WO2020001351A1 - Egfr inhibitor, method for preparing the same, and uses thereof - Google Patents

Egfr inhibitor, method for preparing the same, and uses thereof Download PDF

Info

Publication number
WO2020001351A1
WO2020001351A1 PCT/CN2019/091972 CN2019091972W WO2020001351A1 WO 2020001351 A1 WO2020001351 A1 WO 2020001351A1 CN 2019091972 W CN2019091972 W CN 2019091972W WO 2020001351 A1 WO2020001351 A1 WO 2020001351A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
cycloalkyl
halogen
amino
cancer
Prior art date
Application number
PCT/CN2019/091972
Other languages
French (fr)
Chinese (zh)
Inventor
龚彦春
孟磊
郭其润
刘永强
Original Assignee
江苏威凯尔医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910519558.3A external-priority patent/CN110642838B/en
Application filed by 江苏威凯尔医药科技有限公司 filed Critical 江苏威凯尔医药科技有限公司
Publication of WO2020001351A1 publication Critical patent/WO2020001351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • the present application belongs to the technical field of medicine, and particularly relates to a 2-aminopyrimidine derivative and use thereof for preparing an antitumor drug.
  • Epidermal growth factor receptor (EpidermalRowthFactorReceptor, EGFR) is a transmembrane receptor protein with tyrosine kinase activity widely distributed on human tissue cell membranes, and is a member of the erbB receptor family of tyrosine kinases.
  • EGFR ligand epidermal growth factor
  • EGFR forms a homodimer on the cell membrane, or forms a heterodimer with other receptors in the family (such as erbB2, erbB3, or erbB4) to activate and cause Phosphorylation of key tyrosine residues in EGFR cells activates the kinase domain and further activates multiple downstream signaling pathways within the cell.
  • These intracellular signaling pathways play important roles in cell proliferation, survival, and anti-apoptosis.
  • the tyrosine kinase domain of EGFR can be mutated, resulting in the activation of constitutive signals. This active signaling pathway plays a vital role in the growth, survival and migration of tumor cells.
  • the most common activating mutations are an in-frame deletion mutation in exon 19 and a missense mutation in the 858 codon (L858R). Lung cancer with EGFR mutations is highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) (Science [2004] No. 304, 1497-500).
  • tyrosine kinase inhibitors that target EGFR (such as Gefitinib, erlotinib) and other drugs have achieved great success in the clinical treatment of non-small cell lung cancer (New England Journal of Medicine [2004] No. 350, 2129-39; The Lancet Oncology [2012] No. 13 Volume 3, 239-46).
  • TKI inhibitors often face relapse problems due to the development of resistance.
  • the most common drug resistance mechanism is the second mutation of T790M in EGFR, which is present in about 50% of patients with drug-resistant tumors (PLOS Medicine [2005] No. 2, 1-11).
  • Second-generation EGFR irreversible inhibitors such as Canertinib and Afatinib can overcome drug resistance, but these molecules have poor selectivity for EGFR T790M mutants, and their inhibitory effect on wild-type EGFR is relatively low. Strong, lower tolerated doses in the body.
  • CN105503827A and CN106187915A disclose compounds that selectively inhibit the EGFR T790M mutant.
  • the compounds of the present invention are different from their structures, and the compounds of the present invention are generally superior to CN105503827A in their EGFR kinase and cell inhibitory activity and selectivity to EGFR wild-type / mutant And CN106187915A patent.
  • An object of the present invention is to provide a 2-aminopyrimidine EGFR inhibitor which is highly selective for EGFR mutation and has higher safety.
  • Another object of the present invention is to provide the use of the EGFR inhibitor in the preparation of a medicament for preventing or treating an epidermal growth factor receptor (EGFR) kinase-related disease.
  • EGFR epidermal growth factor receptor
  • R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more selected from halogen, hydroxyl, C 1 -C 8 alkyl, C 1 -C 8 Alkoxy, halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituted by a substituent;
  • R 2 is selected from hydrogen, deuterium, halogen, cyano, nitro, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl, trifluoromethyl, difluoromethyl or trifluoromethoxy;
  • R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more of halogen, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, Halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, or C 3 -C 8 cycloalkoxy;
  • X is N or CH
  • R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, halo C 1 -C 8 alkyl, -C (O) R 5 , -C (O) NR 5 R 6 , -OR 5 , -NR 5 R 6 , -NR 5 C (O) R 6 , -NR 7 (CH 2 ) m NR 5 R 6 , -NC (O) R 7 (CH 2 ) m NR 5 R 6 , -NR 7 (CH 2 ) m NR 5 C (O) R 6 , -NR 7 (CH 2 ) m OR 6 , -NC (O) R 7 (CH 2 ) m OR 6 , -O (CH 2 ) m NR 5 R 6 or -O (CH 2 ) m NR 5 C (O) R 6 ;
  • R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, wherein C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl is optional Is further substituted with one or more selected from halogen, hydroxy, -NR 8 R 9 , C 1 -C 8 alkyl, C 1 -C 8 alkoxy, halogen substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituents;
  • R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group
  • n 1, 2, 3 or 4;
  • R 8 and R 9 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
  • R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen or hydroxyl;
  • R 2 is selected from hydrogen, deuterium, halogen or methyl
  • R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen;
  • X is N or CH
  • R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
  • R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl;
  • R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group
  • n 1, 2, 3 or 4.
  • the compound of formula (I) is characterized in that:
  • R 1 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl, optionally further substituted by one or more substituents selected from halogen;
  • R 2 is selected from hydrogen, deuterium, halogen or methyl
  • R 3 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl
  • X is N or CH
  • R 4 is selected from -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
  • R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl;
  • R 5 , R 6 , and R 7 may independently form a 6-8 membered heterocyclic group
  • n 1, 2 or 3.
  • the compound of formula (I) is characterized in that:
  • R 1 is selected from methyl, ethyl, difluoromethyl, n-propyl, isopropyl or trifluoroethyl;
  • R 2 is selected from hydrogen, deuterium, F, Cl, Br or methyl
  • R 3 is selected from methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
  • X is N or CH
  • R 4 is -NR 7 (CH 2 ) m NR 5 R 6 ;
  • R 5 , R 6 and R 7 are each independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
  • R 5 , R 6 , and R 7 may independently form a 6-membered heterocyclic group
  • n 1, 2 or 3.
  • a particularly preferred compound of the general formula (I) or a pharmaceutically acceptable salt thereof includes the following:
  • Another aspect of the present invention provides a method for preparing a compound of formula (I), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, comprising the following steps:
  • a compound of formula (II) and a compound of formula (III) undergo a substitution reaction in the presence of a metal catalyst to obtain a compound of formula (IV), and a reduction reaction to obtain a compound of general formula (V), and a condensation reaction to obtain a compound of formula (I), wherein R 1 , R 2 , R 3 , R 4 , X are as defined for a compound of formula (I).
  • Another aspect of the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective dose of the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the aforementioned pharmaceutical composition is prepared for treating EGFR mutants, especially L858R, EGFR mutant, T790M EGFR mutants and deletion of exon 19 activate mutants for the treatment of disease-mediated diseases.
  • the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the aforementioned pharmaceutical composition is prepared for treating a disease mediated by EGFR mutant activity alone or in part. Application in therapeutic drugs.
  • Another aspect of the present invention provides the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the use of the aforementioned pharmaceutical composition in the preparation of a medicament for treating cancer.
  • the cancer is selected from the group consisting of ovarian cancer, cervical cancer, colorectal cancer, breast cancer, pancreatic cancer, glioma, glioblastoma, melanoma, prostate cancer, leukemia, lymphoma, and non-Hodgkin cancer.
  • C 1 -C 8 alkyl refers to a straight-chain alkyl group and a branched alkyl group including 1 to 8 carbon atoms.
  • the alkyl group refers to a saturated aliphatic hydrocarbon group, such as methyl, ethyl, n- Propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2 -Dimethylpropyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-tris Methylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2-ethylbutyl
  • cycloalkyl refers to a saturated monocyclic hydrocarbon substituent
  • C 3 -C 8 alkylcycloalkyl refers to a monocyclic cycloalkyl including 3 to 8 carbon atoms, for example, a monocyclic cycloalkyl
  • Non-limiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
  • heterocyclyl refers to a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent, wherein one or more ring atoms are selected from nitrogen, oxygen, or S (O) r (where r is an integer of 0, Heteroatoms of 1, 2), but excluding the ring part of -OO-, -OS- or -SS-, the remaining ring atoms are carbon.
  • S (O) r where r is an integer of 0, Heteroatoms of 1, 2
  • 4-10 membered heterocyclyl refers to a cyclic group containing 4 to 10 ring atoms.
  • Non-limiting examples of monocyclic heterocyclyls include pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, homopiperazinyl, and the like.
  • Polycyclic heterocyclic groups include spiro, fused and bridged heterocyclic groups.
  • alkenyl refers to an alkyl group as defined above, which is composed of at least two carbon atoms and at least one carbon-carbon double bond
  • C 2 -C 8 alkenyl refers to a straight chain containing 2 to 8 carbons. Or containing branched alkenyl. Examples are vinyl, 1-propenyl, 2-propenyl, 1-, 2- or 3-butenyl, and the like.
  • alkynyl refers to an alkyl group as defined above composed of at least two carbon atoms and at least one carbon-carbon triple bond
  • C 2 -C 8 alkenyl refers to a straight-chain or Contains branched alkynyl. For example, ethynyl, 1-propynyl, 2-propynyl, 1-, 2- or 3-butynyl and the like.
  • alkoxy means -O- (alkyl), wherein alkyl is as defined above.
  • C 3 -C 8 alkoxy refers to an alkyloxy group containing 1 to 8 carbons. Non-limiting examples include methoxy, ethoxy, propoxy, butoxy, and the like.
  • cycloalkoxy refers to -O- (unsubstituted cycloalkyl), wherein the definition of cycloalkyl is as described above.
  • C 3 -C 8 cycloalkoxy refers to a cycloalkyloxy group containing 3-8 carbons. Non-limiting examples include cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy Wait.
  • Halogen means fluorine, chlorine, bromine or iodine.
  • “Pharmaceutical composition” means a mixture containing one or more of the compounds described herein or a physiologically pharmaceutically acceptable salt or prodrug thereof with other chemical components, as well as other components such as physiologically pharmaceutically acceptable carriers and excipients. ⁇ ⁇ Shape agent.
  • the purpose of the pharmaceutical composition is to promote the administration to the organism, which is beneficial to the absorption of the active ingredient and then exerts the biological activity.
  • 6-bromo-2-methoxypyridin-3-amine (12.00 g, 59.10 mmol), acetic anhydride (48.67 g, 466.90 mmol) were sequentially added to the four-necked flask, and the reaction was terminated at 20 ° C for 1 h.
  • the reaction solution was added with water (240 ml) and stirred for 1 h, a brown precipitate was precipitated, filtered with suction, and the filter cake was dried to obtain 9.80 g of a brown solid with a yield of 68%.
  • Step 4 Synthesis of N- (6-bromo-2-methoxy-5-nitro-pyridin-3-yl) acetamide
  • N- (6-bromo-2-methoxypyridin-3-yl) acetamide (6.80 g, 27.74 mmol) and trifluoroacetic anhydride (68 ml) were sequentially added to the four-necked flask, and the temperature was lowered to 0 ° C.
  • fuming nitric acid (2.00 g, 28.58 mmol) was added dropwise, and the reaction was terminated for 0.5 h.
  • the reaction solution was slowly poured into ice water (500 g) and stirred for 1 h. An off-white precipitate was precipitated, filtered with suction, and the filter cake was dried to obtain 7.60 g of a yellow solid with a yield of 94%.
  • 1 H NMR 400 MHz, DMSO-d 6 ) 9.12 (s, 1H), 4.06 (s, 3H), 2.16 (s, 3H).
  • Step 5 Synthesis of N- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro-pyridin-3-yl) acetamide
  • N- (6-bromo-2-methoxy-5-nitro-pyridin-3-yl) acetamide (5.60 g, 19.30 mmol), N, N, N ' -Trimethylethylenediamine (2.96g, 28.96mmol), acetonitrile (168ml), warmed to 80 ° C, and the reaction was terminated in 1h.
  • the solvent was distilled off under reduced pressure at 50 ° C, EA (70 ml) was slurried, suction filtered, washed with EA (20 ml), and the filter cake was dried to obtain 5.40 g of a yellow powder with a yield of 72%.
  • Step 6 N 2 - (2- (dimethylamino) ethyl) -6-methoxy-2 -N - Synthesis of methyl 3-nitropyridine-2,5-diamine
  • Step 8 Synthesis of 2- (isopropylsulfonyl) -3-nitropyridine
  • Step 9 Synthesis of 2- (isopropylsulfonyl) pyridin-3-amine
  • Step 10 Synthesis of 2,5-dichloro-N- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine
  • reaction solution was slowly poured into a solution of acetic acid (8g) in ice-water (720ml) to quench, precipitate was precipitated, and isopropyl ether (360ml) was added to beat and disperse for 0.5h, suction-filtered, and the filter cake was dried to obtain 27.00g of a yellowish solid
  • the yield was 86.4%.
  • Step 11 5-chloro-N 2- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro-pyridin-3-yl) Synthesis of -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
  • Step 12 N 5 - (5- chloro-4 - ((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - (2- (dimethylamino ) Ethyl) -6-methoxy-N 2 -methylpyridine 2,3,5-triamine
  • Step 13 N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- Synthesis of (dimethylamino) ethyl) (meth) amino) -6-methoxypyridin-3-yl) acrylamide
  • reaction solution was quenched by adding 5% NaHCO 3 (100 ml), and extracted by adding EA (50 ml x 5).
  • the organic phases were combined, concentrated, and subjected to crude column chromatography to obtain a brown-yellow solid 0.14 g with a yield of 10%.
  • Step 4 Synthesis of N- (6-chloro-2- (difluoromethoxy) pyridin-3-yl) acetamide
  • 6-chloro-2- (difluoromethoxy) pyridine-3-amine 34.20 g, 175.77 mmol
  • acetic anhydride 171 g, 1.67 mol
  • the reaction solution was added with water (800 ml) and stirred for 1 h.
  • a brown precipitate was precipitated, extracted with DCM (200 ml x 3), washed once with 100 ml of water, and the combined organic phases were concentrated to give 28.60 g of a yellow solid with a yield of 69%.
  • Step 5 Synthesis of N- (6-chloro-2- (difluoromethoxy) -5-nitro-pyridin-3-yl) acetamide
  • N- (6-chloro-2- (difluoromethoxy) pyridin-3-yl) acetamide (22.60 g, 95.52 mmol), and trifluoroacetic anhydride (113 ml) were sequentially added to the four-necked flask.
  • the reaction solution was slowly poured into ice-water (1000 ml) and stirred for 1 h, extracted with methyl tert-ether (300 ml x 3), the organic phases were combined, concentrated, and column chromatography gave 3.40 g of a brown solid with a yield of 13%.
  • Step 7 6- (difluoromethoxy) -N 2 - (2- (dimethylamino) ethyl) 2 -N - Synthesis of methyl 3-nitropyridine-2,5-diamine
  • Step 8 5-Chloro -N 2 - (2- (difluoromethoxy) -6 - ((2- (dimethylamino) ethyl) (methyl) amino) -5-nitro-pyridin-3 -Yl) -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
  • reaction solution was cooled to 25-35 ° C, water (20 ml) was added to quench the reaction, and DCM (20 ml x 2) was added for extraction.
  • the organic phases were combined, washed with saturated brine (10 ml), and the organic phase was concentrated.
  • the crude column chromatography yielded Brownish yellow solid 0.25g, yield 25%, directly into the next step.
  • Step 9 N 5 - (5- chloro-4- (2- (isopropylsulfonyl) pyridin-3-ylamino) pyrimidin-2-yl) -6- (difluoromethoxy) -N 2 - Synthesis of (2- (dimethylamino) ethyl) -N2-methylpyridin-2-yl) 2,3,5-triamine
  • Step 10 N- (5- (5-chloro-4- (2- (isopropylsulfonyl) pyridin-3-ylamino) pyrimidin-2-ylamino) -6- (difluoromethoxy)- Synthesis of 2-((2- (dimethylamino) ethyl) (meth) amino) pyridin-3-yl) acrylamide
  • reaction solution was quenched by adding 5% NaHCO 3 (15 ml), and extracted by adding DCM (10 ml x 2).
  • the organic phases were combined, concentrated, and subjected to crude column chromatography. A scrape was obtained to obtain 0.052 g of an off-white solid with a yield of 52%.
  • Step 1 Synthesis of 6- (N, N, N'-trimethylethylenediamino) -5-nitro-3-amino-2- (2,2,2-trifluoroethoxy) with reference to Example 4 ) Pyridine.
  • Step 2 Synthesis of sodium cyclopropane sulfonate
  • Step 4 Synthesis of 2- (cyclopropylsulfonyl) pyridine-3-amine
  • Step 5 Synthesis of 2,5-dichloro-N- (2- (cyclopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine
  • Step 6 5-Chloro-N 4- (2- (cyclopropylsulfonyl) pyridin-3-yl) -N 2- (6-((2- (dimethylamino) ethyl) (methyl) Synthesis of Amino) -5-nitro-2- (2,2,2-trifluoroethoxy) pyridin-3-yl) pyrimidine-2,4-diamine
  • Step 7 N 5 - (5- chloro-4 - ((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - (2- (dimethylamino ) Ethyl) -N 2 -methyl-6- (2,2,2-trifluoroethoxy) pyridine-2,3,5-triamine
  • Step 8 N- (5-((5-chloro-4-((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- Synthesis of (dimethylamino) ethyl) (methyl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
  • reaction solution was quenched by adding 5% NaHCO 3 (30 ml), and extracted by adding DCM (20 ml x 2).
  • Step 1 Synthesis of N- (6-bromo-2-difluoromethoxy-5-nitropyridin-3-yl) acetamide with reference to Example 5.
  • Step 2 Synthesis of N- (2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridin-3-yl) acetamide
  • Step 3 Synthesis of 2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridine-3-amine
  • Step 4 5-Chloro -N 2 - (2- (difluoromethoxy) -6- (4-methylpiperazin-l-yl) -5-nitro - pyridin-3-yl) -N 4 Synthesis of-(2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
  • Step 5 N 2- (5-amino-2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) pyridin-3-yl) -5-chloro-N 4- ( Synthesis of 2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
  • Step 6 N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6- (difluoromethyl Synthesis of oxy) -2- (4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
  • N 2- (5-amino-2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) pyridin-3-yl) -5 was sequentially added to a four-necked flask.
  • the ⁇ - 33 p-ATP isotope test method was used to test the inhibitory effect of the compound on the kinases EGFR (WT), EGFR (T790M / L858R), and IGF1R, and the compound's half inhibitory concentration of the enzyme's inhibitory activity, IC 50 , was obtained.
  • the drug AZD-9291 is prepared by referring to the method in patent WO2013014448A1.
  • the compound was dissolved to a specific concentration with 100% DMSO, and then it was gradient diluted to a different concentration of the test sample (DMSO solution) using an automatic sampling device.
  • the reaction solution was subjected to ion exchange filtration system to remove unreacted ATP and ADP plasma generated by the reaction, and then measured the 33 P isotope radiation in the substrate.
  • the inhibitory effect of different concentrations of compounds on kinase activity was calculated based on the amount of kinase added to the inhibitor system at different concentrations, and the IC 50 was inhibited by graphpad prism fitting.
  • the compound of the present invention has better EGFR (L858R / T790M) mutant kinase inhibitory activity.
  • Examples 1, 2, 3, 5, 7, 9, 12, 13, 14, The compounds of 15, 16, and 18 have better selectivity for EGFR (L858R / T790M) mutant kinase compared to the positive control.
  • the compounds of Examples 7, 8, 9, and 11 have significant relative IGF1R compared to the positive control.
  • Kinase has the advantage of selectivity, and the risk of side effects of elevated blood glucose caused by off-target is smaller.
  • the MTT method was used to test the cell activity of the compound on Hcc827, and the inhibitory concentration IC 50 of the compound's inhibitory cell proliferation activity was obtained.
  • Hcc827 cell line was cultured under the condition of RPMI-1640 + 10% FBS.
  • a 96-well cell culture plate was inoculated with 100 ⁇ L of a suspension of Hcc827 cells in logarithmic growth phase with a density of 5 ⁇ 10 4 / ml.
  • the culture plate was cultured in an incubator for 24 hours to attach the cells (37 ° C, 5% CO 2 ).
  • Each compound has been dissolved in DMSO to prepare a 10 mM stock solution, which is diluted 400 times the target concentration with DMSO and diluted to 2 times the target concentration with serum-free medium to maintain the DMSO concentration in the drug solution at 0.5. %.
  • DMSO fetal sulfate
  • 100 ⁇ L / well of each concentration of drug solution was sequentially added. Three replicates were set for each concentration, and a blank control and a negative control were set. The culture was continued at 37 ° C and 5% CO 2 for 72 hours.
  • the MTT method was used to test the cell activity of the compound on NCI-H1975, and the IC 50 value of the half-inhibition concentration of the compound to inhibit cell proliferation activity was obtained.
  • NCI-H1975 cell line was cultured under the condition of RPMI-1640 + 10% FBS, and 100 ⁇ L of NCI-H1975 cell suspension in logarithmic growth phase was inoculated in a 96-well cell culture plate with a density of 5X 10 4 / ml, the culture plate was cultured in an incubator for 24 hours to make the cells adhere (37 ° C, 5% CO 2 ).
  • Terminate the culture add 20 ⁇ L of MTT solution (5mg / ml) to each well, continue to incubate at 37 ° C, 5% CO 2 for 4 h, discard the medium, add DMSO 150 ⁇ L / well, shake at room temperature for 10 min, and measure the OD at a wavelength of 490 nM Value, and calculated IC 50 value by Graphpad Prism data processing.
  • MTT solution 5mg / ml
  • A431 cell line was cultured under the conditions of DMEM + 10% FBS.
  • a 96-well cell culture plate was inoculated with 100 ⁇ L of A431 cell suspension in logarithmic growth phase, with a density of 5 ⁇ 10 4 / ml. The plate was cultured in an incubator for 24 hours to make the cells adhere (37 ° C, 5% CO 2 ). .
  • Each compound has been dissolved in DMSO to prepare a 10 mM stock solution, which is diluted 400 times the target concentration with DMSO and diluted to 2 times the target concentration with serum-free medium to maintain the DMSO concentration in the drug solution at 0.5. %.
  • DMSO fetal sulfate
  • 100 ⁇ L / well of each concentration of drug solution was sequentially added. Three replicates were set for each concentration, and a blank control and a negative control were set. The culture was continued at 37 ° C and 5% CO 2 for 72 hours.
  • the compound-positive drug of the present invention has a better inhibitory activity on H1975 (EGFR-T790M / L858R) cells, and the control-positive drug has a significant selectivity for suppressing mutant cell lines.

Abstract

Provided are a 2-aminopyrimidine derivative having a structure shown in a formula (I), a pharmaceutical composition containing the compound of formula (I), and the uses thereof for preparing an epidermal growth factor receptor (EGFR) kinase for preventing or treating diseases related thereto, especially uses for preventing or treating cancers related to the EGFR.

Description

EGFR抑制剂及其制备和应用EGFR inhibitor and its preparation and application 技术领域Technical field
本申请属于医药技术领域,具体涉及2-氨基嘧啶衍生物及其用于制备抗肿瘤药物的用途。The present application belongs to the technical field of medicine, and particularly relates to a 2-aminopyrimidine derivative and use thereof for preparing an antitumor drug.
本申请要求中国专利CN201810704813.7(申请日2018年6月27日,发明名称EGFR抑制剂及其制备和应用)的优先权。This application claims the priority of Chinese patent CN201810704813.7 (filed on June 27, 2018, the invention name EGFR inhibitor and its preparation and application).
背景技术Background technique
表皮生长因子受体(Epidermal Rrowth Factor Receptor,EGFR)是一种广泛分布于人体组织细胞膜上的具有酪氨酸激酶活性的跨膜受体蛋白,是酪氨酸激酶erbB受体家族的一员。通过与配体表皮生长因子(EGF)结合,EGFR在细胞膜上形成同源二聚体,或者与家族中其他的受体(比如erbB2,erbB3,或erbB4)形成异源二聚体而活化,引起EGFR细胞内关键的酪氨酸残基磷酸化,激活激酶结构域,进一步激活细胞内多个下游的信号通路。这些细胞内信号通路在细胞增殖、生存及抗凋亡中起重要作用。Epidermal growth factor receptor (EpidermalRowthFactorReceptor, EGFR) is a transmembrane receptor protein with tyrosine kinase activity widely distributed on human tissue cell membranes, and is a member of the erbB receptor family of tyrosine kinases. By binding to the ligand epidermal growth factor (EGF), EGFR forms a homodimer on the cell membrane, or forms a heterodimer with other receptors in the family (such as erbB2, erbB3, or erbB4) to activate and cause Phosphorylation of key tyrosine residues in EGFR cells activates the kinase domain and further activates multiple downstream signaling pathways within the cell. These intracellular signaling pathways play important roles in cell proliferation, survival, and anti-apoptosis.
EGFR的酪氨酸激酶结构域可发生突变,导致组成性的信号激活,这种活性信号通路在肿瘤细胞的生长、生存和迁移过程中起至关重要的作用。最常见的激活突变是19号外显子的框内缺失突变和858密码子的错义突变(L858R)。带有EGFR突变的肺癌对EGFR酪氨酸激酶抑制剂(TKIs)高度敏感(Science[2004]第304期,1497-500),第一代以EGFR为靶点的酪氨酸激酶抑制剂(如吉非替尼、厄洛替尼)等药物已在非小细胞肺癌的临床治疗中获得巨大成功(New England Journal of medicine[2004]第350期,2129-39;The Lancet Oncology[2012]第13卷第3期,239-46)。然而,接受TKI抑制剂治疗的患者往往由于形成耐药性而面临复发的问题。最常见的耐药机制就是EGFR的T790M二次突变,存在约50%的耐药肿瘤病人中(PLOS Medicine[2005]第2期,1-11)。第二代EGFR不可逆抑制剂如卡奈替尼(Canertinib)、阿法替尼(Afatinib)等可以克服耐药,但这些分子对EGFR T790M突变体的选择性差,对野生型EGFR产生的抑制作用较强,在体内的耐受剂量较低。The tyrosine kinase domain of EGFR can be mutated, resulting in the activation of constitutive signals. This active signaling pathway plays a vital role in the growth, survival and migration of tumor cells. The most common activating mutations are an in-frame deletion mutation in exon 19 and a missense mutation in the 858 codon (L858R). Lung cancer with EGFR mutations is highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) (Science [2004] No. 304, 1497-500). The first generation of tyrosine kinase inhibitors that target EGFR (such as Gefitinib, erlotinib) and other drugs have achieved great success in the clinical treatment of non-small cell lung cancer (New England Journal of Medicine [2004] No. 350, 2129-39; The Lancet Oncology [2012] No. 13 Volume 3, 239-46). However, patients treated with TKI inhibitors often face relapse problems due to the development of resistance. The most common drug resistance mechanism is the second mutation of T790M in EGFR, which is present in about 50% of patients with drug-resistant tumors (PLOS Medicine [2005] No. 2, 1-11). Second-generation EGFR irreversible inhibitors such as Canertinib and Afatinib can overcome drug resistance, but these molecules have poor selectivity for EGFR T790M mutants, and their inhibitory effect on wild-type EGFR is relatively low. Strong, lower tolerated doses in the body.
因此,有必要开发活性和选择性更好的第三代小分子EGFR抑制剂,能高选择性抑制T790M、19号外显子缺失、L858R错义突变等突变体;同时,对IGFR受体激酶有较低的抑制活性,避免脱靶造成的高血糖副作用(Transl Lung Cancer Res[2015]第5期,576-83)。Therefore, it is necessary to develop a third-generation small molecule EGFR inhibitor with better activity and selectivity, which can selectively inhibit mutants such as T790M, exon 19 deletion, and L858R missense mutation. Lower inhibitory activity to avoid side effects of hyperglycemia caused by off-target (Transl Lung Cancer Res [2015] No. 5, 576-83).
CN105503827A、CN106187915A公开了选择性抑制EGFR T790M突变体的化合物,本发明化合物与其结构不同,且本发明化合物对EGFR激酶、细胞的抑制活性、对EGFR野生型/突变型的选择性总体上优于CN105503827A和CN106187915A专利中的化合物。CN105503827A and CN106187915A disclose compounds that selectively inhibit the EGFR T790M mutant. The compounds of the present invention are different from their structures, and the compounds of the present invention are generally superior to CN105503827A in their EGFR kinase and cell inhibitory activity and selectivity to EGFR wild-type / mutant And CN106187915A patent.
发明内容Summary of the invention
本发明的目的是提供一种对EGFR突变具有高度选择性且安全性更高的2-氨基嘧啶类 EGFR抑制剂。An object of the present invention is to provide a 2-aminopyrimidine EGFR inhibitor which is highly selective for EGFR mutation and has higher safety.
本发明的另一个目的是提供所述的EGFR抑制剂在制备预防或治疗表皮生长因子受体(EGFR)激酶相关疾病的药物的用途。Another object of the present invention is to provide the use of the EGFR inhibitor in the preparation of a medicament for preventing or treating an epidermal growth factor receptor (EGFR) kinase-related disease.
为实现本发明的目的,本发明的技术方案如下:To achieve the objective of the present invention, the technical solution of the present invention is as follows:
本发明所述的如下式(I)所示的化合物、其立体异构体或其药学上可接受的盐:The compound of the present invention represented by the following formula (I), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
Figure PCTCN2019091972-appb-000001
Figure PCTCN2019091972-appb-000001
其中,R 1选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素、羟基、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基所取代; Wherein R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more selected from halogen, hydroxyl, C 1 -C 8 alkyl, C 1 -C 8 Alkoxy, halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituted by a substituent;
R 2选自氢、氘、卤素、氰基、硝基、C 1-C 8烷基、C 1-C 8烷氧基、C 3-C 8环烷基、C 2-C 8烯基、C 2-C 8炔基、三氟甲基、二氟甲基或三氟甲氧基; R 2 is selected from hydrogen, deuterium, halogen, cyano, nitro, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl, trifluoromethyl, difluoromethyl or trifluoromethoxy;
R 3选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基所取代; R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more of halogen, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, Halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, or C 3 -C 8 cycloalkoxy;
X为N或CH;X is N or CH;
R 4选自氢、卤素、氰基、硝基、C 1-C 8烷基、卤代C 1-C 8烷基、-C(O)R 5、-C(O)NR 5R 6、-OR 5、-NR 5R 6、-NR 5C(O)R 6、-NR 7(CH 2) mNR 5R 6、-NC(O)R 7(CH 2) mNR 5R 6、-NR 7(CH 2) mNR 5C(O)R 6、-NR 7(CH 2) mOR 6、-NC(O)R 7(CH 2) mOR 6、-O(CH 2) mNR 5R 6或-O(CH 2) mNR 5C(O)R 6R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, halo C 1 -C 8 alkyl, -C (O) R 5 , -C (O) NR 5 R 6 , -OR 5 , -NR 5 R 6 , -NR 5 C (O) R 6 , -NR 7 (CH 2 ) m NR 5 R 6 , -NC (O) R 7 (CH 2 ) m NR 5 R 6 , -NR 7 (CH 2 ) m NR 5 C (O) R 6 , -NR 7 (CH 2 ) m OR 6 , -NC (O) R 7 (CH 2 ) m OR 6 , -O (CH 2 ) m NR 5 R 6 or -O (CH 2 ) m NR 5 C (O) R 6 ;
R 5、R 6和R 7各自独立选自氢、C 1-C 8烷基、C 3-C 8环烷基,其中C 1-C 8烷基或C 3-C 8环烷基任选进一步被一个或多个选自卤素、羟基、-NR 8R 9、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基取代; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, wherein C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl is optional Is further substituted with one or more selected from halogen, hydroxy, -NR 8 R 9 , C 1 -C 8 alkyl, C 1 -C 8 alkoxy, halogen substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituents;
或者,R 5、R 6和R 7两两间可独立地形成4-10元杂环基; Alternatively, R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group;
m为1,2,3或4;m is 1, 2, 3 or 4;
R 8和R 9各自独立选自氢、C 1-C 8烷基或C 3-C 8环烷基。 R 8 and R 9 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
本发明的优选方案,所述的式(I)化合物,其中:According to a preferred embodiment of the present invention, the compound of formula (I), wherein:
R 1选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素或羟基的取代基所取代; R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen or hydroxyl;
R 2选自氢、氘、卤素或甲基; R 2 is selected from hydrogen, deuterium, halogen or methyl;
R 3选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素的取代基所取代; R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen;
X为N或CH;X is N or CH;
R 4选自氢、卤素、氰基、硝基、C 1-C 8烷基、-NR 5R 6或-NR 7(CH 2) mNR 5R 6R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
R 5、R 6和R 7各自独立选自氢、C 1-C 8烷基或C 3-C 8环烷基; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl;
或者R 5、R 6和R 7两两间可独立地形成4-10元杂环基; Or R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group;
m为1,2,3或4。m is 1, 2, 3 or 4.
本发明的优选方案,所述的式(I)化合物,其特征在于:According to a preferred embodiment of the present invention, the compound of formula (I) is characterized in that:
R 1选自C 1-C 4烷基或C 3-C 6环烷基,任选进一步被一个或多个选自卤素的取代基所取代; R 1 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl, optionally further substituted by one or more substituents selected from halogen;
R 2选自氢、氘、卤素或甲基; R 2 is selected from hydrogen, deuterium, halogen or methyl;
R 3选自C 1-C 4烷基或C 3-C 6环烷基; R 3 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl;
X为N或CH;X is N or CH;
R 4选自-NR 5R 6或-NR 7(CH 2) mNR 5R 6R 4 is selected from -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
R 5、R 6和R 7各自独立选自氢、C 1-C 4烷基或C 3-C 6环烷基; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl;
或者R 5、R 6、R 7两两间可独立地形成6-8元杂环基; Or R 5 , R 6 , and R 7 may independently form a 6-8 membered heterocyclic group;
m为1,2或3。m is 1, 2 or 3.
进一步地,本发明优选方案,所述的式(I)化合物,其特征在于:Further, in a preferred embodiment of the present invention, the compound of formula (I) is characterized in that:
R 1选自甲基、乙基、二氟甲基、正丙基、异丙基或三氟乙基; R 1 is selected from methyl, ethyl, difluoromethyl, n-propyl, isopropyl or trifluoroethyl;
R 2选自氢、氘、F、Cl、Br或甲基; R 2 is selected from hydrogen, deuterium, F, Cl, Br or methyl;
R 3选自甲基、乙基、正丙基、异丙基或环丙基; R 3 is selected from methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
X为N或CH;X is N or CH;
R 4为-NR 7(CH 2) mNR 5R 6R 4 is -NR 7 (CH 2 ) m NR 5 R 6 ;
R 5、R 6和R 7各自独立选自氢、甲基、乙基、正丙基、异丙基或环丙基; R 5 , R 6 and R 7 are each independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
或者R 5、R 6、R 7两两间可独立地形成6元杂环基; Or R 5 , R 6 , and R 7 may independently form a 6-membered heterocyclic group;
m为1,2或3。m is 1, 2 or 3.
作为最优选的方案,具体优选的通式(I)化合物或其药学上可接受的盐,包括如下:As the most preferred embodiment, a particularly preferred compound of the general formula (I) or a pharmaceutically acceptable salt thereof includes the following:
Figure PCTCN2019091972-appb-000002
Figure PCTCN2019091972-appb-000002
Figure PCTCN2019091972-appb-000003
Figure PCTCN2019091972-appb-000003
本发明另一方面提供式(I)化合物、其立体异构体或其药学上可接受盐的制备方法,包括如下步骤:Another aspect of the present invention provides a method for preparing a compound of formula (I), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, comprising the following steps:
Figure PCTCN2019091972-appb-000004
Figure PCTCN2019091972-appb-000004
式(II)化合物与式(III)化合物在金属催化剂存在下发生取代反应得到式(IV)化合物,经过还原反应得到通式(V)化合物,再发生缩合反应得到式(I)化合物,其中,R 1、R 2、R 3、R 4、X如式(I)化合物所定义。 A compound of formula (II) and a compound of formula (III) undergo a substitution reaction in the presence of a metal catalyst to obtain a compound of formula (IV), and a reduction reaction to obtain a compound of general formula (V), and a condensation reaction to obtain a compound of formula (I), wherein R 1 , R 2 , R 3 , R 4 , X are as defined for a compound of formula (I).
本发明另一方面提供药物组合物,其包括治疗有效剂量的前述式(I)化合物、其立体异构 体或其药学上可接受盐及可药用的载体。Another aspect of the present invention provides a pharmaceutical composition comprising a therapeutically effective dose of the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
本发明另一方面提供了前述式(I)化合物、其立体异构体或其药学上可接受盐,或前述药物组合物在制备用于治疗对EGFR突变体,尤其是L858R EGFR突变体、T790M EGFR突变体和外显子19缺失激活突变体活性介导疾病的治疗药物中的应用。According to another aspect of the present invention, the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the aforementioned pharmaceutical composition is prepared for treating EGFR mutants, especially L858R, EGFR mutant, T790M EGFR mutants and deletion of exon 19 activate mutants for the treatment of disease-mediated diseases.
本发明另一方面提供了前述式(I)化合物、其立体异构体或其药学上可接受盐,或前述药物组合物在制备用于治疗单独或部分地由EGFR突变体活性介导疾病的治疗药物中的应用。According to another aspect of the present invention, the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the aforementioned pharmaceutical composition is prepared for treating a disease mediated by EGFR mutant activity alone or in part. Application in therapeutic drugs.
本发明另一方面提供了前述式(I)化合物、其立体异构体或其药学上可接受盐,或前述药物组合物在制备用于治疗癌症药物中的应用。Another aspect of the present invention provides the aforementioned compound of formula (I), a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the use of the aforementioned pharmaceutical composition in the preparation of a medicament for treating cancer.
作为进一步优选的方案,所述癌症选自卵巢癌、宫颈癌、结肠直肠癌、乳腺癌、胰腺癌、胶质瘤、胶质母细胞瘤、黑色素瘤、前列腺癌、白血病、淋巴瘤、非霍奇金淋巴瘤、胃癌、肺癌、肝细胞癌、胃癌、胃肠道间质瘤、甲状腺癌、胆管癌、子宫内膜癌、肾癌、间变性大细胞淋巴瘤、急性髓细胞白血病、多发性骨髓瘤、黑色素瘤或间皮瘤。As a further preferred embodiment, the cancer is selected from the group consisting of ovarian cancer, cervical cancer, colorectal cancer, breast cancer, pancreatic cancer, glioma, glioblastoma, melanoma, prostate cancer, leukemia, lymphoma, and non-Hodgkin cancer. Chitin lymphoma, gastric cancer, lung cancer, hepatocellular carcinoma, gastric cancer, gastrointestinal stromal tumor, thyroid cancer, bile duct cancer, endometrial cancer, kidney cancer, anaplastic large cell lymphoma, acute myeloid leukemia, multiple Myeloma, melanoma or mesothelioma.
除非有相反陈述,下列用在说明书和权利要求书中的术语具有下述含义。Unless stated to the contrary, the following terms used in the specification and claims have the following meanings.
本发明中“C 1-C 8烷基”指包括1至8个碳原子的直链烷基和含支链烷基,烷基指饱和的脂族烃基团,例如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、仲丁基、正戊基、1,1-二甲基丙基、1,2-二甲基丙基、2,2-二甲基丙基、1-乙基丙基、2-甲基丁基、3-甲基丁基、正己基、1-乙基-2-甲基丙基、1,1,2-三甲基丙基、1,1-二甲基丁基、1,2-二甲基丁基、2,2-二甲基丁基、1,3-二甲基丁基、2-乙基丁基、2-甲基戊基、3-甲基戊基、4-甲基戊基、2,3-二甲基丁基、正庚基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、2,3-二甲基戊基、2,4-二甲基戊基、2,2-二甲基戊基、3,3-二甲基戊基、2-乙基戊基、3-乙基戊基、正辛基、2,3-二甲基己基、2,4-二甲基己基、2,5-二甲基己基、2,2-二甲基己基、3,3-二甲基己基、4,4-二甲基己基、2-乙基己基、3-乙基己基、4-乙基己基、2-甲基-2-乙基戊基、2-甲基-3-乙基戊基或其各种支链异构体等。 In the present invention, "C 1 -C 8 alkyl" refers to a straight-chain alkyl group and a branched alkyl group including 1 to 8 carbon atoms. The alkyl group refers to a saturated aliphatic hydrocarbon group, such as methyl, ethyl, n- Propyl, isopropyl, n-butyl, isobutyl, tert-butyl, sec-butyl, n-pentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2 -Dimethylpropyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-tris Methylpropyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2-ethylbutyl Methyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethylbutyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 4 -Methylhexyl, 5-methylhexyl, 2,3-dimethylpentyl, 2,4-dimethylpentyl, 2,2-dimethylpentyl, 3,3-dimethylpentyl , 2-ethylpentyl, 3-ethylpentyl, n-octyl, 2,3-dimethylhexyl, 2,4-dimethylhexyl, 2,5-dimethylhexyl, 2,2- Dimethylhexyl, 3,3-dimethylhexyl, 4,4-dimethylhexyl, 2-ethylhexyl, 3-ethylhexyl, 4-ethylhexyl, 2-methyl 2-ethylpentyl, 2-methyl-3-ethylpentyl, or various branched isomers thereof, and the like.
本发明中“环烷基”指饱和单环烃取代基,“C 3-C 8烷基环烷基”指包括3至8个碳原子的单环环烷基,例如:单环环烷基的非限制性实施例包含环丙基、环丁基、环戊基、环己基、环庚基、环辛基等。 In the present invention, "cycloalkyl" refers to a saturated monocyclic hydrocarbon substituent, and "C 3 -C 8 alkylcycloalkyl" refers to a monocyclic cycloalkyl including 3 to 8 carbon atoms, for example, a monocyclic cycloalkyl Non-limiting examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and the like.
本发明中“杂环基”指饱和或部分不饱和单环或多环环状烃取代基,其中一个或多个环原子选自氮、氧或S(O)r(其中r是整数0、1、2)的杂原子,但不包括-O-O-、-O-S-或-S-S-的环部分,其余环原子为碳。“4-10元杂环基”指包含4至10个环原子的环基。单环杂环基的非限制性实施例包含吡咯烷基、哌啶基、哌嗪基、吗啉基、硫代吗啉基、高哌嗪基等。多环杂环基包括螺环、稠环和桥环的杂环基。In the present invention, "heterocyclyl" refers to a saturated or partially unsaturated monocyclic or polycyclic cyclic hydrocarbon substituent, wherein one or more ring atoms are selected from nitrogen, oxygen, or S (O) r (where r is an integer of 0, Heteroatoms of 1, 2), but excluding the ring part of -OO-, -OS- or -SS-, the remaining ring atoms are carbon. "4-10 membered heterocyclyl" refers to a cyclic group containing 4 to 10 ring atoms. Non-limiting examples of monocyclic heterocyclyls include pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, homopiperazinyl, and the like. Polycyclic heterocyclic groups include spiro, fused and bridged heterocyclic groups.
本发明中“烯基”指由至少两个碳原子和至少一个碳-碳双键组成的如上述定义的烷基,“C 2-C 8烯基”指含有2-8个碳的直链或含支链烯基。例如乙烯基、1-丙烯基、2-丙烯基、1-,2-或3-丁烯基等。 In the present invention, "alkenyl" refers to an alkyl group as defined above, which is composed of at least two carbon atoms and at least one carbon-carbon double bond, and "C 2 -C 8 alkenyl" refers to a straight chain containing 2 to 8 carbons. Or containing branched alkenyl. Examples are vinyl, 1-propenyl, 2-propenyl, 1-, 2- or 3-butenyl, and the like.
本发明中“炔基”指至少两个碳原子和至少一个碳-碳三键组成的如上所定义的烷基,“C 2-C 8烯基”指含有2-8个碳的直链或含支链炔基。例如乙炔基、1-丙炔基、2-丙炔基、1-,2-或3-丁炔基等。 In the present invention, "alkynyl" refers to an alkyl group as defined above composed of at least two carbon atoms and at least one carbon-carbon triple bond, and "C 2 -C 8 alkenyl" refers to a straight-chain or Contains branched alkynyl. For example, ethynyl, 1-propynyl, 2-propynyl, 1-, 2- or 3-butynyl and the like.
本发明中“烷氧基”指-O-(烷基),其中烷基的定义如上所述。“C 3-C 8烷氧基”指含1-8个碳的烷基氧基,非限制性实施例包含甲氧基、乙氧基、丙氧基、丁氧基等。 In the present invention, "alkoxy" means -O- (alkyl), wherein alkyl is as defined above. "C 3 -C 8 alkoxy" refers to an alkyloxy group containing 1 to 8 carbons. Non-limiting examples include methoxy, ethoxy, propoxy, butoxy, and the like.
本发明中“环烷氧基”指和-O-(未取代的环烷基),其中环烷基的定义如上所述。“C 3-C 8环烷氧基”指含3-8个碳的环烷基氧基,非限制性实施例包含环丙氧基、环丁氧基、环戊氧基、环己氧基等。 In the present invention, "cycloalkoxy" refers to -O- (unsubstituted cycloalkyl), wherein the definition of cycloalkyl is as described above. "C 3 -C 8 cycloalkoxy" refers to a cycloalkyloxy group containing 3-8 carbons. Non-limiting examples include cyclopropoxy, cyclobutoxy, cyclopentyloxy, cyclohexyloxy Wait.
“卤素”指氟、氯、溴或碘。"Halogen" means fluorine, chlorine, bromine or iodine.
“药物组合物”表示含有一种或多种本文所述化合物或其生理学上可药用的盐或前体药物与其他化学组分的混合物,以及其他组分例如生理学可药用的载体和赋形剂。药物组合物的目的是促进对生物体的给药,利于活性成分的吸收进而发挥生物活性。"Pharmaceutical composition" means a mixture containing one or more of the compounds described herein or a physiologically pharmaceutically acceptable salt or prodrug thereof with other chemical components, as well as other components such as physiologically pharmaceutically acceptable carriers and excipients.形 剂。 Shape agent. The purpose of the pharmaceutical composition is to promote the administration to the organism, which is beneficial to the absorption of the active ingredient and then exerts the biological activity.
本发明制备步骤中,所用试剂的缩写分别表示:In the preparation steps of the present invention, the abbreviations of the reagents used represent:
THF                四氢呋喃THF: Tetrahydrofuran
EA                 乙酸乙酯EA, ethyl acetate
PE                 石油醚PE, petroleum ether
DCM                二氯甲烷DCM: Dichloromethane
MTBE               甲基叔丁基醚MTBE, methyl tert-butyl ether
TFAA               三氟乙酸酐TFAA Trifluoroacetic anhydride
Pd 2(dba) 3          三(二亚苄基丙酮)二钯 Pd 2 (dba) 3 tris (dibenzylideneacetone) dipalladium
Xantphos           4,5-双二苯基膦-9,9-二甲基氧杂蒽 Xantphos 4,5-bisdiphenylphosphine-9,9-dimethylxanthene
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1实施例1化合物的核磁共振氢谱。Figure 1 Nuclear magnetic resonance proton spectrum of the compound of Example 1.
图2实施例1化合物的质谱。Figure 2 Mass spectrum of the compound of Example 1.
图3实施例2化合物的核磁共振氢谱。Fig. 3 Nuclear magnetic resonance proton spectrum of the compound of Example 2;
图4实施例2化合物的质谱。Figure 4 Mass spectrum of the compound of Example 2.
图5实施例3化合物的核磁共振氢谱。Fig. 5 Nuclear magnetic resonance proton spectrum of the compound of Example 3;
图6实施例3化合物的质谱。Figure 6 Mass spectrum of the compound of Example 3.
图7实施例4化合物的核磁共振氢谱。Fig. 7 Nuclear magnetic resonance proton spectrum of the compound of Example 4;
图8实施例4化合物的质谱。Figure 8 Mass spectrum of the compound of Example 4.
图9实施例5化合物的核磁共振氢谱。Fig. 9 Nuclear magnetic resonance proton spectrum of the compound of Example 5;
图10实施例5化合物的质谱。Figure 10 Mass spectrum of the compound of Example 5.
图11实施例6化合物的核磁共振氢谱。Fig. 11 Nuclear magnetic resonance proton spectrum of the compound of Example 6;
图12实施例6化合物的质谱。Figure 12 Mass spectrum of the compound of Example 6.
图13实施例7化合物的核磁共振氢谱。Fig. 13 Nuclear magnetic resonance proton spectrum of the compound of Example 7;
图14实施例7化合物的质谱。Figure 14 Mass spectrum of the compound of Example 7.
图15实施例8化合物的核磁共振氢谱。Fig. 15 Nuclear magnetic resonance proton spectrum of the compound of Example 8;
图16实施例8化合物的质谱。Figure 16 Mass spectrum of the compound of Example 8.
图17实施例9化合物的核磁共振氢谱。Fig. 17 Nuclear magnetic resonance proton spectrum of the compound of Example 9;
图18实施例9化合物的质谱。Figure 18 Mass spectrum of the compound of Example 9.
图19实施例10化合物的核磁共振氢谱。Figure 19 Nuclear magnetic resonance proton spectrum of the compound of Example 10.
图20实施例10化合物的质谱。Figure 20 Mass spectrum of the compound of Example 10.
图21实施例11化合物的核磁共振氢谱。Fig. 21 Nuclear magnetic resonance proton spectrum of the compound of Example 11;
图22实施例11化合物的质谱。Figure 22 Mass spectrum of the compound of Example 11.
图23实施例12化合物的核磁共振氢谱。Fig. 23 Nuclear magnetic resonance proton spectrum of the compound of Example 12;
图24实施例12化合物的质谱。Figure 24 Mass spectrum of the compound of Example 12.
图25实施例13化合物的核磁共振氢谱。Fig. 25 Nuclear magnetic resonance proton spectrum of the compound of Example 13;
图26实施例14化合物的核磁共振氢谱。Fig. 26 Nuclear magnetic resonance proton spectrum of the compound of Example 14;
图27实施例14化合物的质谱。Figure 27 Mass spectrum of the compound of Example 14.
图28实施例15化合物的核磁共振氢谱。Figure 28 Nuclear magnetic resonance proton spectrum of the compound of Example 15
图29实施例15化合物的质谱。Figure 29 Mass spectrum of the compound of Example 15.
图30实施例16化合物的核磁共振氢谱。Figure 30 Nuclear magnetic resonance proton spectrum of the compound of Example 16.
图31实施例16化合物的质谱。Figure 31 Mass spectrum of the compound of Example 16.
图32实施例17化合物的质谱。Figure 32 Mass spectrum of the compound of Example 17.
图33实施例18化合物的核磁共振氢谱。Fig. 33 Nuclear magnetic resonance proton spectrum of the compound of Example 18;
图34实施例18化合物的质谱。Figure 34 Mass spectrum of the compound of Example 18.
具体实施方式detailed description
以下参照具体的实施例来说明本发明。本领域技术人员能够理解,这些实施例仅用于说明本发明,其不以任何方式限制本发明的范围。The present invention is described below with reference to specific examples. Those skilled in the art can understand that these examples are only used to illustrate the present invention, and they do not limit the scope of the present invention in any way.
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的药材原料、试剂材料等,如无特殊说明,均为市售购买产品。Unless otherwise specified, the experimental methods in the following examples are conventional methods. Unless otherwise specified, the medicinal materials, reagent materials, etc. used in the following examples are all commercially available products.
实施例1Example 1
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) aminopyrimidin-2-yl) amino) -2-((2- (dimethyl Synthesis of Amino) ethyl) (Meth) amino) -6-methoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000005
Figure PCTCN2019091972-appb-000005
步骤1:6-溴-2-甲氧基-3-硝基吡啶的合成Step 1: Synthesis of 6-bromo-2-methoxy-3-nitropyridine
Figure PCTCN2019091972-appb-000006
Figure PCTCN2019091972-appb-000006
室温下,向四口瓶中依次加入2,6-二溴-3-硝基吡啶(40.00g,141.90mmol)、THF(520ml),降温0-5℃,加入甲醇钠(30%,28.11g,156.08mmol),3h反应终止。将反应液倒入冰水(500ml),加MTBE(500ml x3)萃取,合并有机相,加饱和食盐水(200ml)洗涤,有机相浓缩,粗品结晶,得淡黄固体19.89g,收率60%。 1H NMR(400MHz,Chloroform-d)δ8.15(d,J=8.2Hz,1H),7.22(d,J=8.2Hz,1H),4.14(s,3H)。 At room temperature, 2,6-dibromo-3-nitropyridine (40.00g, 141.90mmol) and THF (520ml) were added to the four-necked flask in order, the temperature was lowered to 0-5 ° C, and sodium methoxide (30%, 28.11g) , 156.08 mmol), 3h reaction stopped. The reaction solution was poured into ice water (500 ml), and extracted with MTBE (500 ml x 3). The organic phases were combined, washed with saturated brine (200 ml), the organic phase was concentrated, and the crude product was crystallized to obtain 19.89 g of a pale yellow solid with a yield of 60%. . 1 H NMR (400 MHz, Chloroform-d) δ 8.15 (d, J = 8.2 Hz, 1 H), 7.22 (d, J = 8.2 Hz, 1 H), 4.14 (s, 3 H).
步骤2:6-溴-2-甲氧基吡啶-3-胺的合成Step 2: Synthesis of 6-bromo-2-methoxypyridine-3-amine
Figure PCTCN2019091972-appb-000007
Figure PCTCN2019091972-appb-000007
室温下,向四口瓶中依次加入6-溴-2-甲氧基-3-硝基吡啶(9.50g,38.62mmol)、铁粉(11.50g,193.11mmol)、氯化铵(10.80g,193.11mmol)和乙醇(190ml)、水(95ml),氮气保护,升温至80℃,1h反应终止。反应液加硅藻土过滤,滤液浓缩,加水(950ml),EA(380ml x2)萃取,合并有机相,加饱和食盐水(200ml)洗涤,浓缩,得黑色油状液体8.28g,收率100%。 1H NMR(400MHz,Chloroform-d)δ6.86(d,J=7.8Hz,1H),6.76(d,J=7.8Hz,1H),3.98(s,3H)。 At room temperature, 6-bromo-2-methoxy-3-nitropyridine (9.50 g, 38.62 mmol), iron powder (11.50 g, 193.11 mmol), and ammonium chloride (10.80 g, 193.11 mmol), ethanol (190 ml), water (95 ml), nitrogen protection, heating to 80 ° C., the reaction was terminated in 1 h. The reaction solution was filtered with diatomaceous earth, and the filtrate was concentrated. Water (950 ml) and EA (380 ml x 2) were added for extraction. The organic phases were combined, washed with saturated brine (200 ml), and concentrated to obtain 8.28 g of a black oily liquid with a yield of 100%. 1 H NMR (400 MHz, Chloroform-d) δ 6.86 (d, J = 7.8 Hz, 1 H), 6.76 (d, J = 7.8 Hz, 1 H), 3.98 (s, 3 H).
步骤3:N-(6-溴-2-甲氧基吡啶-3-基)乙酰胺的合成Step 3: Synthesis of N- (6-bromo-2-methoxypyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000008
Figure PCTCN2019091972-appb-000008
室温下,向四口瓶中依次加入6-溴-2-甲氧基吡啶-3-胺(12.00g,59.10mmol)、乙酸酐(48.67g,466.90mmol),20℃,1h反应终止。反应液加水(240ml)搅拌1h,析出褐色沉淀,抽滤,滤饼干燥,得褐色固体9.80g,收率68%。 1H NMR(400MHz,Chloroform-d)δ8.49(d,J=8.2Hz,1H),7.06(d,J=8.2Hz,1H),4.02(s,3H),2.21(s,3H)。 At room temperature, 6-bromo-2-methoxypyridin-3-amine (12.00 g, 59.10 mmol), acetic anhydride (48.67 g, 466.90 mmol) were sequentially added to the four-necked flask, and the reaction was terminated at 20 ° C for 1 h. The reaction solution was added with water (240 ml) and stirred for 1 h, a brown precipitate was precipitated, filtered with suction, and the filter cake was dried to obtain 9.80 g of a brown solid with a yield of 68%. 1 H NMR (400 MHz, Chloroform-d) δ 8.49 (d, J = 8.2 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 4.02 (s, 3H), 2.21 (s, 3H).
步骤4:N-(6-溴-2-甲氧基-5-硝基-吡啶-3-基)乙酰胺的合成Step 4: Synthesis of N- (6-bromo-2-methoxy-5-nitro-pyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000009
Figure PCTCN2019091972-appb-000009
室温下,向四口瓶中依次加入N-(6-溴-2-甲氧基吡啶-3-基)乙酰胺(6.80g,27.74mmol)、三氟乙酸酐(68ml),降温至0℃以下,滴加发烟硝酸(2.00g,28.58mmol),0.5h反应终止。反应液缓慢倒入冰水(500g)搅拌1h,析出灰白色沉淀,抽滤,滤饼干燥,得黄色固体7.60g,收率94%。 1H NMR(400MHz,DMSO-d 6)9.12(s,1H),4.06(s,3H),2.16(s,3H)。 At room temperature, N- (6-bromo-2-methoxypyridin-3-yl) acetamide (6.80 g, 27.74 mmol) and trifluoroacetic anhydride (68 ml) were sequentially added to the four-necked flask, and the temperature was lowered to 0 ° C. Hereinafter, fuming nitric acid (2.00 g, 28.58 mmol) was added dropwise, and the reaction was terminated for 0.5 h. The reaction solution was slowly poured into ice water (500 g) and stirred for 1 h. An off-white precipitate was precipitated, filtered with suction, and the filter cake was dried to obtain 7.60 g of a yellow solid with a yield of 94%. 1 H NMR (400 MHz, DMSO-d 6 ) 9.12 (s, 1H), 4.06 (s, 3H), 2.16 (s, 3H).
步骤5:N-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-2-甲氧基-5-硝基-吡啶-3-基)乙酰胺的合成Step 5: Synthesis of N- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro-pyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000010
Figure PCTCN2019091972-appb-000010
室温下,向四口瓶中依次加入N-(6-溴-2-甲氧基-5-硝基-吡啶-3-基)乙酰胺(5.60g,19.30mmol)、N,N,N’-三甲基乙二胺(2.96g,28.96mmol),乙腈(168ml),升温至80℃,1h反应终止。将反应液50℃减压蒸去溶剂,EA(70ml)打浆,抽滤,EA(20ml)洗涤,滤饼干燥,得黄色粉末5.40g,收率72%。 1H NMR(400MHz,DMSO-d 6)8.74(s,1H),4.03(s,3H),3.92(br,2H),3.41(t,J=6.7Hz,2H),3.32(s,3H),2.84(d,J=4.6Hz,6H),2.07(s,3H)。 At room temperature, N- (6-bromo-2-methoxy-5-nitro-pyridin-3-yl) acetamide (5.60 g, 19.30 mmol), N, N, N ' -Trimethylethylenediamine (2.96g, 28.96mmol), acetonitrile (168ml), warmed to 80 ° C, and the reaction was terminated in 1h. The solvent was distilled off under reduced pressure at 50 ° C, EA (70 ml) was slurried, suction filtered, washed with EA (20 ml), and the filter cake was dried to obtain 5.40 g of a yellow powder with a yield of 72%. 1 H NMR (400MHz, DMSO-d 6 ) 8.74 (s, 1H), 4.03 (s, 3H), 3.92 (br, 2H), 3.41 (t, J = 6.7Hz, 2H), 3.32 (s, 3H) , 2.84 (d, J = 4.6 Hz, 6H), 2.07 (s, 3H).
步骤6:N 2-(2-(二甲基氨基)乙基)-6-甲氧基-N 2-甲基-3-硝基吡啶-2,5-二胺的合成 Step 6: N 2 - (2- (dimethylamino) ethyl) -6-methoxy-2 -N - Synthesis of methyl 3-nitropyridine-2,5-diamine
Figure PCTCN2019091972-appb-000011
Figure PCTCN2019091972-appb-000011
室温下,向四口瓶中依次加入N-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-2-甲氧基-5-硝基-吡啶-3-基)乙酰胺(3.60g,11.34mmol)、甲醇(90ml)、37%盐酸(2.22g, 22.68mmol),升温至60℃,3h反应终止。将反应液加5%NaHCO 3中和至pH=8~9,40℃减压蒸去溶剂,加水(30ml),加DCM(100ml x3)萃取,合并有机相,浓缩,粗品柱层析,得棕黄色油状物0.70g,收率22%。 1H NMR(400MHz,DMSO-d 6)δ7.46(s,1H),4.73(br,2H),3.93(s,3H),3.59-3.54(m,2H),2.77(s,3H),2.52(s,2H),2.17(s,6H)。 At room temperature, N- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro-pyridine-3- Alkyl) acetamide (3.60 g, 11.34 mmol), methanol (90 ml), 37% hydrochloric acid (2.22 g, 22.68 mmol), the temperature was raised to 60 ° C, and the reaction was terminated in 3 h. The reaction solution was neutralized by adding 5% NaHCO 3 to pH = 8-9, and the solvent was distilled off under reduced pressure at 40 ° C. Water (30 ml) was added, followed by extraction with DCM (100 ml x 3). The organic phases were combined, concentrated, and subjected to crude column chromatography. Brownish yellow oil, 0.70 g, yield 22%. 1 H NMR (400 MHz, DMSO-d 6 ) δ 7.46 (s, 1H), 4.73 (br, 2H), 3.93 (s, 3H), 3.59-3.54 (m, 2H), 2.77 (s, 3H), 2.52 (s, 2H), 2.17 (s, 6H).
步骤7:2-(异丙基硫基)-3-硝基吡啶的合成Step 7: Synthesis of 2- (isopropylthio) -3-nitropyridine
Figure PCTCN2019091972-appb-000012
Figure PCTCN2019091972-appb-000012
室温下,向5L四口瓶中依次加入2-氟-3-硝基吡啶(176g,1.24mol)、碳酸氢钾(342g,2.47mol),DMF(2600ml),异丙硫醇(101g,1.36mol),保温25℃,3h反应终止。将反应液,加入水(1000ml),加PE(1000ml x4)萃取,合并有机相,加入水(500ml)洗涤一次,有机相浓缩,得红棕液体220.0g,收率89%。 1H NMR(400MHz,Chloroform-d)δ8.67(dd,J=4.6,1.6Hz,1H),8.45(dd,J=8.2,1.6Hz,1H),7.16(dd,J=8.2,4.6Hz,1H),4.15(hept,J=6.9Hz,1H),1.42(d,J=6.9Hz,6H). At room temperature, add 5-fluoro-3-nitropyridine (176g, 1.24mol), potassium bicarbonate (342g, 2.47mol), DMF (2600ml), isopropyl mercaptan (101g, 1.36) to a 5L four-necked bottle in this order. mol), kept at 25 ° C., and the reaction was terminated for 3 h. The reaction solution was added with water (1000 ml) and extracted with PE (1000 ml x 4). The organic phases were combined, washed with water (500 ml) and washed once. The organic phase was concentrated to obtain 220.0 g of a red-brown liquid with a yield of 89%. 1 H NMR (400MHz, Chloroform-d) δ 8.67 (dd, J = 4.6, 1.6 Hz, 1H), 8.45 (dd, J = 8.2, 1.6 Hz, 1H), 7.16 (dd, J = 8.2, 4.6 Hz , 1H), 4.15 (hept, J = 6.9Hz, 1H), 1.42 (d, J = 6.9Hz, 6H).
步骤8:2-(异丙基磺酰基)-3-硝基吡啶的合成Step 8: Synthesis of 2- (isopropylsulfonyl) -3-nitropyridine
Figure PCTCN2019091972-appb-000013
Figure PCTCN2019091972-appb-000013
室温下,向5L四口瓶中依次加入2-(异丙基硫基)-3-硝基吡啶(175.5g,885.29mmol)、85%间氯过氧苯甲酸(449g,2.21mol),DCM(3500ml),升温至25-30℃,1h反应终止。将反应液倒入水(900ml)中,加10%亚硫酸钠溶液(2000ml)淬灭,加20%碳酸钾调pH=8~9,分出下层有机相,加入DCM(1500ml x2)萃取,合并有机相,加5%NaHCO 3(1000ml)洗涤一次,有机相浓缩,粗品加入正己烷(1000ml)打浆0.5h,抽滤,滤饼干燥,得淡黄固体155g,收率76%。 1H NMR(400MHz,Chloroform-d)δ8.91(dd,J=4.7,1.3Hz,1H),8.13(dd,J=8.1,1.3Hz,1H),7.76(J=8.1,4.7Hz,1H),4.05(hept,J=6.9Hz,1H),1.42(d,J=6.9Hz,6H). At room temperature, a 5-L four-necked flask was sequentially charged with 2- (isopropylthio) -3-nitropyridine (175.5 g, 885.29 mmol), 85% m-chloroperoxybenzoic acid (449 g, 2.21 mol), and DCM. (3500ml), the temperature was raised to 25-30 ° C, and the reaction was terminated in 1h. Pour the reaction solution into water (900ml), quench by adding 10% sodium sulfite solution (2000ml), adjust the pH = 8-9 by adding 20% potassium carbonate, separate the lower organic phase, add DCM (1500mlx2) for extraction, and combine the organics Phase, add 5% NaHCO 3 (1000ml) and wash once. The organic phase is concentrated. The crude product is added with n-hexane (1000ml) and slurried for 0.5h, filtered with suction, and the filter cake is dried to obtain 155g of pale yellow solid with a yield of 76%. 1 H NMR (400MHz, Chloroform-d) δ 8.91 (dd, J = 4.7, 1.3 Hz, 1H), 8.13 (dd, J = 8.1, 1.3 Hz, 1H), 7.76 (J = 8.1, 4.7 Hz, 1H ), 4.05 (hept, J = 6.9Hz, 1H), 1.42 (d, J = 6.9Hz, 6H).
步骤9:2-(异丙基磺酰基)吡啶-3-胺的合成Step 9: Synthesis of 2- (isopropylsulfonyl) pyridin-3-amine
Figure PCTCN2019091972-appb-000014
Figure PCTCN2019091972-appb-000014
室温下,向四口瓶中依次加入2-(异丙基磺酰基)-3-硝基吡啶(155g,673.21mmol)、 铁粉(188g,3.37mol)、氯化铵(180g,3.37mol)和THF(1550ml)、水(1550ml),氮气保护,升温至70℃,6h反应终止。反应液加硅藻土过滤,滤液浓缩,加水(1500ml),DCM(500ml x3)萃取,合并有机相,加入水(500ml)洗涤一次,有机相浓缩,得粗品140g,结晶,得褐色固体103.9g,收率77%。 1H NMR(400MHz,Chloroform-d)δ8.05(d,J=4.0Hz,1H),7.26-7.22(m,1H),7.05(d,J=8.4Hz,1H),5.29(br,2H),3.74(dq,J=13.8,7.0Hz,1H),1.35(d,J=7.0Hz,3H). At room temperature, 2- (isopropylsulfonyl) -3-nitropyridine (155 g, 673.21 mmol), iron powder (188 g, 3.37 mol), and ammonium chloride (180 g, 3.37 mol) were sequentially added to the four-necked flask. And THF (1550ml), water (1550ml), nitrogen protection, warmed to 70 ° C, the reaction was terminated in 6h. The reaction solution was filtered with diatomaceous earth, and the filtrate was concentrated. The water was added (1500 ml) and extracted with DCM (500 ml x 3). The organic phases were combined, washed with water (500 ml) and washed once. The organic phase was concentrated to obtain 140 g of crude product and crystals. The yield is 77%. 1 H NMR (400MHz, Chloroform-d) δ 8.05 (d, J = 4.0 Hz, 1H), 7.26-7.22 (m, 1H), 7.05 (d, J = 8.4 Hz, 1H), 5.29 (br, 2H ), 3.74 (dq, J = 13.8, 7.0 Hz, 1H), 1.35 (d, J = 7.0 Hz, 3H).
步骤10:2,5-二氯-N-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-4-胺的合成Step 10: Synthesis of 2,5-dichloro-N- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine
Figure PCTCN2019091972-appb-000015
Figure PCTCN2019091972-appb-000015
室温下,向四口瓶中依次加入2-(异丙基磺酰基)吡啶-3-胺(18.00g,89.88mmol)、2,4,5-三氯嘧啶(25.00g,134.82mmol),DMF(180ml),氮气保护,降温至15-20℃,少量多次加入60%钠氢(10.80g,269.64mmol),保温20℃,1h反应终止。将反应液缓慢倒入乙酸(8g)的冰水(720ml)溶液中淬灭,析出沉淀,加入异丙醚(360ml)打浆分散0.5h,抽滤,滤饼干燥,得土黄色固体27.00g,收率86.4%。 1H NMR(400MHz,Chloroform-d)9.23(d,J=8.7Hz,1H),8.43(d,J=4.3Hz,1H),8.32(d,J=1.3Hz,1H),7.61(dd,J=8.1,3.8Hz,1H),3.94(hept,J=8.3,7.5Hz,1H),1.39-1.36(m,6H)。 At room temperature, 2- (isopropylsulfonyl) pyridine-3-amine (18.00 g, 89.88 mmol), 2,4,5-trichloropyrimidine (25.00 g, 134.82 mmol), and DMF were sequentially added to the four-necked flask. (180ml), protected by nitrogen, lowered the temperature to 15-20 ° C, and added 60% sodium hydrogen (10.80g, 269.64mmol) several times in a small amount, kept at 20 ° C, and the reaction was terminated in 1h. The reaction solution was slowly poured into a solution of acetic acid (8g) in ice-water (720ml) to quench, precipitate was precipitated, and isopropyl ether (360ml) was added to beat and disperse for 0.5h, suction-filtered, and the filter cake was dried to obtain 27.00g of a yellowish solid The yield was 86.4%. 1 H NMR (400 MHz, Chloroform-d) 9.23 (d, J = 8.7 Hz, 1 H), 8.43 (d, J = 4.3 Hz, 1 H), 8.32 (d, J = 1.3 Hz, 1 H), 7.61 (dd, J = 8.1, 3.8 Hz, 1H), 3.94 (hept, J = 8.3, 7.5 Hz, 1H), 1.39-1.36 (m, 6H).
步骤11:5-氯-N 2-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-2-甲氧基-5-硝基-吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基基)嘧啶-2,4-二胺的合成 Step 11: 5-chloro-N 2- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro-pyridin-3-yl) Synthesis of -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
Figure PCTCN2019091972-appb-000016
Figure PCTCN2019091972-appb-000016
室温下,向四口瓶中依次加入N 2-(2-(二甲基氨基)乙基)-6-甲氧基-N 2-甲基-3-硝基吡啶-2,5-二胺(0.70g,2.60mmol)、2,5-二氯-N-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-4-胺)(0.90g,2.60mmol)、Pd 2(dba) 3(0.035g,0.039mmol)、Xantphos(0.045g,0.078mmol)、K 3PO 4(1.380g,6.50mmol)和1,4-二氧六环(21ml),氮气保护,升温至80℃,3h反应终止。将反应液冷却至25-35℃加入水(40ml)淬灭反应,加入EA(20ml x2)萃取,合并有机相,加饱和食盐水(20ml)洗涤一次,有机相浓缩,粗品柱层析,得棕黄固体0.24g,收率16%。MS(ESI)m/z:580.1[M+H] +At room temperature was added successively a four-necked flask N 2 - (2- (dimethylamino) ethyl) -6-methoxy -N 2 - methyl-3-nitropyridine-2,5-diamine (0.70 g, 2.60 mmol), 2,5-dichloro-N- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine) (0.90 g, 2.60 mmol), Pd 2 ( dba) 3 (0.035 g, 0.039 mmol), Xantphos (0.045 g, 0.078 mmol), K 3 PO 4 (1.380 g, 6.50 mmol), and 1,4-dioxane (21 ml), protected by nitrogen, and heated to 80 At 3 ° C, the reaction was terminated. The reaction solution was cooled to 25-35 ° C and quenched by adding water (40 ml), and extracted by adding EA (20 ml x 2). The organic phases were combined, washed with saturated brine (20 ml), and the organic phase was concentrated. Brown-yellow solid 0.24g, yield 16%. MS (ESI) m / z: 580.1 [M + H] + .
步骤12:N 5-(5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)-N 2-(2-(二甲基氨基)乙基)-6-甲氧基-N 2-甲基吡啶2,3,5-三胺的合成 Step 12: N 5 - (5- chloro-4 - ((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - (2- (dimethylamino ) Ethyl) -6-methoxy-N 2 - methylpyridine 2,3,5-triamine
Figure PCTCN2019091972-appb-000017
Figure PCTCN2019091972-appb-000017
室温下,向四口瓶中依次加入5-氯-N 2-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-2-甲氧基-5-硝基-吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基基)嘧啶-2,4-二胺(0.225g,0.39mmol)、铁粉(0.109g,1.94mmol)、氯化铵(0.104g,1.94mmol)和乙醇(9ml)、水(4.5ml),氮气保护,升温至80℃,1h反应终止。反应液加硅藻土过滤,滤液浓缩,粗品柱层析,得棕黄色固体0.16g,收率75%。 At room temperature, 5-chloro-N 2- (6-((2- (dimethylamino) ethyl) (methyl) amino) -2-methoxy-5-nitro -Pyridin-3-yl) -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine (0.225 g, 0.39 mmol), iron powder (0.109 g, 1.94 mmol), ammonium chloride (0.104 g, 1.94 mmol) and ethanol (9 ml), water (4.5 ml), protected by nitrogen, heated to 80 ° C., and the reaction was terminated in 1 h. The reaction solution was filtered by adding diatomaceous earth, and the filtrate was concentrated. The crude product was subjected to column chromatography to obtain 0.16 g of a brown-yellow solid with a yield of 75%.
步骤13:N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的合成Step 13: N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- Synthesis of (dimethylamino) ethyl) (meth) amino) -6-methoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000018
Figure PCTCN2019091972-appb-000018
室温下,向四口瓶中依次加入N 5-(5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)-N 2-(2-(二甲基氨基)乙基)-6-甲氧基-N 2-甲基吡啶2,3,5-三胺(1.60g,2.91mmol)、二氯甲烷(32ml),氮气保护,降温至-30℃以下,滴加丙烯酸酐(0.455g,4.36mmol)的DCM(1ml)溶液,4h反应终止。反应液加入5%NaHCO 3(100ml)淬灭反应,加入EA(50ml x5)萃取,合并有机相,浓缩,粗品柱层析,得棕黄固体0.14g,收率10%。 1H NMR(400MHz,DMSO-d 6)8.69(s,1H),8.37(s,1H),8.24(s,1H),8.06(s,1H),7.51(s,1H),6.53-6.37(m,1H),6.18(d,J=17.4Hz,1H),5.73(d,J=11.3Hz,1H),3.87(dd,J=13.6,6.8Hz,1H),3.82(s,3H),3.43(br,2H),3.22(br,2H),2.87(s,3H),2.22(s,6H),1.22(d,J=6.8Hz,6H)。MS(ESI)m/z:604.1[M+H] +At room temperature, 4-neck flask were added to N 5 - (5- chloro-4 - ((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - ( 2- (dimethylamino) ethyl) -6-methoxy-N 2 - methylpyridine 2,3,5-triamine (1.60 g, 2.91 mmol), dichloromethane (32 ml), nitrogen protection, The temperature was lowered to below -30 ° C, and a solution of acrylic anhydride (0.455 g, 4.36 mmol) in DCM (1 ml) was added dropwise, and the reaction was terminated in 4 h. The reaction solution was quenched by adding 5% NaHCO 3 (100 ml), and extracted by adding EA (50 ml x 5). The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain a brown-yellow solid 0.14 g with a yield of 10%. 1 H NMR (400MHz, DMSO-d 6 ) 8.69 (s, 1H), 8.37 (s, 1H), 8.24 (s, 1H), 8.06 (s, 1H), 7.51 (s, 1H), 6.53-6.37 ( m, 1H), 6.18 (d, J = 17.4 Hz, 1H), 5.73 (d, J = 11.3 Hz, 1H), 3.87 (dd, J = 13.6, 6.8 Hz, 1H), 3.82 (s, 3H), 3.43 (br, 2H), 3.22 (br, 2H), 2.87 (s, 3H), 2.22 (s, 6H), 1.22 (d, J = 6.8 Hz, 6H). MS (ESI) m / z: 604.1 [M + H] + .
实施例2Example 2
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-乙氧基吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylform Of phenylamino) ethyl) (meth) amino) -6-ethoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000019
Figure PCTCN2019091972-appb-000019
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-乙氧基吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylform The method for preparing aminoamino) ethyl) (meth) amino) -6-ethoxypyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)8.61(s,1H),8.36(d,J=4.0Hz,1H),8.24(s,1H),8.06(s,1H),7.48(s,1H),6.43(dd,J=17.0,10.2Hz,1H),6.21-6.14(m,1H),5.75-5.68(m,1H),4.29(q,J=7.0Hz,2H),3.86(dt,J=13.5,6.8Hz,1H),3.18(t,J=6.3Hz,2H),2.85(s,3H),2.46(d,J=6.7Hz,2H),2.19(s,6H),1.23(s,9H)。MS(ESI)m/z:618.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) 8.61 (s, 1H), 8.36 (d, J = 4.0Hz, 1H), 8.24 (s, 1H), 8.06 (s, 1H), 7.48 (s, 1H) , 6.43 (dd, J = 17.0, 10.2 Hz, 1H), 6.21-6.14 (m, 1H), 5.75-5.68 (m, 1H), 4.29 (q, J = 7.0 Hz, 2H), 3.86 (dt, J = 13.5, 6.8Hz, 1H), 3.18 (t, J = 6.3Hz, 2H), 2.85 (s, 3H), 2.46 (d, J = 6.7Hz, 2H), 2.19 (s, 6H), 1.23 (s , 9H). MS (ESI) m / z: 618.1 [M + H] + .
实施例3Example 3
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-异丙氧基吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylform Of phenylamino) ethyl) (meth) amino) -6-isopropoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000020
Figure PCTCN2019091972-appb-000020
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-异丙氧基吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylform The method for preparing aminoamino) ethyl) (meth) amino) -6-isopropoxypyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)9.87(br,1H),9.75(br,1H),8.98(br,1H),8.52(s,1H),8.36(d,J=3.8Hz,1H),8.25(s,1H),8.05(s,1H),7.47(s,1H),6.43(dd,J=17.0,10.2Hz,1H),6.21-6.13(m,1H),5.76-5.69(m,1H),5.14(p,J=6.1Hz,1H),3.85(dt,J=13.8,6.9Hz,1H),3.17(t,J=6.4Hz,2H),2.84(s,3H),2.46-2.42(m,2H),2.18(s,6H),1.21(dd,J=10.5,6.5Hz,12H)。MS(ESI)m/z:632.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) 9.87 (br, 1H), 9.75 (br, 1H), 8.98 (br, 1H), 8.52 (s, 1H), 8.36 (d, J = 3.8 Hz, 1H) , 8.25 (s, 1H), 8.05 (s, 1H), 7.47 (s, 1H), 6.43 (dd, J = 17.0, 10.2Hz, 1H), 6.21-6.13 (m, 1H), 5.76-5.69 (m , 1H), 5.14 (p, J = 6.1 Hz, 1H), 3.85 (dt, J = 13.8, 6.9 Hz, 1H), 3.17 (t, J = 6.4 Hz, 2H), 2.84 (s, 3H), 2.46 -2.42 (m, 2H), 2.18 (s, 6H), 1.21 (dd, J = 10.5, 6.5Hz, 12H). MS (ESI) m / z: 632.1 [M + H] + .
实施例4Example 4
N-(5-((5-氯-4-(2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4- (2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethyl Synthesis of Amino) ethyl) (Meth) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000021
Figure PCTCN2019091972-appb-000021
N-(5-((5-氯-4-(2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4- (2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethyl Amino) ethyl) (meth) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is prepared in a similar manner to Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.91(br,1H),9.84(br,1H),8.96(br,1H),8.83(s,1H),8.37(s,1H),8.24(s,1H),7.99(s,1H),7.45(s,1H),6.45(dd,J=16.9,10.2Hz,1H),6.20(d,J=16.8Hz,1H),5.75(d,J=10.4Hz,1H),4.89(q,J=8.9Hz,2H),3.85(dt,J=13.4,6.6Hz,1H),3.28-3.22(m,2H),2.89(s,3H),2.46-2.42(m,2H),2.20(s,6H),1.22(d,J=6.7Hz,6H)。MS(ESI)m/z:672.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) δ 9.91 (br, 1H), 9.84 (br, 1H), 8.96 (br, 1H), 8.83 (s, 1H), 8.37 (s, 1H), 8.24 ( s, 1H), 7.99 (s, 1H), 7.45 (s, 1H), 6.45 (dd, J = 16.9, 10.2 Hz, 1H), 6.20 (d, J = 16.8 Hz, 1H), 5.75 (d, J = 10.4Hz, 1H), 4.89 (q, J = 8.9Hz, 2H), 3.85 (dt, J = 13.4, 6.6Hz, 1H), 3.28-3.22 (m, 2H), 2.89 (s, 3H), 2.46 -2.42 (m, 2H), 2.20 (s, 6H), 1.22 (d, J = 6.7Hz, 6H). MS (ESI) m / z: 672.1 [M + H] + .
实施例5Example 5
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-(二氟甲氧基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6- (difluoromethoxy) Synthesis of 2-((2- (dimethylamino) ethyl) (meth) amino) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000022
Figure PCTCN2019091972-appb-000022
步骤1:2-氯-6-(二氟甲氧基)吡啶的合成Step 1: Synthesis of 2-chloro-6- (difluoromethoxy) pyridine
Figure PCTCN2019091972-appb-000023
Figure PCTCN2019091972-appb-000023
室温下,向四口瓶中依次加入6-氯-2-羟基吡啶(148.8g,1.15mol)、DMF(1500ml),K 2CO 3(317g,1.15mol),缓慢加入二氟氯乙酸钠(210g,1.38mol),升温至85℃保温 1h,再100℃保温4h,反应终止。将反应液30℃减压蒸去溶剂,加水(20ml),加EA(20ml)萃取2次,合并有机相,加水(10ml)洗涤,有机相浓缩,粗品柱层析,得淡黄固体133.60g,收率65%。 1H NMR(400MHz,Chloroform-d)δ7.71(t,J=7.9Hz,1H),7.55(t,J=72.5Hz,1H),7.16(d,J=7.7Hz,1H),6.85(d,J=8.1Hz,1H)。 At room temperature, 6-chloro-2-hydroxypyridine (148.8 g, 1.15 mol), DMF (1500 ml), K 2 CO 3 (317 g, 1.15 mol) were sequentially added to the four-necked flask, and sodium difluorochloroacetate ( 210 g, 1.38 mol), the temperature was raised to 85 ° C. and the temperature was maintained for 1 h, and then the temperature was maintained at 100 ° C. for 4 h, and the reaction was terminated. The solvent was distilled off under reduced pressure at 30 ° C, water (20 ml) was added, and EA (20 ml) was added twice for extraction. The organic phases were combined, washed with water (10 ml), and the organic phase was concentrated. The crude column chromatography yielded 133.60 g of a pale yellow solid. The yield is 65%. 1 H NMR (400 MHz, Chloroform-d) δ 7.71 (t, J = 7.9 Hz, 1 H), 7.55 (t, J = 72.5 Hz, 1 H), 7.16 (d, J = 7.7 Hz, 1 H), 6.85 ( d, J = 8.1 Hz, 1H).
步骤2:6-氯-2-(二氟甲氧基)-3-硝基吡啶的合成Step 2: Synthesis of 6-chloro-2- (difluoromethoxy) -3-nitropyridine
Figure PCTCN2019091972-appb-000024
Figure PCTCN2019091972-appb-000024
室温下,向四口瓶中依次加入2-氯-6-(二氟甲氧基)吡啶(40.00g,222.78mmol)、三氟乙酸酐(120ml),0℃下滴加发烟硝酸(16.00g,229.46mmol),0~10℃反应2h。加入冰水(1000ml),甲叔醚(300ml x3)萃取,合并有机相,浓缩,柱层析得淡黄色固体25.00g,收率50%。 1H NMR(400MHz,DMSO-d 6)δ8.67(d,J=8.4Hz,1H),7.76(t,J=70.5Hz,1H),7.66(d,J=8.4Hz,1H)。 At room temperature, 2-chloro-6- (difluoromethoxy) pyridine (40.00g, 222.78mmol), and trifluoroacetic anhydride (120ml) were added to the four-necked flask in this order. Fuming nitric acid (16.00 g, 229.46 mmol), and react at 0-10 ° C for 2h. Ice water (1000 ml) was added, and methyl tertiary ether (300 ml x 3) was extracted. The organic phases were combined, concentrated, and column chromatography gave 25.00 g of a pale yellow solid with a yield of 50%. 1 H NMR (400 MHz, DMSO-d 6 ) δ 8.67 (d, J = 8.4 Hz, 1 H), 7.76 (t, J = 70.5 Hz, 1 H), 7.66 (d, J = 8.4 Hz, 1 H).
步骤3:6-氯-2-(二氟甲氧基)吡啶-3-胺的合成Step 3: Synthesis of 6-chloro-2- (difluoromethoxy) pyridin-3-amine
Figure PCTCN2019091972-appb-000025
Figure PCTCN2019091972-appb-000025
室温下,向四口瓶中依次加入6-氯-2-(二氟甲氧基)-3-硝基吡啶(43.70g,194.61mmol)、铁粉(54.30g,973.06mmol)、氯化铵(52.00g,973.06mmol)和乙醇(875ml)、水(437ml),氮气保护,升温至80℃,2h反应终止。反应液加硅藻土过滤,滤液浓缩,粗品柱层析,得褐色液体34.20g,收率90%。 1H NMR(400MHz,Chloroform-d)δ7.44(t,J=72.7Hz,1H),7.02(d,J=8.1Hz,1H),6.95(d,J=8.1Hz,1H)。 At room temperature, 6-chloro-2- (difluoromethoxy) -3-nitropyridine (43.70 g, 194.61 mmol), iron powder (54.30 g, 973.06 mmol), and ammonium chloride were sequentially added to the four-necked flask. (52.00g, 973.06mmol) and ethanol (875ml), water (437ml), nitrogen protection, warmed to 80 ° C, the reaction was terminated in 2h. The reaction solution was filtered by adding diatomaceous earth, and the filtrate was concentrated. The crude product was subjected to column chromatography to obtain 34.20 g of a brown liquid with a yield of 90%. 1 H NMR (400 MHz, Chloroform-d) δ 7.44 (t, J = 72.7 Hz, 1 H), 7.02 (d, J = 8.1 Hz, 1 H), 6.95 (d, J = 8.1 Hz, 1 H).
步骤4:N-(6-氯-2-(二氟甲氧基)吡啶-3-基)乙酰胺的合成Step 4: Synthesis of N- (6-chloro-2- (difluoromethoxy) pyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000026
Figure PCTCN2019091972-appb-000026
室温下,向四口瓶中依次加入6-氯-2-(二氟甲氧基)吡啶-3-胺(34.20g,175.77mmol)、乙酸酐(171g,1.67mol),20-25℃反应,1h反应终止。反应液加水(800ml)搅拌1h,析出褐色沉淀,DCM萃取(200ml x3),100ml水洗一次,合并有机相浓缩得黄色固体28.60g,收率69%。At room temperature, 6-chloro-2- (difluoromethoxy) pyridine-3-amine (34.20 g, 175.77 mmol), acetic anhydride (171 g, 1.67 mol) were sequentially added to the four-necked flask, and reacted at 20-25 ° C. , 1h reaction was terminated. The reaction solution was added with water (800 ml) and stirred for 1 h. A brown precipitate was precipitated, extracted with DCM (200 ml x 3), washed once with 100 ml of water, and the combined organic phases were concentrated to give 28.60 g of a yellow solid with a yield of 69%.
步骤5:N-(6-氯-2-(二氟甲氧基)-5-硝基-吡啶-3-基)乙酰胺的合成Step 5: Synthesis of N- (6-chloro-2- (difluoromethoxy) -5-nitro-pyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000027
Figure PCTCN2019091972-appb-000027
室温下,向四口瓶中依次加入N-(6-氯-2-(二氟甲氧基)吡啶-3-基)乙酰胺(22.60g,95.52mmol)、三氟乙酸酐(113ml),滴加发烟硝酸(30.1g,477.60mmol),70℃反应16h。反应液缓慢倒入冰水(1000ml)搅拌1h,甲叔醚(300ml x3)萃取,合并有机相,浓缩,柱层析得棕色固体3.40g,收率13%。 1H NMR(400MHz,Chloroform-d)δ9.44(s,1H),7.70(d,J=5.6Hz,1H),7.53(t,J=72.5Hz,1H),2.33(s,3H)。 At room temperature, N- (6-chloro-2- (difluoromethoxy) pyridin-3-yl) acetamide (22.60 g, 95.52 mmol), and trifluoroacetic anhydride (113 ml) were sequentially added to the four-necked flask. Add fuming nitric acid (30.1 g, 477.60 mmol) dropwise and react at 70 ° C for 16h. The reaction solution was slowly poured into ice-water (1000 ml) and stirred for 1 h, extracted with methyl tert-ether (300 ml x 3), the organic phases were combined, concentrated, and column chromatography gave 3.40 g of a brown solid with a yield of 13%. 1 H NMR (400 MHz, Chloroform-d) δ 9.44 (s, 1 H), 7.70 (d, J = 5.6 Hz, 1 H), 7.53 (t, J = 72.5 Hz, 1 H), 2.33 (s, 3 H).
步骤6:N-(2-(二氟甲氧基)-6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基-吡啶-3-基)乙酰胺的合成Step 6: N- (2- (difluoromethoxy) -6-((2- (dimethylamino) ethyl) (methyl) amino) -5-nitro-pyridin-3-yl) ethyl Synthesis of amides
Figure PCTCN2019091972-appb-000028
Figure PCTCN2019091972-appb-000028
室温下,向四口瓶中依次加入N-(6-氯-2-(二氟甲氧基)-5-硝基-吡啶-3-基)乙酰胺(1.70g,6.04mmol)、N,N,N’-三甲基乙二胺(1.23g,12.08mmol),乙腈(34ml),升温至80℃,3h反应终止。将反应液50℃减压蒸去溶剂,加5%NaHCO 3(20ml),加DCM(30ml x3)萃取3次,合并有机相,浓缩,粗品柱层析,得褐色固体1.01g,收率48%。 1H NMR(400MHz,DMSO-d 6)δ9.61(s,1H),8.64(s,1H),7.76(t,J=71.8Hz,1H),3.65(t,J=6.9Hz,2H),2.83(s,3H),2.53(d,J=8.0Hz,2H),2.19(s,6H),2.07(s,3H)。 At room temperature, N- (6-chloro-2- (difluoromethoxy) -5-nitro-pyridin-3-yl) acetamide (1.70 g, 6.04 mmol), N, N, N'-trimethylethylenediamine (1.23g, 12.08mmol), acetonitrile (34ml), the temperature was raised to 80 ° C, and the reaction was terminated in 3h. The solvent was evaporated under reduced pressure at 50 ° C, 5% NaHCO 3 (20 ml) was added, and extracted with DCM (30 ml x 3) three times. The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain 1.01 g of a brown solid with a yield of 48. %. 1 H NMR (400MHz, DMSO-d 6 ) δ 9.61 (s, 1H), 8.64 (s, 1H), 7.76 (t, J = 71.8Hz, 1H), 3.65 (t, J = 6.9Hz, 2H) , 2.83 (s, 3H), 2.53 (d, J = 8.0 Hz, 2H), 2.19 (s, 6H), 2.07 (s, 3H).
步骤7:6-(二氟甲氧基)-N 2-(2-(二甲基氨基)乙基)-N 2-甲基-3-硝基吡啶-2,5-二胺的合成 Step 7: 6- (difluoromethoxy) -N 2 - (2- (dimethylamino) ethyl) 2 -N - Synthesis of methyl 3-nitropyridine-2,5-diamine
Figure PCTCN2019091972-appb-000029
Figure PCTCN2019091972-appb-000029
室温下,向四口瓶中依次加入N-(2-(二氟甲氧基)-6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基-吡啶-3-基)乙酰胺(1.00g,2.88mmol)、甲醇(30ml)、37%盐酸(0.56g,5.76mmol),升温至60℃,6h反应终止。将反应液加5%NaHCO 3中和至Ph=8~9,40℃减压蒸去溶剂,加水(6ml),加DCM(30ml x3)萃取,合并有机相,浓缩,粗品柱层析,得棕黄色油状物0.5g,收率57%,直接投下一步。 At room temperature, N- (2- (difluoromethoxy) -6-((2- (dimethylamino) ethyl) (methyl) amino) -5-nitro- Pyridine-3-yl) acetamide (1.00 g, 2.88 mmol), methanol (30 ml), 37% hydrochloric acid (0.56 g, 5.76 mmol), the temperature was raised to 60 ° C, and the reaction was terminated in 6 h. The reaction solution was neutralized with 5% NaHCO 3 to Ph = 8-9, the solvent was distilled off under reduced pressure at 40 ° C, water (6 ml) was added, and DCM (30 ml x 3) was added for extraction. The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain 0.5 g of brown-yellow oil, 57% yield, directly into the next step.
步骤8:5-氯-N 2-(2-(二氟甲氧基)-6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺的合成 Step 8: 5-Chloro -N 2 - (2- (difluoromethoxy) -6 - ((2- (dimethylamino) ethyl) (methyl) amino) -5-nitro-pyridin-3 -Yl) -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
Figure PCTCN2019091972-appb-000030
Figure PCTCN2019091972-appb-000030
室温下,向四口瓶中依次加入6-(二氟甲氧基)-N 2-(2-(二甲基氨基)乙基)-N 2-甲基-3-硝基吡啶-2,5-二胺的合成(0.50g,1.00eq)、2,5-二氯-N-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-4-胺(0.57g,1.64mmol)、Pd 2(dba) 3(0.15g,0.16mmol)、Xantphos(0.19g,0.32mmol)、K 3PO 4(0.87g,4.09mmol)和1,4-二氧六环(15ml),氮气保护,升温至60-70℃,3h反应终止。将反应液冷却至25-35℃,加入水(20ml)淬灭反应,加入DCM(20ml x2)萃取,合并有机相,加饱和食盐水(10ml)洗涤,有机相浓缩,粗品柱层析,得棕黄固体0.25g,收率25%,直接投下一步。 At room temperature, a four-necked flask were added 6- (difluoromethoxy) -N 2 - (2- (dimethylamino) ethyl) -N 2 - methyl-3-nitro-2, Synthesis of 5-diamine (0.50g, 1.00eq), 2,5-dichloro-N- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine (0.57g, 1.64mmol ), Pd 2 (dba) 3 (0.15 g, 0.16 mmol), Xantphos (0.19 g, 0.32 mmol), K 3 PO 4 (0.87 g, 4.09 mmol), and 1,4-dioxane (15 ml), nitrogen Protected, warmed to 60-70 ° C, the reaction was terminated in 3h. The reaction solution was cooled to 25-35 ° C, water (20 ml) was added to quench the reaction, and DCM (20 ml x 2) was added for extraction. The organic phases were combined, washed with saturated brine (10 ml), and the organic phase was concentrated. The crude column chromatography yielded Brownish yellow solid 0.25g, yield 25%, directly into the next step.
步骤9:N 5-(5-氯-4-(2-(异丙基磺酰基)吡啶-3-基氨基)嘧啶-2-基)-6-(二氟甲氧基)-N 2-(2-(二甲基氨基)乙基)-N2-甲基吡啶-2-基)2,3,5-三胺的合成 Step 9: N 5 - (5- chloro-4- (2- (isopropylsulfonyl) pyridin-3-ylamino) pyrimidin-2-yl) -6- (difluoromethoxy) -N 2 - Synthesis of (2- (dimethylamino) ethyl) -N2-methylpyridin-2-yl) 2,3,5-triamine
Figure PCTCN2019091972-appb-000031
Figure PCTCN2019091972-appb-000031
室温下,向四口瓶中依次加入5-氯-N 2-(2-(二氟甲氧基)-6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺(0.25g,4.06mmol)、铁粉(0.11g,20.30mmol)、氯化铵(0.11g,20.30mmol)和乙醇(5ml)、水(2.5ml),氮气保护,升温至80℃,2h反应终止。反应液加硅藻土过滤,滤液浓缩,粗品柱层析,得黄绿色固体0.09g,收率38%。 At room temperature, 4-neck flask were added to the 5-Chloro -N 2 - (2- (difluoromethoxy) -6 - ((2- (dimethylamino) ethyl) (methyl) amino) - 5-nitropyridin-3-yl) -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine (0.25 g, 4.06 mmol), iron powder (0.11 g, 20.30 mmol), ammonium chloride (0.11 g, 20.30 mmol), ethanol (5 ml), water (2.5 ml), nitrogen protection, heating to 80 ° C., and the reaction was terminated in 2 h. The reaction solution was filtered by adding diatomaceous earth, and the filtrate was concentrated. The crude product was subjected to column chromatography to obtain 0.09 g of a yellow-green solid with a yield of 38%.
步骤10:N-(5-(5-氯-4-(2-(异丙基磺酰基)吡啶-3-基氨基)嘧啶-2-基氨基)-6-(二氟甲氧基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)吡啶-3-基)丙烯酰胺的合成Step 10: N- (5- (5-chloro-4- (2- (isopropylsulfonyl) pyridin-3-ylamino) pyrimidin-2-ylamino) -6- (difluoromethoxy)- Synthesis of 2-((2- (dimethylamino) ethyl) (meth) amino) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000032
Figure PCTCN2019091972-appb-000032
室温下,向四口瓶中依次加入N 5-(5-氯-4-(2-(异丙基磺酰基)吡啶-3-基氨基)嘧啶-2-基)-6-(二氟甲氧基)-N 2-(2-(二甲基氨基)乙基)-N2-甲基吡啶-2-基)2,3,5-三胺(0.09g, 0.15mmol)、二氯甲烷(4.5ml),氮气保护,降温至-30℃以下,滴加丙烯酸酐(0.014g,0.15mmol)的DCM(1ml)溶液,1h反应终止。反应液加入5%NaHCO 3(15ml)淬灭反应,加入DCM(10ml x2)萃取,合并有机相,浓缩,粗品柱层析,刮板得类白色固体0.052g,收率52%。 1H NMR(400MHz,DMSO-d 6)δ10.08(br,1H),9.91(s,1H),9.03(s,1H),8.38(d,J=4.1Hz,1H),8.26(s,1H),8.14(s,1H),7.63(t,J=71.8Hz,1H),7.54(s,1H),6.61-6.55(m,1H),6.21(d,J=18.5Hz,1H),5.78-5.73(m,1H),3.88-3.83(m,1H),3.43-3.37(m,2H),2.87(s,3H),2.49-2.44(m,2H),2.28(s,6H),1.22(d,J=6.9Hz,6H)。MS(ESI)m/z:640.1[M+H] +At room temperature was added successively a four-necked flask N 5 - (5-chloro-4- (2- (isopropylsulfonyl) pyridin-3-ylamino) pyrimidin-2-yl) -6- (difluoromethyl oxy) -N 2 - (2- (dimethylamino) ethyl) -N2- methyl-pyridin-2-yl) 2,3,5-triamine (0.09g, 0.15mmol), dichloromethane ( 4.5ml), protected by nitrogen, cooled to below -30 ° C, a solution of acrylic anhydride (0.014g, 0.15mmol) in DCM (1ml) was added dropwise, and the reaction was terminated in 1h. The reaction solution was quenched by adding 5% NaHCO 3 (15 ml), and extracted by adding DCM (10 ml x 2). The organic phases were combined, concentrated, and subjected to crude column chromatography. A scrape was obtained to obtain 0.052 g of an off-white solid with a yield of 52%. 1 H NMR (400 MHz, DMSO-d 6 ) δ 10.08 (br, 1H), 9.91 (s, 1H), 9.03 (s, 1H), 8.38 (d, J = 4.1 Hz, 1H), 8.26 (s, 1H), 8.14 (s, 1H), 7.63 (t, J = 71.8Hz, 1H), 7.54 (s, 1H), 6.61-6.55 (m, 1H), 6.21 (d, J = 11Hz, 1H), 5.78-5.73 (m, 1H), 3.88-3.83 (m, 1H), 3.43-3.37 (m, 2H), 2.87 (s, 3H), 2.49-2.44 (m, 2H), 2.28 (s, 6H), 1.22 (d, J = 6.9Hz, 6H). MS (ESI) m / z: 640.1 [M + H] + .
实施例6Example 6
N-(5-((5-氯-4-((2-(异丙基磺酰基)苯基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) phenyl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylamino) Synthesis of (ethyl) (meth) amino) -6-methoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000033
Figure PCTCN2019091972-appb-000033
N-(5-((5-氯-4-((2-(异丙基磺酰基)苯基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) phenyl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylamino) The method for preparing ethyl) (meth) amino) -6-methoxypyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)8.57(s,1H),8.50(br,1H),8.21(s,1H),8.08(s,1H),7.77(d,J=7.6Hz,1H),7.53(s,1H),7.26(t,J=7.6Hz,1H),6.43(dd,J=16.9,10.2Hz,1H),6.17(d,J=16.8Hz,1H),5.72(d,J=10.1Hz,1H),3.81(s,3H),3.43(dd,J=10.1,3.6Hz,1H),3.20-3.16(m,2H),2.86(s,3H),2.44(d,J=6.8Hz,2H),2.18(s,6H),1.16(d,J=6.7Hz,6H)。MS(ESI)m/z:603.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) 8.57 (s, 1H), 8.50 (br, 1H), 8.21 (s, 1H), 8.08 (s, 1H), 7.77 (d, J = 7.6Hz, 1H) , 7.53 (s, 1H), 7.26 (t, J = 7.6 Hz, 1H), 6.43 (dd, J = 16.9, 10.2 Hz, 1H), 6.17 (d, J = 16.8 Hz, 1H), 5.72 (d, J = 10.1 Hz, 1H), 3.81 (s, 3H), 3.43 (dd, J = 10.1, 3.6 Hz, 1H), 3.20-3.16 (m, 2H), 2.86 (s, 3H), 2.44 (d, J = 6.8Hz, 2H), 2.18 (s, 6H), 1.16 (d, J = 6.7Hz, 6H). MS (ESI) m / z: 603.1 [M + H] + .
实施例7Example 7
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的合成N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl) pyridine-3- Synthesis of amino) amino) pyrimidin-2-yl) amino) -6-methoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000034
Figure PCTCN2019091972-appb-000034
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl))
吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-甲氧基吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。The method for preparing pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-methoxypyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)8.44(s,1H),8.38(d,J=4.2Hz,1H),8.21(d,J=3.0Hz,1H),8.17(s,1H),7.55(dd,J=8.5,4.2Hz,1H),6.44(dd,J=17.0,10.2Hz,1H),6.18(dd,J=17.0,1.8Hz,1H),5.77-5.68(m,1H),3.89(dd,J=13.6,6.8Hz,1H),3.84(s,3H),3.18(t,J=6.3Hz,2H),2.85(s,3H),2.48-2.43(m,2H),2.19(s,6H),1.22(d,J=6.8Hz,6H)。 1 H NMR (400MHz, DMSO-d 6 ) 8.44 (s, 1H), 8.38 (d, J = 4.2Hz, 1H), 8.21 (d, J = 3.0Hz, 1H), 8.17 (s, 1H), 7.55 (dd, J = 8.5, 4.2 Hz, 1H), 6.44 (dd, J = 17.0, 10.2 Hz, 1H), 6.18 (dd, J = 17.0, 1.8 Hz, 1H), 5.77-5.68 (m, 1H), 3.89 (dd, J = 13.6, 6.8Hz, 1H), 3.84 (s, 3H), 3.18 (t, J = 6.3Hz, 2H), 2.85 (s, 3H), 2.48-2.43 (m, 2H), 2.19 (s, 6H), 1.22 (d, J = 6.8 Hz, 6H).
MS(ESI)m/z:588.1[M+H] +MS (ESI) m / z: 588.1 [M + H] + .
实施例8Example 8
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-异丙氧基吡啶-3-基)丙烯酰胺的合成N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl) pyridine-3- Synthesis of amino) amino) pyrimidin-2-yl) amino) -6-isopropoxypyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000035
Figure PCTCN2019091972-appb-000035
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-异丙氧基吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl) pyridine-3- The method for preparing the group) amino) pyrimidin-2-yl) amino) -6-isopropoxypyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,Chloroform-d)δ10.09(br,1H),9.93(br,1H),9.44(br,1H),9.15(s,1H),8.32(s,1H),8.14(s,1H),7.40(dd,J=8.8,4.2Hz,1H),7.19(s,1H),6.44-6.19(m,2H),5.70(dd,J=8.1,3.6Hz,1H),5.39-5.23(m,1H),3.91-3.76(m,1H),2.94(s,2H),2.73(s,3H),2.40(d,J=5.9Hz,2H),2.34(s,6H),1.39(dd,J=11.2,6.6Hz,12H);MS(ESI)m/z:616.1[M+H] +;HPLC=99.84%。. 1 H NMR (400MHz, Chloroform-d) δ 10.09 (br, 1H), 9.93 (br, 1H), 9.44 (br, 1H), 9.15 (s, 1H), 8.32 (s, 1H), 8.14 (s , 1H), 7.40 (dd, J = 8.8, 4.2Hz, 1H), 7.19 (s, 1H), 6.44-6.19 (m, 2H), 5.70 (dd, J = 8.1, 3.6Hz, 1H), 5.39- 5.23 (m, 1H), 3.91-3.76 (m, 1H), 2.94 (s, 2H), 2.73 (s, 3H), 2.40 (d, J = 5.9Hz, 2H), 2.34 (s, 6H), 1.39 (dd, J = 11.2, 6.6 Hz, 12H); MS (ESI) m / z: 616.1 [M + H] + ; HPLC = 99.84%. .
实施例9Example 9
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl) pyridine-3- (Synthetic) amino) pyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000036
Figure PCTCN2019091972-appb-000036
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((5-氟-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((5-fluoro-4-((2- (isopropylsulfonyl) pyridine-3- (Meth) amino) pyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is prepared in a similar manner to Example 1.
1H NMR(400MHz,DMSO-d 6)9.83(br,2H),9.00(br,1H),8.59(s,1H),8.38(s,1H),8.21(d,J=3.0Hz,1H),8.07(s,1H),7.50(dd,J=8.7,4.4Hz,1H),6.44(dd,J=17.0,10.2Hz,1H),6.20(dd,J=17.0,1.8Hz,1H),5.78-5.72(m,1H),4.91(q,J=9.1Hz,2H),3.88-3.84(m,1H),3.22(t,J=6.4Hz,2H),2.88(s,3H),2.47-2.44(m,2H),2.18(s,6H),1.21(d,J=6.7Hz,6H)。MS(ESI)m/z:656.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) 9.83 (br, 2H), 9.00 (br, 1H), 8.59 (s, 1H), 8.38 (s, 1H), 8.21 (d, J = 3.0Hz, 1H) , 8.07 (s, 1H), 7.50 (dd, J = 8.7, 4.4 Hz, 1H), 6.44 (dd, J = 17.0, 10.2 Hz, 1H), 6.20 (dd, J = 17.0, 1.8 Hz, 1H), 5.78-5.72 (m, 1H), 4.91 (q, J = 9.1Hz, 2H), 3.88-3.84 (m, 1H), 3.22 (t, J = 6.4Hz, 2H), 2.88 (s, 3H), 2.47 -2.44 (m, 2H), 2.18 (s, 6H), 1.21 (d, J = 6.7Hz, 6H). MS (ESI) m / z: 656.1 [M + H] + .
实施例10Example 10
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((4-((2-(异丙基磺酰基)吡啶-3-基)氨基)-5-甲基嘧啶-2-基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) Synthesis of -5-methylpyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000037
Figure PCTCN2019091972-appb-000037
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((4-((2-(异丙基磺酰基)吡啶-3-基)氨基)-5-甲基嘧啶-2-基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) The method for preparing 5-methylpyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.84(s,1H),9.42(s,1H),9.07(d,J=8.6Hz,1H),8.30(d,J=3.8Hz,1H),8.28(s,1H),8.17(s,1H),8.00(s,1H),7.45(dd,J=8.5,4.3Hz,1H),6.49-6.40(m,1H),6.19(d,J=16.8Hz,1H),5.75(d,J=11.7Hz,1H),4.96-4.89(m,2H),3.84(p,J=6.8Hz,1H),3.26-3.19(m,2H),2.86(s,3H),2.47-2.44(m,2H),2.23(s,6H),2.08(s,3H),1.22(d,J=6.8Hz,6H)。MS(ESI)m/z:652.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) δ 9.84 (s, 1H), 9.42 (s, 1H), 9.07 (d, J = 8.6 Hz, 1H), 8.30 (d, J = 3.8 Hz, 1H) , 8.28 (s, 1H), 8.17 (s, 1H), 8.00 (s, 1H), 7.45 (dd, J = 8.5, 4.3Hz, 1H), 6.49-6.40 (m, 1H), 6.19 (d, J = 16.8 Hz, 1H), 5.75 (d, J = 11.7 Hz, 1H), 4.96-4.89 (m, 2H), 3.84 (p, J = 6.8Hz, 1H), 3.26-3.19 (m, 2H), 2.86 (s, 3H), 2.47-2.44 (m, 2H), 2.23 (s, 6H), 2.08 (s, 3H), 1.22 (d, J = 6.8Hz, 6H). MS (ESI) m / z: 652.1 [M + H] + .
实施例11Example 11
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) Synthesis of pyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000038
Figure PCTCN2019091972-appb-000038
N-(2-((2-(二甲基氨基)乙基)(甲基)氨基)-5-((4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (2-((2- (dimethylamino) ethyl) (methyl) amino) -5-((4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) The method for preparing pyrimidin-2-yl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.81(s,1H),9.29(s,1H),8.77(br,1H),8.35(s,1H),8.32(d,J=3.7Hz,1H),8.13(s,1H),8.08(d,J=5.6Hz,1H),7.46(s,1H),6.44(dd,J=17.0,10.2Hz,1H),6.33(d,J=5.6Hz,1H),6.19(d,J=17.0Hz,1H),5.75(d,J=10.2Hz,1H),4.92(q,J=9.1Hz,2H),3.82(dt,J=13.6,6.7Hz,1H),3.19(t,J=5.9Hz,2H),2.86(s,3H),2.48-2.43(m,2H),2.19(s,6H),1.20(d,J=6.8Hz,6H。MS(ESI)m/z:638.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) δ9.81 (s, 1H), 9.29 (s, 1H), 8.77 (br, 1H), 8.35 (s, 1H), 8.32 (d, J = 3.7Hz, 1H), 8.13 (s, 1H), 8.08 (d, J = 5.6Hz, 1H), 7.46 (s, 1H), 6.44 (dd, J = 17.0, 10.2Hz, 1H), 6.33 (d, J = 5.6 Hz, 1H), 6.19 (d, J = 17.0 Hz, 1H), 5.75 (d, J = 10.2 Hz, 1H), 4.92 (q, J = 9.1 Hz, 2H), 3.82 (dt, J = 13.6, 6.7 Hz, 1H), 3.19 (t, J = 5.9Hz, 2H), 2.86 (s, 3H), 2.48-2.43 (m, 2H), 2.19 (s, 6H), 1.20 (d, J = 6.8Hz, 6H MS (ESI) m / z: 638.1 [M + H] + .
实施例12Example 12
N-(5-((5-氯-4-((2-(环丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylform Of phenylamino) ethyl) (meth) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000039
Figure PCTCN2019091972-appb-000039
步骤1:参照实施例4合成6-(N,N,N’-三甲基乙二胺基)-5-硝基-3-氨基-2-(2,2,2-三氟乙氧基)吡啶。Step 1: Synthesis of 6- (N, N, N'-trimethylethylenediamino) -5-nitro-3-amino-2- (2,2,2-trifluoroethoxy) with reference to Example 4 ) Pyridine.
步骤2:环丙烷磺酸钠的合成Step 2: Synthesis of sodium cyclopropane sulfonate
Figure PCTCN2019091972-appb-000040
Figure PCTCN2019091972-appb-000040
室温下,向单口瓶中依次加入亚硫酸钠(18.40g,145.54mmol)、碳酸氢钠(20.70g,252.39mmol),水(180ml),升温至55-60℃,滴加环丙基磺酰氯(18.60g,132.31mmol),保温下反应60℃,3h反应终止。将反应液浓缩,加入THF(200ml x2)带水至恒重,得白色固体44.00g,收率按100%计,不纯化直接投料下一步。At room temperature, sodium sulfite (18.40 g, 145.54 mmol), sodium bicarbonate (20.70 g, 252.39 mmol), and water (180 ml) were sequentially added to the single-necked flask. The temperature was raised to 55-60 ° C, and cyclopropylsulfonyl chloride (18.60) was added dropwise. g, 132.31 mmol), the reaction was maintained at 60 ° C. for 3 h and the reaction was terminated. The reaction solution was concentrated, and THF (200 ml × 2) was added to bring it to constant weight to obtain 44.00 g of a white solid. The yield was calculated as 100%. The next step was directly fed without purification.
步骤3:2-(环丙基磺酰基)-3-硝基吡啶的合成Step 3: Synthesis of 2- (cyclopropylsulfonyl) -3-nitropyridine
Figure PCTCN2019091972-appb-000041
Figure PCTCN2019091972-appb-000041
室温下,向单口瓶中依次加入2-氟-3-硝基吡啶(16.00g,112.60mmol)、环丙烷磺酸钠(15.10g,118.23mmol),DMSO(160ml),升温至120℃,4h反应终止。将反应液冷却至25-30℃,倒入水(480ml)中,析出沉淀,抽滤,滤饼加水(100ml)洗涤,滤饼加入DCM(200ml)溶解,分出有机相,浓缩,柱层析,得类白色固体16.50g,收率64%。 1H NMR(400MHz,Chloroform-d)δ8.90(d,J=4.7Hz,1H),8.18(d,J=8.1Hz,1H),7.74(dd,J=8.1,4.7Hz,1H),3.13(tt,J=8.0,4.8Hz,1H),1.49-1.45(m,2H),1.21-1.15(m,2H)。 At room temperature, add 2-fluoro-3-nitropyridine (16.00 g, 112.60 mmol), sodium cyclopropane sulfonate (15.10 g, 118.23 mmol), and DMSO (160 ml) to the single-necked flask, and heat to 120 ° C for 4 h. The reaction was terminated. The reaction solution was cooled to 25-30 ° C, poured into water (480ml), precipitated out, filtered by suction, the filter cake was washed with water (100ml), and the filter cake was dissolved by adding DCM (200ml), the organic phase was separated, concentrated, and the column layer Analysis gave 16.50 g of off-white solid with a yield of 64%. 1 H NMR (400 MHz, Chloroform-d) δ 8.90 (d, J = 4.7 Hz, 1 H), 8.18 (d, J = 8.1 Hz, 1 H), 7.74 (dd, J = 8.1, 4.7 Hz, 1 H), 3.13 (tt, J = 8.0, 4.8 Hz, 1H), 1.49-1.45 (m, 2H), 1.21-1.15 (m, 2H).
步骤4:2-(环丙基磺酰基)吡啶-3-胺的合成Step 4: Synthesis of 2- (cyclopropylsulfonyl) pyridine-3-amine
Figure PCTCN2019091972-appb-000042
Figure PCTCN2019091972-appb-000042
室温下,向四口瓶中依次加入2-(环丙基磺酰基)-3-硝基吡啶(15.80g,69.23mmol)、铁粉(19.30g,346.16mmol)、氯化铵(18.50g,346.16mmol)和乙醇(316ml)、水(158ml),氮气保护,升温至80℃,4h反应终止。反应液加硅藻土过滤,滤液浓缩,加水(200ml),DCM(100ml x2)萃取,合并有机相,浓缩,得棕黄色固体13.00g,收率95%。At room temperature, 2- (cyclopropylsulfonyl) -3-nitropyridine (15.80 g, 69.23 mmol), iron powder (19.30 g, 346.16 mmol), and ammonium chloride (18.50 g, 346.16 mmol), ethanol (316 ml), water (158 ml), nitrogen protection, heating to 80 ° C., the reaction was terminated in 4 h. The reaction solution was filtered with celite, the filtrate was concentrated, water (200 ml) was added, and DCM (100 ml × 2) was extracted. The organic phases were combined and concentrated to obtain 13.00 g of a brown-yellow solid with a yield of 95%.
步骤5:2,5-二氯-N-(2-(环丙基磺酰基)吡啶-3-基)嘧啶-4-胺的合成Step 5: Synthesis of 2,5-dichloro-N- (2- (cyclopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine
Figure PCTCN2019091972-appb-000043
Figure PCTCN2019091972-appb-000043
室温下,向四口瓶中依次加入2-(环丙基磺酰基)吡啶-3-胺(6.00g,30.26mmol)、2,4,5-三氯嘧啶(8.20g,45.39mmol),DMF(60ml),氮气保护,降温至0-5℃,少量多次加入60%钠氢(2.40g,60.52mmol),保温0℃,3h反应终止。将反应液缓慢导入冰水(360ml)中淬灭,加入DCM(100ml x2)萃取,合并有机相,加水(100ml)洗涤一次,有机相 浓缩,粗品加入异丙醚(60ml)打浆0.5h,抽滤,滤饼干燥,得土黄色固体6.20g,收率60%。At room temperature, 2- (cyclopropylsulfonyl) pyridin-3-amine (6.00 g, 30.26 mmol), 2,4,5-trichloropyrimidine (8.20 g, 45.39 mmol), and DMF were sequentially added to the four-necked flask. (60ml), protected by nitrogen, lowered the temperature to 0-5 ° C, and added 60% sodium hydrogen (2.40g, 60.52mmol) several times in small amounts, kept at 0 ° C, and the reaction was terminated in 3h. The reaction solution was slowly introduced into ice water (360 ml) for quenching, followed by extraction with DCM (100 ml × 2). The organic phases were combined, washed with water (100 ml), washed once, and the organic phase was concentrated. The crude product was added with isopropyl ether (60 ml) for 0.5 h. Filtration and drying of the filter cake gave 6.20 g of a khaki solid with a yield of 60%.
步骤6:5-氯-N 4-(2-(环丙基磺酰基)吡啶-3-基)-N 2-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基-2-(2,2,2-三氟乙氧基)吡啶-3-基)嘧啶-2,4-二胺的合成 Step 6: 5-Chloro-N 4- (2- (cyclopropylsulfonyl) pyridin-3-yl) -N 2- (6-((2- (dimethylamino) ethyl) (methyl) Synthesis of Amino) -5-nitro-2- (2,2,2-trifluoroethoxy) pyridin-3-yl) pyrimidine-2,4-diamine
Figure PCTCN2019091972-appb-000044
Figure PCTCN2019091972-appb-000044
室温下,向四口瓶中依次加入6-(N,N,N’-三甲基乙二胺基)-5-硝基-3-氨基-2-(2,2,2-三氟乙氧基)吡啶(6.60g,19.57mmol)、2,5-二氯-N-(2-(环丙基磺酰基)吡啶-3-基)嘧啶-4-胺(6.80g,19.57mmol)、Pd 2(dba) 3(0.36g,0.39mmol)、Xantphos(0.45g,8.81mmol)、K 3PO 4(10.40g,22.02mmol)和1,4-二氧六环(198ml),氮气保护,升温至65℃,11h反应终止。将反应液冷却至25-35℃加入水(1000ml)淬灭反应,加入DCM(300ml x2)萃取,合并有机相,加水(200ml)洗涤一次,有机相浓缩,粗品柱层析,得灰色固体7.00g,收率55%。MS(ESI)m/z:646.1[M+H] +At room temperature, 6- (N, N, N'-trimethylethylenediamine) -5-nitro-3-amino-2- (2,2,2-trifluoroethyl) was sequentially added to the four-necked flask. Oxy) pyridine (6.60 g, 19.57 mmol), 2,5-dichloro-N- (2- (cyclopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine (6.80 g, 19.57 mmol), Pd 2 (dba) 3 (0.36g, 0.39mmol), Xantphos (0.45g, 8.81mmol), K 3 PO 4 (10.40g, 22.02mmol) and 1,4-dioxane (198ml), protected by nitrogen, The temperature was raised to 65 ° C, and the reaction was terminated in 11 hours. The reaction solution was cooled to 25-35 ° C and quenched by adding water (1000 ml), and extracted by adding DCM (300 ml x 2). The organic phases were combined, washed with water (200 ml) once, and the organic phase was concentrated. The crude column chromatography yielded a gray solid 7.00 g, yield 55%. MS (ESI) m / z: 646.1 [M + H] + .
步骤7:N 5-(5-氯-4-((2-(环丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)-N 2-(2-(二甲基氨基)乙基)-N 2-甲基-6-(2,2,2-三氟乙氧基)吡啶-2,3,5-三胺的合成 Step 7: N 5 - (5- chloro-4 - ((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - (2- (dimethylamino ) Ethyl) -N 2 -methyl-6- (2,2,2-trifluoroethoxy) pyridine-2,3,5-triamine
Figure PCTCN2019091972-appb-000045
Figure PCTCN2019091972-appb-000045
室温下,向四口瓶中依次加入5-氯-N 4-(2-(环丙基磺酰基)吡啶-3-基)-N 2-(6-((2-(二甲基氨基)乙基)(甲基)氨基)-5-硝基-2-(2,2,2-三氟乙氧基)吡啶-3-基)嘧啶-2,4-二胺(4.00g,6.19mmol)、铁粉(1.73g,30.96mmol)、氯化铵(1.66g,30.96mmol)和乙醇(80ml)、水(40ml),氮气保护,升温至80℃,1h反应终止。反应液加硅藻土过滤,滤液浓缩,加水(50ml),DCM(30ml x2)萃取,合并有机相,浓缩,粗品结晶,得灰色固体1.85g,收率48%。MS(ESI)m/z:616.1[M+H] +At room temperature, 5-chloro-N 4- (2- (cyclopropylsulfonyl) pyridin-3-yl) -N 2- (6-((2- (dimethylamino)) Ethyl) (methyl) amino) -5-nitro-2- (2,2,2-trifluoroethoxy) pyridin-3-yl) pyrimidine-2,4-diamine (4.00 g, 6.19 mmol ), Iron powder (1.73 g, 30.96 mmol), ammonium chloride (1.66 g, 30.96 mmol), ethanol (80 ml), water (40 ml), nitrogen protection, heating to 80 ° C., and the reaction was terminated in 1 h. The reaction solution was filtered with celite, the filtrate was concentrated, water (50 ml) was added, and DCM (30 ml x 2) was extracted. The organic phases were combined, concentrated, and the crude product was crystallized to obtain 1.85 g of a gray solid with a yield of 48%. MS (ESI) m / z: 616.1 [M + H] + .
步骤8:N-(5-((5-氯-4-((2-(环丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成Step 8: N- (5-((5-chloro-4-((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2-((2- Synthesis of (dimethylamino) ethyl) (methyl) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000046
Figure PCTCN2019091972-appb-000046
室温下,向四口瓶中依次加入N 5-(5-氯-4-((2-(环丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)-N 2-(2-(二甲基氨基)乙基)-N 2-甲基-6-(2,2,2-三氟乙氧基)吡啶-2,3,5-三胺(1.00g,1.62mmol)、二氯甲烷(20ml),氮气保护,降温至-30℃以下,滴加丙烯酸酐(0.31g,2.43mmol)的DCM(1ml)溶液,1h反应终止。反应液加入5%NaHCO 3(30ml)淬灭反应,加入DCM(20ml x2)萃取,合并有机相,浓缩,粗品柱层析,得褐色固体0.63g,再加DCM/异丙醚=1.2ml/7.2ml结晶,得灰白色粉末0.31g,收率28%。 1H NMR(400MHz,DMSO-d 6)9.83(br,1H),9.69(br,1H),8.90(br,1H),8.81(s,1H),8.37(s,1H),8.22(s,1H),7.97(s,1H),7.44(s,1H),6.44(dd,J=16.9,10.2Hz,1H),6.21(d,J=18.5Hz,1H),5.75(d,J=11.6Hz,1H),4.90(q,J=9.1Hz,2H),3.24(t,J=6.3Hz,2H),3.18-3.16(m,1H),2.89(s,3H),2.46(t,J=5.8Hz,2H),2.19(s,6H),1.19-1.10(m,4H)。MS(ESI)m/z:670.1[M+H] +At room temperature was added successively a four-necked flask N 5 - (5-chloro-4 - ((2- (cyclopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) -N 2 - ( 2- (dimethylamino) ethyl) -N 2 -methyl-6- (2,2,2-trifluoroethoxy) pyridine-2,3,5-triamine (1.00 g, 1.62 mmol) , Dichloromethane (20 ml), protected by nitrogen, cooled to below -30 ° C, a solution of acrylic anhydride (0.31 g, 2.43 mmol) in DCM (1 ml) was added dropwise, and the reaction was terminated in 1 h. The reaction solution was quenched by adding 5% NaHCO 3 (30 ml), and extracted by adding DCM (20 ml x 2). The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain 0.63 g of a brown solid, followed by DCM / isopropyl ether = 1.2 ml / 7.2 ml of crystals gave 0.31 g of off-white powder with a yield of 28%. 1 H NMR (400MHz, DMSO-d 6 ) 9.83 (br, 1H), 9.69 (br, 1H), 8.90 (br, 1H), 8.81 (s, 1H), 8.37 (s, 1H), 8.22 (s, 1H), 7.97 (s, 1H), 7.44 (s, 1H), 6.44 (dd, J = 16.9, 10.2 Hz, 1H), 6.21 (d, J = 18.5 Hz, 1H), 5.75 (d, J = 11.6 Hz, 1H), 4.90 (q, J = 9.1 Hz, 2H), 3.24 (t, J = 6.3 Hz, 2H), 3.18-3.16 (m, 1H), 2.89 (s, 3H), 2.46 (t, J = 5.8Hz, 2H), 2.19 (s, 6H), 1.19-1.10 (m, 4H). MS (ESI) m / z: 670.1 [M + H] + .
实施例13Example 13
N-(5-((5-氯-4-((2-(异丙基磺酰基)苯基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) phenyl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylamino) Synthesis of (ethyl) (meth) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000047
Figure PCTCN2019091972-appb-000047
N-(5-((5-氯-4-((2-(异丙基磺酰基)苯基)氨基)嘧啶-2-基)氨基)-2-((2-(二甲基氨基)乙基)(甲基)氨基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) phenyl) amino) pyrimidin-2-yl) amino) -2-((2- (dimethylamino) The method for preparing ethyl) (meth) amino) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.83(s,1H),9.54(s,1H),8.72(s,1H),8.44(br,1H),8.21(s,1H),8.02(s,1H),7.77(d,J=7.7Hz,1H),7.48(s,1H),7.26(t,J=7.4Hz,1H),6.45(dd,J=17.0,10.0Hz,1H),6.20(d,J=17.0Hz,1H),5.74(d,J=10.0Hz,1H),4.88(q,J=9.2Hz,2H),3.44-3.38(m,1H),3.24(s,2H),2.88(s,3H),2.50-2.45(m,2H),2.21(s,6H),1.16(d,J=6.7Hz,6H)。MS(ESI)m/z:671.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) δ 9.83 (s, 1H), 9.54 (s, 1H), 8.72 (s, 1H), 8.44 (br, 1H), 8.21 (s, 1H), 8.02 ( s, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.48 (s, 1H), 7.26 (t, J = 7.4 Hz, 1H), 6.45 (dd, J = 17.0, 10.0 Hz, 1H), 6.20 (d, J = 17.0 Hz, 1H), 5.74 (d, J = 10.0 Hz, 1H), 4.88 (q, J = 9.2 Hz, 2H), 3.44-3.38 (m, 1H), 3.24 (s, 2H ), 2.88 (s, 3H), 2.50-2.45 (m, 2H), 2.21 (s, 6H), 1.16 (d, J = 6.7Hz, 6H). MS (ESI) m / z: 671.1 [M + H] + .
实施例14Example 14
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-甲氧基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-methoxy-2- ( Synthesis of 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000048
Figure PCTCN2019091972-appb-000048
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-甲氧基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-methoxy-2- ( The method for preparing 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,Chloroform-d)δ10.00(br,1H),9.31(br,1H),9.02(d,J=8.5Hz,1H),8.34-8.26(m,1H),8.22(s,1H),7.91(s,1H),7.37(s,1H),7.17(s,1H),6.44-6.06(m,2H),5.76(d,J=9.9Hz,1H),3.96(s,3H),3.80(p,J=6.9Hz,1H),3.06-3.02(m,4H),2.61-2.57(m,4H),2.38(s,3H),1.39(d,J=7.0Hz,6H)。MS(ESI)m/z:602.2[M+H] + 1 H NMR (400MHz, Chloroform-d) , 1H), 7.91 (s, 1H), 7.37 (s, 1H), 7.17 (s, 1H), 6.44-6.06 (m, 2H), 5.76 (d, J = 9.9Hz, 1H), 3.96 (s, 3H), 3.80 (p, J = 6.9Hz, 1H), 3.06-3.02 (m, 4H), 2.61-2.57 (m, 4H), 2.38 (s, 3H), 1.39 (d, J = 7.0Hz, 6H ). MS (ESI) m / z: 602.2 [M + H] + .
实施例15Example 15
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-乙氧基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-ethoxy-2- ( Synthesis of 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000049
Figure PCTCN2019091972-appb-000049
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-乙氧基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-ethoxy-2- ( The method for preparing 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d6)δ9.89(br,1H),9.29(br,1H),9.03(br,1H),8.65(s,1H),8.38(d,J=4.4Hz,1H),8.27(s,1H),8.01(s,1H),7.52(s,1H),6.58(dd,J=17.0,10.2Hz,1H),6.18(dd,J=17.1,2.1Hz,1H),5.73(dd,J=10.2,2.1Hz,1H),4.31(q,J=7.1Hz,2H),3.88(p,J=6.8Hz,1H),3.25-3.04(m,4H),2.49(d,J=5.2Hz,4H),2.24(s,3H),1.25-1.23(m,9H)。MS(ESI)m/z:616.1[M+H] + 1 H NMR (400MHz, DMSO-d6) δ 9.89 (br, 1H), 9.29 (br, 1H), 9.03 (br, 1H), 8.65 (s, 1H), 8.38 (d, J = 4.4 Hz, 1H ), 8.27 (s, 1H), 8.01 (s, 1H), 7.52 (s, 1H), 6.58 (dd, J = 17.0, 10.2 Hz, 1H), 6.18 (dd, J = 17.1, 2.1 Hz, 1H) , 5.73 (dd, J = 10.2, 2.1 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 3.88 (p, J = 6.8 Hz, 1H), 3.25-3.04 (m, 4H), 2.49 ( d, J = 5.2Hz, 4H), 2.24 (s, 3H), 1.25-1.23 (m, 9H). MS (ESI) m / z: 616.1 [M + H] + .
实施例16Example 16
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-异丙基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-isopropyl-2- ( Synthesis of 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000050
Figure PCTCN2019091972-appb-000050
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-异丙基-2-(4-甲基哌嗪-1-基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6-isopropyl-2- ( The method for preparing 4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.86(br,1H),9.25(br,1H),8.94(br,1H),8.55-8.48(m,1H),8.35(d,J=3.7Hz,1H),8.25(s,1H),7.97(s,1H),7.47(s,1H),6.54(dd,J=17.2,10.2Hz,1H),6.15(d,J=17.2Hz,1H),5.70(d,J=10.0Hz,1H),5.12(dt,J=12.6,6.3Hz,1H),3.88-3.79(m,1H),3.12(s,4H),2.48(s,4H),2.21(s,3H),1.25-1.15(m,12H)。MS(ESI)m/z:630[M+H +]。 1 H NMR (400MHz, DMSO-d 6 ) δ 9.86 (br, 1H), 9.25 (br, 1H), 8.94 (br, 1H), 8.55-8.48 (m, 1H), 8.35 (d, J = 3.7 Hz, 1H), 8.25 (s, 1H), 7.97 (s, 1H), 7.47 (s, 1H), 6.54 (dd, J = 17.2, 10.2 Hz, 1H), 6.15 (d, J = 17.2 Hz, 1H ), 5.70 (d, J = 10.0 Hz, 1H), 5.12 (dt, J = 12.6, 6.3 Hz, 1H), 3.88-3.79 (m, 1H), 3.12 (s, 4H), 2.48 (s, 4H) , 2.21 (s, 3H), 1.25-1.15 (m, 12H). MS (ESI) m / z: 630 [M + H + ].
实施例17Example 17
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-(二氟甲氧基)-2-(4-甲基哌哌嗪-1-基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6- (difluoromethoxy) Synthesis of 2- (4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000051
Figure PCTCN2019091972-appb-000051
步骤1:参照实施例5合成N-(6-溴-2-二氟甲氧基-5–硝基吡啶-3-基)乙酰胺。Step 1: Synthesis of N- (6-bromo-2-difluoromethoxy-5-nitropyridin-3-yl) acetamide with reference to Example 5.
步骤2:N-(2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝基-吡啶-3-基)乙酰胺的合成Step 2: Synthesis of N- (2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridin-3-yl) acetamide
Figure PCTCN2019091972-appb-000052
Figure PCTCN2019091972-appb-000052
室温下,向四口瓶中依次加入N-(6-溴-2-二氟甲氧基-5–硝基吡啶-3-基)乙酰胺(1.70g,6.03mmol)、乙腈(34ml)、N-甲基哌嗪(1.21g,12.06mmol),升温至80℃,3h反应终止。反应液浓缩,粗品柱层析,得棕黄色油状物0.40g,收率19%。MS(ESI)m/z:346.1[M+H] +At room temperature, N- (6-bromo-2-difluoromethoxy-5-nitropyridin-3-yl) acetamide (1.70 g, 6.03 mmol), acetonitrile (34 ml), and N-methylpiperazine (1.21 g, 12.06 mmol) was heated to 80 ° C. and the reaction was terminated in 3 h. The reaction solution was concentrated and the crude product was subjected to column chromatography to obtain 0.40 g of a brown-yellow oil with a yield of 19%. MS (ESI) m / z: 346.1 [M + H] + .
步骤3:2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝基-吡啶-3-胺的合成Step 3: Synthesis of 2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridine-3-amine
Figure PCTCN2019091972-appb-000053
Figure PCTCN2019091972-appb-000053
室温下,向四口瓶中依次加入上一步反应液N-(2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝基-吡啶-3-基)乙酰胺(0.40g,1.16mmol)、37%盐酸(0.22g,2.32mmol),升温至60℃,6h反应终止。将反应液加5%NaHCO 3中和至Ph=8~9,40℃减压蒸去溶剂,加水(30ml),加DCM(100ml x3)萃取,合并有机相,浓缩,粗品柱层析,得棕黄色油状物0.20g,收率24%。MS(ESI)m/z:304.1[M+H] +At room temperature, add the N- (2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridine-3 to the four-necked flask in turn. -Yl) acetamide (0.40 g, 1.16 mmol), 37% hydrochloric acid (0.22 g, 2.32 mmol), the temperature was raised to 60 ° C, and the reaction was terminated in 6 h. The reaction solution was neutralized with 5% NaHCO 3 to Ph = 8-9, and the solvent was distilled off under reduced pressure at 40 ° C., water (30 ml) was added, and DCM (100 ml x 3) was added for extraction. The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain Brown-yellow oil 0.20 g, yield 24%. MS (ESI) m / z: 304.1 [M + H] + .
步骤4:5-氯-N 2-(2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝基-吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺的合成 Step 4: 5-Chloro -N 2 - (2- (difluoromethoxy) -6- (4-methylpiperazin-l-yl) -5-nitro - pyridin-3-yl) -N 4 Synthesis of-(2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
Figure PCTCN2019091972-appb-000054
Figure PCTCN2019091972-appb-000054
室温下,向四口瓶中依次加入2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝基-吡啶-3-胺(0.20g,0.66mmol)、2,5-二氯-N-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-4-胺(0.23g,0.66mmol)、Pd 2(dba) 3(0.06g,0.06mmol)、Xantphos(0.07g,0.13mmol)、K 3PO 4(0.35g,1.65mmol)和1,4-二氧六环(6ml),氮气保护,升温至70℃,7h反应终止。将反应液冷却至25-35℃加入水(20ml)淬灭反应,加入DCM(10ml x2)萃取,合并有机相,浓缩,粗品柱层析,得棕黄固体0.30g,收率27%。MS(ESI)m/z:614.1[M+H] +At room temperature, 2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) -5-nitro-pyridin-3-amine (0.20 g, 0.66 mmol), 2,5-dichloro-N- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidin-4-amine (0.23 g, 0.66 mmol), Pd 2 (dba) 3 (0.06 g , 0.06 mmol), Xantphos (0.07 g, 0.13 mmol), K 3 PO 4 (0.35 g, 1.65 mmol) and 1,4-dioxane (6 ml), protected by nitrogen, heated to 70 ° C., and the reaction was terminated in 7 h. The reaction solution was cooled to 25-35 ° C, and water (20 ml) was added to quench the reaction, and DCM (10 ml x 2) was added for extraction. The organic phases were combined, concentrated, and subjected to crude column chromatography to obtain a brown-yellow solid 0.30 g with a yield of 27%. MS (ESI) m / z: 614.1 [M + H] + .
步骤5:N 2-(5-氨基-2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)吡啶-3-基)-5-氯-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺的合成 Step 5: N 2- (5-amino-2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) pyridin-3-yl) -5-chloro-N 4- ( Synthesis of 2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine
Figure PCTCN2019091972-appb-000055
Figure PCTCN2019091972-appb-000055
室温下,向四口瓶中依次加入5-氯-N 2-(2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)-5-硝 基-吡啶-3-基)-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺(0.10g,0.16mmol)、铁粉(0.045g,0.80mmol)、氯化铵(0.044g,0.80mmol)和乙醇(2ml)、水(1ml),氮气保护,升温至70℃,1h反应终止。反应液加硅藻土过滤,滤液浓缩,粗品柱层析,得黄色固体0.05g,收率53%。MS(ESI)m/z:584.1[M+H] +At room temperature, four-necked flask were added 5-Chloro -N 2 - (2- (difluoromethoxy) -6- (4-methylpiperazin-l-yl) -5-nitro - pyridine - 3-yl) -N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine (0.10 g, 0.16 mmol), iron powder (0.045 g, 0.80 mmol), Ammonium chloride (0.044g, 0.80mmol), ethanol (2ml), water (1ml), nitrogen protection, the temperature was raised to 70 ° C, and the reaction was terminated in 1h. The reaction solution was filtered by adding diatomaceous earth, and the filtrate was concentrated. The crude product was subjected to column chromatography to obtain 0.05 g of a yellow solid with a yield of 53%. MS (ESI) m / z: 584.1 [M + H] + .
步骤6:N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-6-(二氟甲氧基)-2-(4-甲基哌哌嗪-1-基)吡啶-3-基)丙烯酰胺的合成Step 6: N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -6- (difluoromethyl Synthesis of oxy) -2- (4-methylpiperazin-1-yl) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000056
Figure PCTCN2019091972-appb-000056
室温下,向四口瓶中依次加入N 2-(5-氨基-2-(二氟甲氧基)-6-(4-甲基哌嗪-1-基)吡啶-3-基)-5-氯-N 4-(2-(异丙基磺酰基)吡啶-3-基)嘧啶-2,4-二胺(0.05g,0.08mmol)、二氯甲烷(3ml),氮气保护,降温至-30℃以下,滴加丙烯酸酐(0.011g,0.08mmol)的DCM(1ml)溶液,0.5h反应终止。加入5%NaHCO 3(3ml)淬灭反应,加入DCM(5ml x2)萃取,合并有机相,浓缩,粗品柱层析,得灰白固体0.006g,收率11%。MS(ESI)m/z:638.1[M+H] +At room temperature, N 2- (5-amino-2- (difluoromethoxy) -6- (4-methylpiperazin-1-yl) pyridin-3-yl) -5 was sequentially added to a four-necked flask. -Chloro-N 4- (2- (isopropylsulfonyl) pyridin-3-yl) pyrimidine-2,4-diamine (0.05 g, 0.08 mmol), dichloromethane (3 ml), protected by nitrogen, and cooled to Below -30 ° C, a solution of acrylic anhydride (0.011 g, 0.08 mmol) in DCM (1 ml) was added dropwise, and the reaction was terminated in 0.5 h. Was added 5% NaHCO 3 (3ml) the reaction was quenched by adding DCM (5ml x2). The combined organic phases were concentrated and the crude product by column chromatography to give 0.006 g of off-white solid, yield 11%. MS (ESI) m / z: 638.1 [M + H] + .
实施例18Example 18
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-(4-甲基哌嗪-1-基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的合成N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2- (4-methylpiperazine Synthesis of -1-yl) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide
Figure PCTCN2019091972-appb-000057
Figure PCTCN2019091972-appb-000057
N-(5-((5-氯-4-((2-(异丙基磺酰基)吡啶-3-基)氨基)嘧啶-2-基)氨基)-2-(4-甲基哌嗪-1-基)-6-(2,2,2-三氟乙氧基)吡啶-3-基)丙烯酰胺的制备方法与实施例1类似。N- (5-((5-chloro-4-((2- (isopropylsulfonyl) pyridin-3-yl) amino) pyrimidin-2-yl) amino) -2- (4-methylpiperazine The method for preparing 1-yl) -6- (2,2,2-trifluoroethoxy) pyridin-3-yl) acrylamide is similar to that in Example 1.
1H NMR(400MHz,DMSO-d 6)δ9.90(br,1H),9.38(br,1H),9.00(br,1H),8.86(s,1H),8.37(d,J=1.4Hz,1H),8.25(s,1H),7.97(s,1H),7.46(s,1H),6.56(dd,J=17.0,10.2Hz,1H),6.19(dd,J=17.1,2.0Hz,1H),5.75(dd,J=10.1,2.0Hz,1H),4.90(q,J=9.1Hz,2H),3.91-3.81(m, 1H),3.26-3.13(m,4H),2.33(s,4H),2.24(s,3H),1.22(d,J=6.9Hz,6H)。MS(ESI)m/z:670.1[M+H] + 1 H NMR (400MHz, DMSO-d 6 ) δ 9.90 (br, 1H), 9.38 (br, 1H), 9.00 (br, 1H), 8.86 (s, 1H), 8.37 (d, J = 1.4 Hz, 1H), 8.25 (s, 1H), 7.97 (s, 1H), 7.46 (s, 1H), 6.56 (dd, J = 17.0, 10.2Hz, 1H), 6.19 (dd, J = 17.1, 2.0Hz, 1H ), 5.75 (dd, J = 10.1, 2.0 Hz, 1H), 4.90 (q, J = 9.1 Hz, 2H), 3.91-3.81 (m, 1H), 3.26-3.13 (m, 4H), 2.33 (s, 4H), 2.24 (s, 3H), 1.22 (d, J = 6.9Hz, 6H). MS (ESI) m / z: 670.1 [M + H] + .
实施例19Example 19
化合物对激酶抑制活性测试Test of compounds for kinase inhibitory activity
本试验采用γ- 33p-ATP同位素测试法测试化合物对激酶EGFR(WT)、EGFR(T790M/L858R)、IGF1R的抑制作用,并得出化合物对该酶抑制活性的半数抑制浓度IC 50,对照药AZD-9291参考专利WO2013014448A1中的方法制备。 In this test, the γ- 33 p-ATP isotope test method was used to test the inhibitory effect of the compound on the kinases EGFR (WT), EGFR (T790M / L858R), and IGF1R, and the compound's half inhibitory concentration of the enzyme's inhibitory activity, IC 50 , was obtained. The drug AZD-9291 is prepared by referring to the method in patent WO2013014448A1.
1.基础反应缓冲液Basal reaction buffer
20mM Hepes(pH 7.5),10mM MgCl 2,1mM EGTA,0.02%Brij35,0.02mg/ml BSA,0.1mM Na3VO4,2mM DTT,1%DMSO。 20mM Hepes (pH 7.5), 10mM MgCl 2 , 1mM EGTA, 0.02% Brij35, 0.02mg / ml BSA, 0.1mM Na3VO4, 2mM DTT, 1% DMSO.
2.化合物配制2. Compound formulation
化合物采用100%DMSO溶解至特定的浓度,之后采用自动加样装置梯度稀释成不同浓度的待测样品(DMSO溶解液)。The compound was dissolved to a specific concentration with 100% DMSO, and then it was gradient diluted to a different concentration of the test sample (DMSO solution) using an automatic sampling device.
3.反应步骤3. Reaction steps
3.1使用基础反应缓冲液稀释反应底物;3.1 Dilute the reaction substrate with the basic reaction buffer;
3.2将激酶加入底物溶液中,轻柔混匀;3.2 Add the kinase to the substrate solution and mix gently;
3.3采用自动加样系统将100%DMSO稀释的不同浓度化合物加入激酶溶液中,室温下孵育20min;3.3 Use an automatic sample loading system to add 100% DMSO-diluted compounds of different concentrations to the kinase solution and incubate for 20 min at room temperature;
3.4室温下加入 33P-ATP(10μM,10μCi/μl)启动激酶反应,反应2h; 3.4 Add 33 P-ATP (10 μM, 10 μCi / μl) at room temperature to start the kinase reaction and react for 2 h;
4.检测4. Detection
反应液经离子交换过滤系统除去未反应的ATP及反应产生的ADP等离子后检测底物中 33P同位素放射量。 The reaction solution was subjected to ion exchange filtration system to remove unreacted ATP and ADP plasma generated by the reaction, and then measured the 33 P isotope radiation in the substrate.
5.数据处理5. Data processing
依据放射量计算加入不同浓度抑制剂体系中的激酶活性从而得到不同浓度化合物对激酶活性的抑制作用,采用graphpad prism拟合得化合物抑制IC 50The inhibitory effect of different concentrations of compounds on kinase activity was calculated based on the amount of kinase added to the inhibitor system at different concentrations, and the IC 50 was inhibited by graphpad prism fitting.
本发明化合物的生物化学活性通过以上的试验进行测定,测得的酶活性IC 50值参见表1: The biochemical activity of the compound of the present invention was determined through the above test, and the measured IC 50 value of the enzyme activity is shown in Table 1:
表1激酶抑制活性测试结果Table 1 Test results of kinase inhibitory activity
Figure PCTCN2019091972-appb-000058
Figure PCTCN2019091972-appb-000058
Figure PCTCN2019091972-appb-000059
Figure PCTCN2019091972-appb-000059
备注:表格中“-”代表未测。Note: "-" in the table means untested.
结论:本发明化合物与阳性对照药AZD-9291相比,有更好的EGFR(L858R/T790M)突变激酶抑制活性,实施例1、2、3、5、7、9、12、13、14、15、16、18化合物与阳性对照药相比有更好的对EGFR(L858R/T790M)突变激酶的选择性,实施例7、8、9、11化合物与阳性对照药相比有显著的相对IGF1R激酶选择性优势,脱靶产生的血糖升高副作用风险更小。Conclusion: Compared with the positive control drug AZD-9291, the compound of the present invention has better EGFR (L858R / T790M) mutant kinase inhibitory activity. Examples 1, 2, 3, 5, 7, 9, 12, 13, 14, The compounds of 15, 16, and 18 have better selectivity for EGFR (L858R / T790M) mutant kinase compared to the positive control. The compounds of Examples 7, 8, 9, and 11 have significant relative IGF1R compared to the positive control. Kinase has the advantage of selectivity, and the risk of side effects of elevated blood glucose caused by off-target is smaller.
实施例20Example 20
Hcc827细胞增殖抑制试验Hcc827 cell proliferation inhibition test
本实验采用MTT的方法测试化合物对Hcc827的细胞活性作用,并得出化合物抑制细胞增殖活性的半数抑制浓度IC 50 In this experiment, the MTT method was used to test the cell activity of the compound on Hcc827, and the inhibitory concentration IC 50 of the compound's inhibitory cell proliferation activity was obtained.
1.Hcc827细胞株在RPMI-1640+10%FBS的条件下进行培养。在96孔细胞培养板中接种100μL的处于对数生长期的Hcc827细胞悬液,密度为5X 10 4/ml,将培养板于培养箱中培养24h令细胞贴壁(37℃,5%CO 2)。 1. Hcc827 cell line was cultured under the condition of RPMI-1640 + 10% FBS. A 96-well cell culture plate was inoculated with 100 μL of a suspension of Hcc827 cells in logarithmic growth phase with a density of 5 × 10 4 / ml. The culture plate was cultured in an incubator for 24 hours to attach the cells (37 ° C, 5% CO 2 ).
2.各化合物已事先溶解在DMSO中配制成10mM的储存液,采用DMSO梯度稀释 为目标浓度的400倍,采用无血清培养基稀释到目的浓度的2倍,维持药液中DMSO浓度均为0.5%。在接种细胞的96孔板中依次加入不同浓度药液,100μL/孔。每个浓度设3个复孔,并设空白对照及阴性对照,继续在37℃、5%CO 2中继续培养72h。 2. Each compound has been dissolved in DMSO to prepare a 10 mM stock solution, which is diluted 400 times the target concentration with DMSO and diluted to 2 times the target concentration with serum-free medium to maintain the DMSO concentration in the drug solution at 0.5. %. In a 96-well plate inoculated with cells, 100 μL / well of each concentration of drug solution was sequentially added. Three replicates were set for each concentration, and a blank control and a negative control were set. The culture was continued at 37 ° C and 5% CO 2 for 72 hours.
3.终止培养,每孔加入20μL MTT溶液(5mg/ml),继续在37℃、5%CO 2中继续培养4h后弃除培养基,加入DMSO 150μL/孔,室温震荡10min,在490nM波长处测OD值,并经Graphpad Prism 6.0数据处理计算IC 50值。 3. Terminate the culture, add 20 μL of MTT solution (5mg / ml) to each well, continue to incubate for 4h at 37 ° C, 5% CO 2 and discard the medium. Add DMSO 150μL / well, shake at room temperature for 10min, at 490nM wavelength OD values were measured and IC 50 values were calculated by Graphpad Prism 6.0 data processing.
实施例21Example 21
NCI-H1975细胞增殖抑制试验NCI-H1975 cell proliferation inhibition test
本实验采用MTT的方法测试化合物对NCI-H1975的细胞活性作用,并得出化合物抑制细胞增殖活性的半数抑制浓度IC 50值。 In this experiment, the MTT method was used to test the cell activity of the compound on NCI-H1975, and the IC 50 value of the half-inhibition concentration of the compound to inhibit cell proliferation activity was obtained.
1.NCI-H1975细胞株在RPMI-1640+10%FBS的条件下进行培养,在96孔细胞培养板中接种100μL的处于对数生长期的NCI-H1975细胞悬液,密度为5X 10 4/ml,将培养板于培养箱中培养24h令细胞贴壁(37℃,5%CO 2)。 1. NCI-H1975 cell line was cultured under the condition of RPMI-1640 + 10% FBS, and 100 μL of NCI-H1975 cell suspension in logarithmic growth phase was inoculated in a 96-well cell culture plate with a density of 5X 10 4 / ml, the culture plate was cultured in an incubator for 24 hours to make the cells adhere (37 ° C, 5% CO 2 ).
2.弃除96孔细胞培养板中含10%FBS的RPMI-1640培养基,换用含0.2%FBS的RPMI-1640培养基。各化合物已事先溶解在DMSO中配制成10mM的储存液,采用DMSO梯度稀释为目标浓度的400倍,采用无血清培养基将其稀释到目的浓度的2倍。在接种细胞的96孔板中依次加入不同浓度药液,100μL/孔。每个浓度设3个复孔,并设空白对照及阴性对照,继续在37℃、5%CO 2中继续培养72h。 2. Discard the RPMI-1640 medium containing 10% FBS in the 96-well cell culture plate and replace it with RPMI-1640 medium containing 0.2% FBS. Each compound has been dissolved in DMSO to prepare a 10 mM stock solution, which is diluted 400 times the target concentration with DMSO and diluted to 2 times the target concentration with serum-free medium. In a 96-well plate inoculated with cells, 100 μL / well of each concentration of drug solution was sequentially added. Three replicates were set for each concentration, and a blank control and a negative control were set. The culture was continued at 37 ° C and 5% CO 2 for 72 hours.
终止培养,每孔加入20μL MTT溶液(5mg/ml),继续在37℃、5%CO 2中继续培养4h后弃除培养基,加入DMSO 150μL/孔,室温震荡10min,在490nM波长处测OD值,并经Graphpad Prism数据处理计算IC 50值。 Terminate the culture, add 20 μL of MTT solution (5mg / ml) to each well, continue to incubate at 37 ° C, 5% CO 2 for 4 h, discard the medium, add DMSO 150 μL / well, shake at room temperature for 10 min, and measure the OD at a wavelength of 490 nM Value, and calculated IC 50 value by Graphpad Prism data processing.
实施例22Example 22
A431细胞增殖抑制试验A431 cell proliferation inhibition test
本实验采用MTT的方法测试化合物对A431的细胞活性作用,并得出化合物抑制细胞增殖活性的半数抑制浓度IC 50 MTT method used in this experiment action of test compounds active in A431 cells and derived compounds inhibit cell proliferation half maximal inhibitory concentration IC 50 activity
1.A431细胞株在DMEM+10%FBS的条件下进行培养。在96孔细胞培养板中接种100μL的处于对数生长期的A431细胞悬液,密度为5X10 4/ml,将培养板于培养箱中培养24h令细胞贴壁(37℃,5%CO 2)。 1. A431 cell line was cultured under the conditions of DMEM + 10% FBS. A 96-well cell culture plate was inoculated with 100 μL of A431 cell suspension in logarithmic growth phase, with a density of 5 × 10 4 / ml. The plate was cultured in an incubator for 24 hours to make the cells adhere (37 ° C, 5% CO 2 ). .
2.各化合物已事先溶解在DMSO中配制成10mM的储存液,采用DMSO梯度稀释 为目标浓度的400倍,采用无血清培养基稀释到目的浓度的2倍,维持药液中DMSO浓度均为0.5%。在接种细胞的96孔板中依次加入不同浓度药液,100μL/孔。每个浓度设3个复孔,并设空白对照及阴性对照,继续在37℃、5%CO 2中继续培养72h。 2. Each compound has been dissolved in DMSO to prepare a 10 mM stock solution, which is diluted 400 times the target concentration with DMSO and diluted to 2 times the target concentration with serum-free medium to maintain the DMSO concentration in the drug solution at 0.5. %. In a 96-well plate inoculated with cells, 100 μL / well of each concentration of drug solution was sequentially added. Three replicates were set for each concentration, and a blank control and a negative control were set. The culture was continued at 37 ° C and 5% CO 2 for 72 hours.
3.终止培养,每孔加入20μL MTT溶液(5mg/ml),继续在37℃、5%CO 2中继续培养4h后弃除培养基,加入DMSO 150μL/孔,室温震荡10min,在490nM波长处测OD值,并经Graphpad Prism 6.0数据处理计算IC 50值。 3. Terminate the culture, add 20 μL of MTT solution (5mg / ml) to each well, continue to incubate for 4h at 37 ° C, 5% CO 2 and discard the medium. Add DMSO 150μL / well, shake at room temperature for 10min, at 490nM wavelength OD values were measured and IC 50 values were calculated by Graphpad Prism 6.0 data processing.
本发明化合物生物化学活性通过以上的试验进行测定,测得的细胞抑制IC 50值参见表2: The biochemical activity of the compound of the present invention was determined through the above tests. The measured IC 50 values of the cells are shown in Table 2:
表2细胞抑制实验结果Table 2 Cell inhibition experiment results
Figure PCTCN2019091972-appb-000060
Figure PCTCN2019091972-appb-000060
结论:相比A431(EGFR-WT)细胞,本发明化合物对照阳性药有更好的H1975(EGFR-T790M/L858R)细胞抑制活性,对照阳性药有显著的抑制突变株细胞的选择性。Conclusion: Compared with A431 (EGFR-WT) cells, the compound-positive drug of the present invention has a better inhibitory activity on H1975 (EGFR-T790M / L858R) cells, and the control-positive drug has a significant selectivity for suppressing mutant cell lines.

Claims (10)

  1. 如式(I)所示的化合物、其立体异构体或其药学上可接受盐:A compound represented by formula (I), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
    Figure PCTCN2019091972-appb-100001
    Figure PCTCN2019091972-appb-100001
    其中,R 1选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素、羟基、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基所取代; Wherein R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more selected from halogen, hydroxyl, C 1 -C 8 alkyl, C 1 -C 8 Alkoxy, halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituted by a substituent;
    R 2选自氢、氘、卤素、氰基、硝基、C 1-C 8烷基、C 1-C 8烷氧基、C 3-C 8环烷基、C 2-C 8烯基、C 2-C 8炔基、三氟甲基、二氟甲基或三氟甲氧基; R 2 is selected from hydrogen, deuterium, halogen, cyano, nitro, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl, trifluoromethyl, difluoromethyl or trifluoromethoxy;
    R 3选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基所取代; R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further selected from one or more of halogen, C 1 -C 8 alkyl, C 1 -C 8 alkoxy, Halogen-substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl, or C 3 -C 8 cycloalkoxy;
    X为N或CH;X is N or CH;
    R 4选自氢、卤素、氰基、硝基、C 1-C 8烷基、卤代C 1-C 8烷基、-C(O)R 5、-C(O)NR 5R 6、-OR 5、-NR 5R 6、-NR 5C(O)R 6、-NR 7(CH 2) mNR 5R 6、-NC(O)R 7(CH 2) mNR 5R 6、-NR 7(CH 2) mNR 5C(O)R 6、-NR 7(CH 2) mOR 6、-NC(O)R 7(CH 2) mOR 6、-O(CH 2) mNR 5R 6或-O(CH 2) mNR 5C(O)R 6R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, halo C 1 -C 8 alkyl, -C (O) R 5 , -C (O) NR 5 R 6 , -OR 5 , -NR 5 R 6 , -NR 5 C (O) R 6 , -NR 7 (CH 2 ) m NR 5 R 6 , -NC (O) R 7 (CH 2 ) m NR 5 R 6 , -NR 7 (CH 2 ) m NR 5 C (O) R 6 , -NR 7 (CH 2 ) m OR 6 , -NC (O) R 7 (CH 2 ) m OR 6 , -O (CH 2 ) m NR 5 R 6 or -O (CH 2 ) m NR 5 C (O) R 6 ;
    R 5、R 6和R 7各自独立选自氢、C 1-C 8烷基、C 3-C 8环烷基,其中C 1-C 8烷基或C 3-C 8环烷基任选进一步被一个或多个选自卤素、羟基、-NR 8R 9、C 1-C 8烷基、C 1-C 8烷氧基、卤取代C 1-C 8烷氧基、C 3-C 8环烷基或C 3-C 8环烷氧基的取代基取代; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl, C 3 -C 8 cycloalkyl, wherein C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl is optional Is further substituted with one or more selected from halogen, hydroxy, -NR 8 R 9 , C 1 -C 8 alkyl, C 1 -C 8 alkoxy, halogen substituted C 1 -C 8 alkoxy, C 3 -C 8 cycloalkyl or C 3 -C 8 cycloalkoxy substituents;
    或者R 5、R 6和R 7两两间可独立地形成4-10元杂环基; Or R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group;
    m为1,2,3或4;m is 1, 2, 3 or 4;
    R 8和R 9各自独立选自氢、C 1-C 8烷基或C 3-C 8环烷基。 R 8 and R 9 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl.
  2. 如权利要求1所述的化合物,其特征在于:The compound of claim 1, wherein:
    R 1选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素或羟基的取代基所取代; R 1 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen or hydroxyl;
    R 2选自氢、氘、卤素或甲基; R 2 is selected from hydrogen, deuterium, halogen or methyl;
    R 3选自C 1-C 8烷基或C 3-C 8环烷基,任选进一步被一个或多个选自卤素的取代基所取代; R 3 is selected from C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl, optionally further substituted with one or more substituents selected from halogen;
    X为N或CH;X is N or CH;
    R 4选自氢、卤素、氰基、硝基、C 1-C 8烷基、-NR 5R 6或-NR 7(CH 2) mNR 5R 6R 4 is selected from hydrogen, halogen, cyano, nitro, C 1 -C 8 alkyl, -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
    R 5、R 6和R 7各自独立选自氢、C 1-C 8烷基或C 3-C 8环烷基; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 8 alkyl or C 3 -C 8 cycloalkyl;
    或者R 5、R 6和R 7两两间可独立地形成4-10元杂环基; Or R 5 , R 6 and R 7 may independently form a 4-10 membered heterocyclic group;
    m为1,2,3,4。m is 1,2,3,4.
  3. 如权利要求1所述的化合物,其特征在于:The compound of claim 1, wherein:
    R 1选自C 1-C 4烷基或C 3-C 6环烷基,任选进一步被一个或多个选自卤素的取代基所取代; R 1 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl, optionally further substituted by one or more substituents selected from halogen;
    R 2选自氢、氘、卤素或甲基; R 2 is selected from hydrogen, deuterium, halogen or methyl;
    R 3选自C 1-C 4烷基或C 3-C 6环烷基; R 3 is selected from C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl;
    X为N或CH;X is N or CH;
    R 4选自-NR 5R 6或-NR 7(CH 2) mNR 5R 6R 4 is selected from -NR 5 R 6 or -NR 7 (CH 2 ) m NR 5 R 6 ;
    R 5、R 6和R 7各自独立选自氢、C 1-C 4烷基或C 3-C 6环烷基; R 5 , R 6 and R 7 are each independently selected from hydrogen, C 1 -C 4 alkyl or C 3 -C 6 cycloalkyl;
    或者R 5、R 6、R 7两两间可独立地形成6-8元杂环基; Or R 5 , R 6 , and R 7 may independently form a 6-8 membered heterocyclic group;
    m为1,2或3。m is 1, 2 or 3.
  4. 如权利要求1所述的化合物,其特征在于:The compound of claim 1, wherein:
    R 1选自甲基、乙基、二氟甲基、正丙基、异丙基或三氟乙基; R 1 is selected from methyl, ethyl, difluoromethyl, n-propyl, isopropyl or trifluoroethyl;
    R 2选自氢、氘、F、Cl、Br或甲基; R 2 is selected from hydrogen, deuterium, F, Cl, Br or methyl;
    R 3选自甲基、乙基、正丙基、异丙基或环丙基; R 3 is selected from methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
    X为N或CH;X is N or CH;
    R 4为-NR 7(CH 2) mNR 5R 6R 4 is -NR 7 (CH 2 ) m NR 5 R 6 ;
    R 5、R 6和R 7各自独立选自氢、甲基、乙基、正丙基、异丙基或环丙基; R 5 , R 6 and R 7 are each independently selected from hydrogen, methyl, ethyl, n-propyl, isopropyl or cyclopropyl;
    或者R 5、R 6、R 7两两间可独立地形成6元杂环基; Or R 5 , R 6 , and R 7 may independently form a 6-membered heterocyclic group;
    m为1,2或3。m is 1, 2 or 3.
  5. 具有如下结构的化合物或其药学上可接受的盐:Compound having the following structure or a pharmaceutically acceptable salt thereof:
    Figure PCTCN2019091972-appb-100002
    Figure PCTCN2019091972-appb-100002
    Figure PCTCN2019091972-appb-100003
    Figure PCTCN2019091972-appb-100003
  6. 一种药物组合物,其包含如权利要求1~5中任一项所述的化合物、其立体异构体或其药学上可接受盐和可药用的载体。A pharmaceutical composition comprising the compound according to any one of claims 1 to 5, a stereoisomer thereof or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  7. 根据权利要求6所述的药物组合物,其特征在于,所述药物组合物是胶囊剂、散剂、片剂、颗粒剂、丸剂、注射剂、糖浆剂、口服液、吸入剂、软膏剂、栓剂或贴剂。The pharmaceutical composition according to claim 6, wherein the pharmaceutical composition is a capsule, powder, tablet, granule, pill, injection, syrup, oral solution, inhalant, ointment, suppository or Patch.
  8. 根据权利要求1~5中任一项所述的化合物、其立体异构体或其药学上可接受盐,或权利要求6所述的药物组合物在制备用于预防或治疗单独或部分地由表皮生长因子受体EGFR激酶活性介导的疾病的治疗药物中的应用。The compound according to any one of claims 1 to 5, a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or the pharmaceutical composition according to claim 6 is prepared for prevention or treatment alone or partially Application of Epidermal Growth Factor Receptor EGFR Kinase Activity in the Treatment of Diseases
  9. 根据权利要求1~5中任一项所述的化合物、其立体异构体或其药学上可接受盐,或权利要求6所述的药物组合物在制备用于预防或治疗癌症的药物中的应用。A compound according to any one of claims 1 to 5, a stereoisomer thereof or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition according to claim 6 in the manufacture of a medicament for preventing or treating cancer application.
  10. 根据权利要求9所述的应用,其特征在于,所述癌症选自卵巢癌、宫颈癌、结肠直肠癌、乳腺癌、胰腺癌、胶质瘤、胶质母细胞瘤、黑色素瘤、前列腺癌、白血病、淋巴瘤、非霍奇金淋巴瘤、胃癌、肺癌、肝细胞癌、胃癌、胃肠道间质瘤、甲状腺癌、胆管癌、子宫内膜癌、肾癌、间变性大细胞淋巴瘤、急性髓细胞白血病、多发性骨髓瘤、黑色素瘤或间皮瘤。The application according to claim 9, wherein the cancer is selected from the group consisting of ovarian cancer, cervical cancer, colorectal cancer, breast cancer, pancreatic cancer, glioma, glioblastoma, melanoma, prostate cancer, Leukemia, lymphoma, non-Hodgkin's lymphoma, gastric cancer, lung cancer, hepatocellular carcinoma, gastric cancer, gastrointestinal stromal tumor, thyroid cancer, bile duct cancer, endometrial cancer, kidney cancer, anaplastic large cell lymphoma, Acute myeloid leukemia, multiple myeloma, melanoma or mesothelioma.
PCT/CN2019/091972 2018-06-27 2019-06-20 Egfr inhibitor, method for preparing the same, and uses thereof WO2020001351A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810704813 2018-06-27
CN201810704813.7 2018-06-27
CN201910519558.3 2019-06-17
CN201910519558.3A CN110642838B (en) 2018-06-27 2019-06-17 EGFR inhibitor and preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2020001351A1 true WO2020001351A1 (en) 2020-01-02

Family

ID=68986204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091972 WO2020001351A1 (en) 2018-06-27 2019-06-20 Egfr inhibitor, method for preparing the same, and uses thereof

Country Status (1)

Country Link
WO (1) WO2020001351A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101184A1 (en) 2020-11-11 2022-05-19 Bayer Aktiengesellschaft N-[2-({4-[3-(anilino)-4-oxo-4,5,6,7-tetrahydro-1h-pyrrolo[3,2-c]pyridin-2-yl]pyridin-3-yl)oxy)ethyl]prop-2-enamide derivatives and similar compounds as egfr inhibitors for the treatment of cancer
WO2023213882A1 (en) 2022-05-04 2023-11-09 Bayer Aktiengesellschaft Irreversible mutegfr inhibitors
WO2024028316A1 (en) 2022-08-02 2024-02-08 Bayer Aktiengesellschaft 1h-pyrrolo[3,2-b]pyridine derivatives as irreversible inhibitors of mutant egfr for the treatment of cancer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140338A1 (en) * 2010-05-05 2011-11-10 Gatekeeper Pharmaceuticals, Inc. Compounds that modulate egfr activity and methods for treating or preventing conditions therewith
CN105503827A (en) * 2014-10-11 2016-04-20 上海翰森生物医药科技有限公司 EGFR (Epidermal growth factor receptor) inhibitor and preparation method and use thereof
CN106187915A (en) * 2015-05-27 2016-12-07 上海翰森生物医药科技有限公司 There is inhibitor of ALK Yu EGFR double activity and its preparation method and application
CN106883213A (en) * 2015-12-15 2017-06-23 合肥中科普瑞昇生物医药科技有限公司 A kind of double inhibitor of new E GFR and ALK kinases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140338A1 (en) * 2010-05-05 2011-11-10 Gatekeeper Pharmaceuticals, Inc. Compounds that modulate egfr activity and methods for treating or preventing conditions therewith
CN105503827A (en) * 2014-10-11 2016-04-20 上海翰森生物医药科技有限公司 EGFR (Epidermal growth factor receptor) inhibitor and preparation method and use thereof
CN106187915A (en) * 2015-05-27 2016-12-07 上海翰森生物医药科技有限公司 There is inhibitor of ALK Yu EGFR double activity and its preparation method and application
CN106883213A (en) * 2015-12-15 2017-06-23 合肥中科普瑞昇生物医药科技有限公司 A kind of double inhibitor of new E GFR and ALK kinases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JANG, JAEBONG ET AL.: "Discovery of a Potent Dual ALK and EGFR T790M Inhibitor", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 136, 3 May 2017 (2017-05-03), pages 497 - 510, XP055600972, ISSN: 0223-5234, DOI: 10.1016/j.ejmech.2017.04.079 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022101184A1 (en) 2020-11-11 2022-05-19 Bayer Aktiengesellschaft N-[2-({4-[3-(anilino)-4-oxo-4,5,6,7-tetrahydro-1h-pyrrolo[3,2-c]pyridin-2-yl]pyridin-3-yl)oxy)ethyl]prop-2-enamide derivatives and similar compounds as egfr inhibitors for the treatment of cancer
WO2023213882A1 (en) 2022-05-04 2023-11-09 Bayer Aktiengesellschaft Irreversible mutegfr inhibitors
WO2024028316A1 (en) 2022-08-02 2024-02-08 Bayer Aktiengesellschaft 1h-pyrrolo[3,2-b]pyridine derivatives as irreversible inhibitors of mutant egfr for the treatment of cancer

Similar Documents

Publication Publication Date Title
JP5740409B2 (en) Kinase inhibitor
WO2018045957A1 (en) Cdk4/6 inhibitor and preparation method therefor and application thereof
CN106883213B (en) Dual inhibitor of EGFR (epidermal growth factor receptor) and ALK (anaplastic lymphoma kinase)
JP6606561B2 (en) Pyrimidopyrroles compound, preparation method thereof, pharmaceutical composition and application thereof
CN112552294B (en) Piperazine heterocyclic derivative-containing inhibitor, preparation method and application thereof
JP2020510642A (en) o-Aminoheteroarylalkynyl group-containing compound and its production method and use
EA036453B1 (en) Substituted 2-anilinopyrimidine derivatives as egfr modulators
WO2016026445A1 (en) Indazole compounds as fgfr kinase inhibitor, preparation and use thereof
JP2016525509A (en) Protein tyrosine kinase modulator and method of use
WO2014025128A1 (en) N2,n4-bis(4-(piperazine-1-yl)phenyl)pirimidine-2,4-diamine derivative or pharmaceutically acceptable salt thereof, and composition containing same as active ingredient for preventing or treating cancer
WO2020001351A1 (en) Egfr inhibitor, method for preparing the same, and uses thereof
WO2019233459A1 (en) Human epidermal growth factor receptor inhibitor, preparation method therefor and use thereof
WO2020001350A1 (en) Egfr inhibitor, method for preparing the same, and uses thereof
WO2014139458A1 (en) Fused ring compound containing pyrimidine or pyridine and use thereof as anti-tumour drug
ES2709003T3 (en) 5- (pyridin-2-yl-amino) -pyrazine-2-carbonitrile compounds and their therapeutic use
CN111196814B (en) Aromatic ring-linked dioxane quinazoline or quinoline compound, composition and application thereof
JP2020523348A (en) Aminothiazole compounds as protein kinase inhibitors
CN109311852A (en) The crystallization of Aniline pyrimidine compound as EGFR inhibitor
WO2020221209A1 (en) Cd73 inhibitor, preparation method therefor and application thereof
WO2023024545A1 (en) Fgfr4 inhibitor and composition, and uses thereof in drug preparation
Yan et al. Discovery of novel 2, 4-diarylaminopyrimidine derivatives as potent and selective epidermal growth factor receptor (EGFR) inhibitors against L858R/T790M resistance mutation
CN110642838B (en) EGFR inhibitor and preparation and application thereof
CA3090876C (en) Dioxinoquinoline compounds, preparation method and uses thereof
WO2022007841A1 (en) Egfr inhibitor, preparation method therefor, and pharmaceutical application thereof
WO2021129561A1 (en) Cyano-substituted pyridine and cyano-substituted pyrimidine compound and preparation method therefor and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 07.05.2021

122 Ep: pct application non-entry in european phase

Ref document number: 19827317

Country of ref document: EP

Kind code of ref document: A1