WO2020001301A1 - 服务质量的控制方法和装置 - Google Patents

服务质量的控制方法和装置 Download PDF

Info

Publication number
WO2020001301A1
WO2020001301A1 PCT/CN2019/091450 CN2019091450W WO2020001301A1 WO 2020001301 A1 WO2020001301 A1 WO 2020001301A1 CN 2019091450 W CN2019091450 W CN 2019091450W WO 2020001301 A1 WO2020001301 A1 WO 2020001301A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
quality
service
requirement
network
Prior art date
Application number
PCT/CN2019/091450
Other languages
English (en)
French (fr)
Inventor
黄亚达
武绍芸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020001301A1 publication Critical patent/WO2020001301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and device for controlling service quality.
  • a QoS (quality of service) management mechanism is defined to complete the quality of service control between the terminal equipment (UE) and the core network (CN).
  • the core network uses the UE's subscription information, service characteristics, and network status to configure the QoS requirements for the corresponding services when the UE requests the services.
  • the QoS requirements include QoS classification identifier (QCI), resource type (guaranteed rate class) Services and non-guaranteed cumulative rate services), packet delay budget (PDB), packet error rate (PER), aggregate maximum bit rate (AMBR).
  • QoS requirements are used to control the real-time quality of service of the end-to-end (E2E) path to ensure that the real-time quality of service of the end-to-end path meets the QoS requirements.
  • the end-to-end path represents the distance between the UE and the data network (datanetwoek) route of.
  • the concept of network slicing is proposed. Due to the highly flexible characteristics of 5G networks, the network topology can be flexibly changed. For example, the traditional core network and wireless access network are relatively fixed topologies. However, protocol data unit (PDU) sessions in a 5G system can flexibly select different core networks and wireless access networks for docking. How to perform QoS control on network slices in a 5G system is a hotspot of current research.
  • PDU protocol data unit
  • the technical problem to be solved by the embodiments of the present invention is to provide a QoS control method and device. It can control the quality of service of the wireless segment in the end-to-end path, increasing the flexibility of controlling the quality of service.
  • this application provides a method for controlling QoS parameters, including: a core network element determines a first QoS requirement according to a QoS segmentation policy and an end-to-end path QoS requirement, and the first QoS requirement is used to control wireless Quality of service of the segment; the core network element sends the first QoS requirement to the access network equipment and / or terminal equipment, so that the access network equipment and / or terminal equipment controls the quality of service of the wireless segment according to the first QoS requirement .
  • the core network element is a network element in the core network, and the core network element includes, but is not limited to, one or more of a session management network element, an access management network element, and a policy control network element.
  • the wireless segment is the transmission path between the access network device and the terminal device
  • the network segment is the transmission path between the access network device and the user plane network element
  • the end-to-end path represents the transmission between the terminal device and the user plane network element.
  • the path, that is, the end-to-end path includes a wireless segment and a network segment.
  • End-to-end QoS requirements are used to control the quality of service of the end-to-end path.
  • the end-to-end QoS requirements may be pre-stored or pre-configured.
  • the core network element configures the end-to-end QoS requirements for the session.
  • the QoS parameters include any one of a packet delay budget, a packet error rate, and jitter.
  • Implement the embodiment of the invention determine the first QoS requirement according to the end-to-end QoS requirement, and send the first QoS requirement to the user equipment and / or the access network device, so that the user equipment and / or the access network Wireless segment performs QoS control.
  • This method of performing QoS control on wireless segments by segmenting end-to-end QoS requirements can perform more fine-grained control of the quality of service on the end-to-end path to ensure end-to-end The quality of service of the end path meets the end-to-end QoS requirements.
  • the method further includes: determining a second QoS requirement according to the end-to-end QoS requirement, and sending the second QoS requirement to a user plane network element and / or an access network device, and the network segment QoS is used for Control the quality of service of the network segment.
  • the second QoS requirement and the first QoS requirement cannot conflict with the end-to-end QoS requirements.
  • the QoS parameter is delay
  • the end-to-end QoS requirement is: delay ⁇ 10ms. Because the delay is an accumulated parameter. If the first QoS requirement is: ⁇ 4ms delay and the second QoS requirement is ⁇ 6ms, then the first QoS requirement and the second QoS requirement meet the end-to-end QoS requirements. For another example: if the first QoS requirement is: delay ⁇ 4ms, and the second QoS requirement is: delay ⁇ 7ms, the first QoS requirement conflicts with the second QoS and the end-to-end QoS requirement.
  • Implement the embodiment of the present invention perform QoS control on the network segment according to the second QoS requirement, and perform QoS control on the wireless segment according to the first QoS requirement, further control the quality of service of the end-to-end path at a smaller granularity, and achieve a more controlled end Refinement and flexibility of service quality on the end-to-end path.
  • the first QoS requirement and the second QoS requirement are obtained by segmenting the end-to-end QoS requirement according to a QoS segmentation strategy.
  • the QoS segmentation strategy is used to indicate the rules for segmenting end-to-end QoS requirements.
  • segmenting end-to-end QoS requirements also needs to consider whether the QoS segmentation parameters are cumulative or multiplicative.
  • the QoS parameter is the packet error rate
  • the end-to-end QoS requirement is: the packet error rate is ⁇ 4 ⁇ 10 ⁇ (-4).
  • the first QoS requirement after segmenting the end-to-end QoS requirement according to the QoS segmentation policy is :
  • the packet error rate is ⁇ 1 ⁇ 10 ⁇ (-2), and the second QoS requirement is 4 ⁇ 10 ⁇ (-2).
  • the QoS segmentation strategy is related to one or more of service type, slice, and data network.
  • the same service type corresponds to the same QoS segmentation strategy; or the same slice corresponds to the same QoS segmentation strategy; or the same data network corresponds to the same QoS segmentation strategy.
  • the QoS segmentation strategy is also related to a first QoS capability and a second QoS capability, where the first QoS capability represents the highest quality of service of the wireless segment and the second QoS capability represents the highest quality of service of the network segment
  • the first QoS capability represents the highest quality of service of the wireless segment
  • the second QoS capability represents the highest quality of service of the network segment
  • the first QoS capability and the second QoS capability are evaluated during a non-session process during a session.
  • the QoS segmentation policy is associated with the session and further includes:
  • a first request message is sent to a policy control network element; wherein the first request message is used to request a session management policy for the session, and the first request message includes a service type and a slice One or more of identification and data network identification;
  • a second request message is sent to the network data analysis network element / operation and maintenance management network element, wherein the second request message includes a service type identifier, a slice identifier, a data network identifier, and a QoS parameter type.
  • the logos One or more of the logos;
  • the second request message further includes: a policy selection indication, where the policy selection indication is used to indicate a priority for assigning the first QoS requirement or the second QoS requirement.
  • the QoS segmentation strategy may be any one of a session management network element, a policy management network element, a network data analysis network element, or an operation management and maintenance network element according to the service type, slice, or data network corresponding to the established session. Or multiple generated.
  • it also includes:
  • the real-time service quality of the wireless segment is improved so that the real-time service quality of the end-to-end path meets the end-to-end QoS parameter.
  • the above-mentioned method for adaptively adjusting the real-time service quality of a network segment or a wireless segment can ensure that the real-time service quality of the end-to-end path meets the end-to-end QoS requirements.
  • the improving the real-time service quality of the network segment includes:
  • the improving the real-time service quality of a wireless segment includes:
  • this application provides a QoS control method, including:
  • the QoS segmentation strategy is used to segment the end-to-end QoS requirements to obtain the first QoS requirement and the second QoS requirement, and the end-to-end QoS requirement is used to control the end Quality of service of the end-to-end path
  • the end-to-end path includes a wireless segment and a network segment
  • the first QoS requirement is used to control the quality of service of the wireless segment
  • the second QoS requirement is used to control the network segment Quality of service
  • the first QoS requirement is lower than the first QoS capability, and the first QoS capability indicates the highest quality of service of the wireless segment;
  • the second QoS requirement is lower than the second QoS Capability, the second QoS capability indicates the highest quality of service of the network segment.
  • the QoS segmentation strategy is related to one or more of a service type, a slice, a data network, a first QoS capability, and a second QoS capability; wherein the first QoS capability indicates a highest quality of service of the wireless segment The second QoS capability indicates the highest quality of service of the network segment.
  • the QoS segmentation strategy is further related to a first QoS capability and a second QoS capability; the first QoS capability indicates a highest quality of service of the wireless segment, and the second QoS capability indicates When the first QoS capability is higher than the second QoS capability of the highest quality of service of the network segment, the first QoS requirement is higher than the second QoS requirement; the first QoS capability requirement is low In the case of the second QoS capability, the first QoS requirement is lower than the second QoS requirement.
  • the communication device may be a chip (such as a baseband chip or a communication chip) or a terminal device.
  • the above method may be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is coupled to the processor and holds programs (instructions) and / or data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the apparatus may include a unit module that performs a corresponding action in the foregoing method.
  • a processor and a transceiving device are included, the processor is coupled to the transceiving device, and the processor is configured to execute a computer program or instruction to control the transceiving device to receive and process information. Sending; when the processor executes the computer program or instructions, the processor is further configured to implement the foregoing method.
  • the transceiver may be a transceiver, a transceiver circuit, or an input / output interface.
  • the transceiver device is a transceiver circuit or an input / output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; and the receiving unit may be a receiver or a receiver.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the methods described in the above aspects.
  • Yet another aspect of the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods described in the above aspects.
  • FIG. 1 is a network architecture diagram of a communication system according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for controlling service quality according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a composition of an end-to-end path according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of evaluating a second QoS capability in a non-session process according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of evaluating a second QoS capability during a session according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a device according to an embodiment of the present invention.
  • the communication system includes: a terminal device (UE), an access network device (NE), and a user plane network element (user plane). function (UPF), data network (DN), access management network function (AMF), session management network function (SMF), policy control network function (PCF) , Network data analysis network element (network data analysis function, NWDAF) and operation management and maintenance network element (operation management and maintenance (OAM)) (not shown in Figure 1).
  • UE terminal device
  • NE access network device
  • user plane network element user plane network element
  • function data network
  • AMF access management network function
  • SMS session management network function
  • PCF policy control network function
  • NWDAF network data analysis function
  • OAM operation management and maintenance
  • UE and RN communicate with each other through Uu interface
  • AN and UPF communicate with each other through N3 interface
  • UPF and DN communicate with each other through N6 interface
  • AMF and UE communicate with each other through N1 interface
  • AMF and AN communicate with each other.
  • the two communicate with each other through the N2 interface.
  • AMF, SMF, PCF and NWDAF are connected to the bus, AMF is connected to the bus through the Aamf interface, SMF is connected to the bus through the Nsmf interface, PCF is connected to the bus through the Npcf interface, and NWDAF is connected to the bus through the Nnwdaf interface.
  • the UE may be a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, and a tablet type.
  • Computer wireless modem (modem), handheld device (laptop computer), cordless phone (wireless phone) or wireless local loop (WLL) station, machine type communication , MTC) terminal or other devices that can access the network.
  • Terminal equipment and access network equipment communicate with each other based on air interface technology.
  • the RN is mainly responsible for functions such as radio resource management, quality of service (QoS) management, data compression, and encryption at the air interface side.
  • the access network device may include various forms of base stations, such as: macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • base stations such as: macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
  • the names of devices with base station functions may be different.
  • 5G 5th generation
  • gNB LTE Long Term Evolution
  • LTE Long In a Term Evolution
  • eNB evolved NodeB
  • 3G 3rd generation
  • AMF belongs to the core network element and is mainly responsible for the signaling processing part, such as: access control, mobility management, attachment and detachment, and gateway selection functions.
  • the AMF provides services for a session in a terminal device, it provides storage resources on the control plane for the session to store the SMF network element identifier and the like associated with the session identifier and the session identifier.
  • SMF belongs to the core network element, and is mainly responsible for the selection of UPF, redirection of UPF, Internet Protocol (IP) address allocation, bearer establishment, modification and release, and QoS control.
  • IP Internet Protocol
  • the UPF is mainly responsible for forwarding and receiving user data in the UE.
  • User data can be received from the DN and transmitted to the terminal device via the RN.
  • user data can also be received from the UE through the RN and forwarded to the DN.
  • Transmission resources and scheduling functions that provide services for UEs in UPF are controlled by SMF management.
  • PCF mainly supports providing a unified policy framework to control network behavior, providing policy rules to the control layer network functions, and being responsible for obtaining user contract information related to policy decisions.
  • NWDAF mainly supports the collection and analysis of big data and provides analysis results to other related network elements.
  • OAM is mainly used to complete the daily network and business analysis, forecasting, planning and configuration work, and the daily operation activities of network and business testing and fault management.
  • FIG. 2 is a schematic flowchart of a method for controlling service quality according to an embodiment of the present invention.
  • the method includes:
  • the SMF determines a first QoS requirement according to the end-to-end QoS requirement.
  • the end-to-end QoS requirement is used to control the quality of service of the end-to-end path.
  • the end-to-end path includes the wireless segment and the network segment.
  • the first QoS requirement is used to control the quality of service of the wireless segment. Segment, so the first QoS requirement cannot conflict with the end-to-end QoS requirement.
  • the end-to-end QoS requirements may be configured by the policy control network element for the established session, and the session management policy of the session includes the end-to-end QoS requirements.
  • the QoS parameters in the first QoS requirement and the end-to-end QoS requirement include one or more of PDB, PER, or Jitter.
  • the QoS parameters are further divided into cumulative parameters and cumulative parameters, for example, the delay is cumulative.
  • the delay of the end-to-end path is equal to the sum of the delay of the wireless segment plus the delay of the network segment; for example: the packet error rate is a multiplicative parameter, and the packet error rate of the end-to-end path is equal to the wireless segment The product of the packet error rate and the packet error rate of the network segment.
  • the end-to-end path includes wireless and network segments
  • the QoS parameter is delay
  • the end-to-end QoS requirement is: delay ⁇ 10ms
  • the first QoS requirement is: delay ⁇ 6ms
  • the first QoS requirements also meet end-to-end QoS requirements.
  • S201 further includes: determining a second QoS requirement according to the end-to-end QoS requirement, the second QoS requirement is used to control the quality of service of the network segment, and the network segment represents a transmission path between RN and UPF, Because the end-to-end path includes a wireless segment and a network segment, the first QoS requirement and the second QoS requirement must meet the end-to-end QoS requirement and cannot conflict with the end-to-end QoS requirement.
  • the QoS parameter is delay
  • the end-to-end QoS requirement is: delay ⁇ 10ms. Since the delay is an accumulated parameter, the first QoS requirement is: delay ⁇ 4ms, and the second QoS requirement is ⁇ 6ms.
  • a QoS requirement and a second QoS requirement satisfy the end-to-end QoS requirements. For another example: if the first QoS requirement is: delay ⁇ 4ms, and the second QoS requirement is: delay ⁇ 7ms, the first QoS requirement conflicts with the second QoS and the end-to-end QoS requirement.
  • the method for determining the first QoS requirement and the second QoS requirement includes: SMF, PCF, NWDAF, or OAM segmenting the end-to-end QoS requirement according to the QoS segmentation strategy to obtain the first QoS requirement. And second QoS requirements.
  • the QoS segmentation strategy is used to indicate the rules for segmenting end-to-end QoS requirements. Among them, segmenting end-to-end QoS requirements also needs to consider whether the QoS segmentation parameters are cumulative or multiplicative.
  • the QoS parameter is the packet error rate
  • the end-to-end QoS requirement is: the packet error rate is ⁇ 4 ⁇ 10 ⁇ (-4).
  • the first QoS requirement after segmenting the end-to-end QoS requirement according to the QoS segmentation policy is :
  • the packet error rate is ⁇ 1 ⁇ 10 ⁇ (-2), and the second QoS requirement is 4 ⁇ 10 ⁇ (-2).
  • the QoS segmentation strategy is related to one or more of service types, slices, and data networks.
  • the same service type corresponds to the same QoS segmentation strategy; or the same slice corresponds to the same QoS segmentation strategy; or the same data network corresponds to the same QoS segmentation strategy.
  • a corresponding QoS segmentation strategy is determined according to the service type of the session, or a corresponding QoS segmentation strategy is determined according to the slice where the session is located, or a corresponding QoS segmentation strategy is determined according to the data network where the session is located.
  • the QoS segmentation strategy is also related to the first QoS capability and the second QoS capability.
  • the first QoS capability represents the highest quality of service in the wireless segment
  • the second QoS capability represents the highest quality of service in the network segment.
  • the first QoS requirement is higher than the second QoS requirement; when the first QoS capability is lower than the second QoS capability, the first QoS requirement is lower than the second QoS requirement.
  • the first QoS capability and the second QoS capability can be evaluated during a session or a non-session process. For a specific evaluation process, refer to the description of FIG. 4 and FIG. 5.
  • the QoS parameter is an example of delay.
  • the end-to-end QoS requirements the delay is less than 6ms.
  • QoS capability, the first QoS capability obtained after decomposing the QoS segmentation strategy and segmenting delay ⁇ 2ms
  • second QoS capability delay ⁇ 4ms.
  • the method further includes S206:
  • the process of obtaining a QoS segmentation policy includes any one of the following:
  • the SMF Before establishing a session, the SMF receives the QoS segmentation policy from NWDA or OAM, and the SMF obtains the QoS segmentation policy associated with the session. When the QoS segmentation policy is updated, the NWDA or OAM notifies the SMF of the updated QoS segmentation policy.
  • the PCF receives the QoS segmentation policy from NWDA or OAM.
  • the PCF sends the obtained QoS segmentation policy to the SMF, and the SMF obtains the session management QoS segmentation policy.
  • the NWDA or OAM notifies the PCF of the updated QoS segmentation policy.
  • the SMF sends a first request message to the PCF.
  • the first request message is used to request a session management policy for the session.
  • the first request message carries a service type identifier, a network slice identifier, a data network identifier, and a QoS parameter type identifier.
  • the PCF receives the first request message from the SMF, and the PCF sends a message for requesting a QoS segmentation policy to the NWDA or OAM.
  • the message carries the service type identifier, network slice identifier, data network identifier, and QoS.
  • the NWDA or OAM receives the request message, and determines the associated QoS segmentation policy according to one or more of the service type identifier, the network slice identifier, the data network identifier, and the QoS parameter type identifier. NWDA or OAM sends the QoS segmentation policy to the PCF, and then the PCF sends a first response message to the SMF.
  • the first response message includes a session management policy, and the session management policy includes the QoS segmentation policy.
  • NWDA or OAM can send multiple QoS segmentation policies to the PCF, and the PCF selects one QoS segmentation policy from the multiple QoS segmentation policies and sends it to the SMF.
  • the message for requesting the QoS segmentation policy sent by the PCF to the NWDA or OAM also carries a policy selection indication, and the policy selection indication is used to indicate the priority for assigning the first QoS requirement and the second QoS requirement. For example, the first QoS requirement is assigned preferentially or the second QoS requirement is assigned preferentially.
  • the SMF sends a second request message to the NWDA or OAM.
  • the second request message carries one or more of a service type identifier, a slice type identifier, a data network identifier, and a QoS parameter type identifier.
  • NWDA Or the OAM determines a corresponding QoS segmentation policy according to the foregoing identifier, and the NWDA or OAM sends the determined QoS segmentation policy to the SMF.
  • the second request message may further carry a policy selection indication, and the policy selection indication is used to indicate a priority for assigning the first QoS requirement and the second QoS requirement.
  • the policy selection indication is represented by bits. When the policy selection indication is equal to 1, it indicates that the first QoS requirement is preferentially assigned; when the policy selection indication is equal to 0, the second QoS requirement is preferentially assigned.
  • the SMF sends a first QoS request to the AMF, and the AMF receives the first QoS request from the SMF.
  • the AMF sends the first QoS request to the AMF through N1 N2 message transfer (Namf_communication_N1 N2 message transfer).
  • the AMF sends a first QoS request to the AN, and the AN receives the first QoS request from the AMF.
  • the AMF sends the first QoS request to the AN through a session modification message (N2 session mod) or a session establishment message (N2 session setup).
  • N2 session mod a session modification message
  • N2 session setup a session establishment message
  • the AN sends a first QoS request to the UE, and the UE receives the first QoS request from the AN.
  • the AN sends a first QoS request to the UE through an RRC reconfiguration message (RRC reconfig).
  • RRC reconfig an RRC reconfiguration message
  • the UE and the AN control the quality of service of the wireless band according to the first QoS requirement.
  • the method further includes:
  • the SMF reconfigures the QoS segmentation policy.
  • the reconfiguration triggering conditions that trigger the reconfiguration QoS segmentation policy include any of the following:
  • NWDAF or OAM sends a QoS segment change instruction to the PCF.
  • the QoS segment change instruction is used to indicate that the first QoS requirement or the second QoS requirement needs to be reconfigured.
  • the PCF sends a QoS segment change instruction to the SMF to trigger SMF reconfiguration. First QoS requirement or second QoS requirement.
  • NWDAF or OAM sends a QoS segment change instruction to the SMF.
  • the QoS segment change instruction is used to indicate that the first QoS requirement or the second QoS requirement needs to be reconfigured.
  • the SMF reconfigures the first QoS requirement or Second QoS requirement.
  • the RN sends a message to the SMF through the AMF to indicate that the real-time service quality of the wireless segment does not meet the first QoS requirement.
  • the SMF receives the message to trigger the reconfiguration of the first QoS requirement and improves the real-time service quality of the network segment so that the end-to-end The real-time quality of service of the path meets the end-to-end QoS requirements;
  • the RN sends a message to the SMF through the AMF to indicate that the real-time quality of service of the network segment does not meet the second QoS requirement, and the SMF receives the message to trigger the reconfiguration of the second QoS requirement and improve the wireless segment Real-time quality of service so that the real-time quality of service of the end-to-end path meets the end-to-end QoS requirements.
  • the UPF sends a message to the SMF indicating that the real-time service quality of the network segment does not meet the second QoS requirement.
  • the SMF receives the message to trigger the reconfiguration of the second QoS requirement and improves the real-time service quality of the wireless segment to make the end-to-end path Real-time quality of service meets end-to-end QoS requirements.
  • the SMF improves the real-time service quality of the network segment so that the real-time service quality of the end-to-end path meets the end-to-end QoS requirement.
  • the SMF reconfigures the first QoS requirement of the wireless segment. And improve the real-time service quality of the network segment so that the real-time service quality of the end-to-end path meets the end-to-end QoS requirements.
  • the QoS parameter is latency
  • the first QoS requirement is: latency ⁇ 6ms
  • the second QoS requirement is: latency ⁇ 4ms
  • end-to-end QoS requirement latency ⁇ 10ms
  • SMF improves the real-time service quality of the network segment.
  • methods for improving the real-time service quality of network segments include:
  • the real-time service quality of the wireless segment is improved so that the real-time service quality of the end-to-end path meets the end-to-end QoS parameters.
  • the SMF reconfigures the second QoS requirement of the network segment, and Improving the real-time service quality of the wireless segment so that the real-time service quality of the end-to-end path meets the end-to-end QoS requirements.
  • the QoS parameter is latency
  • the first QoS requirement is: latency ⁇ 6ms
  • the second QoS requirement is: latency ⁇ 4ms
  • the end-to-end QoS requirement latency ⁇ 10ms
  • the real-time quality of service of the wireless segment is 5ms
  • the real-time service quality of the end-to-end network is 11ms> end-to-end QoS requirements
  • the real-time service quality of the wireless segment needs to be improved, assuming that the improved real-time service quality of the wireless segment: 3.5ms
  • session The second QoS requirement of the management network element reconfiguration network segment is: a delay of 6ms
  • the method for improving the real-time service quality of the wireless segment includes:
  • Free up resources for low-priority users on the RN Free up resources for low-priority users on the RN.
  • FIG. 4 is a schematic flowchart of a method for evaluating a second QoS capability in a non-session process according to an embodiment of the present invention.
  • the method includes:
  • the NWDAF sends a QoS evaluation data subscription message to the SMF, and the SMF receives a service quality evaluation data subscription message from the NWDAF.
  • the QoS evaluation data subscription message is used to request the QoS capability of the wireless segment or the network segment.
  • the QoS evaluation data subscription message may carry one or more of a service type indication, a QoS parameter type identifier, a slice identifier, or a data network identifier.
  • the SMF sends a QoS evaluation start preparation request to the UPF, and the UPF receives a service quality evaluation start preparation request from the SMF.
  • the SMF selects the UPF and AN to be evaluated, and the SMF sends a QoS evaluation start preparation request to the selected UPF.
  • the QoS evaluation start preparation request is used to instruct the UPF to prepare for evaluating the QoS capability.
  • the QoS evaluation start preparation request may also carry One or more of a service type identification, a QoS parameter type identification, a slice identification, and a data network identification.
  • the service type identifier identifies the type of service to be evaluated, such as voice services, video services, etc .; the QoS parameter type identifier identifies the type of service quality parameter to be evaluated, such as delay, packet error rate, or jitter.
  • the slice identifier represents the identifier of the slice in which the wireless segment and the network segment are located.
  • the data network identifier represents the identifier of the data network where the wireless segment or network segment is located.
  • the QoS evaluation start preparation request may also carry evaluation rules, such as: the number of evaluations, the number of sent data packets, and the time interval for sending data packets.
  • the UPF configures the evaluation task based on the information in the QoS evaluation start preparation request.
  • the UPF sends a QoS evaluation to the SMF to start an accurate response, and the SMF receives the service quality evaluation from the UPF and starts preparing a response.
  • the QoS evaluation start preparation response indicates that the UPF has completed the configuration evaluation task and is ready to evaluate the second QoS capability.
  • the response to the preparation of the QoS evaluation also includes the address information of the UPF, for example, one or more of an IP address, a port number, and a protocol type.
  • the SMF sends a QoS evaluation start preparation request to the AMF, and the AMF receives a service quality evaluation start preparation request from the SMF.
  • the QoS evaluation start preparation request is used to instruct the RN to prepare for evaluating the QoS capability of the network segment.
  • the QoS evaluation start preparation request may further include address information of the AN and address information of the UPF.
  • the address information includes the IP address and the port number.
  • the QoS evaluation start preparation request may further include one or more of a service type identifier, a slice identifier, and a data network identifier.
  • the AMF sends a QoS evaluation start preparation request to the AN, and the AN receives a service quality evaluation start preparation request from the AMF.
  • the information carried in the QoS evaluation start preparation request is the same as that in S403.
  • the AN configures the evaluation task according to the information carried in the QoS evaluation start preparation request. After the configuration is completed, the AN sends a QoS evaluation start preparation response to the AMF.
  • the AN sends a QoS evaluation start preparation response to the AMF, and the AMF receives a service quality evaluation start preparation response from the AN.
  • the QoS evaluation start response indicates that the AN is ready to evaluate the QoS capability of the network segment.
  • the QoS evaluation start preparation response can also carry the configuration information of the AN, such as the address information of the AN.
  • the address information includes the IP address and port number. And one or more of the protocol numbers.
  • the AMF sends a QoS evaluation start preparation response to the SMF, and the SMF receives a service quality evaluation start preparation response from the AMF.
  • the SMF starts preparing the response according to the QoS evaluation to learn that the AN is ready to evaluate the QoS capability of the network segment, and the SMF obtains the configuration information of the AN, such as the address information of the AN, according to the information in the QoS evaluation starting preparation response.
  • the SMF sends a QoS evaluation start instruction to the UPF, and the UPF receives a service quality evaluation start instruction from the SMF.
  • the QoS evaluation start instruction is used to instruct the UPF to start evaluating the QoS capability of the network segment.
  • the methods for evaluating the QoS capabilities of the network segment include: ping, user-layer general packet radio protocol tunnel protocol response (general packet service, tunnel service, protocol, GTP-Uecho), two-way active measurement protocol (two-way, active measurement, protocol) TWAMP) and IP performance metrics (IPPM).
  • the RN can evaluate the downlink QoS capability of the network segment
  • the UPF can evaluate the uplink QoS capability of the network segment.
  • the uplink QoS capability and the downlink QoS capability are half of the loopback QoS capability.
  • the evaluation result can be reported to the SMF by the UPF or AN, and then reported to the NWDAF or OAM by the SMF.
  • the OAM or NWDAF uses the reported evaluation result as the basis of the QoS segmentation strategy.
  • the UPF may also directly report the evaluation result to NWDAF or OAM, which is not limited in the embodiment of the present invention.
  • the UPF in the embodiment of FIG. 4 can be replaced with an AN, and the AN can be replaced with a UE.
  • the specific process can refer to the description in FIG. 4 , Will not repeat them here.
  • FIG. 5 is a schematic flowchart of a method for evaluating a second QoS capability during a session according to an embodiment of the present invention.
  • the method includes:
  • the NWDAF receives a QoS data subscription message sent to the SMF, and the SMF receives a quality of service data subscription message sent from the NWDAF.
  • the QoS data subscription message is used to request evaluation of the QoS capability of the network segment.
  • the QoS data subscription message may further include one or more of a service type identifier, a QoS parameter type identifier, a slice identifier, and a data network identifier.
  • NWDAF or OAM can choose to assess the QoS capability of the network segment for the specified area, specified slice, or SMF that supports specified E2E QoS.
  • the SMF of the specified slice can be supported through NSSF and NRF queries. If NWDAF is a management designated slice, you can directly query the NRF corresponding to the slice to obtain SMF information. If all SMFs are managed by OAM, OAM can directly obtain the corresponding SMF information according to requirements without query.
  • the UE initiates a PDU session establishment request
  • the AN forwards the PDU session establishment request to the AMF
  • the AMF selects the SMF for subsequent processing.
  • the specific process can refer to the existing PDU session establishment process.
  • the SMF requests a session management policy of the PDU session from the UPF.
  • the SMF sends a PDU session establishment request to the UPF for requesting a session management strategy for the PDU session.
  • the UPF After the UPF successfully establishes the PDU session, it sends the PDU session configuration information to the SMF.
  • the PDU session configuration information carries QoS evaluation instruction information.
  • the QoS evaluation instruction information is used to instruct to evaluate the QoS capability of the PDU session (this embodiment uses the evaluation of the QoS capability of a network segment as an example for description).
  • the SMF initiates a session modification process.
  • the SMF determines that the QoS capability of the network segment and the QoS capability of the wireless segment need to be evaluated in the PDU session according to the above-mentioned service quality evaluation instruction information.
  • the SMF sends a session PDU session update request to the UPF, and the PDU session update request carries the QoS evaluation Instructions.
  • the UPF receives the PDU session update request from the SMF. According to the service quality evaluation instruction information carried in the PDU session update request, it learns that it needs to be prepared to evaluate QoS capabilities. After the UPF is ready, it sends a PDU session update response to the SMF. .
  • the SMF sends a context update request to the AMF, and the AMF receives the context update request from the SMF.
  • the context update request carries the configuration information of the UPF.
  • UPF address information For example: UPF address information.
  • Further context update requests may also include evaluation rules, such as: evaluation cycle, number of evaluations, number of data packets sent, and time interval.
  • the AN configures the AN according to the UPF configuration information and evaluation rules in the context update request. After the configuration is completed, the AN sends a context update response to the AMF.
  • the AMF sends a context update response to the SMF, and the SMF receives a context update response from the AMF.
  • the SMF obtains that the AN is ready to perform QoS capability evaluation.
  • the SMF sends the session update completion to the AMF, and the AMF receives the session update completion from the SMF.
  • the method for evaluating the second QoS capability of the network segment includes any one of ping, GTP-Uecho, TWAMP, and IPPM.
  • the RN can evaluate the downlink QoS capability of the network segment
  • the UPF can evaluate the uplink QoS capability of the network side.
  • the loopback mode is used to evaluate the QoS capability, the uplink QoS capability and the downlink QoS capability are half of the loopback QoS capability.
  • the evaluation result can be reported to the SMF by the UPF or AN, and then reported to the NWDAF or OAM by the SMF.
  • the OAM or NWDAF uses the reported evaluation result as the basis of the QoS segmentation strategy.
  • the UPF may also directly report the evaluation result to NWDAF or OAM, which is not limited in the embodiment of the present invention.
  • the UPF in the embodiment of FIG. 5 can be replaced with an AN, and the AN can be replaced with a UE.
  • the specific process can refer to the description in FIG. I will not repeat them here.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • the device 6 may include a processing unit 601 and a transceiver unit 602.
  • a processing unit 601 is configured to determine a first QoS requirement according to an end-to-end QoS requirement; wherein the first QoS requirement is used to control a quality of service of a wireless segment, and an end-to-end path includes the wireless segment and a network segment; for example:
  • the processing unit 601 executes S201 in FIG. 2.
  • the transceiver unit 602 is configured to send the first QoS requirement to an access network device and / or a terminal device. For example, the transceiver unit executes S201 in FIG. 2.
  • the processing unit 601 is further configured to determine a second QoS requirement according to the end-to-end QoS requirement; wherein the second QoS requirement is used to control the quality of service of the network segment; for example, the processing unit 601 executes S201 in FIG. 2.
  • the transceiver unit 602 is further configured to send the second QoS requirement to a user plane network element and / or the access network device.
  • the first QoS requirement and the second QoS requirement are obtained by segmenting end-to-end QoS requirements according to a QoS segmentation policy.
  • the QoS segmentation strategy is related to one or more of a service type, a slice, and a data network.
  • the QoS segmentation strategy is further related to a first QoS capability and a second QoS capability; the first QoS capability indicates a highest quality of service of the wireless segment, and the second QoS capability indicates the network segment
  • the first QoS capability is higher than the second QoS capability
  • the first QoS requirement is higher than the second QoS requirement
  • the first QoS capability requirement is lower than the first
  • the first QoS requirement is lower than the second QoS requirement.
  • the QoS segmentation policy is associated with a session
  • the transceiver unit 602 is further configured to:
  • a first request message is sent to a policy control network element; wherein the first request message is used to request a session management policy for the session, and the first request message includes a service type and a slice One or more of identification and data network identification;
  • a second request message is sent to the network data analysis network element / operation and maintenance management network element, wherein the second request message includes a service type identifier, a slice identifier, a data network identifier, and a QoS parameter type.
  • the logos One or more of the logos;
  • the second request message further includes: a policy selection indication, where the policy selection indication is used to indicate a priority for assigning the first QoS requirement or the second QoS requirement.
  • the transceiver unit 602 is further configured to receive a quality of service segmentation change instruction from a policy control network element, where the QoS segmentation change instruction is used to instruct to update the first QoS requirement or the second QoS requirement;
  • the processing unit 601 is further configured to reconfigure the QoS segmentation policy; or
  • the transceiver unit 602 is further configured to receive a quality of service segmentation change instruction from a network data analysis network element or an operation and maintenance management network element, and the QoS segmentation change instruction is used to instruct to update the first QoS requirement or the second QoS requirement. ;
  • the processing unit 601 is further configured to reconfigure the QoS segmentation policy; or
  • the transceiver unit 602 is further configured to receive a quality of service indication message from the access network device, where the quality of service indication message is used to indicate that the real-time quality of service of the wireless segment is lower than the first QoS requirement or the network The real-time service quality of the segment is lower than the second QoS requirement;
  • the processing unit 601 is further configured to reconfigure the QoS segmentation policy; or
  • the transceiver unit 602 is further configured to receive a quality of service indication message from the user plane network element, where the quality of service indication message is used to indicate that the real-time quality of service of the network segment is lower than the second QoS requirement or the network Segment real-time service quality;
  • the processing unit 601 is further configured to reconfigure the QoS segmentation policy.
  • processing unit 601 is further configured to:
  • the real-time service quality of the network segment is lower than the second QoS requirement, the real-time service quality of the wireless segment is improved so that the real-time service quality of the end-to-end path meets the end-to-end QoS parameter.
  • processing unit 601 is configured to improve the real-time service quality of the network segment, specifically:
  • the improving the real-time service quality of a wireless segment includes:
  • a processing unit 601 is configured to determine a QoS segmentation strategy of a session; wherein the QoS segmentation strategy is used to segment end-to-end QoS requirements to obtain a first QoS requirement and a second QoS requirement, and the end-to-end QoS requirements are used to control the quality of service of the end-to-end path, the end-to-end path includes the wireless segment and the network segment, the first QoS requirement is used to control the quality of service of the wireless segment, and the second QoS requirement is used to For controlling the quality of service of the network segment.
  • the execution process of the processing unit 601 refer to the description of S206.
  • the transceiver unit 602 is configured to send the QoS segmentation policy to a session management network element and / or a policy control network element.
  • the transceiver unit 602 is described in S206.
  • the QoS segmentation strategy is related to one or more of a service type, a slice, a data network, a first QoS capability, and a second QoS capability; wherein the first QoS capability represents the wireless segment The highest quality of service, the second QoS capability indicates the highest quality of service of the network segment.
  • the QoS segmentation strategy is further related to a first QoS capability and a second QoS capability; the first QoS capability indicates a highest quality of service of the wireless segment, and the second QoS capability indicates the network segment
  • the first QoS capability is higher than the second QoS capability
  • the first QoS requirement is higher than the second QoS requirement
  • the first QoS capability requirement is lower than the first
  • the first QoS requirement is lower than the second QoS requirement.
  • the device 6 may be SMF, NWDAF, or OAM, and the device 6 may also be a field-programmable gate array (FPGA), a dedicated integrated chip, or a system chip (system on chip). ), Central processing unit (CPU), network processor (NP), digital signal processing circuit, microcontroller (microcontroller unit, MCU), and programmable controller (programmable logic device) , PLD) or other integrated chips.
  • FPGA field-programmable gate array
  • NP network processor
  • PLD programmable controller
  • FIG. 7 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • the device 7 is referred to as the device 7.
  • the device 7 may be integrated into the foregoing SMF, OAM, or NWDAF.
  • the device includes: a memory 702, a processor 701, Transceiver 703.
  • the memory 702 may be an independent physical unit, and may be connected to the processor 701 and the transceiver 703 through a bus.
  • the memory 702, the processor 701, and the transceiver 703 may also be integrated together and implemented by hardware and the like.
  • the memory 702 is configured to store a program that implements the foregoing method embodiments or modules of the device embodiments, and the processor 701 calls the program to perform the operations of the foregoing method embodiments.
  • the device may also include only a processor.
  • the memory for storing the program is located outside the device, and the processor is connected to the memory through a circuit / wire for reading and executing the program stored in the memory.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip.
  • the above hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the memory may include volatile memory (for example, random-access memory (RAM); the memory may also include non-volatile memory (for example, flash memory) , Hard disk (HDD) or solid-state drive (SSD); the storage may also include a combination of the above types of storage.
  • volatile memory for example, random-access memory (RAM)
  • non-volatile memory for example, flash memory
  • HDD Hard disk
  • SSD solid-state drive
  • the storage may also include a combination of the above types of storage.
  • the sending module or the transmitter performs the steps sent by the foregoing method embodiments
  • the receiving module or the receiver performs the steps received by the foregoing method embodiments
  • other steps are performed by other modules or processors.
  • the transmitting module and the receiving module may constitute a transceiver module
  • the receiver and the transmitter may constitute a transceiver.
  • An embodiment of the present application further provides a computer storage medium storing a computer program, where the computer program is used to execute a method for controlling quality of service provided by the foregoing embodiment.
  • the embodiment of the present application also provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the method for controlling the quality of service provided by the foregoing embodiment.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a specific manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种服务质量的控制方法和装置,对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,根据第二QoS要求控制网络段的服务质量,以及根据第一QoS要求控制无线段的服务质量,进一步在更小粒度上控制端到端路径的服务质量,实现更控制端到端路径的服务质量的精细化和灵活性。

Description

服务质量的控制方法和装置
本申请要求于2018年6月30日提交中国国家知识产权局、申请号为201810702758.8、发明名称为“服务质量的控制方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种服务质量的控制方法和装置。
背景技术
在移动通信系统中,定义了QoS(quality of service,QoS)管理机制,完成终端设备(user equipment,UE)到核心网(core network,CN)之间的服务质量控制。核心网通过UE的签约信息、业务特性和网络状态等信息,在UE请求业务时,为相应的业务配置QoS要求,QoS要求包括QoS分类标识(QoS classification identifier,QCI)、资源类型(保证速率类业务和非保证累速率业务)、包延时预算(packet delay budge,PDB)、包错误率(packet error rate,PER)、聚合最大比特速率(aggregate maximum bit rate,AMBR)。QoS要求用于控制端到端(end to end,E2E)路径的实时服务质量,以保证端到端路径的实时服务质量满足QoS要求,端到端路径表示UE到数据网络(data netwoek)之间的路径。
在第五代(fifth generation,5G)系统中,提出了网络切片的概念,由于5G网络高度灵活的特点,网络拓扑可以灵活发生变化,例如:传统核心网和无线接入网是相对固定的拓扑,而在5G系统中的协议数据单元(protocol data unit,PDU)会话可以灵活选择不同的核心网和无线接入网进行对接,如何对5G系统中的网络切片进行QoS控制是目前研究的热点。
发明内容
本发明实施例所要解决的技术问题在于,提供一种QoS的控制方法和装置。可控制端到端路径中无线段的服务质量,增加控制服务质量的灵活性。
为了解决上述技术问题,本申请提供了一种QoS参数的控制方法,包括:核心网网元根据QoS分段策略和端到端路径QoS要求确定第一QoS要求,第一QoS要求用于控制无线段的服务质量;核心网网元将第一QoS要求发送给接入网设备和/或终端设备,以使接入网设备和/或终端设备根据第一QoS要求控制所述无线段的服务质量。
其中,核心网网元为核心网络中的网元,该核心网网元包括但不限于会话管理网元、接入管理网元、策略控制网元中的一种或多种。无线段为接入网设备至终端设备之间的传输路径,网络段为接入网设备至用户面网元之间的传输路径,端到端路径表示终端设备至用户面网元之间的传输路径,即端到端路径包括无线段和网络段。端到端QoS要求用于控制端到端路径的服务质量。端到端QoS要求可以是预存储或预配置的,例如:在建立会话的时,核心网网元为该会话配置端到端QoS要求。本申请中的端到端QoS要求、第一QoS要求和第二QoS要求,QoS参数包括包延时预算、包错误率和抖动中的任意一种。
实施发明实施例,根据端到端QoS要求确定第一QoS要求,将第一QoS要求发送给用户设备和/或接入网设备,以使用户设备和/或接入网根据第一QoS要求对无线段进行QoS控制, 这种通过对端到端QoS要求进行分段的方式来对无线段进行QoS控制的方式,能对端到端路径上的服务质量进行更精细化的控制,保证端到端路径的服务质量满足端到端QoS要求。
在一种可能的设计中,所述方法还包括:根据端到端QoS要求确定第二QoS要求,将第二QoS要求发送给用户面网元和/或接入网设备,网络段QoS用于控制网络段的服务质量。
其中,第二QoS要求和第一QoS要求不能与端到端QoS要求发生冲突,例如:QoS参数为时延,端到端QoS要求为:时延<10ms,由于时延为累加型的参数,第一QoS要求为:时延<4ms,第二QoS要求为<6ms,则第一QoS要求和第二QoS要求满足端到端QoS要求。又例如:第一QoS要求为:时延<4ms,第二QoS要求为:时延<7ms,则第一QoS要求和第二QoS和端到端QoS要求发生冲突。
实施本发明实施例,根据第二QoS要求对网络段进行QoS控制,以及根据第一QoS要求对无线段进行QoS控制,进一步在更小粒度上控制端到端路径的服务质量,实现更控制端到端路径的服务质量的精细化和灵活性。
在一种可能的设计中,第一QoS要求和第二QoS要求是根据QoS分段策略对端到端QoS要求进行分段得到的。QoS分段策略用于表示对端到端QoS要求进行分段的规则,其中,对端到端QoS要求进行分段还需要考虑QoS分段参数是累加型参数还是累乘型参数。例如:QoS参数为错包率,端到端QoS要求为:错包率<4×10^(-4),根据QoS分段策略对端到端QoS要求进行分段后的第一QoS要求为:错包率<1×10^(-2),第二QoS要求为4×10^(-2)。
在一种可能的设计中,QoS分段策略与业务类型、切片、数据网络的一种或多种有关。例如:相同的业务类型对应同一个QoS分段策略;或相同的切片对应同一个QoS分段策略;或相同的数据网络对应同一个QoS分段策略。
在一种可能的设计中,所述QoS分段策略还与第一QoS能力和第二QoS能力有关,第一QoS能力表示无线段的最高服务质量,第二QoS能力表示网络段的最高服务质量,在第一QoS能力高于第二QoS能力的情况下,第一QoS要求高于第二QoS要求;在第一QoS能力低于第二QoS能力的情况下,第一QoS要求低于第二QoS要求。
其中,第一QoS能力和第二QoS能力在会话过程中非会话过程中评估得到。
在一种可能的设计中,QoS分段策略与会话关联,还包括:
在建立所述会话之前,接收来自网络数据分析网元的QoS分段策略;或
在建立所述会话的过程中,向策略控制网元发送第一请求消息;其中,所述第一请求消息用于请求所述会话的会话管理策略,所述第一请求消息包括业务类型、切片标识和数据网络标识中的一种或多种;
接收来自所述策略控制网元的会话管理策略;其中,所述会话管理策略包括QoS分段策略;或
在建立所述会话的过程中,向网络数据分析网元/操作维护管理网元发送第二请求消息;其中,所述第二请求消息包括业务类型标识、切片标识、数据网络标识、QoS参数类型标识中的一种或多种;
接收来自所述网络数据分析网元/操作维护管理网元的QoS分段策略。
在一种可能的设计中,所述第二请求消息还包括:策略选择指示,所述策略选择指示用于表示分配所述第一QoS要求或所述第二QoS要求的优先级。
其中,QoS分段策略可以是会话管理网元、策略管理网元、网络数据分析网元或操作管 理维护网元中的任意一个根据建立的会话对应的业务类型、切片或数据网络中的一种或多种生成的。
在一种可能的设计中,还包括:
接收来自策略控制网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
重配置所述QoS分段策略;或
接收来自网络数据分析网元或操作维护管理网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
重配置所述QoS分段策略;或
接收来自所述接入网设备的服务质量指示消息,所述服务质量指示消息用于指示所述无线段的实时服务质量低于所述第一QoS要求或所述网络段的实时服务质量低于所述第二QoS要求
重配置所述QoS分段策略;或
接收来自所述用户面网元的服务质量指示消息,所述服务质量指示消息用于指示所述网络段的实时服务质量低于所述第二QoS要求或所述网络段的实时服务质量;
重配置所述QoS分段策略。
在一种可能的设计中,
在所述无线段的实时服务质量低于所述第一QoS要求的情况下,提高所述网络段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数;或
在所述网络段的实时服务质量低于第二QoS要求的情况下,提高所述无线段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数。通过上述自适应调整网络段或无线段的实时服务质量的方法,能保证端到端路径的实时服务质量满足端到端QoS要求。
在一种可能的设计中,所述提高所述网络段的实时服务质量包括:
为所述会话重新选择一个实时服务质量高的用户面网元;或
重配置当前的用户面网元的调度参数;或
释放当前的用户面网元上低优先级用户的资源;
所述提高无线段的实时服务质量包括:
释放所述用户面网元上低优先级用户的资源。
第二方面,本申请提供了一种QoS的控制方法,包括:
确定会话的QoS分段策略;其中,所述QoS分段策略用于对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,所述端到端QoS要求用于控制端到端路径的服务质量,所述端到端路径包括无线段和网络段,所述第一QoS要求用于控制所述无线段的服务质量,所述第二QoS要求用于控制所述网络段的服务质量;
将所述QoS分段策略发送给会话管理网元和/或策略控制网元。
在一种可能的设计中,所述第一QoS要求低于第一QoS能力,所述第一QoS能力表示所述无线段的最高服务质量;所述第二QoS要求低于所述第二QoS能力,所述第二QoS能力表示所述网络段的最高服务质量。
所述QoS分段策略与业务类型、切片、数据网络、第一QoS能力和第二QoS能力中的一 种或多种有关;其中,所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量。
在一种可能的设计中,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
本申请又一方面提供了一种装置,可以实现上述第一方面或第二方面中的服务质量的控制方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者终端设备。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述装置,可以包括执行上述方法中相应动作的单元模块。
在又一种可能的实现方式中,包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当所述装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为网络设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
本申请的又一方面提了供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的又一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的通信系统的网络架构图;
图2是本发明实施例提供的一种服务质量的控制方法的流程示意图;
图3是本发明实施例提供的一种端到端路径的组成示意图;
图4是本发明实施例提供的一种非会话过程中评估第二QoS能力的流程示意图;
图5是本发明实施例提供的一种会话过程中评估第二QoS能力的流程示意图;
图6是本发明实施例提供的一种装置的结构示意图;
图7是本发明实施例提供的一种装置的另一结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
参见图1,为本发明实施例中通信系统的网络架构图,所述通信系统包括:终端设备(user equipment,UE)、接入网设备(access network,NE)、用户面网元(user plane function,UPF)、数据网络(data network,DN)、接入管理网元(access management function,AMF)、会话管理网元(session management function,SMF)、策略控制网元(policy control function,PCF)、网络数据分析网元(network data analytics function,NWDAF)和操作管理维护网元(operation administration and maintenance,OAM)(图1中未画出)。
其中,UE和RN之间通过Uu接口相互通信,AN和UPF之间通过N3接口相互通信,UPF和DN之间通过N6接口相互通信,AMF和UE之间通过N1接口相互通信,AMF和AN之间通过N2接口相互通信。AMF、SMF、PCF和NWDAF连接在总线上,AMF通过Aamf接口与总线连接,SMF通过Nsmf接口与总线连接,PCF通过Npcf接口与总线连接,NWDAF通过Nnwdaf接口与总线连接。
其中,UE可以是手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他可以接入网络的设备。终端设备与接入网设备之间基于空口技术相互通信。
RN主要负责空口侧的无线资源管理、QoS(quality of service,QoS)管理、数据压缩和加密等功能。接入网设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如:在第五代(5th generation,5G)系统中,称为gNB;在LTE长期演进(Long Term Evolution,LTE)系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB);在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。
AMF属于核心网网元,主要负责信令处理部分,例如:接入控制、移动性管理、附着与去附着以及网关选择等功能。AMF为终端设备中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识与会话标识关联的SMF网元标识等。
SMF属于核心网网元,主要负责用UPF的选择、UPF的重定向,因特网协议(internet protocol,IP)地址分配、承载的建立、修改和释放以及QoS控制等。
UPF主要负责UE中用户数据的转发和接收。可以从DN中接收用户数据,通过RN传输给终端设备。用UPF还可以通过RN从UE接收用户数据,转发到DN。UPF中为UE提供服务的传输资源和调度功能由SMF管理控制的。
PCF主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
NWDAF主要支持大数据的收集和分析,给其他相关网元提供分析结果。
OAM主用完成日常网络和业务进行的分析、预测、规划和配置工作,对网络及其业务的 测试和故障管理等进行的日常操作活动。
参见图2,为本发明实施例提供的一种服务质量的控制方法的流程示意图,在本发明实施例中,所述方法包括:
S201、SMF根据端到端QoS要求确定第一QoS要求。
具体的,端到端QoS要求用于控制端到端路径的服务质量,端到端路径包括无线段和网络段,第一QoS要求用于控制无线段的服务质量;由于端到端路径包括无线段,因此第一QoS要求不能与端到端QoS要求发生冲突。其中,端到端QoS要求可以是策略控制网元为建立的会话配置的,该会话的会话管理策略包括端到端QoS要求。第一QoS要求和端到端QoS要求中的QoS参数包括PDB、PER或Jitter中的一种或多种;其中,QoS参数又分为累加型参数和累乘型参数,例如:时延为累加型参数,端到端路径的时延等于无线段的时延加上网络段的时延的求和;例如:包错误率为累乘型参数,端到端路径的包错误率等于无线段的包错误率和网络段的包错误率的乘积。
例如:参见图3所示,端到端路径包括无线段和网络段,QoS参数为时延,端到端QoS要求为:时延≤10ms,第一QoS要求为:时延≤6ms,第一QoS要求也同时满足端到端QoS要求。
在一种可能的实施方式中,S201还包括:根据端到端QoS要求确定第二QoS要求,第二QoS要求用于控制网络段的服务质量,网络段表示RN至UPF之间的传输路径,由于端到端路径包括无线段和网络段,第一QoS要求和第二QoS要求必须满足端到端QoS要求,不能与端到端QoS要求发生冲突。
例如:QoS参数为时延,端到端QoS要求为:时延<10ms,由于时延为累加型的参数,第一QoS要求为:时延<4ms,第二QoS要求为<6ms,则第一QoS要求和第二QoS要求满足端到端QoS要求。又例如:第一QoS要求为:时延<4ms,第二QoS要求为:时延<7ms,则第一QoS要求和第二QoS和端到端QoS要求发生冲突。
在一种可能的实施方式中,确定第一QoS要求和第二QoS要求的方法包括:SMF、PCF、NWDAF或OAM根据QoS分段策略对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求。QoS分段策略用于表示对端到端QoS要求进行分段的规则,其中,对端到端QoS要求进行分段还需要考虑QoS分段参数是累加型参数还是累乘型参数。例如:QoS参数为错包率,端到端QoS要求为:错包率<4×10^(-4),根据QoS分段策略对端到端QoS要求进行分段后的第一QoS要求为:错包率<1×10^(-2),第二QoS要求为4×10^(-2)。
其中,QoS分段策略与业务类型、切片、数据网络中的一种或多种有关。例如:相同的业务类型对应同一个QoS分段策略;或相同的切片对应同一个QoS分段策略;或相同的数据网络对应同一个QoS分段策略。在建立会话时,根据会话的业务类型确定对应的QoS分段策略或,根据会话所在的切片确定对应的QoS分段策略,或根据会话所在的数据网络确定对应的QoS分段策略。
其中,QoS分段策略还与第一QoS能力和第二QoS能力有关,第一QoS能力表示无线段的最高服务质量,第二QoS能力表示网络段的最高服务质量,在第一QoS能力高于第二QoS能力的情况下,第一QoS要求高于第二QoS要求;在第一QoS能力低于第二QoS能力的情况下,第一QoS要求低于第二QoS要求。第一QoS能力和第二QoS能力可以在会话过程中或非 会话过程中评估得到,具体的评估过程参照图4和图5的描述。
例如:QoS参数为时延进行举例,第一QoS能力:时延=1ms,第二QoS能力:时延=3ms,端到端QoS要求:时延小于6ms,为了充分利用无线段和网络段的QoS能力,分解QoS分段策略进行分段后得到的第一QoS能力:时延<2ms,第二QoS能力:时延<4ms。
一种可能的实施方式中,所述方法,还包括S206:获取QoS分段策略的过程包括如下的任意一种:
A、在建立会话之前,SMF接收来自NWDA或OAM的QoS分段策略,SMF由此得到会话关联的QoS分段策略。在所述QoS分段策略发生更新时,NWDA或OAM将更新后的QoS分段策略通知给SMF。
B、在建立会话之前,PCF接收来自NWDA或OAM的QoS分段策略,PCF将得到的QoS分段策略发送给SMF,SMF由此得到会话管理的QoS分段策略。在QoS分段策略发生更新时,NWDA或OAM将更新后的QoS分段策略通知给PCF。
C、SMF向PCF发送第一请求消息,第一请求消息用于请求会话的会话管理策略(session management policy),第一请求消息携带业务类型标识、网络切片标识、数据网络标识和QoS参数类型标识中的一种或多种,PCF接收来自SMF的第一请求消息,PCF向NWDA或OAM发送用于请求QoS分段策略的消息,该消息携带业务类型标识、网络切片标识、数据网络标识和QoS参数类型标识中的一种或多种,NWDA或OAM接收该请求消息,根据业务类型标识、网络切片标识、数据网络标识和QoS参数类型标识中的一种或多种确定关联的QoS分段策略,NWDA或OAM将QoS分段策略发送给PCF,然后PCF向SMF发送第一响应消息,第一响应消息包括会话管理策略,会话管理策略包括该QoS分段策略。
其中,NWDA或OAM可以向PCF发送多个QoS分段策略,PCF在多个QoS分段策略中选择一个QoS分段策略发送给SMF。
其中,PCF向NWDA或OAM发送的用于请求QoS分段策略的消息中还携带策略选择指示,策略选择指示用于指示分配第一QoS要求和第二QoS要求的优先级。例如:优先分配第一QoS要求或优先分配第二QoS要求。
D、在建立会话的过程中,SMF向NWDA或OAM发送第二请求消息,第二请求消息携带业务类型标识、切片类型标识、数据网络标识和QoS参数类型标识中的一种或多种,NWDA或OAM根据上述的标识确定对应的QoS分段策略,NWDA或OAM将确定的QoS分段策略发送给SMF。
其中,第二请求消息中还可以携带策略选择指示,策略选择指示用于表示分配所述第一QoS要求和所述第二QoS要求的优先级。例如:策略选择指示用比特位来表示,在策略选择指示等于1时,表示优先分配第一QoS要求;在策略选择指示等于0时,表示优先分配第二QoS要求。
S202、SMF向AMF发送第一QoS要求,AMF接收来自SMF的第一QoS要求。
例如:AMF通过N1 N2消息转移(Namf_communication_N1 N2 message transfer)将第一QoS要求发生给AMF。
S203、AMF向AN发送第一QoS要求,AN接收来自AMF的第一QoS要求。
例如:AMF通过会话修改消息(N2 session mod)或会话建立消息(N2 session setup)将第一QoS要求发生给AN。
S204、AN向UE发送第一QoS要求,UE接收来自AN的第一QoS要求。
例如:AN通过RRC重配置消息(RRC reconfig)向UE发送第一QoS要求。
S205、UE和AN根据第一QoS要求控制无线段的服务质量。
在一种可能的实施方式中,所述方法还包括:
S207、在满足重配置条件的情况下,SMF重配置QoS分段策略。
其中,触发重配置QoS分段策略的重配置触发条件包括如下的任意一种:
1、NWDAF或OAM向PCF发送QoS分段变更指示,该QoS分段变更指示用于表示需要重配置第一QoS要求或第二QoS要求,PCF向SMF发送QoS分段变更指示,触发SMF重配置第一QoS要求或第二QoS要求。
2、NWDAF或OAM向SMF发送QoS分段变更指示,该QoS分段变更指示用于表示需要重配置第一QoS要求或第二QoS要求,SMF根据QoS分段变更指示重配置第一QoS要求或第二QoS要求。
3、RN通过AMF向SMF发送消息指示无线段的实时服务质量不满足第一QoS要求,SMF接收到该消息触发重配置第一QoS要求,并提高网络段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS要求;RN通过AMF向SMF发送消息指示网络段的实时服务质量不满足第二QoS要求,SMF接收到该消息触发重配置第二QoS要求,并提高无线段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS要求。
4、UPF向SMF发送消息指示网络段的实时服务质量不满足第二QoS要求,SMF接收到该消息触发重配置第二QoS要求,并提高无线段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS要求。
其中,SMF可以将重配置后的第一QoS要求或第二QoS要求应用到当前建立的会话,或者重新建立的会话,将重配置后的第一QoS要求或第二QoS要求应用到会话的方法可参照图2的描述的步骤,本此处不再赘述。
其中,在无线段的实时服务质量低于第一QoS要求的情况下,SMF提高网络段的实时服务质量,以使端到端路径的实时服务质量满足所述端到端QoS要求。
具体的,在无线段的实时服务质量低于第一QoS要求的情况下,且端到端路径的实时服务质量低于端到端QoS要求的情况下,SMF重新配置无线段的第一QoS要求,以及提高网络段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS要求。
例如:QoS参数为时延,第一QoS要求:时延<6ms,第二QoS要求:时延<4ms,端到端QoS要求:时延<10ms,假设无线段的实时服务质量:时延=9ms,网络段的实时服务质量:时延=2ms,端到端路径的实时服务质量:时延=11ms>端到端QoS要求,那么无线段的实时服务质量低于第一QoS要求,SMF重新配置第一QoS要求:时延≤9ms,同时SMF提高网络段的实时服务质量,假设提高后的网络段的实时服务质量:0.5ms,那么此时端到端路径的实时服务质量:9ms+0.5ms=9.5ms<10ms,满足端到端QoS要求。
其中,提高网络段的实时服务质量的方法包括:
为会话重新选择一个实时服务质量高的UPF;或
重配置当前的UPF的调度参数;或
释放当前的UPF上低优先级用户的资源。
其中,在网络段的实时服务质量低于第二QoS要求的情况下,提高无线段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS参数。
具体的,在网络段的实时服务质量低于第二QoS要求的情况下,且端到端路径的实时服务质量低于端到端QoS要求时,SMF重新配置网络段的第二QoS要求,以及提高无线段的实时服务质量,以使端到端路径的实时服务质量满足端到端QoS要求。
例如:QoS参数为时延,第一QoS要求:时延<6ms,第二QoS要求:时延<4ms,端到端QoS要求:时延<10ms,假设无线段的实时服务质量为5ms,网络段的实施QoS:6ms,此时端到端网络的实时服务质量为11ms>端到端QoS要求,需要提高无线段的实时服务质量,假设提高后的无线段的实时服务质量:3.5ms,会话管理网元重配置网络段的第二QoS要求为:时延6ms,那么此时端到端路径的实时服务质量为3.5ms+6ms=9.5ms<10ms,满足端到端QoS要求。
其中,提高无线段的实时服务质量的方法包括:
释放RN上低优先级用户的资源。
参见图4,为本发明实施例提供的一种非会话过程中评估第二QoS能力的方法的流程示意图,所述方法包括:
S401、NWDAF向SMF发送QoS评估数据订阅消息,SMF接收来自NWDAF的服务质量评估数据订阅消息。
具体的,QoS评估数据订阅消息用于请求无线段或网络段的QoS能力,QoS评估数据订阅消息可能携带业务类型表示、QoS参数类型标识、切片标识或数据网络标识中的一种或多种。
S402、SMF向UPF发送QoS评估开始准备请求,UPF接收来自SMF的服务质量评估开始准备请求。
具体的,SMF选择待评估的UPF和AN,SMF向选择的UPF发送QoS评估开始准备请求,QoS评估开始准备请求用于指示UPF作好评估QoS能力的准备,QoS评估开始准备请求中还可以携带业务类型标识、QoS参数类型标识、切片标识和数据网络标识中的一种或多种。业务类型标识标识进行评估的业务类型,例如:语音业务、视频业务等;QoS参数类型标识标识待评估的服务质量参数的类型,例如:时延、错包率或抖动等。切片标识表示无线段和网络段所在的切片的标识。数据网络标识表示无线段或网络段所在的数据网络的标识。可选的,QoS评估开始准备请求中还可以携带评估规则,例如:评估次数、发送数据包的数量、发送数据包的时间间隔等。UPF根据QoS评估开始准备请求中的信息配置评估任务。
S403、UPF向SMF发送QoS评估开始准确响应,SMF接收来自UPF的服务质量评估开始准备响应。
具体的,QoS评估开始准备响应表示UPF完成配置评估任务的过程,已经作好评估第二QoS能力的准备。其中,QoS评估开始准备响应中还包括UPF的地址信息,例如:IP地址、端口号和协议类型中的一种或多种。
S404、SMF向AMF发送QoS评估开始准备请求,AMF接收来自SMF的服务质量评估开始准备请求。
具体的,该QoS评估开始准备请求用于指示RN作好评估网络段的QoS能力的准备,QoS评估开始准备请求还可以包括AN的地址信息和UPF的地址信息,地址信息包括IP地址、端口号和协议类型中的一种或多种。进一步的,QoS评估开始准备请求还可以包括业务类型标识、切片标识、数据网络标识中的一种或多种。
S405、AMF向AN发送QoS评估开始准备请求,AN接收来自AMF的服务质量评估开始准备请求。
具体的,QoS评估开始准备请求中携带的信息和S403中的相同,具体参照S403的描述。AN根据QoS评估开始准备请求中携带的信息对评估任务进行配置,配置完成后向AMF发送QoS评估开始准备响应。
S406、AN向接AMF发送QoS评估开始准备响应,AMF接收来自AN的服务质量评估开始准备响应。
具体的,QoS评估开始响应表示AN已经作好评估网络段的QoS能力的准备,QoS评估开始准备响应中还可携带AN的配置信息,例如:AN的地址信息,地址信息包括IP地址、端口号和协议号中的一种或多种。
S407、AMF向SMF发送QoS评估开始准备响应,SMF接收来自AMF的服务质量评估开始准备响应。
具体的,SMF根据QoS评估开始准备响应得知AN已经作好评估网络段的QoS能力的准备,SMF根据QoS评估开始准备响应中的信息得知AN的配置信息,例如:AN的地址信息。
S408、SMF向UPF发送QoS评估开始指示,UPF接收来自SMF的服务质量评估开始指示。
具体的,QoS评估开始指示用于指示UPF开始评估网络段的QoS能力。
S408、RN和UPF评估网络段的QoS能力。
具体的,评估网络段的QoS能力的方法包括:ping、用户层通用分组无线协议隧道协议应答(general packet radio service tunnelling protocol echo,GTP-U echo)、双向主动测量协议(two-way active measurement protocol,TWAMP)和IP性能度量(IP performance metrics,IPPM)中的任意一种。在采用单向评估QoS能力时,RN可以评估网络段的下行QoS能力,UPF可以评估网络段的上行QoS能力。在采用环回方式评估QoS能力时,上行QoS能力和下行QoS能力为环回QoS能力的一半。
其中,评估结果可由UPF或AN上报给SMF,然后由SMF上报给NWDAF或OAM,OAM或NWDAF将上报的评估结果作为QoS分段策略的依据。可选的,UPF也可以直接向评估结果上报给NWDAF或OAM,本发明实施例不作限制。
其中,在本发明实施例需要评估无线段的第一QoS能力的情况下,将图4实施例中的UPF替换为AN,以及将AN替换为UE即可,具体过程可参照图4中的描述,此处不再赘述。
参见图5,为本发明实施例提供的一种在会话过程中评估第二QoS能力的方法的流程示意图,在本发明实施例中,所述方法包括:
S501、NWDAF接收向SMF发送QoS数据订阅消息,SMF接收来自NWDAF发送的服务质量数据订阅消息。
具体的,QoS数据订阅消息用于请求评估网络段的QoS能力,QoS数据订阅消息还可以包括业务类型标识、QoS参数类型标识、切片标识和数据网络标识中的一种或多种。
其中,NWDAF或OAM可以选择对指定区域、指定切片或者支持指定E2E QoS的SMF来自评估网络段的QoS能力。对于指定切片的QoS能力评估,如果NWDAF管理所有切片,则可以通过NSSF和NRF查询支持指定切片的SMF。如果NWDAF是管理指定切片,则可以直接查询该切片对应的NRF得到SMF的信息。如果,所有SMF被OAM管理,OAM不需要查询可以直接根 据需求获得相应的SMF的信息。
S502、PDU会话鉴权/授权流程。
具体的,UE发起PDU会话建立请求,AN将PDU会话建立请求转发给AMF,AMF选择SMF进行后续的处理,具体过程可参照现有的PDU会话建立流程。
S503、SMF向UPF请求PDU会话的会话管理策略。
具体的,SMF向UPF发送用于请求PDU会话的会话管理策略的PDU会话建立请求,UPF在成功建立PDU会话之后向SMF发送PDU会话的配置信息,PDU会话的配置信息中携带QoS评估指示信息,QoS评估指示信息用于指示评估PDU会话的QoS能力(本实施例以评估网络段的QoS能力为例进行说明)。
S504、SMF发起会话修改流程。
具体的,SMF根据上述的服务质量评估指示信息确定需要在PDU会话中评估网络段的QoS能力和无线段的QoS能力,SMF向UPF发送会话PDU会话更新请求,该PDU会话更新请求中携带QoS评估指示信息,UPF接收来自SMF的PDU会话更新请求,根据PDU会话更新请求中携带的服务质量评估指示信息得知需要作好评估QoS能力的准备,在UPF作好准备后向SMF发送PDU会话更新响应。
S505、SMF向AMF发送上下文更新请求,AMF接收来自SMF的上下文更新请求。
具体的,上下文更新请求携带UPF的配置信息。例如:UPF的地址信息。进一步的上下文更新请求还可以包括评估规则,例如:评估周期、评估次数、发送的数据包的次数和时间间隔等。
S506、上下文更新过程。
具体的,AN根据上下文更新请求中的UPF的配置信息和评规则对AN进行配置,配置完成后,AN向AMF发送上下文更新响应。
S507、AMF向SMF发送上下文更新响应,SMF接收来自AMF的上下文更新响应。
具体的,SMF根据该上下文更新响应得到AN已经作好QoS能力评估的准备。
S508、SMF向AMF发送会话更新完成,AMF接收来自SMF的会话更新完成。
S509、RN和UPF评估网络段的第二QoS能力。
具体的,评估网络段的第二QoS能力的方法包括:ping、GTP-U echo、TWAMP和IPPM中的任意一种。在采用单向评估QoS能力时,RN可以评估网络段的下行QoS能力,UPF可以评估网络端的上行QoS能力。在采用环回方式评估QoS能力时,上行QoS能力和下行QoS能力为环回QoS能力的一半。
其中,评估结果可由UPF或AN上报给SMF,然后由SMF上报给NWDAF或OAM,OAM或NWDAF将上报的评估结果作为QoS分段策略的依据。可选的,UPF也可以直接向评估结果上报给NWDAF或OAM,本发明实施例不作限制。
其中,在本发明实施例需要评估无线段的QoS能力的情况下,将图5实施例中的UPF替换为AN,以及将AN替换为UE即可,具体过程可参照图5中的描述,此处不再赘述。
实施本发明的实施例,将端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,根据第一QoS要求控制无线段的服务质量,以及根据第二QoS要求控制对网络段的服务质量,这种灵活的配置无线段和网络段的服务质量要求的方法,能支持具有不同网络能力的网络切片中无线段和网络段的灵活配置,以便更好的适应不同的应用场景。
上述详细阐述了本发明实施例的方法,下面提供了本发明实施例的装置。
请参见图6,图6是本发明实施例提供的一种装置的结构示意图,该装置6可以包括处理单元601和收发单元602。
实施例一:
处理单元601,用于根据端到端QoS要求确定第一QoS要求;其中,所述第一QoS要求用于控制无线段的服务质量,端到端路径包括所述无线段和网络段;例如:处理单元601执行图2中的S201。
收发单元602,用于将所述第一QoS要求发送给接入网设备和/或终端设备,例如:收发单元执行图2中的S201。
可选的,处理单元601,还用于根据所述端到端QoS要求确定第二QoS要求;其中,所述第二QoS要求用于控制所述网络段的服务质量;例如:处理单元601执行图2中的S201。
收发单元602,还用于将所述第二QoS要求发送给用户面网元和/或所述接入网设备。
可选的,所述第一QoS要求和所述第二QoS要求是根据QoS分段策略对端到端QoS要求进行分段得到的。
可选的,所述QoS分段策略与业务类型、切片、数据网络一种或多种有关。
可选的,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
可选的,所述QoS分段策略与会话关联;
收发单元602,还用于:
在建立所述会话之前,接收来自网络数据分析网元的QoS分段策略;或
在建立所述会话的过程中,向策略控制网元发送第一请求消息;其中,所述第一请求消息用于请求所述会话的会话管理策略,所述第一请求消息包括业务类型、切片标识和数据网络标识中的一种或多种;
接收来自所述策略控制网元的会话管理策略;其中,所述会话管理策略包括QoS分段策略;或
在建立所述会话的过程中,向网络数据分析网元/操作维护管理网元发送第二请求消息;其中,所述第二请求消息包括业务类型标识、切片标识、数据网络标识、QoS参数类型标识中的一种或多种;
接收来自所述网络数据分析网元/操作维护管理网元的QoS分段策略。
可选的,所述第二请求消息还包括:策略选择指示,所述策略选择指示用于表示分配所述第一QoS要求或所述第二QoS要求的优先级。
可选的,收发单元602,还用于接收来自策略控制网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
处理单元601,还用于重配置所述QoS分段策略;或
收发单元602,还用于接收来自网络数据分析网元或操作维护管理网元的服务质量分段 变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
处理单元601,还用于重配置所述QoS分段策略;或
收发单元602,还用于接收来自所述接入网设备的服务质量指示消息,所述服务质量指示消息用于指示所述无线段的实时服务质量低于所述第一QoS要求或所述网络段的实时服务质量低于所述第二QoS要求;
处理单元601,还用于重配置所述QoS分段策略;或
收发单元602,还用于接收来自所述用户面网元的服务质量指示消息,所述服务质量指示消息用于指示所述网络段的实时服务质量低于所述第二QoS要求或所述网络段的实时服务质量;
处理单元601,还用于重配置所述QoS分段策略。
可选的,处理单元601,还用于:
在所述无线段的实时服务质量低于所述第一QoS要求的情况下,提高所述网络段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数;或
在所述网络段的实时服务质量低于第二QoS要求的情况下,提高所述无线段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数。
可选的,处理单元601,用于提高所述网络段的实时服务质量,具体为:
为所述会话重新选择一个实时服务质量高的用户面网元;或
重配置当前的用户面网元的调度参数;或
释放当前的用户面网元上低优先级用户的资源;
所述提高无线段的实时服务质量包括:
释放所述用户面网元上低优先级用户的资源。
实施例二:
处理单元601,用于确定会话的QoS分段策略;其中,所述QoS分段策略用于对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,所述端到端QoS要求用于控制端到端路径的服务质量,所述端到端路径包括无线段和网络段,所述第一QoS要求用于控制所述无线段的服务质量,所述第二QoS要求用于控制所述网络段的服务质量。例如:处理单元601的执行过程参见S206的描述。
收发单元602,用于将所述QoS分段策略发送给会话管理网元和/或策略控制网元。例如:收发单元602参见S206中的描述。
可选的,所述QoS分段策略与业务类型、切片、数据网络、第一QoS能力和第二QoS能力中的一种或多种有关;其中,所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量。
可选的,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
所述装置6可以为SMF、NWDAF或OAM,所述装置6也可以为实现相关功能的现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片,系统芯片(system on chip, SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路,微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。
本发明实施例和图2的方法实施例基于同一构思,其带来的技术效果也相同,具体过程可参照图2的方法实施例的描述,此处不再赘述。
图7为本发明实施例提供的一种装置结构示意图,以下简称装置7,装置7可以集成于前述的SMF、OAM或NWDAF,如图7所示,该装置包括:存储器702、处理器701、收发器703。
存储器702可以是独立的物理单元,与处理器701和收发器703可以通过总线连接。存储器702、处理器701、收发器703也可以集成在一起,通过硬件实现等。
存储器702用于存储实现以上方法实施例,或者装置实施例各个模块的程序,处理器701调用该程序,执行以上方法实施例的操作。
可选地,当上述实施例的服务质量的控制方法中的部分或全部通过软件实现时,装置也可以只包括处理器。用于存储程序的存储器位于装置之外,处理器通过电路/电线与存储器连接,用于读取并执行存储器中存储的程序。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
上述实施例中,发送模块或发射器执行上述各个方法实施例发送的步骤,接收模块或接收器执行上述各个方法实施例接收的步骤,其它步骤由其他模块或处理器执行。发送模块和接收模块可以组成收发模块,接收器和发射器可以组成收发器。
本申请实施例还提供了一种计算机存储介质,存储有计算机程序,该计算机程序用于执行上述实施例提供的服务质量的控制方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的服务质量的控制方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/ 或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (26)

  1. 一种服务质量的控制方法,其特征在于,包括:
    根据端到端QoS要求确定第一QoS要求;其中,所述第一QoS要求用于控制无线段的服务质量,端到端路径包括所述无线段和网络段;
    将所述第一QoS要求发送给接入网设备和/或终端设备。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    根据所述端到端QoS要求确定第二QoS要求;其中,所述第二QoS要求用于控制所述网络段的服务质量;
    将所述第二QoS要求发送给用户面网元和/或所述接入网设备。
  3. 根据权利要求2所述的方法,其特征在于,所述第一QoS要求和所述第二QoS要求是根据QoS分段策略对端到端QoS要求进行分段得到的。
  4. 根据权利要求3所述的方法,其特征在于,所述QoS分段策略与业务类型、切片、数据网络一种或多种有关。
  5. 根据权利要求4所述的方法,其特征在于,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
  6. 根据权利要求3或4所述的方法,其特征在于,所述QoS分段策略与会话关联;
    所述方法,还包括:
    在建立所述会话之前,接收来自网络数据分析网元的QoS分段策略;或
    在建立所述会话的过程中,向策略控制网元发送第一请求消息;其中,所述第一请求消息用于请求所述会话的会话管理策略,所述第一请求消息包括业务类型、切片标识和数据网络标识中的一种或多种;
    接收来自所述策略控制网元的会话管理策略;其中,所述会话管理策略包括QoS分段策略;或
    在建立所述会话的过程中,向网络数据分析网元/操作维护管理网元发送第二请求消息;其中,所述第二请求消息包括业务类型标识、切片标识、数据网络标识、QoS参数类型标识中的一种或多种;
    接收来自所述网络数据分析网元/操作维护管理网元的QoS分段策略。
  7. 根据权利要求6所述的方法,其特征在于,所述第二请求消息还包括:策略选择指示,所述策略选择指示用于表示分配所述第一QoS要求或所述第二QoS要求的优先级。
  8. 根据权利要求6或7所述的方法,其特征在于,还包括:
    接收来自策略控制网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
    重配置所述QoS分段策略;或
    接收来自网络数据分析网元或操作维护管理网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
    重配置所述QoS分段策略;或
    接收来自所述接入网设备的服务质量指示消息,所述服务质量指示消息用于指示所述无线段的实时服务质量低于所述第一QoS要求或所述网络段的实时服务质量低于所述第二QoS要求;
    重配置所述QoS分段策略;或
    接收来自所述用户面网元的服务质量指示消息,所述服务质量指示消息用于指示所述网络段的实时服务质量低于所述第二QoS要求或所述网络段的实时服务质量;
    重配置所述QoS分段策略。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述无线段的实时服务质量低于所述第一QoS要求的情况下,提高所述网络段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数;或
    在所述网络段的实时服务质量低于第二QoS要求的情况下,提高所述无线段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数。
  10. 根据权利要求9所述的方法,其特征在于,所述提高所述网络段的实时服务质量包括:
    为所述会话重新选择一个实时服务质量高的用户面网元;或
    重配置当前的用户面网元的调度参数;或
    释放当前的用户面网元上低优先级用户的资源;
    所述提高无线段的实时服务质量包括:
    释放所述用户面网元上低优先级用户的资源。
  11. 一种服务质量的控制方法,其特征在于,包括:
    确定会话的QoS分段策略;其中,所述QoS分段策略用于对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,所述端到端QoS要求用于控制端到端路径的服务质量,所述端到端路径包括无线段和网络段,所述第一QoS要求用于控制所述无线段的服务质量,所述第二QoS要求用于控制所述网络段的服务质量;
    将所述QoS分段策略发送给会话管理网元和/或策略控制网元。
  12. 根据权利要求11所述的方法,其特征在于,所述QoS分段策略与业务类型、切片、数据网络、第一QoS能力和第二QoS能力中的一种或多种有关;其中,所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量。
  13. 根据权利要求11或12所述的方法,其特征在于,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
  14. 一种服务质量的控制装置,其特征在于,包括:
    处理单元,用于根据端到端QoS要求确定第一QoS要求;其中,所述第一QoS要求用于控制无线段的服务质量,端到端路径包括所述无线段和网络段;
    收发单元,用于将所述第一QoS要求发送给接入网设备和/或终端设备。
  15. 根据权利要求14所述的装置,其特征在于,
    所述处理单元,还用于根据所述端到端QoS要求确定第二QoS要求;其中,所述第二QoS要求用于控制所述网络段的服务质量;
    所述收发单元,还用于将所述第二QoS要求发送给用户面网元和/或所述接入网设备。
  16. 根据权利要求15所述的装置,其特征在于,所述第一QoS要求和所述第二QoS要求是根据QoS分段策略对端到端QoS要求进行分段得到的。
  17. 根据权利要求16所述的装置,其特征在于,所述QoS分段策略与业务类型、切片、数据网络一种或多种有关。
  18. 根据权利要求17所述的装置,其特征在于,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
  19. 根据权利要求17或18所述的装置,其特征在于,所述QoS分段策略与会话关联;
    所述收发单元,还用于:
    在建立所述会话之前,接收来自网络数据分析网元的QoS分段策略;或
    在建立所述会话的过程中,向策略控制网元发送第一请求消息;其中,所述第一请求消息用于请求所述会话的会话管理策略,所述第一请求消息包括业务类型、切片标识和数据网络标识中的一种或多种;
    接收来自所述策略控制网元的会话管理策略;其中,所述会话管理策略包括QoS分段策略;或
    在建立所述会话的过程中,向网络数据分析网元/操作维护管理网元发送第二请求消息;其中,所述第二请求消息包括业务类型标识、切片标识、数据网络标识、QoS参数类型标识中的一种或多种;
    接收来自所述网络数据分析网元/操作维护管理网元的QoS分段策略。
  20. 根据权利要求19所述的装置,其特征在于,所述第二请求消息还包括:策略选择指示,所述策略选择指示用于表示分配所述第一QoS要求或所述第二QoS要求的优先级。
  21. 根据权利要求18或19所述的装置,其特征在于,
    所述收发单元,还用于接收来自策略控制网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
    所述处理单元,还用于重配置所述QoS分段策略;或
    所述收发单元,还用于接收来自网络数据分析网元或操作维护管理网元的服务质量分段变更指示,所述QoS分段变更指示用于指示更新所述第一QoS要求或第二QoS要求;
    所述处理单元,还用于重配置所述QoS分段策略;或
    所述收发单元,还用于接收来自所述接入网设备的服务质量指示消息,所述服务质量指示消息用于指示所述无线段的实时服务质量低于所述第一QoS要求或所述网络段的实时服务质量低于所述第二QoS要求;
    所述处理单元,还用于重配置所述QoS分段策略;或
    所述收发单元,还用于接收来自所述用户面网元的服务质量指示消息,所述服务质量指示消息用于指示所述网络段的实时服务质量低于所述第二QoS要求或所述网络段的实时服务质量;
    所述处理单元,还用于重配置所述QoS分段策略。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元,还用于:
    在所述无线段的实时服务质量低于所述第一QoS要求的情况下,提高所述网络段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数;或
    在所述网络段的实时服务质量低于第二QoS要求的情况下,提高所述无线段的实时服务质量,以使所述端到端路径的实时服务质量满足所述端到端QoS参数。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元,用于提高所述网络段的实时服务质量,具体为:
    为所述会话重新选择一个实时服务质量高的用户面网元;或
    重配置当前的用户面网元的调度参数;或
    释放当前的用户面网元上低优先级用户的资源;
    所述提高无线段的实时服务质量包括:
    释放所述用户面网元上低优先级用户的资源。
  24. 一种服务质量的控制装置,其特征在于,包括:
    处理单元,用于确定会话的QoS分段策略;其中,所述QoS分段策略用于对端到端QoS要求进行分段处理得到第一QoS要求和第二QoS要求,所述端到端QoS要求用于控制端到端路径的服务质量,所述端到端路径包括无线段和网络段,所述第一QoS要求用于控制所述无线段的服务质量,所述第二QoS要求用于控制所述网络段的服务质量;
    收发单元,用于将所述QoS分段策略发送给会话管理网元和/或策略控制网元。
  25. 根据权利要求24所述的装置,其特征在于,所述QoS分段策略与业务类型、切片、数据网络、第一QoS能力和第二QoS能力中的一种或多种有关;其中,所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量。
  26. 根据权利要求24或25所述的装置,其特征在于,所述QoS分段策略还与第一QoS能力和第二QoS能力有关;所述第一QoS能力表示所述无线段的最高服务质量,所述第二QoS能力表示所述网络段的最高服务质量,所述第一QoS能力高于所述第二QoS能力的情况下,所述第一QoS要求高于所述第二QoS要求;所述第一QoS能力要求低于所述第二QoS能力的情况下,所述第一QoS要求低于所述第二QoS要求。
PCT/CN2019/091450 2018-06-30 2019-06-16 服务质量的控制方法和装置 WO2020001301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810702758.8 2018-06-30
CN201810702758.8A CN110661837B (zh) 2018-06-30 2018-06-30 服务质量的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2020001301A1 true WO2020001301A1 (zh) 2020-01-02

Family

ID=68986118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091450 WO2020001301A1 (zh) 2018-06-30 2019-06-16 服务质量的控制方法和装置

Country Status (2)

Country Link
CN (1) CN110661837B (zh)
WO (1) WO2020001301A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969199A (zh) * 2021-02-24 2021-06-15 中国联合网络通信集团有限公司 一种数据采集方法和设备
CN113498099A (zh) * 2020-04-08 2021-10-12 中国移动通信有限公司研究院 数据包时延抖动监测方法及设备
CN113783744A (zh) * 2020-06-10 2021-12-10 中国移动通信集团海南有限公司 一种时延测量方法、装置、计算机设备和存储介质
CN115334014A (zh) * 2021-04-27 2022-11-11 阿里巴巴新加坡控股有限公司 虚拟交换机和数据传输系统
CN115622614A (zh) * 2022-10-26 2023-01-17 广州爱浦路网络技术有限公司 一种卫星通信方法、装置及网元

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747513A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种服务质量管理方法和装置
CN111757353B (zh) * 2020-06-09 2021-09-17 广州爱浦路网络技术有限公司 5g核心网中的网络数据处理方法及装置
CN113784397A (zh) * 2021-09-10 2021-12-10 腾讯科技(深圳)有限公司 一种数据处理方法、设备以及可读存储介质
WO2024065572A1 (en) * 2022-09-30 2024-04-04 Qualcomm Incorporated Network control of multi-path sidelink operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021941A1 (en) * 2010-04-06 2013-01-24 Alcatel Lucent Method, apparatus and node for determining quality of service of respective segments of a link
CN107426776A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 QoS控制方法及设备
CN107911850A (zh) * 2017-11-28 2018-04-13 中国联合网络通信集团有限公司 一种传送网业务建立方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1870635B (zh) * 2005-10-18 2010-11-10 华为技术有限公司 一种服务质量授权方法
CN104519549A (zh) * 2013-09-26 2015-04-15 华为技术有限公司 业务接入方法、用户设备和无线控制器
CN106254268A (zh) * 2015-06-04 2016-12-21 中兴通讯股份有限公司 服务质量调度方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130021941A1 (en) * 2010-04-06 2013-01-24 Alcatel Lucent Method, apparatus and node for determining quality of service of respective segments of a link
CN107426776A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 QoS控制方法及设备
CN107911850A (zh) * 2017-11-28 2018-04-13 中国联合网络通信集团有限公司 一种传送网业务建立方法及设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498099A (zh) * 2020-04-08 2021-10-12 中国移动通信有限公司研究院 数据包时延抖动监测方法及设备
CN113783744A (zh) * 2020-06-10 2021-12-10 中国移动通信集团海南有限公司 一种时延测量方法、装置、计算机设备和存储介质
CN112969199A (zh) * 2021-02-24 2021-06-15 中国联合网络通信集团有限公司 一种数据采集方法和设备
CN112969199B (zh) * 2021-02-24 2023-05-26 中国联合网络通信集团有限公司 一种数据采集方法和设备
CN115334014A (zh) * 2021-04-27 2022-11-11 阿里巴巴新加坡控股有限公司 虚拟交换机和数据传输系统
CN115334014B (zh) * 2021-04-27 2023-05-16 阿里巴巴新加坡控股有限公司 虚拟交换机和数据传输系统
CN115622614A (zh) * 2022-10-26 2023-01-17 广州爱浦路网络技术有限公司 一种卫星通信方法、装置及网元

Also Published As

Publication number Publication date
CN110661837A (zh) 2020-01-07
CN110661837B (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2020001301A1 (zh) 服务质量的控制方法和装置
US10917831B2 (en) Radio access network slice generation method, radio access network, and slice manager
JP6980836B2 (ja) データ送信方法、ユーザ機器、および基地局
US11937128B2 (en) Communication method and communications apparatus for determining latency of transmission between network elements
US20220174575A1 (en) Data transmission method, terminal device, and network device
US11432205B2 (en) Data transmission method, communications apparatus, and user plane function entity
WO2020143061A1 (zh) 用于资源建立的方法及设备
US11395256B2 (en) Communication method, device, and system
US20200351714A1 (en) Communication Method for Deterministic Transmission and Related Apparatus
US20160234713A1 (en) Information Transmission Method, Apparatus, and System
WO2022028041A1 (zh) 用户终端与网络进行通信的方法、终端、网络设备及装置
WO2020248237A1 (zh) 聚合连接建立方法、装置及存储介质
US11997538B2 (en) Communication method and communications apparatus
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
WO2015143763A1 (zh) 一种负荷信息传递方法、系统、网元及计算机存储介质
WO2014183252A1 (zh) 通信系统中确定具有双连接的用户设备的移动性的方法
Manjeshwar et al. Control and management of multiple RATs in wireless networks: An SDN approach
US20200267647A1 (en) Capability Indication Method, Route Setup Method, Mobile Terminal, and Network Device
WO2023160116A1 (zh) 通信方法和装置
CN102215538B (zh) 小区切换或重建过程中的测量任务配置方法及系统
WO2023000884A1 (zh) 多播会话处理方法、网络功能实体、装置及存储介质
WO2022152092A1 (zh) 数据传输控制方法和装置
WO2022161204A1 (zh) 信息指示方法、装置及终端
WO2017028561A1 (zh) 一种通信方法、装置及系统
WO2022204988A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825400

Country of ref document: EP

Kind code of ref document: A1