WO2020003097A1 - Lubricating oil compositons - Google Patents

Lubricating oil compositons Download PDF

Info

Publication number
WO2020003097A1
WO2020003097A1 PCT/IB2019/055302 IB2019055302W WO2020003097A1 WO 2020003097 A1 WO2020003097 A1 WO 2020003097A1 IB 2019055302 W IB2019055302 W IB 2019055302W WO 2020003097 A1 WO2020003097 A1 WO 2020003097A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
natural gas
oil composition
gas engine
engine lubricating
Prior art date
Application number
PCT/IB2019/055302
Other languages
English (en)
French (fr)
Inventor
John D. Palazzotto
Shenghua Li
Original Assignee
Chevron Oronite Company Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Oronite Company Llc filed Critical Chevron Oronite Company Llc
Priority to EP19763098.1A priority Critical patent/EP3814461B1/en
Priority to AU2019293378A priority patent/AU2019293378A1/en
Priority to CN201980041516.1A priority patent/CN112334566A/zh
Priority to CA3102048A priority patent/CA3102048A1/en
Publication of WO2020003097A1 publication Critical patent/WO2020003097A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/12Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the disclosed technology relates to lubricants for a natural gas engine with steel pistons.
  • Natural gas fueled engines are engines that use natural gas as a fuel source.
  • Lubricating oils with high resistance to oxidation, nitration and viscosity increase are generally preferred for lubricating oils used in natural gas engines because of the conditions related to this type of engine.
  • Natural gas has a higher specific heat content than liquid hydrocarbon fuels and therefore it will bum hotter than liquid hydrocarbon fuels under typical conditions.
  • natural gas does not cool the intake air by evaporation as compared to liquid hydrocarbon fuel droplets.
  • many natural gas fueled engines are run either at or near stoichiometric conditions, where less excess air is available to dilute and cool combustion gases.
  • natural gas fueled engines generate higher combustion gas temperatures than engines burning liquid hydrocarbon fuels.
  • stationary natural gas fueled engines are used continuously at 70 to 100% load, whereas an engine operating in vehicular service may only spend 25% of its time at full load.
  • Lubricants for use in natural gas engines lubricate the movement of the engine, including the movement of the pistons within the cylinders. These lubricants are exposed to extremely high temperatures in upper portion of the pistons due to the proximity to the combustion area.
  • the combustion area on the piston top can range in temperatures from about 1200°C to 200Q°C, depending on, for example, the British Thermal Unit (BTU) quantity of the natural gas, lean or rich burn strategy, and load.
  • BTU British Thermal Unit
  • tire lubricant is exposed to increasingly severe conditions in steel piston engines with Brake Mean Effective Pressure (BMEP) greater than 20 bar, additional deposits and shorter lubricant life cycles have been observed.
  • BMEP Brake Mean Effective Pressure
  • a natural gas engine lubricating oil composition which comprises:
  • one or more alkali metal or alkali earth metal phenate detergents having a total base number (TBN) of about 150 to about 250 on an oil free basis, wherein the one or more alkali metal or alkali earth metal phenate detergents provide at least about 0.10 wt. % of alkali metal or alkali earth metal to the natural gas engine lubricating oil composition.
  • TBN total base number
  • a method for preventing or inhibiting deposit formation in a natural gas engine containing one or more steel pistons comprising the step of operating the natural gas engine with a natural gas engine lubricating oil composition comprising:
  • one or more alkali metal or alkali earth metal phenate detergents having a total base number (TBN) of about 150 to about 250 on an oil free basis, wherein the one or more alkali metal or alkali earth metal phenate detergents provide at least about 0.10 wt. % of alkali metal or alkali earth metal to the natural gas engine lubricating oil composition.
  • TBN total base number
  • a natural gas engine lubricating oil composition for preventing or inhibiting deposit formation in a natural gas engine containing one or more steel pistons, wherein the natural gas engine lubricating oil composition comprises:
  • one or more alkali metal or alkali earth metal phenate detergents having a total base number (TBN) of about 150 to about 250 on an oil free basis, wherein the one or more alkali metal or alkali earth metal phenate detergents provide at least about 0.10 wt. % of alkali metal or alkali earth metal to the natural gas engine lubricating oil composition.
  • TBN total base number
  • the natural gas engine lubricating oil compositions of the present disclosure advantageously prevents or inhibits deposit formation in a natural gas engine containing one or more steel pistons.
  • A“major amount” means in excess of 50 wt. % of a composition.
  • Active ingredients or“actives” refer to additive material that is not diluent or solvent.
  • ppm means parts per million by weight, based on the total weight of the lubricating oil composition.
  • metal refers to alkali metals, alkaline earth metals, or mixtures thereof.
  • alkali metal refers to lithium, sodium, potassium, rubidium, and cesium.
  • Overbased detergents may be low overbased (LOB), e.g., an overbased salt having a TBN below 100 mgKOH/g on an actives basis.
  • the TBN of LOB detergents may be from about 30 to about 100 mgKOH/g.
  • Overbased detergents may be medium overbased (MOB).
  • the TBN of MOB detergents may be from about 100 to about 200 mgKOH/g on an actives basis.
  • Overbased detergents may be high overbased (HOB).
  • the TBN of HOB detergents may be from about 250 to about 800 mgKOH/g on an actives basis.
  • alkaline earth metal refers to calcium, barium, magnesium, and strontium.
  • oil soluble or dispersible is used.
  • oil soluble or dispersible is meant that an amount needed to provide the desired level of activity or performance can be incorporated by being dissolved, dispersed or suspended in an oil of lubricating viscosity. Usually, this means that at least about 0.001% by weight of the material can be incorporated in a lubricating oil composition.
  • oil soluble and dispersible particularly“stably dispersible”, see U.S. Pat. No. 4,320,019 which is incorporated herein by reference.
  • TBN Total Base Number
  • Normal Alpha Olefins refers to olefins which are straight chain, non-branched hydrocarbons with carbon-carbon double bond present in the alpha or primary position of the hydrocarbon chain.
  • the term“Isomerized Normal Alpha Olefin” refers to an alpha olefin that has been subjected to isomerization conditions which results in an alteration of the distribution of the olefin species present and/or the introduction of branching along the alkyl chain.
  • the isomerized olefin product may be obtained by isomerizing a linear alpha olefin containing from, for example, about 10 to about 40 carbon atoms, or from about 20 to about 28 carbon atoms, or from about 20 to about 24 carbon atoms.
  • the present disclosure is directed to a natural gas engine lubricating oil composition for inhibiting or preventing deposit formation in a natural gas engine containing one or more steel pistons.
  • the natural gas engine may be a two-stroke engine, a three-stroke engine, a four-stroke engine, a five-stroke engine, or a six-stroke engine.
  • the engine may also include any number of combustion chambers, steel pistons, and associated cylinders (e.g., 1 to about 24).
  • the engine may be a large-scale industrial reciprocating engine having 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 20, or 24 or more steel pistons reciprocating in cylinders.
  • the steel piston may be any steel piston such as, for example, steel or any of a variety of steel alloys, such as 42CrMo4V or 38MnVS6.
  • the natural gas engines to which the present disclosure is applicable may be characterized as those operated on, i.e., fueled by, natural gas and include internal combustion engines.
  • the natural gas engine may be a stationary natural gas engine, a stationary biogas engine, a stationary landfill gas engine, a stationary unconventional natural gas engine, or a dual-fuel engine.
  • the internal combustion engine is a stationary engine used in, for example, well-head gas gathering, compression, and other gas pipeline services; electrical power generation (including co-generation); and irrigation.
  • the natural gas engine lubricating oil composition of the present disclosure may be utilized in preventing or inhibiting deposits in natural gas engines operating under high sustained load conditions such as, for example, a Brake Mean Effective Pressure (BMEP) of at least about 20 bar (2.0 MPa), or about at least 22 bar (2.2 MPa), or at least about 24 bar (2.4 MPa), or at least about 26 bar (2.6 MPa).
  • BMEP Brake Mean Effective Pressure
  • the natural gas engine lubricating oil composition of the present disclosure may be utilized in preventing or inhibiting deposits in natural gas engines operating under a BMEP of, for example, about 20 to about 30 bar (about 2.0 to about 3.0 MPa), or about 22 to about 30 bar (about 2.2 to about 3.0 MPa), or about 22 to about 28 bar (about 2.2 to about 2.8 MPa), or about 24 to about 30 bar (about 2.4 to about 3.0 MPa).
  • a BMEP of, for example, about 20 to about 30 bar (about 2.0 to about 3.0 MPa), or about 22 to about 30 bar (about 2.2 to about 3.0 MPa), or about 22 to about 28 bar (about 2.2 to about 2.8 MPa), or about 24 to about 30 bar (about 2.4 to about 3.0 MPa).
  • the natural gas engine lubricating oil composition of the present disclosure may provide advantaged deposit control performance in any of a number of mechanical components of an engine in addition to the one or more steel pistons.
  • the mechanical components may be a piston ring, a cylinder liner, a cylinder, a cam, a tappet, a lifter, a gear, a valve, a valve guide, or a bearing including a journal, a roller, a tapered, a needle, or a ball bearing.
  • the mechanical component comprises steel.
  • the natural gas engine lubricating oil composition in accordance with the present disclosure can have a TBN of about 10 or less. In one embodiment, the natural gas engine lubricating oil composition in accordance with the present disclosure can have a TBN of about 5 to about 8. In one embodiment, the natural gas engine lubricating oil composition in accordance with the present disclosure can have a TBN of about 7 to about 8.
  • the level of sulfur in the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 0.7 wt. %, based on the total weight of the lubricating oil composition, e.g., a level of sulfur of about 0.01 wt. % to about 0.70 wt. %, or about 0.01 wt. % to about 0.6 wt. %, or about 0.01 wt. % to about 0.5 wt. %, or about 0.01 wt. % to about 0.4 wt. %, or about 0.01 wt. % to about 0.3 wt. %, or about 0.01 wt. % to about 0.2 wt.
  • the level of sulfur in the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 0.60 wt. %, or less than or equal to about 0.50 wt. %, or less than or equal to about 0.40 wt. %, or less than or equal to about 0.30 wt. %, or less than or equal to about 0.20 wt. %, or less than or equal to about 0.10 wt. %, based on the total weight of the lubricating oil composition.
  • the level of phosphorus in the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 0.3 wt. %, based on the total weight of the lubricating oil composition. In one embodiment, the level of phosphorus in the natural gas engine lubricating oil compositions of the present disclosure is from about 0.01 wt. % to about 0.3 wt. %, based on the total weight of the lubricating oil composition. In one embodiment, the level of phosphorus in the natural gas engine lubricating oil compositions of the present disclosure is from about 0.01 wt. % to about 0.1 wt. %, based on the total weight of the lubricating oil composition.
  • the level of phosphorus in the natural gas engine lubricating oil compositions of the present disclosure is from about 0.015 wt. % to about 0.05 wt. %, based on the total weight of the lubricating oil composition.
  • the level of sulfated ash produced by the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 1 wt. % as determined by ASTM D 874, e.g., a level of sulfated ash of from about 0.10 wt. % to about 1 wt. % as determined by ASTM D 874. In one embodiment, the level of sulfated ash produced by the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 0.9 wt. % as determined by ASTM D 874, e.g., a level of sulfated ash of from about 0.10 wt.
  • the level of sulfated ash produced by the natural gas engine lubricating oil compositions of the present disclosure is less than or equal to about 0.8 wt. % as determined by ASTM D 874, e.g., a level of sulfated ash of from about 0.10 wt. % to about 0.8 wt. % as determined by ASTM D 874, or from about 0.65 wt. % to about 0.8 wt. % as determined by ASTM D 874.
  • the natural gas engine lubricating oil composition of the present disclosure contains at least (a) a major amount of an oil of lubricating viscosity, (b) greater than about 2 wt. % but less than about 4 wt. %, based on the total weight of the natural gas engine lubricating oil composition, of one or more phenolic antioxidants, (c) about 0.1 wt. % to about 1 wt.
  • % based on the total weight of the natural gas engine lubricating oil composition, of one or more aminic antioxidants, (d) one or more metal dithiophosphates, and (e) one or more alkali metal or alkali earth metal phenate detergents having a TBN of about 150 to about 250 on an oil free basis, wherein the one or more alkali metal or alkali earth metal phenate detergents provide at least about 0.10 wt. % of alkali metal or alkali earth metal to the natural gas engine lubricating oil composition.
  • the natural gas engine lubricating oil composition in accordance with the present disclosure includes an oil of lubricating viscosity (sometimes referred to as“base stock” or“base oil”).
  • base oil as used herein shall be understood to mean a base stock or blend of base stocks which is a lubricant component that is produced by a single manufacturer to the same specifications (independent of feed source or manufacturer's location); that meets the same manufacturer's specification; and that is identified by a unique formula, product identification number, or both.
  • the oil of lubricating viscosity is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition).
  • a base oil is useful for making concentrates as well as for making lubricating oil compositions therefrom, and may be selected from natural and synthetic lubricating oils and combinations thereof.
  • Natural oils include animal and vegetable oils, liquid petroleum oils and hydrorefined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(l -hexenes), poly(l-octenes), and poly(l- decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, and di(2-ethylhexyl)benzenes); alkylated naphthalene; polyphenols (e.g., biphenyls, terphenyls, and alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
  • hydrocarbon oils such as polymerized and
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., malonic acid, alkyl malonic acids, alkenyl malonic acids, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, fumaric acid, azelaic acid, suberic acid, sebacic acid, adipic acid, linoleic acid dimer, and phthalic acid) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, and propylene glycol).
  • dicarboxylic acids e.g., malonic acid, alkyl malonic acids, alkenyl malonic acids, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, fumaric acid, azelaic acid, suberic acid,
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di - «-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2- ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from Cs to C12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • the base oil may be derived from Fischer-Tropsch synthesized hydrocarbons.
  • Fischer-Tropsch synthesized hydrocarbons are made from synthesis gas containing Fh and CO using a Fischer-Tropsch catalyst. Such hydrocarbons typically require further processing in order to be useful as the base oil.
  • the hydrocarbons may be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed; using processes known to those skilled in the art.
  • Unrefined, refined and re-refined oils can be used in the present lubricating oil composition.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • the base oil which may be used to make the present natural gas engine lubricating oil composition may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines (API Publication 1509).
  • API American Petroleum Institute
  • Base Oil Interchangeability Guidelines API Publication 1509
  • Groups I-III are mineral oil base stocks.
  • Base oils suitable for use herein are any of the variety corresponding to API
  • the oil of lubricating viscosity for use in the lubricating oil compositions of this disclosure is typically present in a major amount, e.g., an amount of greater than 50 wt. %, or greater than about 70 wt. %, or great than about 80%, based on the total weight of the lubricating oil composition.
  • the oil of lubricating viscosity can be present in the lubricating oil composition of this disclosure in an amount of less than about 90 wt. % or less than about 85 wt. %, based on the total weight of the lubricating oil composition.
  • the base oil for use herein can be any presently known or later-discovered oil of lubricating viscosity used in formulating lubricating oil compositions for natural gas engines. Additionally, the base oils for use herein can optionally contain viscosity index improvers, e.g., polymeric alkylmethacrylates; olefmic copolymers, e.g., an ethylene -propylene copolymer or a styrene-butadiene copolymer; and the like and mixtures thereof.
  • the topology of viscosity modifier could include, but is not limited to, linear, branched, hyperbranched, star, or comb topology.
  • the viscosity of the base oil is dependent upon the application. Accordingly, the viscosity of a base oil for use herein will ordinarily range from about 2 to about 2000 centistokes (cSt) at 100° Centigrade (C.).
  • the base oils used as engine oils will have a kinematic viscosity range at l00°C of about 2 cSt to about 30 cSt, or about 3 cSt to about 16 cSt, or about 4 cSt to about 12 cSt and will be selected or blended depending on the desired end use and the additives in the finished oil to give the desired grade of engine oil, e.g., a lubricating oil composition having an SAE Viscosity Grade of 0W, 0W-8, 0W-12, 0W-16, 0W-20, 0W-30, 0W-40, 0W- 50, 0W-60, 5W, 5W-20, 5W-30, 5W-40, 5W-50, 5W-60, 10W, 10W-20, 10W-30, 10W-40, 10W-50, 15W, 15W-20, 15W-30, 15W-40, 30, 40 and the like.
  • the lubricating oil composition in accordance with the present disclosure further includes greater than about 2 wt. % but less than about 4 wt. %, based on the total weight of the natural gas engine lubricating oil composition, of one or more phenolic antioxidants.
  • the lubricating oil composition in accordance with the present disclosure will include greater than about 2.5 wt. % but less than about 3.5 wt. %, based on the total weight of the natural gas engine lubricating oil composition, of the one or more phenolic antioxidants.
  • the one or more phenolic antioxidants include, for example, sterically hindered phenolic antioxidants.
  • Suitable one or more sterically hindered phenolic antioxidants include, for example, 2,6-di-tert-butylphenol (available under the trade designation IRGANOXTM L 140 from BASF), di-tert-butylated hydroxytoluene (“BHT”), methylene-4, 4'-bis-(2,6-tert-butylphenol), 2,2'-methylene bis-(4,6-di-tert-butylphenol), 1,6- hexamethylene-bis-(3,5-di-tert-butyl-hydroxyhydrocinnamate) (available under the trade designation IRGANOXTM L109 from BASF), ((3,5-bis(l,l-dimethylethyl)-4- hydroxyphenyl)methyl)thio) acetic acid, Cio to Ci4 isoalkyl esters (available under the trade designation IR
  • the lubricating oil composition in accordance with the present disclosure further includes about 0.1 to about 1 wt.
  • Suitable one or more aminic antioxidants include, for example, aromatic amines such as oil-soluble aromatic secondary amines, aromatic secondary polyamines and combinations thereof.
  • Suitable aromatic secondary monoamines include, for example, diphenylamine, alkyl diphenylamines containing 1 or 2 alkyl substituents each having up to about 16 carbon atoms, phenyl-alpha- naphthylamine, phenyl-beta-napthylamine, alkyl- or aralkylsubstituted phenyl-alpha- naphthylamine containing at least one or two alkyl or aralkyl groups each having up to about 16 carbon atoms, alkyl- or aralkyl-substituted phenyl -beta-naphthylamine containing at least one or two alkyl or aralkyl groups each having up to about 16 carbon atoms, and the like.
  • a suitable aromatic amine antioxidant is an alkylated diphenylamine of the general formula R'-G,H4-NH-G,H4-R 2 wherein R 1 is a straight or branched alkyl group having about 6 to about 12 carbon atoms; and R 2 is a hydrogen atom or a straight or branched alkyl group having about 6 to about 12 carbon atoms. In one embodiment, R 1 and R 2 are the same.
  • a suitable aromatic amine antioxidant is a compound available commercially as Naugalube 438L (Lanxess), a material which is understood to be predominately a 4,4'-dinonyldiphenylamine (i.e., bis(4- nonylphenyl)(amine) wherein the nonyl groups are branched.
  • the lubricating oil composition in accordance with the present disclosure further includes one or more metal dithiophosphates.
  • Suitable one or more metal dithiophosphates include, for example, zinc dialkyldithiophosphates, zinc diaryldithiophosphates and combinations thereof.
  • the one or more metal dithiophosphates include one or more zinc dialkyl dithiophosphate compounds derived from a primary alcohol.
  • Suitable primary alcohols include those alcohols containing from 1 to 18 carbon atoms such as methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, dodecanol, octadecanol, propenol, butenol, and 2-ethylhexanol.
  • a zinc dialkyl dithiophosphate (ZnDTP) derived from a primary alcohol can be represented by a structure of formula (I):
  • R 1 and R 2 may be the same or different alkyl radicals having from 1 to 18 carbon atoms or 2 to 12 carbon atoms or from 2 to 8 carbon atoms.
  • the R 1 and R 2 groups of the zinc dialkyl dithiophosphate are derived from a primary alcohol as described above. In order to obtain oil solubility, the total number of carbon atoms (i.e., R'+R 2 ) will be at least 5.
  • the one or more metal dithiophosphates include one or more zinc dialkyl dithiophosphate compounds derived from a secondary alcohol.
  • Suitable secondary alcohols include those alcohols containing from 3 to 18 carbon atoms such as isopropyl alcohol, secondary butyl alcohol, isobutanol, 3-methylbutan-2-ol, 2-pentanol, 4- methyl-2-pentanol, 2-hexanol, 3-hexanol, and amyl alcohol.
  • a zinc dialkyl dithiophosphate derived from a secondary alcohol can be represented by a structure of formula (II):
  • R 1 and R 2 may be the same or different alkyl radicals having from 3 to 18 carbon atoms or 3 to 12 carbon atoms or from 3 to 8 carbon atoms.
  • the R 1 and R 2 groups of the zinc dialkyl dithiophosphate can be derived from the foregoing secondary alcohols. In order to obtain oil solubility, the total number of carbon atoms (i.e., R'+R 2 ) will be at least 5.
  • the one or more metal dithiophosphates include a mixture of the foregoing zinc dialkyl dithiophosphate derived from a primary alcohol and zinc dialkyl dithiophosphate derived from a secondary alcohol.
  • the molar ratio of the primary alcohol to the secondary alcohol in the mixture of the one or more zinc dialkyl dithiophosphate compounds derived from a primary alcohol and one or more zinc dialkyl dithiophosphate compounds derived from a secondary alcohol can range from about 20:80 to about 80:20.
  • the molar ratio of the primary alcohol to the secondary alcohol in the mixture of the one or more zinc dialkyl dithiophosphate compounds derived from a primary alcohol and one or more zinc dialkyl dithiophosphate compounds derived from a secondary alcohol can range from about 30:70 to about 70:30. In one embodiment, the molar ratio of the primary alcohol to the secondary alcohol in the mixture of the one or more zinc dialkyl dithiophosphate compounds derived from a primary alcohol and one or more zinc dialkyl dithiophosphate compounds derived from a secondary alcohol can range from about 40:60 to about 60:40.
  • the one or more metal dithiophosphates can be present in the lubricating oil composition of the present disclosure in an amount of about 1.5 wt. % or less, based on the total weight of the lubricating oil composition, e.g., an amount of about 0.08 wt. % to about 1.0 wt. %. In one embodiment, the one or more metal dithiophosphates can be present in the lubricating oil composition of the present disclosure in an amount of about 0.05 to about 0.8 wt. %, based on the total weight of the lubricating oil composition. In one embodiment, the one or more metal dithiophosphates can be present in the lubricating oil composition of the present disclosure in an amount of about 0.1 to about 0.7 wt. %, based on the total weight of the lubricating oil composition.
  • the lubricating oil composition in accordance with the present disclosure further includes one or more alkali metal or alkali earth metal phenate detergents having a total base number (TBN) of about 150 to about 250 on an oil free basis, wherein the one or more alkali metal or alkali earth metal phenate detergents provide at least about 0.10 wt. % of alkali metal or alkali earth metal to the natural gas engine lubricating oil composition.
  • TBN total base number
  • the alkali metal or alkali earth metal phenate detergents can be prepared by methods known in the art.
  • the alkali metal or alkali earth metal phenate detergents can be prepared by neutralizing, overbasing and optionally sulfurizing an alkyl phenol in any order.
  • Suitable alkyl groups include, for example, straight or branched chain Ci to C30 (e.g., C4 to C24) alkyl groups, or mixtures thereof.
  • suitable alkyl groups of the alkylphenol include those derived from one or more olefins comprising C9 to Ci8 oligomers of monomers selected from propylene, butylene or mixtures thereof.
  • the one or more olefins will contain a major mount of C9 to Cis oligomers of monomers selected from propylene, butylene or mixtures thereof.
  • examples of such olefins include propylene tetramer, butylene trimer and the like.
  • other olefins may be present.
  • the other olefins that can be used in addition to the C9 to Cis oligomers include linear olefins, cyclic olefins, branched olefins other than propylene oligomers such as butylene or isobutylene oligomers, arylalkylenes and the like and mixtures thereof.
  • Suitable linear olefins include 1 -hexene, l-nonene, l-decene, l-dodecene and the like and mixtures thereof.
  • suitable alkyl groups of alkylphenol include those derived from an isomerized normal-a-olefin such as an isomerized C20 to C24 normal-a-olefin. It should be noted that starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched chain.
  • the alkali metal or alkali earth metal phenate can be an overbased sulfurized calcium alkylphenate detergent which is substantially free of polyol promoter oxidation products.
  • the overbased sulfurized alkylphenate detergent which is substantially free of polyol promoter oxidation products is obtained by the process comprising (i) contacting an alkylphenol having at least one alkyl substituent from 6 to 36 carbon atoms with sulfur, in the presence of a promoter acid selected from the group of alkanoic acids having 1 through 3 carbon atoms, mixtures of the alkanoic acids, alkaline earth metal salts of the alkanoic acids and mixtures thereof, and at least a stoichiometric amount of a calcium base sufficient to neutralize the alkylphenol and the promoter at a temperature of from about l30°C to about 250°C under reactive conditions in the absence of a polyol promoter or an alkanol having 1 to 5 carbon atoms for a sufficient period of time to react
  • the process for preparing the sulfurized, calcium alkylphenate detergent can be conveniently conducted by contacting the desired alkylphenol with sulfur in the presence of a lower alkanoic acid and calcium base under reactive conditions. If desired, the alkylphenol can be contacted with sulfur in an inert compatible liquid hydrocarbon diluent. The reaction can be conducted under an inert gas, such as nitrogen, in theory the neutralization can be conducted as a separate step prior to sulfurization, but it is generally more convenient to conduct the sulfurization and the neutralization together in a single process step. Also, in place of the lower alkanoic acid, salts of the alkanoic acids or mixtures of the acids and salts could also be used.
  • the salt is preferably an alkaline earth metal salt such as a calcium salt.
  • the acids are preferred and the process will be described below with respect to the use of lower alkanoic acid; however, it should be appreciated that the teachings are also applicable to the use of salts and mixtures of salts in place of all or a portion of the acids.
  • the combined neutralization and sulfurization reaction is typically conducted at temperatures in the range of about from about 1 l5°C to about 250°C or from about l35°C to about 230°C depending on the particular alkanoic acid used. Where formic acid is used, a temperature in the range of about l50°C to about 200°C can be used. Where acetic acid or propionic acid are used, higher reaction temperatures may be advantageously employed, for example, at temperatures in the range of about 180° C. to about 250°C or from about 200°C to about 235°C. [0062] If desired, mixtures of two or all three of the lower alkanoic acids also can be used. For example, mixtures containing about from about 5 to about 25 wt.
  • % formic acid and about from about 75 to about 95 wt. % acetic acid can be used where low or medium overbased products are desired.
  • Based on one mole of alkylphenol typically, from about 0.8 to about 3.5, or about 1.2 to about 2 moles of sulfur and about 0.025 to about 2, or about 0.1 to about 0.8 moles of lower alkanoic acid are used.
  • about 0.3 to about 1 mole, or about 0.5 to about 0.8 mole of calcium base are employed per mole of alkylphenol.
  • an amount of calcium base sufficient to neutralize the lower alkanoic acid is also used.
  • an amount of calcium base sufficient to neutralize the lower alkanoic acid is also used.
  • from about 0.31 to about 2 moles of calcium base are used per mole of alkylphenol including the base required to neutralize the lower alkanoic acid.
  • lower alkanoic acid to alkylphenol and calcium base to alkylphenol ratios are used, the total calcium base to alkylphenol ratio range will be about from about 0.55 to about 1.2 moles of calcium base per mole of alkylphenol.
  • this additional calcium base will not be required where salts of alkanoic acids are used in place of the acids.
  • the reaction may be carried out in a compatible liquid diluent, such as a low viscosity mineral or synthetic oil.
  • a compatible liquid diluent such as a low viscosity mineral or synthetic oil.
  • the reaction is conducted for a sufficient length of time to ensure complete reaction of the sulfur, e.g., where high TBN products are desired because the synthesis of such products generally requires using carbon dioxide together with a polyol promoter. Accordingly, any unreacted sulfur remaining in the reaction mixture will catalyze the formation of deleterious oxidation products of the polyol promoter during the overbasing step.
  • both the neutralization and the subsequent sulf irization are conducted under the same conditions as set forth above.
  • a high molecular weight alkanol having 8 to 16 carbon atoms may be added to the neutralization-sulf irization step and/or the overbasing step as a solvent and also to assist in the removal of water by forming a water- azeotrope which may then be distilled off.
  • the alkali metal or alkali earth metal phenate detergents may be a phenate detergent with reduced unsulfurized tetrapropenylphenol content (TPP). Methods to reduce TPP are well documented in the literature, which includes, for example, extraction, distillation, steam-stripping, Mannich post-treatment, and other manufacture and post treatment processes.
  • the alkali metal or alkali earth metal phenate detergent may be a distilled phenate detergent, where the distillation occurs after the neutralization but before sulfurization step.
  • the alkali metal or alkali earth metal phenate detergent may be a distilled phenate detergent, where the distillation occurs after sulfurization and neutralization, and optionally the overbasing step.
  • the alkali metal or alkali earth metal phenate detergent may be a solvent- extracted phenate detergent. In one embodiment, the alkali metal or alkali earth metal phenate detergent has a reduced TPP content of 3.4 wt. % or less.
  • the alkali metal or alkali earth metal phenate detergent is a calcium non-sulfurized phenate detergent having a TBN of about 150 to about 250 on an oil free basis, wherein the calcium phenate detergent provides at least about 0.10 wt. % of calcium to the natural gas engine lubricating oil composition.
  • the alkali metal or alkali earth metal phenate detergent is a calcium sulfurized phenate detergent having a TBN of about 150 to about 250 on an oil free basis, wherein the calcium phenate detergent provides at least about 0.10 wt. % of calcium to the natural gas engine lubricating oil composition.
  • the alkali metal or alkali earth metal phenate detergents are present in an amount that provides at least about 0.10 wt. of metal to the natural gas engine lubricating oil composition. In one embodiment, the alkali metal or alkali earth metal phenate detergents are present in an amount that provides about 1000 ppm to about 2500 ppm of metal to the natural gas engine lubricating oil composition. In one embodiment, the alkali metal or alkali earth metal phenate detergents are present in an amount that provides about 1200 ppm to about 2000 ppm of metal to the natural gas engine lubricating oil composition.
  • the alkali metal or alkali earth metal phenate detergents are present in the lubricating oil composition in an amount of about 1 wt. % to about 5 wt. %, based on the total weight of the natural gas engine lubricating oil composition. In one embodiment, the alkali metal or alkali earth metal phenate detergents are present in the lubricating oil composition in an amount of about 1.5 wt. % to about 4.5 wt. %, based on the total weight of the natural gas engine lubricating oil composition.
  • the lubricating oil compositions of the present disclosure may also contain other conventional additives that can impart or improve any desirable property of the lubricating oil composition in which these additives are dispersed or dissolved.
  • Any additive known to a person of ordinary skill in the art may be used in the lubricating oil compositions disclosed herein.
  • Some suitable additives have been described in Mortier et ah,“Chemistry and Technology of Lubricants”, 2nd Edition, London, Springer, (1996); and Leslie R. Rudnick,“Lubricant Additives: Chemistry and Applications”, New York, Marcel Dekker (2003), both of which are incorporated herein by reference.
  • the natural gas engine lubricating oil compositions can be blended with antioxidants, detergents, rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents, friction modifiers, pour point depressants, antifoaming agents, co-solvents, corrosion-inhibitors, ashless dispersants, multifunctional agents, dyes, extreme pressure agents and the like and mixtures thereof.
  • antioxidants detergents, rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents, friction modifiers, pour point depressants, antifoaming agents, co-solvents, corrosion-inhibitors, ashless dispersants, multifunctional agents, dyes, extreme pressure agents and the like and mixtures thereof.
  • additives are known and commercially available. These additives, or their analogous compounds, can be employed for the preparation of the lubricating oil compositions of the disclosure by the usual blending procedures.
  • Suitable alkali metal or alkaline earth metal detergents include, for example, alkali metal or alkaline earth metal sulfonates, alkali metal or alkaline earth metal salicylates, alkali metal or alkaline earth metal phosphonates, alkali metal or alkaline earth metal thiophosphonates and combinations thereof.
  • the alkali metal or alkaline earth metal detergents can be overbased alkali metal or alkaline earth metal detergents.
  • the alkali metal or alkaline earth metal detergents have a TBN (oil free basis) of 0 to about 60.
  • the alkali metal or alkaline earth metal detergents have a TBN (oil free basis) of greater than 60 to about 200.
  • the alkali metal or alkaline earth metal detergents have a TBN (oil free basis) of greater than about 200 to about 800.
  • a dispersant is an additive whose primary function is to hold solid and liquid contaminations in suspension, thereby passivating them and reducing engine deposits at the same time as reducing sludge depositions.
  • a dispersant maintains in suspension oil-insoluble substances that result from oxidation during use of the lubricant, thus preventing sludge flocculation and precipitation or deposition on metal parts of the engine.
  • Dispersants are usually“ashless”, being non-metallic organic materials that form substantially no ash on combustion, in contrast to metal-containing, and hence ash forming materials. They comprise a long hydrocarbon chain with a polar head, the polarity being derived from inclusion of at least one nitrogen, oxygen or phosphorus atom.
  • the hydrocarbon is an oleophilic group that confers oil-solubility, having, for example, 40 to 500 carbon atoms.
  • ashless dispersants may comprise an oil-soluble polymeric backbone.
  • One class of olefin polymers is constituted by polybutylenes, specifically polyisobutylenes (PIB) or poly- «-butylenes, such as may be prepared by polymerization of a C4 refinery stream.
  • Dispersants include, for example, derivatives of long chain hydrocarbonsubstituted carboxylic acids, examples being derivatives of high molecular weight hydrocarbyl-substituted succinic acid.
  • a noteworthy group of dispersants is constituted by hydrocarbon-substituted succinimides, made, for example, by reacting the above acids (or derivatives) with a nitrogen-containing compound, advantageously a polyalkylene polyamine, such as a polyethylene polyamine.
  • Typical commercially available polyisobutylene-based succinimide dispersants contain polyisobutylene polymers having a number average molecular weight ranging from 900 to 2500, functionalized by maleic anhydride, and derivatized with polyamines having a molecular weight of from 100 to 350.
  • Suitable dispersants include succinic esters and ester-amides, Mannich bases, polyisobutylene succinic acid (PIBSA), and other related components.
  • Succinic esters are formed by the condensation reaction between hydrocarbon- substituted succinic anhydrides and alcohols or polyols.
  • the condensation product of a hydrocarbon-substituted succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinic ester-amides are formed by condensation reaction between hydrocarbon-substituted succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpoly amines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
  • propoxylated hexamethy lenediamine is propoxylated hexamethy lenediamine .
  • Mannich bases are made from the reaction of an alkylphenols, formaldehyde, and a polyalkylene polyamines. Molecular weights of the alkylphenol may range from 800 to 2500.
  • Nitrogen-containing dispersants may be post-treated by conventional methods to improve their properties by reaction with any of a variety of agents.
  • agents e.g., boric acid
  • cyclic carbonates e.g., ethylene carbonate
  • a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
  • Suitable friction modifiers include, for example alkoxylated fatty amines, borated fatty epoxides, fatty phosphites, fatty epoxides, fatty amines, borated alkoxylated fatty amines, metal salts of fatty acids, fatty acid amides, glycerol esters, borated glycerol esters and fatty imidazolines.
  • the term“fatty” means a hydrocarbon chain having 10 to 22 carbon atoms, typically a straight hydrocarbon chain.
  • Other known friction modifiers comprise oil-soluble organo-molybdenum compounds. Such organo-molybdenum friction modifiers also provide antioxidant and anti wear credits to a lubricating oil composition. Suitable oil-soluble organomolybdenum compounds have a molybdenum-sulfur core. As examples, there may be mentioned dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and mixtures thereof. The molybdenum compound may be dinuclear or trinuclear.
  • Corrosion inhibitors protect lubricated metal surfaces against chemical attack by water or other contaminants.
  • Suitable corrosion inhibitors include, for example, polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, thiadiazoles and anionic alkyl sulfonic acids.
  • Viscosity modifiers provide lubricants with high and low temperature operability. These additives increase the viscosity of the oil composition at elevated temperatures which increases film thickness, while having limited effect on viscosity at low temperatures.
  • Suitable viscosity improvers include, for example, high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant. Typical molecular weights of these polymers are in a range of about 1000 to about 1,000,000 (e.g., about 2000 to about 500,000 or about 25,000 to about 100,000).
  • suitable viscosity improvers are polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes. Polyisobutylene is a commonly used viscosity modifier.
  • Another suitable viscosity modifier is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
  • Other suitable viscosity modifiers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene -isoprene or styrenebutadiene based polymers of 50,000 to 200,000 molecular weight.
  • pour point depressants lower the minimum temperature at which a fluid will flow or can be poured.
  • Suitable pour point depressants include, for example, Cs to Cis dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Foam inhibitors retard the formation of stable foams.
  • Suitable foam inhibitors include, for example, polysiloxanes, polyacrylates, and the like.
  • additives in the form of about 10 to about 80 wt. % active ingredient concentrates in hydrocarbon oil, e.g. mineral lubricating oil, or other suitable solvent.
  • these concentrates may be diluted with about 3 to about 100, e.g., about 5 to about 40, parts by weight of lubricating oil per part by weight of the additive package in forming finished lubricants, e.g. crankcase motor oils.
  • the purpose of concentrates is to make the handling of the various materials less difficult and awkward as well as to facilitate solution or dispersion in the final blend.
  • each of the foregoing additives when used, is used at a functionally effective amount to impart the desired properties to the lubricant.
  • a functionally effective amount of this friction modifier would be an amount sufficient to impart the desired friction modifying characteristics to the lubricant.
  • the concentration of each of the additives in the lubricating oil composition when used, may range from about 0.001 wt. % to about 20 wt. %, or from about 0.005 wt. % to about 15 wt. %, or from about 0.01 wt. % to about 10 wt. %, or from about 0.1 wt. % to about 5 wt. %, or from about 0.1 wt. % to about 2.5 wt. %, based on the total weight of the lubricating oil composition.
  • the total amount of the additives in the lubricating oil composition may range from about 0.001 wt.% to about 20 wt.%, or from about 0.01 wt.% to about 10 wt.%, or from about 0.1 wt.% to about 5 wt.%, based on the total weight of the lubricating oil composition.
  • lubricating oil compositions were prepared having the formulations set forth in the following examples.
  • the compositions were prepared by mixing the base oil(s) with additive packages according to conventional preparation methods.
  • Deposit performance of the lubricant oil compositions was measured using the TEOST MHT-4 with depoisitor rod temperature at 285 °C.
  • a baseline formulation was prepared by adding a mixture of succinimide dispersants, 200 TBN (oil -free basis) Ca phenate providing 0.15 wt% Ca (to the lubricant composition), ZnDTP providing 0.26 wt% P, MOB Ca carboxylate providing 0.12 wt% Ca, LOB Ca sulfonate providing 0.28 wt% of Ca , aminic antioxidant, demulsifier, foam inhibitor and Group II base oil.
  • a natural gas engine lubricating oil composition was prepared by adding 3.00 wt% hindered phenolic antioxidant to the baseline formulation.
  • a natural gas engine lubricating oil composition was prepared by adding 3.30 wt% hindered phenolic antioxidant to the baseline formulation.
  • a natural gas engine lubricating oil composition was prepared by adding 1.00 wt% hindered phenolic antioxidant to the baseline formulation.
  • a natural gas engine lubricating oil composition was prepared by adding 1.50 wt% hindered phenolic antioxidant to the baseline formulation.
  • a natural gas engine lubricating oil composition was prepared by adding 2.00 wt% hindered phenolic antioxidant to the baseline formulation.
  • TEOST MHT4 is a bench test requirement used in gasoline engine oil categories such as ILSAC GF-5 and API SN Resource conserveing for performance category GF-5.
  • ASTM D7097 is designed to predict the deposit-forming tendencies of engine oil in the piston ring belt and upper piston crown area. Correlation has been shown between the TEOST MHT procedure and the TU3MH Ford engine test in deposit formation. This test determines the mass of deposit formed on a specially constructed test rod exposed to repetitive passage of 8.5 g of engine oil over the rod in a thin film under oxidative and catalytic conditions at 285 degC.
  • Deposit-forming tendencies of an engine oil under oxidative conditions are determined by circulating an oil-catalyst mixture comprising a small sample (8.4 g) of the oil and a very small (0.1 g) amount of an organo-metallic catalyst. This mixture is circulated for 24 hours in the TEOST MHT instrument over a special wire-wound depositor rod heated by electrical current to a controlled temperature of 285 degC at the hottest location on the rod. The rod is weighed before and after the test. Deposit that fell off the depositor rod into the oil was filtered and weighed. Total deposit is sum of the weight of deposits on depositor rod and on the filter. Here, a deposit weight of less than 12 mg is considered to pass the pass/fail criteria.
  • the TEOST data show Inventive Example 1 and 2 have total deposit less than 12 mg, while Comparative Example 1-3 have total deposit greater than 12 mg.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
PCT/IB2019/055302 2018-06-27 2019-06-24 Lubricating oil compositons WO2020003097A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19763098.1A EP3814461B1 (en) 2018-06-27 2019-06-24 Lubricating oil compositons
AU2019293378A AU2019293378A1 (en) 2018-06-27 2019-06-24 Lubricating oil compositions
CN201980041516.1A CN112334566A (zh) 2018-06-27 2019-06-24 润滑油组合物
CA3102048A CA3102048A1 (en) 2018-06-27 2019-06-24 Lubricating oil compositons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862690577P 2018-06-27 2018-06-27
US62/690,577 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020003097A1 true WO2020003097A1 (en) 2020-01-02

Family

ID=67851189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/055302 WO2020003097A1 (en) 2018-06-27 2019-06-24 Lubricating oil compositons

Country Status (6)

Country Link
US (1) US20200002638A1 (zh)
EP (1) EP3814461B1 (zh)
CN (1) CN112334566A (zh)
AU (1) AU2019293378A1 (zh)
CA (1) CA3102048A1 (zh)
WO (1) WO2020003097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114644951A (zh) * 2021-03-25 2022-06-21 上海济唐润滑材料科技有限公司 一种汽车发动机润滑油及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320019A (en) 1978-04-17 1982-03-16 The Lubrizol Corporation Multi-purpose additive compositions and concentrates containing same
US4744921A (en) 1986-10-21 1988-05-17 Chevron Research Company Methods for preparing, group II metal overbased sulfurized alkylphenols
US5529705A (en) 1995-03-17 1996-06-25 Chevron Chemical Company Methods for preparing normal and overbased phenates
US20070117726A1 (en) * 2005-11-18 2007-05-24 Cartwright Stanley J Enhanced deposit control for lubricating oils used under sustained high load conditions
US20090042753A1 (en) * 2007-08-10 2009-02-12 Marc-Andre Poirier Method for enhancing the oxidation and nitration resistance of natural gas engine oil compositions and such compositions
WO2010009036A2 (en) * 2008-07-16 2010-01-21 The Lubrizol Corporation Improved lubricant for natural gas engines
US20150159108A1 (en) * 2009-02-18 2015-06-11 Chevron Oronite Company Llc Lubricating oil compositions
US20160272915A1 (en) * 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456925B1 (en) * 1990-05-14 1993-10-20 Ethyl Petroleum Additives Limited Antioxidant compositions
SG128780A1 (en) * 2004-07-09 2007-02-26 Shell Int Research Lubricating oil composition
US9377399B2 (en) * 2008-03-18 2016-06-28 Lawrence Livermore National Security, Llc Resonant optical transducers for in-situ gas detection
US9181511B2 (en) * 2009-04-01 2015-11-10 Infineum International Limited Lubricating oil composition
CN107109282B (zh) * 2014-08-28 2020-03-27 路博润公司 具有密封相容性的润滑组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320019A (en) 1978-04-17 1982-03-16 The Lubrizol Corporation Multi-purpose additive compositions and concentrates containing same
US4744921A (en) 1986-10-21 1988-05-17 Chevron Research Company Methods for preparing, group II metal overbased sulfurized alkylphenols
US5529705A (en) 1995-03-17 1996-06-25 Chevron Chemical Company Methods for preparing normal and overbased phenates
US20070117726A1 (en) * 2005-11-18 2007-05-24 Cartwright Stanley J Enhanced deposit control for lubricating oils used under sustained high load conditions
US20090042753A1 (en) * 2007-08-10 2009-02-12 Marc-Andre Poirier Method for enhancing the oxidation and nitration resistance of natural gas engine oil compositions and such compositions
WO2010009036A2 (en) * 2008-07-16 2010-01-21 The Lubrizol Corporation Improved lubricant for natural gas engines
US20150159108A1 (en) * 2009-02-18 2015-06-11 Chevron Oronite Company Llc Lubricating oil compositions
US20160272915A1 (en) * 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LESLIE R. RUDNICK: "Lubricant Additives: Chemistry and Applications", 2003, MARCEL DEKKER
MORTIER ET AL.: "Chemistry and Technology of Lubricants", 1996, SPRINGER

Also Published As

Publication number Publication date
EP3814461B1 (en) 2023-08-23
US20200002638A1 (en) 2020-01-02
EP3814461A1 (en) 2021-05-05
CA3102048A1 (en) 2020-01-02
CN112334566A (zh) 2021-02-05
AU2019293378A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
CA3068667C (en) Lubricating oil compositions containing detergent compounds
EP2633012B1 (en) Use and method of reducing valve deposits in an engine
EP2553063B1 (en) Natural gas engine lubricating oil compositions
US20150038383A1 (en) Method for preventing exhaust valve seat recession
US20210002578A1 (en) Lubricating oil composition
JP7407133B2 (ja) 潤滑油組成物
EP3814461B1 (en) Lubricating oil compositons
CA3068664C (en) Lubricating engine oil compositions containing detergent compounds
US20190390133A1 (en) Lubricating oil compositions
WO2021124030A1 (en) Lubricating oil compositions comprising a polyalphaolefin
WO2023180896A1 (en) Low viscosity lubricating oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3102048

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019293378

Country of ref document: AU

Date of ref document: 20190624

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019763098

Country of ref document: EP

Effective date: 20210127