WO2020001463A1 - 碟储高聚光热发电站 - Google Patents

碟储高聚光热发电站 Download PDF

Info

Publication number
WO2020001463A1
WO2020001463A1 PCT/CN2019/092953 CN2019092953W WO2020001463A1 WO 2020001463 A1 WO2020001463 A1 WO 2020001463A1 CN 2019092953 W CN2019092953 W CN 2019092953W WO 2020001463 A1 WO2020001463 A1 WO 2020001463A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pipe
storage
axis
tube
Prior art date
Application number
PCT/CN2019/092953
Other languages
English (en)
French (fr)
Inventor
王存义
Original Assignee
王存义
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王存义 filed Critical 王存义
Publication of WO2020001463A1 publication Critical patent/WO2020001463A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention belongs to the field of solar energy utilization of renewable energy, and particularly relates to a dish storage high-concentration thermal power station.
  • the world's solar CSP technology includes trough, Philip, tower and dish.
  • the first two belong to the single-axis tracking of the sun.
  • the efficiency of photothermal and thermoelectric conversion is low and the sunlight is wasted.
  • Many, many condensers are used, the cost is high, belongs to the use of solar energy at medium temperature.
  • the latter two belong to dual-axis tracking of the sun, but the use of a heliostat in the tower type cannot reflect all the received sunlight to the heat sink, and the condenser lens is far away from the heat sink, which is prone to deviations and has a high cost; It is a dual-axis tracking sun.
  • a rotating parabolic mirror is used.
  • the collected heat is difficult to store and it is difficult to combine multiple units for relay-type continuous efficiency power generation, so it is difficult to build a large-scale power station.
  • the present invention is to solve these problems, that is, to invent a tower and dish-type high-powered concentrator to generate high temperature and high efficiency power generation, and it can continuously relay efficiency to generate high temperature and ultra high temperature working medium, and can be used for a long time. Energy storage and lower cost disc storage high-concentration thermal power station.
  • a dish storage high-concentration solar thermal power station including a solar boiler group, heat storage steam generating components, thermal energy conversion and power generation components, and auxiliary equipment, which are special in that:
  • the sunlight boiler unit is connected by connecting each sunlight boiler unit according to the following design connection method;
  • the sunshine boiler machine includes a dual-shaft automatic tracking machine, a condenser lens component, a heat collector component, and a rack component, as detailed below:
  • the dual-axis automatic follow-up machine is a height-angle azimuth follow-up machine, and its height angle axis line and azimuth axis line are installed at an intersection point;
  • the condenser is a condenser capable of generating a focal point or a focal spot under the sun; a condenser capable of generating a focal point or a focal spot under the sun is called a condenser unit; Condenser units, the connection between the focal point or focal spot centers of the two condenser units is called the focal line, and this focal line must coincide with or approximately coincide with the height axis of the Japanese machine automatically. There must be a point on the line that coincides with or approximately coincides with the intersection of the altitude axis axis and the azimuth axis axis of the Japanese machine. The coincident point on this three-axis line is called the three-center point;
  • the focal line of the two condenser lens units divides the condenser lens into four branches distributed on both sides thereof.
  • the condenser lenses located on the same side of the focal line are collectively referred to as coplanar mirrors regardless of whether they are connected into one piece.
  • the non-coplanar mirrors on both sides of the line are not connected to each other, or are connected to each other, or are partially connected to each other.
  • the condensers are fixed, or automatically sheltered from the wind, or have correction feedback. With or without a correction feedback device, or with a barrier autopass, or without a barrier autopass; the frame of the condenser is fixedly connected to the carrier of the automatic machine.
  • the connection is referred to as fixed connection, which is automatically carried by the Japanese aircraft;
  • the collector component is a vacuum pot collector or a cavity pot collector, and the center of each collector is coincident or approximately coincident with the focal point or focal spot center of the corresponding condenser,
  • the connection between the centers of the two collectors on both sides of the automatic machine and the Japanese machine is called the heart connection.
  • the heart connection and the focal connection are coincident or approximately coincident, so there must be a point on the heart connection and the three
  • the coincidence point is coincident with each other, and this coincidence point constitutes a four-point coincidence point, which is referred to as a four-point.
  • the vacuum pot collector includes a cover pot and an inner pot, and a middle connecting pipe and a tube bracket.
  • the cover pot is transparent and it is a bulb-shaped cavity shell;
  • the inner pot includes a bulb-shaped cavity A shell and a double-pass pipe;
  • the outer surface of the bulb-shaped cavity shell is coated with a heat-absorbing material;
  • the bulb-shaped cavity shell includes a hollow spherical surface and a hollow tube or also includes a flared transition tube;
  • the hollow spherical surface has openings;
  • One port is directly connected to the hole of the spherical surface, or it is indirectly connected to the flared tube first, and then the flared tube and the ball are connected.
  • the two-way pipe is a unified pipe or a double riser.
  • the so-called unified pipe is a pipe that contains two fluids in the opposite flow direction in a tube.
  • the two-way pipe has openings at both ends. One end is inserted into the inner pot from the tube portion of the bulb-shaped inner pot, and there is a sealed fixed connection between the inner pot and the other two mouths of the other end are exposed outside the inner pot.
  • This port is installed in the sun The four junctions of the boiler machine or near them; the outer ports of the two-pass pipes of the two inner pots located on both sides of the Japanese machine automatically meet at or near the four junctions of the sunshine boiler machine, After the two inner pots are connected to each other, the two remaining nozzles and the two intermediate pipes are connected indirectly, that is, through a pipe joint, and then directly or directly; the pipe joints are flexible or rigid. ;
  • the middle connecting pipe is a thermal insulation pipe with open ends, and the middle connecting pipe is of a direct type or a curved type.
  • the positions of the two ends are respectively installed at or near the four junctions of two adjacent sunlight boilers. It is indirectly or directly connected to the inner pot of the corresponding vacuum pot; the direct-connected intermediate tube and the curved-connected intermediate tube are collectively referred to as the intermediate-connected tube.
  • the difference or definition between the two is that the two ports are respectively adjacent to each other.
  • the middle connecting pipe that does not pass through the azimuth axis section is called the direct middle connecting pipe; the working medium is from this In the process of one end of the connecting pipe flowing to the other end, the middle connecting pipe that passes the azimuth axis long or short is called Qu Dazhong connecting pipe;
  • the difference between the cavity-pot heat collector and the vacuum pot heat collector is that a sandwich container pot having convex heat insulation and heat retention and a concave surface heat absorption is used to replace the vacuum pot in the vacuum pot heat collector, and the remaining structure the same;
  • Both the vacuum pot collector and the cavity pot collector are supported by a pot support, which is automatically connected to the carrier of the daily machine;
  • the collectors of each of the solar boilers in the solar boiler group are connected by a flexible pipe joint or a rigid pipe joint according to the connection method with a direct intermediate pipe or a curved intermediate pipe. Pass
  • the heat-storage steam-generating component is referred to as a production-storage component, which is either a heat-storage heat-exchange integrated steam-generation integrated device referred to as a storage-exchange integrated device; or a heat conduction and phase change heat storage or non-phase change heat storage and steam generation system , Referred to as the lead storage system; or a non-heat exchange storage production system; or a comprehensive storage production component; various storage production components are either placed in the full thermal insulation cavity or not placed in the full thermal insulation chamber Inside the heat cavity, or part of the heat cavity
  • the full heat preservation cavity is a heat preservation cavity constructed from all aspects of all methods and ways of heat transfer. It is a cavity, and it may be installed below the ground. Either a part is installed below the ground, or it is installed above the ground;
  • the middle pipe of the sunshine boiler machine located at the terminal of the cluster closest to the storage component is directly or indirectly connected to the storage component after the fixed pile, and the steam generator of the storage component or Highly compressed gas is connected to the gas jet tube, and the other port of the gas jet tube is first connected to the superheated steam processing equipment for heating, and then to the power components of the power generation equipment for converting thermal energy into mechanical energy and electrical energy; Or directly connected to the power components of the power generation equipment that converts thermal energy into mechanical energy and electrical energy; the middle tube of the solar boiler located at the other end of the solar boiler group, that is, at the beginning of the cluster, or returned from the storage component or the power generation component
  • the pipeline for conveying the working fluid is connected through the pump, or is not connected through the pump, or is not connected to the circuit pipe and is connected to the pump for conveying the working fluid.
  • the condensing lens with an obstacle auto-pass device includes a condensing lens with a U-shaped rotating plate and a hinge shaft, a driver, a transmission, a transmission component and a switching device, or further includes a clutch;
  • the connection between the transmission and the transmission component is the variable speed transmission component.
  • the high speed end of the transmission transmission component is connected to the driver, and the low speed end is connected to the hinge shaft for torque transmission.
  • the transmission transmission component is either flexible or rigid.
  • the parts are connected with the carrier of the Japanese machine automatically, the condenser is connected with the U-shaped turntable, and the U-shaped turntable is hinged on the hinge shaft;
  • the switch device is a photoelectric signal switch, or an electromechanical touch switch, or electromagnetic Signal switch, the circuit of the switching device is electrically connected with the driver;
  • the articulated axis of the condenser lens is articulated on eight telescoping lenses.
  • the definition of the eight telescoping lenses is:
  • Each condenser lens unit with obstacle autopass is cut according to the distance from the azimuth axis in a direction perpendicular to the height angle axis, which can be divided into a far-axis mirror and a paraxial lens.
  • the far-axis mirror is the farthest from the azimuth axis.
  • the part of the condenser lens is divided up and down according to the horizontal plane where the intermediate tube is located when tracking the sun to the mid-sky position.
  • the telephoto lens can be divided into two layers: the upper telephoto lens and the lower telephoto lens.
  • the definition of the condenser lens can be divided into eight parts, that is, eight telescopes on the two sides of the Japanese machine that are located in the four directions of southeast and northwest.These eight telescopes each have a hinge axis, and the hinge axis follows the sun to the center.
  • the time division is either horizontal or vertical, and the horizontal or vertical axis is based on the frame, and the frame is automatically connected to the carrier of the day machine;
  • the barrier autopass is either homogeneous or sub-general.
  • the so-called homogeneous barrier autopass means that the upper four telescopes or the lower four telescopes are at the same time when passing through the direct connection. Both are rotating.
  • the so-called split obstacle autopass means that when passing through the direct connection pipe, either the southeast upper and northwest upper telescopes rotate at the same time, or the southwest upper and northeast upper telescopes rotate at the same time, or the southeast down Rotate at the same time as the northwest lower telescope, or the southwest and northeast lower telescopes.
  • This split-type obstacle autopass is achieved by adding a clutch to the transmission component; the uniform-type obstacle autopass is not used. clutch.
  • the correction feedback device installed on the condenser lens component includes a frame and a solar cell and a connecting wire, and in a plane coordinate system composed of the frame, the positions are symmetrical to the abscissa axis and the ordinate axis, respectively.
  • the four sets of solar cells are installed separately. The electrical parameters of the two sets of solar cells that are symmetrical about the abscissa axis are equal, and the electrical parameters of the two sets of solar cells that are symmetrical to the ordinate axis are also the same.
  • the negative electrode and the signal controller of the Japanese machine are respectively electrically connected. This correction feedback device is connected to the frame of the condenser.
  • the outer effective edge of the correction feedback device corresponds to the contour line of the hole;
  • the inner effective side line of the deviation correcting feedback device corresponds to the outer contour line of the converging light beam.
  • the so-called effective side line is the side line formed by the side of the solar cell group.
  • the unified tube is a sleeve type or a partition type.
  • the sleeve type unified tube is formed by inserting a thinner tube with an open end in a thicker tube with open ends. A plate is inserted into the open-ended tube to divide the tube into two parts.
  • the double-riser tube is a tube in a vacuum cooker that is inserted into two separate tubes that are not included in a tube.
  • the integrated storage and replacement device is directly heated for short, or indirectly heated for indirect heating.
  • the direct-heated storage and replacement integrated device includes a vapor-liquid with a heat-conducting medium and a vapor-liquid working medium for short.
  • the heat storage medium of the working medium, the heat-conducting medium is either immersed in the vapor-liquid working medium in a coil or a capillary bundle, or directly surrounds the container containing the vapor-liquid working medium for direct heat exchange.
  • An inlet nozzle and an outlet nozzle of a heat-conducting medium are fixedly connected to the wall, and an inlet nozzle and an outlet nozzle of a vapor-liquid working medium are also fixedly connected.
  • the so-called nozzle is a pipe joint; the so-called working medium is capable of performing expansion work. Or thermally conductive fluid;
  • the inlet nozzle of the heat-conducting medium is directly or indirectly connected through the connecting pipe used and the intermediate pipe of the sunlight boiler machine that is closest to the heat storage box, that is, the terminal of the cluster.
  • the loop pipe includes the connecting pipe and the valve and the pipe joint, or also includes the pump. ;
  • the inlet nozzle of the vapor-liquid working fluid is directly or indirectly connected to the preheating equipment through the pipe used, and the outlet nozzle is connected to the steam injection pipe;
  • the indirect heat storage and exchange integrated device includes a heat storage box, a phase change heat storage material or a non-phase change heat storage material, a steam generator thereof, and a heat conducting medium coil or capillary bundle. It is a heat conducting medium tube bundle.
  • the heat conducting medium tube bundle is immersed in a phase change heat storage material or a non-phase change heat storage material.
  • the heat storage material surrounds the steam generator and performs heat transfer connection with it.
  • the nozzle and the outlet nozzle are respectively fixedly connected to the inlet nozzle and the outlet nozzle of the heat storage medium, and the inlet pipe and the outlet pipe of the heat conductive medium connected to the wall of the heat storage box are directly or indirectly connected to the sunlight, respectively.
  • the intermediate and connecting pipes of the boiler group terminal and the beginning end are connected, and the inlet pipe of the steam generator connected to the heat storage box is directly or indirectly connected to the preheating equipment.
  • the outlet pipe of the steam generator connected to the heat storage box is a jet pipe. Its external port is either connected to the superheated steam processing equipment for heating, and then connected to the power generation equipment that can convert thermal energy into mechanical energy and electrical energy, or directly through the valve pipeline and can convert thermal energy into mechanical energy and electricity.
  • the power plant is connected through the union in the formula is a direct expression of the or curved.
  • the total guiding and storage system includes a heat conducting medium subsystem, a heat storing material subsystem, a heat exchange device, and a steam generator.
  • the heat conducting medium subsystem includes a heat conducting medium pump, a heat conducting medium tank, and a pipeline valve circulation system.
  • the heat-conducting medium pump is installed in the pipeline valve circulation system.
  • the first part of the heat-conducting medium circulation pipeline is composed of the various collectors and pipe joints of the solar boiler group and the intermediate pipe.
  • the second part is immersed in phase change heat storage or non-
  • the phase change heat storage subsystem is composed of a heat conducting medium coil or a capillary bundle, and the third part is composed of a pipeline valve or a pump in the heat conducting medium circuit, and the heat conducting medium circulation pipeline is connected to the heat conducting medium container;
  • the material subsystem includes a heat storage material container, a heat conducting medium coil or capillary bundle immersed in the heat storage material container, or a circulation pump, a heat conducting medium coil or capillary bundle, and the heat storage material in the heat storage material container.
  • Heat transfer connection The heat storage material is connected to the steam generator through heat exchange equipment.
  • the inlet pipe of the steam generator is directly or indirectly connected to the preheater.
  • the steam generator The outer port of the outlet pipe, or first connected to the superheated steam processing equipment for heating, and then connected to the power components of the power generation equipment that can convert thermal energy into mechanical energy and electrical energy, or directly through the valve pipeline and can convert thermal energy
  • the steam generator is with or without fins.
  • the non-heat exchange storage production system is cyclic or non-circular.
  • the circulation non-heat exchange storage production system includes a steam storage tank, a liquid circuit pipeline valve, a working medium transfer pump, and a pipeline in the solar boiler group. And valves and high-pressure check valves; non-circulating non-heat exchange storage production systems do not have liquid return pipes, but only drain pipes.
  • the tank wall of the steam storage tank has inlet nozzles and outlet nozzles, and Drain nozzle, the inlet nozzle is directly connected to the inner port of the steam inlet pipe, or connected to the inner port of the steam pipe indirectly through a high pressure check valve, and the outer port of the steam pipe is directly or through a fixed pile
  • the indirect and connecting pipes of the group terminal sunshine boiler are connected through flexible or rigid pipe joints, and the ports outside the steam inlet pipe or directly connect with the group of terminal sunshine boilers.
  • the heater is connected through a flexible or rigid pipe joint. This pipe joint is located at or near the quadruple point of the sunlight boiler machine at the terminal of the cluster.
  • the outlet nozzle of the steam storage box is connected to one end of the steam injection pipe.
  • the drain nozzle is connected to the inner end of the drain pipe of the non-circulating non-heat exchange storage production system, and the outer end of the drain pipe is connected to the valve; or the drain nozzle and the circulation type non-heat exchange
  • the inner end of the liquid circuit tube of the storage system is connected, and the outer end of the liquid circuit tube is directly or indirectly connected to the working fluid conveying pump.
  • Zhonglian pipe is connected;
  • the integrated storage and production component is an integrated system composed of the two or more types of storage and production components mentioned above to work together or alternately.
  • the all-round heat-preservation cavity is a cavity surrounded by an omni-directional wall shell in any direction including above and below, and the cavity wall in all directions including the insulated door or the insulated cover is It consists of at least three layers, the inner layer is a mirror, the middle layer is a skeleton plate or bone plate, and the outer layer is a thermal insulation material.
  • the inner layer is a mirror
  • the middle layer is a skeleton plate or bone plate
  • the outer layer is a thermal insulation material.
  • Nozzles or valves are used for exhausting to create a vacuum, or there are no such nozzles and valves; between the wall shell of the full heat preservation cavity and the outer wall of its contents In the space, there is either low-pressure gas, or vacuum, or near vacuum, or atmospheric gas.
  • a heat-insulating support pad for placing objects is installed on the floor of this cavity.
  • the automatic windshield condensing lens includes a sub-mirror plate and a mandrel or a rotating shaft and a frame around which the mandrel is rotated.
  • the mandrel is vertically or horizontally mounted, and the horizontally mounted axis is perpendicular to or close to the direction of the condenser bus line.
  • the mandrel in the direction of the busbar is connected to each horizontal mounting axis of the condenser by a folded line ring, called a horizontal folded ring shaft, which is connected to the frame and uses the frame as a carrier.
  • the mandrel of the direction is connected to the frame, and the frame is used as a carrier.
  • the sub-mirror plates are part of the condensers cut out on the condenser lens.
  • the two sub-mirror plates hinged on the mandrel and hinged on the horizontal folding circle axis are perpendicular to or close to the direction of the generatrix;
  • the generatrix is generating a rotating curved mirror or a rotating folding mirror or a rotating folding curved mirror or generating
  • the generatrix of the circular mirror is rotated, and the generatrix of the circular mirror is a fold line along the radius, that is, the generatrix of the Fresnel condenser lens is generated;
  • the sub-mirror plate is a two-piece mirror plate or a three-piece mirror plate.
  • the two-piece mirror plate is a two-piece mirror plate with different sizes cut out on one daughter mirror plate.
  • the larger one is called the main mirror plate.
  • the main mirror plate is hinged on the horizontal axis or vertical.
  • the shaft with the main mirror plate hinged is called the main mirror shaft.
  • the correct light condensing working state of the main mirror plate on the main mirror shaft is positioned by the spring and the stopper; the main mirror plate is parallel to the main mirror plate.
  • a mandrel or shaft is connected to one side in the direction of the mirror axis. This mandrel or shaft is called the attached mirror shaft.
  • the smaller parting plate is hinged on the attached mirror shaft.
  • the correct focusing working state of the attached mirror plate is composed of the spring and the main shaft.
  • the frame of the mirror plate is positioned so that the distance from the main mirror axis to the farthest side of the attached mirror plate is greater than the distance from the main mirror axis to the farthest side of the main mirror plate.
  • the main mirror plate and the attached mirror plate can only rotate in a single direction.
  • the triplet mirror plate is divided into three main mirror plates of different sizes, the largest of which is called the main mirror plate, and one axis is connected to two opposite sides of the main mirror plate, which is called the attached mirror Axis, each smaller sub-mirror plate is hinged on the attached mirror axis, the main mirror plate is hinged on the horizontal or vertical axis, this horizontal or vertical axis is called the main mirror axis, and the attached lens axis Parallel, the correct focusing operation of the main mirror plate on the main mirror axis is determined by the spring and the stopper.
  • the main mirror plate can only rotate in a single direction, and the two attached mirror plates are on the correct attached mirror axis.
  • the working state of the light focusing is determined by the spring and the frame of the main mirror plate.
  • Each of the two attached mirror plates can only rotate in a single direction, and both of them rotate in the same direction.
  • FIG. 1 is a plan view of a sunlight boiler with a split-type barrier autopass of a flexible transmission member.
  • FIG. 2 is a sectional view of FIG. 1.
  • FIG. 3 is a plan view of a sunlight boiler with a homogeneous barrier autopass with rigid transmission components.
  • FIG. 4 is a sectional view of FIG. 3.
  • Fig. 5 is a front view of a sunlight boiler with a vertical axis barrier autopass.
  • 6 (a) and 6 (b) are a top view and a cross-sectional view, respectively, of a vacuum cooker collector with a deflection feedback device.
  • Figure 7 is a diagram of a non-circulating non-heat exchange storage production system with a barrier autopass.
  • FIG. 8 is a diagram of a circulation system of a direct-heating type storage and exchange integrated device with an obstacle autogenerator.
  • FIG. 9 is a cycle diagram of a direct-heating, non-heat-exchanging storage system of an obstacle-free autopass.
  • Fig. 10 is a front view of an indirect heat storage and exchange integrated device having a capillary bundle.
  • FIG. 11 is a top view of an automatic storm condensing mirror with a vertical axis double-connected mirror unit.
  • FIG. 12 is a sectional view of FIG. 11.
  • reference numeral 1 is the shaft of the telescope on the southeast
  • reference numeral 2 is the sprocket bearing seat
  • reference numeral 3 is the driver of the sliding key clutch.
  • Reference numeral 4 is a feather key, which is mounted on the shaft 15 of the worm wheel 12
  • reference numeral 5 is a clutch wheel that can slide along the feather key 4, in the figure it is meshed with gear 8
  • reference numeral 6 is a sprocket. It is meshed with the sprocket 33 by a chain.
  • Reference numeral 7 is the sprocket of the rotating shaft 1 of the upper-axis telescope on the southeast. It is meshed with the sprocket 37 by a chain 34.
  • Reference 8 is a gear and reference 9 It is a sprocket, which meshes with the sprocket 10, and the sprocket 10 drives the southwest upper telescope via the rotating shaft 17, reference numeral 11 is a south loading plate fixedly connected to the carrier 30, and reference numeral 12 is a worm gear.
  • Reference numeral 13 is a motor
  • reference numeral 14 is a worm fixedly connected to the motor shaft, and meshing with the worm gear 12
  • reference numeral 15 is a worm gear shaft
  • reference numeral 16 is a sprocket, which meshes with the sprocket 28.
  • Reference numeral 17 is a rotating shaft, which is fixedly connected to the U-shaped rotating plate 18, and the rotating plate 18 is fixedly connected to the southwest upper telescope lens.
  • Reference numeral 19 is a rotating shaft that drives the northwest upper telescope lens 20.
  • Skeleton of the axis mirror 20, attached Note 22 is a vacuum pot collector
  • reference number 23 is a pot support
  • reference number 24 is a direct middle pipe
  • reference number 25 is a thick tube of a unified pipe inserted in an inner pot
  • reference number 26 is a north tube.
  • the load plate, reference numeral 27 is a gear, which meshes with a gear fixed to the shaft of the sprocket 28. This transmission pair is for the correct turning of the rotating shaft 19, and the sprocket 28 is a northwest upper-axis mirror.
  • the driving wheel, reference numeral 29 is a rack
  • reference numeral 30 is a carrier
  • reference numeral 31 is a thin tube from a thick tube 25.
  • the thick and thin tubes 31 and 25 form a sleeve-type unified tube, and two of them are sealed.
  • reference numeral 32 is a pipe joint
  • reference numeral 33 is a sprocket, which drives the shaft 38 of the telescope on the northeast
  • reference numeral 34 is a chain
  • reference numeral 35 is a direct connecting pipe and a
  • the pipe joint between the control pipes, reference numeral 36 is a gear.
  • Reference numeral 37 is a sprocket
  • reference numeral 38 is a rotation axis of the northeast upper telescope.
  • Reference numeral 39 is a frame joint plate
  • reference numeral 40 is a bearing seat
  • reference numeral 41 is a switch device
  • reference numeral 42 is a mirror joint. The advantage of this division is that the condenser is highly utilized.
  • reference numeral 43 is the middle beam of the rack
  • reference numeral 44 is the working medium, for example, working medium such as water or steam
  • reference numeral 45 is a transparent cover pot
  • reference numeral 46 is a metal inner pot.
  • Reference numeral 47 is a vacuum layer
  • reference numeral 48 is an automatic tracking machine
  • reference numeral 49 is an azimuth axis
  • reference numeral 50 is a U-shaped seat plate
  • a carrier of the carrier 30 is a height angle.
  • Shaft reference numeral 52 is a chain.
  • the remaining part numbers are the same as in Figure 1.
  • the dotted line indicates the joint between the upper-east telescope and the lower-east telescope in FIG. 1.
  • Fig. 3 is a top view of a sunlight boiler machine with a barrier autopass with rigid transmission components. It is homogeneous and the transmission is simple, but the utilization ratio of the condenser is worse than the fractional formula.
  • Reference numeral 53 in FIG. 3 is a mirror skeleton
  • reference numeral 1 is a rotating shaft of a southeast upper telescope mirror 54
  • reference numeral 22 is a vacuum pot collector
  • reference numeral 55 is a skeleton of a paraxial mirror, a paraxial
  • the mirror is immovable
  • reference numeral 23 is a pot holder
  • reference numeral 56 is a reflecting mirror
  • reference numeral 57 is a gear, which meshes with the motor shaft gear 58
  • reference numeral 13 is a motor
  • reference numeral 40 is a bearing.
  • reference numeral 14 is a worm
  • reference numeral 12 is a worm gear
  • reference numeral 61 is a worm shaft, which has a worm at both ends, and a gear which is brought in mesh with a motor shaft gear 58
  • a reference numeral 18 is U
  • reference numeral 24 is a direct intermediate pipe
  • reference numeral 62 is a seam for cutting the condenser
  • reference numeral 35 is a pipe joint between the intermediate pipe and a unified pipe
  • reference numeral 30 is a carrier
  • Reference numeral 32 is a pipe joint of a thin pipe extending from a unified pipe
  • reference numeral 31 is a thin pipe
  • reference numeral 25 is a thick pipe
  • reference numeral 41 is a switching device, which is electrically connected to the motor 13.
  • FIG. 4 is a sectional view of FIG. 3.
  • Reference numeral 63 is a key for fixing the U-shaped turntable
  • reference numeral 50 is a U-shaped seat plate
  • reference numeral 51 is a height angle axis
  • reference numeral 49 is an azimuth axis
  • reference numeral 48 is an automatic tracking machine.
  • Reference numeral 29 is a rack.
  • the transmission system of the lower telescope in this figure is omitted because it is the same as the upper one.
  • Dashed line 42 represents the joint between the upper-east telescope and the lower-east telescope in FIG. 3. The remaining marks are the same as those in FIG. 2.
  • Fig. 5 is a front view of a sunlight boiler with a vertical axis barrier autopass.
  • reference numeral 48 is an automatic follow-up machine
  • reference numeral 23 is a pot support
  • reference numeral 65 is a sprocket, and it is meshed with a working sprocket 69 through a chain
  • reference numeral 29 is a rack.
  • 68 is the upper and lower telescope mirrors
  • the reference numeral 69 is a manipulator fixedly connected between the work sprocket and the telescope mirror. When the work sprocket rotates, the upper telescope is passed by the manipulator to make way for the direct coupling tube. Smoothly passed the direct connection to the company.
  • Reference numeral 70 is a mandrel that is movably connected to the working sprocket, and is fixed to a vertical shaft support in the frame.
  • Reference numeral 71 is a paraxial lens, which does not block direct access to the middle connecting tube.
  • Reference numeral 72 is a sprocket rotation shaft, that is, a force transmission shaft.
  • Reference numeral 73 represents a and b and c and d wheels are all drive sprockets connected to the driver (which has been shielded).
  • Reference numeral 74 is a middle frame beam.
  • Reference numeral 42 is the joint between the mirror and the mirror.
  • Marker 76 is the vertical axis support in the rack, which is fixedly connected to the carrier 30 and the rack.
  • Marker 30 is the carrier
  • marker 51 is the height angle axis
  • marker 50 is a U-shaped seat plate
  • marker 49 is the orientation. Angular axis.
  • the direct-connected intermediate pipes connect the collectors of each sunlight boiler.
  • the advantage is that the connecting pipes are short and the heat preservation effect is good.Because the direct-connected intermediate pipes are straight pipes except the pipe joints, they are easy to process and can withstand high pressure and It is easy to maintain super high temperature, but the disadvantage is to add obstacles and other transmission devices.
  • Figures 6 (a) and 6 (b) are vacuum cooker collectors with a deflection feedback device.
  • Figure 6 (a) is a top view
  • Figure 6 (b) is a sectional view.
  • 81 is a vacuum cooker, which is in the shape of a tube
  • 82 is a solar cell.
  • the electrical parameters of the solar cell at the two ends of the X axis such as open circuit voltage, short-circuit current, series resistance, and parallel resistance, are all equal.
  • the electrical parameters of the solar cells at both ends of the shaft must also be equal.
  • the circuits of these two pairs of solar cells are electrically connected to the signal controller of the Japanese machine automatically.
  • Reference numeral 83 in Figs. 6 (a) and 6 (b) is a frame, which is a carrier of the solar cell, reference numeral 84 is a lead wire of the solar cell, and reference numeral 85 is a converging light beam with a circular hole, which converges.
  • the inner edge of the beam hole corresponds to the outer effective edge of the correction feedback device.
  • the so-called effective edge is the edge surrounded by the edges of each solar cell, not the edge of the frame.
  • reference numeral 86 is a partition type unified pipe
  • reference numeral 87 is a branch plate
  • reference numeral 88 is a tee joint between the intermediate pipe and the two partition type unified pipes
  • reference numeral 89 is The connection line between the main grid lines of the solar cell
  • reference numeral 90 is a pipe joint
  • reference numeral 24 is a direct intermediate pipe
  • reference numeral 92 is a tube section of a bulb-shaped transparent hood
  • reference numeral 93 is a bulb tube.
  • Reference numeral 47 is a vacuum
  • reference numeral 95 is a partition, which separates a tube opened at both ends into two tubes
  • reference numeral 44 is a working medium.
  • reference numeral 81 is a vacuum pot
  • reference numeral 29 is a rack
  • reference numeral 51 is a height angle axis
  • reference numeral 50 is a U-shaped seat plate
  • reference numeral 48 is an automatic date machine.
  • Reference numeral 49 is an azimuth axis
  • reference numeral 99 is a beam connected to a carrier
  • reference numeral 134 is a rotating shaft of a lower far-axis mirror
  • reference numeral 18 is a U-shaped rotating plate
  • reference numeral 100 is a pump.
  • reference numeral 71 is a paraxial mirror
  • reference numeral 20 is an upper telescope mirror
  • reference numeral 24 is a direct middle pipe, and its two ends are installed on two adjacent sunlight boilers.
  • reference numeral 74 is the middle beam of the frame
  • reference numeral 32 is the pipe joint of the uniform pipe
  • reference numeral 103 is the pipe joint of the intermediate pipe and the inlet pipe on the branch pile 104.
  • 105 is a steam inlet pipe
  • reference numeral 106 is a full heat preservation cavity
  • reference numeral 107 is a gap
  • reference numeral 108 is a metal skeleton of the full heat preservation cavity
  • reference numeral 109 is a drain pipe.
  • 110 is the case of the non-heat exchange non-circulation storage and production integrated device
  • the reference numeral 111 is a steam injection pipe. It is either connected to the equipment that continues to heat to generate superheated steam or gas, or directly connects the thermal energy to mechanical energy.
  • Reference numeral 112 is a reflecting mirror
  • reference numeral 113 is a heat-insulating material
  • reference numeral 114 is an underground gravel
  • reference numeral 30 is a carrier
  • reference numeral 117 is an exhaust pipe for generating a vacuum 118
  • reference numeral 119 is a pipe for a heat conductive medium heated by a solar boiler group
  • reference numeral 111 is a steam pipe of a steam generator.
  • Reference numeral 121 is a seam between the lid of the full heat-preserving cavity and the cavity.
  • Reference numeral 108 is a metal skeleton of a full heat-retaining cavity
  • reference numeral 123 is a heat-insulating support pad
  • reference numeral 124 is a heat-conducting medium such as heat-conducting oil, which is surrounded to directly transfer heat to the steam generator 128, so that it generates high temperature.
  • reference numeral 125 is an integrated storage and exchange unit
  • reference numeral 112 is a reflector
  • reference numeral 127 is a liquid inlet pipe of a steam generator 128, which is connected to a preheater
  • reference numeral 128 is a steam generator.
  • Container the content can be a vapor-liquid mixture
  • reference number 113 is a thermal insulation layer
  • reference number 30 is a carrier
  • reference number 131 is a valve
  • reference number 31 is a thin tube of a unified pipe
  • reference number 25 is a thick pipe of a unified pipe
  • reference numeral 134 is a loop pipe.
  • the remaining reference numerals are the same as those of FIG. 7.
  • FIG. 9 is a cycle diagram of a non-heat-storage production system using a pipe connected to Qu Dazhong without an obstructive autopass.
  • reference numeral 81 is a vacuum cooker
  • reference numeral 29 is a rack
  • reference numeral 51 is a height angle axis
  • reference numeral 48 is an automatic tracking machine
  • reference numeral 50 is a U-shaped seat plate
  • reference numeral 49 is the azimuth axis
  • reference numeral 100 is the working fluid delivery pump
  • reference numeral 163 is the condenser lens unit
  • reference numeral 74 is the middle beam of the rack
  • reference numeral 25 is a thick tube of a unified pipe
  • reference numeral 32 is The pipe joint that connects its thin pipes
  • reference numeral 31 is a thin pipe
  • reference numeral 164 is a pipe joint that connects a unified pipe thick pipe and a connecting pipe in Qu Dazhong
  • reference numeral 165 is a sealed joint of a vacuum cooker.
  • the reference numeral 166 is a curved tube, which is a curved, high-heat pipe that connects the collector of the sunlight boiler with the production storage unit or the circulating pump, or two adjacent sunlight boilers.
  • the curved heat-preserving pipe connected to the heat collector must pass through a long or short section along the azimuth axis of the automatic machine. Its advantage is that it does not need to obstruct the autopass, and its disadvantage is that the pipeline is long and has more heat dissipation, and at least two bends must be made.
  • Reference numeral 167 is a pipe joint
  • reference numeral 119 is an inlet pipe of a heated working fluid
  • reference numeral 111 is a steam injection pipe
  • reference numeral 106 is a full square heat preservation cavity
  • reference numeral 108 is a full square heat preservation cavity.
  • the metal skeleton plate of the hot cavity reference numeral 123 is the leg of the storage and production integrated device
  • reference numeral 171 is a steam storage box
  • reference numeral 112 is a reflector
  • reference numeral 113 is a thermal insulation material.
  • 114 is gravel
  • reference numeral 153 is a working medium
  • reference numeral 30 is a carrier
  • reference numeral 174 is a valve of a loop pipe.
  • FIG. 10 is a front view of an indirect heating type heat storage and heat exchange steam generating integrated device referred to as an indirect heating type heat storage integrated storage device.
  • reference numeral 135 is the cavity of the full heat preservation cavity, which is installed in the ground
  • reference numeral 123 is the heat insulation support pad of the storage and replacement unit 142
  • reference numeral 137 is the pillar of the full heat preservation cavity.
  • Reference numeral 114 is gravel soil
  • reference numeral 127 is a preheating feed pipe of the steam generator 128,
  • reference numeral 121 is a seam of the cavity cover 141 of the full heat preservation cavity, and reference numeral 142 is an indirect heat.
  • Reference numeral 143 is a fin of a steam generator, and reference numeral 144 is a thermally conductive capillary bundle immersed in a heat storage material. It is in communication with the inlet pipe 147 and the outlet pipe 158.
  • 145 is an inlet pipe for heat storage material
  • reference numeral 128 is a steam generator or a heater for high-temperature gas
  • reference numeral 147 is an inlet pipe for a heat-conducting medium such as thermal oil or supercritical gas
  • reference numeral 100 is a pump.
  • Reference numeral 149 is an inlet nozzle
  • reference numeral 111 is a steam injection pipe
  • reference numeral 117 is an exhaust pipe, which is used to generate a vacuum interlayer 118
  • reference numeral 131 is a valve.
  • Reference numeral 153 is a working medium, abbreviated as working medium, reference numeral 154 is a heat storage material outlet pipe, reference numeral 118 is a vacuum, reference numeral 156 is a heat transfer medium outlet pipe joint, and reference numeral 157 is a phase change heat storage material.
  • working medium abbreviated as working medium
  • reference numeral 154 is a heat storage material outlet pipe
  • reference numeral 118 is a vacuum
  • reference numeral 156 is a heat transfer medium outlet pipe joint
  • reference numeral 157 is a phase change heat storage material.
  • molten salt or a non-phase change heat storage material reference numeral 158 is an outlet pipe of a heat conducting medium.
  • reference numeral 175 is the main mirror axis of the second-line mirror unit for automatic storm avoidance
  • reference numeral 176 is the main mirror handle, which is fixedly connected to the main mirror plate, and is worn on the main mirror axis.
  • 177 is the attached mirror shaft, which uses the main mirror plate as a carrier.
  • Reference numeral 178 is the attached mirror handle, which is fixedly connected to the attached mirror plate. It is worn on the attached mirror shaft 177.
  • the reference numeral 179 is a unified tube.
  • the direct intermediate connecting pipe 24 is movably connected through a flexible pipe joint
  • reference numeral 41 is a switching device. The remaining reference numerals are the same as those in FIG. 3 and will not be repeated.
  • reference numeral 181 is a torsion spring, which is used to position the attached mirror when there is no storm. One end of the torsion spring is pressed against the main mirror plate, and the other end is pressed against the attached mirror plate.
  • Reference numeral 64 is the mirror seam of the upper and lower mirrors
  • reference numeral 74 is the middle beam of the frame
  • reference numeral 183 is the limit screw of the main mirror plate
  • reference numeral 184 is a limit nut
  • reference numeral 185 The main mirror spring is used to position the main mirror when there is no storm.
  • the direct-connected connecting pipe will not have a large swing, and the curved-connected pipe is very stable. . Therefore, the intermediate pipes can be made of rigid materials that are cheap and resistant to high temperature and pressure, and it is easy to adopt heat preservation measures.
  • the sun boilers can be arranged into an arbitrary dot matrix with Qu Dazhong connecting pipes, but direct direct connecting pipes cannot.
  • the direct-connecting middle pipe is straight, and the pipe is short, which makes it easier to make a metal vacuum pipe to maintain heat.
  • the invention can store the heat storage steam generating equipment in the underground full heat preservation cavity.
  • This design of the heat storage component is the most reasonable, because it tightly blocks the three ways of heat loss, namely radiation, conduction and convection.
  • the heat storage time is greatly extended, and the power can be continuously generated day and night. It can avoid the discontinuity of current dish-type CSP and impact on large power grids.
  • dish-type CSP can not combine multiple units to work in a flow-through mode, which can increase efficiency through relay.
  • the invention can build a very large-scale CSP station.
  • an automatic tracking machine carries two condenser units, which saves the tracking machine and greatly reduces the cost of power generation.
  • the focal length of the present invention is greatly shortened, so that the focused light beam is accurately aligned with the collector at all times, and the utilization rate of sunlight is high.
  • the focus is moved down, so that both above and below the vacuum pot can be focused, the light is uniform, and the glass-covered pot is not easily broken.
  • the present invention uses the underground heat preservation cavity buried underground to allow supercritical high-temperature gas or heat-conducting oil to pass through the capillary bundles densely packed in the phase-change heat-storage material, thereby defrosting the phase-change heat-storage material, so that it can store the heat.
  • the heat time is greatly extended. Solar heat can be used to generate electricity at night, rain or snow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明是碟储高聚光热发电站,是用太阳能实现点聚焦以产生超高温高压工质而长时间储热并能昼夜阴晴连续发电的系统。它由带有全自动双轴精准跟日机的阳光锅炉机群、储热时间特长的部件、换热产汽部件、热功转换和发电部件及辅助设备等构成。可用于建设高效低成本的超大型光热发电站而为大电网供电;也可为居民小区或工厂、农场、学校等供电供暖;还能为能源国际互联网卖电提供电源。具有光热转换和热电转换效率分别可达80%和35%左右(现行塔式光热电站效率只有10%~15%)、显热和潜热储存时间特长、雨雪天和夜间等无太阳时也能连续用太阳热发电、不用化石能源辅助、太阳能利用率特高、能节省聚光镜和跟日机、并能自动躲暴风且发电成本低等优点。

Description

碟储高聚光热发电站 技术领域
本发明属于可再生能源的太阳能利用领域,具体涉及一种碟储高聚光热发电站。
背景技术
现在世界上的太阳能光热发电技术,有槽式的,菲淫尔式的,塔式的和碟式的,前两种都属于单轴跟踪太阳,光热和热电转换效率低,浪费的阳光很多,用的聚光镜很多,成本较高,属于中温利用太阳能。后两种属于双轴跟踪太阳,但塔式的使用定日镜,不能把所接收的阳光全部反射到吸热器上,而且聚光镜距吸热器很远,容易产生偏差,成本很高;碟式的是双轴跟踪太阳,一般使用旋转抛物面反射镜,所收集的热量难以储存,难以多台联合以进行接力赛式连续增效发电,所以难以大规模的建发电站。
发明内容
本发明就是要解决这些问题,就是要发明一种能够包含塔式和碟式的高倍聚光以产高温和高效率发电,又能连续接力增效以产生高温超高温工质,并能长时间储能而且成本较低的碟储高聚光热发电站。
本发明是用如下技术方案实现的:
1.一种碟储高聚光热发电站,包括阳光锅炉机群、储热产汽部件、热能转换和发电部件及辅助设备,其特殊之处在于:
A.所述阳光锅炉机群是由各台阳光锅炉机按照下述设计的连接方式连接而成的;
B.所述阳光锅炉机包括双轴自动跟日机、聚光镜部件、集热器部件和机架部件,详述如下:
a.所述双轴自动跟日机是高度角方位角式跟日机,把它的高度角轴心线和方位角轴心线安装成一个相交点;
b.所述聚光镜是在太阳照射下能产生焦点或焦斑的聚光镜;能在太阳照射下产生一个焦点或一个焦斑的聚光镜叫做一个聚光镜单元,在一台自动跟日机的两侧安装两个聚光镜单元,所述两个聚光镜单元的焦点或焦斑中心之间的连线叫做焦连线,此焦连线必须和自动跟日机的高度轴心线相重合或近似相重合,在焦连线上必有一点和自动跟日机的高度角轴心线和方位角轴心线的交会点相重合或近似相重合,此三心线上的重合点叫做三心合一点;
所述两个聚光镜单元的焦连线把聚光镜划分为分布于其两侧的四个分支,今把 位于焦连线同一侧的聚光镜无论它们是否连为一片,统称为共面镜;分布于焦连线两侧的不共面镜是互不连接的,或是互相连接的,或是一部分互相连接的,所述聚光镜是固定式的,或是自动躲暴风式的,或是带有纠偏反馈器的,或是不带纠偏反馈器的,或是带有障碍自通器的,或是不带障碍自通器的;所述聚光镜的骨架与自动跟日机的载物架固定连接,固定连接简称固连,由自动跟日机运载;
c.所述集热器部件,是真空锅集热器,或是腔锅式集热器,每个集热器中心都是和对应的聚光镜焦点或焦斑中心相重合或近似相重合的,位于自动跟日机两侧的两个集热器中心之间的连线叫做心连线,心连线和焦连线相重合或近似相重合,因此心连线上必有一点和所述三心合一点相重合,此重合点构成四心合一点简称四合点;所述真空锅集热器包括罩锅和内锅及中连管和管支架,罩锅包围内锅,在罩锅和内锅之间有密封性固定连接处,在罩锅和内锅之间是真空或近似真空;所述罩锅是透明的,它是球管形的腔壳;所述内锅包括球管形腔壳和双通管;所述球管形腔壳外表有吸热材料的涂层,球管形腔壳包括空心球面和空心管或者还包括喇叭形过渡管,空心球面有开孔,空心管的一个端口是直接和球面的孔连接通,或是间接的即先和喇叭形管连接通后再由喇叭形管和球面孔连接通;所述双通管是一统管或是双立管,所谓一统管是在一个管子中包含两个内盛流体的流动方向相反的管子,双通管两端有开口,双通管的一端从球管形内锅的管部插入内锅中,它和内锅之间有密封性固定连接处,它的另一端的两个管口露在内锅之外,此端口安装在阳光锅炉机的四合点处或其临近处;位于自动跟日机两侧的两个内锅的双通管的外端口即四个管口在阳光锅炉机的四合点处或其临近处相会合,相互组合把两个内锅连接通后剩两个管口分别和两个中连管的管口间接的即经过管接头而后连接通或是直接连接通;所述管接头是挠性或刚性的;
所述中连管是两端开口保热管,中连管是直达式的或是曲达式的,它的两端的位置分别安装在相邻近的两台阳光锅炉机的四合点处或其邻近处,和对应的真空锅的内锅间接的或直接连接通;直达中连管和曲达中连管总称为中连管,它二者的区别或定义是:两端口分别和相邻近的两台阳光锅炉机的集热器连接通的中连管,工作介质从其一端流到另一端口的过程中,不经过方位角轴路段的中连管叫直达中连管;工作介质从此中连管的一端流到另一端的过程中,或长或短经过了方位角轴的路段的中连管叫曲达中连管;
所述腔锅式集热器和真空锅集热器的不同之处,是用具有凸面隔热保热和凹洞面吸热的夹层容器锅代替真空锅集热器中的真空锅,其余构造相同;
真空锅集热器或腔锅集热器都由锅支架支撑,锅支架与自动跟日机的载物架连接;
d.所述阳光锅炉机群中的各台阳光锅炉机的集热器之间都是用直达中连管或曲达中连管按照所述连接方式通过挠性管接头或刚性管接头把它们连接通的;
C.所述储热产汽部件简称储产部件,它或是储热换热产汽一体器简称储换一体 器;或是导热和相变储热或非相变储热及产汽总系统,简称导储总系统;或是无换热的储产系统;或是综合储产部件;各种储产部件或是都安置于全方保热腔之内,或是不安置于全方保热腔之内,或是一部分安置于全方保热腔之内;
D.所述全方保热腔是从各个方面把热量传递的全部方式和途径给以严密堵绝而构成的保热腔室,它是一个空腔,它或是被安装于地面之下,或者是有一部分被安装于地面之下,或是被安装于地面之上;
E.所述阳光锅炉机群中位于最接近储产部件的机群终端的阳光锅炉机的中连管是直接的或经过固定桩后间接的和储产部件连接通,储产部件的蒸汽发生器或高压缩气体和喷气管连接通,喷气管的另一端口或者先和用于升温的过热蒸汽加工设备连接通,然后再和用于把热能变为机械能和电能的发电设备的动力部件连接通;或者直接和把热能变为机械能和电能的发电设备的动力部件连接通;位于阳光锅炉机群的另一端即机群始端的阳光锅炉机的中连管,或者和从储产部件或发电部件中返回来的输送工质的管路经过泵连接通,或不经过泵而连接通,或者不和回路管连接通而和输送工质的泵连接通。
2.所述带有障碍自通器的聚光镜包括带有U形转板和铰接轴的聚光镜、驱动器、变速器、传动部件和开关装置或者还包括离合器;
变速器和传动部件相连接就是变速传动部件,变速传动部件的高速端与驱动器连接,低速端与铰接轴作可传力矩的连接,变速传动部件或是挠性的或是刚性的,驱动器和变速传动部件都与自动跟日机的载物架连接,聚光镜和U形转板连接,U形转板铰接在铰接轴上;所述开关装置或是光电信号开关,或是机电触动开关,或是电磁信号开关,所述开关装置的电路都和所述驱动器作电连接;
所述聚光镜所带铰接轴是铰接在八块远轴镜上的,八块远轴镜的定义是:
每个带有障碍自通器的聚光镜单元依照距方位角轴的远近沿垂直于高度角轴的方向切割,可划分为远轴镜和近轴镜,远轴镜是距方位角轴最远的聚光镜的部分,当跟踪太阳到中天位置时依直达中连管所在的水平面划分上下,远轴镜又可分为上远轴镜和下远轴镜两层,按此规则和前述不共面聚光镜的定义可把自动跟日机两侧的位于东南西北四个方向的远轴镜分成八个部分即八块,这八块远轴镜都各自带有铰接轴,铰接轴依跟踪太阳到中天时划分或是横置的或是竖置的,横置轴或竖置轴都以机架为载体,机架与自动跟日机的载物架连接;
所述障碍自通器或是齐通式的或是分通式的,所谓齐通式障碍自通器是指在通过直达中连管时上层四块远轴镜或者下层四块远轴镜同时都转动,所谓分通式障碍自通器是说在通过直达中连管时或是东南上和西北上远轴镜同时转动,或是西南上和东北上远轴镜同时转动,或是东南下和西北下远轴镜同时转动,或是西南下和东北下远轴镜同时转动,这种分通式障碍自通器是在传动部件中加离合器来实现的;齐通式障碍自通器不用离合器。
3.所述在聚光镜部件上安装的纠偏反馈器,包括边框和太阳电池及连接电线, 在由所述边框构成的平面坐标系里,在各自分别对称于横坐标轴和纵坐标轴的位置上,分别安装的四组太阳电池,关于横坐标轴为对称的两组太阳电池其电学参数相等,对称于纵坐标轴的两组太阳电池其电学参数也都相等,这四组太阳电池各自的正极和负极与自动跟日机的信号控制器分别作电连接,此纠偏反馈器与聚光镜的框架连接,对于有孔洞的会聚光束,纠偏反馈器的外有效边线与该孔洞的轮廓线对应;对于无孔洞的会聚光束,纠偏反馈器的内有效边线与会聚光束的外轮廓线对应,所谓有效边线是由所述太阳电池组的边构成的边线。
4.所述一统管是套筒式的或是隔板式的,套筒式一统管是在两端开口的较粗管子中插入两端开口的较细管构成,隔板式一统管是在两端开口的管中插入一个板状物以把此管分为两部分构成;所述双立管是在真空锅内锅中插入两个分别独立的不包括在一管中的管子。
5.所述储换一体器是直接加热简称直热式的,或是间接加热简称间热式的,直热式储换一体器包括装有导热介质和被简称为汽液工质的汽液工作介质的储热箱,导热介质或是装于盘管中或毛细管束中而沉浸于汽液工作介质中,或是直接包围装有汽液工质的容器而直接换热,在储热箱壁上固连有导热介质的进口管嘴和出口管嘴,还固连有汽液工质的进口管嘴和出口管嘴,所谓管嘴即管接头;所谓工质是能够进行膨胀作功的或导热的流体;
导热介质的进口管嘴经过所用连接管道和距储热箱最近的即机群终端的阳光锅炉机的中连管直接或间接的连接通,回路管包括连接管和阀门及管接头,或者还包括泵;汽液工质的进口管嘴经过所用管道直接或间接的和预热设备连接通,其出口管嘴和喷汽管连接通;
所述间热式储换一体器包括储热箱,相变储热材料或非相变储热材料及其蒸汽发生器和导热介质盘管或毛细管束,导热介质盘管和导热介质毛细管束总称为导热介质管束,所述导热介质管束沉浸于相变储热材料或非相变储热材料中,储热材料包围蒸汽发生器而和它进行传热连接,储热箱壁和导热介质的进口管嘴和出口管嘴分别固连,还和储热介质的进口管嘴和出口管嘴固连,所述与储热箱壁连接的导热介质的进口管和出口管直接或间接的分别与阳光锅炉机群终端和始端的中连管连接通,与储热箱连接的蒸汽发生器的进口管直接或间接的和预热设备连接通,与储热箱连接的蒸汽发生器的出口管为喷气管,它的外端口或者先和用于升温的过热蒸汽加工设备连接通,然后再和能把热能变为机械能和电能的发电设备连接通,或者直接经过阀门管道和能把热能变为机械能和电能的发电设备连接通,所述中连管是直达式或曲达式的。
6.所述导储总系统包括导热介质子系统、储热材料子系统、换热设备和蒸汽发生器,所述导热介质子系统包括导热介质泵、导热介质箱和管道阀门循环系统,所述导热介质泵安装于管道阀门循环系统中,导热介质循环管路中的第一部分由阳光锅炉机群的各个集热器及管接头和中连管构成,第二部分由沉浸于相变储热或非相 变储热子系统中的导热介质盘管或毛细管束构成,第三部分由导热介质回路中的管道阀门或者还包括泵构成,导热介质循环管路和导热介质容器连接通;所述储热材料子系统包括储热材料容器、沉浸于储热材料容器中的导热介质盘管或毛细管束,或者还包括循环泵,导热介质盘管或毛细管束都和储热材料容器中的储热材料作传热连接,储热材料通过换热设备和蒸汽发生器作传热连接,蒸汽发生器的进口管直接或间接的和预热器连接通,蒸汽发生器的出口管的外端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通,蒸汽发生器是带有导热翅片的或是不带翅片的。
7.所述无换热储产系统是循环式的或是非循环式的,循环式无换热储产系统包括蒸汽储发箱、液体回路管道阀门、工质输送泵、阳光锅炉机群中的管道和阀门以及高压止回阀;非循环无换热储产系统没有液体回路管,而是只用排液管,所述蒸汽储发箱的箱壁上有进口管嘴和出口管嘴,还有排液管嘴,其进口管嘴或直接的与进汽管的内端口连接通,或经过高压止回阀从而间接的与进汽管内端口连接通,进汽管外端口直接的或经过固定桩后而间接的和机群终端阳光锅炉机的直达中连管或曲达中连管经过挠性的或刚性的管接头而连接通,进汽管外端口或者直接的和机群终端阳光锅炉机的集热器经过挠性的或刚性的管接头而连接通,此管接头位于机群终端阳光锅炉机的四合点处或其邻近处,所述蒸汽储发箱的出口管嘴和喷汽管的一端连接通,喷汽管另一端口或者通过用于升温的过热蒸汽加工设备后和能把热能变为机械能和电能的发电设备的动力部件连接通,或者直接和能把热能变为机械能和电能的发电设备的动力部件连接通;
所述排液管嘴和非循环式无换热储产系统的排液管的内端连接通,排液管的外端和阀门连接通;或者所述排液管嘴和循环式无换热储产系统的液体回路管的内端连接通,液体回路管的外端直接或间接的和工质输送泵连接通,工质输送泵和用于把工质再加热的机群始端阳光锅炉机的中连管连接通;
所述综合储产部件是把上述两种或多种储产部件组成配套进行工作,或交替进行工作而组成的综合系统。
8.所述全方保热腔是由包括上方和下方在内的任何方向的全方位的壁壳所包围而成的空腔,包括隔热门或隔热盖子在内的所有各方向腔壁都至少由三层构成,内层是反射镜,中间层是骨架板或骨板,外层是隔热材料,在其腔壁上除了安装与内装物相对应的各种用于连接管接头和管道的管嘴之外,或者还固连有用于排气以产生真空的管嘴及阀门,或者无此种管嘴及阀门;在全方保热腔的壁壳和它的内装物的外壁之间的空间中,或有低压气体,或是真空,或是接近真空,或是常压气体,在此空腔底板上,装有用于安置物件的隔热支垫。
9.所述自动躲暴风聚光镜包括子镜板及其所围绕转动的心轴或转轴及机架,所述心轴是竖装或横装的,横装轴是垂直于聚光镜母线方向或接近垂直于母线方向 的心轴,围绕聚光镜的各个横装轴连起来是折线形圈,叫横折圈轴,与机架连接,以机架为载体,竖装轴是沿聚光镜母线方向或接近于母线方向的心轴,与机架连接,以机架为载体,子镜板是在聚光镜上切出的部分聚光镜,每个子镜板都固连有U形转板,子镜板经过U形转板铰接在心轴上,铰接在横折圈轴的子镜板有两个边是垂直于或接近垂直于母线方向的;所述母线是生成旋转曲面镜或旋转折面镜或旋转折曲面镜或生成旋转圆面镜的母线,圆面镜的母线是沿半径的折线,即生成菲涅尔聚光镜的母线;所述子镜板是二连子镜板或是三连子镜板。
10.所述二连子镜板是在一个子镜板上切出大小不同的两个分镜板,较大的分镜板叫主镜板,主镜板铰接在所述横装轴或竖装轴上,铰接有主镜板的轴叫主镜轴,主镜板在主镜轴上的正确的聚光工作状态,由弹簧和限位器定其位;在主镜板的平行于主镜轴方向的一个边上连接一个心轴或转轴,此心轴或转轴叫附镜轴,较小的分镜板铰接在附镜轴上,附镜板正确的聚光工作状态由弹簧和主镜板边框定其位,由主镜轴到附镜板最远边的距离,大于由主镜轴到主镜板最远边的距离,主镜板和附镜板只能向单一方向转动。
11.所述三连子镜板,是把主镜板分成大小不同的三个分镜板,其中最大的叫主镜板,主镜板的两个相对边上各连接一个轴,叫附镜轴,每个较小的分镜板铰接在附镜轴上,主镜板铰接在所述横装轴或竖装轴上,此横装轴或竖装轴叫主镜轴,与附镜轴平行,主镜板在主镜轴的正确聚光工作状态,由弹簧和限位器定其位,主镜板只能向单一方向转动,两个附镜板在各自附镜轴上的正确的聚光工作状态都由弹簧和主镜板的边框定其位,两个附镜板各自只能向单一方向旋转,并且二者旋转方向相同。
附图说明
图1是带挠性传动部件的分通式障碍自通器的阳光锅炉机的俯视图。
图2是图1的剖视图。
图3是带刚性传动部件的齐通式障碍自通器的阳光锅炉机的俯视图。
图4是图3的剖视图。
图5是带有竖轴型障碍自通器的阳光锅炉机的主视图。
图6(a)和图6(b)分别是带有纠偏反馈器的真空锅集热器的俯视图和剖视图。
图7是具有障碍自通器的非循环无换热储产系统图。
图8是有障碍自通器的直热式储换一体器循环系统图。
图9是无障碍自通器的直热式无换热的储产系统循环图。
图10是有毛细管束的间热式储换一体器的主视图。
图11是带有竖轴型双连镜单元的自动躲暴风的聚光镜的俯视图。
图12是图11的剖视图。
具体实施方式
在图1中,若照地图的方位观察,则附图标记1是东南上远轴镜的转轴,附图标记2是链轮轴承座,附图标记3是滑键式离合器的驱动器,附图标记4是滑键,它装在蜗轮12的轴15上,附图标记5是可沿滑键4滑动的离合轮,在图中它是和齿轮8相啮合的,附图标记6是链轮,它和链轮33通过链条相啮合,附图标记7是东南上远轴镜的转轴1的链轮,它和链轮37通过链条34相啮合,附图标记8是齿轮,附图标记9是链轮,它和链轮10相啮合,链轮10经过转轴17驱动西南上远轴镜,附图标记11是与载物架30固连的南上载物板,附图标记12是蜗轮,附图标记13是电机,附图标记14是固连于电机轴上的蜗杆,与蜗轮12啮合,附图标记15是蜗轮轴,附图标记16是链轮,它和链轮28相啮合,附图标记17是转轴,它固连于U形转板18,转板18固连于西南上远轴镜,附图标记19是带动西北上远轴镜20的转轴,附图标记21是远轴镜20的骨架,附图标记22是真空锅集热器,附图标记23是锅支架,附图标记24是直达中连管,附图标记25是插于内锅中的一统管的粗管,附图标记26是北上载物板,附图标记27是齿轮,它和固连于链轮28的轴上的齿轮相啮合,此传动副是为使转轴19有正确的转向,链轮28是西北上远轴镜的驱动轮,附图标记29是机架,附图标记30是载物架,附图标记31是出自粗管25的细管,粗细管31和25构成套筒式一统管,它两个有密封性固连处,附图标记32是管接头,附图标记33是链轮,它驱动东北上远轴镜的转轴38,附图标记34是链条,附图标记35是直达中连管和一统管之间的管接头,附图标记36是齿轮,当需要使东南上远轴镜和西北上远轴镜20同时转动以躲避直达中连管时,离合轮5受驱动器3的吸引即和齿轮36啮合而和齿轮8脱离。附图标记37是链轮,附图标记38是东北上远轴镜的转轴。附图标记39是机架接板,附图标记40是轴承座,附图标记41是开关装置,附图标记42是镜接缝。这种分通式的优点是聚光镜利用率高。
在图2中,附图标记43是机架中梁,附图标记44是工作介质简称工质例如水或汽,附图标记45是透明罩锅,附图标记46是金属内锅,附图标记47是真空层,附图标记48是自动跟日机,附图标记49是方位角轴,附图标记50是U形座板,是载物架30的载体,附图标记51是高度角轴,附图标记52是链条。其余各零件号和图1中相同。虚线表示图1中的东上远轴镜和东下远轴镜之间的接缝。
图3是带有刚性传动部件的障碍自通器的阳光锅炉机的俯视图,它是齐通式的,传动较简单,但聚光镜的利用率比分通式差。图3中的附图标记53是镜骨架,附图标记1是东南上远轴镜54的转轴,附图标记22是真空锅集热器,附图标记55是近轴镜的骨架,近轴镜是不动的,附图标记23是锅支架,附图标记56是反光镜,附图标记57是齿轮,它与电机轴齿轮58啮合,附图标记13是电机,附图标记40是轴承座,附图标记14是蜗杆,附图标记12是蜗轮,附图标记61是蜗杆轴,它的两端都有蜗杆,它带的齿轮与电机轴齿轮58相啮合,附图标记18是U形转板,附图标记24是直达中连管,附图标记62是切割聚光镜的接缝,附图标记35是中连管和一统管之间的管 接头,附图标记30是载物架,附图标记32是一统管伸出的细管的管接头,附图标记31是细管,附图标记25是粗管,附图标记41是开关装置,它和电机13作电连接。
图4是图3的剖视图。附图标记63是固定U形转板的键,附图标记50是U形座板,附图标记51是高度角轴,附图标记49是方位角轴,附图标记48是自动跟日机,附图标记29是机架。此图中的下层远轴镜的传动系统省略,因和上层的相同。虚线42表示图3中的东上远轴镜和东下远轴镜之间的接缝。其余标记和图2的相同。
图5是带有竖轴型障碍自通器的阳光锅炉机的主视图。图中附图标记48是自动跟日机,附图标记23是锅支架,附图标记65是链轮,它和工作链轮69经过链条相啮合,附图标记29是机架,附图标记68是上下两层远轴镜,附图标记69是固连于工作链轮和远轴镜之间的机械手,当工作链轮转动时,经过机械手使上远轴镜给直达中连管让路,顺利越过直达中连管。附图标记70是和工作链轮活动连接的心轴,它固连于机架中的竖轴支座。附图标记71是近轴镜,它不阻挡直达中连管。附图标记72是链轮转轴即传力轴,附图标记73代表a和b及c与d轮都是与驱动器(已被遮挡)连接的驱动链轮,附图标记74是机架中梁,附图标记42是镜与镜的接缝。标记76是机架中的竖轴支座,它和载物架30及机架固连,标记30是载物架,标记51是高度角轴,标记50是U形座板,标记49是方位角轴。
用直达中连管把各台阳光锅炉机的集热器连接通,优点是连接管路短,保热效果好,因直达中连管除管接头之外其余是直管加工简易,能耐高压并易于保持超高热,缺点是要加障碍自通器等传动装置。
图6(a)和图6(b)是带有纠偏反馈器的真空锅集热器,图中图6(a)是俯视图,图6(b)是剖面图。图中81是真空锅,它是球管形的,82是太阳电池,在X轴两端的太阳电池的电学参数例如开路电压、短路电流、串连电阻和并连电阻等等皆相等,位于Y轴两端的太阳电池的电学参数也必须相等。这两双太阳电池的电路都和自动跟日机的信号控制器作电连接。
图6(a)和图6(b)中的附图标记83是边框,是太阳电池的载体,附图标记84是太阳电池的导线,附图标记85是有圆形孔洞的会聚光束,会聚光束孔洞的内边和纠偏反馈器的外有效边对应,所谓有效边是由各太阳电池的边所围成的边,不是边框的边。图中附图标记86是隔板式一统管,附图标记87是支板,附图标记88是中连管和两个隔板式一统管之间的三通管接头,附图标记89是太阳电池主栅线之间的连线,附图标记90是管接头,附图标记24是直达中连管,附图标记92是球管形透明罩锅的管段,附图标记93是球管形内锅的管段,附图标记47是真空,附图标记95是隔板,它把两端开口的一个管分隔成两个管,附图标记44是工质。
在图7中,附图标记81是真空锅,附图标记29是机架,附图标记51是高度角轴,附图标记50是U形座板,附图标记48是自动跟日机,附图标记49是方位角轴,附图标记99是与载物架连接的横梁,附图标记134是下远轴镜的转轴,附图标记18是U形转板,附图标记100是泵,用于输送工质,附图标记71是近轴镜,附图标记20是上 远轴镜,附图标记24是直达中连管,它的两端安装在相邻两台阳光锅炉机的四合点处,附图标记74是机架中梁,附图标记32是一统管细管的管接头,附图标记103是中连管和进汽管关于支桩104的管接头,附图标记105是进汽管,附图标记106是全方保热腔,附图标记107是间隙,附图标记108是全方保热腔的金属骨架,附图标记109是排液管,附图标记110是无换热非循环储产一体器的箱体,附图标记111是喷汽管,它或是和继续加热以产生过热蒸汽或气体的设备连接通,或是直接与把热能变为机械能和电能的发电的设备连接通。附图标记112是反射镜,附图标记113是隔热材料,附图标记114是地下砂石,附图标记30是载物架,附图标记31是一统管中的细管,附图标记25是一统管的粗管。
在图8中,附图标记117是产生真空118的排气管,附图标记119是被阳光锅炉机群加热后的导热介质的输送管,附图标记111是蒸汽发生器的喷汽管,附图标记121是全方保热腔的盖子和腔体之间的接缝。附图标记108是全方保热腔的金属骨架,附图标记123是隔热支垫,附图标记124是导热介质例如导热油,包围以直接传热给蒸汽发生器128,使它产生高温高压蒸汽,附图标记125是储换一体器,附图标记112是反射镜,附图标记127是蒸汽发生器128的进液管,它和预热器连接通,附图标记128是蒸汽发生器,内容物可以是汽液混合体,附图标记113是隔热层,附图标记30是载物架,附图标记131是阀门,附图标记31是一统管的细管,附图标记25是一统管的粗管,附图标记134是回路管。其余附图标记和图7的相同。
图9是使用曲达中连管而不用障碍自通器的无换热储产系统循环图。图中附图标记81是真空锅,附图标记29是机架,附图标记51是高度角轴,附图标记48是自动跟日机,附图标记50是U形座板,附图标记49是方位角轴,附图标记100是工质输送泵,附图标记163是聚光镜单元,附图标记74是机架中梁,附图标记25是一统管的粗管,附图标记32是连接其细管的管接头,附图标记31是细管,附图标记164是把一统管粗管和曲达中连管连接通的管接头,附图标记165是真空锅的封接头,附图标记166是曲达中连管,它是把阳光锅炉机的集热器和储产一体器或循环泵连接通的弯曲的保持高热的管子,或是把相邻近的两台阳光锅炉机的集热器连接通的弯曲的保热管,在接通的路程中必须有经过沿自动跟日机的方位角轴走过的或长或短的路段。其优点是不需障碍自通器,其缺点是管路长散热多,并且至少要拐两道弯。附图标记167是管接头,附图标记119是被加热的工质的进口管,附图标记111是喷汽管,附图标记106是全方保热腔,附图标记108是全方保热腔的金属骨架板,附图标记123是储产一体器的支腿,附图标记171是蒸汽储发箱,附图标记112是反光镜,附图标记113是隔热材料,附图标记114是砂石,附图标记153是工质,附图标记30是载物架,附图标记174是回路管的阀门。
图10是间接加热式储热换热产汽一体器简称间热式储换一体器的主视图。图中附图标记135是全方保热腔的腔体,它安装于地下,附图标记123是储换一体器142的隔热支垫,附图标记137是全方保热腔的支柱,附图标记114是砂石土壤,附图 标记127是蒸汽发生器128的预热进料管,附图标记121是全方保热腔的腔盖141的接缝,附图标记142是间热式储换一体器,附图标记143是蒸汽发生器的翅片,附图标记144是沉浸于储热材料中的导热毛细管束,它和进口管147及出口管158是连通的,附图标记145是储热材料的进口管,附图标记128是蒸汽发生器或高温气体的加热器,附图标记147是导热介质例如导热油或超临界气体的进口管,附图标记100是泵,附图标记149是进口管嘴,附图标记111是喷汽管,附图标记117是排气管,用于产生真空夹层118,附图标记131是阀门。附图标记153是工作介质,简称工质,附图标记154是储热材料出口管,附图标记118是真空,附图标记156导热介质出口管接头,附图标记157是相变储热材料例如熔盐或非相变储热材料,附图标记158是导热介质出口管。
在图11中,附图标记175是自动躲暴风二连镜单元的主镜轴,附图标记176是主镜柄,它和主镜板固连,它穿在主镜轴上,附图标记177是附镜轴,它以主镜板为载体,附图标记178是附镜柄,它和附镜板固连,它穿在附镜轴177上,附图标记179是一统管,它和直达中连管24经过挠性管接头活动连接通,附图标记41是开关装置。其余附图标记与图3的相同,不复述。
在图12中,附图标记181是扭簧,用于在无暴风时给附镜定位,扭簧一端压于主镜板,另一端压于附镜板。附图标记64是上镜和下镜的镜接缝,附图标记74是机架中梁,附图标记183是主镜板的限位螺钉,附图标记184是限位螺母,附图标记185是主镜簧,用于在无暴风时为主镜定位。
由图11可见,当暴风正对着东北上近轴镜凸面吹来时,因主镜轴到附镜板最远边的距离大于主镜轴到主镜板最远边的距离,又因附镜板只能沿单一方向例如沿逆时针方向转,因而东北上近轴镜在暴风作用下,只能沿顺时针方向转。当暴风正向东北上近轴镜的凹面吹来时,因附镜簧弹力较弱,附镜板先转一角度,故主镜轴左边面积大于主镜轴右边面积,故整个镜子仍只能向顺时针方向转,直转到风阻最小位置,以保安,暴风过后,复位簧使整个镜子复位。三连镜单元的躲暴风原理类似与此,兹不赘述。
本发明由于巧妙的设计出和利用了四合点,所以,在自动跟日机双轴精准全方位跟踪太阳时,直达中连管不会有大幅度的摆动,曲达中连管更是很稳定。故中连管都可用廉价并耐高温高压的刚性材料制作,并易于采用保热措施。为了防止各台阳光锅炉机之间的互相挡光,用曲达中连管可把阳光锅炉机排列成任意点阵,直达中连管则不能。但直达中连管是直线,管路短,更易作成金属真空管保热好。本发明可把储热产汽设备储存与地下的全方保热腔中,储热部件的这种设计是最合理的,因为它把热损失的三种途径即辐射、传导和对流全都严密堵绝了,因而储热时间大为延长,而可昼夜阴晴连续发电。能避免现行碟式光热发电的间断性和对大电网的冲击。
根据本发明的权利要求书,还可作出更多实施例,都属于本发明权利要求书保 护范围。
本发明的优点为:
1、发挥了碟式光热发电聚光倍数高的优点,集热温度高,发电效率高,因而成本降低。
2、克服了碟式光热发电难以储热的缺点,本发明可大规模储热,以便在无太阳时也可用太阳热连续发电,这是碟式光热发电不能作到的。
3、克服了碟式光热发电不能多台联合以接力增效的流水式工作的缺点,本发明可建超大规模光热电站。
4、本发明一台自动跟日机运载两个聚光镜单元,节省了跟日机,大幅度降低了发电成本。
5、发明了球管形真空锅集热器,使集热损失大为减少,效率提高。
6、发明了纠偏反馈器,使聚光束对准集热器的精准度很高。
7、和塔式光热电站相比,本发明焦距大为缩短,使聚光束时刻精准对准集热器,阳光利用率高。
8、本发明把焦点下移,使真空锅上方和下方皆能受聚光,光照均匀,玻璃罩锅不易破裂。
9、本发明用埋于地下的全方保热腔储热,可使超临界高温气体或导热油通过密布于相变储热材料中的毛细管束,解冻相变储热材料,故可使储热时间大为延长。夜间、雨雪天皆可用太阳热发电。

Claims (11)

  1. 一种碟储高聚光热发电站,包括阳光锅炉机群、储热产汽部件、热能转换和发电部件及辅助设备,其特征在于:
    A.所述阳光锅炉机群是由各台阳光锅炉机按照下述设计的连接方式连接而成的;
    B.所述阳光锅炉机包括双轴自动跟日机、聚光镜部件、集热器部件和机架部件,详述如下:
    a.所述双轴自动跟日机是高度角方位角式跟日机,把它的高度角轴心线和方位角轴心线安装成一个相交点;
    b.所述聚光镜是在太阳照射下能产生焦点或焦斑的聚光镜;能在太阳照射下产生一个焦点或一个焦斑的聚光镜叫做一个聚光镜单元,在一台自动跟日机的两侧安装两个聚光镜单元,所述两个聚光镜单元的焦点或焦斑中心之间的连线叫做焦连线,此焦连线必须和自动跟日机的高度轴心线相重合或近似相重合,在焦连线上必有一点和自动跟日机的高度角轴心线和方位角轴心线的交会点相重合或近似相重合,此三心线上的重合点叫做三心合一点;
    所述两个聚光镜单元的焦连线把聚光镜划分为分布于其两侧的四个分支,今把位于焦连线同一侧的聚光镜无论它们是否连为一片,统称为共面镜;分布于焦连线两侧的不共面镜是互不连接的,或是互相连接的,或是一部分互相连接的,所述聚光镜是固定式的,或是自动躲暴风式的,或是带有纠偏反馈器的,或是不带纠偏反馈器的,或是带有障碍自通器的,或是不带障碍自通器的;所述聚光镜的骨架与自动跟日机的载物架固定连接,固定连接简称固连,由自动跟日机运载;
    c.所述集热器部件,是真空锅集热器,或是腔锅式集热器,每个集热器中心都是和对应的聚光镜焦点或焦斑中心相重合或近似相重合的,位于自动跟日机两侧的两个集热器中心之间的连线叫做心连线,心连线和焦连线相重合或近似相重合,因此心连线上必有一点和所述三心合一点相重合,此重合点构成四心合一点简称四合点;所述真空锅集热器包括罩锅和内锅及中连管和管支架,罩锅包围内锅,在罩锅和内锅之间有密封性固定连接处,在罩锅和内锅之间是真空或近似真空;所述罩锅是透明的,它是球管形的腔壳;所述内锅包括球管形腔壳和双通管;所述球管形腔壳外表有吸热材料的涂层,球管形腔壳包括空心球面和空心管或者还包括喇叭形过渡管,空心球面有开孔,空心管的一个端口是直接和球面的孔连接通,或是间接的即先和喇叭形管连接通后再由喇叭形管和球面孔连接通;所述双通管是一统管或是双立管,所谓一统管是在一个管子中包含两个内盛流体的流动方向相反的管子,双通管两端有开口,双通管的一端从球管形内锅的管部插入内锅中,它和内锅之间有密封性固定连接处,它的另一端的两个管口露在内锅之外,此端口安装在阳光锅炉机的四合点处或其临近处;位于自动跟日机两侧的两个内锅的双通管的外端口 即四个管口在阳光锅炉机的四合点处或其临近处相会合,相互组合把两个内锅连接通后剩两个管口分别和两个中连管的管口间接的即经过管接头而后连接通或是直接连接通;所述管接头是挠性或刚性的;
    所述中连管是两端开口保热管,中连管是直达式的或是曲达式的,它的两端的位置分别安装在相邻近的两台阳光锅炉机的四合点处或其邻近处,和对应的真空锅的内锅间接的或直接连接通;直达中连管和曲达中连管总称为中连管,它二者的区别或定义是:两端口分别和相邻近的两台阳光锅炉机的集热器连接通的中连管,工作介质从其一端流到另一端口的过程中,不经过方位角轴路段的中连管叫直达中连管;工作介质从此中连管的一端流到另一端的过程中,或长或短经过了方位角轴的路段的中连管叫曲达中连管;
    所述腔锅式集热器和真空锅集热器的不同之处,是用具有凸面隔热保热和凹洞面吸热的夹层容器锅代替真空锅集热器中的真空锅,其余构造相同;
    真空锅集热器或腔锅集热器都由锅支架支撑,锅支架与自动跟日机的载物架连接;
    d.所述阳光锅炉机群中的各台阳光锅炉机的集热器之间都是用直达中连管或曲达中连管按照所述连接方式通过挠性管接头或刚性管接头把它们连接通的;
    C.所述储热产汽部件简称储产部件,它或是储热换热产汽一体器简称储换一体器;或者是导热和相变储热或非相变储热及产汽总系统,简称导储总系统;或者是无换热的储产系统;或者是综合储产部件;各种储产部件或是都安置于全方保热腔之内,或是不安置于全方保热腔之内,或是一部分安置于全方保热腔之内;
    D.所述全方保热腔是从各个方面把热量传递的全部方式和途径给以严密堵绝而构成的保热腔室,它是一个空腔,它或是被安装于地面之下,或者是有一部分被安装于地面之下,或是被安装于地面之上;
    E.所述阳光锅炉机群中位于最接近储产部件的机群终端的阳光锅炉机的中连管是直接的或经过固定桩后间接的和储产部件连接通,储产部件的蒸汽发生器或高压缩气体和喷气管连接通,喷气管的另一端口或者先和用于升温的过热蒸汽加工设备连接通,然后再和用于把热能变为机械能和电能的发电设备的动力部件连接通;或者直接和把热能变为机械能和电能的发电设备的动力部件连接通;位于阳光锅炉机群的另一端即机群始端的阳光锅炉机的中连管,或者和从储产部件或发电部件中返回来的输送工质的管路经过泵连接通,或不经过泵而连接通,或者不和回路管连接通而和输送工质的泵连接通。
  2. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述带有障碍自通器的聚光镜包括带有U形转板和铰接轴的聚光镜、驱动器、变速器、传动部件和开关装置或者还包括离合器;
    变速器和传动部件相连接就是变速传动部件,变速传动部件的高速端与驱动器连接,低速端与铰接轴作可传力矩的连接,变速传动部件或是挠性的或是刚性的, 驱动器和变速传动部件都与自动跟日机的载物架连接,聚光镜和U形转板连接,U形转板铰接在铰接轴上;所述开关装置或是光电信号开关,或是机电触动开关,或是电磁信号开关,所述开关装置的电路都和所述驱动器作电连接;
    所述聚光镜所带铰接轴是铰接在八块远轴镜上的,八块远轴镜的定义是:
    每个带有障碍自通器的聚光镜单元依照距方位角轴的远近沿垂直于高度角轴的方向切割,可划分为远轴镜和近轴镜,远轴镜是距方位角轴最远的聚光镜的部分,当跟踪太阳到中天位置时依直达中连管所在的水平面划分上下,远轴镜又可分为上远轴镜和下远轴镜两层,按此规则和前述不共面聚光镜的定义可把自动跟日机两侧的位于东南西北四个方向的远轴镜分成八个部分即八块,这八块远轴镜都各自带有铰接轴,铰接轴依跟踪太阳到中天时划分或是横置的或是竖置的,横置轴或竖置轴都以机架为载体,机架与自动跟日机的载物架连接;
    所述障碍自通器或是齐通式的或是分通式的,所谓齐通式障碍自通器是指在通过直达中连管时上层四块远轴镜或者下层四块远轴镜同时都转动,所谓分通式障碍自通器是说在通过直达中连管时或是东南上和西北上远轴镜同时转动,或是西南上和东北上远轴镜同时转动,或是东南下和西北下远轴镜同时转动,或是西南下和东北下远轴镜同时转动,这种分通式障碍自通器是在传动部件中加离合器来实现的;齐通式障碍自通器不用离合器。
  3. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述在聚光镜部件上安装的纠偏反馈器,包括边框和太阳电池及连接电线,在由所述边框构成的平面坐标系里,在各自分别对称于横坐标轴和纵坐标轴的位置上,分别安装的四组太阳电池,关于横坐标轴为对称的两组太阳电池其电学参数相等,对称于纵坐标轴的两组太阳电池其电学参数也都相等,这四组太阳电池各自的正极和负极与自动跟日机的信号控制器分别作电连接,此纠偏反馈器与聚光镜的框架连接,对于有孔洞的会聚光束,纠偏反馈器的外有效边线与该孔洞的轮廓线对应;对于无孔洞的会聚光束,纠偏反馈器的内有效边线与会聚光束的外轮廓线对应,所谓有效边线是由所述太阳电池组的边构成的边线。
  4. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述一统管是套筒式的或是隔板式的,套筒式一统管是在两端开口的较粗管子中插入两端开口的较细管构成,隔板式一统管是在一个两端开口的管中插入一个板状物以把此管子分为两部分构成;所述双立管是在真空锅内锅中插入两个分别独立的不包括在一管中的管子。
  5. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述储换一体器是直热式的或是间热式的,直热式储换一体器包括装有导热介质和被简称为汽液工质的汽液工作介质的储热箱,导热介质或是装于盘管中或毛细管束中而沉浸于汽液工作介质中,或是直接包围装有汽液工质的容器而直接换热,在储热箱壁上固连有导热介质的进口管嘴和出口管嘴,还固连有汽液工质的进口管嘴和出口管嘴,所谓管 嘴即管接头;所谓工质是能够进行膨胀作功的或导热的流体;
    导热介质的进口管嘴经过所用连接管道和距储热箱最近的即机群终端的阳光锅炉机的中连管直接或间接的连接通,回路管包括连接管和阀门及管接头,或者还包括泵;汽液工质的进口管嘴经过所用管道直接或间接的和预热设备连接通,其出口管嘴和喷汽管连接通;
    所述间热式储换一体器包括储热箱,相变储热材料或非相变储热材料及其蒸汽发生器和导热介质盘管或毛细管束,导热介质盘管和导热介质毛细管束总称为导热介质管束,所述导热介质管束沉浸于相变储热材料或非相变储热材料中,储热材料包围蒸汽发生器而和它进行传热连接,储热箱壁和导热介质的进口管嘴和出口管嘴分别固连,还和储热介质的进口管嘴和出口管嘴固连,所述与储热箱壁连接的导热介质的进口管和出口管直接或间接的分别与阳光锅炉机群终端和始端的中连管连接通,与储热箱连接的蒸汽发生器的进口管直接或间接的和预热设备连接通,与储热箱连接的蒸汽发生器的出口管为喷气管,它的外端口或者先和用于升温的过热蒸汽加工设备连接通,然后再和能把热能变为机械能和电能的发电设备连接通,或者直接经过阀门管道和能把热能变为机械能和电能的发电设备连接通,所述中连管是直达式或曲达式的。
  6. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述导储总系统包括导热介质子系统、储热材料子系统、换热设备和蒸汽发生器,所述导热介质子系统包括导热介质泵、导热介质箱和管道阀门循环系统,所述导热介质泵安装于管道阀门循环系统中,导热介质循环管路中的第一部分由阳光锅炉机群的各个集热器及管接头和中连管构成,第二部分由沉浸于相变储热或非相变储热子系统中的导热介质盘管或毛细管束构成,第三部分由导热介质回路中的管道阀门或者还包括泵构成,导热介质循环管路和导热介质容器连接通;所述储热材料子系统包括储热材料容器、沉浸于储热材料容器中的导热介质盘管或毛细管束,或者还包括循环泵,导热介质盘管或毛细管束都和储热材料容器中的储热材料作传热连接,储热材料通过换热设备和蒸汽发生器作传热连接,蒸汽发生器的进口管直接或间接的和预热器连接通,蒸汽发生器的出口管的外端口,或者先和用于升温的过热蒸汽加工设备连接通,然后再与能把热能转换为机械能和电能的发电设备的动力部件连接通,或者直接经过阀门管道与能把热能转换为机械能和电能的发电设备的动力部件连接通,蒸汽发生器是带有导热翅片的或是不带翅片的。
  7. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述无换热储产系统是循环式的或是非循环式的,循环式无换热储产系统包括蒸汽储发箱、液体回路管道阀门、工质输送泵、阳光锅炉机群中的管道和阀门以及高压止回阀;非循环无换热储产系统没有液体回路管,而是只用排液管,所述蒸汽储发箱的箱壁上有进口管嘴和出口管嘴,还有排液管嘴,其进口管嘴或直接的与进汽管的内端口连接通,或经过高压止回阀从而间接的与进汽管内端口连接通,进汽管外端口直接的或经过 固定桩后而间接的和机群终端阳光锅炉机的直达中连管或曲达中连管经过挠性的或刚性的管接头而连接通,进汽管外端口或者直接的和机群终端阳光锅炉机的集热器经过挠性的或刚性的管接头而连接通,此管接头位于机群终端阳光锅炉机的四合点处或其邻近处,所述蒸汽储发箱的出口管嘴和喷汽管的一端连接通,喷汽管另一端口或者通过用于升温的过热蒸汽加工设备后和能把热能变为机械能和电能的发电设备的动力部件连接通,或者直接和能把热能变为机械能和电能的发电设备的动力部件连接通;
    所述排液管嘴和非循环式无换热储产系统的排液管的内端连接通,排液管的外端和阀门连接通;或者所述排液管嘴和循环式无换热储产系统的液体回路管的内端连接通,液体回路管的外端直接或间接的和工质输送泵连接通,工质输送泵和用于把工质再加热的机群始端阳光锅炉机的中连管连接通;
    所述综合储产部件是把上述两种或多种储产部件组成配套进行工作,或交替进行工作而组成的综合系统。
  8. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述全方保热腔是由包括上方和下方在内的任何方向的全方位的壁壳所包围而成的空腔,包括隔热门或隔热盖子在内的所有各方向腔壁都至少由三层构成,内层是反射镜,中间层是骨架板或骨板,外层是隔热材料,在其腔壁上除了安装与内装物相对应的各种用于连接管接头和管道的管嘴之外,或者还固连有用于排气以产生真空的管嘴及阀门,或者无此种管嘴及阀门;在全方保热腔的壁壳和它的内装物的外壁之间的空间中,或有低压气体,或是真空,或是接近真空,或是常压气体,在此空腔底板上,装有用于安置物件的隔热支垫。
  9. 据权利要求1所述的碟储高聚光热发电站,其特征在于:所述自动躲暴风聚光镜包括子镜板及其所围绕转动的心轴或转轴及机架,所述心轴是竖装或横装的,横装轴是垂直于聚光镜母线方向或接近垂直于母线方向的心轴,围绕聚光镜的各个横装轴连起来是折线形圈,叫横折圈轴,与机架连接,以机架为载体,竖装轴是沿聚光镜母线方向或接近于母线方向的心轴,与机架连接,以机架为载体,子镜板是在聚光镜上切出的部分聚光镜,每个子镜板都固连有U形转板,子镜板经过U形转板铰接在心轴上,铰接在横折圈轴的子镜板有两个边是垂直于或接近垂直于母线方向的;所述母线是生成旋转曲面镜或旋转折面镜或旋转折曲面镜或生成旋转圆面镜的母线,圆面镜的母线是沿半径的折线,即生成菲涅尔聚光镜的母线;所述子镜板是二连子镜板或是三连子镜板。
  10. 据权利要求9所述的碟储高聚光热发电站,其特征在于:所述二连子镜板是在一个子镜板上切出大小不同的两个分镜板,较大的分镜板叫主镜板,主镜板铰接在所述横装轴或竖装轴上,铰接有主镜板的轴叫主镜轴,主镜板在主镜轴上的正确的聚光工作状态,由弹簧和限位器定其位;在主镜板的平行于主镜轴方向的一个边上连接一个心轴或转轴,此心轴或转轴叫附镜轴,较小的分镜板铰接在附镜轴上, 附镜板正确的聚光工作状态由弹簧和主镜板边框定其位,由主镜轴到附镜板最远边的距离,大于由主镜轴到主镜板最远边的距离,主镜板和附镜板只能向单一方向转动。
  11. 据权利要求9所述的碟储高聚光热发电站,其特征在于:所述三连子镜板,是把主镜板分成大小不同的三个分镜板,其中最大的叫主镜板,主镜板的两个相对边上各连接一个轴,叫附镜轴,每个较小的分镜板铰接在附镜轴上,主镜板铰接在所述横装轴或竖装轴上,此横装轴或竖装轴叫主镜轴,与附镜轴平行,主镜板在主镜轴的正确聚光工作状态,由弹簧和限位器定其位,主镜板只能向单一方向转动,两个附镜板在各自附镜轴上的正确的聚光工作状态都由弹簧和主镜板的边框定其位,两个附镜板各自只能向单一方向旋转,并且二者旋转方向相同。
PCT/CN2019/092953 2018-06-29 2019-06-26 碟储高聚光热发电站 WO2020001463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810703695.8 2018-06-29
CN201810703695.8A CN110657591A (zh) 2018-06-29 2018-06-29 碟储高聚光热发电站

Publications (1)

Publication Number Publication Date
WO2020001463A1 true WO2020001463A1 (zh) 2020-01-02

Family

ID=68986133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092953 WO2020001463A1 (zh) 2018-06-29 2019-06-26 碟储高聚光热发电站

Country Status (2)

Country Link
CN (1) CN110657591A (zh)
WO (1) WO2020001463A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167832A1 (en) * 2012-01-03 2013-07-04 Stanley Kim Thermal Solar Capacitor System
CN107906769A (zh) * 2017-06-29 2018-04-13 王存义 定管高效光热发电站
CN209214131U (zh) * 2018-06-29 2019-08-06 王存义 碟储高聚光热发电站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075793A (zh) * 2006-05-19 2007-11-21 王存义 立板风光高效发电机
CN101586879B (zh) * 2008-10-08 2011-04-20 中国华电工程(集团)有限公司 一种与燃气-蒸汽联合循环结合的太阳能热利用的系统
CN204494861U (zh) * 2015-03-20 2015-07-22 苏州弘阳新能源科技有限公司 一种双镜式太阳能锅炉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130167832A1 (en) * 2012-01-03 2013-07-04 Stanley Kim Thermal Solar Capacitor System
CN107906769A (zh) * 2017-06-29 2018-04-13 王存义 定管高效光热发电站
CN209214131U (zh) * 2018-06-29 2019-08-06 王存义 碟储高聚光热发电站

Also Published As

Publication number Publication date
CN110657591A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
US9476612B2 (en) Beam-forming concentrating solar thermal array power systems
WO2020001221A1 (zh) 合成高效光热发电站
US20110226308A1 (en) Solar energy hybrid module
US20130098354A1 (en) Solar collectors
Poullikkas et al. A comparative overview of wet and dry cooling systems for Rankine cycle based CSP plants
US20130152914A1 (en) Panel with longitudinal mirrors for a solar power plant
US20110265783A1 (en) solar energy collecting system
CN209214131U (zh) 碟储高聚光热发电站
CN108800605A (zh) 一种太阳能集热管及温差发电系统
Singh et al. A review on solar energy collection for thermal applications
CN206626824U (zh) 太阳能聚光器
WO2020001463A1 (zh) 碟储高聚光热发电站
Collares-Pereira et al. Linear Fresnel reflector (LFR) plants using superheated steam, molten salts, and other heat transfer fluids
US10077921B2 (en) Re-reflecting paraboloid dish collector
CN205261497U (zh) 一种复合抛物面太阳能聚光式熔融盐蒸汽发生器
CN105241089B (zh) 一种方位跟踪利用太阳光集热系统
CN107390725A (zh) 一种自主追踪太阳光线的系统及其控制方法
CN105674588A (zh) 一种多二次反射塔共焦点的太阳能光热镜场系统
EP1368597B1 (en) Solar energy plant
KR20210066461A (ko) 온도센서를 이용하여 태양광을 추적할 수 있는 ptc형 태양열 시스템
CN205619586U (zh) 一种多二次反射塔共焦点的太阳能光热镜场系统
ES2726673T3 (es) Concentrador solar con conexiones pivotantes separadas
WO2021223700A1 (zh) 阳光锅炉机
CN210320703U (zh) 太阳能聚光集热装置
Khola et al. Different types of solar air heaters: A Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825035

Country of ref document: EP

Kind code of ref document: A1