotation of the rotor 111 is opposite. Therefore, when the V phase is lost, if the phase adjustment of the U-phase current i u or the W-phase current i w is performed by the conventional method as described above, the rotor 111 rotates in the reverse direction with respect to the normal rotation direction. Will be done.
 そこで本発明では、V相が欠相したときには従来とは異なる方法で位相調整を行うことにより、ロータ111の逆回転を防止する。その具体的な方法を以下に説明する。 Therefore, in the present invention, when the V phase is lost, the phase of the rotor 111 is adjusted by a method different from the conventional method, thereby preventing the reverse rotation of the rotor 111. The specific method will be described below.
 図13は、V相が欠相したときのモータ100における位相調整前と本発明の方法による位相調整後の各相の電流波形の一例を示す図である。図13において、(a)は位相調整前のU相電流iとW相電流iの波形を示しており、図11と同様に、これらは120°の位相差となっている。(b)、(c)はいずれも本発明の方法での位相調整後のU相電流iとW相電流iの波形を示しており、これらは60°の位相差となっている。なお、図13(b)では図11(b)の場合とは反対に、W相電流iの位相を通常時から遅れ方向(図の右側方向)にずらしてW相電流iをU相電流iに近づけ、W相電流iに対してU相電流iの位相が60°遅れるようにした場合を示している。一方、図13(c)では図11(c)の場合とは反対に、U相電流iの位相を通常時から進み方向(図の左側方向)にずらしてU相電流iをW相電流iに近づけ、W相電流iに対してU相電流iの位相が60°遅れるようにした場合を示している。すなわち、図13(b)、(c)では、図11(b)、(c)の場合とそれぞれ比較して、U相電流iとW相電流iの相順が入れ替わっている。 FIG. 13 is a diagram showing an example of the current waveform of each phase before the phase adjustment and after the phase adjustment by the method of the present invention in the motor 100 when the V phase is lost. In FIG. 13, (a) shows the waveforms of the U-phase current i u and the W-phase current i w before the phase adjustment, and these have a phase difference of 120 ° as in FIG. (B) and (c) show the waveforms of the U-phase current i u and the W-phase current i w after the phase adjustment by the method of the present invention, and these have a phase difference of 60 °. In FIG. 13B, contrary to the case of FIG. 11B, the phase of the W-phase current i w is shifted in the delay direction (rightward direction in the figure) from the normal time, and the W-phase current i w is shifted to the U-phase. close to the current i u, the phase of the U-phase current i u indicates a case where as delayed 60 ° with respect to W-phase current i w. On the other hand, contrary to the case of FIG. 13 (c) in FIG. 11 (c), W phase the U-phase current i u and shifted in the advance direction the phase of the U-phase current i u from normal (left direction in the drawing) The case where the current is approached to the current i w and the phase of the U-phase current i u is delayed by 60 ° with respect to the W-phase current i w is shown. That is, in FIGS. 13B and 13C, the phase order of the U-phase current i u and the W-phase current i w is switched as compared with the cases of FIGS. 11B and 11C, respectively.
 図14は、V相が欠相したときのモータ100における本発明の方法による位相調整後の起磁力ベクトルを示す図である。図14では、図13(b)に示したA~Eの各電気角に対応するモータ100内の起磁力ベクトルを示している。図14において、起磁力ベクトルFは、U相コイル121aに流れるU相電流iが作る起磁力を表し、起磁力ベクトルFは、W相コイル121cに流れるW相電流iが作る起磁力を表している。これらの起磁力ベクトルは、電流の時間変化に伴って振幅の大きさと正負が変化する交番磁界である。また、合成起磁力ベクトルFuwは、起磁力ベクトルF、Fを合計した起磁力を表しており、これは時間変化と共に一定の大きさのまま回転する回転磁界となる。なお、図14ではV相が欠相しているため、V相電流iによる起磁力ベクトルFは存在しない。 FIG. 14 is a diagram showing the magnetomotive force vector of the motor 100 after phase adjustment by the method of the present invention when the V phase is lost. FIG. 14 shows magnetomotive force vectors in the motor 100 corresponding to the electrical angles A to E shown in FIG. 13B. 14, the magnetomotive force vector F u represents the magnetomotive force created by the U-phase current i u flowing through the U-phase coil 121a, the magnetomotive force vector F w is caused to W-phase current i w flowing through the W-phase coil 121c is made Represents magnetic force. These magnetomotive force vectors are alternating magnetic fields whose magnitude and positive / negative change with time of the current. Also, synthetic magnetomotive force vector F uw is the magnetomotive force vector F u, represents the magnetomotive force which is the sum of F w, which is a rotating magnetic field rotating remain constant magnitude with time change. Since the V-phase in Figure 14 is open-phase, V-phase current i v magnetomotive force vector F v by are not present.
 図14では、合成起磁力ベクトルFuwが反時計回りに回転しており、ロータ111は、この合成起磁力ベクトルFuwが表す磁界に同期して回転する。すなわち、本発明の方法によれば、V相が欠相したときの位相調整後のロータ111の回転方向についても、U相やW相が欠相した場合と同様に、通常時のロータ111の回転方向と一致させることができる。そのため、V相が欠相した場合には、上記のようにして本発明の方法でU相電流iまたはW相電流iの位相調整を行うことで、トルク脈動を抑えつつ、ロータ111を正転方向に回転できることが分かる。 In FIG. 14, the combined magnetomotive force vector F uw rotates counterclockwise, and the rotor 111 rotates in synchronization with the magnetic field represented by the combined magnetomotive force vector F uw . That is, according to the method of the present invention, the rotation direction of the rotor 111 after the phase adjustment when the V phase is lost is the same as that in the case where the U phase and the W phase are lost. The rotation direction can be matched. Therefore, when the V-phase is lost, the phase of the U-phase current i u or the W-phase current i w is adjusted by the method of the present invention as described above, so that the torque pulsation is suppressed and the rotor 111 is moved. It turns out that it can rotate in the forward direction.
 以上説明したように、V相が欠相した場合に制御器203は、図13(b)、(c)いずれかの方法により、U相電流iとW相電流iの位相差が60°となるように調整する。これにより、モータ100の回転状態を維持しつつ、三相の電力P、P、Pを合計した入力電力PINを一定としてトルク脈動を抑えることが可能となる。 As described above, when the V phase is lost, the controller 203 sets the phase difference between the U-phase current i u and the W-phase current i w to 60 by one of the methods shown in FIGS. ° to adjust. Thus, while maintaining the rotation state of the motor 100, it is possible to suppress the torque pulsation three-phase power P u, P v, the input power P IN to the sum of P w is constant.
 次に、本発明の方法による位相調整方法について、さらに図15を参照して説明する。図15は、本発明の方法による位相調整方法を説明する図である。 Next, the phase adjustment method according to the method of the present invention will be described with reference to FIG. FIG. 15 is a diagram illustrating a phase adjustment method according to the method of the present invention.
 図15(a)は、モータ100において三相が欠相しておらずに健全である場合の各相の電流i、i、iの位相関係を示している。三相が健全である場合、図15(a)に示すように、各相の電流i、i、iは互いの位相差が120°となっている。 FIG. 15A shows the phase relationship among the currents i u , iv and i w of each phase when the three phases in the motor 100 are sound without any phase loss. When the three phases are sound, as shown in FIG. 15A, the currents i u , iv and i w of each phase have a phase difference of 120 °.
 図15(b)は、モータ100において三相のうちU相が欠相した場合の位相調整後のV相電流iとW相電流iの位相関係を表している。この場合に制御器203は、例えば前述の図9(b)で説明したように、W相電流iの位相を通常時から60°進む方向にシフトさせる。すなわち、U相が欠相した場合に制御器203は、図15(b)に示すように、三相のうち欠相しているU相を除いた正常相の一方であるV相を基準相として、残りのW相に流れるW相電流iの位相を、進み方向(時計回り方向)に60°のシフト量でシフトさせる。このときW相電流iの位相は、欠相したU相を跨がずに調整される。これにより、U相が欠相した場合でもトルク脈動を抑えつつ、モータ100の回転を正転方向に維持することができる。 FIG. 15 (b) represents the phase relationship between the V-phase current i v, and W-phase current i w of the phase-adjustment in the case of open-phase is the U phase of the three-phase in the motor 100. In this case, the controller 203 shifts the phase of the W-phase current i w by 60 ° from the normal time as described with reference to FIG. 9B, for example. That is, when the U phase is lost, the controller 203 sets the V phase which is one of the normal phases excluding the missing U phase among the three phases as the reference phase, as shown in FIG. The phase of the W-phase current i w flowing through the remaining W-phases is shifted in the leading direction (clockwise direction) by a shift amount of 60 °. At this time, the phase of the W-phase current i w is adjusted without straddling the U-phase which is out of phase. Thus, even when the U phase is lost, the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing the torque pulsation.
 なお、図15(b)では、図9(b)で説明した位相調整方法、すなわちV相を基準相としてW相電流iの位相を進み方向(時計回り方向)に60°だけシフトさせる場合を示したが、図9(c)で説明した位相調整方法を用いてもよい。具体的には、U相が欠相した場合に制御器203は、三相のうち欠相しているU相を除いた正常相の他方であるW相を基準相として、残りのV相に流れるV相電流iの位相を、遅れ方向(反時計回り方向)に60°のシフト量でシフトさせてもよい。このときV相電流iの位相は、欠相したU相を跨がずに調整される。 In FIG. 15B, the phase adjustment method described with reference to FIG. 9B, that is, the case where the phase of the W-phase current i w is shifted by 60 ° in the leading direction (clockwise) with the V phase as the reference phase. However, the phase adjustment method described with reference to FIG. 9C may be used. Specifically, when the U phase is lost, the controller 203 sets the W phase, which is the other of the normal phases excluding the missing U phase among the three phases, as the reference phase, and sets the remaining V phases to the remaining V phases. the phase of the V-phase current i v, flowing, may be shifted by a shift amount of 60 ° to the delay direction (counterclockwise direction). Phase of this time the V-phase current i v, is adjusted without cross the open phase and U-phase.
 図15(c)は、モータ100において三相のうちW相が欠相した場合の位相調整後のU相電流iとV相電流iの位相関係を表している。この場合に制御器203は、例えば前述の図7(b)で説明したように、V相電流iの位相を通常時から60°進む方向にシフトさせる。すなわち、W相が欠相した場合に制御器203は、図15(c)に示すように、三相のうち欠相しているW相を除いた正常相の一方であるU相を基準相として、残りのV相に流れるV相電流iの位相を、進み方向(時計回り方向)に60°のシフト量でシフトさせる。このときV相電流iの位相は、欠相したW相を跨がずに調整される。これにより、W相が欠相した場合でもトルク脈動を抑えつつ、モータ100の回転を正転方向に維持することができる。 FIG. 15 (c) represents the phase relationship between the U-phase current i u and the V-phase current i v, after the phase adjustment in the case of open-phase is the W phase of the three-phase in the motor 100. In this case the controller 203, for example as described in the previous FIG. 7 (b), the shifting in the direction of the phase advances 60 ° from normal the V-phase current i v. That is, when the W phase is lost, the controller 203 sets the U phase which is one of the normal phases excluding the missing W phase among the three phases as the reference phase, as shown in FIG. as the phase of the V-phase current i v, flowing to the rest of the V-phase, thereby advances the shift amount of shift of 60 ° in the direction (clockwise direction). Phase of this time the V-phase current i v, is adjusted without cross the open phase was W-phase. Accordingly, even when the W phase is lost, the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing the torque pulsation.
 なお、図15(c)では、図7(b)で説明した位相調整方法、すなわちU相を基準相としてV相電流iの位相を進み方向(時計回り方向)に60°だけシフトさせる場合を示したが、図7(c)で説明した位相調整方法を用いてもよい。具体的には、W相が欠相した場合に制御器203は、三相のうち欠相しているW相を除いた正常相の他方であるV相を基準相として、残りのU相に流れるU相電流iの位相を、遅れ方向(反時計回り方向)に60°のシフト量でシフトさせてもよい。このときU相電流iの位相は、欠相したW相を跨がずに調整される。 In FIG. 15C, the phase adjustment method described with reference to FIG. 7B, that is, the case where the phase of the V-phase current iv is shifted by 60 ° in the advancing direction (clockwise) with the U-phase as the reference phase. However, the phase adjustment method described with reference to FIG. 7C may be used. Specifically, when the W phase is lost, the controller 203 sets the V phase, which is the other of the normal phases excluding the missing W phase among the three phases, as the reference phase, and sets the remaining U phases to the remaining U phases. The phase of the flowing U-phase current iu may be shifted in the delay direction (counterclockwise) by a shift amount of 60 °. Phase of this time the U-phase current i u is adjusted without cross the open phase was W-phase.
 図15(d)は、モータ100において三相のうちV相が欠相した場合の位相調整後のU相電流iとW相電流iの位相関係を表している。この場合に制御器203は、例えば前述の図13(b)で説明したように、W相電流iの位相を通常時から60°遅れる方向にシフトさせる。すなわち、V相が欠相した場合に制御器203は、図15(d)に示すように、三相のうち欠相しているV相を除いた正常相の一方であるU相を基準相として、残りのW相に流れるW相電流iの位相を、図15(b)に示したU相欠相時とは逆方向の遅れ方向(反時計回り方向)に60°のシフト量でシフトさせる。このときW相電流iの位相は、欠相したV相を跨がずに調整される。これにより、V相が欠相した場合でもトルク脈動を抑えつつ、モータ100の回転を正転方向に維持することができる。 FIG. 15D shows the phase relationship between the U-phase current i u and the W-phase current i w after the phase adjustment when the V phase is lost in the three phases in the motor 100. In this case, the controller 203 shifts the phase of the W-phase current i w in a direction delayed by 60 ° from the normal time, for example, as described with reference to FIG. That is, when the V phase is lost, the controller 203 sets the U phase which is one of the normal phases excluding the missing V phase among the three phases as the reference phase, as shown in FIG. The phase of the W-phase current i w flowing through the remaining W-phase is shifted by 60 ° in a delay direction (counterclockwise direction) opposite to the U-phase open phase shown in FIG. Shift. Phase of this time the W-phase current i w is adjusted without cross the V-phase that is open-phase. Thus, even if the V phase is lost, the rotation of the motor 100 can be maintained in the normal rotation direction while suppressing torque pulsation.
 ここで、V相欠相時にW相電流iの位相を、図15(b)に示したU相欠相時と同じ方向である進み方向(時計回り方向)にシフトさせた場合を考える。この場合には図15(e)に示すように、W相電流iの位相は、欠相したV相を跨いで180°のシフト量で調整される。その結果、図12で説明したように、ロータ111において時計回りに回転する合成起磁力ベクトルFuwが生じるため、モータ100の回転方向が通常時に対して逆転してしまうことになる。 Here, a case is considered in which the phase of the W-phase current i w is shifted in the leading direction (clockwise direction), which is the same direction as in the U-phase open phase shown in FIG. In this case, as shown in FIG. 15 (e), the phase of the W-phase current i w is adjusted with a shift amount of 180 ° over the missing V phase. As a result, as described with reference to FIG. 12, the resultant magnetomotive force vector F uw that rotates clockwise in the rotor 111 is generated, so that the rotation direction of the motor 100 is reversed with respect to the normal state.
 なお、図15(d)では、図13(b)で説明した位相調整方法、すなわちU相を基準相としてW相電流iの位相を遅れ方向(反時計回り方向)に60°だけシフトさせる場合を示したが、図13(c)で説明した位相調整方法を用いてもよい。具体的には、V相が欠相した場合に制御器203は、三相のうち欠相しているV相を除いた正常相の他方であるW相を基準相として、残りのU相に流れるU相電流iの位相を、W相欠相時とは逆方向の進み方向(時計回り方向)に60°のシフト量でシフトさせてもよい。このときU相電流iの位相は、欠相したV相を跨がずに調整される。 In FIG. 15D, the phase adjustment method described with reference to FIG. 13B, that is, the phase of the W-phase current i w is shifted by 60 ° in the delay direction (counterclockwise) with the U phase as the reference phase. Although the case is shown, the phase adjustment method described with reference to FIG. Specifically, when the V phase is lost, the controller 203 sets the W phase, which is the other of the normal phases excluding the missing V phase among the three phases, as a reference phase, and sets the remaining U phases to the remaining U phases. the phase of the flow the U-phase current i u, the time W Aiketsu phase may be shifted by a shift amount of 60 ° in the direction opposite to the leading direction (clockwise direction). Phase of this time the U-phase current i u is adjusted without cross the V-phase that is open-phase.
 図16は、欠相時の位相調整後におけるモータ100のベクトル制御を説明する図である。モータ100においてU相、V相、W相のいずれかが欠相した場合、制御器203は、欠相した相を除いた正常相に流れる各相の電流i、i、iのいずれかに対して上記の位相調整を行った上で、正常相の合成起磁力ベクトルFuv、Fvw、Fuwとロータ111の磁極位置との間の位相差が常にある一定の値となるように、正常相に流れる電流の振幅および位相を制御する。これにより、ロータ111の回転位置を例えば図16(a)から図16(b)のように変化させ、これと同様の制御を継続することで、モータ100を駆動させることができる。なお、このときの合成起磁力ベクトルと磁極位置との位相差は、例えばモータ100の運転状態(トルク、回転数)に応じて変更することができる。また、磁極位置は磁極位置検出器113によって検出することができる。 FIG. 16 is a diagram illustrating the vector control of the motor 100 after the phase adjustment at the time of the phase loss. When any one of the U phase, the V phase, and the W phase is lost in the motor 100, the controller 203 determines which one of the currents i u , iv , and i w of each phase flows through the normal phase excluding the missing phase. After performing the above-described phase adjustment, the phase difference between the combined magnetomotive force vectors F uv , F vw , and F uw of the normal phase and the magnetic pole position of the rotor 111 always becomes a certain value. Then, the amplitude and phase of the current flowing in the normal phase are controlled. Thereby, the motor 100 can be driven by changing the rotational position of the rotor 111 from, for example, FIG. 16A to FIG. 16B and continuing the same control. Note that the phase difference between the resultant magnetomotive force vector and the magnetic pole position at this time can be changed according to, for example, the operating state (torque, rotation speed) of the motor 100. The magnetic pole position can be detected by the magnetic pole position detector 113.
 なお、以上説明したような欠相時の電流位相調整によるトルク脈動の低減は、三相以外の独立巻線型の多相モータについても適用可能である。すなわち、制御対象とするモータの相数をnとし、欠相した相数をmとすると、本発明に係るモータ制御装置は、いずれかの相が欠相した場合に、正常相の各交流電力の位相差Dp(°)が以下の式(8)を満たすように、正常相の各電流を調整する。このとき、正常相のいずれかを基準相として、基準相以外の正常相に流れる各電流の位相を、欠相した相を跨がないようによう調整する。これにより、正常相の合成起磁力ベクトルの回転方向を通常時と同一方向に維持しつつ、正常相の各交流電力が互いに相殺されるようにすることができる。その結果、モータの出力トルクの脈動を抑えて、モータの回転を継続させることができる。
 Dp=360/2(n-m) ・・・(8)
 ただし、n、mは正の整数であり、n≧m+2
The reduction of torque pulsation by the current phase adjustment at the time of phase loss as described above can be applied to a multi-phase motor of an independent winding type other than three phases. That is, assuming that the number of phases of the motor to be controlled is n and the number of missing phases is m, the motor control device according to the present invention provides each normal Are adjusted so that the phase difference Dp (°) of the above satisfies the following equation (8). At this time, with any one of the normal phases as a reference phase, the phases of the currents flowing through the normal phases other than the reference phase are adjusted so as not to cross over the missing phase. Thus, it is possible to maintain the normal phase of the combined magnetomotive force vector in the same direction as in the normal state, and cancel out the normal phase AC powers. As a result, the pulsation of the output torque of the motor can be suppressed, and the rotation of the motor can be continued.
Dp = 360/2 (nm) (8)
Here, n and m are positive integers, and n ≧ m + 2
 上記の式(8)を満たすためには、正常相の電気子巻線に流れる各電流の位相差Di(°)が以下の式(9)を満たすように調整すればよい。これにより、いずれかの相において欠相が生じたときに、正常相の各交流電力を互いに相殺し、モータの出力トルクの脈動を抑えることができる。
 Di=360/(n-m)-360/n ・・・(9)
In order to satisfy the above expression (8), the phase difference Di (°) of each current flowing through the normal-phase armature winding may be adjusted so as to satisfy the following expression (9). Thus, when an open phase occurs in any of the phases, the AC powers in the normal phase are offset with each other, and pulsation of the output torque of the motor can be suppressed.
Di = 360 / (nm) -360 / n (9)
 なお、上記の式(8)、(9)においてn=3、m=1とすると、Dp=90°、Di=60°となり、図6に示したU相電力PとV相電力Pの関係、およびU相電流iとV相電流iの関係にそれぞれ一致することが分かる。 The above equation (8), (9) in the n = 3, When m = 1, Dp = 90 ° , Di = 60 ° becomes, as shown in FIG. 6 U-phase power P u and the V-phase power P v relationship, and each can be seen to coincide with the relationship of the U-phase current i u and the V-phase current i v.
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。 According to the embodiment of the present invention described above, the following operation and effect can be obtained.
(1)モータ制御装置である制御器203は、モータ100の駆動を制御する。モータ100は、複数の相のそれぞれに対応する複数の電気子巻線121a、121b、121cを有し、各電気子巻線が互いに独立して接続されている。制御器203は、複数の相のうちいずれかの相が欠相した場合に、欠相した相を除いた正常相のいずれかを基準相として、基準相以外の正常相に流れる電流の位相を、欠相した相を跨がないように調整する。このようにしたので、多相モータにおいていずれの相が欠相した場合であっても、電流の位相を適切に調整できる。 (1) The controller 203, which is a motor control device, controls driving of the motor 100. The motor 100 has a plurality of armature windings 121a, 121b, 121c corresponding to each of a plurality of phases, and the armature windings are connected independently of each other. When any one of the plurality of phases is lost, the controller 203 sets the phase of the current flowing through the normal phase other than the reference phase as one of the normal phases excluding the missing phase as a reference phase. , So that there is no straddling over the missing phase. With this configuration, the phase of the current can be appropriately adjusted even if any phase is lost in the multiphase motor.
(2)モータ100の複数の相は、U相、V相およびW相にそれぞれ対応する。制御器203は、U相が欠相した場合、図9や図15(b)で説明したように、欠相していないV相またはW相の一方を基準相として、残りのW相またはV相に流れる電流i、iの位相を、所定のシフト方向(進み方向または遅れ方向)に所定のシフト量(60°)でシフトさせる。また、W相が欠相した場合、図7や図15(c)で説明したように、欠相していないU相またはV相の一方を基準相として、残りのV相またはU相に流れる電流i、iの位相を、上記シフト方向(進み方向または遅れ方向)に上記シフト量(60°)でシフトさせる。一方、V相が欠相した場合、図13や図15(d)で説明したように、欠相していないU相またはW相の一方を基準相として、残りのW相またはU相に流れる電流i、iの位相を、上記シフト方向とは逆方向(遅れ方向または進み方向)に上記シフト量(60°)でシフトさせる。このようにしたので、代表的な多相モータである三相モータにおいて、U相、V相、W相のいずれが欠相した場合であっても、電流の位相を適切に調整できる。 (2) The plurality of phases of the motor 100 correspond to the U phase, the V phase, and the W phase, respectively. When the U-phase is out of phase, the controller 203 sets one of the non-out-of-phase V-phase or W-phase as a reference phase and the remaining W-phase or V-phase as described with reference to FIGS. current flowing through the phase i w, the phase of the i v, shifting by a predetermined shift amount (60 °) in a predetermined shifting direction (leading direction or the delay direction). When the W phase is lost, as described with reference to FIG. 7 and FIG. 15C, one of the U phase and the V phase that is not lost is used as a reference phase and flows into the remaining V phase or U phase. The phases of the currents iv and iu are shifted by the shift amount (60 °) in the shift direction (leading direction or lagging direction). On the other hand, when the V phase is lost, as described with reference to FIG. 13 and FIG. 15D, one of the U phase and the W phase that is not missing is used as a reference phase and flows into the remaining W phase or U phase. The phases of the currents i w and i u are shifted by the shift amount (60 °) in the direction opposite to the shift direction (the delay direction or the advance direction). Thus, in a three-phase motor, which is a typical multi-phase motor, the phase of the current can be appropriately adjusted even if any of the U, V, and W phases is lost.
(3)欠相時に制御器203が電流i、i、iの位相調整を行うときのシフト量は、位相角で60°である。このようにしたので、欠相した相を跨がずに、正常相の各交流電力を互いに相殺して出力トルクの脈動を抑えることができる。 (3) The shift amount when the controller 203 adjusts the phases of the currents i u , iv and i w at the time of phase loss is 60 ° in phase angle. With this configuration, it is possible to suppress the pulsation of the output torque by canceling the AC powers of the normal phase with each other without straddling the missing phase.
(4)モータ100には、モータ100が有するロータ111の磁極位置を検出する磁極位置検出器113が取り付けられている。制御器203は、この磁極位置検出器113で検出された磁極位置に基づいて、正常相に流れる電流の振幅および位相を制御することにより、モータ100を駆動させる。このようにしたので、欠相時であってもモータ100の駆動を適切に継続させることができる。 (4) The magnetic pole position detector 113 for detecting the magnetic pole position of the rotor 111 of the motor 100 is attached to the motor 100. The controller 203 drives the motor 100 by controlling the amplitude and phase of the current flowing in the normal phase based on the magnetic pole position detected by the magnetic pole position detector 113. With this configuration, the driving of the motor 100 can be appropriately continued even during the phase loss.
 以上説明した実施の形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the present invention are not impaired. Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments that can be considered within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 100:モータ
 111:ロータ
 113:磁極位置検出器
 120:ステータ
 121a:電気子巻線(U相コイル)
 121b:電気子巻線(V相コイル)
 121c:電気子巻線(W相コイル)
 130:交流パワーケーブル
 140:電流センサ
 200:モータ駆動システム
 201:直流電源
 201a、201b:直流母線
 202:平滑コンデンサ
 203:制御器
 210:インバータ回路
 210a、210b、210c:ブリッジ回路
 211:IGBT
 212:ダイオード
100: motor 111: rotor 113: magnetic pole position detector 120: stator 121a: armature winding (U-phase coil)
121b: armature winding (V-phase coil)
121c: armature winding (W-phase coil)
130: AC power cable 140: Current sensor 200: Motor drive system 201: DC power supply 201a, 201b: DC bus 202: Smoothing capacitor 203: Controller 210: Inverter circuit 210a, 210b, 210c: Bridge circuit 211: IGBT
212: diode

Claims (4)

  1.  複数の相のそれぞれに対応する複数の巻線を有し、各巻線が互いに独立して接続されたモータの駆動を制御するモータ制御装置であって、
     前記複数の相のうちいずれかの相が欠相した場合に、前記欠相した相を除いた正常相のいずれかを基準相として、前記基準相以外の前記正常相に流れる電流の位相を、前記欠相した相を跨がないように調整するモータ制御装置。
    A motor control device that has a plurality of windings corresponding to each of a plurality of phases and controls the driving of a motor in which each winding is connected independently of each other,
    When any one of the plurality of phases is lost, the phase of the current flowing in the normal phase other than the reference phase, using any of the normal phases excluding the missing phase as a reference phase, A motor control device for adjusting so as not to straddle the missing phase.
  2.  請求項1に記載のモータ制御装置において、
     前記複数の相は、U相、V相およびW相にそれぞれ対応し、
     前記U相が欠相した場合、欠相していない前記V相または前記W相の一方を前記基準相として、残りの前記W相または前記V相に流れる電流の位相を、所定のシフト方向に所定のシフト量でシフトさせ、
     前記W相が欠相した場合、欠相していない前記U相または前記V相の一方を前記基準相として、残りの前記V相または前記U相に流れる電流の位相を、前記シフト方向に前記シフト量でシフトさせ、
     前記V相が欠相した場合、欠相していない前記U相または前記W相の一方を前記基準相として、残りの前記W相または前記U相に流れる電流の位相を、前記シフト方向とは逆方向に前記シフト量でシフトさせるモータ制御装置。
    The motor control device according to claim 1,
    The plurality of phases respectively correspond to a U phase, a V phase, and a W phase,
    When the U-phase is out of phase, the phase of the current flowing through the remaining W-phase or the V-phase is set in a predetermined shift direction, with one of the V-phase or the W-phase that is not out of phase as the reference phase. Shift by a predetermined shift amount,
    When the W phase is out of phase, one of the U phase or the V phase that is not out of phase is used as the reference phase, and the phase of the current flowing through the remaining V phase or the U phase is shifted in the shift direction. Shift by the shift amount,
    When the V-phase is out of phase, one of the U-phase or the W-phase that is not out of phase is used as the reference phase, and the phase of the current flowing in the remaining W-phase or U-phase is defined as the shift direction. A motor control device for shifting in the reverse direction by the shift amount.
  3.  請求項2に記載のモータ制御装置において、
     前記シフト量は、位相角で60°であるモータ制御装置。
    The motor control device according to claim 2,
    The motor control device, wherein the shift amount is 60 ° in phase angle.
  4.  請求項1から請求項3のいずれか一項に記載のモータ制御装置において、
     前記モータには、前記モータが有するロータの磁極位置を検出する磁極位置検出器が取り付けられており、
     前記磁極位置検出器で検出された前記磁極位置に基づいて、前記正常相に流れる電流の振幅および位相を制御することにより、前記モータを駆動させるモータ制御装置。
    The motor control device according to any one of claims 1 to 3,
    A magnetic pole position detector that detects a magnetic pole position of a rotor of the motor is attached to the motor,
    A motor control device that drives the motor by controlling an amplitude and a phase of a current flowing in the normal phase based on the magnetic pole position detected by the magnetic pole position detector.
PCT/JP2019/019851 2018-06-27 2019-05-20 Motor control device WO2020003807A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980028555.8A CN112292810B (en) 2018-06-27 2019-05-20 Motor control device
DE112019002548.1T DE112019002548T5 (en) 2018-06-27 2019-05-20 ENGINE CONTROL DEVICE
JP2020527281A JP7069313B2 (en) 2018-06-27 2019-05-20 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121809 2018-06-27
JP2018-121809 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020003807A1 true WO2020003807A1 (en) 2020-01-02

Family

ID=68984817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019851 WO2020003807A1 (en) 2018-06-27 2019-05-20 Motor control device

Country Status (4)

Country Link
JP (1) JP7069313B2 (en)
CN (1) CN112292810B (en)
DE (1) DE112019002548T5 (en)
WO (1) WO2020003807A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042511A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Apparatus and method for driving motor
JP2015109777A (en) * 2013-12-05 2015-06-11 シンフォニアテクノロジー株式会社 Motor control device
JP6194113B2 (en) * 2014-06-26 2017-09-06 日立オートモティブシステムズ株式会社 Motor drive device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321899A (en) * 1988-06-21 1989-12-27 Fuji Electric Co Ltd Driving system for wound rotor induction motor
CN100525009C (en) * 2007-09-21 2009-08-05 东南大学 Double-channel fault tolerant type flux switch permanent magnet motor and control method thereof
CN101335499B (en) * 2008-07-24 2011-03-30 江苏大学 Controlling method of 4 phase permanent magnet fault tolerant motor
JP6111656B2 (en) * 2012-12-26 2017-04-12 ダイキン工業株式会社 Phase loss detector for three-phase output wiring
JP2016092992A (en) * 2014-11-06 2016-05-23 ダイキン工業株式会社 Motor control apparatus
JP6726840B2 (en) * 2016-09-05 2020-07-22 パナソニックIpマネジメント株式会社 Inverter control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042511A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Apparatus and method for driving motor
JP2015109777A (en) * 2013-12-05 2015-06-11 シンフォニアテクノロジー株式会社 Motor control device
JP6194113B2 (en) * 2014-06-26 2017-09-06 日立オートモティブシステムズ株式会社 Motor drive device

Also Published As

Publication number Publication date
JP7069313B2 (en) 2022-05-17
CN112292810B (en) 2024-04-05
JPWO2020003807A1 (en) 2021-06-10
DE112019002548T5 (en) 2021-02-04
CN112292810A (en) 2021-01-29

Similar Documents

Publication Publication Date Title
JP6194113B2 (en) Motor drive device
JP6159659B2 (en) Power converter control device and electric vehicle
CN113892230A (en) Rotating electric machine control system
US10263557B2 (en) Drive system
WO2016190093A1 (en) Inverter control device
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
JP6173516B1 (en) Electric motor control apparatus and electric motor control method
JP6113651B2 (en) Multi-phase motor drive
JP6674765B2 (en) Electric motor control device and electric vehicle using the same
JP5135794B2 (en) Motor control method
WO2020003807A1 (en) Motor control device
JP3961791B2 (en) Electric motor control apparatus and method
WO2020196719A1 (en) Rotating electric machine control system
JP2006050705A (en) Motor control unit
JP7053335B2 (en) Motor control device, electric vehicle
JP6839896B2 (en) Motor control device and electric vehicle
JP2011130525A (en) Electric motor drive system
JP2017175824A (en) Device and method for inverter control
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same
JP4526628B2 (en) AC motor control device
US20230155533A1 (en) Motor control device, electric vehicle, and motor control method
Wu et al. Comparative study of remediation methods for open circuit fault in a novel symmetric six-phase fault-tolerant PM machine drives for EVs
JP2020156274A (en) Rotary electric machine control device
JP2020156273A (en) Rotary electric machine control device
JP2013046520A (en) Motor control device and motor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020527281

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19825939

Country of ref document: EP

Kind code of ref document: A1